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We investigate the dynamics of heavy impurities embedded in an ultra-cold Fermi gas by using
a Generalized Langevin equation. The latter – derived by means of influence functional theory –
describes the stochastic classical dynamics of the impurities and the quantum nature of the fermionic
bath manifests in the emergent interaction between the impurities and in the viscosity tensor. By
focusing on the two-impurity case, we predict the existence of bound states, in different conditions
of coupling and temperature, and whose life-time can be analytically estimated. Our predictions
should be testable using cold-gases platforms within current technology.

I. INTRODUCTION

The concept of mediated interactions between parti-
cles due to the medium they are immersed in is ubiqui-
tous in physics. Notable examples include the phonon-
mediated interaction between electrons [1] –giving rise
to Bardeen–Cooper–Schrieffer superconductivity–, the
interaction between cluster or nuclear pasta structures
mediated by the surrounding neutron fluid in the in-
ner crust of neutron stars [2–4], and the interaction be-
tween heavy quarks mediated by a plasma of deconfined
quarks and gluons, in super-hot hadronic matter [5].

Highly imbalanced mixtures of ultra-cold gases pro-
vide clean and tunable platforms where to study
medium mediated interactions. In these systems, the
quasi-particles resulting from dressing impurities by
the polarization of the bath are usually referred to
as polarons. The study of polaron physics in cold
gases was initiated by seminal experimental works on
the normal-to-superfluid phase transition in imbalanced
Fermi-Fermi mixtures [6, 7] and the identification of the
normal phase as a weakly interacting gas of polarons, in
the spirit of Landau Fermi liquid theory (see, e.g., [8, 9]
and reference therein). Shortly after, also the case of
impurities immersed in a Bose gas was experimentally
realized [10, 11].

Presently, the static and dynamical properties of a
single polaron have been relatively well understood, at
least for the case of a degenerate polarized Fermi bath,
at zero temperature [12]. On the other hand, the exper-
imental and theoretical characterization of the effect of
the mediated interaction between impurities is, in gen-
eral, much more challenging [13]. However, two very
recent experiments have measured the effect of the me-
diated interaction on a Bose condensed gas in a Bose-
Fermi mixture, in which the Fermi gas plays the role of
the bath [14, 15]

The present work aims at exploring the dynamics
of heavy impurities in a Fermi bath at finite temper-
ature, within the framework of Generalized Langevin
equation (GLE) [16] that is derived from a chain of

well-controlled approximations, starting from the a mi-
croscopic Feynman–Vernon influence functional [17]. In
this way, we are able to provide semi-analytical expres-
sions for both the mediated inter-impurity interaction
and the configuration-dependent friction tensor.

Within our approach the effective stochastic dynam-
ics of the haevy impurities is treated at the classical
level. On the other hand, quantum effects must be
fully taken into account when deriving the mediated
interaction – which corresponds to a finite tempera-
ture Ruderman—Kittel-–Kasuya—Yosida (RKKY)[18–
20] potential – and the friction tensor.

As a case study, we analyse the dynamics of two heavy
impurities. By numerically integrating their stochas-
tic equations of motion starting from configurations in
which they are close to each other, we find evidence for
the formation of a transient bound state. Numerical
estimates of the life-time of this state at different tem-
peratures agree well with the analytic calculations of
the dissociation rate performed within Kramers’ theory
(see, e.g., [21] and reference therein), thus demonstrat-
ing that the impurity pair dissociation is a thermally
activated rare event.

We also find that the position-dependent off-diagonal
elements in the friction tensor have important impli-
cations on the dynamics of the pair. In particular, the
relative motion of two close impurities is almost friction-
less, yet the presence of a longitudinal and a transverse
friction leads to a rapid dissipation of the relative orbital
angular momentum (see Fig. 3 b)).

The paper is organized as follows: in Sec. II, we de-
rive the Feynman–Vernon influence functional for our
system; in Sec. III, we describe the quantum medi-
ated interaction and friction and derive the GLE for
the dynamics of the impurities, focusing on the one- and
two-impurity cases; in Sec. IV, we discuss the numeri-
cal results obtained for the dynamics of two impurities
which are initially close to each other. A summary of
our findings is the content of Sec. V.
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FIG. 1. Two heavy impurities (red) in a bath of fermions
(cyan): the bare impurity-bath interaction g is responsible
for the induced forces between impurities F1,2 and for the
low friction region (yellow).

