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Abstract—Over the past years, semantic segmentation, as many
other tasks in computer vision, benefited from the progress
in deep neural networks, resulting in significantly improved
performance. However, deep architectures trained with gradient-
based techniques suffer from catastrophic forgetting, which is the
tendency to forget previously learned knowledge while learning
new tasks. Aiming at devising strategies to counteract this effect,
incremental learning approaches have gained popularity over the
past years. However, the first incremental learning methods for
semantic segmentation appeared only recently. While effective,
these approaches do not account for a crucial aspect in pixel-level
dense prediction problems, i.e. the role of attention mechanisms.
To fill this gap, in this paper we introduce a novel attentive feature
distillation approach to mitigate catastrophic forgetting while
accounting for semantic spatial- and channel-level dependencies.
Furthermore, we propose a continual attentive fusion structure,
which takes advantage of the attention learned from the new
and the old tasks while learning features for the new task.
Finally, we also introduce a novel strategy to account for the
background class in the distillation loss, thus preventing biased
predictions. We demonstrate the effectiveness of our approach
with an extensive evaluation on Pascal-VOC 2012 and ADE20K,
setting a new state of the art.

Index Terms—Knowledge Distillation, Incremental Learning,
Semantic Segmentation.

I. INTRODUCTION

During the last decade, the emergence of deep learning

has lead to several breakthroughs in many computer vision

and multimedia tasks. Semantic segmentation, the problem

of assigning a semantic label to each pixel in an image,

was no exception to this trend [1]. Sophisticated deep neural

networks as fully convolutional networks (FCNs) [2] or dilated

convolution models [3], together with the availability of

large human-annotated datasets and powerful hardware led

to exceptional results on challenging semantic segmentation

benchmarks [2]–[7].
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(a) Input Image (b) Attention (c) Ours (d) MiB [9] (e) GT

Fig. 1. Given an input image, by leveraging from attention maps (b) computed
with the proposed continual attentive fusion (CAF) module, our method
produces segmentation maps (c) more similar to ground truths (e) than those
computed with previous methods such as MiB [9] in (d).

Although deep learning models are approaching and even

exceeding human-level performance on numerous tasks, includ-

ing semantic segmentation, artificial neural networks encounter

serious difficulties when it comes to incremental learning (IL).

In other words, they struggle to preserve past knowledge when

attempting to learn multiple tasks sequentially. This is due to

the well known catastrophic forgetting issue [8], which is the

tendency of a deep network to forget previously learned tasks.

Unfortunately, this problem is intrinsic to the optimization

techniques (e.g. gradient descent) used to train neural networks.

Nonetheless, the ability of learning a sequence of tasks is

unarguably a highly desirable property of artificial intelligent

systems.

For this reason, IL has recently gained much attention,

and in particular, incremental class learning (ICL), where the

ability of a model to discriminate current and past classes

simultaneously without knowing the task at test time is

evaluated. Over the past years, several works have proposed

ICL approaches, mostly focusing on image classification [10]–

[17], object detection [18], [19], image retrieval [20], [21] and

emotion recognition [22]–[24] . So far, much less attention

has been devoted to ICL for semantic segmentation. Recently,

Cermelli et al. [9] showed promising results introducing a

distillation-based framework that accounts for background
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distribution shifts between tasks to prevent biased predictions.

Concurrently, recent studies demonstrated the effectiveness

of attention mechanisms on semantic segmentation [25]–[28].

Although attempts were made to exploit attention for learning

tasks sequentially in the context of object classification [29]

and detection [19], they cannot be effectively adopted for

incremental semantic segmentation. In this paper, we bridge

this gap and propose the first attention-based ICL method for

semantic segmentation.

Our contributions can be summarized as follows:

• We propose a novel deep architecture for ICL which

embeds a new continual attentive fusion (CAF) module.

Given the features of the current and previous models,

CAF produces structured self-attention weights to update

the current features. We demonstrate that this module

by itself reduces catastrophic forgetting significantly and

leads to improved segmentation maps with respect to

previous methods such as MiB [9] (see Figure 1).

• We introduce a novel attentive distillation loss that lever-

ages both channel-wise and spatial attention to transfer

more relevant knowledge into the current model. By

correctly weighting the importance of each channel, the

attentive distillation loss enables the model to keep the

performance on old tasks without using any explicit

information from the past.

• We devise a simple and effective method for improving the

balance between old classes and background probabilities

that only depends on the inferred ratio of old and new

classes in a given image, thus avoiding introducing

additional hyper-parameters.

• The proposed approach sets the new state-of-the-art on

two common datasets for ICL for semantic segmentation,

namely Pascal-VOC 2012 [30] and ADE20K [31].

II. RELATED WORKS

Incremental Learning. Modern artificial neural networks are

haunted by the well known catastrophic forgetting problem:

the tendency of neural models to severely degrade performance

on previous tasks when training on new ones. This issue has

been largely studied in the literature in the last few decades [8],

leading to a wide variety of IL approaches. According to [32],

prior art in this field can be organized in three categories:

replay-based methods [13], [14], [33]–[36], regularization-

based techniques [10]–[12], [29], [37] and parameter isolation-

based approaches [38], [39]. Replay-based methods consist in

storing [13], [14], [33], [40] or generating [34]–[36] examples

of the first task which are then reused in subsequent learning

stages. Regularization-based methods are either penalizing

changes of a subset of parameters while learning on new

tasks [11], [12], [37], [41] or employing distillation to force

the network not to forget past knowledge [10], [17], [29].

