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a b s t r a c t 

Video anomaly detection has gained significant attention in the current intelligent surveillance systems. 

We propose Deep Residual Spatiotemporal Translation Network (DR-STN), a novel unsupervised Deep 

Residual conditional Generative Adversarial Network (DR-cGAN) model with an Online Hard Negative 

Mining (OHNM) approach. The proposed DR-cGAN provides a wider network to learn a mapping from 

spatial to temporal representations and enhance the perceptual quality of synthesized images from a 

generator. During DR-cGAN training, we take only the frames of normal events to produce their corre- 

sponding dense optical flow. At testing time, we compute the reconstruction error in local pixels be- 

tween the synthesized and the real dense optical flow and then apply OHNM to remove false-positive 

detection results. Finally, a semantic region merging is introduced to integrate the intensities of all the 

individual abnormal objects into a full output frame. The proposed DR-STN has been extensively evalu- 

ated on publicly available benchmarks, including UCSD, UMN, and CUHK Avenue, demonstrating superior 

results over other state-of-the-art methods both in frame-level and pixel-level evaluations. The average 

Area Under the Curve (AUC) value of the frame-level evaluation for the three benchmarks is 96.73%. The 

improvement ratio of AUC in the frame level between DR-STN and state-of-the-art methods is 7.6%. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

An anomaly is a rare event occurring in crowded scenes and 

here might be more than one anomaly at a time. Generally, for 

ultiple shot video, video anomaly detection (VAD) utilizes a tem- 

oral video segmentation algorithm to detect shot boundaries in 

onsecutive video frames [1] . The challenges of VAD relate to com- 

lex and crowded scenes, the anomaly localization, small anomaly 

atasets, and many false-positive detection results. The anomaly 

ocalization is required to indicate the position of the abnormali- 

ies in a scene and is more challenging than detecting an abnor- 

al frame. Another challenge is the very small number of anoma- 

ies present in the available public datasets leading to the difficulty 

o learn a good classifier. Besides, these challenges result in false- 

ositives in the final output through which the system incorrectly 

etects normal events as abnormal ones. 
∗ Corresponding author. 
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In complex real crowded scenes with different occluded and 

mall objects, deep learning methods [6,7,22,34] are more suitable 

han the previous works using hand-crafted features (e.g., Gaus- 

ian regression with Bags of Visual Words [3] , trajectories with K- 

eans [5] , and Histogram of Oriented Gradients [33] ) as they are 

ble to generalize the representations of these objects due to the 

onlinear transformation performance of learnable models. In ad- 

ition, many of the deep learning methods [7,25,26,28] are only 

ble to obtain a high detection rate on the frame level while the 

etection rate at the pixel level is much lower. The reasons are as 

ollows: i) a full frame is fed into the model without prior knowl- 

dge on the objects, resulting in insufficient features of objects of 

nterest for performing deep data-hungry learning; ii) patch extrac- 

ion is not effective in collecting comprehensive features of the ob- 

ect. Recent works [24,29] aim to enhance the accuracy using su- 

ervised learning methods that need data labeling for all samples, 

aking it not suitable for VAD as anomalies are varied and unpre- 

ictable. Hence, unsupervised deep learning methods are a more 

uitable solution as they aim to learn only normal events (the ma- 

ority of patterns in the scene) without the need of labeling data. 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ny unknown patterns will be considered as anomalies by their 

arge distance from the normal patterns. Following this consider- 

tion, Generative Adversarial Networks (GANs) have gained more 

ttention in anomaly detection research due to their outstanding 

erformance in constructing images, affording data augmentation, 

nd dealing with implicit data in complex scenarios [8] . GANs con- 

ist of two competing networks: a generator G and a discriminator 

 . With the convolutional networks in G , many works have tried to 

chieve a high visual quality of image reconstruction and to over- 

ome vanishing gradients. U-Net has been proposed in [27] based 

n the idea of skip connections [9] to enhance the accuracy of 

mage segmentation for biomedical image. Isola et al. proposed 

11] an effective translation of sketch images to realistic images 

ased on conditional GANs (cGANs) with the use of U-Net. 