II. THEORETICAL SETUP

We consider a system composed by a bath of de-
generate ultra-cold Fermi atoms of mass m and chem-
ical potential µ, interacting with N impurities of mass
mI � m. At the energy scales we consider, particles
interact only via s-wave scattering and therefore the
interaction between the atoms of the bath can be ne-
glected. For the sake of clarity we also consider that
there is no direct interaction between the impurities.
The interaction between the bath and the impurities
is characterized in the following by a contact potential
with strength g. We also assume that the system is at a
temperature T such that the de Broglie thermal wave-
length of the impurities λ ∼ ~

√
2π/mIkBT is small

compared to their typical inter-particle distance. This
will allow us to regard impurities as quasi-classical par-
ticles. In order to obtain a stochastic equation of mo-
tion for the impurities, it is convenient to describe them
in first quantization and coordinate representation. We
rely on quantum field theory to describe the dynamics
of the degenarate fermionic bath. Our system can be
modelled by the following Hamiltonian:

Ĥ = ĤF + ĤI + V̂ , (1)

where

ĤI =

N∑
i=1

p̂2
i

2mI
(2)

ĤF =

∫
dx Ψ̂†(x)

(−~2

2m
∇̂2 − µ

)
Ψ̂(x) (3)

V̂ = g

N∑
i=1

∫
dx Ψ̂†(x) δ(q̂i − x) Ψ̂(x), (4)

where p̂i and q̂i denote the impurity momentum and
position operators, Ψ̂(x) and Ψ̂†(x) are the annihilation

and creation field operators for the particles in the bath.
Let us consider a setup in which the impurities are

initially decoupled from the bath and localized at fixed
positions Qi ≡ (q1, . . . ,qN ). At time t = 0, the in-
teraction with the bath is switched on and the sys-
tem’s density matrix begins to evolve according to the
Hamiltonian (1). We are interested in the diagonal ele-
ments of the reduced density matrix for the impurities,
i.e. in the probability of observing the impurities at

Qf = (qf1 , . . . ,q
f
N ) at time tf . Using Feynman–Vernon

path integral representation of the density matrix [17]
we obtain:

P (Qf , t|Qi, 0) =

∫ Qf

Qi

DQ

∫
Dξ
∫
Dξ∗e i

~S[Q,ξ,ξ∗].

(5)
In this equation, ξ(t,x) and ξ∗(t,x) are Grassmann co-
herent field variables, while the functional at the expo-
nent is

S[Q, ξ, ξ∗] =

∫
C
dt′

mI

2

N∑
j=1

q̇2
j (t
′)+

∫
dxξ∗(t′,x)

(
i~∂t′ −

~2∇2

2m
− µ− ρ(t′,x)

)
ξ(t′,x)

}
,

(6)

where ρ(t,x) = g
∑N
i=1 δ(qi(t)−x) is the instantaneous

impurity density and the time integral is defined over
the standard Keldysh contour C [22, 23].

The integral over the Grassmann fields ξ, ξ∗ can be
carried out analytically, leading to:

P (Qf , t|Qi, 0) =

∫ QF

Qi

DQ eiΦC [Q]ei
mI
2~
∑N

j=1

∫
C dt
′q̇j

2

,

(7)
where ΦC [Q] is the influence functional, which is for-
mally written as

iΦC [Q] = Tr

[
log

(
i~∂t′ −

~2∇2

2m
− µ− ρ(t′,x)

)]
. (8)

To obtain an explicit representation for ΦC [Q], it is con-
venient to deal separately with the upper and lower
branches of the Keldysh contour. In addition, we as-
sume a low impurity density and perform a functional
expansion to second order in ρ(t′,x). The 0-th order
term is a constant that is reabsorbed in the definition
of probability, while the first order term is an energy
shift that does not affect the dynamics. The resulting
expression for the transition probability density is