Parameter-isolation based approaches are built on the idea of

having task-specific set of parameters. Despite the interest

in the problem, the large majority of the literature focuses

on classification. A pioneering work of Shmelkov et al. [18]

exploits distillation [10] for class discovery in detection. In

this paper, we address ICL in semantic segmentation.

Incremental Learning in Semantic Segmentation. Deep

learning brought great progress in semantic segmentation [2]–

[5], [42]. Despite the abundant literature on this task, very few

works are tackling ICL for this task [9], [43]–[46]. Moreover,

these studies address the problem from different perspectives

and utilize contrasting experimental settings. For instance,

in [43], the authors were the first to study this task proposing

an approach which operates both on the output and on the

intermediate representations of the segmentation model. [45]

presented a method to sample prototypical examples of the old

classes to be used as a rehearsal in the new task. However, both

[43], [45] assume that some information from the previous

task will be available during the training of the second task.

Other approaches [44], [46] described ICL methods which

are specialized for certain subfields (i.e. remote sensing and

computer assisted radiology and surgery), lacking generality.

More recently, [9] attempted to fix the semantic distribution

shift in the background class, showing significant performance

boost. However, their approach operate at loss level, while

network architectural changes to improve segmentation maps

are not considered. In contrast, in this paper we overcome

several limitations of the previous literature, and propose a

new architectural solution for rehearsal-free ICL in semantic

segmentation.

Attention Mechanisms. Several works considered attention

models within deep architectures to improve performance [47]–

[59]. Focusing only on pixel-wise dense prediction, Chen et

al. [25] first described an attention model to combine multi-

scale features learned by a FCN for semantic segmentation.

Zhang et al. [6] designed EncNet, a network equipped with

a channel attention mechanism to model global context.

Similarly, Zhao et al. [60] proposed to account for pixel-

wise dependencies introducing relative position information

across the spatial dimension within the convolutional layers.

Other works [27] introduced attention to model contextual

and semantic dependencies, respectively. Zhong et al. [61]

considered spatial and channel inter-dependencies in their

squeeze-and-attention network. Xu et al. [26], [62] described

attention gates, introduced to control the message passing

among variables, thus integrating attention into a probabilistic

model formulation. Our work differs significantly from previous

art, since (i) we use spatial and channel-wise attention to help

the network discovering new classes and (ii) attention is also

counteract the semantic distribution shift of the background

class between the two tasks.

III. PROPOSED METHOD

The problem of image segmentation is that of inferring the

correct label sp for each pixel p in the input image x, among

the available class labels S. For the sake of simplicity all

images are assumed to be of the same size |x| = P . Tools

for semantic segmentation can vary significantly in nature,

but we will consider the general case of function φω : X →
R

|S|×P conceived to predict a probability distribution over the

class labels for each pixel of the input image, where X is the

input image space and ω are the parameters of this function.

More precisely, φω(x)[w, h, s] is supposed to represent the
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Fig. 2. The overall scheme of our approach at incremental learning step ℓ. The grey modules correspond to the network learned at the previous incremental
learning step, which is frozen at step ℓ while the blue modules correspond to the network trained at step ℓ. Our three contributions, namely the continual
attentive fusion (CAF), the attentive distillation loss (LAD) and the balanced knowledge distillation (LD), are highlighted in green.

probability of the pixel at position (w, h) in image x belonging

to class s ∈ S . Concretely, the function approximator φω can

be further divided into three sub-networks (see Figure 2): (i)

an encoder realized by a residual neural network that extracts

a feature map z; (ii) a refinement model that projects the

features into a refined version h; and (iii) a classifier that

produces a probability distribution p over the class labels. The

set of parameters can be learned with the help of a training

set D ⊂ X × SP .

Traditionally, semantic segmentation considers a fixed set

of classes S . More recently, the community started looking at

learning these classes in a continuous setup, i.e. considering

a series of incremental learning steps, indexed by ℓ. At each

learning step, an extra set of categories is added to the semantic

segmentation task. In the following, we denote by Sℓ−1 the

set of classes learned –seen– before learning step ℓ, and by

Uℓ the set of new –unseen– classes added at learning step

ℓ. The following holds: Sℓ = Uℓ ∪ Sℓ−1 and Uℓ ∩ Sℓ−1 = ∅.

This means that at every learning step, the size of the output

classifier increases with respect to the previous learning step.

Consequently, the training set at step ℓ will be denoted by Dℓ ⊂
X × UP

ℓ and the inference function by φℓω : X → R
|Sℓ|×P .

The index ℓ also applies to the various features extracted by

our architecture in Figure 2, namely the convolutional features

z
ℓ and the refined features h

ℓ.

The methodological contributions of the proposed method are

three. First, a continual attentive fusion module exploiting the

convolutional features of both tasks, zℓ−1 and z
ℓ, to compute

a structured attention tensor used to transform z
ℓ taking z

ℓ−1

into account (see Section III-A). At test time, where z
ℓ−1 are

unavailable, several strategies are evaluated in the experiments.

Second, a self-attention feature distillation loss that leverages

both channel-wise and spatial attention to transfer more relevant

knowledge into the current step. The loss acts on both the

convolutional z and the refined h features (see Section III-B).

Third, a balanced knowledge distillation loss that account

for the overpresence of the background class. Indeed, when

comparing old and new segmentation maps, the new classes

must be merged with the background, thus overestimating the

amount of background pixels. We propose a simple yet very

effective method to rebalance the learning in Section III-C. In

the following, we describe in details our three contributions.

