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and Trento Institute for Fundamental Physics and Applications, INFN, 38123 Povo, Italy.
(Dated: November 10, 2020)

A rich variety of physical effects in the spin dynamics arises at the interface (domain wall) between
different magnetic materials [1]. Engineered physical systems based on magnetic interlaced struc-
tures have received wide interest in the last years as a starting point to implement spin transistors,
memories and other spintronic devices [2, 3]. In this work, we use a coherently-coupled mixture of
ultracold bosonic gases to realize analogues of magnetic junctions. The spatial inhomogeneity of
the atomic gas makes the system change its behavior from regions with oscillating magnetization,
resembling a magnetic material in the presence of an external transverse field, to regions with a
defined magnetization, as in magnetic materials with a ferromagnetic anisotropy stronger than ex-
ternal fields. Starting from a far-from-equilibrium fully polarized state, magnetic domain walls form
spontaneously. We observe that the so-called quantum torque causes the breaking of such domain
walls and the accumulated energy is released into short-wavelength magnetic waves that propagate
in the system. Our results provide a novel platform for the study of far-from-equilibrium spin
dynamics, free from dissipation and in regimes that are not easily accessible in solid-state systems.

The local magnetization in a magnetic material evolves
depending on three ingredients: the external magnetic
field, the nonlinear ferromagnetic anisotropy and the in-
homogeneity of the magnetization itself. The evolution
can be described by using the well known Landau-Lifshitz
equation (LLE) [4, 5]. When a large external magnetic
field is applied, all spins precess around it. For a vanish-
ing field amplitude, the spins precess around a preferen-
tial spatial direction characteristic of the material itself,
given by the magnetic anisotropy. In real materials, this
anisotropy is usually very small compared to the lowest
technically achievable uniform external field. The term
of the LLE incorporating the inhomogeneity – derivable
from the Heisenberg exchange term – becomes partic-
ularly relevant in the presence of magnetic interfaces.
In the absence of such an exchange term, the LLE re-
duces to the Josephson equations for Bose-Einstein con-
densates [6, 7]. Similarly to a magnet in an external field,
Josephson equations have different dynamical regimes:
either the system oscillates between two states (preces-
sion around external field) or it is self-trapped in one of
them (precession around dominant anisotropy direction).

In our experiment, we coherently couple two hyper-
fine states, |F,mF 〉 = |1,±1〉, of ultracold 23Na atoms,
trapped in an elongated harmonic potential (see Meth-
ods); F is the total atomic angular momentum and mF

is its projection along the quantization z axis. This sys-
tem is equivalent to a magnetic material with nonuni-
form magnetic anisotropy in the presence of an exter-
nal transverse field, as sketched in Fig. 1. In the anal-
ogy, the effective external magnetic field is represented
by the electromagnetic radiation that coherently couples
the spin states, while the ferromagnetic anisotropy is due
to the nonsymmetric interatomic interactions and varies
spatially thanks to the density inhomogeneity of the sam-
ple. If all spins are initially aligned along z and a field is
suddenly applied, they start precessing, as illustrated by

FIG. 1. Analogy between a coherently-coupled atomic
mixture and a magnetic heterostructure. a, Sketch of
the trapped ultracold atomic mixture in the two hyperfine
states |1,+1〉 (blue) and |1,−1〉 (red), coupled via coherent
radiation with strength ΩR. b, Local evolution of the system,
represented on the Bloch sphere in the center (where inter-
actions κsz exceed the coupling ΩR) and in the tails (where
the coupling exceeds the interaction term). c, Pictorial view
of the magnetic analogue. The material has a spatially vary-
ing ferromagnetic anisotropy γ, smaller or larger than the
external magnetic field B, respectively on the external or in-
ternal regions. The equilibrium magnetization of the mate-
rial (grey arrow) follows the dominating effect between intrin-
sic anisotropy and external field. Magnetic domain walls are
present at the interface between these regions. Black arrows
in panel b represent the contributions of the different phys-
ical quantities both for the atomic system (top) and for its
magnetic analogue (bottom).
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the vector on the Bloch sphere (Fig. 1b). The precession
happens around a direction that depends on the local
properties. While standard magnetic materials quickly
align along one axis (grey vector in Fig. 1c) because of
dissipation, our nondissipative atomic system allows to
study a longer dynamical evolution.

The atomic gas can be described with a two-component
order parameter Ψ(x) = (ψ+1, ψ−1)T , where ψα is the
macroscopic wave function of the Bose-Einstein con-
densate in the state α = ±1. The tight confinement
along two spatial directions makes the spatial dynam-
ics to be essentially one-dimensional along the x direc-
tion (see Methods). Therefore, the state of the system
is fully described by the density matrix (Ψ∗ ⊗ Ψ)(x) =
{ψ∗α(x)ψβ(x)}α,β=±1. The density matrix is composed
by a scalar part, n = Tr(Ψ∗ ⊗ Ψ), corresponding to the
total density of the condensate, and by the spin-density
s = Tr(σΨ∗ ⊗ Ψ), with |s| = n and σ representing the
vector of Pauli matrices. Hereafter vector quantities are
defined in the Bloch sphere (see Fig. 1b).