P (Qf , t|Qi, 0) =

∫ Qf

Qi

DQ′
∫ Qf

Qi

DQ′′

eiΦ(Q′,Q′′) e
i
mI
2~
∑N

j=1

∫ t
0
dt′
(
q̇
′2
j −q̇j

′′2
)
, (9)

where

Φ(Q′,Q′′) =
i

2

2∑
a,b=1

∫ t

0

dt′
∫ t

0

dt
′′
∫
dx

∫
dy

ρa(t
′
,x)∆ab(t

′ − t′′ ,x− y) ρb(t
′′
,y), (10)
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where a, b label the branches of the Keldysh contour C,
primed variables lie on the forward branch of the con-
tour and double-primed variables lie on the backward
branch. In particular in Eq. (10),

ρ1(t,x) = g
∑
i

δ(q
′

i(t)− x)

ρ2(t,x) = g
∑
i

δ(q
′′

i (t)− x), (11)

and ∆ab are the entries of a 2 × 2 matrix of Green’s
functions:

∆11(t,x) = ∆F (t,x) = iDF (t,x)

∆12(t,x) = −∆<(t,x) = −iD<(t,x)

∆21(t,x) = −∆>(t,x) = −iD>(t,x)

∆22(t,x) = ∆F̃ (t,x) = iDF̃ (t,x). (12)

Here, D>(t,x), D<(t,x) and DF (t,x) are the standard
fermionic polarization propagators of many-body the-
ory [24, 25].

We emphasize that the expressions (9) and (10) fol-
low directly from Eq. (7), in the small impurity density
limit.

In the next section, we shall introduce additional ap-
proximation which enable us to efficiently compute this
transition probability by integrating stochastic differen-
tial equation of motions.

III. EFFECTIVE STOCHASTIC DYNAMICS
OF HEAVY IMPURITIES

In this section, we introduce a chain of well-controlled
approximations to enable the sampling of the transition
probability density (7).

A. Small Frequency Expansion

Since the mass of the impurities is much greater than
that of the particles in the bath the dynamics of the
former is expected to be much slower. Then, it is pos-
sible to perform a small frequency expansion of ∆ab in
Eq. (12):

∆ab(t,x) =

∫
dω

2π
e−iωt

( ∞∑
n=0

ωn

n!
F

(n)
ab (x)

)

= F
(0)
ab (x) + i

d

dt
δ(t)F

(1)
ab (x) + . . . , (13)

where

F
(0)
ab (x− y) ≡ ∆ab(ω = 0,x− y) (14)

F
(1)
ab (x− y) ≡ lim

ω→0

d

dω
∆ab(ω,x− y), (15)

and the dots denote higher order terms in the Taylor
expansion.

Substituting Eqs. (13,11) into Eq. (10) we obtain

Φ(Q′,Q′′) =
ig2

2

N∑
i,j=1

∫ t

0

du

{
F

(0)
F (q′i − q′j)+

+F
(0)

F̃
(q′′i − q′′j )− F (0)

< (q′i − q′′j )+

−F (0)
> (q′′i − q′j)− iq̇j1

∂

∂q′j
F

(1)
> (q′′i − q′j)

−iq̇j2
∂

∂q′′j
F

(1)
< (q′i − q′′j )

}
.

(16)

It is convenient to introduce the so-called complex
potential V(x− y):

iV(x−y) ≡ F (0)
F (x−y) = V (x−y)+ iW (x−y). (17)

In appendix A, we show that the real and imaginary
part of V can be expressed in terms of the retarded
polarization propagator in Fourier space:

V (x− y) = ReDR(ω = 0,x− y) (18)

W (x− y) =
2

β
lim
ω→0

1

ω
ImDR(ω,x− y). (19)

We also show that for a bath of non-interacting fermions
in 3 dimensions

V (x− y) = − mkF
4π4~2

∫
dq

sin(qr)

r

∫
dk fFD(k, T )k ×

× log

∣∣∣∣k + q/2

k − q/2

∣∣∣∣
(20)

W (x− y) = − m2

2π3~3β

∫
dq fFD(q/2, T )q

sin(qr)

qr
,

(21)

where r = |x− y| and fFD is the Fermi-Dirac distribu-
tion.

In the following, we use the rescaled imaginary po-
tential WR as

WR(x− y) =
β

2
W (x− y), (22)

for an easier understanding. Indeed, with this rescaling
the term 1/β in Eq. (21) disappears.

