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a b s t r a c t

We propose a new optimization model to detect overlapping communities in networks.
The model elaborates suggestions contained in Zhang et al. (2007), in which overlapping
communities were identified through the use of a fuzzy membership function, calculated
as the outcome of a mathematical programming problem. In our approach, we retain
the idea of using both mathematical programming and fuzzy membership to detect
overlapping communities, but we replace the fuzzy objective function proposed there
with another one, based on the Newman and Girvan’s definition of modularity. Next,
we formulate a new mixed-integer linear programming model to calculate optimal
overlapping communities. After some computational tests, we provide some evidence
that our new proposal can fix some biases of the previous model, that is, its tendency
of calculating communities composed of almost all nodes. Conversely, our new model
can reveal other structural properties, such as nodes or communities acting as bridges
between communities. Finally, as mathematical programming can be used only for mod-
erate size networks due to its computation time, we proposed two heuristic algorithms
to solve the largest instances, that compare favourably to other methodologies.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The community detection problem is one of the most studied and interesting problems in networks science. It consists
n classifying the units of a population into groups using only information about their links, so that units of the same
roup can be interpreted as communities. The model is formulated on a network G = (V , E) in which the vertices V stand

for the units, such as individuals, companies, and so on, and the edges E stand for the relations between units, such as
kinship, commercial alliances, and so on. Community detection applications can be found in several disciplines, such as
biology [1], ecology [2,3], economics [4], sociology [5,6], and many more.

A crucial assumption of a standard community detection model is that communities form a partition of V , that is,
every unit belongs to one and only one community. This assumption is problematic, as there are applications in which
units can realistically belong to two or more communities. For example, the sociological literature documented the role of
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ndividuals who close gaps between communities as members of two communities, see [7], and playing an important role
n the functioning of the network as they are bridges, for example, they foster information spreading. Another example is
he case of the protein network described in [1], in which proteins are nodes and communities are proteins that carry on
ne task, but one protein can interact with other communities to accomplish other functions and so it belongs to two or
ore communities. A standard community detection model may fail to recognize these units, and so emerged the quest

or determining what is the best way for finding overlapping communities, as documented in the seminal paper [8] and
he survey [9].

The principles that were applied by the algorithms detecting overlapping communities are the same principles used to
etect non-overlapping communities, for example constructive methods, Fellows et al. [10], hierarchical clustering, Lan-
ichinetti et al. [11], optimization methods such as mathematical programming in [8], and so on: Other approaches can
e found in [12–16] and the survey by Xie et al. [9]. Here, we consider the methods that are based on the comparison of
n objective function: That is, given two possible partitions, the best is the one with the highest objective value. When an
bjective function is used, then there is a strong consensus that the modularity, as defined by Newman and Girvan [17],
s the most appropriate measure to detect disjoint communities. Nevertheless, the question of measuring the goodness
or quality) of overlapping communities is more controversial, as different measures were proposed by the literature.
n [8], Newman’s modularity function is extended using the fuzzy-c mean, so that a fuzzy membership function accounts
for the possibility of multiple communities membership. As that objective function is non-linear, optimal solutions were
not calculated and applications are tested using an heuristic algorithm. The contribution in [18] follows the same stream,
as a new modularity function is introduced to account for multiple memberships. In this case, group memberships are
represented as probabilities instead of fuzzy measures and a genetic heuristic algorithm is proposed to calculate the
communities. In [1], the standard Newman’s modularity function is optimized twice: Firstly, to find a node partition in
which some nodes could be identified as bridges. Secondly, modularity is applied as an optimization model in which
some node can be assigned to more than one community, through an appropriate modification of the mathematical
programming model. In [19], a cooperative game is defined on the network and its characteristic function is used to
measure players’ Shapley values. Communities are identified as stable coalitions, e.g. the ones in which no player can
unilaterally improve its Shapley values by moving into another coalition. Again, no attempt is made to formalize the
optimization problem and communities are calculated through heuristics. Unfortunately, the use of heuristic methods
to solve a well-posed mathematical programming problem can bring about biases in computing the correct overlapping
communities. Indeed, heuristics are devised combining mathematical programming concepts with constructive rule-of-
thumb considerations, to the point that empiric solutions can be very far from the optimal. As a matter of fact, when we
tested some of these models with more accuracy, we found that sometimes they calculate inconsistent communities, for
example, this is the case of the model proposed in [8]. As we documented in our contribution, when we calculated the
optimal solution of that mathematical programming problem, we discovered that some overlapping communities can be
the same community counted twice.

Here, we propose an amendment of the model of Zhang et al. [8], that we could prove it calculates meaningful
overlapping communities, e.g., they reveal structural properties of nodes, or of group of nodes, that were not detected by
the previous contribution. The new model improves basic ideas contained in [8] with new contributions. They are:

• Using a fuzzy membership function uik to determine whether a node i belongs to a community Ck;
• Calculating u through the optimization of an objective function;
• Using as objective function a variation of the Newman and Girvan’s modularity index.

To begin with, our tests revealed that the fuzzy modularity function optimized in [8] biases optimal solutions to grand
communities, a.g. communities that are formed by all or almost all nodes. Therefore, we introduce a different fuzzy
modular objective function, that avoids this bias. Next, we formulate a Mixed-Integer Linear Programming (MILP) model
that maximizes the fuzzy modular function under some linear and integer constraints. The advantage of this approach
is that, at least for instances of moderate size, the optimal solution can be calculated exactly with off-the-shelf solvers.
Calculating optimal instead of empiric overlapping communities has several advantages, the most important is that the
quality and reliability of the communities can be established without the biases that are due to the use of an heuristic.
When we applied our new model to some standard benchmark networks, we found meaningful overlapping communities.
Unfortunately, MILP problems can be solved for moderate size instances only. However, both the new objective function
and the MILP structure lead naturally to new heuristic procedures, that takes advantage of the mathematical formulation
of the problem. When applied to large datasets, the heuristics are fast and reliable.

