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INTRODUCTION

In the last thirty years, a new and extremely prolific research area, called “Combi-

natorial Commutative Algebra”, greatly developed. It was born from the intersection of

two research areas, namely Commutative Algebra and Combinatorics. The starting point

of this field was the proof of the “Upper bound conjecture for simplicial spheres” done

by Stanley in 1975, by using Commutative Algebra methods. In the latter, the study of

squarefree monomial ideals from the viewpoints of both commutative algebra and combina-

torics gave rise to a very active research area on these topics. Some relevant references for

this area include the monographs of Stanley [74], Bruns-Herzog [12], Miller-Sturmfels [57]

and Herzog-Hibi [36]. One of the most common problems in Combinatorial commutative

algebra is the one of studying how the combinatorial properties of the considered objects

affect the algebraic invariants of the related structures. For example, algebraic properties

such as the unmixedness or the Castelnuovo-Mumford regularity of the edge ideal of a

graph are strictly related to combinatorial aspects and invariants, such as the pureness of

the independence complex associated to the graph or the induced matching number of the

graph.

In the early 1990s, the study of binomial ideals became of interest, due to their relevance

in commutative algebra, combinatorics but also in other research areas, such as statics and

symbolic computation. Binomial ideals are studied exhaustively by Eisenbud-Sturmfels

[25], together with their primary decomposition. Among binomial ideals, toric ideals have

a particular relevance due to their relation with algebraic geometry, in particular with the

study of the toric varieties. Algebraic and combinatorial properties of toric ideals are effi-

ciently studied in Sturmfels’ book [76].

One of the most natural classes of binomial ideals arising from combinatorics is the class

of join-meet ideals of finite lattices. The basic properties of finite lattices are studied in

Birkhoff’s book [6]. A prime join-meet ideal of a finite lattice is a toric ideal, and this is

the case if and only if the lattice is distributive. By Birkhoff’s theorem, any distributive

lattice arises from a set of particular subsets of a given poset P , the poset ideals. Hibi
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proved that some algebraic properties of toric rings of finite distributive lattices, such as

the Gorensteinnes, are related to the combinatorial properties of this poset P . For this,

these rings are today called Hibi rings.

Another interesting class of binomial ideals is the one of those generated by a subset of

2-minors of a m×n matrix Xmn. The study of the ideal of t-minors and related ideals of an

m×n matrix Xmn of indeterminates is a classical subject of commutative algebra and alge-

braic geometry; see for example the lecture notes [13] and its references to original articles.

Several years after the appearance of these lecture notes, a new aspect of the theory was

introduced by considering Gröbner bases of determinantal ideals. This dissertation focuses

on the study of the algebraic properties and invariants of a class of binomial ideals arising

from 2-minors, the polyomino ideals.

Polyominoes are two-dimensional objects obtained by joining edge by edge squares of

same size. Classical examples of polyominoes are Ferrer diagrams, stack and parallelogram

polyominoes. They have a long history in combinatorics. Originally, polyominoes appeared

in mathematical recreations, but it turned out that they have applications in various fields,

for example, theoretical physics and bio-informatics. Among the most popular topics in

combinatorics related to polyominoes one finds enumerating polyominoes of given size,

including the asymptotic growth of the numbers of polyominoes, tiling problems, and re-

construction of polyominoes. A very nice introduction to the combinatorics of polyominoes

and tilings is given in the monograph [80].

Recently in [62], Qureshi introduced a binomial ideal induced by the geometry of

a given polyomino, called polyomino ideal, and its related algebra. From that moment

different authors studied algebraic properties related to this ideal (see [40, 65, 73, 53]).

One of the first algebraic properties of polyomino ideals that has been studied is the

primality. In particular, in [40, 65] the authors proved that if the polyomino is simple,

namely the polyomino has no holes, then its coordinate ring is a Cohen-Macaulay domain.

However, the classification of those polyominoes whose coordinate ring is a domain is still

an open and challenging problem. One of the sections of this dissertation focuses on the

study of the primality of some polyomino ideals, in particular a necessary condition for the

primality could be established by looking at the geometric realization of the polyomino.
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Furthermore, for some classes of polyominoes, the Gröbner basis of the polyomino ideal

is a fundamental tool to determine its primality. Since the polyomino ideal is generated

in degree two, the polyomino ideals whose Gröbner basis is quadratic are of interest. One

of the chapters of this dissertation is devoted to the characterization of the polyominoes

having a quadratic Gröbner basis with respect to <lex up to any rotation or/and reflec-

tion. Another property of the coordinate ring of polyomino ideals that has been studied

at first is the Gorensteinnes. The classification of Cohen-Macaulay rings is a general prob-

lem in commutative algebra. Among Cohen-Macaulay rings, it is interesting to classify

the Gorenstein ones, namely the ones having (Cohen-Macaulay) type equal to 1. The

Gorensteinnes of stack polyominoes and convex polyominoes is studied in [62] and [1], re-

spectively. In the latter, the author gives an upper bound for a fundamental invariant, the

Castelnuovo-Mumford regularity, in the case of convex polyominoes. The argument of the

Castelnuovo-Mumford regularity is also treated in [27], where, for L-convex polyominoes, it

is related to a combinatorial invariant, the rook number. The well-known “rook problem”

is the problem of enumerating the number of ways of placing k non-attacking rooks on a

chessboard. In a similar way, one can define a rook polynomial, associated to such num-

bers of configurations. For Cohen-Macaulay rings, there is a strong connection between

the Castelnuovo-Mumford regularity and the reduced Hilbert series. This motivated us to

study the reduced Hilbert series of the coordinate ring in terms of the rook polynomial of

the polyomino for the classes of simple thin polyominoes and parallelogram polyominoes.

For these classes of polyominoes, we also give a characterization of the Gorenstein ones.

For the Gorensteinnes of simple thin polyominoes, we use fundamental characterization

due to Stanley [78, Theorem 4.4] about the Hilbert series of Cohen-Macaulay domains.

For the Gorensteinnes of parallelogram polyominoes, we use a characterization of Hibi on

distributive lattices.

In the following a more detailed description of each chapter is given.

In Chapter 1, we recall some notions and definitions from Commutative Algebra, Com-
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binatorics and Lattice theory. In particular, we are interested in some algebraic invariants,

such as Krull dimension and depth (Section 1.1), Betti numbers and Castelnuovo-Mumford

regularity (Section 1.4), in some algebraic properties, such as the Cohen-Macaulayness

(Section 1.1) and the Gorensteinnes (Section 1.4), and in some algebraic tools, such as

Gröbner bases (Section 1.2), Hilbert series (Section 1.3), Hibi rings (Section 1.5) and Edge

rings associated to graphs (Section 1.6).

In Chapter 2, we widely discuss polyominoes, that are the kernel of this dissertation. In

particular, we firstly present their history and their usage in tiling problems and then we

give some formal definitions that are helpful to their study (Section 2.1). Afterwards we

focus on the combinatorial properties of two significant classes of polyominoes: L-convex

polyominoes (Section 2.2) and parallelogram polyominoes (Section 2.3). Finally, we talk

over the Commutative Algebra of Polyominoes, by presenting the existing results on the

primality and Gorensteinnes of the polyomino ideal (Section 2.4).

In Chapter 3, we discuss questions about the primality and the Gröbner basis of the poly-

omino ideal. In particular, we give some combinatorial necessary condition for the primality

of the polyomino ideal, that we conjecture being also sufficient, we verify it computationally

for polyominoes with at most 14 cells and then we find some infinite class of prime poly-

ominoes (Section 3.1). Furthermore, we present a necessary and sufficient condition on the

geometry of polyominoes for quadratic Gröbner basis with respect to particular monomial

orders and we give two infinite families of prime polyominoes satisfying such conditions

(Section 3.2).

In Chapter 4, we talk over the Castelnuovo-Mumford regularity, Hilbert series, and Goren-

steinnes of the polyomino ideal and its coordinate ring. In particular, we compute the

Castelnuovo-Mumford regularity for the class of L-convex polyominoes in terms of the

maximum number of rooks that can be placed on the polyomino and we characterize Goren-

stein ones (Section 4.1). Furthermore, along the same line, we link the Hilbert series of

the coordinate ring to particular rook arrangements on the polyominoes for two classes of
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polyominoes, simple thin polyominoes (Section 4.2) and parallelogram polyominoes (Sec-

tion 4.3), and we also characterize Gorenstein ones.

Finally in Chapter 5, we present some additional results obtained during the PhD that

do not involve polyominoes. In particular, we characterize the chordal circulant graphs

to obtain information on the Castelnuovo-Mumford regularity of their edge ideal (Section

5.1). Furthermore, we focus on the Serre condition and Cohen-Macaulayness of binomial

edge ideals of graphs, by linking them to the combinatorial conditions of accessibility and

strongly unmixedness (Section 5.2).
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Chapter 1

PRELIMINARIES

In this chapter we recall some definitions and notions from both Commutative Algebra

and Combinatorics that are useful in the following, with the hope of keeping the dissertation

as self-contained as possible. In Sections 1.1, 1.2, 1.3, 1.4 we discuss some fundamental

objects and invariants that arise from Commutative Algebra, while in Section 1.5 we present

some foundations of lattice theory that play a crucial role in the study of polyominoes.

Finally, in Section 1.6 we talk over the edge rings associated to graphs. In Section 1.1, we

discuss Cohen-Macaulay rings, namely those rings for which the Krull dimension coincides

with the depth, that is the maximal length of a regular sequence. The classification of

Cohen-Macaulay rings is a wide open problem in the research area of Commutative Algebra.

Nevertheless, the Cohen-Macaulayness of the rings arising from combinatorics, e.g. edge

ideal of graphs, binomial edge ideals, Stanley-Reisner rings, polyomino ideals, is strictly

related to the combinatorial properties of the studied objects. In Section 1.2, we give some

basic properties about Gröbner Bases. The latter are relevant in the study of multi-variate

polynomial rings, since they are sets of generators of ideals, and they can be computed

efficiently with some algorithms. In Section 1.3, we focus our attention on Hilbert function

and Hilbert series. The Hilbert function, roughly speaking, counts the dimensions as K-

vector space of a given graded module. Starting by the Hilbert function, one constructs

the Hilbert series. The latter can be expressed as a rational function, involving also Krull

dimension. In Section 1.4, we talk over the minimal free resolution of a graded module, that

is a complex of modules in which any map is minimal. These numbers of generators are

called Betti numbers and they play a key role in the definition of the Castelnuovo-Mumford

regularity, that is an invariant that measures the “complexity” of the given module. In the

Cohen-Macaulay case, Betti numbers and Castelnuovo-Mumford regularity are also related

to the concept of Gorensteinnes and to the Hilbert series. In Section 1.5 we present lattice

theory in a nutshell, by focusing on the properties of the ideals that can be associated

to lattices, join-meet ideals. Finally, in Section 1.6, we investigate the relation between
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bipartite graphs and toric ideals, useful for the study of the polyomino ideals. For further

information about the discussed topics one can refer to [12] (Section 1.1), [36] (Section 1.2),

[82], [23] (Sections 1.3 and 1.4), [6] and [38] (Section 1.5).

1.1 KRULL DIMENSION, DEPTH AND COHEN-MACAULAY RINGS

This section is devoted to the introduction of the fundamental invariants for the dis-

cussion of Cohen-Macaulay rings. Cohen-Macaulay rings are important algebraic structures

that have been studied for years (see [12]). The classification of the rings that are Cohen-

Macaulay is a challenging problem in the actual research field of Commutative Algebra.

The Cohen-Macaulay property plays also a crucial role in algebraic combinatorics, for ex-

ample for graphs, simplicial complexes and polyominoes. Cohen-Macaulayness involves

two algebraic invariants, the Krull dimension and the depth. This section also contains a

little overview about graded rings and modules, because these allow us to decompose their

elements in homogeneous components.

Definition 1.1.1 Let R be a commutative ring with unit. The Krull dimension of R,

dimR, is the supremum of the lengths of all chains of prime ideals of R.

In other words if

C : p0 ⊂ p1 ⊂ . . . ⊂ pn

is a chain of prime ideals of R, we say that C has length n. Therefore, the Krull dimension

is the supremum of these lengths. If the supremum of the lengths is not finite, we say that

the Krull dimension is +∞. As an example if K is a field then dimK = 0 since (0) is the

unique prime ideal in any field. We have the following

Theorem 1.1.2. Let R[x] be a polynomial ring over a Noetherian ring R. Then dimR[x] =

dimR + 1.

By applying recursively Theorem 1.1.2 to R = K[x1, . . . , xn], since for any i ∈

{2, . . . , n} it holds K[x1, . . . , xi] = K[x1, . . . , xi−1][xi], it follows that dimR = n.

Another invariant related to Krull dimension, is the height of an ideal. We recall that

Spec(R) is the set of all prime ideals of R. Let p be a prime ideal in R, the height of p,
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denoted by height (p) is the supremum of all chains of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pn = p

which end at p. One has dim(Rp) = height (p), where Rp is the localization of R at p, that

is

Rp :=
{
a

b
| a ∈ R and b ∈ R \ p

}
.

If I is an ideal of R, the height of I, is

height (I) := min{height (p)| I ⊂ p and p ∈ Spec(R)}.

In general dim(R/I) + height (I) ≤ dim(R). Furthermore, given an ideal I and f ∈ R we

define the ideal quotient or colon ideal, (I : f), as

(I : f) := {h ∈ R | hf ∈ I}.

As we will introduce Krull dimension on modules, we first recall a basic definition for

an R-module M .

Definition 1.1.3 Let R be a commutative ring with unit, and letM be an R-module. The

annihilator of M on R is

AnnRM := {r ∈ R | ∀m ∈M : rm = 0}.

Hence, the Krull dimension of the R-module M is

dimRM := dim(R/AnnR(M)).

To define the depth, we give the definition of regular sequence on M R-module. First

of all we point out that r ∈ R is a non-zero divisor on M if rm = 0 implies m = 0 for

m ∈M .

Definition 1.1.4 LetM be an R-module. An M-regular sequence is a sequence of elements

r1, . . . , rd ∈ R such that:

a) r1 is a non-zero divisor on M and for any i ∈ {2, . . . , d} the element ri is a non-zero

divisor on M/(r1, . . . , ri−1)M ;

b) (r1, . . . , rd)M 6= M .
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Before introducing the depth, we briefly discuss graded rings and modules, and ho-

mogeneous ideals.

Definition 1.1.5 Let (H,+) be an abelian semigroup and let (R,+, ·) be a commutative

ring with unit. R is a H−graded ring if

R =
⊕
a∈H

Ra ( as a Z- module)

such that if x ∈ Ra and y ∈ Rb then xy ∈ Ra+b, namely RaRb ⊆ Ra+b for any a, b ∈ H.

The direct sum is called grading or gradation.

The elements of Ra are called homogeneous elements of degree a and we refer to the

degree of an element x ∈ R as deg(x). Any element r of R may be written uniquely as a

linear combination of rai
∈ Rai

r = ra1 + ra2 + . . .+ rad

and the rai
are called the homogeneous components of r.

We introduce gradings on modules, as well as for rings.

Definition 1.1.6 Let R be an H-graded commutative ring with unit, and let M be an

R-module. M is an H-graded module if

M =
⊕
a∈H

Ma

such that MaRb, RaMb ⊆Ma+b, for any a, b ∈ H.

If we pick a ∈ H and M graded R-module, we say that M(a) is the module M shifted

by a, in other words

M(a)d = Ma+d.

In particular, the free R-module generated by an element m of degree a is R(−a). We

now want to grade the polynomial ring R = K[x1, . . . , xn] on the field K. Let di ∈ N+, for

i = 1, . . . , n; for a = (a1, . . . , an) in Nn we set xa = xa1
1 · · ·xan

n and |a| = a1d1 + · · ·+ andn.

We consider the induced N-grading

R =
∞⊕
i=0

Ri, where Ri =
⊕
|a|=i

Kxa.
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Definition 1.1.7 The standard grading or usual grading of a polynomial ring K[x1, . . . , xn]

is the N-grading induced by setting deg(xi) = 1, for all i.

An ideal I ⊂ R is called homogeneous if for all r ∈ I, its homogeneous components

live in I. If I is a homogeneous ideal in R = ⊕∞
i=0 Ri, then R/I is also graded with grading

R/I =
∞⊕
i=0

(R/I)i =
∞⊕
i=0

Ri/Ii

where Ii = Ri ∩ I. Let R = K[x1, . . . , xn] be a polynomial ring over the field K. To state

the definition of depth, we use the notation m = (x1, . . . , xn), namely the homogeneous

maximal ideal of R.

Definition 1.1.8 Let M be a finitely generated graded R-module. The depth of M ,

denoted by depth M , is the supremum of the lengths of allM -regular sequences of elements

of m.

In general it holds that depth M ≤ dimM. If the equality holds, then M is a Cohen-

Macaulay module.

Definition 1.1.9 Let M be a finitely generated graded R-module. We say that M is a

Cohen-Macaulay module if

depth M = dimM.

Example 1.1.10 Let R = K[x1, . . . , xn] be a polynomial ring over the field K. We already

observed that dimR = n.

We observe that the sequence x1, x2, . . . , xn is an M -regular since it satisfies a) and b)

of Definition 1.1.4 and trivially the sequence lives in m = (x1, . . . , xn). It follows that

depth R = n. Therefore, we have that R is a Cohen-Macaulay ring.

Example 1.1.11 Let R = K[x1, x2, x3] and I = (x1x2, x2x3, x1x3). We want to find the

Krull dimension of R/I, namely the supremum of the lengths of the chain of prime ideals

containing I. First of all, we observe that the primary decomposition of I is

(x1, x2) ∩ (x2, x3) ∩ (x1, x3).
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Therefore, the primes containing I are (x1, x2), (x2, x3) and (x1, x3). For example, we take

p0 = (x1, x2) that is a prime ideal. It is contained in p1 = (x1, x2, x3). The chain

p0 ⊂ p1

is the longest possible. Hence dimR/I = 1. We now want to compute the depth of R/I.

We know that depth R/I ≤ dimR/I = 1 so it can be either 0 or 1. If we find a non-zero

divisor of R/I we obtain depth R/I = 1. The elements of R/I are the powers of the

variables, namely xdi , for i ∈ {1, 2, 3} and their combinations namely

xd1
1 + xd2

2 + xd3
3

with di ≥ 0, for i ∈ {1, 2, 3}. When two of the di are 0, e.g. d2 and d3, we have xd1
1 that

multiplied by x2 or x3 yields xd1
1 x2 ∈ I. When d3 = 0, we have xd1

1 + xd2
2 , that multiplied

by x3 returns xd1
1 x3 + xd2

2 x3 ∈ I. Hence, to obtain a non-zero divisor all the di have to be

different from 0. In particular, the element

x1 + x2 + x3

is a non-zero divisor of R/I and it represents a regular sequence of length 1. Hence R/I is

a Cohen-Macaulay ring.

1.2 INITIAL IDEAL, GRÖBNER BASES AND PRIMALITY PROPERTIES

In this section we roughly discuss monomial ideals, that are fundamental for the

study of multivariate polynomial rings. In fact, if we equip a multivariate polynomial ring

with a monomial order, we can study many properties of ideals by looking at their initial

ideal, that is the ideal containing the greatest monomial of any element of the given ideal.

Buchberger described an algorithm to compute a finite set of generators whose greatest

monomials generate the initial ideal for any multivariate ideal. Such a set is called Gröbner

basis. They can be computed efficiently by using Buchberger’s algorithm, and they have a

crucial role in the study of systems of polynomial equations, hence in the study of algebraic

varieties, but also in the computation of the radical of an ideal and in elimination theory.

Let R = K[x1, x2, . . . , xn] be a polynomial ring on the field K. Any product xa1
1 · · ·xan

n

with ai ∈ N is called a monomial, shortened with xa where a = (a1, . . . , an) ∈ Nn. We call
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M the set of all monomials of R and we observe that it is a K-basis for R. Therefore, for

any f ∈ R we have

f =
∑
m∈M

amm

with am ∈ K and we define the support of f as

supp(f) = {m ∈M | am 6= 0}

for a finite number of m ∈M.

A monomial ideal I is an ideal that can be generated by monomials and it holds

Theorem 1.2.1. Let I ⊆ R be a monomial ideal. The following are equivalent:

(a) I is a monomial ideal;

(b) for all f ∈ R one has: f ∈ I if and only if supp(f) ⊆ I.

Now we summarize important notions about Gröbner bases. First of all, we introduce

a partial order relation � onM. Given two monomials xa,xb ∈M, with a = (a1, . . . , an)

and b = (b1, . . . , bn), we have

xa � xb def.⇐⇒ ai ≤ bi for any i.

By using the relation above we define the semigroup ideal S ⊆M such that

t ∈ S ⇒ tm ∈ S for any m ∈M.

We observe that a semigroup ideal S is generated by those elements of S that are minimal

with respect to the relation �, in particular it holds

Theorem 1.2.2 (Dickson’s Lemma). Every semigroup ideal is finitely generated.

Going further, a partial order onM, <, is a monomial order if

1. 1 < m for any m ∈M;

2. if m1,m2 ∈M and m1 < m2, then mm1 < mm2 for any m ∈M.

Example 1.2.3 An example of monomial ordering is the lexicographic order <lex, namely

the monomial order induced by x1 < x2 < . . . < xn. Another example is the graded

lexicographic order <grlex: given two monomials xa,xb ∈ M, with a = (a1, . . . , an) and

b = (b1, . . . , bn) we say that xa <grlex xb if one of the following hold:
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(a)
n∑
i=1

ai <
n∑
i=1

bi;

(b)
n∑
i=1

ai =
n∑
i=1

bi and xa <lex xb.

A very important and widely studied class of monomial orders is the class of “reverse”

orders, namely the reverse lexicographical order<revlex and the graded reverse lexicographical

order <grevlex. They are the reverse orders of <lex and <grlex. In fact, given two monomials

xa,xb ∈ M, we say that xa <revlex xb if the last non-zero component of b− a is negative,

and we say that xa <grevlex xb if either deg(xa) < deg(xb) or deg(xa) = deg(xb) and

xa <revlex xb.

For any polynomial f ∈ R and for any monomial ordering < on M, we call leading

monomial of f , in(f), a monomial in supp(f) bigger than any other monomial in supp(f),

with respect to <. The coefficient of in(f) in f is called the leading coefficient of f , lc(f).

Moreover, given I ⊆ R ideal, we define the initial ideal, in(I), as

in(I) := { in(f) | f ∈ I}.

From Dickson’s Lemma (Theorem 1.2.2), the minimal system of monomials generat-

ing M∩ in(I) is a finite set of monomials in(g1), in(g2), . . . , in(gs) for some polynomials

g1, g2, . . . , gs in I.

Definition 1.2.4 Let I be a non-zero ideal of R. A finite set of non-zero polynomials

{g1, . . . , gs} with each gi ∈ I is said to be a Gröbner basis with respect to a monomial

order < if in(I) is generated by the monomials in(g1), in(g2), . . . , in(gs).

A Gröbner basis {g1, . . . , gs} of an ideal of R with respect to a monomial ordering �

is called reduced if the following conditions are satisfied:

• The coefficient of in�(gi) in gi is 1 for any 1 ≤ i ≤ s;

• If i 6= j, then none of the monomials belonging to supp(gj) is divided by in�(gi).

A reduced Gröbner basis always exists and is uniquely determined (see [38, Theorem 1.25]).

We now want to state some properties about Gröbner bases for an ideal. First of all,

given f, g ∈ R we introduce the S-polynomial between f and g, S(f, g), as

S(f, g) = lcm(in(f), in(g))
lc(f)in(f) f − lcm(in(f), in(g))

lc(g)in(g) g.

13



The following proposition provides a criterion to determine whether a set of polynomials

belonging to an ideal is a Gröbner basis for the ideal.

Theorem 1.2.5 (Buchberger’s criterion). Let I be a non-zero ideal of R and G =

{g1, . . . , gs} a system of generators of I. Then G is a Gröbner basis of I if and only if

for all i 6= j we have S(gi, gj) reduces to 0 with respect to g1, . . . , gs.

A useful result while one is checking the S-polynomials condition is

Theorem 1.2.6. Let f, g ∈ I such that lcm(in(f), in(g)) = in(f)in(g). Then S(f, g)

reduces to 0 modulo f, g.

In Section 1.1 we have recalled the definition of ideal quotient; moreover if J is an

ideal of R and f = xn, then the following result (see [76, Lemma 12.1]) gives a way to

compute the Gröbner basis of (J : f).

Lemma 1.2.7. Fix the graded reverse lexicographical order x1 >grevlex . . . >grevlex xn, and

let G be the reduced Gröbner basis of a homogeneous ideal J ⊂ R. Then the set

G ′ = {f ∈ G | xn does not divide f} ∪ {f/xn | f ∈ G and xn divides f}

is a Gröbner basis of (J : xn).

Among the various applications of Gröbner bases, e.g. in finding the solutions of

systems of equations, in computing the radical of an ideal, the one that we will focus on

is the elimination property, that has also a relevant role in the symbolic computation of

Gröbner basis of toric ideals.

Definition 1.2.8 Let R = K[x1, . . . , xn], let I be an ideal of R and let 1 ≤ l ≤ n. Then

the ideal

Il = I ∩K[x1, . . . , xl] ⊆ K[x1, . . . , xl]

is called the l-th elimination ideal of I.

Roughly speaking, the l-th elimination ideal eliminates the last n − l variables of S.

The Gröbner basis of the l-th elimination ideal is strictly related to the Gröbner basis of

the considered ideal by the following.
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Theorem 1.2.9 (Elimination Theorem). Let R = K[x1, . . . , xn] with x1 <lex . . . <lex xn,

let I be an ideal of R and let G be a Gröbner basis of I with respect to <lex. Then, for any

1 ≤ l ≤ n,

Gl = G ∩K[x1, . . . , xl]

is a Gröbner basis of Il.

1.3 HILBERT FUNCTION, HILBERT SERIES AND FREE RESOLUTIONS

Hilbert function computes the degree k-generators as a K-vector space of a graded

algebra M . In particular, one can construct a series where degree k-coefficient is the

Hilbert function in the degree k. This is called Hilbert-Poincaré series and, from Hilbert-

Serre theorem, it can be expressed as a rational function, that after a reduction involves

the Krull dimension as a power of the denominator. We show some basic properties about

Hilbert series, such as additivity with respect to exact sequences and it is multiplicativity

with respect to tensor product. The former property can be applied if one considers a

particular complex of modules that “resolve” a given module R-module M , the minimal

free resolution. We discuss the relations between the length of the above resolution, the

depths of the module M and of its base ring R (Auslander-Buchsbaum formula).

Let M be a graded K-algebra. The Hilbert function HM : N→ N is defined by

HM(k) := dimKMk

where Mk is the k-degree component of the gradation of M , while the Hilbert-Poincaré

series of M is

HPM(t) :=
∑
k∈N

HM(k)tk.