In this work, we propose a novel Deep Residual Spatiotempo- 

al Translation Network (DR-STN) approach for video anomaly de- 

ection and localization in crowds. Inspired by He et al. [9] , Isola 

t al. [11] , we propose a novel Deep Residual cGAN (DR-cGAN) to 

nhance the accuracy and quality of the synthesized image. Dif- 

erent from previous works [7,15,25,26] which are based on [11] , 

ur DR-cGAN is built by designing the residual units and the resid- 

al connections in G to learn the translation of objects of inter- 

st (the foreground object in the scene) from appearance (spatial) 

o motion (temporal) representations. The object can be a walk- 

ng crowd, vehicle, wheelchair, paper, bag, etc. Our goal is to learn 

nly normal events which refer to walking crowds in the bench- 

ark datasets [17–19] . Specifically, we do not find the difference 

etween the normal events, instead, we aim to learn more of vari- 

us normal events from both spatial and temporal representations 

o be able to differentiate them from the unknown events dur- 

ng testing. This means that our DR-cGAN can learn all normal 

bjects at once during training. Fig. 1 shows the overview of our 

roposed framework during testing in which a powerful object de- 

ector [2] is initially applied to extract the objects in the frame to 

e fed into our DR-cGAN. The reconstruction error is computed by 

nding a pixel-by-pixel difference between the generated and the 

eal temporal frames, representing the possible abnormal events. 

nline Hard Negative Mining (OHNM) and semantic region merg- 

ng methods are then implemented to obtain only the true positive 

nomaly detection results for the final output. 

Our contribution can be concluded as four-fold: (i) our unsuper- 

ised DR-STN learns only normal events without using any hand- 

rafted features and effectively translates comprehensive informa- 

ion of the objects of interest from appearance to motion represen- 

ations in crowded scenes; (ii) we propose DR-cGAN, a novel end- 

o-end unsupervised deep residual connection network, to improve 

erceptual information of reconstructed images from the generator. 

R-cGAN provides a wider network that extensively passes infor- 

ation from the previous to the next layer of encoder and decoder. 
Fig. 1. Overview of prop

144 
o the best of our knowledge, this is the first attempt to build deep 

esidual connections (projection and identity shortcuts) on the U- 

et architecture of cGAN for VAD; (iii) we introduce the object de- 

ector as the pre-processing process to extract only the objects of 

nterest to feed into the DR-cGAN model to help in learning the 

attern of normal objects. This provides better object localization 

or the pixel level; (iv) we introduce OHNM and a semantic region 

erging as the post-processing processes to eliminate the false- 

ositives without retraining the model and integrate the intensity 

f objects for the final anomaly output, providing more reliable 

nd remarkable results than the state-of-the-art works. 

. Related works 

Among existing works, the deep learning approaches are the 

ost successful ones. The main approaches include supervised and 

nsupervised learning. 

The supervised learning methods typically provide higher accu- 

acy on classification problems. Ramachandra et al. [24] proposed 

nomaly localization in videos using Siamese CNN to compute a 

istance between the ground truth label on normal and abnor- 

al video patches, causing over-fitting issues as the input of the 

etwork is limited to small patches of the abnormal event. Singh 

t al. [29] proposed Aggregation of Ensembles (AOE) of different 

ne-tuned CNNs with additional multiple SVM and Softmax clas- 

ifiers to detect anomalies in crowds. This network is not end-to- 

nd trainable and has a high cost of data annotation for obtaining 

 sufficient amount of data. 

On the other hand, unsupervised learning is considered as be- 

ng a more flexible approach for VAD. Xu et al. [32] proposed 

ppearance and motion anomaly detection network using Stacked 

enoising AutoEncoders (SDAEs) as the feature extractor with the 

ne-Class SVM classifier. Prawiro et al. [22] proposed a two-stream 

utoencoder where the decoder is used to learn the static back- 

round and the dynamic foreground objects. Ravanbakhsh et al. 

25] proposed two cross-channel networks between appearance 

nd motion and vice versa based on cGANs. This fusion strategy 

or the two networks makes it more complex to reconstruct im- 

ges. Similarly, the adversarial discriminator based on cGANs is 

roposed in [26] , where the discriminator is used as the classifier 

uring testing, making it faster than [25] but yielding lower ac- 

uracy. Tang et al. [30] proposed the combination of future frame 

rediction and reconstruction error method using two U-net blocks 

n the generator for detecting anomalies. The network is trained 

n an adversarial manner along with the use of gradient, inten- 

ity, and temporal image difference constraints, obtaining in bet- 

er results than the baseline method proposed by Liu et al. [15] . 

anokratanaa et al. [7] proposed a deep spatiotemporal translation 

etwork (DSTN) based on GAN with pre- and post-processing pro- 
osed framework. 
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Fig. 2. The proposed generator architecture of DR-cGAN. 

Fig. 3. Structure of the residual unit. 
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edures, resulting in a good frame-level anomaly detection. How- 

ver, their background removal is quite sensitive to shadow and 

llumination changes and the patch extraction is not always able 

o obtain the full object appearance. 