After this introduction, the paper is organized as follows. In Section 3 we provide an exact formulation of Zhang et al.’s
model as Mixed Integer Concave Problem (MICP) so we can calculate its optimal solution for some test problems exactly.

e discover that optimal solutions are quite different from the heuristic ones reported in [8] and, unfortunately, they
re to a large extent meaningless, as they are the same community counted twice, or they are communities formed by
ll nodes but one. The misbehaviour is due to the fuzzy modularity index that was initially proposed, so we suggest
way to correct the index to avoid those inconsistent results. Using the new index, a new MILP model is formulated
nd successfully tested in Section 4. Next, in Section 5, we propose new heuristic algorithms to calculate overlapping
ommunities for large size networks. It can be seen that they find optimal communities in short computing times. The
aper concludes with some remarks and suggestions for future research in Section 6.
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. The modularity function for overlapping communities

Let G = (V , E) be a non-oriented and non-weighted network (or graph), with vertex set V = {1, . . . , n} and edge set E,
epresented by the adjacency matrix Aij, e.g., aij = 1 if (i, j) ∈ E, aij = 0 otherwise. Let m = |E| and ki the adjacency degree
f node i ∈ V . In [17], modularity optimization is proposed to detect the non-overlapping communities of a graph. The
odularity function compares the edge density between nodes of the same community with the expected edge density
etween the same nodes, but under the assumption that they do not form a community. The expected edge density is
btained from what is called the configuration model. The configuration model is the random graph obtained when edges
re placed between nodes randomly, but keeping constant the adjacency degree of each node. In the configuration model,
or two nodes i and j the expected number of edges between them is kikj

2m . Let P = {C1, . . . , Cq} be a partition of V . Then,
he modularity function of the partition P = {C1, . . . , Cq} is:

1
2m

∑
i,j∈V

(
Aij −

kikj
2m

)
δ(i, j), (1)

where δ is the Kronecker function, attaining the value 1 if i and j belong to the same community, 0 otherwise. The formula
of the modularity can be extended to weighted graphs as well. The entries Aij are replaced by weights Wij, ki by the sum of
the weights associated with arcs adjacent to i and m is replaced by the total sum of weights W =

∑
(i,j)∈E Wij, as described

in [20].
Let nc be the optimal number of communities and Vk be the set of nodes that belong to community k. The previous

odularity function (1) can be expressed as:

nc∑
k=1

⎛⎝∑i,j∈Vk
Aij

2m
−

(∑
i∈Vk

ki
2m

)2
⎞⎠ . (2)

Maximizing the modularity reveals the network community structure, defined as a partition of V . Nevertheless, there
are some applications in which a hard partition (hard in the sense that a node can belong to only one community) cannot
reveal interactive effects between nodes of different communities. When communities overlap, functions (1) or (2) are
not sufficient to determine the network structure, so that, in [8], it is proposed to combine modularity with soft partitions.

Instead of assuming that the membership of unit i to community k is represented by a 0-1 number, there is a fuzzy
value 0 ≤ uik ≤ 1 that represents the membership of node i to community k. This value uik is called membership
unction: If uik = 1, then i belongs to community k for certain, if uik = 0, then i does not belong to community k for
ure, while values uik in the range represent the uncertainty of the membership. It follows that the membership sum is
ne:

∑nc
k=1 uik = 1 ∀i ∈ V , where nc is the number of communities.

Membership functions identify the communities structure. For a given threshold value λ, a community Vk is defined
s the set of nodes whose membership exceeds the threshold λ, Vk = {i ∈ V : uik > λ}. From the definition of u and
, communities Vk, k = 1, . . . , nc may not form a partition, but are admitted to overlap: A node i may belong to more
han one community. Clearly, overlapping communities depend on λ: If λ > 0.5, than nodes belong to one community at
ost and no community can overlap. Next, if 0.334 < λ ≤ 0.5, each node can belong to a maximum of 2 communities. In
eneral, assuming p is a positive integer, if 1

p+1 < λ ≤ 1
p , each node can belong to a maximum number p of communities.

The fuzzy modularity function for overlapping communities, introduced in [8], is:

nc∑
k=1

⎛⎝∑i,j∈Vk
Aij

uik+ujk
2

2m
−

(∑
i,j∈Vk

Aij
uik+ujk

2 +
∑

i∈Vk,j/∈Vk
Aij

uik+(1−ujk)
2

2m

)2⎞⎠ . (3)

This function is a modification of the original modularity function (2). It is obtained by weighting each edge (i, j) by
he average of uik and ujk if i, j ∈ Vk, or by the average of uik and 1− ujk if i ∈ Vk, j ̸∈ Vk. Note that the expression (3) can
be applied to weighted graphs, too. It is sufficient to change the entry Aij with an edge weight, Wij, and m replaced by
the total sum of weights W =

∑
(i,j)∈E Wij.

3. An exact mathematical programming formulation of the maximum fuzzy modularity problem

Finding the nc overlapping communities that maximizes the function (3) is a hard problem to solve. Indeed, it is a
mixed binary polynomial optimization problem which can be easily proven to be NP-hard [21] and, in [8], only a heuristic
procedure is proposed indeed. Unfortunately, heuristic procedures may result with sub-optimal solutions that can be very
different from the optimal. Therefore, to test the effectiveness of that model, we formulated a mathematical programming
model that exactly maximizes function (3).

Problem variables are the membership functions uik, such that 0 ≤ uik ≤ 1 for all i and k. Next, hard membership
functions xik, for all i and k, that depend on variables uik and threshold parameter λ, are defined in the following way:

xik =

{ 1, if node i is assigned to community k, that is, if uik > λ,
0, otherwise.
3
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The constraint between variables xik and uik is:

xik ≥ uik − λ, ∀i = 1, . . . , n, k = 1, . . . , nc, (4)
xik ≤ 1+ uik − λ, ∀i = 1, . . . , n, k = 1, . . . , nc . (5)

The objective function (3) can be formulated using variables x. The term∑
i,j∈Vk

Aij
uik+ujk

2 is rewritten:

n∑
i,j=1

Aij
uik + ujk

2
xikxjk =

n∑
i,j=1

Aij
uik

2
xikxjk +

n∑
i,j=1

Aij
ujk

2
xikxjk.