By the Hilbert-Serre theorem, the Hilbert-Poincaré series of M is a rational function. In

particular, by reducing this rational function we get

HPM(t) = h(t)
(1− t)d .

for some h(t) ∈ Z[t], where d is the Krull dimension of M . The degree of HPM(t) as a

rational function, namely deg h(t)− d, is called a-invariant of M , denoted by a(M).

We recall the following result about Hilbert series.
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Proposition 1.3.1. Let

0 N M P 0

be an exact sequence of graded algebras. Then HPM(t) = HPN(t) + HPP (t).

A direct application of Proposition 1.3.1 is the following.

Proposition 1.3.2. Let I be a homogeneous ideal of a graded ring R, let f ∈ R be a

homogeneous element of degree d and consider the following exact sequence.

0 R/(I : f) R/I R/(I, f) 0·f

Then

1. HPR/I(t) = HPR/(I,f)(t) + tdHPR/(I:f)(t)

2. If f is a regular element then

HPR/I(t) = 1
1− tdHPR/(I,f)(t).

Moreover, the Hilbert series is multiplicative with respect to the tensor product, as

stated in the following.

Proposition 1.3.3. Let A and B be graded algebras over a field K. Then

HPA⊗KB(t) = HPA(t) · HPB(t)

Example 1.3.4 We compute HPR(t), where R = K[x1, . . . xn]. We start with R = K[x].

We observe that HR(k) = dimKRk = 1 for any k ∈ N. Hence

HPR(t) =
∑
k≥0

HR(k)tk = 1 + t+ t2 + . . . = 1
1− t ,

where the last equality follows from the basic properties of the geometric series. Now let

R = K[x1, . . . , xn] =
n⊗
i=1

K[xi]. From Proposition 1.3.3, we get that

HPR(t) = HP n⊗
i=1

K[xi]
(t) =

n∏
i=1

HPK[xi](t) = 1
(1− t)n .
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For a general module M , one can compute the Hilbert function HM by comparing M

with other free modules that form the free resolution. In particular, given homogeneous

elements mi ∈ M with deg(mi) = ai that generate M as a free R-module, take F0 =⊕
iR(−ai) and a map from F0 onto M , by sending the i-th generator of F0 to mi. Let

M1 ⊆ F0 be the kernel of the map above. M1 is a finitely generated module and the

elements of M1 are called syzygies. We choose m′i ∈ M1 of degree a′i and we take a map

from F1 = ⊕
iR(−a′i) in F0 with image M1. Proceeding in the previous way we obtain a

graded free resolution:

. . . −→ Fi
ϕi−→ Fi−1 −→ . . . −→ F1

ϕ1−→ F0( ϕ0−→M −→ 0).

It is an exact sequence of degree 0 so that it preserves the grading, i.e. a map f : ⊕k∈NAk →⊕
k∈NBk such that f(Ak) ⊆ Bk. We observe that Cokerϕ1 'M . In fact

Cokerϕ1 = F0/Imϕ1 = F0/M1 = F0/ kerϕ0 ' Imϕ0 = M.

Free resolutions are finite due to the following.

Theorem 1.3.5 (Hilbert Syzygy Theorem). Any finitely generated graded R-module has a

finite graded free resolution

0 −→ Fm
ϕm−→ Fm−1 −→ . . . −→ F1

ϕ1−→ F0.

Moreover we may take m ≤ n the number of variables of R.

Among the free resolutions of a module, we find one of them that is minimal. One

can obtain it by choosing at each step minimal systems of generators for the free modules

Fi. The minimal free resolution is also unique up to isomorphism.

Definition 1.3.6 A complex of R-modules

. . . −→ Fi
δi−→ Fi−1 −→ . . .

is called minimal if ∀i we have Imδi ⊆ mFi−1.
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By applying Proposition 1.3.1 to a minimal free resolution F of a graded module M .

we obtain that

HM(k) =
∑
i

(−1)iHFi
(k). (1.1)

Since the notions of projective modules and projective resolutions are not relevant for

the discussion, we assume the following as a definition for the projective dimension of a

module.

Definition 1.3.7 Let M be a finitely generated graded R-module. The projective dimen-

sion of M , pdM , is the length of the minimal free resolution of M .

The projective dimension of a module M is strictly related to the depth of the module

through the following well-known

Theorem 1.3.8 (Auslander-Buchsbaum formula). Let M be a non-zero finitely generated

graded R-module. Then

pdM + depth M = depth R.

1.4 BETTI NUMBERS AND CASTELNUOVO-MUMFORDREGULARITY

Starting by the minimal free resolution of a given moduleM , one can define fundamen-

tal homological invariants that are the Betti numbers. In fact, they represent the numbers

of degree-j generator of the i-th module of the minimal free resolution. In particular, in

the Cohen-Macaulay case, the last Betti number is called “Cohen-Macaulay" type and it

has a fundamental role in the classification of Gorenstein modules. We also study the

greatest difference between degree j and the position i for which the corresponding Betti

number is different from 0. This is another algebraic invariant that is called Castelnuovo-

Mumford regularity. In the Cohen-Macaulay case, Castelnuovo-Mumford regularity has a

strong relation with the projective dimension, and hence with Krull dimension and Hilbert

series.

Let F be a free complex

F : 0 −→ Fs
ϕm−→ Fs−1 −→ . . . −→ F1

ϕ1−→ F0
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where Fi = ⊕
j R(−j)βij . It means that Fi requires βij generators of degree j. If F is a

minimal free resolution, the βij are called graded Betti numbers, while

βi =
∑
j

βij

is called the total Betti number in the i-th degree. Among the total Betti numbers, the

last one gives information on an algebraic invariant when the module is Cohen-Macaulay,

the Cohen-Macaulay type. The Cohen-Macaulay type is important in the study of the

Gorenstein rings (see [12, Theorem 3.2.10]). In fact a Cohen-Macaulay ring is said to be

Gorenstein if the Cohen-Macaulay type is equal to 1. There is a nice characterization of

the Cohen-Macaulay domains that are Gorenstein, involving the Hilbert series. The latter

result, due to Stanley, is the following.

Theorem 1.4.1 ( Theorem 4.4, [78] ). Let M be a graded Cohen-Macaulay domain, and

let

HPM(t) =

s∑
i=0

hit
i

(1− t)d

be the reduced Hilbert series of M . Then M is Gorenstein if and only if for any i = 0, . . . , s

we have hi = hs−i.

We now define the Castelnuovo-Mumford regularity, an invariant that has particular

relations with Krull dimension or depth.

Definition 1.4.2 Let M be a finitely generated graded R-module with minimal free reso-

lution

. . . −→ Fi
δi−→ Fi−1 −→ . . .

where Fi = ⊕
j R(−j)βij . The Castelnuovo-Mumford regularity of M is defined as

reg M = max{j − i : βij 6= 0}.

Example 1.4.3 The polynomial ring R = K[x0, . . . , xn−1] has Castelnuovo-Mumford reg-

ularity equal to 0, since

R = F0 = R(0)

and the unique non-zero Betti number is β00 that is 1.
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From the fact that for any module M and for any j it holds that HPM(−j)(t) =

tjHPM(t) (see [82, Lemma 5.1.2]) and from Equation 1.1, it follows that

HPM(t) = 1
(1− t)n

n∑
i=0

∑
j∈Z

(−1)iβijtj. (1.2)

For Cohen-Macaulay modules, there are various relations between the Krull dimension.

the Castelnuovo-Mumford regularity and the Hilbert series. If M is a Cohen-Macaulay

module of projective dimension p, then the Castelnuovo-Mumford regularity can be read

in the p-th degree, that is reg M is the greatest integer r such that βpp+r is different from

0. Furthermore, let d be the Krull dimension of M . From Theorem 1.3.8, we get that

p+ d = n, and hence from Equation 1.2, we have

a(M) = p+ r − n = r − d.

That is, if

HPM(t) = h(t)
(1− t)d

is the reduced Hilbert series of M , then deg h(t) = r.

1.5 LATTICES AND LATTICE IDEALS

In this section, we present an overview on lattice theory. An interesting class of lattices

is the class of distributive lattices, because from Birkhoff’s fundamental theorem, for any

poset one can construct an associated distributive lattice and vice versa. Moreover, Hibi

introduced an ideal associated to lattices, called join-meet ideal. The latter is a binomial

ideal and it is prime if and only if the lattice is distributive. Join-meet ideals of planar

distributive lattices are relatives of polyomino ideals, that will be discussed in next chapter.

Let P be a poset. A chain of P is a totally ordered subset of P . The length of a chain

c, denoted by length(c), is |c| − 1. Given a ∈ P , the rank of a in P , denoted by rank (a),

is the supremum of length of chains in P that descends from a. The rank of P , denoted by

rank (P ), is the supremum of length of chains of P . An order ideal of P is a subset I of

P with the following property: if a ∈ I then b ∈ I for all b ∈ P with b < a. Two element

a, b ∈ P are called incomparable if a 6< b and b 6< a. A poset L in which any two elements

a and b have a supremum a ∨ b, called join and an infimum a ∧ b, called meet, is called
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a lattice. A lattice L is called distributive if for any a, b, c ∈ L the following distributivity

rules hold

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c);

• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Let L be a distributive lattice with unique minimal element min(L) and unique maxi-

mal element max(L). An element a ∈ L is called join-irreducible if a 6= min(L) and a 6= b∨c

for any b, c ∈ L\{a}. Let P be the set consisting of all join-irreducible elements of L. Then

P is a poset with partial order inherited from L. Let I(P ) be the set consisting of all order

ideals of P , ordered by inclusion. In particular, ∅, P ∈ I(P ) and I(P ) is a distributive

lattice with min(I(P )) = ∅ and max(I(P )) = P . In particular,

Theorem 1.5.1 (Birkhoff’s fundamental theorem). Let L be a finite distributive lattice

and let P be the poset of of the join-irreducible elements of L. Then L ∼= I(P ).

It follows that, rank (L) = |P |.

∅

1 2

2312

123234

1234

1

3

2

4

Figure 1.1: A rank 4 finite distributive lattice with the poset of join-irreducible elements

Let L be finite distributive lattice and R = K[xa : a ∈ L]. The join-meet ideal IL ⊂ S

of L is the ideal generated by binomials xaxb − xa∨bxa∧b, where a and b are incomparable

elements in L, and it has been introduced in [42]. Due to this, the quotient ringK[L] = R/IL

is today called Hibi ring. It is known that K[L] is a normal, Cohen-Macaulay domain, that

is IL is a toric ideal. Moreover, if L = I(P ), then K[L] is Gorenstein if and only if the poset

P is pure, that is all the maximal chains of P have the same length (see [42, p. 105]).

Consider the natural partial order on N2 defined as follows: for any (i, j), (k, l) ∈ N2,
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we have (i, j) ≤ (k, l) if and only if i ≤ k and j ≤ l. With this natural partial order, N2

is an infinite distributive lattice. Let L be a finite sublattice of N2. Then L is called a

planar distributive lattice if (0, 0) ∈ L and for any (i, j), (k, l) ∈ L with(i, j) < (k, l) , there

exists a chain in L of the form (i, j) = (i0, j0) < (i1, j1) < . . . < (is, js) = (k, l) such that

ik+1 + jk+1 = ik + jk + 1 for all k. The condition ik+1 + jk+1 = ik + jk + 1 yields that either

(ik+1, jk+1) = (ik, jk) + (0, 1) or (ik+1, jk+1) = (ik, jk) + (1, 0). A planar distributive lattice

L is called simple if, for all 0 < r < rank (L), there exist at least two elements in L with

rank r. Equivalently, L is simple if there is no a ∈ L with the property that for every b ∈ L

either a ≤ b or b ≤ a.

1.6 EDGE RINGS ASSOCIATED TO BIPARTITE GRAPHS

In this section, we stress the relation between bipartite graphs and toric ideals that

has also a crucial role in the study of polyomino ideals (for further details see [82] and [43]).

Let R = K[x1, . . . , xn] be a polynomial ring over the field K with the standard grading and

let G be a graph on the vertices {1, . . . , n} with edge set E(G). The ring

K[G] = {xixj : {i, j} ∈ E(G)}

is called the edge ring of G. We consider a polynomial ring T = K[tij : {i, j} ∈ E(G)]

together with a map

ϕ : T → K[G] tij 7→ xixj.

The kernel PG of ϕ is a toric ideal, i.e. a prime ideal generated by (quadratic) binomials. We

describe the generators of J by looking at special structures inside of the graph. A walk of

length r between i and j inG is a sequence of edges of the form {i0, i1}, {i1, i2}, . . . , {ir−1, ir}

such that i0, . . . , ir are vertices of G with i0 = i and ir = j. A cycle of length r in G is

a closed walk where the vertices are all distinct. We say that a walk (resp. cycle) W

is even or odd depending on the parity of r. Given an even closed walk W with edges

E(W ) = {{i0, i1}, {i1, i2}, . . . , {i2r−1, i2r = i0}} we consider the binomial of T

fW = ti0i1ti2i3 . . . ti2r−2i2r−1 − ti1i2ti3i4 . . . ti2r−1i2r

One has ϕ(fW ) = 0, that is fW ∈ PG. Moreover, we say that a graph G is bipartite if its

vertex set V can be partitioned in two nonempty and disjoint sets V1 and V2 such that any
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edge of G connects a vertex of V1 with a vertex of V2. The following propositions describe

the generators of PG.

Proposition 1.6.1. Let G be a graph and let PG be the toric ideal of K[G]. Then

• PG = (fW : W is an even closed walk);

• PG = (fW : W is an even cycle) if G is bipartite.

Theorem 1.6.2. Let G be a bipartite graph. Then the following are equivalent

(1) Every cycle in G with length greater than or equal to 6 has a chord;

(2) PG has a Gröbner basis consisting in quadratic binomials;

(3) PG is generated by quadratic binomials.

A bipartite graph satisfying property (1) of Theorem 1.6.2 is called weakly chordal.
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Chapter 2

POLYOMINOES

This chapter is devoted to the introduction of polyominoes and to the presentation of

the current state of the art in both Combinatorics (Sections 2.1, 2.2, 2.3) and Commutative

Algebra (Section 2.4) about polyominoes. In Section 2.1 we give formal definitions about

polyominoes, as sets of pairwise-connected unitary cells of N2. The latter arises from the

generalization of the concept of planar distributive lattice and it is suitable to the definition

of polyomino ideals. However, in the above section we also give some results about tiling

and counting, described in the book of Golomb [32]. In Sections 2.2 and 2.3 we present

some combinatorial properties about two classes of polyominoes, L-convex polyominoes and

parallelogram polyominoes, respectively. The name “L-convex” arises from the fact that

any pair of cells is connected through a path of cells having at most one change of direction,

that is, any of the above paths has the shape of an L. For this class of polyominoes, it

is interesting to study the number of maximal rectangles and the so-called horizontal and

vertical projections, i.e. the number of cells in each row and column, respectively. In fact,

given suitable horizontal and vertical projections, one can find a unique associated L-convex

polyomino. Parallelogram polyominoes are the ones corresponding to a pair (α, β) of north-

east paths going from the origin to a point (m,n) in the plane N2 with the path α staying

“above” the path β. They are relevant because they can be seen as planar distributive

lattices with a minimum, the origin, and a maximum, the point (m,n). Any parallelogram

polyomino can be encoded by means of the so-called 2-colored Motzkin paths. In Section

2.4, we present the binomial ideal associated to polyominoes, the polyomino ideal and we

present the known results about its algebraic invariants: primality of simple polyominoes,

i.e. polyominoes without “holes” and of particular classes of nonsimple polyominoes and

at the end we discuss the Gorensteinnes of stack polyominoes. For further information one

can refer to [32] (Section 2.1), [16], [15] (Section 2.2), [3], [21] (Section 2.3), [62], [44], [65],

[40] and [1] (Section 2.4.
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2.1 HISTORY, BASIC DEFINITIONS AND PROPERTIES

Polyominoes are planar shapes made by connecting a finite number of equal-sized

squares, each joined together edge by edge. The name polyomino was invented by Golomb

in 1953, and it is the back-formation from the word domino, a common game piece con-

sisting of two squares, with the first letter d- interpreted as a version of the prefix di-

meaning “two” (see Figure 2.1A). The name domino for the game piece is believed to come

from the spotted masquerade garment domino, from Latin dominus. Most of the numerical

prefixes are Greek (tri-, tetro-, penta-, exa-). For example, the well-known “Tetris” is a

tile-matching videogame in which the players should complete lines by moving differently

shaped tetrominoes, descending in the playing field. In particular in Figure 2.1B we repre-

sented by different colors all of the different tetrominoes up to rotation and reflection. Two

polyominoes are equal (resp. distinct) as free polyominoes if they are equal (resp. distinct)

up to rotations and reflections.

(A) A typical Domino piece (B) A typical Tetris playground

Figure 2.1: Two examples of polyominoes

Polyominoes have a crucial role in recreational mathematics, especially in tiling prob-

lems. In fact, some of the most-known challenges are the following:

• Tiling a region with a given set of polyominoes: a classical problem of this kind

is the one of tiling a 6×10 rectangle with 12 pentominoes. A solution of the problem

is given in Figure 2.2. Overall, 2339 solutions were found by using a computational

approach (see [35]).
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Figure 2.2: Tiling a 6× 10 rectangle with 12 pentominoes

• Tiling a region with copies of a single polyomino: Another class of problems

asks whether copies of a given polyomino can tile a region. A problem of this kind

is the one of tiling a 8 × 8 chessboard, that has a pair of diagonally opposite corner

squares removed, by using a set of dominoes (see Figure 2.3). Since a set of n dominoes

covers exactly n white cells and n black cells and in our playground there are more

black cells than white ones, the above problem has no solution.

Figure 2.3: Tiling a 8 × 8 chessboard with a pair of diagonally opposite corner squares

removed by using a set of dominoes

• Tiling the plane with copies of a single polyomino: The problem of which

polyominoes can tile the plane has been a relevant challenge since 1965. However,

the study of the above problem has been facilitated by Conway criterion: all of

the polyominoes up to order 9 can be combined to tile the plane except for two

nonominoes (see Figure 2.4).
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Figure 2.4: Two nonominoes that do not satisfy Conway criterion

In the following table we report the enumeration of free distinct polyominoes having

n cells with 1 ≤ n ≤ 12 (for further information see [32, Chapter 6] and [61]).

n 1 2 3 4 5 6 7 8 9 10 11 12

Polyominoes 1 1 2 5 12 35 108 369 1285 4655 17073 63600

Table 2.1: Enumeration of distinct polyominoes

Such enumeration has been helpful for the computation in Section 3.1.

Polyominoes find application also in statistical physics and chemistry, where they are

useful in the study of the polymers.

We now give a mathematical construction of polyominoes that is similar to the con-

struction of planar distributive lattices (see Section 1.5). Let a = (i, j), b = (k, `) ∈ N2,

with i ≤ k and j ≤ `, the set [a, b] = {(r, s) ∈ N2 : i ≤ r ≤ k and j ≤ s ≤ `} is called an

interval of N2. If i < k and j < `, [a, b] is called a proper interval, and the elements a, b, c, d

are called corners of [a, b], where c = (i, `) and d = (k, j).
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a

bc

d

Figure 2.5: An interval of N2

In particular, a, b are called diagonal corners and c, d anti-diagonal corners of [a, b].

The corner a (resp. c) is also called the left lower (resp. upper) corner of [a, b], and d

(resp. b) is the right lower (resp. upper) corner of [a, b]. A proper interval of the form

C = [a, a+ (1, 1)] is called a cell. Its vertices V (C) are a, a+ (1, 0), a+ (0, 1), a+ (1, 1) and

its edges E(C) are

{a, a+ (1, 0)}, {a, a+ (0, 1)}, {a+ (1, 0), a+ (1, 1)}, {a+ (0, 1), a+ (1, 1)}.

In the following, we denote by `(C) the left lower corner of a cell C.

Let P be a finite collection of cells of N2, and let C and D be two cells of P . Then

C and D are said to be connected, if there is a sequence of cells C = C1, . . . , Cm = D of

P such that Ci ∩ Ci+1 is an edge of Ci for i = 1, . . . ,m− 1. In addition, if Ci 6= Cj for all

i 6= j, then C1, . . . , Cm is called a path (connecting C and D). A collection of cells P is

called a polyomino if any two cells of P are connected. We denote by V (P) = ∪C∈PV (C)

the vertex set of P . The number of cells of P is called the rank of P , and we denote it by

rank P . A subset Q ⊆ P is called a subpolyomino of P if Q is a polyomino itself.

Figure 2.6: A generic polyomino
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A proper interval [a, b] is called an inner interval of P if all cells of [a, b] belong to P .

(A) The interval in red color is an inner

interval of the polyomino

(B) The interval in red color is not an inner

interval of the polyomino

We say that a polyomino P is simple if for any two cells C and D of N2 not belonging

to P , there exists a path C = C1, . . . , Cm = D such that Ci /∈ P for any i = 1, . . . ,m. If

the polyomino is not simple then it is said multiply connected (see [32]). A finite collection

H of cells not in P is called a hole of P , if any two cells in H are connected through a

path of cells in H, and H is maximal with respect to the inclusion. Note that a hole H of

a polyomino P is itself a simple polyomino.

An interval [a, b] with a = (i, j) and b = (k, `) is called a horizontal edge interval of

P if j = ` and the sets {(r, j), (r + 1, j)} for r = i, . . . , k − 1 are edges of cells of P . If a

horizontal edge interval of P is not strictly contained in any other horizontal edge interval

of P , then we call it maximal horizontal edge interval. Similarly, one defines vertical edge

intervals and maximal vertical edge intervals of P .

Each proper interval [(i, j), (k, l)] in N2 can be identified as a polyomino and it is

referred to as rectangular polyomino, or simply as rectangle. A rectangular subpolyomino

P ′ of P is called maximal if there is no rectangular subpolyomino P ′′ of P that properly

contains P ′. A rectangle has size m×n if it contains m columns and n rows of cells. Given

a polyomino P , the rectangle that contains P and has the smallest size with this property

is called bounding box of P . After a shift of coordinates, we may assume that the bounding

box is [(0, 0), (m,n)] for some m,n ∈ N. In this case, the width of P , denoted by w(P) is

m. Similarly, the height of P , denoted by h(P) is n.

A polyomino P is called row convex if for any two of its cells with lower left corners
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a = (i, j) and b = (k, j), with k > i, all cells with lower left corners (l, j) with i ≤ l ≤ k

are cells of P . Similarly, P is called column convex if for any two of its cells with lower

left corners a = (i, j) and b = (i, k), with k > j, all cells with lower left corners (i, l) with

j ≤ l ≤ k are cells of P . If a polyomino P is simultaneously row and column convex then

P is called convex. In this dissertation, we focus on two classes of convex polyominoes,

L-convex polyominoes (see Section 2.2) and parallelogram polyominoes (see Section 2.3).

2.2 L-CONVEX POLYOMINOES

In this section, we see the combinatorial properties of a class of convex polyominoes,

L-convex polyominoes. There are different results on their realizations and enumerations.

For further information, see [15, 16].

Let C : C1, C2, . . . , Cm be a path of cells and (ik, jk) be the lower left corner of Ck
for 1 ≤ k ≤ m. Then C has a change of direction at Ck for some 2 ≤ k ≤ m − 1 if

ik−1 6= ik+1 and jk−1 6= jk+1. A convex polyomino P is called k-convex if any two cells in P

can be connected by a path of cells in P with at most k change of directions. The 1-convex

polyominoes are simply called L-convex polyominoes. An example of L-convex polyomino

is showed in Figure 2.8

Figure 2.8: An L-convex polyomino

For the aim of giving a first characterization of L-convex polyominoes, we need the

following definitions.

Definition 2.2.1 Let P and Q be polyominoes. We say that Q has l occurrences in P if
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there exist l distinct subsets of P that are equal to Q as free polyominoes. In particular, a

maximal rectangle R of size m× n is said to have unique occurrence in a polyomino P , if

R is the only rectangular subpolyomino of P with size m× n.

Definition 2.2.2 Let R and R′ be two rectangles of sizes m×n and s×t, respectively. We

say that R and R′ have a crossing intersection if the intersection R ∩R′ is a rectangle of

size min{m, s} ×min{n, t}. Some examples of crossing intersections are showed in Figure

2.9.

Figure 2.9: Three examples of rectangles intersecting in another rectangle. The first two

are crossing intersections, while the last one is not.

One can observe that the union of two rectangles having a crossing intersection is an

L-convex polyomino. The latter is actually a characterization of the L-convex polyominoes

as stated in the following Lemma.

Lemma 2.2.3. A convex polyomino P is L-convex if and only if every pair of maximal

rectangles occurs in P with a crossing intersection.

An immediate consequence of Lemma 2.2.3 is the following

Corollary 2.2.4. A maximal rectangle of an L-convex polyomino P has a unique occur-

rence in P.

The maximal rectangles of the polyomino in Figure 2.10 are of sizes 7×2, 4×5, 3×6,

2× 7 and 1× 10.
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(A) An L-convex polyomino P. (B) The maximal rectangles of P.

Figure 2.10: The maximal rectangles of P

Moreover, any convex polyomino P having bounding box [(0, 0), (m,n)] hasm columns

of cells, ordered increasingly from left to right, and n rows of cells, ordered increasingly

from top to bottom. We attach a bipartite graph FP to the polyomino P in the following

way. Let V (FP) = {X1, . . . , Xm} t {Y1, . . . , Yn} and {Yi, Xj} ∈ E(FP) if the i-th row of P

intersects the j-th column of P non-trivially. The unique cell in the intersection of i-th row

and j-th column is labelled as Cij. We call i−th horizontal projection hi the number of cells

of the i− th row of P and j− th vertical projection the number of cells of the j− th column.

Note that hi = deg Yi and vj = degXj in the graph FP . In the sequel, we will refer to the

vector HP = (h1, h2, . . . , hn) as the horizontal projections of P and VP = (v1, v2, . . . , vm)

as the vertical projection of P . In Figure 2.11, we show that in general given two vectors

H and V of horizontal and vertical projections, it may happen that there are two convex

polyominoes having H and V as horizontal and vertical projections.

Figure 2.11: Two convex polyominoes having H = (1, 2, 2) and V = (1, 3, 1)

Differently, for L-convex polyominoes the horizontal and vertical projections are
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uniquely determined and have a nice behavior as stated in the following.

Theorem 2.2.5. Let P be an L-convex polyomino, then:

(a) P is uniquely determined by HP and VP ;

(b) HP and VP are unimodal vectors, that is there exist r ∈ {1, . . . , n} and s ∈ {1, . . . ,m}

such that

h1 ≤ . . . ≤ hr−1 ≤ hr ≥ hr+1 ≥ . . . ≥ hn and v1 ≤ . . . ≤ vs−1 ≤ vs ≥ vs+1 ≥ . . . ≥ vm;

(c) Let j, j′ be two different columns of P such that vj ≤ vj′. Then for each row i of P,

we have Cij′ ∈ P if Cij ∈ P.