The proposed DR-cGAN is different from other previous works 

ince we do not rely on hand-crafted features or require any 

abeled data as in the supervised-based approaches. Specifically, 

e are different from Ganokratanaa et al. [7] as we build the 

eep residual cGAN architecture with the object detector without 

ny pre-defined background subtraction model. Additionally, the 

HNM method [12] has been implemented to explicitly address 

nomaly localization and false-positive detection problems, provid- 

ng more robust and reliable results. 

. Methodology 

The proposed DR-STN consists of four main components as de- 

cribed next. 

.1. Pre-processing DR-STN 

The object detection is introduced at the first stage of DR-STN 

o detect, locate, and extract the objects of interest for the input 

f our DR-cGAN model, allowing us to gain more meaningful se- 

antic information. We use You Only Look Once (YOLO) [2] , which 

s trained on the Microsoft COCO dataset [14] for object detection, 

o handle the challenges from the realistic scenes (e.g., noise, il- 

umination changes, and object scaling and occlusions) due to its 

igh robustness on images in different environments and its op- 

imal speed-accuracy tradeoff. The pre-trained YOLO is applied on 

ach frame f to predict a set of bounding boxes for the objects. 

hese bounding boxes aim to extract spatial information of the 

bjects from each frame f and temporal information of the ob- 

ects from each dense optical flow O r to pass into the DR-cGAN for 

odel learning. 

.2. DR-cGAN in DR-STN 

Our DR-cGAN is proposed for learning the translation from spa- 

ial to temporal information (dense optical flow). In training, we 

nput only the objects of interest in the frames of normal events to 

 . G translates the spatial object f ob to the synthesized dense op- 

ical flow object O obg in such a way that it is challenging for D to

ifferentiate it from the real dense optical flow object O obr . Our G 

nd D architectures are adopted from Ioffe and Szegedy [10] , Rad- 

ord et al. [23] . The residual units in G are designed based on [9] .

he details of our architecture are explained in the following sub- 

ections. 

.2.1. Generator with residual connections 

The generator G is the core model used both in training and 

n testing in DR-cGAN. In the common GAN [8] , G learns a ran-

om noise z as an input to construct an output image ˆ y . Differ- 

ntly, cGAN [20] learns a conversion from an image x with a ran- 

om noise z to output an image ˆ y , ˆ y = G (x, z) . However, the use of

andom noise z is not essential in G as G can still learn the map-

ing without the noise [11] . Following [11] , we apply the noise in

he form of dropout in the decoder, resulting in ˆ y = G (x ) . 

A concerning issue of translating the spatial to temporal infor- 

ation is mapping the difference in surface appearance from a 

igh-resolution input to a high-resolution output grid. Thus, we 

esign the generator architecture to effectively align the input 

tructure to the output structure as shown in Fig. 2 . This gener- 

tor network consists of two models: encoder and decoder. The 

ncoder functions as the data compressor, while the decoder re- 

ersely functions as the data decompressor. In the encoder, the 
145 
patial image is input to a series of down-sampling layers until 

eaching a bottleneck layer. Then, the decoder performs the recon- 

truction process to generate a semantic output image. Our struc- 

ure of the encoding and decoding blocks are defined in [7] . 

To achieve finer semantic results, the low-level information is 

equired to be shared between the input and the output in order 

o propagate the information through the network without degra- 

ation while maintaining the high-level information. Following this 

onsideration, we introduce the novel generator architecture as: i) 

e add the residual unit in each layer of the encoder and decoder 

o achieve a wider feature learning network; and ii) we apply the 

esidual connections from encoder layers to decoder layers to share 

he low-level information. Suppose n is the total number of layers. 

he residual unit is added after each encoder layer i and decoder 

ayer n − i , while the residual connections are added from each en- 

oder layer i to the decoder layer n − i . This implies better general-

zation and easier optimization for image translation as discussed 

n Section 4.6 . Specifically, our residual units consist of projection 

nd identity shortcuts as shown in Fig. 3 . The projection shortcut is 

sed to match the dimensions. Since the dimensions of our input 

nd output in the encoder are not the same, we define the projec- 

ion shortcut to increase the dimensions of the input features to 

e able to add with the output features. For the decoder, its resid- 

al unit has two inputs: the output from the decoder layer and the 

esidual connections from the encoder layer. The identity shortcut 

s then defined to add the concatenated inputs with the output us- 

ng the same dimensions. 
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.2.2. Discriminator 