A. Continual Attentive Fusion

The continual attentive fusion (CAF) module is specifically

conceived to compute self-attention from the features of the

current IL step ℓ as well as from the previous one ℓ − 1. In

practice, it is composed of two main blocks, with the purpose

of (i) computing features independently for zℓ and z
ℓ−1 and

(ii) fusing these features into a structured attention tensor. The

diagram of CAF is shown in Figure 3.

In order to compute the features to be fused, denoted

by v
ℓ and v

ℓ−1, we draw inspiration from non-local neural

networks [63]. Each input feature map z is fed to three

different 1× 1 convolutional layers. The output of the first two

convolutions is used to obtain a non-local self-attention tensor,

which is then used to weight the output of the third convolution,

thus obtaining v. The non-local features corresponding to z
ℓ−1

and z
ℓ are denoted by v

ℓ−1 and v
ℓ respectively, and correspond

to the upper and bottom non-local blocks of Figure 3. The

projected features corresponding to z
ℓ−1 and z

ℓ are denoted

by v
ℓ−1 and v

ℓ respectively, and correspond to the upper and

bottom feature refinement blocks in Figure 3.

As stated above, the projected features are aggregated to

compute a structured attention tensor. To do so, we employ

a fusion module (see Figure 3) that first concatenates the

projected features along the channel dimension and then feeds

them to a convolutional layer to reduce the number of channels

by two, thus back to the original amount. The output of the

fusion module is a tensor v(ℓ−1,ℓ) containing the information
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Fig. 3. A detailed view of the CAF module. Non-local features v
ℓ−1 and v

ℓ are computed independently from the features of the two learning steps z
ℓ−1

and z
ℓ via a series of 1× 1 convolutions and matrix multiplications ⊙. After a fusion module, a channel attention vector and a spatial attention map are

computed then aggregated via a tensor product ⊗ into a structured attention tensor. The element-wise product (circled e) is used to apply the attention to
the original features. A residual connection provides the updated feature map z̄

ℓ. The whole structure represents the architecture at training time while red
background parts and the fusion module are discarded at test time.

coming from both models. Note that this module is used at

training time, but can be skipped at test time if z
ℓ−1 is not

computed (e.g. to reduce resource usage).

The fusion tensor, v(ℓ−1,ℓ) is fed to two convolutional layers

so as to extract a channel-wise attention vector and a spatial

attention map, via global average pooling (GAP) and channel-

wise average (ChA) operations respectively:

A
ℓ
SP[w, h] =

1

C

C
∑

c=1

(ωSP ∗ v
(ℓ−1,ℓ))[c, w, h], (1)

A
ℓ
CH[c] =

1

WH

H,W
∑

h,w=1

(ωCH ∗ v(ℓ−1,ℓ))[c, w, h], (2)

where ωSP and ωCH are the weights of the convolutions. The

attention vector and spatial map are used to construct a

structured attention tensor via a tensor product:

ASTR = ACH ⊗ASP, (3)

which is finally used, together with a residual connection, to

obtain the updated feature map z̄
ℓ:

z̄
ℓ = (I +ASTR)v

(ℓ−1,ℓ) = (I +ACH ⊗ASP)v
(ℓ−1,ℓ). (4)

In this way, the new features z̄
ℓ are computed via a structured

self-attention tensor, which at its turn is computed from an

aggregation of projected features from both the current and

the previous learning steps z
ℓ and z

ℓ−1. Alternatives to this

fusion step that avoid using z
ℓ−1 at test time will be discussed

in the experimental section.

B. Attentive Feature Distillation

Many existing methods apply feature distillation to preserve

previous knowledge [10], [19], [29], [44]. Most of them treat the

channels in the feature map equally, i.e. channels are weighted

uniformly in the distillation loss. However, the features tend

to drift to a new configuration to discriminate the classes

of the task at hand, regardless of the type of precautions

employed to avoid forgetting. Hopefully, some portion of the

features will change substantially to adapt to the new task, while

most of them will remain reasonably close to their previous

configuration. This undermines the assumption that all the

channels should be treated equally. We conjecture this as a main

limitation of previous works in ICL for semantic segmentation.

To overcome this issue, we employ the squeeze-and-excitation

(SE) module [64] to generate channel-wise attention as follows:

ADCH (m) = ψ (ωm

2 ∗ σ (ωm

1 ∗AvgPool(m))) , (5)

where ψ(·) and σ(·) represent the Sigmoid and ReLU activation

functions, and m is a generic feature map we use here as a

placeholder. Note the superscript in the weight matrices ωm

1 and

ωm

2 , meaning that those weights are specific to the feature map

input to ADCH (·). For a generic feature map m of dimensions

[C,W,H], ADCH (·) will be of size [C, 1, 1].
Similarly, since the background is very complex and can

excite features of other classes, the context information is

crucial for semantic segmentation. We would like to leverage

the inferred probability distributions of the classes in the

background to improve the distillation process. However, as

for the channels, it might be appropriate to let the network

decide which parts of the background are more important to

distill. Hence, we utilize a self spatial attention:

ADSP (m) =

∑C
j=1 m2

j
∥

∥

∥

∑C
j=1 m2

j

∥

∥

∥

F

. (6)

The size of ADSP will be [1,W,H]. Spatial and channel-wise

attention are combined through a tensor product:

AD(m) = (ADCH (m)⊗ADSP (m) + 1) m, (7)

where the second product is element-wise between two tensors

of the same size. Overall, AD(m) is weighting the original
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tensor with a structured and learned self-attention tensor. In

our framework, we use this formulation to distill knowledge

from the previous task into the new one, therefore defining a

structured self-attention distillation loss:

LAD = ‖AD(z̄ℓ)−AD(zℓ−1)‖2F + ‖AD(hℓ)−AD(hℓ−1)‖2F.
(8)

Very importantly, LAD is applied to both features z and h of

both the old and new incremental learning steps ℓ− 1 and ℓ.