(d) Let i, i′ be two different rows of P such that hi ≤ hi′. Then for each column j of P,

we have Ci′j ∈ P if Cij ∈ P.

Figure 2.12: An L-convex polyomino with HP = (2, 2, 3, 5, 2) and

VP = (1, 2, 5, 5, 1).

A special class of L-convex polyominoes is the one of Ferrer diagrams, namely L-convex

polyominoes P for which both HP and VP are decreasing (see Figure 2.13).
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Figure 2.13: Ferrer diagram

In Section 4.1 we will prove that any L-convex polyomino can be rearranged to a

Ferrer diagram, keeping fixed the sizes of the maximal rectangles.

2.3 PARALLELOGRAM POLYOMINOES

In this section, we describe parallelogram polyominoes from the point of view of com-

binatorics, and the ways to encode them with the so-called Motzkin paths. For further

details, see [3] and [21].

Let (a, b) ∈ N × N. The edge {(a, b), (a + 1, b)} is called an east step and

the edge {(a, b), (a, b + 1)} is called a north step in N × N. A sequence of ver-

tices S : (a0, b0), (a1, b1) . . . (ak, bk) in N × N is called a north-east path in N × N, if

{(ai, bi), (ai+1, bi+1)} is either an east or a north step for each i. The vertices (a0, b0)

and (ak, bk) are called the endpoints of S. Let S1 : (a0, b0), (a1, b1), . . . , (ak, bk) and

S2 : (c0, d0), (c1, d1), . . . , (ck, dk) be two north-east paths in N×N such that (a0, b0) = (c0, d0)

and (ak, bk) = (ck, dk). If for all 1 ≤ i, j ≤ k − 1 we have bi > dj whenever ai = cj, then S1

is said to “lie above" S2. The parallelogram polyomino P determined by (S1,S2), where S1

lies above S2, is the region bounded above by S1 and bounded below by S2. We refer to

the path S1 as the upper path of P and the path S2 as the lower path of P . We will denote

a parallelogram polyomino as P = (S1,S2) when we need to emphasize on its upper and

lower paths. In Figure 2.14, a parallelogram polyomino is shown. The thick line in Figure

2.14 represents the upper path of P and the dashed line represents the lower path of P . A

parallelogram polyomino that is also L-convex is exactly a Ferrer diagram. (see 2.13).
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An equivalent way to describe parallelogram polyomino is the following property: a

polyomino such that its intersection with every line perpendicular to the main diagonal is

a connected segment (see [22, pg. 178]).

Figure 2.14: A parallelogram polyomino

We call semiperimeter of a parallelogram polyomino P = (S1,S2) the sum between

the number of columns and the number of rows of P , that also corresponds to the length of

S1 (or S2). The number of parallelogram polyominoes having semiperimeter n is expressed

by the n-th Catalan number

Cn = 1
n+ 1

(
2n
n

)
.

In the following, we describe the well-known bijection between the parallelogram poly-

ominoes and 2-colored Motzkin paths. Let (a, b) ∈ N. Then

1. the edge {(a, b), (a+ 1, b+ 1)} is called a rise step,

2. the edge {(a, b), (a+ 1, b− 1)} is called a fall step,

3. the edge {(a, b), (a+ 1, b)} is called a east step or a horizontal step.

A 2-colored Motzkin path

M : (0, 0) = (a0, b0), (a1, b1), . . . , (an, bn) = (n, 0)

in N × N is a path that never passes below the x-axis and consists of rise steps, fall steps

and two types of horizontal steps that are called α-colored horizontal steps and β-colored

horizontal steps. Each 2-colored Motzkin path can be regarded as a 2-colored Motzkin

word. Let P be a parallelogram polyomino determined by (S1,S2) such that S1 and S2
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intersect at (0, 0) and (m,n). Then P can be encoded in a unique 2-colored Motzkin path

MP as described in the following algorithm given in [21].

Each north-east path in N × N of length n can be identified as a binary sequence

with 0 representing an east step and 1 representing a north step. Let P = (S1,S2) be a

parallelogram polyomino and set u(P) be the binary tuple representing S1 and `(P) be the

binary tuple representing S2. Create a matrix M with u(P) as its first row and `(P) as its

second row. Then M can be encoded as a Motzkin path by the coding:

(
1
0

)
7→ rise step

(
0
1

)
7→ fall step(

1
1

)
7→ α-colored horizontal step

(
0
0

)
7→ β-colored horizontal step

(2.1)

0 0

0

0

1

1

1

1

1

1

1

1

0

0

0 0
rise β α rise fall rise fall fall

Figure 2.15: A parallelogram polyomino with its Motzkin path

For example, Figure 2.15 shows a parallelogram polyomino and the associated 2-

colored Motzkin path. The β-colored horizontal steps are shown as dashed lines and the

α-colored steps are shown as normal lines. We observe that

u(P) = 10110100 `(P) = 00101011

The associated matrix M of P described above is :1 0 1 1 0 1 0 0

0 0 1 0 1 0 1 1


We also consider the reflection ofMP through the x-axis. We denote this reflection
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byMP . The reflectionMP corresponds to the coding given in (2.1) applied to the matrix

that contains `(P) as first row and u(P) as the second row.

Figure 2.16: A parallelogram polyomino together with the Motzkin path MMP and its

reflectionMP

2.4 POLYOMINO IDEAL AND ALGEBRAIC INVARIANTS

In this section, we start going through the Commutative Algebra of polyominoes, in

particular we define the associated binomial ideals and we present some results involving

Cohen-Macaulayness, Gorensteinnes, primality and Gröbner bases. The references for this

section are [62] and [38].

Let P be a polyomino and define the polynomial ring R = K[xv | v ∈ V (P)] over a

field K. The binomial xaxb − xcxd ∈ R is called an inner 2-minor of P if [a, b] is an inner

interval of P , where c, d are the anti-diagonal corners of [a, b]. The ideal IP ⊂ R generated

by all of the inner 2-minors of P is called the polyomino ideal of P . The quotient ring

K[P ] = R/IP is called the coordinate ring of P . In the following, we study the algebraic

properties and invariants of the polyomino ideal IP together with its coordinate ring IP , in

particular we will focus on

• Gröbner Bases;

• Primality;

• Gorensteinnes.

2.4.1 Gröbner bases of polyominoes

Let a = (a1, a2) and b = (b1, b2) ∈ V (P), we define on the vertices of P the following

total orders:

1. a <1 b if a1 < b1 or a1 = b1 and a2 < b2;
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2. a <2 b if b1 < a1 or a1 = b1 and a2 < b2.

Such orders induce in a natural way the following monomial orders on R:

1. xa <1
lex xb if a <1 b;

2. xa <2
lex xb if a <2 b.

In [62], the author provides a necessary and sufficient condition for the setM of inner

2-minors to be a reduced Gröbner basis of IP , where P is a collection of cells of N2. In the

following, we state the result when P is a polyomino.

Proposition 2.4.1. Let P be a polyomino. M forms a reduced Gröbner basis of IP with

respect to <1
lex if and only if for any two intervals [a, b] and [b, e] of P, at least one between

[a, f ] and [a, g] is an inner interval of P, where f and g are the anti-diagonal corners of

[b, e]. Similarly, M forms a reduced Gröbner basis of IP with respect to <2
lex if and only

if for any two inner intervals [a, b] and [e, f ] of P, with d anti-diagonal corner of both the

inner intervals, either a, e or b, f are anti-diagonal corners of an inner interval of P.

In the following example, we observe that the degree of the generators of the Gröbner

basis of P , and therefore the property of being quadratic, with respect to <1
lex (resp. <2

lex)

depends on the orientation of P .

Example 2.4.2 Let P be the polyomino in Figure 2.17.(A).

a

b

e

(A)
(B)

Figure 2.17

The intervals [a, b] and [b, e] do not satisfy the condition of Proposition 2.4.1, hence

the Gröbner basis of P with respect to <1
lex is not quadratic. We now consider the reflection

P̄ of P with respect to a vertical axis. In P̄ there are no inner intervals that meet in a

diagonal corner, hence the Gröbner basis of P with respect to <1
lex is quadratic.
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In Section 3.2, we generalize Proposition 2.4.1 by determining similar conditions for

the order <1
lex up to any rotation and reflection.

2.4.2 Primality of some classes of polyominoes

One of the open problems in the Commutative Algebra of polyominoes is to study

whether the coordinate ring K[P ] is a domain or not.

To study such a property in the case of simple polyominoes, it is useful to consider the

following construction. Let P be a simple polyomino. We consider the graph GP having

vertex set {Vi}i∈I ∪ {Hj}j∈J , namely the set of all the maximal vertical edge intervals of P

and all the maximal horizontal edge intervals of P , and edge set

E(GP) =
{
{Hi, Vj} | Hi ∩ Vj 6= ∅

}
.

The above graph is clearly bipartite (see Figure 2.18). Moreover, we observe that the

intersection between any maximal horizontal edge interval and any maximal vertical edge

interval is either empty or it is a vertex of P . That is, E(GP) is in bijection with V (P).

Moreover, it holds K[GP ] ∼= K[P ]. It can be proved that such graph is weakly chordal.

H6

H5

H4

H3

H2

H1

V1 V2 V3 V4 V5

H1 H2 H3 H4 H5 H6

V1 V2 V3 V4 V5

Figure 2.18

By using such a construction, it can be proved that if P is a simple polyomino then

K[P ] is a normal Cohen-Macaulay domain ([40, Theorem 2.1] and [65, Corollary 2.3]).

Combining this with [41, Corollary 3.3], one obtains the following

Lemma 2.4.3. Let P be a simple polyomino. Then K[P ] is a Koszul, normal Cohen-

Macaulay domain of Krull dimension |V (P)| − rank P.
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Moreover, in [65] and [73], the authors find a class of non simple polyominoes whose

coordinate ring is a domain. Let P[(1,1),(m,n)] be a rectangular polyomino and let Q be a

convex polyomino. The polyomino P = P[(1,1),(m,n)] \ Q is a multiply connected polyomino

and it is proved that IP is prime in this case. To achieve this result, in [73] the author

defines a particular toric ideal JP . Let e be the lower left corner of the hole Q, then set

Ie = [(1, 1), e] (see Figure 2.19).

Q
e

Ie

Figure 2.19

Let {Vi}i∈I be the set of all the maximal vertical edge intervals of P , and {Hj}j∈J
be the set of all the maximal horizontal edge intervals of P . Let {vi}i∈I , {hj}j∈J be two

sets of variables associated to {Vi}i∈I and {Hj}j∈J , respectively, and let w be an additional

variable. We consider the map

α : V (P) −→ K[{hi, vj | i ∈ I, j ∈ J} ∪ {w}]

a 7−→
∏

a∈Hi∩Vj

hivj
∏
a∈Ie

w

We set TP = K[α(a)|a ∈ V (P)] ⊂ K[{hi, vj | i ∈ I, j ∈ J} ∪ {w}]. The ideal JP is the
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kernel of the following epimorphism

ϕ : R −→ TP

xa 7−→ α(a),

and the author proves that IP = JP . In Section 3.1, a similar construction is done for any

multiply-connected polyomino.

We conclude this subsection with an example of non-prime polyomino. By computa-

tional approach, one can find that the polyomino in Figure 2.20 is not prime.

Figure 2.20: A non-prime polyomino

2.4.3 Gorensteinnes of the coordinate ring of polyominoes

Another open question is to give a complete characterization of the Gorensteinness of

the algebra K[P ] when P is a simple polyomino. Some partial results in this direction has

been obtained in [62, 1]. In the following, we present only the result of the former paper.

In such a paper, the author focuses on the class of stack polyominoes, namely row convex

bargraphs (see Figure 2.21).
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Figure 2.21: A stack polyomino

Let P be a stack polyomino and let a ∈ V (P). We say that a is a inside (resp. outside)

corner of P if a belongs exactly to three cells (resp. one cell) of P .

Let [c, d] be a vertical interval of P of maximal length and let e1, . . . , es be the vertices

of [c, d] such that the maximal horizontal edge interval [gi, hi] with ei ∈ [gi, hi] contains an

inside corner of P . Let e0 = c and es+1 = d and for i ∈ {0, s+ 1} let [gi, hi] be the maximal

horizontal edge interval of P with ei ∈ [gi, hi]. We set

mj =
∣∣∣[gj, hj]∣∣∣− 1, nj =

∣∣∣[ej, ej+1]
∣∣∣− 1

for j = 0, . . . , s and ms+1 = 0.

With the construction above we can state the characterization of Gorenstein stack

polyominoes.

Theorem 2.4.4. Let P be a stack polyomino. Then K[P ] is Gorenstein if and only if

mi = ∑s
j=i nj for i = 0, . . . , s.

Example 2.4.5 Let P be the stack polyomino in Figure 2.22.(A).
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e0

e1

e2

e3

(A) A Gorenstein stack polyomino

e0

e1

e2

(B) A non-Gorenstein stack polyomino

Figure 2.22

One can observe that s = 2, n0 = n1 = n2 = 1 and m0 = 3, m1 = 2, m2 = 1, namely P

is Gorenstein according to Theorem 2.4.4. Instead, the stack polyomino in Figure 2.22.(B)

is not Gorenstein because s = 1, m0 = m1 = 3, while n0 = 1 and n1 = 2, that is m1 6= n1.

We underline that stack polyominoes are a particular subclass of L-convex polyomi-

noes. In Section 4.1, we characterize the Gorenstein L-convex polyominoes, retrieving

similar conditions to the ones of Theorem 2.4.4.
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Chapter 3

PRIMALITY AND GROB̈NER BASES OF POLYOMINOES

This chapter is devoted to the study of the primality of the polyomino ideal in the

case of non-simple polyominoes, the so-called multiply connected polyominoes. In Section

2.4, we have seen that simple polyominoes are prime. Among multiply connected poly-

ominoes, one can find both prime and non-prime polyominoes. For example, in Section

2.4, we described a family of prime multiply-connected polyominoes obtained by removing

a convex polyomino by a given rectangle. However, giving a complete characterization of

the primality of multiply connected polyomino ideals seems to be not so easy. In order to

make a further step in this direction, in Section 3.1 we observe that the non-existence of

a certain sequence of inner intervals of the polyomino, called zig-zag walk (see Definition

3.1.2), gives a necessary condition for the primality of the polyomino ideal. Furthermore,

we present a toric ideal associated to a polyomino, generalizing the construction of Section

2.4. Moreover, by computational approach, we prove that for all polyominoes with rank less

than or equal to 14 the condition on zig-zag walks is also sufficient. We also conjecture that

such condition gives a characterization of the primality of polyominoes. At the end of the

Section, we define a new infinite family of polyominoes that we call grid polyominoes, that

are obtained by removing rectangular holes by a given rectangle in a way that avoids the

existence of zig-zag walks. We prove that grid polyominoes are prime. Beside the primality,

another interesting question concerns the Gröbner basis of ideals generated by a subset of

t-minors, see [59], [77] and [14]. As regards polyomino ideals, Proposition 3.2.3 provides

a necessary and sufficient condition for the set of inner 2-minors to be a reduced Gröbner

basis of IP with respect to two fixed lexicographic monomial orders. In Section 3.2, we

generalize such a result by giving a necessary and sufficient condition on a polyomino ideal

for having the set of inner 2-minors as graded reverse lexicographic Gröbner basis, due to

combinatorial properties of the polyomino itself. Moreover, we prove that when the latter

holds the polyomino ideal coincides with the lattice ideal associated to the polyomino, that

is the polyomino ideal is prime. In particular, we introduce the family of thin polyominoes,
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namely polyominoes that do not contain a square tetromino as subpolyomino. As an ap-

plication of the results on the quadratic Gröbner basis we give two classes of prime thin

polyominoes. The references for this chapter are the papers [53] and [54].

3.1 MULTIPLY CONNECTED POLYOMINOES

In this section, we investigate the primality of the multiply connected polyominoes

under different point of views. In Subsection 3.1.1, we give a necessary condition for the

primality of the polyomino ideal with respect to the geometric representation of the poly-

omino. This condition is related to a sequence of inner intervals contained in the polyomino,

called a zig-zag walk, whose existence determines the non-primality of the polyomino ideal.

In the same subsection,we present a toric ideal associated to a polyomino, generalizing

Shikama’s construction in Section 2.4. This toric ideal contains the polyomino ideal (see

Proposition 3.1.1). Moreover, if the polyomino contains a zig-zag walk, the binomial asso-

ciated to the zig-zag walk belongs to the toric ideal and the above inclusion is strict. The

condition on zig-zag walks gives us a good filtration of primality. As an application, by

implementing the algorithm described in [55], we compute all the polyominoes with rank

less than or equal to 14 that are 123851 (for a complete description of the algorithm see

[55]). In Subsection 3.1.2, we observe that removing 5 squares in a particular position from

a given rectangle, we obtain a polyomino with a zig-zag walk (see Figure 3.6 (B)). On the

other hand, by removing squares in a nice way, we construct an infinite family of prime

multiply-connected polyominoes, called grid polyominoes.

3.1.1 The toric ring of generic polyominoes and zig-zag walks

In this subsection, we generalize the construction of Section 2.4 to find toric ideal asso-

ciated to any generic polyomino, depending on its holes. We also notice that the existence

of particular sequences of inner intervals in a multiply connected polyomino P gives rise

to a binomial zero-divisor in K[P ], namely we have a necessary condition for the primality

of P . By computational approach, we find that such condition is also sufficient for any

polyomino with rank ≤ 14, that leads us to conjecture that the latter is a characterization

for the primality of any polyomino.
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Let P be a polyomino. Let H be a hole of P . We call lower left corner e of H the

minimum, with respect to <, of the vertices of H.

Let H1, . . . ,Hr be holes of P . For k = 1, . . . , r, we denote by ek = (ik, jk) the lower

left corner of Hk. For k ∈ K = {1, . . . , r}, we define the following subset of V (P)

Fk = {(i, j) ∈ V (P) | i ≤ ik and j ≤ jk}.

Let {Vi}i∈I be the set of all the maximal vertical edge intervals of P , and {Hj}j∈J be the

set of all the maximal horizontal edge intervals of P . Let {vi}i∈I , {hj}j∈J , and {wk}w∈K
be three sets of variables associated to {Vi}i∈I , {Hj}j∈J , and {Fk}k∈K , respectively. We

consider the map

α : V (P) −→ K[{hi, vj, wk} | i ∈ I, j ∈ J, k ∈ K]

a 7−→
∏

a∈Hi∩Vj

hivj
∏
a∈Fk

wk

We consider the toric ring TP associated to P ,

TP = K[α(a)|a ∈ V (P)] ⊂ K[{hi, vj, wk} | i ∈ I, j ∈ J, k ∈ K].

The homomorphism

ϕ : R −→ TP

xa 7−→ α(a)

is surjective and the toric ideal JP is the kernel of ϕ (as already seen in Section 2.4). The

toric ring TP is viewed as a standard graded K-algebra and, therefore, the corresponding

toric ideal JP is standard graded.

By definition, JP is a prime ideal containing IP . Moreover, the next result shows that

for any polyomino P , (JP)2, the homogeneous part of degree 2 of JP , is equal to IP , that

means that the minimal generators of IP are all and only the minimal generators of degree

2 of JP .

Lemma 3.1.1. Let P be a polyomino. Then IP = (JP)2.
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Proof. First of all we show that IP ⊆ (JP)2. Let f ∈M, with f = xaxb− xcxd. Since [a, b]

is an inner interval of P , the corners a and d (resp. b and c) lie on the same horizontal

edge interval Hi (resp. Hj). In the same way, it holds that a and c (resp. b and d) lie on

the same vertical edge interval Vl (resp. Vm). Therefore,

ϕ(xaxb) = hihjvlvm
∏

k=1,...,r
wpk
k (3.1)

and

ϕ(xcxd) = hihjvlvm
∏

k=1,...,r
wnk
k (3.2)

for some pk, nk ∈ {0, 1, 2}. We have to show that for any k ∈ {1, . . . , r} pk = nk. If P has

not holes then ϕ(xaxb) = ϕ(xcxd), and f ∈ JP . Suppose that H1, . . . ,Hr are holes of P

and consider Hk for k = 1, . . . , r. Observe that the left lower corner ek of Hk satisfies one

of the following

1. ek < a;

2. a ≤ ek ≤ d;

3. d < ek.

a d

c b

ek

(1)

a d

c b

ek

(2)

a d

c b

(3A)

ek

a d

c b

ek

(3B)

Figure 3.1: Some positions of ek and induced flagging on [a, b]

Case (1). wk does not divide ϕ(f) (see Figure 3.1 (1)). Case (2). wk divides either both

ϕ(xa) and ϕ(xc) (see Figure 3.1 (2)) or it does not divide neither ϕ(xaxb) nor ϕ(xcxd). Case

(3). wk divides either ϕ(xa) and ϕ(xd) (see Figure 3.1 (3A)) or all ϕ(xa), ϕ(xb), ϕ(xc) and

ϕ(xd) (see Figure 3.1 (3B)) or wk does not divide neither ϕ(xaxb) nor ϕ(xcxd). Therefore

nk = pk, and it holds for any k = 1, . . . , r. It follows ϕ(xaxb) = ϕ(xcxd), and f ∈ kerϕ =

JP . Since all generators of IP belong to JP , the inclusion IP ⊆ (JP)2 is proved.

We are going to prove the other inclusion, namely (JP)2 ⊆ IP . Let f ∈ JP , f =
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xaxb − xcxd. We start observing that if a = b or a ∈ {c, d} we obtain that f is null. Hence

we assume without loss of generality a < b and c < d. Since ϕ(xaxb) = ϕ(xcxd), by (3.1)

and (3.2) the vertices a and d (resp. b and c) lie on the same horizontal edge interval of P ,

and a and c (resp. b and d) lie on the same vertical edge interval of P , and all the vertices

of these edge intervals belong to P . Therefore, the vertices a, b, c, and d are the corners

of the interval [a, b]. By contradiction, we assume that [a, b] is not an inner interval of P ,

namely exists a set of cells C that does not belong to P such that [a, b]∩C 6= ∅. We observe

that the set [a, b] ∩ C is a set of holes of P properly contained in [a, b] because [a, d], [a, c],

[b, c] and [b, d] are edge intervals in P . Let H1 be a hole in [a, b] ∩ C with lower left corner

e = (i, j). Let F1 = {(m,n) ∈ V (P) | m ≤ i and n ≤ j}, then a is the unique vertex

in {a, b, c, d} such that a ∈ F1, namely w1|ϕ(xaxb) but w1 - ϕ(xcxd), and f /∈ JP . The

assertion follows.

Describing completely the elements of JP \ IP is not an easy task. However, if the

polyomino contains a particular collection of inner intervals, then we have some partial

information on the elements of JP \ IP . The latter gives also a sufficient condition for

the non-primality of IP , hence a necessary condition for the primality. In the rest of the

subsection, we give such a condition.

Definition 3.1.2 Let P be a polyomino. A sequence of distinct inner intervals W :

I1, . . . , I` of P such that vi, zi are diagonal (resp. anti-diagonal) corners and ui, vi+1

the anti-diagonal (resp. diagonal) corners of Ii, for i = 1, . . . , `, is a zig-zag walk of P , if

(Z1) I1 ∩ I` = {v1 = v`+1} and Ii ∩ Ii+1 = {vi+1}, for i = 1, . . . , `− 1,

(Z2) vi and vi+1 are on a same edge interval of P , for i = 1, . . . , `,

(Z3) for any i, j ∈ {1, . . . , `}, with i 6= j, does not exist an inner interval J of P such that

zi, zj ∈ J .

Remark 3.1.3 Let W : I1 . . . , I` be a zig-zag walk of P . Then

(i) if vi is a diagonal vertex of Ii, then vi+1 is an anti-diagonal vertex of Ii+1;

(ii) ` is even.

Proof. (1) Assume that vk, with k ∈ {1, . . . , `−1} is a diagonal corner of Ik. From condition
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(Z2), vk+1 lies on the same edge interval of vk, say E, and is an anti-diagonal corner of

Ik. The line containing E divides N2 in two semi-planes. From condition (Z1), we have

Ik ∩ Ik+1 = {vk+1}, hence Ik and Ik+1 do not lie on the same semi-plane. Therefore, vk+1 is

anti-diagonal corner of Ik+1, as well. Observe that the latter justifies the name “zig-zag”.

(2) Assume that the starting point v1 is a diagonal corner of I1. From (1) it follows that

the vertex vk is a diagonal corner of Ik if and only if k is even (resp. anti-diagonal corner

if and only if k is odd). Since v`+1 = v1, `+ 1 is odd.

Remark 3.1.4 Let P be a polyomino and let IP ⊂ R the polyomino ideal associated to

P . If f ∈ IP , then

f =
∑

fIi
fi =

∑
xai
xbi
fi −

∑
xci
xdi
fi,

where fIi
= xai

xbi
−xci

xdi
∈M, hence for every m, monomial of f , there are two variables

in m that are (anti-)diagonal corners of an inner interval of P .

The following proposition gives a necessary condition on P to have a non-prime poly-

omino ideal IP .

Proposition 3.1.5. Let P be a polyomino and IP the polyomino ideal associated to P. If

there exists a zig-zag walk W : I1, . . . , I` in P then

xv1 , . . . , xv`
and fW =

∏
k=1,...,`

xzk
−

∏
j=1,...,`

xuj

are zerodivisors of K[P ] with xvi
fW ∈ IP for i = 1, . . . , `.

Proof. For any vertex vj in v1, . . . , v`, after relabelling, we may assume j = 1. Let fIi
∈M

be associated to the inner interval Ii.

We define the following polynomial

f̃ =
∏
k>1

xzk
fI1 + · · ·+ (−1)i+1 ∏

j<i

xuj

∏
k>i

xzk
fIi

+ · · ·+ (−1)`+1 ∏
j<`

xuj
fI`

Let i = 1, . . . , `−1. Suppose that vi is a diagonal corner of Ii, hence vi+1 is an anti-diagonal
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corner of Ii+1. It holds

∏
j<i

xuj

∏
k>i

xzk
fIi
−

∏
j<i+1

xuj

∏
k>i+1

xzk
fIi+1

=
∏
j<i

xuj

∏
k>i

xzk
(xvi

xzi
− xvi+1xui

) −
∏

j<i+1
xuj

∏
k>i+1

xzk
(xvi+2xui+1 − xvi+1xzi+1)

=
∏
j<i

xuj

∏
k≥i

xzk
xvi

−
∏

j≤i+1
xuj

∏
k>i+1

xvi+2 .