Assuming a non-oriented network, e.g. Aij = Aji, then the previous expression is:
n∑

i,j=1

Aijuikxikxjk.

Next, the term
∑

i∈Vk,j̸∈Vk
Aij

uik+(1−ujk)
2 is rewritten as:

n∑
i,j=1

Aij
uik + (1− ujk)

2
xik(1− xjk) =

n∑
i,j=1

Aij

2
(uikxik + xik − ujkxik − uikxikxjk − xikxjk + ujkxikxjk).

Matrix A is symmetric, therefore:
∑n

i,j=1 Aij(ujkxikxjk − uikxikxjk) = 0, and, after simplifying, we obtain:

n∑
i,j=1

Aij

2
(uikxik + xik − ujkxik − xikxjk), (6)

that is a quadratic polynomial. For computational purposes, it is convenient to replace quadratic with linear terms,
e.g., wijk = uikxikxjk, sijk = ujkxik and zijk = xikxjk, and then to introduce additional linear constraints to represent these
identities. Finally, the mathematical programming formulation of maximizing function (3) is:

(F-MOD) max
1
2m

nc∑
k=1

⎛⎜⎝
⎛⎝ n∑

i,j=1

Aijwijk

⎞⎠−
(∑n

i,j=1 Aijwijk +
∑n

i,j=1 Aij
siik−sijk−zijk+xik

2

)2
2m

⎞⎟⎠ (7)

s.t. : (4), (5),
nc∑
k=1

xik ≥ 1, ∀i = 1, . . . , n, (8)

nc∑
k=1

uik = 1, ∀i = 1, . . . , n, (9)

wijk ≤ xik, ∀i, j = 1, . . . , n, k = 1, . . . , nc, (10)

wijk ≤ xjk, ∀i, j = 1, . . . , n, k = 1, . . . , nc, (11)

wijk ≤ uik, ∀i, j = 1, . . . , n, k = 1, . . . , nc, (12)

wijk ≥ uik + xik + xjk − 2, ∀i, j = 1, . . . , n, k = 1, . . . , nc (13)

sijk ≤ xik, ∀i, j = 1, . . . , n, k = 1, . . . , nc, (14)

sijk ≤ ujk, ∀i, j = 1, . . . , n, k = 1, . . . , nc, (15)

sijk ≥ ujk + xik − 1, ∀i, j = 1, . . . , n, k = 1, . . . , nc, (16)

zijk ≤ xik, ∀i, j = 1, . . . , n, k = 1, . . . , nc, (17)

zijk ≤ xjk, ∀i, j = 1, . . . , n, k = 1, . . . , nc, (18)

zijk ≥ xik + xjk − 1, ∀i, j = 1, . . . , n, k = 1, . . . , nc, (19)

w ∈ [0, 1] ∀i, j = 1, . . . , n, k = 1, . . . , n , (20)
ijk c

4
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Fig. 1. Optimal communities of the Zachary’s karate club structure for the formulation (F-MOD) with nc = 3 and λ = 0.25.

zijk, sijk,∈ [0, 1] ∀i, j = 1, . . . , n, k = 1, . . . , nc, (21)

uik ∈ [0, 1], ∀i = 1, . . . , n, k = 1, . . . , nc, (22)

xik ∈ {0, 1}, ∀i = 1, . . . , n, k = 1, . . . , nc . (23)

The objective function (7) is the fuzzy modularity function with soft membership variables u. Constraints (4) and (5)
epresent the node memberships to communities, that depend on threshold λ. Constraints (8) impose that every node
elongs to at least one community. Membership sum is equal to one for (9). Finally, the families of constraints (10)–(19)
epresent the identities: wijk = uikxikxjk, sijk = ujkxik and zijk = xikxjk, as linear constraints.

The objective function of problem (F-MOD) is concave, constraints are linear, variables are continuous or binary, so
hat problem (F-MOD) is MICP that can be solved by off-the-shelf mathematical programming solver as Gurobi, Cplex, and
thers. In our tests we embedded the Gurobi solver in a Python program. The advantage of problem (F-MOD) as MICP is
hat solutions are optimal, so that substantial interpretation of communities is not biased by the way in which a heuristic
rocedure is implemented and calculate the sub-optimal solution to the problem. To compare the two approaches,
ptimal vs suboptimal, we consider two networks: Zachary’s karate club and American college football teams, for which
uboptimal solutions are contained in [8]. We will show that the way in which the heuristic is implemented strongly
iases the calculation of the overlapping communities.
We begin applying formulation (F-MOD) to the Zachary’s karate club network, Zachary [22], with the same parameters

s in [8]: nc = 3, λ = 0.25. In Fig. 1, the optimal communities from MICP are reported. The model identifies as
ommunities the whole set of nodes V , counted three times, as nc = 3. The result is meaningless for a substantial analysis,
asting a doubt about the validity of the index (3). In Fig. 2, communities calculated by the heuristic algorithm in [8] are
eported for the same parameters. It can be seen that they are very different from the optimal, casting a further doubt
bout the validity of the heuristic.
To demonstrate further the previous findings, we analysed the case of the American college football teams network, Gir-

an and Newman [23], with parameters n = 10 and λ = 0.1. Due to the network size, we stopped the computation after
c

5
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Fig. 2. Zachary’s karate club community structure obtained by procedure in [8] assuming nc = 3 and λ = 0.25.

Fig. 3. American college football team community structure obtained by the procedure in [8] with nc = 10 and λ = 0.1, where red nodes represent
ntersection nodes.