We use the discriminator D only during the training process. D 

lassifies two classes of spatiotemporal objects: a real class { x = 

f ob , y = O obr } and a fake class { x = f ob , O obg = G (x ) } . We train D to

aximize the correct classification problem on both real and fake 

lasses. A binary cross-entropy loss with logits loss is computed as 

he objective function of D . In contrast, G is trained to minimize 

he objective function of D with a reconstruction error between 

 obg and O obr . In other words, the adversarial D and G learn a two- 

layer minimax game with value function V (D, G ) : 

in 

G 
max 

D 
V (D, G ) = L cGAN (G, D ) + λL L 1 (G ) (1)

here L cGAN (G, D ) presents as a cGAN loss, and L L 1 (G ) is a recon-

truction loss in G . Both losses are determined as below, 

 L 1 (G ) = E x,y 

[∥∥y − G (x ) 
∥∥

1 

]
, (2) 

 cGAN (G, D ) = E x,y 

[
log 

[
σ (D (x, y )) 

]]
+ E x 

[
log 

[
1 − σ (D (x, G (x ))) 

]] (3) 

here σ is a sigmoid function, σ (D ) = 1 / (1 + e −D ) . 

Our DR-cGAN provides good feature learning of the learned nor- 

al events which is less complex than learning anomalies. Since 

e do not train with the abnormal event, the model understands 

nly the normal patterns at the training time and then can observe 

he irregular objects following the reconstruction error at the test- 

ng time. The anomaly detection process is explained in detail in 

he following section. 

.3. Anomaly detection 

At testing time, only G is applied to translate f ob of test 

ideo frame to O obg in order to compare with its correspond- 

ng O obr for obtaining the irregular object. Specifically, the spatial 

bjects S t = { f ob 1 
, f ob 2 

, . . . , f ob K 
} t and their corresponding bound-

ng boxes B t = { b 1 , b 2 , . . . , b K } t are extracted from each frame

t time t , where K is the total number of the detected ob- 

ects in a frame. To detect the irregular object, the reconstruc- 

ion error �t = { �ob 1 
, �ob 2 

, . . . , �ob K 
} t is computed by differentiat- 

ng between the real temporal objects T t r = { O obr 1 
, O obr 2 

, . . . , O obr K 
} t 

nd the synthesized temporal objects generated from G , T t g = 

 O obg 1 
, O obg 2 

, . . . , O obg K 
} t . The reconstruction error on k th object is:

ob k 
= O obr k 

− O obg k 
> 0 (4) 

�ob k 
provides an irregular score representing the possible 

nomalous event in the scene when the value of �ob k 
is greater 

han 0. However, the output of �ob k 
may result in a false posi- 

ive, meaning that the normal object (negative sample) is incor- 

ectly detected as the abnormal object (positive sample). This false- 

ositive object represents a hard negative example. To ensure that 

e obtain the actual abnormal object, we determine the high con- 

dence score to decide whether �ob k 
belongs to the normal or 

bnormal object. Then OHNM is proposed to get rid of the nega- 

ive example in the anomaly detection. The probability of anomaly 

core P a k on k th object is computed as: 

 a k = 

∑ 

(i, j) ∈ �ob k 

�ob k 
(i, j) 

/ ∑ 

(i, j) ∈ O obr k 

O obr k 
(i, j) (5) 

Since the model is trained only with the normal patterns, it per- 

orms a good reconstruction on the normal objects, causing a low 

alue of �ob k 
and P a k . In contrast, the model is not able to cor-

ectly reconstruct the abnormal object, causing high value of �ob k 
nd P a k . Following these characteristics, the high confidence scores 

f the normal and abnormal objects are set based on two-interval 
146 
hresholds: confident normal threshold C n and confident abnormal 

hreshold C a . After this setting, we obtain a true detection of nor- 

al and abnormal objects. However, there are some objects which 

re not enrolled in these two criteria (C n < P a k < C a ) . Then, we take

hese objects into consideration of the OHNM examples to finalize 

he true detection of anomaly outputs. 