Due to the alternation of the signs in f̃ and by Remark 3.1.3, it follows that

f̃ = ±
 ∏
k=1,...,`

xzk
xv1 −

∏
j=1,...,`

xuj
xv1

 = ±xv1fW ,

and the sign of f̃ depends if v1 is a diagonal corner in I1.

Since f̃ is sum of polynomials in IP , then f̃ ∈ IP . Observe that, by hypothesis, for

i 6= j, zi, zj do not belong to the same inner interval of P , and the same fact holds for ui
and uj, with i 6= j. Due to this fact and by Remark 3.1.4, f 6∈ IP . Therefore, xv1 and fW
are zerodivisors of K[P ].

Corollary 3.1.6. Let P be a polyomino and IP the polyomino ideal associated to P. If

there exists a zig-zag walk in P, then IP is not prime.

Remark 3.1.7 The ideal JP contains the binomials associated to zig-zag walks. Indeed, let

W be a zig-zag walk and let fW be its associated binomial. From the proof of Proposition

3.1.5, it arises that

xv1fW ∈ IP ⊆ JP

and, due to primality of JP , it follows fW ∈ JP .

We give an example to better understand the structure of JP .

Example 3.1.8 We consider the polyomino in Figure 3.2. By using Macaulay2, we com-

puted the ideal JP associated to P . JP has 50 generators, 46 having degree 2, corresponding

to the inner 2-minors of P , and 4 having degree 4 that do not belong to IP . The latter are:

f1 = x(1,3)x(3,1)x(7,4)x(8,2) − x(1,2)x(3,4)x(7,1)x(8,3),

f2 = x(1,3)x(2,1)x(7,4)x(8,2) − x(1,2)x(2,4)x(7,1)x(8,3),
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Figure 3.2

f3 = x(1,3)x(3,1)x(6,4)x(8,2) − x(1,2)x(3,4)x(6,1)x(8,3),

f4 = x(13)x(2,1)x(6,4)x(8,2) − x(1,2)x(2,4)x(6,1)x(8,3).

The four binomials above correspond to the four zig-zag walks drawn in Figure 3.3. In

Figure 3.3: The zig-zag walks related to f1, . . . , f4.

Figure 3.4

this case, the generators of JP in JP \ IP are all related to zig-zag walks. However, we

computed JP for the polyomino in Figure 3.4, and we found that there are generators of

degree 6 that are not related to zig-zag walks, for example

g = x(1,4)x(3,1)x(4,6)x(5,1)x(6,6)x(8,3) − x(1,3)x(3,6)x(4,1)x(5,6)x(6,1)x(8,4).
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In Figure 3.5 (A), we highlight the intervals related to g. On the other hand, there are two

zig-zag walks that arises from g, as in Figure 3.5 (B).

(A) g is not related to a zig-zag walk... (B) ...but there are two zig-zag walks

Figure 3.5

The condition on zig-zag walks provides a good method to find immediately if a

polyomino in non-prime. Moreover, we computationally investigate whether such condition

is also sufficient. To verify that the non-existence of zig-zag walk is a sufficient condition

for the primality of IP , for any multiply connected polyomino P of rank ≤ 14, is not an

easy task. In fact, the set of polyominoes grows exponentially with respect to the rank as

the following table, obtained by the implementation in [55], shows (see also Table 2.1).

Rank 7 8 9 10 11 12 13 14

Multiply connected polyominoes 1 6 37 195 979 4663 21474 96496

We now present the theorem obtained by the implementation in [55].

Theorem 3.1.9. Let P be a polyomino with rank (P) ≤ 14. The following conditions are

equivalent:

1. the polyomino ideal IP is prime;

2. P contains no zig-zag walks.

Proof. (1)⇒ (2) It is an immediate consequence of Corollary 3.1.6.

(2)⇒ (1) To prove the claim we have implemented a computer program that performs the

following 3 steps:

(S1) Compute the set of all multiply connected polyominoes with rank ≤ 14, namely P .
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(S2) Compute the set of polyominoes NP ⊂ P whose associated ideals are not primes. We

used a routine developed in Macaulay2 (see [33]).

(S3) Verify that all polyominoes in NP have at least one zig-zag walk.

We refer to [55] for a complete description of the algorithm that we used.

From Theorem 3.1.9, a natural conjecture arises.

Conjecture 3.1.10 Let P be a polyomino. The following conditions are equivalent:

(i) the polyomino ideal IP is prime;

(ii) P contains no zig-zag walks.

3.1.2 Grid Polyominoes

From a view point of finding a new class of prime polyomino ideals, due to Corollary

3.1.6, it is reasonable to consider multiply connected polyominoes with no zig-zag walks.

In this subsection, we consider polyominoes obtained subtracting some inner intervals by a

given interval of N2, similarly as done in [44] and [73]. But, if the cells are removed without

a specific pattern, one can easily obtain a zig-zag walk in this case, too (see Figure 3.6(B)).

Hence, we define an infinite family of polyominoes with no zig-zag walks by their intrinsic

shape: the grid polyominoes.

Definition 3.1.11 Let P ⊆ I := [(1, 1), (m,n)] be a polyomino such that

P = I \ {Hij : i ∈ [r], j ∈ [s]},

whereHij = [aij, bij], with aij = ((aij)1, (aij)2), bij = ((bij)1, (bij)2), 1 < (aij)1 < (bij)1 < m,

1 < (aij)2 < (bij)2 < n, and

(i) for any i ∈ [r] and `, k ∈ [s] we have (ai`)1 = (aik)1 and (bi`)1 = (bik)1;

(ii) for any j ∈ [s] and `, k ∈ [r] we have (a`j)2 = (akj)2 and (b`j)2 = (bkj)2;

(iii) for any i ∈ [r−1] and j ∈ [s−1], we have (ai+1j)1 = (bij)1+1 and (aij+1)2 = (bij)2+1.

We call P a grid polyomino.

Let P be a grid polyomino and let TP and JP be the toric ring and the toric ideal

associated to P , respectively, as defined in Subsection 3.1.1, where the hole Hij induces the
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(A) A grid polyomino (B) A non-grid polyomino, with a zig-zag walk.

Figure 3.6

subset Fi,j and the variable ωi,j. We claim that the grid polyominoes are primes. In order

to prove this, we are going to show that IP = JP .

Let f = f+ − f− ∈ JP , we define V+ = {v ∈ V (P) | xv divides f+}, and, similarly,

V− = {v ∈ V (P) | xv divides f−}. A binomial f in a binomial ideal J is said to be

redundant if it can be expressed as a linear combination of binomials in J of lower degree.

A binomial is said to be irredundant if it is not redundant. The following lemma, that has

been stated in [73] but only for a family of polyominoes, holds also for any JP , as defined

in Subsection 3.1.1. Even if the proof is essentially the same of [73, Lemma 2.2], we report

it for the sake of completeness.

Lemma 3.1.12. Let f = f+ − f− ∈ JP be a binomial of degree ≥ 3. If there exist three

vertices p, q ∈ V+ and r ∈ V− such that p, q are diagonal (resp. anti-diagonal) corners of

an inner interval of P and r is one of the anti-diagonal (resp. diagonal) corners of the

inner interval, then f is redundant in JP .

Proof. Let s be the other corner of the inner interval determined by p, q and r. Then

f = f+ − f− = xpxq
f+

xpxq
− f−

= (xpxq − xrxs)
f+

xpxq
+ xrxs

f+

xpxq
− f−

= (xpxq − xrxs)
f+

xpxq
+ xr

(
xs

f+

xpxq
− f−

xr

)
.
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By Lemma 3.1.1, it holds IP ⊆ JP . Since xpxq − xrxs ∈ IP ⊆ JP , and JP is a prime ideal,

then xs f+

xpxq
− f−

xr
∈ JP , and the statement is proved.

Let P be a grid polyomino, and let Hij, for i ∈ [r] and j ∈ [s], be its holes, enumerated

as in Definition 3.1.11. Fix i ∈ [r] and j ∈ [s], we denote by Li,j the set

Li,j = Fi,j \
⋃
k≤i
h≤j

(h,k)6=(i,j)

Fh,k.

In Figure 3.7, it is displayed an example of a set Li,j. In particular, for the grid

polyomino P in figure, L2,2 consists of all vertices of P in the dark grey region.

H11 H21 H31

H12 H22 H32

L22

Figure 3.7: An example of Li,j.

Lemma 3.1.13. Let P be a grid polyomino. Let f = f+ − f− ∈ JP . If v ∈ V+ ∩ Li,j, for

some i ∈ [r] and j ∈ [s], then there exists v′ ∈ V− ∩ Li,j.

Proof. We prove the assertion showing that for all (i, j) and any v ∈ Li,j with v ∈ V+,

there exists v′ ∈ V− such that v′ ∈ Li,j. Let

(i1, j1) = min{(k, h) | V+ ∩ Fk,h 6= ∅}.

If such a pair does not exist, there is nothing to prove. Otherwise, let v1 ∈ V+ ∩ Li1,j1 .

Since ωi1,j1 | ϕ(f+), then ωi1,j1 | ϕ(f−). It follows there exists v′1 ∈ V− ∩ Fi1,j1 . By the
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minimality of the pair (i1, j1) and since ϕ(f+) = ϕ(f−), v′1 ∈ Li1,j1 . Let

(i2, j2) = min{(k, h) | (V+ \ {v1}) ∩ Fk,h 6= ∅}.

If such a pair does not exist, we have done. Otherwise, let v2 ∈ (V+ \ {v1}) ∩ Li2,j2 . We

observe that because of the existence of v1 and v′1 we have the following equation

f = (
∏
k≥i1
h≥j1

ωk,h)g,

where we have collected all ωk,h’s induced by v1 and v′1. Because of the existence of v2, we

have that

ωi2,j2 | ϕ(g+) = ϕ(g−).

It follows there exists v′2 ∈ (V− \ {v′1}) ∩ Fi2,j2 . By the minimality of the pair (i2, j2),

v′2 ∈ Li2,j2 . Iterating this procedure, the assertion follows.

Theorem 3.1.14. Let P be a grid polyomino. Then IP = JP .

Proof. By Lemma 3.1.1, IP ⊆ JP . We have to prove the opposite inclusion, that is JP ⊆ IP .

Since (JP)2 = IP , it suffices to prove that any irredundant binomial of JP is of degree 2.

Let f = f+ − f− ∈ JP , with deg(f) ≥ 3. Assume by contradiction that f is irredundant.

First, we show that there is no v ∈ (V+ ∪ V−) ∩ F , where F = ⋃
i∈[r],j∈[s]Fi,j. Assume by

contradiction that there exists v1 ∈ (V+ ∪ V−) ∩ F . In particular, v1 ∈ Li1,j1 , for some

i1 ∈ [r], j1 ∈ [s]. Without loss of generality, we may assume v1 ∈ V+. By Lemma 3.1.13,

there exists v′1 ∈ V−∩Li1,j1 . Note that, by the condition (3) in Definition 3.1.11, v1 belongs

to V (P) ∩ V (Hij), for some i, j. The same holds for v′1. Assume v1 < v′1. We have the

following 3 cases:

(1) v1 and v′1 belong to the same maximal vertical (resp. horizontal) edge interval;

(2A) at least one between v1 and v′1 is not a corner of an hole of P (e.g., see Figure 3.8

(A));

(2B) v1 and v′1 are both diagonal (or anti-diagonal) corners of some holes of P (e.g., see

Figure 3.8 (B)).
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(1) If v1 and v′1 belong to the same maximal vertical edge interval, there exists v′2 ∈ V−
that lies on the same maximal horizontal edge interval of v1. The vertices v1, v

′
1 and v′2

are corners of an inner interval of P , and by Lemma 3.1.12, f is redundant, which is a

contradiction. Similarly, one shows that v1 and v′1 do not belong to the same maximal

horizontal edge interval.

v1

v′1
Hi1−1j1−1

Hi1−1j1 Hi1j1

Hi1j1−1

(A)

v1

v′1

Hi1−1j1−1

Hi1−1j1 Hi1j1

Hi1j1−1

(B)

Figure 3.8

(2A) We assume that at least one between v1 and v′1 is not a corner of an hole of

P , we say v1. Denote by v′2 and v′3 the vertices in V− that belong to the same horizontal

and vertical edge interval of v1, respectively. The vertices v1, v
′
2, v
′
3 are corners of an inner

interval of P , hence by applying Lemma 3.1.12 to v1, v
′
2, v
′
3 we obtain that f is redundant,

which is a contradiction.

(2B) We denote by v′2 the vertex in V− that belongs to the same vertical edge interval

of v1. The vertices v′1 and v′2 are diagonal (or anti-diagonal) corners of an inner interval of

P . Denote by g, h the other two corners, where g is the one on the same horizontal edge
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interval of v′1. Then the binomial xv′1xv′2 − xgxh ∈ JP , and

f = f+ − f− = f+ − xv′1xv′2
f−

xv′1xv′2

= f+ − xhxg
(

f−

xv′1xv′2

)
− (xv′1xv′2 − xgxh)

f−

xv′1xv′2

= f ′ − (xv′1xv′2 − xgxh)
f−

xv′1xv′2
.

Let v′3 be the vertex in V− that belongs to the same horizontal edge interval of v1. The

vertices v1, v
′
3, and g are corners of an inner interval of P . Since f ′ ∈ JP , by applying

Lemma 3.1.12 to v1, v
′
3 and g, we obtain that f ′ is redundant, and then also f is redundant,

which is a contradiction.

It follows that the vertices appearing in V+ ∪ V− do not belong to F . This means

f ∈ JP ∩K[xv | v ∈ V (P) \F ]. Let P ′ be the subpolyomino of P which consists of all cells

of P having no vertices belonging to F . P ′ is a simple polyomino and IP ′ = IP ∩K[xv | v ∈

V (P) \ F ]. Note that α(v), for every v ∈ V (P) \ F , is a monomial of degree 2 determined

by the maximal horizontal and vertical edge intervals to which v belongs. Then, by [65,

Theorem 2.2], IP ′ = JP ′ = JP ∩ K[xv | v ∈ V (P) \ F ]. Hence, if f is irredundant in JP ,

then it is also irredundant in JP ∩K[xv | v ∈ V (P) \F ]. But IP ′ is generated by binomials

of degree 2, then f is redundant in IP ′ , and then in JP ∩K[xv | v ∈ V (P) \ F ], which is a

contradiction.

As a corollary, we obtain the following.

Corollary 3.1.15. Let P be a grid polyomino. Then IP is prime.

3.2 PRIMALITY OF POLYOMINOES BY QUADRATIC GRÖBNER

BASES

In this Section, we go further in the study the primality of multiply connected poly-

ominoes, by using Gröbner basis techniques. In Subsection 3.2.2 we define different graded

reverse lexicographic monomial orders and, as in [62], we give a necessary and sufficient

condition on P for having the set of inner 2-minors as reduced Gröbner basis of IP (see

Proposition 3.2.3). Starting from these monomial orders, for any corner v of the polyomino,
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we define new monomial orders <v such that the variable xv is the smallest one with re-

spect to <v. We determine when IP admits quadratic Gröbner basis with respect to <v

(see Proposition 3.2.5). In this case, we prove that the ideal is prime (see Theorem 3.2.6).

In Subsection 3.2.3 we apply all the previous results on a class of polyominoes: the thin

polyominoes (see Definition 3.2.7). We exhibit necessary and sufficient conditions in terms

of the geometry of the thin polyomino so that its ideal has a quadratic Gröbner basis with

respect to some graded reverse lexicographic monomial orders (see Theorem 3.2.10). As

an application we find two subclasses of thin polyominoes that are prime (see Corollary

3.2.12 and 3.2.15): one is that of thin cycles (see Definition 3.2.11) with inner intervals of

length at least 3, and the other consists of polyominoes obtained from grid polyominoes by

the deletion of some cells, that we call subgrid polyominoes (see Definition 3.2.14). Before

going through the results on Gröbner bases, in Subsection 3.2.1, we recall the definition

given in [62] of the lattice ideal associated to a polyomino P , and we show that it is the

ideal quotient of the polyomino ideal IP and a monomial.

3.2.1 Lattice ideals of polyominoes

In this Subsection, we recall some basic definitions on lattices and lattice ideals and

their relation with polyomino ideals. In addition, we prove Lemma 3.2.1, that is funda-

mental in the computation of the lattice ideal of any polyomino.

Given a lattice Λ ⊆ Zm×n, we attach a binomial ideal IΛ called the lattice ideal of Λ

such that

xa − xb ∈ IΛ ⇔ a − b ∈ Λ.

We say that a lattice Λ is saturated if for any a ∈ Zm×n, c ∈ Z such that ca ∈ Λ, we have

a ∈ Λ. It is known that Λ is saturated if and only if IΛ is prime. Let P ⊆ [(1, 1), (m,n)]

be a polyomino. Let

B = {eij : i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}

be the canonical basis of Zm×n and let C = {C1, . . . , Cr} be the set of cells of P . Let

α : C −→ Zm×n be such that α(Ck) = ck = eij + ei+1j+1 − ei+1j − eij+1, where (i, j) is the

lower left corner of the cell Ck.
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It is known from [25] that an ideal generated by any set of adjacent 2-minors of a

m × n matrix is a lattice ideal and that its corresponding lattice is saturated. Hence, the

lattice Λ = 〈{ck}k=1,...,r〉 is a saturated lattice, and IΛ is a prime ideal. In addition, it is

known from [62] that for a collection P of cells of N2, IP is prime if and only if IP = IΛ.

Moreover,

Lemma 3.2.1. Let P be a collection of cells of N2, let R be the polynomial ring associated

to P. Then, there exists a monomial u ∈ R such that

IΛ = (IP : u).

Proof. ⊇). Let u ∈ R be a monomial and let f ∈ (IP : u). We have that uf ∈ IP ⊆ IΛ.

Since IΛ is a prime ideal and u /∈ IΛ, then f ∈ IΛ.

⊆). Let fe = xe+ − xe− be a generator of IΛ, with

e = e+ − e− =
r∑

k=1
λkck =

r∑
k=1

(
(λkck)+ − (λkck)−

)
∈ Λ,

where λk ∈ Z, v+ denotes the vector obtained from v ∈ Zm×n by replacing all negative

components of v by zero, and v− = −(v− v+).

Let v =
r∑

k=1
(λkck)+ − e+ =

r∑
k=1

(λkck)− − e−. We have that all the components of v

are non-negative, as for any k ∈ {1, . . . , r} one has (c+
k )ij ≥ (ck)ij, for all 1 ≤ i ≤ m and

1 ≤ j ≤ n. This implies that the monomial xv ∈ R is such that

xv(xe+ − xe−) =
r∏

k=1
x(λkck)+ −

r∏
k=1

x(λkck)− =
r∑

k=1
µk(xc+

k − xc−
k ) ∈ IP ,

for some µk ∈ R. If we set u as the least common multiple of the elements xv induced by

all the generators fe of IΛ the assertion follows.

3.2.2 Quadratic graded reverse lexicographic Gröbner basis

Consider the total orders <i, with i ∈ {1, . . . , 8}, on N2 induced by the pairs of arrows

displayed in Table 3.1.

<1 <2 <3 <4 <5 <6 <7 <8

(↓ ,→) (↓ ,←) (↑ ,←) (↑ ,→) (← , ↑) (→ , ↑) (→ , ↓) (← , ↓)

Table 3.1: Pairs of arrows that induce the total orders.
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Given a = (a1, a2) and b = (b1, b2), the horizontal arrows refer to the first coordinates,

a1 and b1, while the vertical ones to the second coordinates, a2 and b2. Each arrow goes

from the minimum to the maximum. For any pair of arrows, that is for any total order,

we first compare the coordinate given by the second arrow, and, if they are equal, then we

compare the coordinates given by the first arrow. For instance, a <1 b if a1 < b1 or a1 = b1

and a2 > b2. That is, let a, b, c, d ∈ V (P) be as in Figure 3.9.
a

b

c

d

Figure 3.9

Then it holds a <1 b <1 c <1 d. The latter explains the order of the arrows, that is,

we can order a set of vertices from the minimum to the maximum by firstly following the

direction given by the first arrow and then the direction given by the second one. Similarly

(a1, a2) <5 (b1, b2) if a2 < b2 or a2 = b2 and a1 > b1 and then one can recover all of the

other orders. In the next remark, we show the relations between the orders <i.

Remark 3.2.2 Let P be the polyomino in Figure 3.10.
a

b

c

d

Figure 3.10: A rectangular polyomino P

Then with respect to the orders <1 induced by (↓ ,→), <2 induced by (↓ ,←), <3

induced by (↑ ,←) we have

a <1 b <1 c <1 d, c <2 d <2 a <2 b, d <3 c <3 b <3 a.

Let P ′ and P ′′ be respectively the reflection of P with respect to the line containing

the edge {c, d} (Figure 3.11) and the 180 degree rotation of P (Figure 3.12).
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c

d

a

b

Figure 3.11: The polyomino P ′: the reflection of P with respect to {c, d}

We observe that in P ′ we have c <1 d <1 a <1 b.
d

c

b

a

Figure 3.12: The polyomino P ′′: the 180 degree rotation of P

We observe that in P ′′ we have d <1 c <1 b <1 a. We conclude that the order <2 it

is equal to the order <1 up to a reflection of the polyomino, while the order <3 is equal to

the order <1 up to a 180 degree rotation of the polyomino. Similarly the other relations

follow.

The total orders <i, with i ∈ {1, . . . , 8}, on the vertices of P induce in a natural

way the graded reverse lexicographic monomial orders <i
grevlex, with i ∈ {1, . . . , 8}, on the

polynomial ring R, respectively.

As in Proposition 2.4.1, the next proposition gives a necessary and sufficient condition

on P for havingM as quadratic reduced Gröbner basis of IP .

From now on, we set O = {1, 3, 5, 7} and E = {2, 4, 6, 8}.

Proposition 3.2.3. Let P be a polyomino. M forms a reduced Gröbner basis of IP with

respect to <i
grevlex, for i ∈ O, if and only if for any two intervals [a, b] and [b, e] of P, at

least one interval between [a, f ] and [a, g] is an inner interval of P, where f and g are

the anti-diagonal corners of [b, e]. Similarly, M forms a reduced Gröbner basis of IP with

respect to <i
grevlex, for i ∈ E, if and only if for any two inner intervals [a, b] and [e, f ] of P,

with d anti-diagonal corner of both the inner intervals, either a, e or b, f are anti-diagonal

corners of an inner interval of P.

Proof. We are going to prove the statement only for <1
grevlex,then, by similar arguments and
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by Remark 3.2.2, the other cases follow. The others follow in a similar way. The set M

forms a reduced Gröbner basis of IP with respect to <1
grevlex if and only if all S-polynomials

of inner 2-minors of IP reduce to 0. Let f, g ∈ M, where f = xaxb − xcxd is associated

to the inner interval [a, b] of P and g = xpxq − xrxs is associated to the inner interval

[p, q] of P . In the following, we denote by S the S-polynomial between f and g and by

in(h) the leading monomial of a polynomial h. We consider the non-trivial cases when

gcd(in(f), in(g)) 6= 1. Moreover, if one of the inner intervals, namely [a, b], is contained

in the second one, namely [p, q], S reduces to 0 since the polyomino ideal is generated by

all inner 2-minors. In the following, denote by < the total order <1 on the vertices of P .

Without loss of generality, let a ≤ p. Therefore, we have to consider the following cases:

a = p, b = q, and b = p.

a

c

s d

e
b

r q

(A) Case a = p.

sp

r

d

bc

a
e

(B) Case b = q.

a

c

d

r

b s

qe

t

(C) Case b = p.

Figure 3.13

Let a = p, that is f = xaxb − xcxd and g = xaxq − xrxs, and assume r < c < a < q <

s < b < d as in Figure 3.13A. We have S = xqxcxd − xbxrxs and in(S) = xqxcxd. Since

in(fc,q) = xcxq, we get

S = xd(xcxq − xrxe)− xr(xsxb − xexd),

that is S reduces to 0 with respect toM.

Let b = q, and assume c < a < r < p < b < d < s as in Figure 3.13B. We have

S = xaxrxs − xcxdxp and in(S) = xaxrxs. Since in(fa,r) = xaxr, we get

S = xs(xaxr − xcxe)− xc(xpxd − xexs),

that is S reduces to 0 with respect toM.
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Let b = p, and assume c < a < r < b < d < q < s as in Figure 3.13C. We have

S = xaxrxs − xqxcxd and in(S) = xaxrxs. If neither [a, s] nor [a, r] is an inner interval of

P , then S does not reduce to 0 with respect toM and the Gröbner basis is not quadratic.

Furthermore, if [a, s] is an inner interval of P , since in(fa,s) = xaxs, we get

S = xr(xaxs − xcxt)− xc(xdxq − xrxt).

If [a, r] is an inner interval of P , since in(fa,r) = xaxr, we get

S = xs(xaxr − xexd)− xd(xcxq − xexs).

It shows that in both situations S reduces to 0 with respect toM. The latter shows that

S reduces to 0 with respect toM if and only if either [a, s] or [a, r] is an inner interval of

P and the thesis follows.

Let V (P) = {v1, . . . , vn}. Given a monomial order < such that we have

xv1 < xv2 < · · · < xvn ,

we define by <v, with v = vk ∈ V (P), the following monomial order:

xvk
< xvk+1 < · · · < xvn < xv1 < xv2 < · · · < xvk−1 .

From now on, we will denote (<i
grevlex)v by <i

v, for any i ∈ {1, . . . , 8}.

Definition 3.2.4 Let P be a polyomino and let v ∈ V (P). We say that v satisfies the

condition π1 if it fulfils at least one of the following conditions:

(I) There exist two inner intervals I = [a, b] and J = [b, q] of P , with v upper left corner

of I, and s the lower right corner of J , such that [v, q] is inner interval of P , whereas

the interval [a, s] is not (see Table 3.2, Case π1 (I)).

(II) There exist two inner intervals K = [a, b] and L = [p, q], with v lower right corner of

K and upper left corner of L, such that the interval having b and q as anti-diagonal

corners is inner interval of P , whereas the interval having a and p as anti-diagonal

corners is not (see Table 3.2, Case π1 (II)).
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In a similar way, by Remark 3.2.2 and by using suitable rotations and/or reflections,

one can define v satisfying the condition πi, for i ∈ {2, . . . , 8}, if it fulfils at least one of the

cases (I) and (II) displayed in Table 3.2.

π1 π2 π3 π4

(I) v v v v

(II) v v v v

π5 π6 π7 π8

(I)
v v

v v

(II) v v v v

Table 3.2: Conditions πi, for i = 1, . . . , 8.

Proposition 3.2.5. Let P be a polyomino such that IP has M as reduced Gröbner basis

with respect to <i
grevlex, with i ∈ O (i ∈ E, respectively). If v ∈ V (P) does not satisfy πk

for some k ∈ O (k ∈ E, respectively), then M forms a reduced Gröbner basis of IP with

respect to <k
v.