C. Balanced Knowledge Distillation

As mentioned, in the context of incremental learning in

semantic segmentation, distillation [65] plays a core role in

transferring knowledge from the old model into the new one,

mitigating catastrophic forgetting. A typical definition for the

distillation loss is:

LUD = β

W,H
∑

w,h=0

|Sℓ−1|
∑

s=0

φℓ−1
ω (x)[w, h, s] log φℓω(x)[w, h, s],

(9)

where φℓω(x)[w, h, s] and φℓ−1
ω (x)[w, h, s] are the probabilities

of a pixel at position (h,w) to belong to class s as inferred

by the new and old model respectively, while β = − 1
HW is a

normalization factor.

Assuming that the background class was part of the previous

learning step, Bℓ−1 ∈ Sℓ−1, we can decompose the previous

loss into two contributions: from the background LB and from

the other classes LN. During the learning of the previous step

ℓ − 1, the pixels belonging to the classes unknown at step

ℓ − 1 but known at step ℓ, that is Uℓ, were assigned to the

background class. This leads to an imbalance in LB, due to

the fact that φℓ−1
ω is not aware of the new classes. In order to

address this issue, [9] rewrites φℓω as:

φ̂
ℓ

ω(x)[h,w, s] =

{

φℓ
ω(x)[h,w, s] s 6= Bℓ−1,

∑

s′∈Uℓ∪{Bℓ}
φℓ
ω(x)[h,w, s′] s = Bℓ−1,

(10)

thus aggregating the new background class Bℓ together with

the unseen classes Uℓ to emulate the background class at the

previous learning step Bℓ−1. The opposite also holds, since

we suppose that annotations for classes of previous time steps

are not available, and therefore belong to the background class

at step ℓ. This has no impact in the distillation loss, but in the

supervised segmentation loss in (13).

According to Figure 4, even if the new φ̂ℓω accounts for the

imbalance between the old and new probability distributions

for distillation, the background is usually the most represented

class by far. Thus, LB has a much stronger contribution to the

overall loss as compared to LN. As a consequence, the network

basically ignores the information of old classes preventing

effective knowledge distillation. To overcome this issue, we

propose to introduce a balancing parameter γ to re-weight the

influence between LB and LN in the distillation loss. Formally,

the expression of γ writes as:

γ =

∑

s∈St−1/{Bℓ−1}
Softmax

(

AvgPool
(

φℓ−1
ω (x

)

[s])
)

Softmax
(

AvgPool
(

φℓ−1
ω (x) [Bℓ−1]

)) ,

(11)
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Fig. 4. The statistical distribution of different classes under different steps in
VOC 2012 15-5 disjoint setting and overlapped setting.

and allows us to step further than what was proposed in [9],

and weight the distillation as follows:

LD = γLB + LN , (12)

where LB and LN and the background and non-background

contributions to the unweighted distillation loss in (9).

D. Overall Loss

The two losses described in the previous sections are

used, together with the standard supervised loss for semantic

segmentation, to train the overall architecture. In more detail,

the final loss is expressed as:

L = LSEG + λADLAD + λDLD, (13)

where λAD and λD are the weights of the attention distillation

and knowledge distillation losses defined in Sections III-B

and III-C, respectively, and LSEG is the supervised segmen-

tation loss (pixel-wise cross-entropy) previously defined as

follows:

LSEG = −
1

HW

W,H
∑

w,h=0

|Sℓ|
∑

s=0

log φ̃ℓω(x)[w, h, s], (14)

where:

φ̃
ℓ

ω(x)[h,w, s] =

{

φℓ
ω(x)[h,w, s] s 6= Bℓ,

∑

s′∈Sℓ−1∪{Bℓ}
φℓ
ω(x)[h,w, s′] s = Bℓ.

(15)

Notice that the output probabilities φ̃ defined here for the

segmentation loss are different from the output probabilities

φ̂ defined in the main paper for the background distillation

loss. Indeed, while φ̃ aggregates the previous classes to the

current background class (so that all previous classes become

background for the segmentation loss), the output probabilities

defined in the paper φ̂ aggregate the new classes to the

current background, because the background at the previous

incremental step includes the new classes.
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TABLE I
MEAN IOU ON THE PASCAL-VOC 2012 DATASET FOR DIFFERENT INCREMENTAL CLASS LEARNING SCENARIOS.∗ MEANS RESULTS COME FROM

RE-IMPLEMENTATION.