To observe hard negative examples, the template matching is 

erformed as a short tracklet to match each detected object in f t 

o the search patch p in its adjacent frames within a window ±1 

rame. The size of p is assigned to extensively cover the displace- 

ent of the object by enlarging the bounding box b k of the k th 

eference object f ob k 
to the size of 20 × 20 pixels. This size of p is 

efined due to the small movement of the object between frames. 

pecifically, the main idea of our OHNM is to move f ob k 
(template) 

t f t over p in its adjacent frames ( f t−1 and f t+1 ) in order to

easure the highest similarity patch and record the template as 

 normal object. The highest similarity of the pattern between f ob k 
nd p is determined via block matching by shifting f ob k 

with the 

istance (u, v ) in the horizontal and vertical directions within the 

orresponding sub-patch of p. To find the similarity score from the 

est-matching position between f ob k 
and p, we use the standard 

ormalized cross-correlation (NC C ) algorithm which is formulated 

s: 

C C (u, v ) = 

∑ 

(i, j) ∈ f ob k 

p(u + i, v + j) · f ob k 
(i, j) 

√ ∑ 

(i, j) ∈ f ob k 

p 2 ( u + i, v + j) · ∑ 

(i, j) ∈ f ob k 

f 2 
ob k 

(i, j) 
(6) 

After acquiring the NC C similarity score, we are able to deter- 

ine whether the object is abnormal or not based on the confident 

imilarity score C s . If there is a large appearance change between 

rames, we assign the object as being abnormal otherwise, we con- 

ider it to be a normal object or an isolated object yielded by 

icker noise. Finally, the semantic region merging is implemented 

y combining all the detected abnormal objects into a full seman- 

ic frame A computed as follows, 

 (i, j) = 

{ 

�ob k 
(i, j) , non-overlapping object 

1 /K 

∑ 

k ∈ K 
�ob k 

(i, j) , otherwise (7) 

here K is the total number of the final abnormal objects and (i, j) 

re the pixel positions of A . 

A is normalized to get the probability score N A in a range of 

0, 1] of the full semantic frame. The highest pixel intensity value 

f A , M A , is considered as the abnormal pixel in the frame. The

OC curve is performed on N A by slightly shifting the threshold of 

nomaly scores in a range of [0,1] to determine the best decision 

hreshold. N A can be defined as follows, 

 A (i, j) = 1 /M A · A (i, j) (8) 

. Experimental results 

In this section, we evaluate the performance of the proposed 

R-STN on three anomaly benchmarks and compare it with state- 

f-the-art methods on both frame level and pixel level. The impact 

f our proposed DR-cGAN model and OHNM method along with 

he running time performance are analyzed in detail. 

.1. Datasets 

The UCSD dataset [18] includes two sub-folders: Ped1 and Ped2. 

here are 34 training and 16 test videos in Ped1 and 16 training 

nd 12 test videos for Ped2. The image sizes of Ped1 and Ped2 are 

38 × 158 pixels and 360 × 240 pixels, respectively. The abnormal 

vents in this dataset include cycling, skateboarding, vehicles, and 

heelchairs. 
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Table 1 

Anomaly Detection Benchmark Datasets. 

Datasets Number of Videos Number of Frames Training Samples Testing Samples 

UCSD Ped1 50 8900 5500 3400 

UCSD Ped2 28 4202 2550 1652 

UMN 11 7740 1200 6540 

CUHK Avenue 37 30,652 15,328 15324 
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The UMN dataset [19] has 11 videos recorded in three differ- 

nt scenes (i.e., one crowded indoor and two crowded outdoor 

cenes) with an image size of 320 × 240 pixels. We take the first 

00 frames of each scene as training samples following [4] and 

eave the rest for testing. The abnormal events in the UMN dataset 

efer to running, while the normal events refer the normal walk- 

ng. 

The CUHK Avenue dataset [17] has 16 training and 21 test 

ideos with an image size of 360 × 640 pixels. There are vari- 

us anomalies in the scenes, e.g., jumping, loitering, running, and 

hrowing objects, while the normal events are the walking crowds. 

We include the details of anomaly detection benchmark 

atasets for our experiments in Table 1 , including the number of 

ideos, frames, training, and testing samples. 

.2. Implementation details 

Our proposed DR-STN is based on Python and Matlab [32] with 

yTorch [21] . The training and testing processes are implemented 

n NVIDIA GeForce GTX 1080 Ti. Adam optimization is used to op- 

imize our reconstruction loss ( λL L 1 ) that targets to 2E-1. The op- 

imization parameters are defined as [11] . 

In our DR-cGAN, the sizes of the input and output of G for both 

raining and testing processes are set to 64 × 64 pixels. With the 

ncoder network in G , the input image is encoded by using a CNN

ith a kernel size of 3 × 3 pixels and a stride s = 2 to reach a

ridge representing the spatial data. For the decoder network in G , 

ach layer is built as the reverse of each encoder layer. To avoid the 

ver-fitting problems on the training dataset, the random noise z

s provided in the form of dropout in the decoder with the default 

robability value p = . 5 . In addition, the residual units for both en-

oder and decoder are designed by using 3 × 3 convolution and 

 × 1 convolution with s = 1 , respectively. For D , it takes two in-

ut images with the resolution of 64 × 64 pixels to produce the 

 × 6 output feature. 