Proof. Assume thatM forms a reduced Gröbner basis of IP with respect to <i
grevlex, with

i ∈ O. Let f = xaxb − xcxd and g = xpxq − xrxs be associated to the inner interval

[a, b] and [p, q] of P , respectively. Let v ∈ V (P). We have to show that for each pair of

inner 2-minors, f and g, the corresponding S-polynomial reduces to 0 with respect to a
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fixed monomial order <i
v, with i ∈ O. In the following, we denote by S the S-polynomial

between f and g, by in(h) the leading monomial of a polynomial h, and by fm,n the inner

2-minor associated to the inner interval [m,n] of P .

We leave to the reader the trivial cases {a, b, c, d} ∩ {p, q, r, s} = ∅, and |{a, b, c, d} ∩

{p, q, r, s}| = 2 where S reduces to 0 since the polyomino ideal is generated by all inner

2-minors.

Note that if, for all vertices w ∈ {a, b, c, d, p, q, r, s} and a monomial order <i
grevlex, for

some i ∈ O, it holds xw <i
v xv or xv <i

v xw, then S reduces to 0 with respect to <i
v, since

it reduces to 0 with respect to <i
grevlex.

If one of the inner intervals, namely [a, b], is contained in the second one, namely

[p, q], S reduces to 0 since the polyomino ideal is generated by all inner 2-minors. In the

following, denote by < the total order <1 on the vertices of P . Without loss of generality,

let a ≤ p. Therefore, we have to consider the following cases:

a = p, b, d ∈ {p, q, r, s}, c ∈ {p, r}.

If v does not satisfy the condition πk, for some k ∈ O, we fix the monomial order <k
v .

Without loss of generality, assume k = 1. Then, by similar arguments and by Remark

3.2.2, the cases k > 1 can be done by applying suitable rotations and/or reflections.

Let a = p, that is f = xaxb−xcxd and g = xaxq−xrxs, and r < c < a < q < s < b < d

as in Figure 3.14.

a

c

s d

e
b

r q

Figure 3.14: Case a = p.

We start by observing that if r < v ≤ b, then gcd(in(f), in(g)) = 1. In the other cases, we
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have S = xrxsxb − xcxdxq. If b < v ≤ d, then in(S) = xrxsxb. Since in(fs,b) = xsxb, then

S = xr(xsxb − xexd)− xd(xcxq − xrxe),

that is S reduces to 0 with respect to the inner 2-minors fs,b and fc,q. If v = r, then

in(S) = xcxdxq. Since in(fc,q) = xcxq, then

S = −xd(xcxq − xrxe) + xr(xsxb − xexd),

that is S reduces to 0 with respect to the inner 2-minors fc,q and fs,b.

Let b = p, that is f = xaxb−xcxd and g = xbxq−xrxs, andc < a < r < b < d < q < s,

as in Figure 3.15.

a

c

d

r

b s

qe

t

Figure 3.15: Case b = p.

If c < v ≤ q, then gcd(in(f), in(g)) = 1. In the other cases, we have S = xaxrxs − xqxcxd.

If q < v ≤ s, then in(S) = xqxcxd. By hypothesis,M forms a reduced Gröbner basis of IP
with respect to <i

grevlex with i ∈ O, hence, from Proposition 3.2.3, either [c, q] or [d, q] is an

inner interval of P , with in(fc,q) = xcxq and in(fd,q) = xdxq, and then

S = xd(xcxq − xexs)− xs(xaxr − xexd)

or

S = −xc(xdxq − xrxt) + xr(xaxs − xcxt),

that is S reduces to 0 with respect to the inner 2-minors either fc,q and fa,r or fd,q and fa,s.

If v = c, then in(S) = xaxrxs. By hypothesis, either [a, r] or [a, s] is an inner interval of P

, with in(fa,r) = xexd and in(fa,s) = xaxs. If [a, r] is an inner interval of P , but [a, s] is not,

67



then v satisfies the condition π1, so we have not to consider this case. Whereas, if [a, s] is

an inner interval, since in(fa,s) = xaxs, then

S = xr(xaxs − xcxt)− xc(xdxq − xrxt),

it follows that S reduces to 0.

Note that when v = c, if [a, r] is an inner interval of P , but [a, s] is not, that is v satisfies π1,

in particular the condition π1 (I), then S does not reduce to 0 with respect toM and <1
v. In

fact, in(S) = xaxrxs, but the monomials xaxr, xaxs, and xrxs are not leading monomials of

any inner 2-minor of P . This situation justifies the hypothesis v not satisfying the condition

π1.

Let b = r, that is that is f = xaxb−xcxd and g = xpxq−xbxs. We have to distinguish

two different situations: p < d (see Figure 3.16 (A)) or p > d (see Figure 3.16 (B)).

a

e

d

p s

c b q

(A) (B)

a

c

p

d
e

b

s

q

f

Figure 3.16: Case b = r.

Assume p < d, then c < a < b < p < d < q < s, as in Figure 3.16 (A). If c ≤ v ≤ b or

q < v ≤ s, then gcd(in(f), in(g)) = 1. In the other cases, S = xaxpxq−xcxdxs. If b < v ≤ p

or d < v ≤ q, then in(S) = xcxdxs and in(fe,q) = xcxs. If p < v ≤ d, then in(S) = xaxpxq

and in(fa,p) = xaxp. Therefore,

S = xd(xexq − xcxs) + xq(xaxp − xexd),

that is S reduces to 0 in all of these cases.

Assume p > d, then c < a < b < d < p < q < s, as in Figure 3.16 (B). If c ≤ v ≤ b or

q < v ≤ s, then gcd(in(f), in(g)) = 1. In the other cases, we have S = xaxpxq − xcxdxs. If
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b < v ≤ d, then in(S) = xaxpxq. By hypothesis, v does not satisfy the condition π1, hence

[f, d] is an inner interval of P . Since in(ff,d) = xaxp, then

S = −xq(xfxd − xaxp) + xd(xfxq − xcxs),

that is S reduces to 0. If d < v ≤ q, then in(S) = xcxdxs. Since in(fp,e) = xdxs, it follows

S = xc(xpxe − xdxs) + xp(xaxq − xcxe),

that is S reduces to 0.

Note that when b < v ≤ d, if [f, d] is not an inner interval of P , then v satisfies π1,

in particular the condition π1 (II). In this case, S does not reduce to 0 with respect toM

and <1
v. In fact, in(S) = xaxpxq, but the monomials xaxp, xaxq, and xpxq are not leading

monomials of any inner 2-minor of P . This situation justifies, once again, the hypothesis

v not satisfying the condition π1.

Let d = q, that is f = xaxb−xcxd and g = xpxd−xrxs, and c < a < r < p < b < d < s,

as showed in Figure 3.17.

e

a

p

r
d

b

s

c

f

Figure 3.17: Case d = q.

If either v = c or r < v ≤ s, then gcd(in(f), in(g)) = 1. In the other cases, we have

S = xaxbxp − xcxrxs. If c < v ≤ a, then in(S) = xcxrxs. Since in(fc,r) = xcxr, then

S = xs(xaxe − xcxr) + xa(xpxb − xsxe),

that is S reduces to 0. If a < v ≤ r, then in(S) = xaxbxp. By hypothesis, v does not satisfy

π1, that is [f, r] is an inner interval of P . Since in(ff,r) = xaxp, then

S = −xb(xfxr − xaxp) + xr(xfxb − xcxs),
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that is S reduces to 0.

Let c = r, that is f = xaxb−xcxd and g = xpxq−xcxs, and c < p < a < b < d < q < s,

as showed in Figure 3.18.

a

p

d

b

s

qc

e

f

Figure 3.18: Case c = r.

If either v = c or b < v ≤ s , then gcd(in(f), in(g)) = 1. In the other cases, we have

S = xaxbxs − xdxpxq. If c < v ≤ p, in(S) = xaxbxs. Since v does not satisfy π1, then [a, s]

is an inner interval of P and in(fa,s) = xaxs. Therefore,

S = xb(xaxs − xpxf )− xp(xdxq − xbxf ),

that is S reduces to 0. If p < v ≤ b, then in(S) = xdxpxq and in(fa,e) = xpxd. Therefore,

S = xq(xaxe − xpxd)− xa(xexq − xbxs),

that is S reduces to 0. For the sake of brevity, we leave to readers to check, in a similar

way, that if b ∈ {q, s}, d ∈ {p, r, s}, and c = p, then all the S-polynomials reduce to 0.

Moreover, for no one of the corners v in these cases it needs to require the hypothesis that

v does not satisfy the condition π1.

We now prove the main theorem of this section.

Theorem 3.2.6. Let P be a polyomino such that IP hasM as reduced Gröbner basis of IP
with respect to <i

grevlex, with i ∈ O (i ∈ E, respectively). If, for all v ∈ V (P), there exists

a kv ∈ O (kv ∈ E, respectively) such that v does not satisfy πkv , then

1. M forms a reduced Gröbner basis with respect to <kv
v , for all v ∈ V (P);
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2. IP is prime.

Proof. (1) It is an immediate consequence of Proposition 3.2.5.

(2) Fix v ∈ V (P). By (1), let <v denote the monomial order for whichM forms a reduced

Gröbner basis of IP . By Lemma 1.2.7, the reduced Gröbner basis of (IP : xv) with respect

to <v is given by

{f ∈M | xv does not divide f} ∪ {f/xv | f ∈M and xv divides f}.

Since all f ∈M are not divisible by xv, the reduced Gröbner basis of (IP : xv) with respect

to <v isM. Therefore (IP : xv) = IP , for all xv ∈ V (P). It follows that (IP : u) = IP for

any monomial u ∈ R. By Lemma 3.2.1, we have that there exists a monomial u ∈ R such

that IΛ = (IP : u). Then

IΛ = (IP : u) = IP .

It follows that IP coincides with the lattice ideal IΛ, which is prime. Therefore, IP is a

prime ideal, as well.

3.2.3 Thin polyominoes

In this subsection, we introduce the class of thin polyominoes and we rephrase the

geometric condition for the quadratic Gröbner basis of IP in Proposition 3.2.3 in terms of

some subpolyominoes of the thin polyomino P . Thanks to the above interpretation, we

find two new classes of thin polyominoes having a prime polyomino ideal: the thin cycle

with no maximal inner interval of length 2 and the subgrid polyominoes.

Definition 3.2.7 Let P be a polyomino. We say that P is thin if P does not have the

polyomino Q in Figure 3.19 as a subpolyomino.

Figure 3.19: The polyomino Q
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Theorem 3.2.8. Let P be a thin polyomino such that M forms a reduced Gröbner basis

of IP with respect to <i
grevlex for i ∈ O (for i ∈ E, respectively). Then, for any v ∈ V (P),

there exists k ∈ O (k ∈ E, respectively) such that M forms a reduced Gröbner basis of IP
with respect to <k

v.

Proof. Assume thatM forms a reduced Gröbner basis of IP with respect to <i
grevlex, with

i ∈ O. Let v ∈ V (P). From Proposition 3.2.5 it suffices to show that there exists k ∈ O

such that v does not satisfy πk.

We claim that v can not satisfy simultaneously π1 and π3. In fact, if v satisfies

simultaneously π1 and π3, then there exist four cells C,D,E, F of P such that C ∩ D ∩

E ∩ F = {v}. From Table 3.2, if v satisfies π1 then there exist two cells C,D of P such

that v is simultaneously the lower left corner of C and the upper left corner of D, while if

P satisfies π3 then there exist two cells E,F of P such that v is simultaneously the lower

right corner of E and the upper right corner of F . Since v satisfies simultaneously π1 and

π3, the cells C,D,E, F are the ones desired. This implies that the polyomino Q in Figure

3.19 is a subpolyomino of P and then P is not thin, which is a contradiction. It follows

that there exists at least a k ∈ O such that v does not satisfy πk, as desired.

Corollary 3.2.9. Let P be a thin polyomino such that M forms a reduced Gröbner basis

of IP with respect to <i
grevlex for i ∈ {1, . . . , 8}. Then IP is prime.

Proof. By Theorem 3.2.8, for any v ∈ V (P),M forms a reduced Gröbner basis of IP with

respect to <k
v , for some k ∈ {1, . . . , 8}. By Theorem 3.2.6, it follows that IP is prime.

Theorem 3.2.10. Let P be a thin polyomino. The following facts are equivalent:

1. M forms a reduced Gröbner basis of IP with respect to <i
grevlex for i ∈ O (i ∈ E,

respectively);

2. there are no cells C,D 6∈ P and E,F ∈ P such that C ∩D ∩E ∩ F 6= ∅ as in Figure

3.20 (a) (Figure 3.20 (b), respectively) and the polyominoes in Figure 3.21 (i) and

(ii) (in Figure 3.21 (iii) and (iv), respectively) are not subpolyominoes of P.
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(a)
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Figure 3.20

(i) (ii) (iii) (iv)

Figure 3.21

Proof. We prove the equivalent statements for <i
grevlex, with i ∈ O. The case <i

grevlex for

i ∈ E can be done similarly.

(1) ⇒ (2). Firstly, let E,F be two cells of P as in Figure 3.20 (a). Since, by hypothesis,

M is a quadratic Gröbner basis, by Proposition 3.2.3, at least one cell between C and D

must be a cell of P . That is the situation displayed in Figure 3.20 (a) is not possible.

Secondly, assume, by contradiction, that the polyominoes in Figure 3.21 (i) and (ii) are

subpolyominoes of P . Then we consider the inner intervals [a, b] and [b, e] of P as in Figure

3.22.
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(i)
a

b

e

g

f

(ii)
a

b

f e

g

Figure 3.22

By Proposition 3.2.3, at least one between [a, g] and [a, f ] is an inner interval of P ,

where f and g are the anti-diagonal corners of [b, e]. In both cases, we get a polyomino

that is not thin, which is a contradiction.

(2) ⇒ (1). Assume, by contradiction, that M does not form a quadratic Gröbner

basis of IP with respect to <i
grevlex for i ∈ O. According to Proposition 2.1, there exist two

inner intervals [a, b] and [b, e] of P , where [a, b] has anti-diagonal corners c and d, and [b, e]

has anti-diagonal corners f and g, such that neither [a, f ] nor [a, g] is an inner interval of

P . Let E and F be respectively cells of [a, b] and [b, e] such that E ∩ F = {b}. Let C and

D be respectively cells of [a, f ] and [a, g] such that E ∩ C ∩D ∩ F = {b}. Since P is thin,

the cells C and D can not simultaneously be cells of P . If neither C nor D is a cell of P ,

then C,D,E, and F are cells as in Figure 3.20 (a) and this is a contradiction. Assume,

without loss of generality, that C 6∈ P , but D ∈ P . Since [a, g] is not an inner interval of

P , then d and g are not both corners of D.

D

(i)
a

b

e

g

d

f

D

(ii)
a

b

e

g

d

f

Figure 3.23
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Let P ′ be the subpolyomino of P given by the union of the cells of [a, b], [b, e] and D,

as in Figure 3.23. Then, one of the two subpolyominoes displayed in Figure 3.21 (i) and

(ii) is a subpolyomino of P ′, and then of P , which is a contradiction.

Definition 3.2.11 Let P = {C1, . . . , Cn} be a thin polyomino. If there exists a relabelling

of the cells of P such that C1, C2, . . . Cn is a path of cells, C1 and Cn have an edge in

common, and Ci ∩ Cj = ∅ for all j > i+ 2, then P is called thin cycle.

Note that a thin cycle is a polyomino with exactly one hole. In Figure 3.24 three thin

cycles are displayed. In particular, the polyominoes in (A) and (B) have the polyominoes in

Figure 3.21 (i)–(iv) as subpolyominoes. This implies that in both casesM is not a reduced

Gröbner basis of IP with respect to <i
grevlex for i ∈ {1, . . . , 8}. However, the polyomino

in (A) is prime, whereas the polyomino in (B) is not. Surprisingly, in the next result we

exhibit a class of thin cycles having a prime ideal. The polyomino in Figure 3.24 (C)

belongs to such a class.

(A) (B) (C)

Figure 3.24: Examples of thin cycle polyominoes.

Corollary 3.2.12. Let P be a thin cycle polyomino whose all maximal inner intervals have

length at least 3. Then IP is prime.

Proof. First of all, we observe that such a P satisfies the condition (2) of Theorem 3.2.10.

In fact, by definition of thin cycle, there are no cells C,D,E and F such that E,F ∈ P

intersect in one vertex, C,D 6∈ P and C ∩D ∩E ∩ F 6= ∅, as in Figure 3.20. Moreover, by

hypothesis, there is no maximal inner intervals of length 2 as in Figure 3.21. By Theorem
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3.2.10,M is a quadratic Gröebner basis for IP with respect to <i
grevlex, for all i ∈ {1, . . . , 8}.

By Corollary 3.2.9, the thesis follows.

As another application of the results obtained for thin polyominoes, we consider the

grid polyominoes, that we introduced in Subsection 3.1.2. They are prime and, by def-

inition, thin. One can see, by applying Proposition 3.2.3, that grid polyominoes have

quadratic Gröbner basis with respect to <i
grevlex, for all i ∈ {1, . . . , 8}. In the following, we

will define a new infinite family of prime polyominoes, obtained by the deletion of certain

cells from grid polyominoes.

Remark 3.2.13 We observe that a grid polyomino P can be regarded as the disjoint

union of two collections of cells, namely P = P1 t P2, where P1 = {C ∈ P | C is properly

contained in exactly one maximal inner interval of P} and P2 = {C ∈ P | C is properly

contained in 2 maximal inner intervals of P}.

Definition 3.2.14 Let P be a grid polyomino with P = P1 t P2 and P1 and P2 as in

Remark 3.2.13. Let P ′1 be a subset of P1 such that P ′ = P \P ′1 is a polyomino. We call P ′

a subgrid polyomino of P .

Corollary 3.2.15. Let P ′ be a subgrid polyomino of a grid polyomino P. Then IP ′ is

prime.

Proof. First of all, we claim that P ′ satisfies the condition (2) of Theorem 3.2.10. By

contradiction, assume that there exist E and F cells of P ′ as in Figure 3.20, but neither C

nor D is a cell of P ′. By definition of grid polyomino, either C or D is a cell of P . Without

loss of generality, we may assume that C is a cell of P . Then C ∈ P2, and C 6∈ P1, since

C is properly contained in two maximal inner intervals: one containing the cells C and E

and the other containing C and F . Then C is still a cell of P ′. Moreover, by definition

of grid polyomino, the subpolyominoes displayed in Figure 3.21 are not subpolyominoes

of P . Since P ′ ⊂ P , then they are not subpolyominoes of P ′ either. By Theorem 3.2.10,

M is a quadratic Gröebner basis for IP ′ with respect to <i
grevlex, for all i ∈ {1, . . . , 8}. By

Corollary 3.2.9, the thesis follows.
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In Figure 3.25B, it is shown a subgrid polyomino P ′ obtained from the grid polyomino

P displayed in Figure 3.25A by removing some cells in P1. By Corollary 3.2.15, the ideal

IP ′ is prime.

(A) A grid polyomino P. (B) A subgrid polyomino of the grid poly-

omino in Figure 3.25A.

Figure 3.25: An example of grid polyomino with a related subgrid polyomino
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Chapter 4

HILBERT SERIES AND GORENSTEINNESS OF POLYOMINOES

In this chapter, we study the polyomino ideal and the related coordinate ring un-

der the point of view of the Castelnuovo-Mumford regularity, the Hilbert series and the

Gorensteinnes. We recall that the above invariants and properties are strictly related,

as explained in Section 1.4. In such relations, the Cohen-Macaulayness of K[P ] plays a

fundamental role. Therefore, we study the above properties only for classes of simple poly-

ominoes, in view of Lemma 2.4.3. In fact, it is an open problem to determine whether

the coordinate ring K[P ] is Cohen-Macaulay in the case of non-simple polyominoes. We

first discuss the results on Castelnuovo-Mumford regularity and Hilbert series, and then we

discuss the Gorensteinnes at the end of this section. In Section 4.1, we focus on L-convex

polyominoes, that are widely studied under the point of view of combinatorics (see Section

2.2). For such class of polyominoes we compute the Castelnuovo-Mumford regularity and

we prove that it coincides with the rook number of the polyomino, namely the maximum

number of non-attacking rooks that can be placed on the polyomino. The latter opens a

new horizon in relating the algebraic invariants of polyominoes to the combinatorial prop-

erties related to the rook configurations. Let P be a polyomino and let rk be the number

of ways of arranging k non-attacking rooks on the cells of P . The polynomial

rP(t) =
r(P)∑
k=0

rkt
k

is called the rook polynomial of P and r(P) is called the rook number of P . The set of all

rook configurations is a simplicial complex, that we call rook complex. In Section 4.2, for the

class of simple thin polyominoes we prove that for the reduced Hilbert series h(t)/(1− t)d

it holds h(t) = rP(t). Moreover, this equation does not hold in the case of simple non-thin

polyominoes. Nevertheless, by computation, we observe that the polynomial the coefficients

of the polynomial h(t) are upper-bounded by the ones of the rook polynomial. The latter

leads us to conjecture that there exists another polynomial r̃P(t), strictly related to rP(t),

such that h(t) = r̃P(t). Such a polynomial is obtained by introducing an equivalence rela-

tion on the rook complex. In Section 4.3, we verify computationally the above conjecture
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for any polyomino up to rank 11, and we prove the conjecture in the case of parallelogram

polyominoes (see Section 2.3). In this discussion, the underlying relation between parallel-

ogram polyominoes and simple planar distributive lattices plays a fundamental role.

For what concerns the Gorensteinnes, for an L-convex polyomino P , we define a sequence

of L-convex polyominoes obtained from P by removing maximal rectangles, called derived

sequence. We obtain a characterization for the Gorensteinnes of L-convex polyominoes in

terms the bounding boxes of the polyominoes of the derived sequence. Furthermore, for

simple thin polyominoes, we obtain a characterization of the Gorensteinnes in terms of the

single cells of P , namely cells belonging to a unique maximal interval. Although the Goren-

steinnes of simple planar distributive lattices is characterized, we find a nice combinatorial

interpretation of the Gorensteinnes of the parallelogram polyominoes, as we have done for

the two classes above. The references for this chapter are [27], [70] and [63].

4.1 CASTELNUOVO-MUMFORD REGULARITY AND GORENSTEIN-

NESS OF L-CONVEX POLYOMINOES

In this section, we study the coordinate ring of L-convex polyominoes, already in-

troduced in Section 2.2, together with its Castelnuovo-Mumford regularity, Gorensteinnes

and Cohen-Macaulay type. In particular, in subsection 4.1.1 we prove that if P is an

L-convex polyomino, then there is a natural bipartite graph FP whose edges correspond

to the cells of P . By using this correspondence, we show in Proposition 4.1.1 that there

exists a polyomino P∗ which is a Ferrer diagram and such that the bipartite graphs FP and

FP∗ are isomorphic. We call P∗ the Ferrer diagram projected by P . In particular, such

Ferrer diagram P∗ has the same horizontal and vertical projections of P but arranged in

descending order. Similarly there exists a bipartite graph GP whose edges correspond to

the coordinates of the vertices of P . By using the intimate relationship between FP and GP
it can be shown that GP and G∗P are isomorphic as well, see Corollary 4.1.5. The crucial

observation which then follows from these considerations is the result (Theorem 4.1.6) that

K[P ] and K[P∗] are isomorphic as standard graded K-algebras. Therefore all algebraic

invariants and properties of K[P ] are shared by K[P∗]. For many arguments this allows us

to assume that P itself is a Ferrer diagram. Since the coordinate ring of a Ferrer diagram
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can be identified with the edge ring of a Ferrer graph, results of Corso and Nagel [20] can

be used to compute the Castelnuovo-Mumford regularity of K[P ], denoted by reg (K[P ]).

It turns out that reg (K[P ]) has a very nice combinatorial interpretation. Namely, for an

L-convex polyomino, reg (K[P ]) is equal to maximal number of non-attacking rooks that

can be placed on P , as shown in Theorem 4.1.8. This is the main result of Subsection 4.1.2.

In Subsection 4.1.3, we study the Gorenstein property of L-convex polyominoes. We

first observe that if we remove the rectangle of maximal width from P , then the result

is again an L-convex polyomino. Repeating this process we obtain a finite sequence of

L-convex polyominoes, which we call the derived sequence of P . In Theorem 4.1.11 we

then shown that K[P ] is Gorenstein if and only if the bounding boxes of the derived

sequence of L-convex polyominoes of P are all squares. For the proof we use again that

K[P ] ∼= K[P∗], and the characterization of Gorenstein stack polyominoes given in Theorem

2.4.4. In addition, under the assumptionK[P ] is not Gorenstein, we show in Theorem 4.1.11

that K[P ] is Gorenstein on the punctured spectrum if and only if P is a rectangle, but not

a square. Here we use that the coordinate ring of a a Ferrer diagram may be viewed as a

Hibi ring. Then we can apply a recent result of Herzog et al [39] which characterizes the

Hibi rings which are Gorenstein on the punctured spectrum.

Finally, in Subsection 4.1.4 we compute the Cohen–Macaulay type of K[P ] for an L-

convex polyomino P . Again we use the fact that K[P∗] may be viewed as a Hibi ring (of a

suitable poset Q). The number of generators of the canonical module of K[P∗], which by

definiton is the Cohen–Macaulay type, is described by Miyazaki [58] (based on results of

Stanley [78] and Hibi [42]). It is the number of minimal strictly order reversing maps on

Q. Then somewhat technical counting arguments provide us in Theorem 4.1.17 with the

desired formula.

4.1.1 L-convex polyominoes and Ferrer diagrams

A Ferrer graph G is a bipartite graph with V (G) = {u1, . . . , um} t {v1, . . . , vn} such

that {u1, vn}, {um, v1} ∈ E(G) and if {ui, vj} ∈ E(G) then {ur, vs} ∈ E(G) for all 1 ≤ r ≤ i

and for all 1 ≤ s ≤ j. Let G be a Ferrer graph and P be a polyomino such that HP =

(deg v1, . . . , deg vn), VP = (deg u1, . . . , deg um) and FP = G. Then P is a Ferrer diagram
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(see Section 2.2). Note that if [(0, 0), (m,n)] is the bounding box of a Ferrer diagram P ,

then (0, 0), (m,n) ∈ V (P).

Figure 4.1: Ferrer diagram

Proposition 4.1.1. Let P be an L-convex polyomino. Then there exists a Ferrer diagram

P∗ such that FP ∼= FP∗.