Method

19-1 15-5 15-1

Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped

1-19 20 all 1-19 20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all

FT 5.8 12.3 6.2 6.8 12.9 7.1 1.1 33.6 9.2 2.1 33.1 9.8 0.2 1.8 0.6 0.2 1.8 0.6
PI [37] 5.4 14.1 5.9 7.5 14.0 7.8 1.3 34.1 9.5 1.6 33.3 9.5 0.0 1.8 0.4 0.0 1.8 0.4
EWC [11] 23.2 16.0 22.9 26.9 14.0 26.3 26.7 37.7 29.4 24.3 35.5 27.1 0.3 4.3 1.3 0.3 4.3 1.3
RW [12] 19.4 15.7 19.2 23.3 14.2 22.9 17.9 36.9 22.7 16.6 34.9 21.2 0.2 5.4 1.5 0.0 5.2 1.3
LwF [10] 53.0 9.1 50.8 51.2 8.5 49.1 58.4 37.4 53.1 58.9 36.6 53.3 0.8 3.6 1.5 1.0 3.9 1.8
LwF-MC [13] 63.0 13.2 60.5 64.4 13.3 61.9 67.2 41.2 60.7 58.1 35.0 52.3 4.5 7.0 5.2 6.4 8.4 6.9
ILT [43] 69.1 16.4 66.4 67.1 12.3 64.4 63.2 39.5 57.3 66.3 40.6 59.9 3.7 5.7 4.2 4.9 7.8 5.7
MiB [9] 69.6 25.6 67.4 70.2 22.1 67.8 71.8 43.3 64.7 75.5 49.4 69.0 46.2 12.9 37.9 35.1 13.5 29.7
SDR [66] 70.8 31.4 68.9 71.3 23.4 69.0 74.6 44.1 67.3 76.3 50.2 70.1 59.4 14.3 48.7 47.3 14.7 39.5
PLOP∗ [67] 75.1 38.2 73.2 75.0 39.1 73.2 66.5 39.6 59.8 74.7 49.8 68.5 49.0 13.8 40.2 65.2 22.4 54.5

Ours 75.5 30.8 73.3 75.5 34.8 73.4 72.9 42.1 65.2 77.2 49.9 70.4 57.2 15.5 46.7 55.7 14.1 45.3

Joint 77.4 78.0 77.4 77.4 78.0 77.4 79.1 72.6 77.4 79.1 72.6 77.4 79.1 72.6 77.4 79.1 72.6 77.4

TABLE II
MEAN IOU ON THE ADE20K DATASET FOR DIFFERENT INCREMENTAL CLASS LEARNING SCENARIOS.∗ MEANS RESULTS COME FROM RE-IMPLEMENTATION.

Method
100-50 100-10 50-50

1-100 101-150 all 1-100 100-110 110-120 120-130 130-140 140-150 all 1-50 51-100 101-150 all

FT 0.0 24.9 8.3 0.0 0.0 0.0 0.0 0.0 16.6 1.1 0.0 0.0 22.0 7.3
LwF [10] 21.1 25.6 22.6 0.1 0.0 0.4 2.6 4.6 16.9 1.7 5.7 12.9 22.8 13.9
LwF-MC [13] 34.2 10.5 26.3 18.7 2.5 8.7 4.1 6.5 5.1 14.3 27.8 7.0 10.4 15.1
ILT [43] 22.9 18.9 21.6 0.3 0.0 1.0 2.1 4.6 10.7 1.4 8.4 9.7 14.3 10.8
Inc. Seg [68] 36.6 0.4 24.6 32.4 0.0 0.2 0.0 0.0 0.0 21.7 40.2 1.3 0.3 14.1
MiB [9] 37.9 27.9 34.6 31.8 10.4 14.8 12.8 13.6 18.7 25.9 35.5 22.2 23.6 27.0
SDR [66] 37.5 25.5 33.5 28.9 - - - - - 23.2 42.9 - - 31.3
PLOP∗ [67] 29.8 4.2 22.2 32.1 1.9 10.0 0.8 1.2 0.1 22.3 19.2 0.4 0.4 6.6
Ours 37.3 31.9 35.5 39.0 14.6 22.0 25.4 12.1 13.1 31.8 47.5 30.6 23.0 33.7

Joint 44.3 28.2 38.9 44.3 26.1 42.8 26.7 28.1 17.3 38.9 51.1 38.3 28.2 38.9

IV. EXPERIMENTS

In this section, we demonstrate the effectiveness of our

approach through extensive experiments on the two publicly

available benchmarks for ICL in semantic segmentation.

A. Experimental Setups

Datasets. We consider two datasets in our experiments. The

PASCAL-VOC 2012 dataset [30] contains 10,582 and 1,449

in the training and validation set, respectively. Pixels can be

associated to 21 different classes (20 plus the background).

Following [9], [18], [43], [44], we define two experimental

settings: disjoint and overlapped. Following [43], the disjoint

setup assumes that the new set is disjoint from previously used

samples, i.e. (∪j=0,...,k−1Dj ∩Dk = ∅). Following [18], in the

overlapped setting each training step contains all the images

that have at least one pixel of a novel class, no matter what

other classes are also included. It is important to know that in

this case, training images may contain pixels of unseen classes

(thus labeled as background). This is a more realistic setup

since it does not make any restriction on the objects present

in the images. Following previous work [9], [18], [43], we

perform three different experiments concerning the addition of

one class (19-1), five classes all at once (15-5), and five classes

added one-by-one in alphabetical order (15-1), and report mean

IoU.

The ADE20K [31] is a large-scale dataset with 150 classes.

Differently from Pascal-VOC 2012, this dataset contains non-

object classes (e.g. sky, building, wall). We create the incre-

mental datasets Dℓ by splitting the whole dataset into disjoint

image sets, without any constraint except ensuring a minimum

number of images (i.e. 50) containing new classes. Obviously,

each Dℓ provides annotations only for current classes, while

old and future classes are annotated as background. We report

the mean IoU obtained averaging the results as in [31] and

we perform three different experiments: single-step addition of

50 classes (100-50), multi-step addition of 50 classes (100-10)

and three steps of 50 classes (50-50).

Baselines. We compare ours method against previous ICL

methods originally designed for image classification, fol-

lowing [9], namely: Path Integral (PI) [37], Elastic Weight

Consolidation (EWC) [11], and Riemannian Walks (RW) [12].