.3. Evaluation criteria 

We evaluate the quantitative performance of the proposed DR- 

TN considering two criteria: frame level (F) and pixel level (P). In 

, the frame is considered as an anomaly if there is at least one 

bnormal event in a test frame. On the other hand, P specifies the 

ocation of the abnormal event. The frame is a true detection when 

he detected abnormal region overlaps with the ground truth re- 

ion more than 40% [13] . 

.4. Performance evaluation 

In this section, we compare Area Under the Curve (AUC) and 

qual Error Rate (EER) performance of DR-STN with other state-of- 

he-art methods as shown in Table. 2. We use the same network 

onfiguration and training parameter settings for all three datasets. 

he experiment on the UCSD dataset is implemented with 10 and 

2 videos of the UCSD Ped1 and UCSD Ped2, respectively, along 

ith their pixel-level ground truth. GANs [25] and DSTN [7] are 

et as the baseline methods due to their success in leveraging 
147 
rame-level and pixel-level detection accuracy and achieving state- 

f-the-art performance under the unsupervised manner. Table 2 

hows that our DR-STN surpasses not only the baseline methods 

ut also most of the competing works in both F and P criteria in 

hich we achieve higher AUC and lower EER than other works, 

xcept only for the AUC of the UCSD Ped1 dataset at P in [24] .

his is probably due to their supervised learning on labeled ab- 

ormal data. However, our experimental results can significantly 

vercome other criteria in [24] and all criteria in [29] which also 

elies on a supervised-based method, showing the competitive per- 

ormance of DR-STN in anomaly detection and localization tasks. In 

ddition, the examples of our detection and localization results on 

hree datasets are shown in Fig. 4 where we can detect and lo- 

alize both single and multiple abnormal events in the crowded 

cenes even when they are occluded (e.g., a bicycle and a skate- 

oard in Fig. 4 (b)). 

.5. Computational cost analysis 

It is important to compare our computational time performance 

ith state-of-the-art works. Table 3 shows the comparison of com- 

utational time with the state-of-the-art methods in seconds per 

rame on the UCSD Ped1, UCSD Ped2, UMN, and CUHK Avenue 

atasets where the data are available from the original papers. 

uring testing, all competing methods are evaluated by CPUs with 

ifferent specifications as shown in Table 3 , except Tang et al. 

30] using GPU. The experimental results of the AUC and EER per- 

ormance in Table 2 and the computational time in Table 3 clearly 

how the speed-accuracy tradeoff between DSTN [7] and the pro- 

osed DR-STN. As DR-STN has a more complex generative network, 

t has a higher computational time than DSTN. However, DR-STN is 

till faster than AMDN (Double Fusion) [32] both for UCSD Ped1 

nd Ped2 datasets. This is due to the fact that AMDN uses a very 

mall image patch-based extraction (i.e., 15 × 15 pixels) while our 

R-STN does not rely on image patches as we use the powerful ob- 

ect detector [2] to extract only objects of interest from the scene 

here all types of anomalies can be described by objects alone, 

ithout the interaction with other objects. Besides, it is natural 

or Detection at 150 fps [17] to have the lowest computational 

ime because their sparse learning network has less neuron con- 

ections than other methods. Thus, it can be concluded that the 

roposed DR-STN has a good overall performance for surveillance 

ideos, considering its high accuracy that significantly outperforms 

ll other methods and its good running time for various bench- 

ark datasets even if we run the testing with the CPU. Our pro- 

osed DR-STN runs at 8 frames per second (fps) using an NVIDIA 

080Ti GPU. To address the relatively high computational time of 

ur method for real-time applications we can consider running 

ultiple GPUs in parallel. 

.6. Analysis of DR-STN 

To emphasize the importance of our DR-STN, we analyze two 

ain components of the proposed framework: i) the performance 

f DR-cGAN compared with the baseline methods including U-Net 

11] and autoencoder which is simply built by removing the skip 

onnections in U-Net and ii) the impact of OHNM on DR-STN with 
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Table 2 

AUC and EER comparison with state-of-the-art methods on UCSD, CUHK Avenue, and UMN datasets. 