In general the dynamics is described by coupled differ-
ential equations for n, s and the velocity field v = j/n,
where j is the atom density current. Since the total atom
number is a conserved quantity, n satisfies the continuity
equation, with the purely advective current j: ṅ+∂xj=0.
The equation of motion of s reflects the possibility of
twisting the spin and the absence of spin conservation,
both features due to the combination of the coherent
Rabi coupling and the lack of SU(2) symmetry of the
non-driven system. The Rabi coupling is described by
the linear transverse field ΩRx̂. The lack of SU(2) sym-
metry leads to a nonlinear field κsz ẑ, with κ proportional
to the difference between intra- and intercomponent in-
teractions, δg, and including the effect of the dimensional
reduction. The spin equation of motion can be written
as

ṡ + ∂xjs = H(s)× s, (1)

where we introduce the effective magnetic field H =
ΩRx̂+ κsz ẑ. The spin current

js = vs +
~

2mn
∂xs× s (2)

is composed of two terms: the first corresponds to the
spin advection, while the second is the quantum torque,
which depends on the atomic mass m. Remarkably, the
quantum torque originates as a pure quantum effect, van-
ishing when ~ is set to zero, or equivalently when the
atoms cannot move (see classical analogue in Ref.[8]).

The equation of motion for the spin density, Eq.(1),
in the absence of spin advection, is equivalent to a non-
dissipative LLE. Therefore, if the density and velocity
dynamics can be neglected, the dynamics of a coherently-
coupled Bose gas mimics the magnetization dynamics in
a magnetic sample, where the quantum torque plays the
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FIG. 2. Quantum torque effect at the domain wall. a,
Main local oscillation frequency Ω of the relative magnetiza-
tion Z as a function of the position in the gas. The insets show
the time evolution of Z(t) for four different spatial points. b,
Spatial variation of the magnetic anisotropy. The red line
marks the critical value. c-d, Time evolution of the magne-
tization across the cloud according to LLE without (c) and
with (d) quantum torque contribution. Four different spatial
points are considered: deep in the self-trapped regime (A),
weakly self-trapped (B), weakly oscillating regime (C) and
deep in the oscillating regime (D). Continuous and dashed
lines in the inset of a correspond to the time evolution with-
out and with the quantum torque term, respectively. Note
that in B and C, coherence is lost due to the excitation of
short wavelength magnetic waves just after a few Rabi pe-
riods. In all figures, time, frequency and energy units are
related to ΩR. The spatial unit is Rx.

role of the exchange term. Since the quantum torque
depends on the gradient of s, it plays a crucial role in the
presence of magnetic interfaces. Often in literature the
effective field in the LLE includes the torque as well.

Taking advantage of the absence of dissipative terms
in Eq. (1), we study the long time dynamics of systems
with far-from-equilibrium initial configurations. Before
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FIG. 3. Evolution of the magnetization. a, Measured magnetization along the non-uniform 1D gas as a function of time
in the presence of a small coupling (ΩR = 2π × 118 Hz= 0.67 Ωc.). b, Standard deviation of the magnetization for spatial
windows of 5 µm. Panels c and d show a numerical Gross-Pitaevskii simulation of the same system. At the interface, around
the critical position xc (black bars), we observe a net change in the behavior from the oscillating to the self-trapped regime.
The width of the bars is evaluated considering the uncertainties in the n and Rx. Both regimes break creating a growing region
with a strong fluctuation of the magnetization. e-g, Measured density profile of each component, normalized to the local total
density, for ΩRt = 2π, 3π and 5π. h-j, Same as e-g, but evaluated numerically.

discussing the actual experimental configuration (Fig.
1a), it is useful to consider the case of a simple spa-
tially homogeneous dynamics. Equation (1) reduces
to ṡ = H(s) × s. , i.e., equivalent to the Josephson
equations for weakly-interacting Bose gases [7]. These
equations are usually written in terms of the relative
magnetization Z = sz/n and the relative phase φ =
arctan(sy/sx), which in Fig. 1b correspond to the pro-
jection of the quantum state on the z axis of the Bloch
sphere, and its equatorial angle, respectively [9], i.e., s =
n(
√