4 h and we relied to a suboptimal solution of problem (F-MOD). The algorithm terminates with a gap of 7.75% between
he best feasible solution and the best upper bound. The best feasible solution is ten communities all consisting of all
odes. In Fig. 3, the community structure calculated by the algorithm in [8] for the same parameters is reported. Again,
t proves that the heuristic developed by Zhang et al. [8] does not optimize function (3).

One may wonder whether the previously documented biases were due to the MICP formulation instead, as it allows
oincident communities. So, we repeated the previous experiments with a MICP formulation in which not only coincident,
ut also included communities are forbidden. That is, solutions for which Ck ⊆ Cr for some k and r are not allowed.
To prevent the inclusion between communities, the next variables and constraints, for i = 1, . . . , n and 1 ≤ k < r ≤ nc ,

ust be introduced:

hikr =

{ 1, if i belongs to community r and not to community k,

0, otherwise.

h-Variables depend on x-variables, as hikr = xir (1 − xik). Moreover, we can assume that optimal communities are
rdered from the one with the largest size to the one with the smallest size, so that a community with an index k cannot
6
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b

Fig. 4. Optimal communities provided by formulation (F-MOD-NI) for Zachary’s karate club structure with nc = 3 and λ = 0.25.

Fig. 5. Community structure obtained by formulation (NEW-MOD) on the network of first example in [8], where the red nodes represent the overlap
etween communities assuming nc = 3 and λ = 0.15. Our result matches the one reported in [8].
7
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b

Fig. 6. Zachary’s club community structures.

Fig. 7. Zachary’s club communities with nc = 3, λ = 0.25 and bridge constraints on nodes 1, 9, 10, 31.

e smaller than the one indexed by k+ 1 for all k = 1, . . . , nc − 1. This can be enforced with the constraints:

n∑
i=1

xik ≥
n∑

i=1

xi,k+1, ∀k = 1, . . . , nc − 1. (24)

Finally, we obtain the formulation of problem (F-MOD) that prevents the inclusion between communities:

(F-MOD-NI) max
1
2m

nc∑
k=1

⎛⎜⎝
⎛⎝ n∑

i,j=1

Aijwijk

⎞⎠−
(∑n

i,j=1 Aijwijk +
∑n

i,j=1 Aij
siik−sijk−zijk+xik

2

)2
2m

⎞⎟⎠
s.t. : (4), (5), (8)− (24),

hikr ≤ 1− xik, ∀i = 1, . . . , n, k, r = 1, . . . , nc, k < r, (25)

hikr ≤ xir , ∀i = 1, . . . , n, k, r = 1, . . . , nc, k < r, (26)

x − x − h ≤ 0, ∀i = 1, . . . , n, k, r = 1, . . . , n , k < r, (27)
ir ik ikr c

8
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Fig. 8. American college football team communities with nc = 10 and λ = 0.1.

Fig. 9. Zachary’s Karate club communities maximizing Newman and Girvan’s modularity.

n∑
j=1

hjkr ≥ xir , ∀i = 1, . . . , n, k, r = 1, . . . , nc, k < r, (28)

hikr ∈ [0, 1] ∀i = 1, . . . , n, k, r = 1, . . . , nc, k < r. (29)

The family of constraints (25)–(27) represents the identities: hikr = xir (1 − xik). Then, constraints (28), jointly with (24),
mpose that in community r , that contains less units than community k as k < r , there is at least one element that is not
ontained in k.
Even though problem (F-MOD-NI) has been designed to avoid the inconsistency that could be due to implicit

ssumptions that communities cannot be included, still the outcome appears biased as before. When problem (F-MOD-NI)
as been applied to Zachary’s karate club, we obtained the results of Fig. 4. That is, all communities are composed by all
he nodes except one. The same happens for the American Football networks (data not reported here).
9
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Fig. 10. Zachary’s Karate club communities maximizing Problem (NEW-MOD) with nc = 4 and λ = 0.25.

Fig. 11. Highland tribes communities maximizing the Newman and Girvan’s modularity.

To summarize the previous tests, there is some flaw in the definition of optimal overlapping communities, as proposed
in [8], that regards the formulation of the objective function (3). The previous contribution could not recognize the
inconsistency, because optimization was implemented through the use of an heuristic procedure. The heuristic procedure
stacked in favour of sub-optimal solutions that were actually so far from optimal ones that they confuse reasonable
communities with optimal. To motivate this argument, note that a set of overlapping communities correspond to fixing
hard assignment variables x to 0 or 1. Then, with x being fixed, problems (F-MOD) and (F-MOD-NI) can be solved to
calculate the corresponding soft assignment variables u. Finally, the objective function (3) can be calculated and compared
using various x. Table 1 reports, the objective function for: (i) overlapping communities calculated by problem (F-MOD),
(ii) overlapping communities calculated by problem (F-MOD-NI), (iii) overlapping communities calculated by the heuristic
procedure in [8] and reported in Figs. 2 and 3. As can be seen, the objective function of the suboptimal solutions are very
far from the optimal ones.
10
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Fig. 12. Highland tribes communities maximizing Problem (NEW-MOD) with nc = 3 and λ = 0.25.

Fig. 13. Optimal Highland tribes communities maximizing (NEW-MOD) with nc = 4 and λ = 0.4.
11
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o

Fig. 14. Zebra communication community structures.

4. A new fuzzy modularity function for overlapping community detection

Our previous experiments showed that formula (3) is not appropriate to detect overlapping communities, as it leads
to optimal solutions composed of almost all the vertices. The reason to this is that, if node i ∈ Vk and j /∈ Vk, weighting
the edges between i and j by the average of uik and 1− ujk introduces a bias in the sum. Indeed, if j ̸∈ Vk, then (1− ujk)
is large, but this term appears as a subtraction in (3), and therefore this is an incentive to create large communities, just
to avoid these negative terms. Therefore, a reasonable transformation of formula (3) could be to exclude those negative
terms and to retain only the positive ones, [24,25].