Proof. Let FP be the bipartite graph associated to P , with vertex set V (FP) =

{X1, . . . , Xm} t {Y1, . . . , Yn}. We first prove that after a suitable relabelling of vertices

of FP , it can be viewed as a Ferrer graph. Let T1, T2, . . . , Tm and U1, U2, . . . , Un be

the relabelling of the vertices of FP such that deg T1 ≥ deg T2 ≥ · · · ≥ deg Tm and

degU1 ≥ degU2 ≥ · · · ≥ degUn. We set v∗i = deg Ti for 1 ≤ i ≤ m and h∗j = degUj
for 1 ≤ j ≤ n.

Then v∗1 = n and h∗1 = m which implies that {T1, Un}, {Tm, U1} ∈ E(FP). Further-

more, let {Tk, Ul} ∈ E(FP) for some 1 ≤ k ≤ m and 1 ≤ l ≤ n. Then for all 1 ≤ r ≤ k

and 1 ≤ s ≤ l, we have v∗k ≤ v∗r and h∗l ≤ h∗s. Therefore, by Theorem 2.2.5.(c), we see that

{Tr, Us} ∈ E(FP) for all 1 ≤ r ≤ k and 1 ≤ s ≤ l.

Hence FP is a Ferrer graph up to relabelling. Let P∗ be the unique polyomino with

horizontal and vertical projections HP∗ = (h∗1, h∗2, . . . , h∗n) and VP∗ = (v∗1, v∗2, . . . , v∗m), then

P∗ is a Ferrer diagram and FP ∼= FP∗ .

From the proof of the above proposition, one sees that given an L-convex polyomino

P , the Ferrer diagram P∗ such that FP ∼= FP∗ is uniquely determined. We refer to P∗ as

the Ferrer diagram projected by P .

81



(A) L-convex polyomino P (B) The Ferrer diagram P∗ projected by P

Let r(P , k) be the number of ways of arranging k non-attacking rooks in cells of P .

Recall that, for a graph G with n vertices, a k-matching of G is the set of k pairwise disjoint

edges in G. Let p(G, k) be the number of k matchings of G. It is a fact, for example see

[31, page 56], that r(P , k) = p(FP , k). As we showed at the beginning of the chapter,

r(P) denotes the maximum number of rooks that can be arranged in P in non-attacking

position, that is r(P) = maxk r(P , k). We have the following

Lemma 4.1.2. Let P be an L-convex polyomino and P ∗ be the Ferrer diagram projected

by P. Then r(P , k) = r(P∗, k). In particular, r(P) = r(P∗).

Proof. From Proposition 4.1.1, we have FP ∼= FP∗ then p(FP , k) = p(FP∗ , k). Then by

using the theorem on [31, page 56], we see that r(P , k) = r(P∗, k).

Figure 4.3: Placement of rooks in non-attacking position in P and P∗.

As described in Section 2.4, we can associate another bipartite graph GP to P . Set

V (GP) = {x0, . . . , xm}t{y0, . . . , yn}. To distinguish between GP and FP , we refer to them

as follows:
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• The graph FP is the graph associated to the cells of P .

• The graph GP is the graph associated to the vertices of P .

x0 x1 x2 x3 x4 x5
y5

y4

y3

y2

y1

y0

X1 X2 X3 X4 X5

Y5

Y4

Y3

Y2

Y1

Figure 4.4: The two labellings on P of Figure 2.12

x0 x1 x2 x3 x4 x5

y0 y1 y2 y3 y4 y5

(A) The bipartite graph GP of the

polyomino P in Figure 2.12.

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

(B) The bipartite graph FP of the

polyomino P in Figure 2.12.

Figure 4.5

The relation between FP and GP is deducible from the following

Remark 4.1.3 Let P be an L-convex polyomino with bounding box [(0, 0), (m,n)]. Then

one can interpret HP = (h1, h2, . . . , hn) and VP = (v1, v2, . . . , vm) in terms of degrees of

vertices of GP in the following way:

(i) From Theorem 2.2.5, we know that VP and HP are unimodal. Let

v1 ≤ v2 ≤ · · · < vi = n ≥ vi+1 ≥ · · · ≥ vm

for some 1 ≤ i ≤ m. Then vj = deg xj−1 − 1 for all 1 ≤ j < i and vj = deg xj − 1 for
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i ≤ j ≤ m. Similarly, by using unimodality of HP , we get

h1 ≤ h2 ≤ · · · < hi = m ≥ hi+1 ≥ · · · ≥ hn

for some 1 ≤ i ≤ m. Then hj = deg yj−1 − 1 for all 1 ≤ j < i and hj = deg yj − 1 for

i ≤ j ≤ n.

(ii) As a consequence of (i), if P is a Ferrer diagram then

v1 ≥ v2 ≥ · · · ≥ vm,

h1 ≥ h2 ≥ · · · ≥ hn.

Let GP and FP be the graphs associated to P as described above with V (GP) =

{x0, . . . , xm}t{y0, . . . , yn} and V (FP) = {X1, . . . , Xm}t{Y1, . . . , Yn}. Then vj = degXj =

deg xj − 1 for all 1 ≤ j ≤ m, and hj = deg Yj = deg yj − 1 for all 1 ≤ j ≤ n.

Now we obtain

Lemma 4.1.4. Let P be an L-convex polyomino and GP be the graph associated to the

vertices of P with V (GP) = {x0, . . . , xm} t {y0, . . . , yn}. Then we have the following:

(a) if deg xi < deg xi′, then {xi′ , yj} ∈ E(GP) whenever {xi, yj} ∈ E(GP).

(b) if deg yj < deg yj′, then {xi, yj′} ∈ E(GP) whenever {xi, yj} ∈ E(GP).

Proof. Let HP = (h1, h2, . . . , hn) and VP = (v1, v2, . . . , vm) be the horizontal and vertical

projection of P .

(a): Let p = deg xi < deg xi′ = q. Then following Remark 4.1.3, hs = p− 1 and ht = q − 1

for some 1 ≤ s 6= t ≤ n. Then hs < ht and the conclusion follows from Theorem 2.2.5(d).

(b): Let p = deg yi < deg yi′ = q. Then following Remark 4.1.3, vs = p − 1 and vt =

q − 1 for some 1 ≤ s 6= t ≤ m. Then vs < vt and the the conclusion follows from

Theorem 2.2.5(c).

A result similar to Proposition 4.1.1 holds also for the graph GP .

Corollary 4.1.5. Let P be an L-convex polyomino, let P∗ be the Ferrer diagram projected

by P. Then GP ∼= GP∗.
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Proof. First, we will show that GP ∼= H where H is a Ferrer graph. Let V (GP) =

{x0, . . . , xm}t{y0, . . . , yn}. Similar to the proof of Proposition 4.1.1, we relabel the vertices

of GP as V (GP) = {t0, . . . , tm} t {s0, . . . , sn} such that deg t0 ≥ deg t1 ≥ · · · ≥ deg tm and

deg s0 ≥ deg s1 ≥ · · · ≥ deg sn. Let H be the new graph obtained by relabelling of the

vertices of GP . Then by using Lemma 4.1.4, we conclude that H is a Ferrer graph.

Now we will show that H ∼= GP∗ . This is an immediate consequence of Re-

mark 4.1.3(ii). Indeed VP∗ = (deg t1 − 1, . . . , deg tm − 1) and

HP∗ = (deg s1 − 1, . . . , deg sn − 1).

4.1.2 Regularity of L-convex polyominoes

In this subsection, we use the relation between any L-convex polyomino P and its

projected Ferrer diagram to compute the Castelnuovo-Mumford regularity of K[P ].

Theorem 4.1.6. Let P be an L-convex polyomino and let P∗ be the Ferrer diagram pro-

jected by P. Then K[P ] and K[P∗] are isomorphic standard graded K-algebras.

Proof. Since P is convex, it is known that K[P ] is isomorphic to the edge ring K[GP ] of the

bipartite graph GP (see Section 2.4). By Corollary 4.1.5, GP is isomorphic to GP∗ . Hence

the assertion follows.

Theorem 4.1.7. Let P be an L-convex polyomino and let P∗ be the Ferrer diagram pro-

jected by P. Moreover, let HP∗ = (h1, . . . , hn) . Then

reg (K[P ]) = min{n, hj + j − 1 | 1 ≤ j ≤ n}.

Proof. By Theorem 4.1.6, we have K[P ] ∼= K[P∗]. Therefore, it is enough to show that

reg (K[P∗]) = min{n, hj + j − 1 | 1 ≤ j ≤ n}.

Recall GP∗ is the bipartite graph associated to the vertices of P∗. We may assume that

V (G∗P) = {x0, . . . , xm}t{y0, . . . , yn}. Then deg y0 = m+ 1 ≥ 2 and deg x0 = n+ 1. Hence,

[20, Proposition 5.7] gives

reg (K[GP∗ ]) = min{n, deg yj + (j + 1)− 3 | 1 ≤ j ≤ n}

= min{n, deg yj + j − 2 | 1 ≤ j ≤ n}
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We want to rewrite the formula above in terms of the horizontal projection of P∗. According

to Remark 4.1.3.(2), for any 1 ≤ j ≤ n we have hj = deg yj − 1. Hence

{deg yj + j − 2 | 1 ≤ j ≤ n} = {hj + j − 1 | 1 ≤ j ≤ n},

and the assertion follows.

Let P be a Ferrer diagram with horizontal projections (h1, . . . , hn). Then, by using a

combinatorial argument, it is easy to see that for any r ≤ n the number of ways of placing

r rooks in non-attacking position in P is given by
r∏
i=1

(hr−i+1 − (i− 1)). (4.1)

By using this fact we obtain

Theorem 4.1.8. Let P be an L-convex polyomino. Then

reg (K[P ]) = r(P).

Proof. From Lemma 4.1.2 we know that r(P) = r(P∗) where P∗ is the Ferrer diagram

projected by P . By Theorem 4.1.6, it is enough to show that

r(P∗) = min{n, hj + j − 1 | 1 ≤ j ≤ n}, (4.2)

where (h1, . . . , hn) are the horizontal projections of P∗. It follows from Equation (4.1)

that r(P∗) is the greatest integer r ≤ n such that each factor of
r∏
i=1

(hr−i+1 − (i − 1)) is

positive. Hence, for any i ∈ {1, . . . , r} we must have hr−i+1 − (i − 1) > 0. Fix an integer

i ∈ {1, . . . , r}. Then we see that

hr−i+1 − (i− 1) > 0⇔ hr−i+1 − i+ 1 + r − r > 0⇔ r < hr−i+1 + (r − i) + 1.

Hence we conclude that r ≤ hr−i+1 + (r − i). Therefore,

r(P∗) = max{r | r ≤ n and r ≤ min{hr−i+1 + (r − i) | 1 ≤ i ≤ r}}

= min{n, hj + j − 1 | 1 ≤ j ≤ n}

as requested.
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We observe that, by exchanging the role of rows and columns in P∗, we obtain

r(P∗) = min{m, vj + j − 1 | 1 ≤ j ≤ m}

which is similar to (4.2).

4.1.3 On the Gorenstein property of L-convex polyominoes

In this section, we characterize the L-convex polyominoes having a Gorenstein coor-

dinate ring in terms of their bounding boxes. Such characterization is similar to the one

stated in Theorem 2.4.4 for stack polyominoes.

Let P be a L-convex polyomino with width m. Assume that the unique maximal

rectangle of P with width m, has height d. Then for some positive integer s,

HP = (h1, . . . , hs,m . . . ,m, hs+d+1, . . . , hn)

with hs, hs+d+1 < m. Let P1 be the collection of cells with n − d rows satisfying the

following property: Cij is a cell of P if and only if Cij is a cell of P1 for 1 ≤ i ≤ s, and for

s+ d+ 1 ≤ i ≤ n, Ci−d,j is a cell of P1.

Lemma 4.1.9. P1 is an L-convex polyomino.

Proof. P1 could be seen as the polyomino P from which we remove the maximal rectangle R

having width m. Hence, each cell in P1 corresponds uniquely to a cell in P . Let C,D ∈ P1.

Then we consider the corresponding cells C ′, D′ ∈ P . We observe that neither C ′ nor D′ is

a cell of R. Since P is L-convex, there exists a path of cells C ′ in P connecting C ′ and D′

with at most one change of direction.

If no cell of C ′ belongs to R, then C ′ determines a path of cells C of P1 with at most one

change of direction connecting C and D.

Otherwise, since neither C ′ nor D′ are cells of R, the path C ′ crosses R and the induced

path C ′ ∩ R has no change of direction. Therefore, the path C in P1, obtained by cutting

off the induced path C ′ ∩R from C ′, is a path of cells with at most one change of direction

connecting C and D.
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If P1 6= ∅, we may again remove the unique rectangle of maximal width from P1 to

obtain P2 in a similar way. After a finite number of such steps, say t steps, we arrive at Pt
which is a rectangle. Then Pt+1 = ∅. We set P0 = P , and call the sequence P0,P1, . . . ,Pt
the derived sequence of L-convex polyominoes of P .

Figure 4.6: The derived sequence of L-convex polyominoes P0 = P ,P1,P2,P3.

Lemma 4.1.10. Let P be an L-convex polyomino and P0,P1, . . . ,Pt be the derived sequence

of L-convex polyominoes of P. Let P∗ be the Ferrer diagram projected by P and let (P∗)0,

(P∗)1, . . . , (P∗)t′ be the derived sequence of L-convex polyominoes of P∗. Then t′ = t and

for any 0 ≤ k ≤ t the polyomino (P∗)k is the Ferrer diagram projected by Pk. In other

words, for all k (P∗)k = (Pk)∗.

Proof. For k = 0, the assertion is trivial. We show that (P∗)1 is the Ferrer diagram

projected by P1. For this aim, assume that the unique rectangular subpolyomino of P

having width m has height d ∈ N. Let

HP = (h1, . . . , hs,m . . . ,m, hs+d+1, . . . , hn)

with hs, hs+d+1 < m and let

VP = (d, d, . . . , d, vr+1, . . . , vr+l, d, . . . , d)

with vr+1, vr+l > d.

From Proposition 4.1.1 it follows that P∗ has a maximal rectangle R∗ of width m and

height d and

HP∗ = (m. . . ,m, h∗1, . . . , h
∗
n−d)

with m > h∗1 ≥ · · · ≥ h∗n−d and

VP∗ = (v∗1, . . . , v∗l , d, . . . , d).
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with v∗1 ≥ · · · ≥ v∗l > d. Hence the L-convex polyomino (P∗)1 is uniquely determined by

the projections

H(P∗)1 = (h∗1, . . . , h∗n−d) and V(P∗)1 = (v∗1 − d, . . . , v∗l − d).

On the other hand, P1 is the L-convex polyomino uniquely determined by the projections

HP1 = (h1, . . . , hs, hs+d+1, . . . , hn) and, VP1 = (vr+1−d, vr+2−d, . . . , vr+l−d). By reordering

the two vectors in a decreasing order, we obtain the Ferrer diagram projected by P1 which

coincides with (P∗)1. This proves the assertion for k = 1. By inductively applying the

above argument, the assertion follows for all k.

Theorem 4.1.11. Let P be an L-convex polyomino and let P0,P1, . . . ,Pt be the derived

sequence of L-convex polyominoes of P. Then following conditions are equivalent:

(a) P is Gorenstein.

(b) For 0 ≤ k ≤ t, the bounding box of Pk is a square.

Proof. By Theorem 4.1.6, we have K[P ] ∼= K[P∗], where P∗ is the Ferrer diagram projected

by P . Therefore, K[P ] is Gorenstein if and only if K[P∗] is Gorenstein. Note that P∗ can be

viewed as a stack polyomino. Hence it follows from Theorem 2.4.4 that K[P∗] is Gorenstein

if and only if the bounding box of (P∗)k is a square for all 0 ≤ k ≤ t. By Lemma 4.1.10,

this is the case if and only if the bounding box of Pk is a square for all 0 ≤ k ≤ t.

The following numerical criteria for the Gorensteinness of P are an immediate conse-

quence of Theorem 4.1.11.

Corollary 4.1.12. Let P be an L-convex polyomino with the vector HP = (h1, h2, . . . , hn)

of horizontal projections of P and the vector VP = (v1, v2, . . . , vm) of vertical projections of

P. We set

{h1, h2, . . . , hn} = {g1 < g2 < · · · < gr} and {v1, v2, . . . , vm} = {w1 < w2 < · · · < ws},

and let

ai = |{hj hj = gi}| for i = 1, . . . , r, and bi = |{vj vj = wi}| for i = 1, . . . , s.

Then the following conditions are equivalent:
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(a) P is Gorenstein.

(b) g` = ∑`
i=1 ai for ` = 1, . . . , r.

(c) w` = ∑`
i=1 bi for ` = 1, . . . , s.

Theorem 4.1.13. Let P be L-convex polyominoes such that K[P ] is not Gorenstein. Then

following are equivalent:

(a) K[P ] is Gorenstein on the punctured spectrum.

(b) P is not a square and K[P ] has an isolated singularity

(c) P is rectangle, but not a square.

Before we start the proof of the theorem, we note that if P is a Ferrer diagram,

then K[P ] can be viewed as a Hibi ring. Even if Hibi rings are discussed in Section 1.5,

we recall their construction in the following. Let Q = {v1, . . . , vn} be a finite poset and

let K be a field. The Hibi ring over the field K associated to Q, which we denote by

K[Q] ⊂ K[y, x1, . . . , xn], is defined as follows. The K-algebra K[Q] is generated by the

monomials yxI := y
∏
vi∈I xi for every I ∈ I(Q), that is

K[Q] := K[yxI |I ∈ I(Q)].

The algebra K[Q] is standard graded if we set deg(yxI) = 1 for all I ∈ I(Q). Here I(Q)

is the set of poset ideals of Q. The poset ideals of Q are just the subset I ⊂ Q with the

property that if p ∈ Q and q ≤ p, then q ∈ Q.

Let P be a Ferrer diagram with maximal horizontal edge intervals {H0, . . . , Hn},

numbered increasingly from the bottom to the top, and maximal vertical edge intervals

{V0, . . . , Vm}, numbered increasingly from the left to the right. We let Q be the poset on

the set {H1, . . . , Hn, V1, . . . , Vm} consisting of two chains H1 < . . . < Hn and V1 < . . . < Vm

and the covering relations Hi < Vj, if Hi intersects Vj in a way such that there is no

0 ≤ i′ < i for which Hi′ intersects Vj, and j is the smallest integer with this property.

Lemma 4.1.14. The standard graded K-algebras K[Q] and K[P ] are isomorphic.

Proof. We may assume that the interval [(0, 0), (m,n)] is the bounding box of the Ferrer

diagram P . It follows from the definition of Ferrer diagrams that (0, 0) and (m,n) belong
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to V (P). For any two vertices a = (i, j) and b = (k, l) of P we define the meet a ∧ b =

(min{i, k},min{j, l}) and the join a ∨ b = (max{i, k},max{j, l}). With this operations

of meet and join, P is a distributive lattice. An element c of this lattice is called join-

irreducible, if c 6= (0, 0) and whenever a ∧ b = c, then a = c or b = c. By Birkhoff’s

fundamental structure theorem [6], any finite distributive lattice is the ideal lattice of the

poset of its join irreducible elements. The join irreducible elements of P can be described

as follows:

1. Every aj = (0, j) with 1 ≤ j ≤ n is a join irreducible element in P and a1 < a2 <

. . . < an.

2. Let (i, k) ∈ V (P) with 1 ≤ i ≤ m. Then (i, k) is a join irreducible if (i, k−1) /∈ V (P).

It shows that in each vertical edge interval V1, . . . , Vm of P , there is exactly one join

irreducible element. We denote by bi, the unique join irreducible element in Vi with

1 ≤ i ≤ m. Then b1 < b2 < . . . < bm.

In the poset of join irreducible elements of P , we have two chains a1 < a2 < . . . < an and

b1 < b2 < . . . < bm, and the covering relations aj = (0, j) < bi = (i, k) if j = k and bi is

the minimal element with this property. Then, it follows that the poset of join irreducible

elements of P is exactly the poset Q described above. Thus the elements a ∈ P are in

bijection with the poset ideals of Q. In fact, the poset ideal Ia ∈ I(Q) corresponding to a is

the set of join irreducible elements q ∈ Q with q ≤ a. Thus we have a surjective K-algebra

homomorphism

ϕ S = K[xa a ∈ P ]→ K[Q] = K[yxIa Ia ∈ I(Q)]

. As shown by Hibi [42] (see also [36, Theorem 10.1.3]), Ker(ϕ) is generated by the relations

xaxb − xa∧bxa∨b. This shows that Ker(ϕ) = IP , as desired.
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(A) Ferrer diagram
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H3

H4
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V1

V2

V3

V4

V5

(B) Poset of join-irreducible elements

Let Q be a poset. The Hasse diagram of Q, viewed as a graph, decomposes into

connected components. The corresponding posets Q1, . . . , Qr are called the connected com-

ponents of Q.

Now for the proof of Theorem 4.1.13 will use the following results

Theorem 4.1.15. Let Q be a finite poset and let Q1, . . . Qr be the connected components

of Q.

(a) ([42, page 105]) K[Q] is Gorenstein if and only if Q is pure (i.e. all maximal chains

in Q have the same length).

(b) ([39, Corollary 3.5]) K[Q] is Gorenstein on the punctured spectrum if and only if

each Qi is pure.

Proof of Theorem 4.1.13. Since K[P ] ∼= K[P∗] and since P is a rectangle if and only if P∗

is a rectangle, we may assume that P is a Ferrer diagram.

Let Q be the poset such that K[Q] ∼= K[P ], and assume that K[Q] is Gorenstein on

the punctured spectrum. Then each component of Q is pure, by Theorem 4.1.15(b). Since

we assume that K[Q] is not Gorenstein, Theorem 4.1.15(a) implies that Q is not connected.

It follows from the description of Q in terms of its Ferrer diagram P that P has no inner

corner. In other words, P is a rectangle. By Theorem 4.1.11 it cannot be a square. This

yields (a) =⇒ (b). The implication (c) =⇒ (b) follows from [13, Theorem 2.6], and

(b) =⇒ (a) is trivial.
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4.1.4 The Cohen–Macaulay type of L-convex polyominoes.

In this subsection, we give a general formula for the Cohen–Macaulay type of the

coordinate ring of an L-convex polyomino. To illustrate our result, we first consider the

special case of an L-convex polyomino with just two maximal rectangles.

Proposition 4.1.16. Let P be an L-convex polyomino whose maximal rectangles are R1

having size m× s and R2 having size t× n with s < n and t < m. Let r = max{n,m, n+

m− (s+ t)}. Then

type(K[P ]) =



m−(n−s)∑
i=m−t

(
i
s

)(
m−i−1
n−s−1

)
if r = m

s∑
i=m−t

(
i−1

m−t−1

)(
n−i
t

)
if r = n(

n−s
t

)(
m−t
s

)
if r = n+m− (s+ t)

Proof. Let P∗ be the Ferrer diagram projected by P and let Q be the poset of the join-

irreducible elements associated to P∗. It consists of the two chains V1 < · · · < Vm and

H1 < · · · < Hn, and the cover relation Hn−s < Vt+1. We have |Q| = m + n, and r =

rank Q+1. We compute the number of minimal generators of the canonical module ωK[P∗].

For this purpose, let Q̂ be the poset obtained from Q by adding the elements −∞ and ∞

with∞ > p and −∞ < p for all p ∈ Q, and let T (Q̂) be the set of integer valued functions

ν : Q̂ → Z≥0 with ν(∞) = 0 and ν(p) < ν(q) for all p > q. By using a result of Stanley

[78], Hibi shows in [42, (3.3)] that the monomials of the form

yν(−∞) ∏
p∈Q

xν(p)
p

for ν ∈ T (Q̂) form a K-basis for ωK[P∗]. By using [56, Corollary 2.4], we have that the

number of generators of ωK[P∗] is the number of minimal maps ν ∈ T (Q̂) with respect to

the order given in [56, Page 5]. In fact, ν ≤ µ for ν, µ ∈ T (Q̂) if µ − ν is decreasing. We

observe that the minimal maps ν necessarily assign the numbers 1, . . . , r to the vertices of

a maximal chain of Q in reversed order, hence we have to find the possible values for the

remaining |Q| − r = m+ n− r elements, depending on r. We distinguish three cases:

(a) r = m;

(b) r = n;
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(c) r = (n− s) + (m− t)

In the case (a), the maximal chain is V1 < · · · < Vm. Hence we must take ν(Vm−i+1) = i for

i ∈ {1, . . . ,m}. We have to determine how many vectors (a1, . . . , an) with integers entries

0 < a1 < · · · < an satisfy m − t < as+1 < r − (n − s) = m − (n − s) + 2, where the left

inequality follows from the cover relation, while the right inequality follows from the fact

that as+2 < · · · < an < m + 1 are determined. Therefore, fixed i = as+1, there are
(
i−1
s

)
ways to choose the values a1, . . . , as in the range {1, . . . , i−1}. Moreover, there are

(
m−i
n−s−1

)
ways to choose as+2, . . . , an in the range {i+ 1, . . . ,m}. Hence we conclude

type(K[P ]) =
m−(n−s)+1∑
i=m−t+1

(
i− 1
s

)(
m− i

n− s− 1

)
=

m−(n−s)∑
i=m−t

(
i

s

)(
m− i− 1
n− s− 1

)
.

In the case (b), we assign to each element of the chain H1, . . . , Hn a number in {1, . . . , n}

in strictly decreasing order. We have to determine how many vectors (b1, . . . , bm) with

integers entries 0 < b1 < · · · < bm satisfy m− t−1 < bm−t < s+1, where the left inequality

follows from the fact that 0 < b1 < · · · < bm−t−1, while the rightmost inequality follows

from the cover relation. Therefore, for i = bm−t, there are
(

i−1
m−t−1

)
ways to choose the

values b1, . . . , bm−t−1 in the range {1, . . . , i− 1}. Moreover, there are
(
n−i
t

)
ways to choose

bm−t+1, . . . , bm in the range {i+ 1, . . . , n}. Hence we conclude

type(K[P ]) =
s∑

i=m−t

(
i− 1

m− t− 1

)(
n− i
t

)
.
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∞

−∞

H1

Hn−s

Hn−s+1

Hn−1

Hn

V1

Vt

Vt+1

Vm−1

Vm

(m− t) + (n− s) + 1

1

2
...

m− t

m− t+ 1
...

m− t+ n− s

as

...
a2

a1

b1...
bt

Figure 4.8: We count the number of minimal maps assigning 1 < · · · < m− t+ n− s to

Vm > · · · > Vt+1 > Hn−s > · · · > H1.

In the case (c), we assign to each element of the chain H1, . . . , Hn−s, Vt+1, . . . , Vm a

number in {1, . . . , (m + n) − (s + t)} in strictly decreasing order. We have to determine

how many vectors (a1, . . . , as, b1, . . . bt) with integers entries 0 < a1 < · · · < as, m − t <

b1 < · · · < bt satisfy as < m − t + 1 and b1 > m − t (see Figure 4.8). Therefore, there are(
m−t
s

)
ways to choose the values a1, . . . , as in the range {1, . . . ,m− t} and there are

(
n−s
t

)
ways to choose b1, . . . , bt in the range {m − t + 1, . . . ,m − t + n − s}. Hence in this case,

we conclude

type(K[P ]) =
(
n− s
t

)(
m− t
s

)
.