Method 

UCSD Ped1 (F) 

AUC/EER 

UCSD Ped1 (P) 

AUC/EER 

UCSD Ped2 (F) 

AUC/EER 

UCSD Ped2 (P) 

AUC/EER 

CUHK Avenue (F) 

AUC/EER UMN (F) AUC/EER 

Social force (SF) [19] 67.5%/31.0% 19.7%/79.0% 55.6%/42.0% -/80.0% -/- 96.0%/- 

Sparse reconstruction [4] 46.1%/19.0% 45.3%/54.0% -/- -/- -/- 97.8%/- 

Detection at 150fps [17] 91.8%/15.0% 63.8%/43.0% -/- -/- 80.9%/- -/- 

AMDN (double fusion) [32] 92.1%/16.0% 67.2%/40.1% 90.8%/17.0% -/- -/- -/- 

GANs [25] 97.4%/8.0% 70.3%/35.0% 93.5%/14.0% -/- -/- 99.0%/- 

Liu et al. [15] 83.1%/23.5% 33.4%/- 95.4%/12.0% 40.6%/- 85.1%/- -/- 

Adversarial discriminator [26] 96.8%/7.0% 70.8%/34.0% 95.5%/11.0% -/- -/- 99.0%/- 

AnomalyNet [34] 83.5%/25.2% 45.2%/- 94.9%/10.3% 52.8%/- 86.1%/22.0% 99.6%/- 

Tang et al. (optical flow) [30] 84.7%/- -/- 96.3%/- -/- 85.1%/- -/- 

DSTN [7] 98.5%/5.2% 77.4%/27.3% 95.5%/9.4% 83.1%/21.8% 87.9%/20.2% 99.6%/- 

GMM-FCN [6] 94.9%/11.3% 71.4%/36.3% 92.2%/12.6% 78.2%/19.2% 83.4%/22.7% -/- 

Siamese [24] 86.0%/23.3% 80.4%/- 94.0%/14.1% 93.0%/- -/- -/- 

AOE [29] 94.6%/- -/- 95.9%/- -/- -/- -/- 

Two-stream decoder [22] 84.2%/- -/- 96.1%/- -/- -/- -/- 

DR-STN (Proposed method) 98.8%/2.9% 82.5%/21.5% 97.6%/6.9% 86.4% /16.3% 90.8%/11.0% 99.7%/- 

Table 3 

Computational time comparison during testing (seconds per frame). 

Methods CPU GPU Memory Running Time 

Ped1 Ped2 UMN Avenue 

Sparse reconstruction [4] 2.6GHz - 2.0GB 3.8 - 0.8 - 

Detection at 150 fps [17] 3.4GHz - 8.0GB 0.007 - - 0.007 

AMDN (Double Fusion) [32] 2.1GHz Nvidia Quadro K4000 32GB 5.2 7.5 - - 

Tang et al. [30] - Nvidia Tesla P40 24GB - 0.03 - - 

DSTN [7] 2.8GHz - 24GB 0.315 0.319 0.318 0.334 

DR-STN (Proposed Method) 3.4GHz - 24GB 4.26 4.44 4.07 3.62 

Fig. 4. Examples of anomaly detection and localization results. 
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Table 4 

Performance comparison of the Autoencoder, U-Net and DR- 

cGAN in terms of FCN-scores on pixel accuracy and Struc- 

tural SIMilarity Index (SSIM) on the UCSD Ped1 dataset. 

Method Pixel accuracy SSIM 

Autoencoder 0.81 0.78 

U-Net 0.82 0.8 

DR-cGAN 0.87 0.85 

a

s

t

c

o  

C  

o  

t  

h

egard to AUC. First, we divide the training folder of the UCSD 

ed1 dataset into two subsets: 70% for training samples and 30% 

or testing samples. We train DR-cGAN model and other baseline 

ethods for 20 epochs to see their effectiveness in minimizing the 

L L 1 loss as illustrated in Fig. 5 where our DR-cGAN (red square) 

eaches the lowest error over the training epochs, showing faster 

nd superior performance in model learning than other baseline 

ethods about 50%. To clarify the ability in generating the syn- 

hesized image on normal events during testing, we evaluate the 

roposed network using two common methods. First, FCN-scores 

or semantic segmentation on pixel accuracy [16] are computed to 

btain the probability of correct pixels on a set of defined object 

lasses (foreground and background region classes). The pixel accu- 

acy is defined as 
∑ 

i n ii / 
∑ 

i n ti , where n ii is the number of the cor-

ect classified pixels of class i , and n ti is the total number of pixels

f class i . Second, Structural SIMilarity Index (SSIM) metric [31] is 

sed to evaluate the similarity between the synthesized and the 

eal images. For both evaluations, a higher value indicates a better 

esult of the synthesized image. Table 4 shows that our DR-cGAN 

ignificantly surpasses all baseline methods regarding both evalu- 
148 
tions, providing a good synthesized image quality that is highly 

imilar to the real image. 