We also compare our method with Learning without Forgetting

(LwF) [10] and its multi-class version (LwF-MC) [13]. Finally,

we consider previous ICL approaches for segmentation, i.e.

MiB [9], ILT [43], SDR [66], and PLOP [67]. In addition to

the state-of-the-art methods, we report results for fine tuning

(FT) and joint training (Joint). These results serve as a lower

and upper bound. In FT, we train on the new task via simple

fine tuning, while in Joint a unique training of both tasks is

performed.

Implementation Details. We choose a ResNet-101 [69] as our

backbone, the Deeplab-v3 architecture [70] as refinement model



SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA 7

TABLE III
ABLATION STUDY OF NETWORKS’ COMPONENTS ON THE PASCAL-VOC 2012 DISJOINT 15-5 SETUP. PER-CLASS IOU OF THE EVALUATED METHODS WHEN

THE LAST FIVE CLASSES ARE ADDED ARE REPORTED. CAF DENOTES OUR CONTINUAL ATTENTIVE FUSION MODULE, AD ATTENTIVE FEATURE

DISTILLATION, BKD THE BALANCED KNOWLEDGE DISTILLATION LOSS AND KD KNOWLEDGE DISTILLATION AS IN (9) AND (10).
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Baseline 70.6 33.5 73.5 59.2 66.6 49.1 72.6 74.7 28.6 34.8 43.3 72.6 70.7 69.9 70.2 59.3 27.4 31.0 25.9 41.5 44.5 53.0
+ KD 77.9 36.9 81.1 65.3 73.4 54.2 80.1 82.4 31.6 38.4 47.7 80.1 78.0 77.1 77.4 65.4 30.3 34.2 28.6 45.8 49.1 58.5
+ BKD 79.1 37.5 82.3 66.3 74.5 55.0 81.4 83.7 32.1 39.0 48.5 81.4 79.2 78.3 78.6 66.5 30.7 34.7 29.1 46.5 49.8 59.4
+ AD 79.9 37.9 83.2 67.0 75.3 55.6 82.2 84.5 32.4 39.4 48.9 82.2 80.0 79.1 79.4 67.1 31.0 35.0 29.3 46.9 50.3 60.0
+ AD, BKD 83.3 39.5 86.7 69.8 78.5 58.0 85.7 88.2 33.8 41.1 51.1 85.7 83.4 82.5 82.8 70.0 32.4 36.5 30.6 49.0 52.5 62.6

+ CAF 85.4 40.5 88.9 71.6 80.5 59.4 87.8 90.3 34.6 42.1 52.3 87.8 85.5 84.5 84.9 71.7 33.2 37.4 31.4 50.2 53.8 64.1
+ CAF, BKD 86.1 40.8 89.6 72.1 81.1 59.9 88.6 91.1 34.9 42.4 52.7 88.5 86.2 85.2 85.6 72.3 33.5 37.8 31.6 50.6 54.2 64.6
+ CAF, AD 86.3 40.9 89.8 72.3 81.3 60.0 88.8 91.3 35.0 42.5 52.9 88.7 86.4 85.4 85.8 72.5 33.5 37.8 31.7 50.7 54.4 64.8
+ CAF, AD, BKD 86.8 41.1 90.4 72.8 81.8 60.4 89.3 91.9 35.2 42.8 53.2 89.3 86.9 85.9 86.3 72.9 33.7 38.1 31.9 51.0 54.7 65.2

TABLE IV
MIOU FOR DIFFERENT INCREMENTAL LEARNING SCENARIOS.

Method
VOC 15-5 ADE 100-50

1-15 16-20 all 1-100 101-150 all

Only Step 1 79.6 - - 42.7 - -
Fine Tuning 1.1 33.6 9.2 0.0 24.9 8.3

Ours 72.9 42.1 65.2 37.3 31.9 35.5

and the non-local block [63] as feature projection module. We

initialize our backbone with ImageNet pretraining [71] and train

the full network as in [70] for learning rate policy, momentum,

and weight decay. We use an initial learning rate of 10−2 for

the first learning step while 10−3 and 10−2 for the following

ones in Pascal-VOC 2012 and ADE20K dataset respectively.

We train the model with a batch-size of 24 for 30 epochs

for Pascal-VOC 2012 and 60 epochs for ADE20K in every

learning step. For our loss, λD and λAD are set to 10 and 1000

respectively. We apply the same data augmentation of [70] and

crop the images to 512 × 512 during both training and test.

For setting the hyper-parameters of each method, we use the

protocol of IL defined in [9], [32], using 20% of the training

set as validation. The final results are reported on the standard

validation sets.

B. Experimental Results

We reports some quantitative and qualitative results asso-

ciated with our method, as well as the results of an ablation

study to demonstrate the merit of our technical contributions.

Comparison with State-of-the-Art Methods. Table I and

Table II compare our approach with state of the art ICL

methods. Looking at results in Table I, it is clear how in the

case of the Pascal-VOC 2012 dataset our method outperforms

all the competitors in almost all the overlapped and the disjoint

settings, often by a large margin. Comparative results on

ADE20K are shown in Table II. Our model exhibits competitive

performance in all tasks and often better performance than the

current art by several points. Only the last step of the 100-10

task is associated to lower performance, but it is compensated

by far if we consider the overall task score.

Demeonstration of Catastrophic Forgetting. The catas-

trophic forgetting phenomenon is clearly shown in Table IV.