B. Classical Limit

We now take the classical limit for the dynamics of the
impurities. In order to implement this approximation,
we first perform the change of variables

ri =
1

2
(q′i + q′′i ) yi = q′i − q′′i . (23)

After an integration by parts, the free action of the im-
purity takes the form:

e
imI
~
∑N

i=1

∫ t
0
r̈i·yi . (24)
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We expect the dominant contribution to the path in-
tegral to come from the functional region where the
time integral in the exponent is small or at most of or-

der unity. To estimate it, we note that
∫ tf
ti
dtr̈i · yi ∼√

kBT/mI |yi|, where
√
kBT/mI is the average thermal

velocity of the impurities. Then, the stationary phase
condition implies |yi| .

√
1/mIkBT . In the limit of

heavy impurities, fluctuations of y(t) become small com-
pared to all relevant length scales, thus we can expand
the influence functional to second order in yi, leading
to

P (Rf , t|Ri, 0) =

∫ Rf

Ri

DR

∫ 0

0

DY

exp

{
− i
~

∫ t

0

dt′ [yi (mI r̈i + Γij(R)ṙj − Fi(R)) +

−1

2
yi

2

β
Γij(R)yj

]}
,

(25)

where R = (r1, . . . , rN )T , Y = (y1, . . . ,yN )T and the
sum over repeated indices i, j = 1, . . . , N is understood.
F (R) and Γij(R) are defined as

Fi(R) = −g2
N∑
j=i

∇V (ri − rj) (26)

Γij(R) = g2HWR
(ri − rj), (27)

where HWR
is the Hessian of WR.

The Gaussian integral over Y can be evaluated an-
alytically, leading to our final path integral expression
for the transition probability:

P (Rf , t|Ri, 0) =

∫ Rf

Ri

DRe−
∫ t
0
dτ(mIR̈−mIΓ(R)Ṙ−F(R))

2

.

(28)

Here, the probability for the impurities to go from Ri to
Rf in a time t is written as a functional integral over all
possible trajectories connecting the initial and the final
configuration. We note that the functional at the expo-
nent, which determines the relative statistical weight of
R(t) trajectories, does not explicitly depend on ~. In-
deed, it corresponds to an Onsager–Machlup action [26],
which characterizes path integral representation of prop-
agator in classical Fokker–Planck dynamics.

As a consequence, as explicitly shown in Ref. [27, 28],
the same transition probability density of Eq. (28) can
be generated by the following GLE:

mI r̈i = −Γij(R)ṙj + Fi(R) + Ψi(R, t). (29)

The viscosity Γ(R)ij and the noise term Ψi(R, t) satisfy
the fluctuation-dissipation relations

〈Ψi(R, t)〉 = 0 (30)

〈Ψi(R, t)⊗Ψj(R, t
′)〉 =

2

β
Γij(R)δ(t− t′). (31)

The noise Ψi(R) depends only the relative distances
between the i-th impurity and all the others impurities.
To conclude this section, we note that while the dy-
namics of the impurities has been reduced to a classical
diffusion process, the quantum nature of the bath is still
effectively encoded in the structure of the viscosity and
force terms, derived from Eqs. (20, 21) [29] .

C. Dynamics of a single impurity

It is instructive to first apply our formalism to the
case of a single impurity. For N = 1, the GLE reduces
to that of a standard Brownian particle, with constant
viscosity and white noise:

mI r̈ = −γṙ + Ψ(t), (32)

where we defined r = R = r1 and

γ = Γ11 = −8m4g2

3~7π3
(kBT )2Li2(−eβµ(T )), (33)

is the single impurity friction constant with Li2 is the
dilogarithm [30]. At finite temperature, Eqs. (32) and
(33) yield the conventional Einstein’s diffusion law, and
the kinetic energy of the impurity thermalizes with the
bath. However, if temperature is much smaller then the
bath Fermi temperature TF = εF /kB , with the usual
Fermi energy εF = ~2k2

F /2m, Eq.(33) can be written as

γT→0 =
4~k2

F

3π

(
m

mr
kFa

)2(
1 +

T 2

T 2
F

π2

3

)
. (34)