Now we consider the general case.

Theorem 4.1.17. Let P be an L-convex polyomino whose maximal rectangles are

{Ri}i=1,...,t. For i = 1, . . . , t, let ci × di be the size of Ri with d1 = n and ct = m and
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ci < cj and di > dj for i < j. Let r = max{n,m, {n+m− (ci + di+1)}i=1,...,t−1}. Then

type(K[P ]) =



A if r = m

B if r = n

AhBh if r = n+m− (ch + dh+1)

where

A =
∑

i1,...,it−1

(
i1 − 1
dt

)
t−1∏
k=2

(
ik − ik−1 − 1

dt−k+1 − dt−k+2 − 1

)(
m− it−1

n− d2 − 1

)

with

m− ct−j + 1 ≤ ij ≤ m− (n− dt+1−j) + 1 for 1 ≤ j ≤ t− 1,

and

B =
∑

i1,...,it−1

(
i1 − 1

m− ct−1 − 1

)
t−1∏
k=2

(
ik − ik−1 − 1

ct−k+1 − ct−k − 1

)(
m− it−1

c1

)

with m− ct−1 ≤ i1 ≤ dt and

ij−1 + ct−j+1 − ct−j ≤ ij ≤ dt−j+1 for 2 ≤ j ≤ t− 1.

Moreover,

Ah =
∑

i1,...,it−h−1

(
i1 − 1
dt

)
t−h−1∏
k=2

(
ik − ik−1 − 1

dt−k+1 − dt−k+2 − 1

)(
m− ch − it−h−1

dh+1 − dh+2 − 1

)

with

m− ct−j + 1 ≤ ij ≤ m− ch − (dh+1 − dt−j+1) + 1 for 1 ≤ j ≤ t− h− 1.

for h = 1, . . . , t− 2 and At−1 =
(
m−ct−1

dt

)
, and

Bh =
∑

i1,...,ih−1

(
i1 − 1

ch − ch−1 − 1

)
h−1∏
k=2

(
ik − ik−1 − 1

ch−k+1 − ch−k − 1

)
(
m− ch + n− dh+1 − ih−1

c1

)

with m− ch−1 ≤ i1 ≤ m− ch + (dh − dh+1) and

ij−1 + (ch−j+1 − ch−j) ≤ ij ≤ m− ch + (dh−j+1 − dh+1) for 2 ≤ j ≤ h− 1,

for h = 2, . . . , t− 1 and B1 =
(
n−d2
c1

)
.

96



Proof. Firstly observe that in the general case the cover relations are Hn−di+1 < Vci+1 for

i = 1, . . . , t − 1. We just generalize the ideas of Proposition 4.1.16. We distinguish three

cases:

(a) r = m;

(b) r = n;

(c) r = (n− dh+1) + (m− ch) for some k = 1, . . . , t− 1.

In the case (a), we assign to each element of the chain V1, · · · , Vm a number in {1, . . . ,m}

in decreasing order. We have to determine how many vectors (a1, . . . , an) with integers

entries 0 < a1 < · · · < an < m+ 1 satisfy

m− ct−k < adt−k+1+1 < m− (n− dt−k+1) + 2 for k = 1, . . . , t− 1,

where the left inequality follows from the cover relations, while the right inequality follows

from the fact that adt−k+1+2 < adt−k+1+3 < · · · < an < m + 1 . Therefore, fixed i1 = adt+1

there are
(
i1−1
dt

)
ways to choose the values a1, . . . , adt in the range {1, . . . , i1−1}. Moreover,

for 2 ≤ k ≤ t − 1 and fixed ik = adt−k+1+1, there are
(

ik−ik−1−1
dt−k+1−dt−k+2−1

)
ways to choose the

values adt+k+2+2, . . . , adt+k+1 in the range {ik−1 + 1, . . . , ik − 1}. Finally, there are
(
m−it−1
n−d2−1

)
ways to choose ad2+2, . . . , an in the range {it−1 +1, . . . ,m}. Hence in this case, we conclude

that type(K[P ]) is A.

In the case (b), we assign to each element of the chain H1, . . . , Hn a number in {1, . . . , n}

in decreasing order. We have to determine how many vectors (b1, . . . , bm) with integers

entries 0 < b1 < · · · < bm satisfy

m− ct−1 − 1 < bm−ct−1 < dt + 1

and

bm−ct−k+1 + (ct−k+1 − ct−k)− 1 < bm−ct−k
< dt−k+1 + 1 for k = 2, . . . , t− 1,

where the left inequalities follow from the fact that bm−ct−k+1+1 < · · · < bm−ct−k−1, while

the right inequalities follow from the cover relations. Therefore for fixed i1 = bm−ct−1 there

are
(

i1−1
m−ct−1−1

)
ways to choose the values b1, . . . , bm−ct−1−1 in the range {1, . . . , i1 − 1}.

Moreover, for 2 ≤ k ≤ t− 1 and fixed ik = bm−ct−k
, there are

(
ik−ik−1−1

ct−k+1−ct−k−1

)
ways to choose
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the values bm−ct−k+1+1, . . . , bm−ct−k−1 in the range {ik−1 + 1, . . . , ik − 1}. Finally, there are(
n−it−1
c1

)
ways to choose bm−c1+1, . . . , bm in the range {it−1 + 1, . . . , n}. Hence in this case,

we conclude that type(K[P ]) is B.

In the case (c), fix h ∈ {1, . . . , t − 1}. We assign to each element of the chain H1, . . .,

Hn−dh+1 , Vch+1, . . . , Vm a number in {1, . . . , (m+n)− (ch + dh+1)} in decreasing order. Let

m̃ = m−ch, ñ = n−dh+1. We have to determine how many vectors (a1, . . . , adh+1 , b1, . . . bch
)

with integers entries 0 < a1 < · · · < adh+1 , m̃ < b1 < · · · < bch
satisfy

m− ct−k < adt−k+1+1 < m̃− (dh+1 − dt−k+1) + 2 for k = 1, . . . , t− h− 1

m− ch−1 − 1 < bch−ch−1 < m̃+ (dh − dh+1) + 1,

bch−ch−k+1 + (ch−k+1 − ch−k)− 1 < bch−ch−k
< m̃+ (dh−k+1 − dh+1) + 1 for k = 2, . . . , h− 1.

For fixed i1 = adt+1 there are
(
i1−1
dt

)
ways to choose the values a1, . . . , adt in the

range {1, . . . , i1 − 1}. Moreover, for 2 ≤ k ≤ t − h − 1 and fixed ik = adt−k+1+1,

there are
(

ik−ik−1−1
dt−k+1−dt−k+2−1

)
ways to choose the values adt+k+2+2, . . . , adt+k+1 in the range

{ik−1+1, . . . , ik−1}. Furthermore, there are
(

m̃−it−h−1
dh+1−dh+2−1

)
ways to choose adh+2+2, . . . , adh+1

in the range {it−h−1 + 1, . . . , m̃}.

For fixed j1 = bch−ch−1 there are
(

j1−1
ch−ch−1−1

)
ways to choose the values b1, . . . , bch−ch−1−1

in the range {1, . . . , j1 − 1}. Moreover, for 2 ≤ k ≤ h and fixed jk = bch−ch−k
there

are
(

jk−jk−1−1
ch−k+1−ch−k−1

)
ways to choose the values bch−ch−k+1+1, . . ., bch−ch−k−1 in the range

{jk−1 + 1, . . . , jk − 1}. Finally, there are
(
m̃+ñ−jh−1

c1

)
ways to choose bch−c1+1, . . . , bch

in

the range {jh−1 +1, . . . , m̃+ ñ}. Hence in this case, we conclude that type(K[P ]) is Ah ·Bh.

Observe that the formula for the ai makes sense only if 1 ≤ h ≤ t − 2. For h = t − 1, we

have to choose the numbers

a1, . . . , adt

among the values {1, . . . ,m− ct−1}, hence At−1 =
(
m−ct−1

dt

)
. Furthermore observe that the

formula for the bi makes sense only if 2 ≤ h ≤ t − 1. For h = 1, we have to choose the

numbers

b1, . . . , bc1

among the values {m− c1 + 1, . . . , (m− c1) + (n− d2)}, hence B1 =
(
n−d2
c1

)
.
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We observe that Theorem 4.1.11 can also deduced from Theorem 4.1.17.

The following example demonstrates Theorem 4.1.17.

Example 4.1.18 Let P be the Ferrer diagram in Figure 4.9.

V1

V2

V3

V4 V5

H1

H2

H3

H4

Figure 4.9

We have t = 4 maximal rectangles whose sizes are {ci × di}i=1,...,4 with

c1 = 1 c2 = 2 c3 = 3 c4 = m = 5

d1 = n = 4 d2 = 3 d3 = 2 d4 = 1.

There are 4 maximal chains in the poset Q corresponding to P containing 5 vertices.

For example, the chain V1, . . . , V5 and the chain H1, H2, V3, V4, V5, that correspond to the

cases r = m and r = (n − d3) + (m − c2), hence h = 2. We are going to compute A and

A2B2 as in Theorem 4.1.17. We have

A =
3∑

i1=3

4∑
i2=4

5∑
i3=5

(
i1 − 1

1

)(
i2 − i1 − 1
2− 1− 1

)(
i3 − i2 − 1
3− 2− 1

)(
5− i3

4− 3− 1

)
= 2,

while

A2 =
3∑

i1=3

(
i1 − 1

1

)(
5− 2− i1
2− 1− 1

)
= 2

and

B2 =
4∑

i1=4

(
i1 − 1

2− 1− 1

)(
5− i1

1

)
= 1,

yielding

A2B2 = 2.
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In conclusion we want to point out that for L-convex polyominoes, important alge-

braic invariants, like the Castelnuovo-Mumford regularity, the Cohen-Macaulay type, and

algebraic properties, like being Gorenstein, are now completely understood and have a

nice combinatorial interpretation. It is still a challenge to prove similar results when the

polyomino is k-convex for k > 1, rather than just L-convex.

4.2 HILBERT SERIES AND GORENSTEINNESS OF SIMPLE THIN

POLYOMINOES

In this section, we compare two generating functions associated with polyominoes: the

Hilbert series of K[P ] and the rook polynomial of P (see [71, Chapter 7]).

In Section 4.1, we proved that, for an L-convex polyomino P , the Castelnuovo-

Mumford regularity of K[P ] is equal to r(P). Starting from this result, we consider the

Hilbert-Poincaré series of simple polyominoes as a nice object to grasp the above equality

and other fundamental invariants by using elementary proofs.

Recall from Section 3.2 that a polyomino P is thin if P does not contain the square

tetromino as a subpolyomino. One of the main results of this Section is the following

Theorem 4.2.1. Let P be a simple thin polyomino such that the reduced Hilbert-Poincaré

series of K[P ] is

HPK[P](t) = h(t)
(1− t)d .

Then h(t) is the rook polynomial of P.

In particular it follows that the Castelnuovo-Mumford regularity of K[P ] is r(P) and

the multiplicity of K[P ] is rP(1). Theorem 4.2.1 gives us information on the Hilbert series

and the Castelnuovo-Mumford regularity of the toric ring related to the bipartite graph GP
induced in a natural way by a simple polyomino P (see Section 2.4). The condition that

P is thin translates to the condition that the bipartite graph GP does not contain K3,3 as

a subgraph, where K3,3 is the complete bipartite graph with two parts of equal size 3.

An open question is to give a complete characterization of the Gorensteinness of the

algebra K[P ] when P is a simple polyomino. Some partial results in this direction are

discussed in Section 2.4 and Section 4.1. The other main result of this Section is Theorem
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4.2.18, in which we classify the simple thin polyominoes P having a Gorenstein algebra

K[P ], due to the geometric properties of P . At the end we present a conjecture and an

open question.

4.2.1 Hilbert series of simple thin polyominoes

In this subsection we compute the Hilbert series of simple thin polyominoes in relation

with their rook polynomial. We start with the following

Definition 4.2.2 Let C and D be two cells of N2 such that e(C) ≤ e(D). We call the set

[C,D] = {F ∈ N2 : e(F ) ∈ [e(C), e(D)]}

interval of cells. If e(C) and e(D) lie either on the same vertical edge interval or on the

same horizontal edge interval, we call [C,D] a cell interval. We call [C,D] inner interval of

cells of P if any cell in [C,D] is a cell of P .

Lemma 4.2.3. Let P be a simple thin polyomino. Then any maximal inner interval I of

cells of P is a cell interval, and for any maximal inner interval J 6= I such that V (I) ∩

V (J) 6= ∅, I and J have either one cell, one edge or one vertex in common.

Proof. Since P does not contain a square tetromino, then also any maximal inner interval

of P does not contain a square tetromino, namely it is a cell interval.

Let I, J be two maximal inner intervals of P such that V (I) ∩ V (J) 6= ∅. By contra-

diction, we consider the following two cases: I and J have two or more edges in common,

not belonging to the same cell, and I and J have two or more cells in common. In the

first case, without loss of generality V (I)∩ V (J) = [(i, j), (k, j)] with k > i+ 1. Therefore,

the cells whose left lower corners are (i, j − 1), (i + 1, j − 1), (i, j), (i + 1, j) form a square

tetromino, that is a contradiction.

In the second case, I ∪ J is a maximal inner interval strictly containing I and J , and this

is a contradiction. The assertion follows.

From now on, we will briefly call inner intervals the inner intervals of cells of a poly-

omino P . In the following we define the simple polyominoes P ′ and P ′′ obtainable from a
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simple (thin) polyomino P . The latter are fundamental for the computation of the Hilbert

series.

Definition 4.2.4 (Polyomino P ′) Let P be a simple polyomino. We say that a cell C of P

is a leaf if there exists an edge {u, v} of C such that {u, v} ∩ V (P \ {C}) = ∅. We call the

vertices u and v leaf corners of C. We define the polyomino P ′ as the polyomino P \ {C}.

Definition 4.2.5 (Polyomino P ′′) Let P be a simple thin polyomino and let I be a maximal

inner interval of P . We say that P is collapsible in I if there exists one and only one maximal

inner interval J of P intersecting I in a cell, and P = P1 t I t P2 where P1 and P2 are

two polyominoes such that P2 is either empty or a cell interval. When P2 is empty, I is

called a tail. When P2 is a cell interval, I is called an endcut. We define the polyomino P ′′

as follows. Let D be the cell such that I ∩ J = {D}, and let {a, b, a′, b′} be the corners of

D where a, b ∈ V (P1) and a′, b′ ∈ V (P2) . We define P ′′ as the polyomino obtained from

P \ I by the identification of the vertices a and b of P1 with the vertices a′ and b′ of P2,

respectively, due to the translation of the cell interval P2 (see Figure 4.10).

I

b

a

b′

a′

C

DD1 D2

(A) A simple thin polyomino P which is collapsi-

ble in the endcut I

b = b′

a = a′

D1 D2

(B) The polyomino P ′′ after the collapsing of P

on I

Figure 4.10: The collapsing operation on a simple thin polyomino P

Remark 4.2.6 Let P be a simple thin polyomino collapsible in I with leaf C. We observe

that r(P ′) ∈ {r(P), r(P)−1} and r(P ′′) = r(P)−1. For example, if P is the polyomino in

Figure 4.13 and we consider the leaf C1, then r(P ′) is equal to r(P)−1. On the other hand,
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if P is the polyomino in Figure 4.11 and we consider the leaf containing u and v, then r(P ′)

is equal to r(P). In both cases, we have r(P ′′) = r(P)− 1. In general, if C belongs to any

set of r(P) non-attacking rooks, then any set of non-attacking rooks of maximal cardinality

in P ′ has r(P) − 1 elements. Otherwise, there exists some set of non-attacking rooks of

maximal cardinality in P ′ having r(P) elements. Moreover, any set of r(P) non-attacking

rooks has an element on I, that is r(P ′′) = r(P)− 1.

We now want to prove that any simple thin polyomino is collapsible in some inner

interval I. For this aim, we first prove the following

Lemma 4.2.7. Let P be a simple thin polyomino that is not a cell interval. Then there

exists a maximal inner interval I of P for which there exists one and only one maximal

inner interval J of P intersecting I in a cell.

Proof. Since P is simple and thin, we observe that for any two cells C and D of P there is

a unique path of cells connecting C and D.

By contradiction, assume that for any maximal inner interval of P there are at least two

maximal inner intervals intersecting it in one cell. We show that there exist two different

paths connecting two given cells. For this aim, let I be a maximal inner interval of P .

There exist I1 and J such that I1 ∩ I and I1 ∩ J are cells of P . Furthermore, there exists

I2 6= I intersecting I1 in one cell. By using the same argument, we find a sequence of inner

intervals I1, I2, . . . of P such that Ij and Ij+1 have a cell in common. Since the number

of inner intervals of P is finite, then there exists k such that Ik = J , and hence there are

two paths connecting a cell C of I \ I ∩ J with a cell D of J \ I ∩ J , one passing through

I1, . . . , Ik−1 and one passing through the cell I∩J . This is a contradiction and the assertion

follows.

Proposition 4.2.8. Let P be a simple thin polyomino that is not a cell interval. Then P

is collapsible in some maximal inner interval I.

Proof. If P has a tail, then the assertion follows. Therefore, assume that P does not con-

tain tails.
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By contradiction, assume that P has no endcuts. From Lemma 4.2.7, there exists a max-

imal inner interval I1 of P for which there exists one and only one inner interval J1 of P

intersecting I1 in one cell. Let P = P1 t I1 t P2. Since I1 is not an endcut, then P2 is a

simple thin polyomino that is not a cell interval. Moreover, rank P2 < rank P . Again from

Lemma 4.2.7, there exists an inner interval I2 in P2 for which there exists one and only one

inner interval J2 of P intersecting I2 in one cell. We write P = P3 t I2 tP4, with P1 ⊂ P3.

We repeat the same argument for the simple thin polyomino P4 with rank P4 < rank P2.

By proceeding in this way, since the rank P is finite, at the end we find an inner interval

Ik for which P = P2k−1 t Ik t P2k such that rank P2k = 0, namely Ik is a tail, that is a

contradiction.

We observe that the interval I in Lemma 4.2.7 in which P is collapsible has one leaf

C.

Lemma 4.2.9. Let P be a simple polyomino with a leaf C having leaf corners u and v,

and let P ′ be as in Definition 4.2.4. Then ((IP , xu) : xv) = IP ′ + J where J is a monomial

ideal generated in degree one.

Proof. Since C is a leaf of P , then there exists a maximal cell interval I of P such that

C ∈ I. Let E = {u1, u2, . . . , ur, u} and F = {v1, . . . , vr, v} be the edge intervals of length

r+ 1 of I. We observe that the ideal IP is generated by the inner 2-minors of P ′ = P \{C}

and by the inner 2-minors of I whose inner intervals contain the cell C, namely

IP = IP ′ + ({xvxui
− xuxvi

}i=1,...,r).

Then

(IP , xu) = IP ′ + ({xvxui
}i=1,...,r) + (xu).

The thesis follows if we prove that (IP , xu) : xv ⊆ IP ′ + (xu1 , . . . , xur , xu), since the other

inclusion is trivial. If f ∈ (IP , xu) : xv, then xvf ∈ IP ′ + ({xvxui
}i=1,...,r) + (xu), that is

xvf = g + xvg
′ + xug

′′

where g ∈ IP ′ , g′ ∈ (xu1 , . . . , xur) and, g′′ ∈ R. That is, xv(f − g′) ∈ IP ′ + (xu) and

f − g′ ∈ (IP ′ + (xu)) : xv. Since P ′ is simple, then IP ′ is prime, and since xu is not
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a variable of IP ′ , then also IP ′ + (xu) is prime. Therefore, since xv /∈ IP ′ + (xu), then

f − g′ ∈ IP ′ + (xu) and the assertion follows.

Remark 4.2.10 By using the notation of Lemma 4.2.9, we want to remark that the ideal

in the statement has different behaviours, depending on the choice of u and v. Let P be

the simple thin polyomino in Figure 4.11, namely the skew tetromino.
v u

v1 u1

v2 u2

w

z

p

Figure 4.11: The skew tetromino

Since xvxu2 − xuxv2 ∈ IP , then xuxv2 ∈ (IP , xv) and xv2 ∈ (IP , xv) : xu. Therefore,

since xpxv2 − xwxz ∈ IP , then xwxz ∈ (IP , xv) : xu, namely (IP , xv) : xu has a monomial

generator of degree 2. Nevertheless, the ideal (IP , xu) : xv has no monomial generators of

degree greater than 1.

Lemma 4.2.11. Let P be a simple thin polyomino, collapsible in I that has r cells, and

let P1,P2,P ′,P ′′ be as in Definitions 4.2.4 and 4.2.5. Let C be a leaf of I with leaf corners

u and v, and assume that E = {u1, u2, . . . , ur, u} is the edge interval of I such that E ∩

V (P1) = ∅. Then R/(IP , xu, xv) ∼= K[P ′] and R/((IP , xu) : xv) ∼= K[P ′′]⊗K[y1, . . . , yr−1].

Proof. Let F = {v1, . . . , vr, v} be the other edge interval of I of length r+ 1. By the proof

of Lemma 4.2.9, we have

IP = IP ′ + ({xvxui
− xuxvi

}i=1,...,r).

and

(IP , xu) = IP ′ + ({xvxui
}i=1,...,r, xu).

Since {u, v} ∩ V (P ′) = ∅, then (IP , xu, xv) = (IP ′ , xu, xv), that is R/(IP , xu, xv) ∼= K[P ′].
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Now let I ′′ = ((IP , xu) : xv). By the proof of Lemma 4.2.9, it arises I ′′ = IP ′ +

(xu1 , . . . , xur , xu). Let us consider J and D as in Definition 4.2.5, with V (D) = {uk, uk+1,

vk, vk+1}. We can split J into the cell intervals J1 and J2, such that J1 ⊆ P1, P2 = J2, and

the cell D. Since the variables xu1 , . . . , xur , xu are generators of I ′′, then all of the inner

2-minors of the interval I, and all of the inner 2-minors of J having corners on uk, uk+1, are

redundant. Since P2 is either empty or a cell interval, then the edge E is a maximal edge

interval of P (see also Remark 4.2.10). We want to prove that I ′′ has no minimal monomial

generators of degree greater than 1. By Lemma 4.2.9, assume that there exists a minimal

generator xwxz ∈ I ′′, with w, z /∈ {u1, . . . , ur, u} = E. That is there exists i ∈ {1, . . . , r}

and p ∈ V (P) such that g = xwxz−xui
xp is an inner 2-minor of P . That is one between w

and z, say w, lies on the same edge interval containing the ui’s and w /∈ E, namely E∪{w}

is an edge interval of P containing E, that is E is not a maximal, contradiction.

If P2 is empty, from Definition 4.2.5 we have P ′′ = P \ I = P1. Since E ∩V (P1) = ∅, then

I ′′ = IP1 + (xu1 , . . . , xur , xu) , V (P ′′) ∩ F = {vk, vk+1}, and therefore

R/I ′′ ∼= K[P ′′]⊗K[xv1 , . . . , xvk−1 , xvk+2 . . . , xvr , xv]

and the assertion follows.

Otherwise, let P ′′ be the polyomino arising from the translation of the edge {uk, uk+1} on

the edge {vk, vk+1}. We want to prove that I ′′ = IP ′′ + (xu1 , . . . , xur , xu).

Let f = f+ − f− ∈ I ′′ be an irreducible binomial and let

V (f) = {v ∈ V (P) | xv|f+ or xv|f−}.

One of the following is true

(a) V (f) ⊆ V (P1) or V (f) ⊆ V (P2) \ {uk, uk+1};

(b) |V (f) ∩ V (P1)| = |V (f) ∩ V (P2) \ {uk, uk+1}| = 2.

In case (a) we have f ∈ IP ′′ .

In case (b), since J is the unique maximal cell interval having non-empty intersection with

both P1 and P2, we have that |V (f)∩V (J1)| = |V (f)∩V (J2)\{uk, uk+1}| = 2. Since J1∪J2

is a maximal cell interval of P ′′, then f ∈ IP ′′ . The latter proves I ′′ ⊆ IP ′′+(xu1 , . . . , xur , xu).

Similarly the other inclusion follows, due to the fact that an inner interval in P ′′ is either
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an inner interval of P1, of P2 (up to the translation defined in Definition 4.2.5), or it is

contained in J1 ∪ J2. Lastly, since V (P ′′) ∩ F = {vk, vk+1}, then

R/I ′′ ∼= K[P ′′]⊗K[xv1 , . . . , xvk−1 , xvk+2 . . . , xvr , xv]

Corollary 4.2.12. Let P be a simple thin polyomino, collapsible in I that has r cells, with

P ′ and P ′′ as in Definitions 4.2.4 and 4.2.5. Then

HPK[P](t) = 1
1− t

HPK[P ′](t) + t

(1− t)r−1 · HPK[P ′′](t)


Proof. Let C be a leaf of I and let u and v be the leaf corners of C with u satisfying the

hypotheses of Lemma 4.2.11. We take the following short exact sequence:

0 R/(IP : xu) R/IP R/(IP , xu) 0

Since P is simple, then from Lemma 2.4.3 IP is prime, that is (IP : xu) = IP . Therefore,

by Proposition 1.3.2.(2) we have

HPR/IP (t) = 1
1− tHPR/(IP ,xu)(t).

We study the Hilbert series of R/(IP , xu). By applying Proposition 1.3.2 to the following

short exact sequence:

0 R/((IP , xu) : xv) R/(IP , xu) R/(IP , xu, xv) 0

we get

HPK[P](t) = 1
1− t

HPR/(IP ,xu,xv)(t) + t · HPR/((IP ,xu):xv)(t)
.

Furthermore, by Lemma 4.2.11, we have

1. R/(IP , xu, xv) ∼= K[P ′];

2. R/((IP , xu) : xv) ∼= K[P ′′]⊗K[y1, . . . , yr−1].

It is well known that

HPK[y1,...,yn](t) = 1
(1− t)n

and

HPA⊗B(t) = HPA(t) · HPB(t),
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that is

HPR/((IP ,xu):xv)(t) = 1
(1− t)r−1 · HPK[P ′′](t)

and the assertion follows.

Let P be a cell interval with rank P = r. The ideal IP can be seen as the determinantal

ideal of a 2× (r+ 1) matrix. The resolution of the above ideal is well-known (see [13, 24]),

as well as its Hilbert series. For the sake of completeness, we give the following result

Lemma 4.2.13. Let P be a cell interval with rank P = r. Then

HPK[P](t) = 1 + rt

(1− t)r+2 .