Fine-tuning suffers from catastrophic forgetting (-78.5% on

TABLE V
ABLATION STUDY OF OUR CONTINUAL ATTENTIVE FUSION ON THE

PASCAL-VOC 2012 DISJOINT 15-5 SETUP AND ADE DISJOINT 100-50
SETUP. “BASELINE + KD” CORRESPONDS TO THE SECOND ROW IN

TABLE III, “PROJECTION” DENOTES THE FEATURE PROJECTION MODULE,
AND “SAB” INDICATE THE STRUCTURED ATTENTION BLOCK. “WITHOUT

CONTINUAL ATTENTIVE FUSION” MEANS THAT THE ATTENTION WEIGHTS

ONLY DEPEND ON THE CURRENT MODULE, WHILE IN “WITH CONTINUAL

ATTENTIVE FUSION” NEW AND OLD MODEL FEATURES ARE FUSED WITH

THE FUSION MODULE TO GENERATE THE ATTENTION WEIGHTS.

Method
VOC 15-5 ADE 100-50

1-15 16-20 mIoU 1-100 101-150 mIoU

Without continual attentive fusion

Baseline + KD 65.4 37.6 58.5 37.9 27.9 34.6
+ Projection 65.4 38.0 58.6 36.5 31.3 34.8
+ Projection, SAB 66.5 38.2 59.4 36.9 31.5 35.1

With continual attentive fusion

+ Fusion 70.7 38.7 62.7 36.8 31.5 35.0
+ Fusion, Projection 71.1 40.6 63.5 37.1 31.7 35.3
+ Fusion, Projection, SAB (CAF) 71.7 41.2 64.1 37.3 31.9 35.5

VOC and -42.7% on ADE20K) on the first task after training the

second task. On the other hand, the performance of our method

only decreases by 6.7% on VOC and 5.4% on ADE20K, which

demonstrates the effectiveness of our method for addressing

the issue of catastrophic forgetting.

Ablation Study. We perform an ablation study on the VOC

2012 dataset to demonstrate the impact of each component of

our model. Table III shows the variants of our method, obtained

by gradually adding one component at a time. We decided

to use a very simple baseline, which takes no precautions

against catastrophic forgetting, apart from using the revisited

cross entropy loss LSEG as defined in [9]. In the top part

of the table, we test different combinations of loss functions

without considering the CAF module. Undoubtedly, according

to the results, balancing knowledge distillation (BKD) (see

Section III-C and (12)) increases the performance over the

standard distillation loss formulation (KD). On the other hand,

the results show that attentive feature distillation (AD) mitigates

catastrophic forgetting significantly better than just distilling

the output probability distribution, improving mIoU by more

than 4%. The model achieves the best performance when AD

and BKD are combined. In the bottom part of Table III we

report the same experiments but at this time activating our CAF

module. Interestingly, when no IL technique is used to alleviate

catastrophic forgetting, adding the CAF module dramatically
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Fig. 5. Ablation study: comparison of different strategies for using the fusion
module (setting 15-5, top: old categories, bottom: new categories). The curves
refer to the concatenation of vℓ and zero padding (purple), to the concatenation
of v

ℓ and v
ℓ−1 (yellow) and to skipping the fusion module and using v

ℓ

(red).

TABLE VI
ABLATION STUDY ON ATTENTION METHODS ON PASCAL-VOC 2012. FD

MEANS NORMAL FEATURE DISTILLATION (WITHOUT ATTENTION).

Method
15-5 disjoint 19-1 disjoint

1-15 16-20 all 1-19 20 all

Baseline 59.3 34.1 53.0 69.7 24.7 67.4
+ FD 63.2 39.5 57.3 60.3 16.3 58.1
+ ADSP 71.5 42.7 64.3 74.2 29.2 71.9
+ ADCH 10.5 11.2 10.6 1.7 16.2 2.4
+ ADSP & ADCH 72.5 41.6 64.8 75.1 30.0 72.8

increases the accuracy (+11%). As before, both BKD and AD

further improve performance, and the whole model outperforms

all the other variants.

In addition, we also show the results of an ablation study

on the structure of the CAF module in Table V. First, in

the top block, we show that our architectural modifications

(feature projection module, structured attention block) have

minimal impact if not used in composition with continual

attentive fusion, showing less than 1% improvement. Instead,

a significant improvement (about 4%) is achieved using a

continual attentive fusion scheme (fusion module is active at

training time). Moreover, feature projection and SAT seem to

be more helpful when used in combination with CAF. This

evidence suggests that the improvement does not come from the

additional parameters introduced in the feature projection and

structured attention block. If that were the case, the performance

would be boosted even without using the old model. Rather, it

is clear that the information transfer between the two models

in the CAF module is the real catalyst that enables catastrophic

forgetting to be mitigated.

Finally, we also analyze strategies for minimizing the

computational complexity and the memory usage at test time.

In particular, we believe that a truly continual learner should

retain only one model, i.e. the old model used for distillation
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Fig. 6. The mIoU of the method for different values of the loss’ weights on
VOC2012 dataset (19-1 disjoint setup). (a) λAD is fixed to 1000. (b) λD is
fixed to 10 . Black line donates overall mIoU; red dash line means old class
mIoU; blue dash line means new class mIoU.

TABLE VII
ABLATION STUDY ABOUT APPLIED POSITION ON PASCAL- VOC 2012

DATASET.