In this equation, mr = mIm/(mI + m) is the reduced
mass and g is expressed in terms of the more physical
s-wave scattering length a, g = 2π~2a/mr. We note
that the viscosity remains finite even at zero tempera-
ture. This is possible because the impurity releases en-
ergy into the bath, by inducing particle-hole excitations.
The same result for the viscosity Eq. (34) can also be
obtained by considering the energy dissipation of an in-
finite mass impurity moving in the bath (see Appendix
B), as discussed in Ref. [31] for the case of interacting
Bose gases. Note that, in the latter case (and for any su-
perfluid system), the viscosity vanishes for T → 0, due
to the existence of the critical Landau velocity, which
provides a minimal velocity for the impurity to excite
the system. Interestingly, Schecter and Kamenev ap-
plied the same formalism we adopted in the present work
to compute the friction in a weakly interacting Bose gas,
and found that it scales as γBEC ' T 7 [32].
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FIG. 2. Some spatial dependences with kF a = 0.19 and T/TF = 0.2, 0.1, 0.05 (dotted-dashed blue, dashed red, full green
lines). Panel a): V (s) at kF a = 0.19, the intersection between horizontal dashed lines and potential curves determines the
typical size of the bound state rb. Panel b): difference between the constant viscosity term and the diagonal component
of the viscosity matrix γ − Γii

12(s) in units of γT→0. Note that |s|kF & 6 the oscillations decay because the contribution of
Γii
12 vanishes. In the inset is shown the behaviour for small |s|. Panel c): sum between the constant viscosity term and the

diagonal component of the viscosity matrix γ − Γii
12(s) in units of γT→0. Panel d): off-diagonal component of the viscosity

matrix Γij
12 multiplied by |s|2/sisj in units of γT→0. Also for the off-diagonal term the oscillatory behaviour decays for

|s|kF & 6.

D. Dynamics of two impurities

Let us now consider the case of two impurities. The
corresponding GLEs read:

mI r̈1 = − (γṙ1 + Γ12(r1 − r2)ṙ2) +

+ F1(r1 − r2) + Ψ1(r1 − r2, t) (35)

mI r̈2 = − (Γ21(r1 − r2)ṙ1 + γṙ2) +

− F1(r1 − r2) + Ψ2(r1 − r2, t), (36)

in strong analogy with the old result for heavy particles
in incompressible fluids [33]. It is convenient to rewrite
the previous equations in terms of the relative distance
between the impurities, s = r1 − r2, and the center of
mass rCM = (r1 + r2)/2:

mI s̈ = −(γ − Γ12(s)) ṡ + 2F1(s) + η−(s, t) (37)

mI r̈CM = −(γ + Γ12(s)) ṙCM +
1

2
η+(s, t), (38)

where η+(s, t) and η−(s, t) are two Gaussian noises,

η±(s, t) = Ψ1(s, t)±Ψ2(s, t). (39)

Using Eqs. (20, 22), the explicit expression for the force
and the viscosity matrix can be respectively written as

Fi1(s) =
mg2

16π4~2

si
s2∫ Λ

0

dq qh(q, s)

∫ ∞
0

dk kfFD(k/2) log

∣∣∣∣k + q

k − q

∣∣∣∣
(40)

and

Γij12(s) = − m2g2

4π3~3s2

∫ ∞
0

dq q
{
h(q, s)

(
δij −

sisj
s2

)
−(2h(q, s) + qs sin(qs))

sisj
s2

}
fFD(q/2),

(41)
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where h(q, s) = cos(qs) − sin(qs)/(qs). Note that in
Eq.(40) we have introduced a UV momentum cutoff Λ.
To be consistent with the physical interaction charac-
terized by the s-wave scattering length a, the coupling
constant must satisfy [34]:

4kFa =

(
~2

2mr

π

gkF
+

Λ

πkF

)−1

. (42)

The presence of a second impurity significantly mod-
ifies the stochastic equations of motion. In particular,
the relative motion experiences the effect of an external
force, which provides the finite temperature generaliza-
tion of the RKKY interaction [18–20]. In this case, the
friction matrix depends on the relative distance between
the pair, distinguishing between friction in the direc-
tions collinear and transverse to the relative distance s.
In particular, the relative motion becomes underdamped
in the limit in which the distance between the impurities
is small. On the other hand, the center of mass diffuses
according to a simple Brownian motion, with a friction
matrix that depends on the relative coordinate only.

The conservative potential and the friction matrix el-
ements are plotted in Fig. 2, which also shows that
the temperature dependence is very weak and that non-
collinear friction is small.