Apart from the above experiments, our OHNM relies on both 

emporal and spatial conditions. For the temporal condition, we 

an determine whether the object is normal or abnormal based 

n P a k under the criteria of two-interval thresholds, C n = 0 . 1 and

 a = 0 . 8 . The object is classified as normality if its P a k is less than

r equal to 0.1 (P a k ≤ 0 . 1) and as abnormality if its P a k is greater

han or equal to 0.8 (P a k ≥ 0 . 8) . This is probably because the model

as only the knowledge of the learned normal events at the train- 
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Fig. 5. Training loss comparison between Autoencoder, U-Net and DR-cGAN on the UCSD Ped1 dataset. 

Table 5 

AUC performance of OHNM on DR-STN. 

Method Ped1 (F) Ped1 (P) Ped2 (F) 

DR-STN without OHNM 97.85% 72.65% 96.16% 

DR-STN with OHNM 98.83% 82.50% 97.62% 
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ng time. Hence, during testing when we input all objects from 

ach frame into the model, �ob k 
provides less difference in local 

ixels between the learned and the test samples in case the in- 

ut is the normal object, resulting in a small value of P a k which 

alls into the criteria of C n . On the other hand, there is a great dif-

erence of �ob k 
if the input is the abnormal object, resulting in 

 high value of P a k which is considered as abnormality following 

he criteria of C a . For P a k value that does not belong to these two

riteria (0 . 1 < P a k < 0 . 8) , we apply the template matching to ob-

erve NC C score of the objects between frames to indicate the ap- 

earance displacement whether the objects are the same. NC C re- 

ults in a high similarity score if there is a small change in the ap-

earance of the objects between frames, considering as the false- 

ositive anomaly result. Based on the experiment, we set the con- 

dent similarity score on the normal object C s = 0 . 8 . We analyze

he impact of OHNM on our DR-STN for reducing the false-positive 

etection results in terms of AUC on the UCSD dataset. With the 

se of OHNM, the model can remarkably improve the AUC values 

n both F and P as shown in Table 5 . The AUC of P on the UCSD

ed1 dataset is increased up to about 10% compared to the plain 

R-STN, providing a more precise location of the abnormal events 

n the scene. Following these experimental results, it is clear that 

pplying OHNM with the proposed DR-STN benefits both anomaly 

etection and localization tasks. 

. Conclusion 

This paper introduced a novel unsupervised deep residual spa- 

iotemporal translation network for video anomaly detection and 

ocalization. The proposed DR-STN is embedded with DR-cGAN and 

HNM, which benefits in reducing false-positive anomaly detec- 

ion and increasing anomaly localization accuracy. The DR-cGAN 

s designed for learning the translation of objects of interest from 

ppearance (spatial) and motion (temporal) representations inte- 

rated with the residual units, residual connections, and cGAN. Ad- 

itionally, our DR-cGAN takes only raw pixels as input from the 

bject detector, which effectively extracts each individual object of 

nterest, without relying on any prior knowledge of hand-crafted 

eatures. We conducted extensive experiments on three available 

enchmarks and showed the strengths of our proposed DR-STN re- 

arding its accuracy, robustness, and effectiveness. DR-STN signif- 

cantly outperforms the state-of-the-art due to its performance in 
149 
earning frame-by-frame normal events of the training dataset in 

arious environments, occlusions, and illumination changes, mak- 

ng it flexible to detect and mark any unknown events that are 

ifferent from the learned normal patterns as abnormal. One of 

he limitations of our DR-cGAN is the relatively high computational 

ime but this can be addressed by considering a speed-accuracy 

radeoff. Besides, since DR-STN is an unsupervised-based learning 

ethod, it requires many training samples of normal events and a 

istinct difference of the learned normal patterns from the abnor- 

al patterns for detecting abnormalities during testing. The con- 

ern is that the model may face difficulty in distinguishing the 

bnormal events if their patterns are too similar to the normal 

atterns. However, with enough training time and resources on 

he normal patterns, the model is able to handle the reconstruc- 

ion task effectively by showing the lowest error over the training 

pochs and the highest pixel accuracy over other competing meth- 

ds. Our future work will focus on continuous learning of unknown 

vents, assisting to verify if these are actually abnormal or simply 

are normal events. 
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