1− Z2 cosφ,
√

1− Z2 sinφ,Z). It is well known that
the Josephson model has different dynamical regimes de-
pending on the effective field H, as well as on the initial
orientation of the spin. In particular, for the initially
fully polarized state sz = −n, the system can behave in
two different ways: (i) for ΩR > Ωc ≡ |κn/2|, the mag-
netization oscillates between sz = ±n with a frequency
Ω (see the dynamics in C and D in Fig. 2b and associ-
ated continuous line in insets), a.k.a. Josephson oscilla-
tions; (ii) for ΩR < Ωc, the system enters the so-called
self-trapped regime [7, 10], where the spin precesses such
that −n ≤ sz(t) ≤ max(sz) < 0. In the self-trapped
regime, Z never changes sign (see the dynamics in A and

B in Fig. 2b). Interestingly, the precession frequency –
not only the amplitude – drastically changes across the
transition, as shown in Fig. 2a, with a softening of the
precession frequency at the transition point.

The non-homogeneous density of the trapped gas al-
lows us to study the case in which a single system
presents both behaviors in spatially different regions.
The density profile of our harmonically trapped sample,
n(x) ∝ (1 − x2/R2

x), is shown in Fig. 2b (black line). If
the central density n0 is large enough for the system to be
locally in the self-trapped regime, there exists a position
xc that separates this region from the low-density one,
where Rabi-like oscillations of the magnetization occur.
Other systems of atomic mixtures have been studied in
this context, but none showed the possibility to observe
both regions in a single sample and the domain wall sep-
arating them. Either self-trapped or oscillating regime
were observed in ”zero”-dimensional (single mode) sys-
tems both with Rabi- and tunnel-coupling [10–13]. Spa-
tially extended system were also studied [14–21], but the
entire system was fully in either one or the other regime.

Applying Eq. 1 to an initially fully polarized state,
|1,−1〉, which is far from the ferromagnetic uniform
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ground state, we observe the spontaneous formation of
magnetic domain walls separating regions in which the
external field dominates the dynamics from regions where
the anisotropy exceeds the external field. Figures 2c and
2d show the theoretical evolution of the magnetization
throughout the sample, respectively without and with
the quantum torque term, starting from a fully polar-
ized sample with sz(x, t = 0) = −n(x). In the for-
mer case, the magnetization develops a strong gradi-
ent at the interface between the two regions and this
model no longer describes well the system. In fact, the
strong gradient triggers the quantum torque to counter-
act the accumulation of magnetization with an effective
field −~∂x(∂xs/[2mn(x)]). Eventually, this breaks the
magnetic domain walls and short-wavelength, strongly-
polarized magnetic waves are emitted. These waves pene-
trate the two regions, therefore breaking the local Joseph-
son dynamics, as illustrated in the simulation in Fig. 2d.

Figure 3a shows the experimental measurement of the
magnetization. We let the system evolve in the presence
of coherent coupling with ΩR = 0.67 Ωc for a variable
time t and we separately image the two spin popula-
tions. This allows us to extract the local magnetiza-
tion (see Methods). For each experimental run we in-
tegrate the magnetization of the elongated atomic sam-
ple in the radial directions and obtain Z(x). Combin-
ing the measurements of Z(x) at different times t, we
reconstruct the full dynamics, as reported in Fig. 3a.
As predicted by theory, the system spatially explores
two completely different regimes, depending on the ra-
tio between the driving frequency ΩR and the critical
one Ωc. At short time we observe the creation of two
magnetic domain walls at positions ±xc, where the con-
dition ΩR = κn(xc)/2 is matched. The magnetization in
the central region slightly oscillates, never changing sign,
while in the outer part atoms undergo full oscillations at
a frequency close to ΩR. As time goes on, the domain
walls break, the self-trapped region becomes smaller and
smaller and strongly fluctuating regions are created and
grow in size. Such dynamics are consistent with a simu-
lation of the Gross-Pitaevskii equation starting with the
same parameters of the experiment (Fig. 3c). Deep in
both the oscillating and self-trapped regions one can see
a smooth spatial variation, associated to a rather small
standard deviation. In the strongly fluctuating region,
instead, the magnetization varies on a very small length
scale, as visible also in the measured (Fig.3e-g) and nu-
merically simulated (Fig.3h-j) density profiles. Figure 3b
and Fig. 3d show the normalized standard deviation from
the mean value over 5 µm.