IV. NUMERICAL RESULTS: BOUND STATES
DYNAMICS AND LIFE-TIME

As a case study for the dynamics of two heavy im-
purities in a free Fermi gas, we focus on the presence
of localised (bound) solutions due to the mediated in-
teraction and estimate its life-time under the effect of
the stochastic noise. Firstly, we consider the typical
value of the bound state size, rb: this can be estimated
by matching the average kinetic energy provided by the
coupling with the bath with the strength of the medi-
ated interaction: (kFa)2V (rb) ∝ 3kBT/2. As expected,
an increase in the scattering length (temperature) leads
to a smaller (larger) rb, as shown in Fig. 2 a).

We solve Eq. (29) using a stochastic Verlet algo-
rithm [35] and simulate the time evolution of 2 impu-
rities at different temperature, with scattering length
kFa. The two impurities start at rest with an initial ran-
dom position s0 subject to the constraint |s0| = rb. We
average over 1000 independent simulations, with a mass
ratio set to mI/m = 30, which is comparable to that of
typical experimental setups (for example, in 133Cs-6Li
mixtures [36] one has mI/m ' 22).

In all simulations, we find that in the long-time
regime, impurities drift apart and eventually diffuse ac-
cording to the single-impurity Brownian dynamics de-
scribed by Eq.(32). In Fig. 3, two representative trajec-
tories of the short-time regime are shown: in panel a)
the impurities remain within a distance comparable to
rb throughout the entire simulation time, signaling the
existence of a bound state. In panel b) the impurities

−1.0 −0.5 0.0 0.5
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−1.0

−0.5

0.0

0.5

1.0

s y
k
F
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1500

2000

2500

3000

t
[t
F

]

−2 −1 0 1 2 3

sxkF

−1

0

1

2

3

b)

0

200

400

600

800

1000

1200

t
[t
F

]

FIG. 3. Two representative trajectories obtained by inte-
grating the GLEs starting from a configuration with relative
impurity distance rb, kF a = 0.19 and T/TF = 0.05. The
components sx, sy of the distance s are shown and the color
map labels time. The motion of the impurities is also not
confined on a plane due to thermal fluctuations. In trajec-
tory reported in panel a), the impurities remain in a bound
state throughout the entire simulation time. In panel b) the
bound state starts to dissociates for t ' 1000 tF . In both
cases, the relative motion in the bound state becomes quasi
one-dimensional, because of angular momentum dissipation
induced by the large transverse viscosity.

eventually dissociate and begin an independent Brown-
ian diffusion.

An interesting feature that can be inferred from these
trajectories is that the relative motion of the two impu-
rities in the bound state tends to become quasi one-
dimensional. This is due to the presence of the trans-
verse component of the friction that leads to the dissi-
pation of the internal orbital angular momentum.

The life-time of the bound state τ is defined as the av-
erage dissociation time. In the low temperature regime
(i.e. when dissociation is a thermally activated process),
τ can be calculated using Kramers’ theory [21]:

τ = 2π

√
K

Ka

2mIe
βU√

γ2 + 4KmI − γ
, (43)

Here, the viscosity γ is estimated from Eq. (33) by
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FIG. 4. Panel a): time evolution of s = |s| at kF a = 0.19
for different temperatures: full green line is T/TF = 0.05,
dashed red line is T/TF = 0.1 and blue dotted-dashed line
is T/TF = 0.2. For T/TF = 0.2 and T/TF = 0.1 also the
dissociation of the bound state at time τ is visible and it
is indicated with an arrow. Panel b): Numerically observed
life-times τ (in units of Fermi time tF ) at different T/TF and
kF a.

taking the limit of vanishing distance, K and Ka are
the curvature of the potential at the top and bottom of
the potential energy barrier, and U is the height of the
barrier.

The life-time τ of the bound state can also be directly
inferred from the numerical simulations. Typical evolu-
tion of the inter-impurity distance is shown in Fig 4 a)
for kFa = 0.19 and for T/TF = 0.2 (dotted-dashed blue
line), T/TF = 0.1 (dashed red line) and for T/TF = 0.05
(green line). For the latter the dissociation occurs at
t > 300 tF . In Fig. 4 b) the life-time τ for different
scattering lengths is reported and they perfectly agree
with the ones predicted by Kramers’ Eq. (43). This im-
plies that, at these temperatures, the dissociation of the
bound states is a thermally activated event. The range
of temperatures we consider is experimentally accessi-
ble. In addition, typical Fermi time tF = ~/εF in re-
cent experiments, see e.g. [37], is of order 10−2 ms, thus
dissociation times between 100 and 1000 tF should be
experimentally detectable. We stress that an agreement

between Kramers’ theory predictions and experimental
dissociation times would represent a validation of the
classical approach developed in this work.