To formulate the new measure, we introduce some hypothesis, as those that inspired the modularity function in [17].
There, similarity between units are compared to the ones that were obtained randomly, e.g., the ones of the so-called
configuration graph. In our proposal, instead of generating one random graph, we generate nc random graphs and we
assume edge weights calculated as the average of their membership for each of the nc communities. Therefore, the new
bjective function is:

nc∑∑(
Aij −

kikj
2m

)
uik + ujk

2
, (30)
k=1 i,j∈Vk

12
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Fig. 15. Windsurfers communities maximizing Newman and Girvan’s modularity are the same maximizing Problem (NEW-MOD) with nc = 2 and
λ = 0.4, 0.25.

where the condition i ∈ Vk corresponds to the hard assignment resulting from uik ≥ λ. Note that the objective function
(30) is linear, while the objective function (3) is quadratic, leading to a mixed-integer optimization problem that should
be solved faster than its quadratic counterpart. Moreover, Eq. (30) can be extended to consider weighted graphs too. Entry
i, j of the adjacency matrix, Aij is replaced by Wij, ki, and the weights sum is W =

∑
(i,j)∈E Wij.

The new model is:

(NEW-MOD) max
1
2m

nc∑
k=1

n∑
i,j=1

(
Aij −

kikj
2m

)
wijk + wjik

2
(31)

s.t.: (4), (5), from (8) to (13), (20), (22), (23).

In Problem (NEW-MOD), two parameters appear as input: They are the membership threshold λ and the total number
f communities nc . There is not an optimal choice for these parameters, rather, there is a trade-off between them and
he value of the objective function, as it happens similarly for the k-means model. The correct choice depends on the
pplication at hand. Here, we propose to solve maximum modularity with disjoint community to calculate nc , and then
sing it as the input of Problem (NEW-MOD) to let these communities overlap, e.g. controlling whether the possibility of
ultiple memberships increases the objective function. Nevertheless, this choice is not exclusive and other rule-of-thumb
an be used to the purpose. Next, parameter λ controls for the maximum number of communities to which a node can
elong, for example and as discussed previously, for λ ∈ [0.34, 0.50) a node can belong to two communities at most.
herefore, admissible values are λ ∈ { 12 ,

1
3 , . . . ,

1
nc
}. Nevertheless, choosing the right one depends on the application.

After having implemented formulation (NEW-MOD) in Python and solved with the Gurobi’s solver, we applied it to the
irst example in [8] and on the Zachary’s karate club network. Our results are reported in Figs. 5 and 6(a), respectively. As
an be seen, for the first example, Fig. 5 replicates the communities that have been found in [8]. For what concerns the
arate club, we can compare Fig. 2 with 6(a) and observe that the results of the new model are communities similar to
he ones that were calculated with a constructive algorithm in [8]. To see the effect of varying λ, the results with λ = 0.1
are reported in Fig. 6(b). Similar overlapping communities can be seen, but more intersection nodes appear due to the
smaller value of λ.

One important advantage of using mathematical programming to formulate and solve the overlapping community
detection is that additional features or constraints that one expects from communities can be explicitly modelled as linear
inequalities of the problem constraints. For example, as suggested in [1], a researcher may know from other qualitative
sources that some nodes, e.g. actors of the networks, are acting as bridges between groups. In this case, these nodes should
be included in at least two communities from the beginning, that is, from the problem formulation. This property can be
imposed over a node i by the inequality:

nc∑
k=1

xik ≥ 2

in the constraints of Problem (NEW-MOD). Another possibility is to require that full inclusion among overlapping
communities is explicitly forbidden. This can be enforced including in the formulation inequalities (25)–(29).
13
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Fig. 16. Zachary’s karate club community structure obtained by the Algorithm 1 with λ = 0.25.

Fig. 17. Highland tribes community structure obtained by the Algorithm 1 with λ = 0.25.
14
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Fig. 18. Zebra communication community structure obtained by the Algorithm 1.

Table 1
Fuzzy (3) comparisons of the most outstanding structures.
Dataset nc λ F-MOD F-MOD-NI [8]

Zachary’s karate club 3 0.25 0.667 0.65 0.445

American college football team 10 0.1 0.9 0.887 0.619

As an example of the previous remark, we calculated the structure of the Zachary’s karate club network with nc = 3
and λ = 0.25 but imposing some nodes to belong to two communities, acting as bridges. Following the solution reported
in [8], we let nodes 1, 9, 10 and 31 belong to two communities. The solution obtained is depicted in Fig. 7. The same
15
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Fig. 19. American college football team community structure obtained by the Algorithm 1 with λ = 0.1.

verlapping structure as in Fig. 6(a) are obtained, but now nodes 9,10 and 31 are at the intersection of the communities
lack and grey.
Applied to the American football instance, after 24 h of computing time, the linear solver could not certify the

ptimality of its incumbent solution to problem (NEW-MOD). This incumbent solution is depicted in Fig. 8. Even though
he solution has not been proved to be the best, still its objective function, (3) e.g f = 0.632, is higher than the objective
unction of the solution calculated in [8]. Moreover, it can be observed in Fig. 8 that there are many intersection nodes,
s λ has a low value, communities tend to overlap more.
In the following, we apply formulation (NEW-MOD) using the following procedure: First, we calculate the optimal

isjoint communities that maximizes the Newman and Girvan’s modularity to determine the parameter nc , the number
f these communities. Then we apply Problem (NEW-MOD) with varying nc and λ as input parameters.
The first example is again Zachary’s karate club. The optimal non-overlapping communities are reported in Fig. 9, the

utput is nc = 4. When admitting overlapping communities, the results are reported in Fig. 10. As can be seen, overlapping
ommunities identify nodes that are bridges between communities, as their edges are adjacent to different groups, as is
he case of nodes 1, 3, 12, 24, 34. This result shows that overlapping communities provide important information about
he structural properties of nodes, information that is not available when communities are disjoint. The second example
s the alliances network between Highland tribes of New Guinea, Read [26]. The optimal non-overlapping communities
re reported in Fig. 11, the output is nc = 3. When admitting overlapping communities, and with λ = 0.25, the results are
eported in Fig. 12, while, for nc = 4 and λ = 0.4, the results are reported in Fig. 13. The detected communities contain
high internal edge density and the intersection nodes share connections with various communities. These results can
e interpreted easily and robust to different parameters combination The third example is the zebra communication
etwork, [27]. The optimal non-overlapping communities are reported in subfigure (a) of Fig. 14, the output is n = 4.
c