Combination
15-1 disjoint 19-1 disjoint

1-15 16-20 all 1-19 20 all

zℓ + hℓ 57.2 15.5 46.7 75.5 30.8 73.3

hℓ 56.2 15.2 45.9 74.3 29.6 72.1
zℓ 56.4 15.3 46.1 74.8 30.1 72.5

and continual attentive fusion should be discarded. Hence, in

Figure 5 we show different solutions for using the fusion

module at test time. Possible strategies include: (i) skip:

completely skipping the fusion module at test time, i.e. passing

only v
ℓ to subsequent layers; (ii) padding zero: concatenating

v
ℓ with a zero-padding vector of the same size and evaluating

the fusion module; (iii) concat: concatenating v
ℓ and v

ℓ−1 at

training time. To compare the performance of these strategies,

we evaluate the accuracy of the network on both new and old

classes every three epochs during the training trajectory of the

second task (15-5 setting). Interestingly, we obtain comparable

overall performance when skipping the fusion module (strategy

(i)), while zero-padding seems slightly suboptimal. Also, it

is important to notice that at the beginning of the training,

concatenating old and new features brings great performance

improvements on the old classes, while the difference is

negligible at convergence. It validates the idea that the old

model is helping the new model through continual attentive

fusion, transferring valuable information that the new model

then uses to counteract catastrophic forgetting. On the other

hand, as expected, the accuracy is unchanged when using

concatenation on the new classes. It is reasonable since the

old model does not possess any knowledge of the new classes,

and therefore cannot help the new model.

Sensitivity Analysis of λAD and λD. We provide a more

thorough analysis of the loss weighting parameters λAD and

λD, see Figure 6. We evaluate the average IoU of our method
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(a) Input Image (b) ILT [43] (c) MiB [9] (d) Ours (e) Ground Truth

Fig. 7. Qualitative results on the VOC 2012 dataset 19-1 (the first five rows) and 15-5 (the last six rows). They show the superiority of our approach on both
new (e.g. train) and old (e.g. car, cow, bus) classes.

for different values of the loss weights around the working

point. We can see that λAD is more of a critical choice than

λD. Indeed, the operating region of λAD is around 103, while

the operating region of λD is much larger, and its choice does

not have much impact as long as it is kept below 102.

Attentive Feature Distillation Impact. In this section, we

deeply analyze the effect of our attentive feature distillation.

The results are shown in Table VI. In the table, FD, ADSP
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(a) Input Image (b) ILT [43] (c) MiB [9] (d) Ours (e) Ground Truth

Fig. 8. Qualitative results on the ADE20K dataset using 100-50 setup. The image demonstrates the superiority of our approach on both new (e.g. sky, grass,
wall) and old (e.g. paint, pool, building) classes.

and ADCH denote normal feature distillation without attention,

spatial-wise attentive feature distillation, and channel-wise

attentive feature distillation, respectively. According to Table VI,

only adding channel-wise attentive feature distillation leads to

training failure, while spatial-wise attentive feature distillation

significantly improves the performance. Also, a combination

of both attentive feature distillation further boosts the result.

It proves that the performance improvement is not due to

complex attention modules like the squeeze-and-attention

module, but the choice of an appropriate attention module

and a suitable combination. Moreover, we also run a position

sensitivity analysis of attentive feature distillation in Table VII.

According to the results, we choose zℓ + hℓ as the input of

attentive feature distillation for all experiments. The results

also confirm that using the old model φℓ−1 during training

can significantly improve the performance compared to only

using φℓ. Furthermore, using the CAF module without the

old model does not improve performance, suggesting that the

improvement does not come from the additional parameters

introduced in the CAF module.

Qualitative Results. Qualitative results associated with our

method on ADE20K and VOC 2012 dataset are shown in

Figures 7 and 8. We found that CAF not only preserves more

knowledge on the old classes with respect to MiB and ILT,

but also produces accurate segmentations for the objects of the

new categories.

Figure 9 shows the predictions for both MiB and our method

on VOC 15-1 across time. It seems clear that, MiB quickly

forgets the previous classes and becomes biased towards new

classes. On the other hand, our method’s predictions are much

more stable, owing to the CAF module for alleviating catas-

trophic forgetting by spatially constraining representations, and

to attentive feature distillation for dealing with the background

shift. To analyze the relationship between continual attentive

fusion and incremental learning, we show the qualitative results

of our attention on VOC 15-1 disjoint task in Figure 10. In

detail, the first and third rows show the networks’ attention on

each step while the second and fourth rows show the known

(seen) classes on each step. According to Figure 10, thanks

to the continual attentive fusion, our model can keep focusing

on the old classes. When a new class is introduced (e.g. plant,

television) the model is able to focus on the new object without

losing attention for the old ones.

Figure 11 shows examples of the attention maps that our

model learns on ADE20K (50-50 setting). It is quite clear that

the network is able to focus on regions containing objects of

the old classes (person, chair, building) as well as new classes

(sideboard, animal, shower).

V. CONCLUSIONS

We propose the first attention-based ICL method for semantic

segmentation. Our methodological contribution is three-fold.
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Fig. 9. Visualization of MiB and our method predictions across time in VOC 15-1 for two test images.

Image Step 0 Step 1 Step 2 Step 3 Step 4 Step 5

Fig. 10. Visualization of our method’s attention across time in VOC 15-1 for two test images.
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Fig. 11. Attention map on the ADE20K dataset (50-50).

First, a new continual attentive fusion module that updates

the current features by using the information of the previous

model was proposed. While the information from the previous

model is used at training time through a fusion module, it

is discarded at test time to save resources. We also propose

a new attentive distillation loss that leverages both channel-

wise and spatial attention to transfer compelling information.

Finally, we introduce a new method for balancing old and new

background probabilities in the distillation loss. Our extensive

experimental evaluation demonstrates outstanding performance

of our method in several datasets (VOC 2012 and ADE20K)

and settings (14 in total).
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