V. CONCLUSIONS

In a fermionic bath, the stochastic dynamics of impu-
rities is strongly influenced by the effective interaction
and friction induced by the coupling to the medium.
Under a well-controlled chain of approximations, the
bath degrees of freedom can be traced out and the im-
purities’ dynamics can be described through an effec-
tive stochastic dynamics. In this scheme, the impurities
obey classical GLEs, and the quantum nature of the sys-
tem is encoded only in the induced force and viscosity
terms.

In this work, we focused on the dynamics of a sys-
tem consisting of two impurities. We found that, in the
short time regime, the interplay between induced inter-
action and thermal fluctuations leads to the formation
of a bound state characterized by a radius rb and a life-
time τ .

Two experimental realizations of mixtures of Bose-
Einstein condensates and Fermi gas have been achieved
so far [14, 15]. However, the density of heavy impurities
in these systems is relatively high, so that a description
in terms of heavy particles independently diffusing in
the medium may not be accurate. An important ques-
tion to address is whether it is feasible to experimentally
probe systems with lower impurity densities, using the
existing technology.

Although more demanding, cold gases could also be
the proper platform to obtain a direct experimental ev-
idence of a non-collinear friction for the impurities.

We note that the same approach adopted in the
present work was applied by some of us to investi-
gate the dynamics of heavy quarks diffusing in a ultra-
relativistic quark-gluon plasma Ref. [27]. That analy-
sis was based on an effective finite temperature Abelian
gauge theory, to describe the dynamics in the deconfined
plasma. In that approach, heavy quarks and anti-quarks
played the role of two distinct types of impurities, while
light quarks and anti-quarks formed the thermal bath.
All quarks in the systems were coupled via a Debye-
screened Coulomb-type interaction. As a consequence
of these features, the sign of Γ12 was found to be differ-
ent from that of the present Fermi system. Namely, the
center of mass motion experiences a very reduced effec-
tive friction, while the relative internal motion of the
quark-antiquark pair is overdamped. As an outlook, it
could be interesting to device a cold atom system that
can mimic such a model. This may be done by properly
selecting two different hyperfine levels or two different
atomic species that couple with opposite sign to the par-
ticles in the Fermi bath. The extension of the present
simulation strategy to a superfluid fermionic bath and
to many-body systems of impurities would also be ex-
tremely valuable to understand the properties of the
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outer layers of neutron stars, such as entrainment effects
caused by the presence of the medium (see e.g. [38])
and modifications to transport properties of the crust
like the thermal conductivity [39, 40] and the neutrino
opacity [41–43].
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Appendix A: Complex potential

In Sec. II we introduced the matrix of polarization
propagators ∆ab. Here we demonstrate that with a bath
in thermal equilibrium all of these functions are related
and we only need one, ∆R, to derive the complex po-
tential needed for the dynamics.

In position space, ∆R is defined as

∆R(x− y) = ∆F (x− y)−∆<(x− y). (A1)

The procedure to derive Eqs. (18, 19) of the main text
is modelled on Ref. [27]. Complex potential in small
frequency approximation is

iV(q) = lim
ω→0

(∆R(ω,q) + ∆<(ω,q)) =

= lim
ω→0

(Re∆R(ω,q) + iIm∆R(ω,q) + ∆<(ω,q)).

(A2)

The real part of ∆R is related to the spectral density σ.
Indeed, we have that 2Re∆R(ω,q) = σ(ω,q). In small
frequency approximation therefore

Re∆R(ω,q) = AR(q) + ωBR(q) + o(ω2). (A3)

Spectral density is odd in ω, i.e. σ(−ω,q) = −σ(ω,q).
Therefore A(q) = 0 and

Re∆R(ω,q) = ωBR(q) + o(ω2) =
1

2
σ(ω,q). (A4)

Exploiting the fluctuation-dissipation relation (FDR),
that is valid for a bath at equilibrium, we have that

∆< =
2

eβω − 1
Re∆R(ω,q). (A5)

In this last equality an algebraic relation between ∆<

and ∆R is established. Thanks to this, we will be able
to write V only in terms of ∆R.