In the self-trapped region, where the density is rela-
tively homogeneous, we can determine for each position
x the time at which the standard deviation of the magne-
tization experiences a quick jump from zero to a nonzero
value. The result is shown in Fig. 4 by combining the
times obtained for both sides of the sample. The data
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FIG. 4. Velocity of the breaking front. a, The point
where the self-trapped region breaks towards a strongly fluc-
tuating one moves at constant speed across the condensate.
The black dashed line is a linear fit corresponding to a velocity
v = 4.1(1) mm/s. The green and red regions show the slope
corresponding to the local sound c and spin sound velocity cs
considering the uncertainty of κn. In the plot, the position
zero corresponds to the center of the system. Blue and or-
ange dots correspond to the data of the left and right front
propagating towards the center, respectively. Correlation
of magnetization. b, We measure the spatial autocorrela-
tion of the magnetization for different regions of the sample.
In the self-trapped and oscillating regions, the long-range or-
der of the sample is maintained. In the excited region, the
coherence drops to zero at ≈ 5 µm.

show a linear behaviour with a speed of the excitation
wavefront of 4.1(1) mm/s. In the region where the wave-
front propagates, this value is larger than the local spin
sound velocity cs ' 1.7 mm/s (green), while it remains
well below the local density sound velocity cd ' 9.2 mm/s
(red). We estimate the two velocities from 2mc2s = ~κn,
and mc2 = ~κn(g/δg), respectively, where g is the intra-
component interaction (see Methods).

The energy accumulated at the domain walls is con-
verted into short-wavelength magnetic waves. Figure 4b
shows a measurement of the correlation of the magnetiza-
tion CZZ(∆x) given by

∫
sz(x)sz(x+∆x)/

∫
sz(x)2. The

magnetization presents no spatial features at short times,
while in the fluctuating regime it decays on a length-
scale of 2µm (standard deviation of the gaussian fitting
function). This value is compatible with the simulations
(1.6µm), corrected by the finite experimental resolution
of the imaging system.

The density profiles (Fig.3e-j) and the fact that the
speed of the magnetic wave front is larger than typi-
cal Landau spin critical velocity (Fig. 4), strongly sug-
gest that these excitations are closely related to magnetic
shock waves [22–24]. Shock waves have been studied in
single component ultracold systems [25, 26] and very re-
cently, in the presence of spin-orbit coupling [27]. How-
ever, the LLE in the presence of both transverse mag-
netic field and anisotropy are not integrable and have
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been shown to present a chaotic behavior [28]. Therefore
our protocol could excite a new kind of magnetic shock
waves with a chaotic character, leading to a turbulent
behavior of the magnetization that might have connec-
tions with a spin glass. Even on the pure theoretical side,
such kind of waves have never been studied and deserve
further analysis.

METHODS

Experimental procedure

In the experiment, we initially create a polarized Bose-
Einstein condensate of up 5 × 105 atoms in |1,−1〉.
The atoms are trapped in an elongated optical trap
[29] with radial and axial frequencies {ωx, ωr}/2π =
{10(1), 1006(1)} Hz, with Thomas-Fermi radii Rr and
Rx equal to 2.2 µm and 210 µm, respectively. A stable
magnetic field of 1.3018 G is applied along the z axis
to lift the degeneracy of the Zeeman substates. We ap-
ply a microwave dressing to lift the energy of the |1, 0〉
state in order to prevent it from being populated. The
high stability and uniformity of the field is ensured by
the presence of a 4-layer magnetic shield [30] around the
main vacuum cell, that suppresses the field fluctuations
by more than 5 orders of magnitude down to 2 µG on the
timescale of the full experimental sequence. At the used
magnetic field, this corresponds to an energy fluctuation
of about ≈ h×3 Hz. We suddenly switch on a microwave
coupling between |1,−1〉 and |1,+1〉, by means of a two-
photon transition, detuned by ∆ from the intermediate
state |2, 0〉. The strength of the effective Rabi coupling
ΩR is tuned by changing ∆. The coupled states pos-
sess the peculiar feature that the intracomponent cou-
pling constants g−1 = g+1 = g, while the interspecies
one g+1,−1 is 7% smaller than g [31]. This leads to a
positive κ and miscibility [32, 33]. Our initial condition
s = (0, 0,−n) corresponds, in the presence of Rabi cou-
pling, to a highly excited state, far from the equilibrium
point s = (n, 0, 0).

Dimensional reduction

Our sample is three dimensional with a Thomas-Fermi
(inverted parabola) density profile. Along the transverse
direction there is however no dynamics of the magneti-
sation and the one dimensional LLE or Gross-Pitaevskii
equation properly reproduce the transversally integrated
measured spin dynamics. In order to determine the one
dimensional interaction parameter κ we measured the
plasma oscillation frequency ωp, i.e., the frequency of
the small magnetic fluctuations around the ground state
s = (n, 0, 0). The latter can be indeed measured with
high accuracy lasting for a very long time and can be

directly compared with the simple analytical expression
ωp =

√
ΩR(ΩR + κn). By measuring the plasma fre-

quency in the central slice of the trap we extract κn(x =
0). This value of κn(x = 0) is in good agreement with
the one obtained from the atom number and trapping
frequencies. We checked that with such a value at hand
we can reproduce the experimental spatial dependent
plasma frequency simply by using the Thomas-Fermi one
dimensional density n(x) = n(x = 0)(1− x2/R2

x).
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