16
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Table 2
Computational results of the solution methods.
Dataset nc λ Solving method Time (s) Objective value

Zachary’s karate club 4 0.25 Exact model 42315 0.442831

Algorithm 1.i. 4.26 0.441979

Algorithm 1.ii. 0.66 0.440787

Algorithm 1.iii. 0.4 0.440787

Zachary’s karate club 3 0.25 Exact model 11573 0.41415

Algorithm 1.i. 131 0.41415

Algorithm 1.ii. 14.68 0.41415

Algorithm 1.iii. 5.47 0.41415

Highland tribes 3 0.25 Exact model 23715 0.191439

Algorithm 1.i. 0.43 0.191439

Algorithm 1.ii. 0.17 0.191439

Algorithm 1.iii. 0.08 0.184379

Zebra communication 4 0.4 Exact model 1463 0.282266

Algorithm 1.i. 0.72 0.282266

Algorithm 1.ii. 0.22 0.282266

Algorithm 1.iii. 0.19 0.282266

Zebra communication 4 0.25 Exact model 3682 0.284342

Algorithm 1.i. 1.33 0.284342

Algorithm 1.ii. 0.35 0.284342

Algorithm 1.iii. 0.15 0.282911

American college football team 10 0.1 Exact model 86400 0.619

Algorithm 1.i. 1902 0.6345487

Algorithm 1.ii. 136 0.6345

Algorithm 1.iii. 56.78 0.616872

When admitting overlapping communities, and testing for λ = 0.25, and 0.4, it can be seen that as λ is smaller, there are
more nodes in the intersections between communities. The fourth example is the windsurfers network, [28]. The optimal
non- overlapping communities result in nc = 2. When admitting overlapping communities, still disjoint communities are
detected, see Fig. 15. This is because there are two distinguished communities and the model cannot find nodes behaving
as bridges between groups.

From the four applications we can conclude that:

• Overlapping communities provide additional information about the structure of the connection between groups, for
example, identifying nodes interpreted as bridges.
• Varying parameter λ is an effective tool to let communities of different shape emerge, identifying what nodes are

also the most influential, as they belong to more than two communities.
• The overlapping model is flexible enough to guarantee a non-overlapping community as the outcome, when data

suggest so.

5. Heuristic algorithms to approximate overlapping communities

If λ is fixed to 1, then Problem (NEW-MOD) is the maximum modularity problem, a problem that is known NP-hard,
therefore NP-hard itself: They are problem for which a polynomial time algorithm does not exist, unless P = NP. In practice,
this negative result implies that optimal solutions can be obtained only for instances of moderate size. As can be seen in the
application to the American college football teams this size is of the order of a few tens. Nevertheless, the MILP formulation
can be used to obtain good approximations of optimal solutions through the use of heuristic. The first algorithm that we
propose is based on local search. It consists of an iterative method applied to feasible solutions that are improved by
modifying some value, e.g. membership functions or hard assignments, until no improvement is possible. In that case, we
say that a local optimum has been reached. More formally, let nc be the maximum number of communities and λ be the
threshold of the membership value, let Π = {V1, . . . , Vn∗c } be a set of n∗c communities of V , n∗c ≤ nc . We say that Π is a
easible solution if: (1) every node belongs to at least one community, that is,

⋃n∗c
k=1 Vk = V , (2) no community is a subset

of a larger one, that is, ∄k, r = 1, . . . , nc, k ̸= r , such that Vk ⊆ Vr , and (3) there is a feasible membership solution u for
the partition Π , i.e. ∀i ∈ V the inequality 1

|{k=1,...,n∗c :i∈Vk}|
≥ λ is fulfilled.

Assume that Π is a feasible solution. To improve the objective function we consider three types of changes of hard
ssignments: (1) to add a node to a community or (2) to remove a node from a community, and (3) to swap two nodes
17
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Table 3
Computational results comparing Algorithm 2 with Clique percolation and Fuzzy c-means.
n λ Number of

communi-
ties

Solving method Time (s) Objective value

333 0.5 13 Large scale algorithm 0.84 0.4381

15 Fuzzy c-means 63.35 0.36

172 Clique percolation 26.67 0.3135

333 0.2 13 Large scale algorithm 0.84 0.44

13 Fuzzy c-means 64.32 0.3614

109 Clique percolation 27.98 0.3871

747 0.5 6 Large scale algorithm 7 0.526

9 Fuzzy c-means 262.59 0.506

– Clique percolation – –

747 0.2 6 Large scale algorithm 7.28 0.5286

9 Fuzzy c-means 270.174 0.512

– Clique percolation – –

224 0.5 5 Large scale algorithm 0.51 0.2691

12 Fuzzy c-means 37.33 0.254

100 Clique percolation 1102.26 0.1679

224 0.2 5 Large scale algorithm 0.91 0.2933

12 Fuzzy c-means 38 0.26169

90 Clique percolation 1268.74 0.1893

534 0.5 10 Large scale algorithm 3.9 0.62656

10 Fuzzy c-means 140.74 0.63

246 Clique percolation 70.68 0.488

534 0.2 10 Large scale algorithm 4.5 0.6445

10 Fuzzy c-means 149.83 0.635

93 Clique percolation 77.8 0.6224

1034 0.5 6 Large scale algorithm 39.36 0.5357

7 Fuzzy c-means 499.18 0.52428

– Clique percolation – –

1034 0.2 6 Large scale algorithm 46.9 0.5401

7 Fuzzy c-means 519.15 0.52689

– Clique percolation – –

from two different communities. These moves can be applied if and only if the new obtained solution is feasible. For
instance, the first and the second movement cannot be applied if it results in some inclusion between communities. More
formally, for i ∈ V and k = 1, . . . , nc , let the triplet (i, k, 1) be the move of adding node i to community k and let the
triplet (i, k, 2) be the move of removing node i from community k, let the 5-tuple (i, k, i′, k′, 3) be the move of swapping
nodes i and i′ between communities k and k′ respectively.