The limit ω → 0 of Eq. (A5) is

lim
ω→0

∆<(ω,q) =
2

β
BR(q). (A6)

We now perform the limit in Eq. (A2) and we obtain

V(q) = Im∆R(ω = 0,q)− i 2

β
BR(q). (A7)

In terms of DR = −i∆R the real and imaginary part of
the complex potential now are

V (q) = ReDR(ω = 0,q), (A8)

W (q) =
2

β
lim
ω→0

ImDR(ω,q)

ω
. (A9)

The full expressions of ReDR and ImDR in momentum
space are

ReD(ω,q) = − m

2π2~2

∫
dkfFD(k, T )

k

2q
×

×
(

log

∣∣∣∣k/kF − ν−k/kF + ν−

∣∣∣∣− log

∣∣∣∣k/kF − ν+

k/kF + ν+

∣∣∣∣) , (A10)

ImD(ω,q) = −mkF
2π~2

[
ω

vF q
+

1

βvF q
log

(
1 + eβ(ν2

−εF−µ)

1 + eβ(ν2
+εF−µ)

)]
,

(A11)

where β = 1/kBT , ν± = ω/qvF ± q/2kF and vf =
kF /m.

Appendix B: Zero temperature friction

As shown in Ref. [31], friction can be understood also
in terms of energy dissipated by an impurity moving at
velocity V , Ė = −FV V , with FV the velocity dependent
drag force. Following the convention of [44], Sec. 7
we have that the energy dissipated per unit time and
unit particle when a contact interaction of strength g is
considered is

Ė = −
∫ ∞
−∞

dk

(2π)3

∫ ∞
−∞

dω

2π
2πS(ω,k)

n

2N
ω2πg2δ(ω − kzV ) =

= −ng
2

2N

1

(2π)2

∫ ∞
−∞

dk S(kzV, k)kzV = −FV V.
(B1)

Now we focus on the drag force FV

FV =
ng2

8Nπ2

∫ ∞
−∞

dkS(kzV,k)kz =

=
ng2

4Nπ

∫∫ ∞
−∞

dk⊥dkzk⊥kzS(kzV,
√
k2
z + k2

⊥).

(B2)

In order to perform the integration in (B2), we
use the expression of the dynamical structure factor
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S(kzV,
√
k2
z + k2

⊥) given in Ref. [45], Sec. 2. This ex-
pression is

S(ω,k) =
ν(0)

2

ω

kvF
if 0 ≤ ω ≤ kvF −

k2

2m
, (B3)

that in the small velocity limit gives the conditions 0 ≤
kz ≤ 2mvF and 0 ≤ k⊥ ≤

√
(2mvF )2 − k2

z . Performing
the integration we obtain

ν(0)V

2vF

∫ 2mvF

0

dkz k
2
z

∫ √(2mvF )2−k2z

0

dk⊥
k⊥√
k2
z + k2

⊥
=

=
8

3
ν(0)mV k3

F . (B4)

Finally, for FV we obtain

FV =
ng2

4Nπ

8

3
ν(0)mV k3

F =
3mN

k2
F

k3
F

6π2

g2

Nπ

2

3
mk3

FV =

=
m2k4

F

3π3
g2V =

4k2
F

3π

(
kFa

m

mr

)2

V = γT=0V.

(B5)

In this derivation, we used ν(0) = 3mN/k2
F , see [45],

and n = k3
F /6π

2. Now, comparing (B5) with (34) we
see that we recovered the same result for the friction
coefficient at T = 0 (the missing ~ factor is due to the
fact that in this Appendix we set ~ = 1).

This connection between the statistical structure fac-
tor S(ω,k) gives also a useful insight on why γ van-
ishes for a Bose gas or generally for a phononic spec-
trum at T = 0. The dynamical structure factor in pres-
ence of single low energy phonon mode reads S(ω,q) =
Skδ(ω − c|k|), where c is the speed of sound. Therefore
the drag force vanishes for any impurity speed V < c
(obviously in agreement with the Landau criterion for
superfludity).

On the other hand, having the fermions a continuum
of particle-hole excitations at low energy, a moving ob-
ject will release energy to the bath at whatever speed V
it moves.
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