Assume that Π is a feasible solution, represented by hard assignments x and membership functions u, then, to calculate
the objective function (30), membership functions u must be determined too: u can be calculated in the following ways:

(i) Exact calculation of u: use formulation (NEW-MOD) to calculate the optimal objective function (30) and its
corresponding u.

(ii) Approximate calculation of u: keep fixed the membership functions u corresponding to unchanged assignments x,
and find an approximate value uik only for the assignments xik that were modified using formulation (NEW-MOD).
This option is less accurate but also reduces complexity.

(iii) Approximate calculation of u: Approximate u as follows. If xik = 0 then uik = 0, while uik = p, with p a constant
term, for the value for which xik = 1, so p = 1∑n∗c

j=1 xij
. This is the least accurate approximation, but also the simplest

and fastest, as it does not require any optimization.

Finally, the interchange heuristic is applied to the initial solution x calculated maximizing modularity (1) with non-
verlapping solution. Further diversification can be obtained by choosing the initial solution x randomly, e.g. using the
o-called random restart.
The pseudo-code of the algorithm is summarized in Algorithm 1:
18
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Algorithm 1 Heuristic algorithm
procedure Local Search for Overlapping Communities

Π = {V1, . . . , Vnc } ← Initial_Subdivision ▷ Π feasible subdivision obtained randomly or by another procedure
f ← Extended_Modularity(Π ) ▷ The extended modularity (30) is computed by three different ways: i), ii) or iii).
local_opt = FALSE ▷ Condition for a local optimum
while local_opt = FALSE do

∆← Feasible_Moves(Π ) ▷ ∆: list of admissible movements for Π .
for (i, k, d) in ∆ do

if d=1 then
Vk ← Vk ∪ {i}
δikd ← Extended_Modularity(Π )
Vk ← Vk \ {i}

end if
if d=2 then

Vk ← Vk \ {i}
δikd ← Extended_Modularity(Π )
Vk ← Vk ∪ {i}

end if
end for
for (i, k, i′, k′, 3) ∈ ∆ do

if d=3 then
Vk ← Vk ∪ {i′} \ {i}
Vk′ ← Vk′ ∪ {i} \ {i

′
}

δiki′k′d ← Extended_Modularity(Π )
Vk ← Vk \ {i′} ∪ {i}
Vk′ ← Vk′ \ {i} ∪ {i

′
}

end if
end for
(i∗, k∗, d∗) ∈ argmax{δikd|(i, k, d) ∈ ∆} ▷ Select the move that increases the most
(i∗, k∗, i′∗, k′∗, d∗) ∈ argmax{δiki′k′d|(i, k, i

′, k′, d) ∈ ∆} ▷ Select the move that increases the most
if δi∗k∗ i′∗k′∗d∗ > max{f , δi∗k∗d∗ } then

f ← δi∗k∗ i′∗k′∗d∗ ▷ Update f
Vk∗ ← Vk∗ ∪ {i

′∗
} \ {i∗}

Vk′∗ ← Vk′∗ ∪ {i
∗
} \ {i′∗} ▷ Update Π

else
if δi∗k∗d∗ > f then

f ← δi∗k∗d∗ ▷ Update f
if d∗ = 1 then

Vk∗ ← Vk∗ ∪ {i
∗
} ▷ Update Π

else
Vk∗ ← Vk∗ \ {i

∗
} ▷ Update Π

end if
else

local_opt = TRUE
end if

end if
end while
return Π ▷ Return the local optimum

end procedure

If the initial solution Π is obtained randomly, then the interchange can be repeated for a maximum of tmax initial
solution. For each attempt t , we obtain local optimal objective function ft and overlapping communities Πt . Finally,
approximate solution of problem (NEW-MOD) is the best local optimum.

In test problems, we run the algorithm with the three different methods to calculate membership function u. To assess
their quality, we applied Algorithm 1 to the initial solution Π calculated by the maximum modularity (1), as in this way
we prevent potential biases caused by random starting solutions. The communities found in this way are reported in
Figs. 16, 17, 18 and 19. As can be seen, when the membership functions u are calculated exactly, e.g. by solving the
optimization problem, then the heuristic communities are the optimal. While, when u are approximated, the heuristic
communities only differ for very few nodes to the optimal ones.

Next, in Table 2, we compared Algorithm 1 with the three variants for computing u with the optimal solution of
problem (NEW-MOD). It can be seen that the heuristic algorithms reduce the computational time at the cost of decreasing
the objective function only to a small amount. When the optimal solution is not available, such as the case of the American
football data, two of the heuristic algorithms could obtain a better objective value than the MILP truncation after 24 h of
computing.

For the Zachary’s karate club case with nc = 3, since the optimal number of communities in the non-overlapping case
is nc = 4 and λ = 0.25, we do not use this as an initial solution. Instead, we perform a multistart strategy with ten
iterations starting with 3 randomly chosen communities.

Algorithm 1 works well when input data are small or medium sized networks, e.g. networks with hundreds of nodes,
but computational times might be too high for large sized networks, for example instances with more than 1000 nodes.
For this reason, we developed a variation of the previous Algorithm, reported in Algorithm 2, in which some operations
19
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re accelerated at the cost of further approximation of optimal decisions. Nevertheless, the method is appropriate for
arge size networks.
Algorithm 2 Large scale heuristic algorithm

procedure Local Search for Overlapping Communities
Π = {V1, . . . , Vnc } ← Initial_Subdivision ▷ Π feasible subdivision obtained randomly or by another procedure (heuristic)
f ← Extended_Modularity(Π ) ▷ The extended modularity (30) is computed by third way iii).
local_opt = FALSE ▷ Condition for a local optimum
while local_opt = FALSE do

∆← Feasible_Moves(Π ) ▷ ∆: list of admissible movements for Π .
for (i, k, d) in ∆ do

if d=1 then
Vk ← Vk ∪ {i}
δikd ← Extended_Modularity(Π )− f
Vk ← Vk \ {i}

end if
if d=2 then

Vk ← Vk \ {i}
δikd ← Extended_Modularity(Π )− f
Vk ← Vk ∪ {i}

end if
end for
for (i, k, i′, k′, 3) ∈ ∆ do

if d=3 then
Vk ← Vk ∪ {i′} \ {i}
Vk′ ← Vk′ ∪ {i} \ {i

′
}

δiki′k′d ← Extended_Modularity(Π )− f
Vk ← Vk \ {i′} ∪ {i}
Vk′ ← Vk′ \ {i} ∪ {i

′
}

end if
end for
V ← {1, . . . , n}, K ← {1, . . . , nc },f _improve← TRUE
while V ̸= ∅, K ̸= ∅, f _improve = TRUE do

(i∗, k∗, d∗) ∈ argmax{δikd|(i, k, d) ∈ ∆, i ∈ V , k ∈ K } ▷ Select the move that increases the most
(i∗, k∗, i′∗, k′∗, d∗) ∈ argmax{δiki′k′d|(i, k, i

′, k′, d) ∈ ∆, i, i′ ∈ V , k, k′ ∈ K } ▷ Select the move that increases the most
if δi∗k∗ i′∗k′∗d∗ > max{0, δi∗k∗d∗ } then

V ← V \ {i∗, i′∗}
K ← K \ {k∗, k′∗}
Vk∗ ← Vk∗ ∪ {i

′∗
} \ {i∗}

Vk′∗ ← Vk′∗ ∪ {i
∗
} \ {i′∗} ▷ Update Π

f ← Extended_Modularity(Π ) ▷ Update f
else

if δi∗k∗d∗ > 0 then
V ← V \ {i∗}
K ← K \ {k∗}
if d∗ = 1 then

Vk∗ ← Vk∗ ∪ {i
∗
} ▷ Update Π

f ← Extended_Modularity(Π ) ▷ Update f
else

Vk∗ ← Vk∗ \ {i
∗
} ▷ Update Π

f ← Extended_Modularity(Π ) ▷ Update f
end if

else
f _improve = FALSE
if V = {1, . . . , n} then

local_opt = TRUE
end if

end if
end if

end while
end while
return Π ▷ Return the local optimum

end procedure

Algorithm 2 is based on the previous Algorithm 1, but modifying some of its steps. First of all, membership functions
u are calculated by option (iii), e.g. the fastest approximation scheme among those proposed for Algorithm 1. Next,
initial solution is calculated through an approximation of optimal modularity communities, that is, using agglomerative
hierarchical clustering proposes in [29]. Finally, add, remove and interchange steps to improve the incumbent solution
are applied only if they use nodes or communities that are not repeated, as it was already done in the heuristic presented
in [30]. In this way, computational times can be reduced to a large extent.

We compare our method to two other algorithms: the clique percolation proposed in [31] and the fuzzy c-means
proposed in [8]. The first method defines as communities the connected k-cliques, that are the cliques composed of k
odes. The algorithm depends on the parameter k, so we have calculated the fuzzy modularity function (30) for all the
alues from k = 1 to k the size of the greatest clique. The second method, the fuzzy c-means, is based on the eigenvectors
f the normalized adjacency matrix and depends on two parameters: the maximum number of communities and the
arameter m that appears on the fuzzy c-means expression, because membership functions are to the power of m in the
20
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xpression of the fuzzy-c means. Then, we run the algorithm with varying nc from 2 to a fixed maximum number of
ommunities.
All procedures are implemented in Python and applied to the Facebook friendship relation networks, [32]. In some

ases, clique percolation could not solve the instance for the computational complexity of calculating k-cliques. Algorithm
uzzy c-means has been run with a maximum number of communities equal to nc = 15 and different values of m in
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2} and we report the best results of these alternatives. Computational results are
eported in Table 3. As can be seen, Algorithm 2 is the fastest method and in most cases its objective function is the
ighest, showing evidence that it is better than the two other methods.

. Conclusion

In this paper, we have proposed a new model to detect overlapping communities in a network. Our model is based
n the optimization of a fuzzy modularity function, following the suggestion contained in [8], However, we elaborated
hat model further, as we discovered that for that original contribution optimal communities are the whole set of nodes,
r the whole set except a few nodes. We proposed a novel fuzzy modularity function and we proved by computational
xperiments that overlapping communities calculated in that way could reveal the network structure in a meaningful
ay, for example detecting the nodes with the structural property of being bridges.
As in [8], our method is mathematical programming with integer variables and the optimization problem is hard to

olve: Computational times for large networks are too high for both methods being of practical use. Nevertheless, the
ew objective function is the core of a new heuristic method, based on the operations of add, drop, and interchange, that
an be applied to large data sets. In this case, computational times are reasonable, only at a cost of a small approximation
f the optimal solution. Nevertheless, further improvements can be obtained for the algorithm for large size instances,
or example, testing other heuristic techniques such as genetic algorithms, tabu search or variable neighbourhood search.
euristic could take advantage of the MILP formulation of the model, as the methods proposed in [30,33,34]. Finally,
mprovements can be obtained by designing hybrid techniques, and combining maximum fuzzy modularity with clique
ercolation and clustering.
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