Proof. By [24, Corollary 6.2], IP has linear resolution, and βi,i+1 = i
(
r+1
i+1

)
for i = 1, . . . , r.

It is well-known that if M is an R-module, then

HPM(t) = 1
(1− t)n

n∑
i=0

∑
j∈Z

(−1)iβijtj.

That is, the Hilbert series of K[P ] is

1 +
r−1∑
i=1

(−1)ii
(
r+1
i+1

)
ti+1 + (−1)rrtr+1

(1− t)2r+2 . (∗)

We study the coefficient i
(
r+1
i+1

)
for 2 ≤ i ≤ r − 1.

i

(
r + 1
i+ 1

)
= (i+ 1)

(
r + 1
i+ 1

)
−
(
r + 1
i+ 1

)
=

= (r + 1)
(
r

i

)
−
(
r + 1
i+ 1

)
= r

(
r

i

)
−
(

r

i+ 1

)
.

Hence the numerator of Equation (∗) becomes

1 +
r−1∑
i=1

(−1)i
r(r

i

)
−
(

r

i+ 1

)ti+1 + (−1)rrtr+1 =

= 1 +
r∑
i=2

(−1)i
(
r

i

)
ti +

r∑
i=1

(−1)ir
(
r

i

)
ti+1 − rt+ rt =

(1− t)r + rt(1− t)r.

That is

HPK[P](t) = (1 + rt)(1− t)r
(1− t)2r+2 ,

and the assertion follows.
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We now state the main theorem (see also Examples 4.2.19 and 4.2.20).

Theorem 4.2.14. Let P be a simple thin polyomino with

HPK[P](t) = h(t)
(1− t)d .

Then h(t) is the rook polynomial of P.

Proof. Let I1, . . . Is be the maximal inner intervals of P . We proceed by induction on

p = rank P .

If p = 1, then P consists of one cell and by Lemma 4.2.13, the statement follows.

Let p > 1 and assume the thesis true for any polyomino with rank less than or equal to

p− 1. If s = 1, then P is a cell interval and from Lemma 4.2.13 we have

HPK[P](t) = 1 + pt

(1− t)p+2 .

The polynomial 1 + pt is the rook polynomial of a cell interval having p cells, that is the

assertion follows. If s > 1, then P is not a cell interval, that is, from Proposition 4.2.8, P is

collapsible in some maximal inner interval I. Assume that I has r cells. In order to apply

Corollary 4.2.12, we focus on HPK[P ′](t) and HPK[P ′′](t). The polyomino P ′ has p− 1 cells,

while the polyomino P ′′ has p− r cells. Hence, from the inductive hypothesis we have

HPK[P ′](t) =

a∑
i=0

r′it
i

(1− t)d1
,

where a = r(P) with r′a ≥ 0 due to Remark 4.2.6, and
a∑
i=0

r′it
i is the rook polynomial of P ′,

and

HPK[P ′′](t) =

b∑
i=0

r′′i t
i

(1− t)d2
.

where b = r(P ′′) = r(P) − 1 due to Remark 4.2.6, and
b∑
i=0

r′′i t
i is the rook polynomial of

P ′′. From Corollary 4.2.12 we get that HPK[P](t) is equal to

1
1− t


a∑
i=0

r′it
i

(1− t)d1
+ 1

(1− t)r−1

b∑
i=0

r′′i t
i+1

(1− t)d2

 =

a∑
i=0

r′it
i

(1− t)d1+1 +

b∑
i=0

r′′i t
i+1

(1− t)d2+r
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We first show that d1 + 1 = d2 + r = n− p, where n = |V (P)|. Since P ′ is the polyomino

having n− 2 vertices and p− 1 cells, then from Lemma 2.4.3 we have (n− 2)− (p− 1) =

n−p−1. Moreover, since I is on the 2r+2 vertices {x1, . . . , xr, x, y1, . . . , yr, y} but yk, yk+1

for some k are corners of one cell of P \ I, then P ′′ is the polyomino having n− 2r vertices

and p− r cells, hence from Lemma 2.4.3 d2 + r− 1 = (n− 2r)− (p− r) + r− 1 = n− p− 1.

That is

HPK[P](t) =
1 +

r(P)∑
i=1

(r′i + r′′i−1)ti

(1− t)d

For 1 ≤ i ≤ r(P), ri = r′i+r′′i−1. In fact, ri is the number of ways of placing i non-attacking

rooks on all of the cells of P , whereas r′i is the number of ways of placing i non-attacking

rooks on the simple thin polyomino P ′, namely the number of ways of placing i non-

attacking rooks on the cells D 6= C of P , and r′′i−1 is the number of ways of placing i − 1

non-attacking rooks on the simple thin polyomino P ′′, namely the number of ways of placing

i− 1 non-attacking rooks on the cells D of P such that D /∈ I, given that the i-th rook is

placed on the cell C, hence the thesis follows.

We immediately deduce the following

Corollary 4.2.15. Let P be a simple thin polyomino. Then the Castelnuovo-Mumford

regularity is r(P) and the multiplicity of K[P ] is rP(1).

Remark 4.2.16 In general the equality h(t) = rP(t) does not hold for any simple poly-

omino P . Let P be the square tetromino. Then, K[P ] is the toric ring related to the

complete bipartite graph K3,3 and from [83, Lemma 2.2] we have

h(t) = 1 + 4t+ t2 and rP(t) = 1 + 4t+ 2t2.

Even though the two polynomials are different, they have the same degree, that is

reg K[P ] = r(P) also in this case.

4.2.2 Gorenstein simple thin polyominoes

In this subsection we characterize the Gorenstein simple thin polyominoes. We start

with a fundamental definition for our goal.
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Definition 4.2.17 Let P be a simple thin polyomino. A cell C of P is single if there exists

a unique maximal inner interval of P containing C. If any maximal inner interval of P has

exactly one single cell, we say that P has the S-property.

Let C be the set of the single cells of a simple thin polyomino. We set D as the

collection of cells P \ C. In particular since P is thin, then any cell of D belongs exactly to

two maximal inner intervals of P .

Theorem 4.2.18. Let P be a simple thin polyomino, I1, . . . , Is be its maximal inner

intervals, and let rP(t) = ∑s
k=0 rkt

k be its rook polynomial. Then the following conditions

are equivalent:

(a) K[P ] is Gorenstein;

(b) ∀i = 0, . . . , s we have ri = rs−i;

(c) P satisfies the S-property.

Proof. (a)⇔(b): By combining Theorem 1.4.1 and Theorem 4.2.14, for a simple thin

polyomino P , the Cohen-Macaulay domain K[P ] = R/IP is Gorenstein if and only if

∀i = 0, . . . , s we have ri = rs−i, and the assertion follows.

(c)⇒(b): Since P satisfies the S-property, then any maximal inner interval I of P contains

a unique single cell C. Therefore, let C = {C1, . . . Cs} be the set of the single cells of P ,

and let I1, . . . , Is be the maximal inner intervals of P such that Ci ∈ Ii. We set D = P \ C.

As we have observed above, any cell of D is the intersection of two maximal inner intervals

of P , and we denote by Djk the cell of D in the intersection of Ij and Ik.

Let i be a subset of [s] = {1, 2, . . . , s} of cardinality l, and let jk =

{{j1, k1}, . . . , {jm, km}} with jt, kt ∈ [s] for 1 ≤ t ≤ m. We denote by Ci = {Ci ∈ C : i ∈ i}

and by Djk = {Djk ∈ D : {j, k} ∈ jk}.

Let j = {j1, . . . jm} and k = {k1, . . . km} be such that j∩ k = ∅ and let i be such that

i ∩ (j t k) = ∅ then

Ci ∪ Djk (4.3)

induces a set of d = l + m non-attacking rooks, and any set of non-attacking rooks of

cardinality d can be written in the form (4.3), and this configuration is unique because a
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set jk identifies a unique subset of D and thanks to the S-property a set i ⊂ [s] identifies a

unique subset of C. Our goal is to prove that for any configuration (4.3) of d non-attacking

rooks there exists a unique configuration of the form (4.3) of s − d non-attacking rooks.

Let Ci∪i∪k = C \ (Ci ∪ Cj ∪ Ck), and since i ∩ (j ∪ k) = ∅, then |Ci∪j∪k| = s − (l + 2m).

From the configuration of cardinality d in (4.3), we retrieve the following configuration of

cardinality s− d,

Ci∪j∪k ∪ Djk. (4.4)

In fact, s − (l + 2m) + m = s − d and the configuration (4.4) satisfies the properties of

configuration (4.3), and the configuration (4.4) is uniquely determined by (4.3) because

Djk is fixed, and once we set Ci and j ∪ k, the complement set Ci∪j∪k is unique.

(b)⇒(c): By contraposition, assume that P does not satisfy the S-property, that is

there exists an inner interval I of P having q single cells with q 6= 1. We want to prove

that either rs > r0 = 1 or rs−1 > r1 = rank P .

Let q > 1, and let C,C ′ be two single cells of I. Any set C of s non-attacking rooks

contains a single cell C ′′ of I such that either C ′′ 6= C or C ′′ 6= C ′. In both cases the sets

C \{C ′′}∪C and C \{C ′′}∪C ′ are two distinct sets of s non-attacking rooks, that is rs > 1,

and it is a contradiction.

Hence, from now on we assume that in P do not exist maximal inner intervals with two

or more single cells. That is, any maximal inner interval of P has either 0 or 1 single cells

and in particular we assume q = 0. Let C be a set of s non-attacking rooks of P . In this

case one of the following is true:

1. any inner interval J intersecting I in a cell D contains a cell C 6= D such that C ∈ C,

in particular I ∩ C = ∅;

2. there exists an inner interval J intersecting I in a cell D ∈ C.

In case (1), (C \{C})∪{D} is a set of s non-attacking rooks different from C, that is rs > 1,

and it is a contradiction.

In case (2), we want to show rs−1 > r1. Let E be a cell of P . If E ∈ C, then C \ {E}

is a set of s − 1 non-attacking rooks. If E /∈ C, then E is not single, that is E is the

intersection of two cell intervals I1 and I2. From the maximality of C, there exist two cells

112



F ∈ I1 and G ∈ I2 with F,G ∈ C, and C \ {F,G} ∪ {E} is a set of s − 1 non-attacking

rooks. Hence rs−1 ≥ r1.

The hypothesis (2) implies that there exist some cells A,B,C1, C2 of P such that the

polyomino Q in Figure 4.12 is a subpolyomino of P (up to rotations and reflections). In

fact, without loss of generality assume that A is a cell of I and B is a cell of J . Since I

has no single cells there exists an inner interval J ′ intersecting I in A. Moreover, if the cell

B is single, then B ∈ C and this contradicts (2). Hence there exists an inner interval J ′′

intersecting J in B.

A

D B

C1

C2

Figure 4.12: A simple thin polyomino Q that does not satisfy the S-property

Let F and G be the cells of C that belong to J ′ and J ′′, respectively. We consider the

following sets of s− 1 non-attacking rooks:

C \ {F,D} ∪ {A}, C \ {G,D} ∪ {B}, C \ {F,G,D} ∪ {A,B}.

The first two were mentioned in the discussion above, while the third one increases the

number rs−1. Hence rs−1 > r1, that is a contradiction.

Example 4.2.19 Let P be the polyomino in Figure 4.13.
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C1 D12

D23

C2

C3 D34

C4

Figure 4.13: A simple thin polyomino satisfying the S-property

We see that P has 4 maximal inner intervals and a single cell for any of these ones,

that is P satisfies the S-property. We want to compute the Hilbert series of K[P ]. It is

easy to see that r(P) = 4. According to Theorem 4.2.14, the Hilbert series of K[P ] is

HPK[P](t) =

4∑
i=0

rit
i

(1− t)d

where d = |V (P)| − rank P = 16− 7 = 9. We compute ri, namely the number of sets of i

non-attacking rooks for i = 0, . . . , 4.

• i = 0. ∅;

• i = 1. {C1}, {C2}, {C3}, {C4}, {D12}, {D23}, {D34};

• i = 2. {C1, D23}, {C1, C2}, {C1, C3}, {C1, D34}, {C1, C4}, {D12, C3},

{D12, D34}, {D12, C4}, {C2, C3}, {C2, D34}, {C2, C4}, {D23, C4}, {C3, C4};

• i = 3. {C1, C2, C3}, {C1, C2, C4}, {C1, C3, C4}, {C2, C3, C4}, {C1, C2, D34},

{C1, D23, C4} {D12, C3, C4};

• i = 4. {C1, C2, C3, C4}.

It follows

r0 = 1, r1 = 7, r2 = 13, r3 = 7, r4 = 1,

that is

HPK[P](t) = 1 + 7t+ 13t2 + 7t3 + t4

(1− t)9

and according to Theorem 1.4.1, K[P ] is Gorenstein.

Example 4.2.20 In the notation of Theorem 4.2.18, we highlight that the condition rs = 1

is not sufficient to guarantee that the polynomial has symmetric coefficients. In fact, let
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us consider the polyomino Q in Figure 4.12. The rook number of Q is 3 and the rook

polynomial of Q is

1 + 5t+ 6t2 + t3,

in fact, the sets of i non-attacking rooks are

• i = 0. ∅;

• i = 1. {A}, {B}, {C1}, {D}, {C2};

• i = 2. {C1, D}, {C1, C2}, {D,C2}, {B,C1}, {A,C2}, {A,B};

• i = 3. {C1, D, C2};

As already noted in the proof of Theorem 4.2.18 the fact that r2 > r1 depends on the set

{A,B}.

To conclude the Section, we want to remark that among the thin polyominoes that are

not simple, namely multiply-connected, there are some non-prime ones, so that we can not

directly retrieve the Cohen-Macaulayness of K[P ]. Nevertheless, due to Theorem 4.2.14

and Remark 4.2.16, we conjecture the following.

Conjecture 4.2.21 Let P be a polyomino. Then P is thin if and only if rP(t) = h(t).

Moreover, due to Theorem 4.2.14 and Theorem 4.1.8, we ask the following.

Question 4.2.22 Let P be a polyomino. Then reg K[P ] = r(P)?

4.3 HILBERT SERIES OF PARALLELOGRAM POLYOMINOES

In this Section, we make a further step in the study of the Hilbert series and

Castelnuovo-Mumford regularity, as done in Sections 4.1 and 4.2. We focus on paral-

lelogram polyominoes (see 2.3. In Subsection 4.3.1, the relationship between polyominoes

and distributive lattices is explored. In particular, in Proposition 4.3.2, we prove that

the parallelogram polyominoes are simple planar distributive lattices. In particular, the

join-meet ideal and polyomino ideal of a simple planar distributive lattice is the same, see

Remark 4.3.3. This identification allows us to use the existing knowledge on Hibi rings

arising from simple planar distributive lattices and translate it in terms of their structure

as coordinate rings of parallelogram polyominoes. Moreover, from Section 4.1, we know
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that the polyomino ideals of L-convex polyominoes can be interpreted as polyomino ideals

of certain Ferrer diagrams. The Ferrer diagrams are a special subclass of parallelogram

polyominoes. Therefore, the results provided in subsequent sections hold for L-convex

polyominoes, which in general, do not have a structure of a simple planar distributive

lattice.

In Subsection 4.3.2, we study the Hilbert series of parallelogram polyominoes. In Sec-

tions 4.1 and 4.2, we linked the Castelnuovo-Mumford regularity of K[P ] to the maximum

number of non-attacking rooks that can be placed on the polyomino, for the classes of L-

convex polyominoes and simple thin polyominoes. In particular, Theorem 4.2.14 motivates

us to study the relation between the Hilbert series and the rook polynomial for simple

non-thin polyominoes. Recently, another paper in this direction has been written by Kum-

mini and Veer [49]. In Subection 4.3.2, we introduce an equivalence relation on the rook

complex of a simple polyomino P . We conjecture that the number of equivalence classes of

k non-attacking rooks arrangements coincides with the coefficient hk of the polynomial h(t)

in the reduced Hilbert series. We prove that Conjecture 4.3.5 holds true for the class of

parallelogram polyominoes. Moreover, by using a computational approach, we prove that

Conjecture 4.3.5 holds true for any simple polyomino having at most 11 cells. In [64], we

provide an implementation in Macaulay2 [33] and Java for such computations.

Even though the Gorenstein ladder determinantal rings and the Gorenstein Hibi rings

are completely characterized, in subsection 4.3.3 we give a combinatorial characterization

of Gorenstein parallelogram polyominoes that is analogous to the characterizations given

in Sections 4.1 and 4.2 for L-convex and simple thin polyominoes, respectively. Such

characterization involves the intersections of the maximal rectangles of the parallelogram

polyominoes. It is well-known that every parallelogram polyomino can be uniquely repre-

sented as a Motzkin path (see Section 2.3). In Corollary 4.3.29, we give a characterization

of the Motzkin paths which represent Gorenstein parallelogram polyominoes.

4.3.1 The relationship between polyominoes and distributive lattices

In this Subsection, we talk about the polyominoes arising from simple planar distribu-

tive lattices, already introduced in Section 1.5. Note that any simple planar distributive
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lattice L can be identified as a convex polyomino. Moreover, we have the following

Proposition 4.3.1. Let P be a convex polyomino with bounding box [(0, 0), (m,n)]. If

(0, 0), (m,n) ∈ V (P), then V (P) determines a simple planar distributive lattice.

Proof. First we show that V (P) is a sublattice of N2. Let a, b ∈ V (P) be two incomparable

elements. We need to show that a∨b and a∧b belong to V (P). Let a = (i, j) and b = (k, l).

Since a and b are incomparable, we may assume that i < k and j > l. Then a ∨ b = (k, j)

and a∧ b = (i, l). First we claim that a∧ b = (i, l) ∈ V (P). On the contrary, suppose that

a∧ b = (i, l) /∈ V (P). By using the convexity of P and applying [62, Lemma 1.1], it follows

that (i, p), (q, l) /∈ V (P), for any p ≤ l and q ≤ i. Since, P is a polyomino, and hence

connected, there must exist a path in V (P) from (0, 0) to (i, j). However, any possible

path in V (P) from (0, 0) to (i, j) must either contain a vertex (i, p) with p ≤ l or a vertex

(q, l) with q ≤ i, a contradiction. This yields a∧ b = (i, l) ∈ V (P). A similar argument can

be applied to conclude that a∨ b = (k, j) ∈ V (P). Moreover, the assertion that P is simple

and planar as a distributive lattice, follows directly from the definition of polyominoes.

If a polyomino P admits a structure of a distributive lattice on V (P), then instead

of V (P), we refer to P as a distributive lattice. One can observe that every parallelogram

polyomino P (see Section 2.3) is a simple planar distributive lattice, as shown in the

following proposition.

Proposition 4.3.2. A finite collection of cells P is a parallelogram polyomino if and only

if P is a simple planar distributive lattice.

Proof. Let P = (S1,S2) be a parallelogram polyomino. By a translation, we may assume

that S1 and S2 meet at (0, 0) and (m,n). The definition of parallelogram polyomino together

with Proposition 4.3.1 yields that P is a simple planar distributive lattice.

To show the converse, assume that P is a simple planar distributive lattice with

bounding box [(0, 0), (m,n)]. It follows from the definition of simple planar distributive

lattice that P is convex polyomino. Note that rank (P) = m + n as a lattice. Let m0 :

x0 < x1 < · · · < xm+n−1 < xm+n be the maximal chain of P with xt = (it, jt) for all

0 ≤ t ≤ m + n satisfying the following property: (i0, j0) = (0, 0), (im+n, jm+n) = (m,n),
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and for any (k, `) ∈ V (P) with k = it for some t, if l ≥ jt then (k, l) = (is, js) for some s ≥ t.

We call such an m0 the uppermost chain of P . Similarly, one can define the lower most

chain m′0 of P . Then it can be easily seen that P is a parallelogram polyomino determined

by (m0,m
′
0).

The following remark plays a vital role in subsequent text.

Remark 4.3.3 Let L be a simple planar distributive lattice and a, b ∈ L be two incompa-

rable elements in L. Let c = a∨ b and d = a∧ b. Then a and b determine an inner interval

in L with diagonal corners c and d and antidiagonal corners a and b. Therefore, a typical

generator fab = xaxb − xa∨bxa∧b = xaxb − xcxd of the join-meet ideal of L is also an inner

2-minor of L. Similarly, any inner 2-minor of L can be interpreted as a relation arising

from two incomparable elements and their meet and join. This shows that the join-meet

ideal and polyomino ideals of L coincide.

4.3.2 Hilbert series and rook complex of simple polyominoes

In this subsection, we give a conjecture about the Hilbert series of the coordinate ring

of simple polyominoes in terms of some rook arrangements on their cells.

We already mentioned at the beginning of the chapter that the set of the configurations

of pairwise non-attacking rooks is a simplicial complex. We now give a detailed explanation.

We observe that for any cell C ∈ P , the set {C} is a 1 non-attacking rook. Moreover, for

any set of non-attacking rooks F ⊂ P , the subset G ⊂ F is also a set of non-attacking

rooks. This yields that the set R of sets of non-attacking rooks is a simplicial complex and

R = R0 ∪R1 ∪ . . . ∪Rr(P),

where for any k = 0, . . . , r(P), Rk contains the sets of k non-attacking rooks, with R0 = ∅.

Set rk = |Rk|. Next, we introduce an equivalence relation on the set Rk for 2 ≤ k ≤ r(P).

For this aim, we define the following.

Definition 4.3.4 Two non-attacking rooks R1 and R2 of P are switching rooks if they are

diagonal (resp. antidiagonal) cells of a rectangle of P . Let R′1 and R′2 be the antidiagonal

(resp. diagonal). Observe that if F ∈ R and R1, R2 ∈ F are switching rooks, then the set
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F ′ \{R1, R2}∪{R′1, R′2} ∈ R. The replacement of R1 and R2 by R′1 and R′2 is called switch

of R1 and R2.

There exists a natural equivalence relation ∼ on Rk given as: F1, F2 ∈ Rk are equivalent

if one can obtain F2 from F1 after some switches. We define the quotient set

R̃k = Rk/ ∼ .

We observe that the rook number r(P) does not change. We define the polynomial

r̃P(t) =
r(P)∑
k=0
|R̃k|tk.

With the notation introduced above, we state the following:

Conjecture 4.3.5 Let P a simple polyomino. Then h(t) = r̃P(t).

The following example depicts the construction of a rook complex R of a polyomino

and the quotient set R̃ := R/ ∼.

Example 4.3.6 We describe R and R̃ for the simple polyomino P in Figure 4.14. The

polyomino P consists of seven cells labelled as A,B,C,D,E, F,G and r(P) = 3. The rook

complex R = R0 ∪R1 ∪R2 ∪R3 of P is given below.

R0 = {∅}

R1 = { {A}, {B}, {C}, {D}, {E}, {F}, {G}}

R2 = {{A,D}, {A,E}, {A,G}, {B,C}, {B,E}, {B,F}, {B,G}, {C,G}, {D,F}, {D,G},

{E,F}, {F,G}}

R3 = {{A,D,G}, {B,C,G}, {B,E, F}, {B,F,G}, {D,F,G}}.

This gives,

rP(t) = 1 + 7t+ 12t2 + 5t3

We observe that A and D are switching rooks and they can be switched with B and

C. Then

{A,D} ∼ {B,C}, {A,D,G} ∼ {B,C,G}

and

r̃P(t) = 1 + 7t+ 11t2 + 4t3.
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By using Macaulay2, one can see that h(t) = r̃P(t).

A B

C D E

F G

Figure 4.14: A simple polyomino

As proved in Section 4.2, Conjecture 4.3.5 holds true for the class of simple thin

polyominoes. In fact, by Definition 3.2.7, a thin polyomino does not contain a square

tetromino as a subpolyomino. Therefore, a simple thin polyomino P does not contain

switching rooks and r̃P(t) = rP(t) = h(t). Moreover, by computational approach we obtain

the following

Theorem 4.3.7. Let P be a simple polyomino with rank P ≤ 11. Then h(t) = r̃P(t).

Proof. To prove the claim we have implemented a computer program that, for a fixed

number n, performs the following steps:

(S1) compute the set of all the simple polyominoes of rank n;

(S2) for any polyomino in (S1) compute the polynomial h(t);

(S3) for any polyomino in (S1) compute the polynomial r̃P(t);

(S4) check whether the polynomial from step (S2) is equal to the polynomial from step

(S3).

In particular, for step (S1) we slightly modified the implementation given in [55].

For step (S2) we used the Macaulay2 functions for the Hilbert series. For step (S3),

we constructed the rook complex R as the independence complex of the graph G with

V (G) = {C : C ∈ P} and

E(G) = {{C,D} : the cells C and D lie on the same row or column},
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and then, by introducing the equivalence relation, we constructed R̃. Finally we refer the

reader to [64] for a complete description of the algorithm that we used.

Now we will prove Conjecture 4.3.5 for parallelogram polyominoes.

Theorem 4.3.8. Let P a parallelogram polyomino. Then h(t) = r̃P(t).

From Proposition 4.3.2, we know that a parallelogram polyomino can be seen as a

simple planar distributive lattice. Furthermore, Remark 4.3.3 shows that the join-meet

ideal and polyomino ideal of a simple planar distributive lattice coincides. To achieve our

aim, we will first recall some notions related to simple planar distributive lattices and their

Hilbert series.

Let x, y ∈ L such that y covers x, that is, x < y and there is no z ∈ L such that

x < z < y. Then the edge between x and y in the Hasse diagram of L can be represented

by x→ y. Recall from [5] that an edge-labeling λ of L is an integer labelling of the edges in

Hasse diagram of L. Each chain in L, say c : x0 → x1 → x2 → . . .→ xk can be labelled by

a k-tuple λ(c) = (λ(x0 → x1), λ(x1 → x2), . . . , λ(xk−1 → xk)). One can compare two such

k-tuples (a1, . . . , ak) and (b1, . . . , bk) lexicographically, that is, (a1, . . . , ak) <lex (b1, . . . , bk),

if the most-left nonzero component of the vector (a1 − b1, . . . , ak − bk) is positive.

Definition 4.3.9 [5, Definition 2.1] An edge labelling λ of L is called EL-labelling if for

every interval [x, y] in L, λ satisfies the following:

(i) there is a unique chain c : x = x0 → x1 → x2 → . . .→ xk = y such hat λ(x0 → x1) ≤

λ(x1 → x2) ≤ . . . ≤ λ(xk−1 → xk)).

(ii) for every other chain b : x = y0 → y1 → y2 → . . .→ yk = y, we have λ(b) >lex λ(c).

In Figure 4.16, we give an illustration of EL-labeling λ.

Let rank (L) = d + 1. Then for each maximal chain m : minL = x0 → x1 → x2 →

. . . → xd+1 = max(L), the descent set of m is D(m) = {i : λ(xi−1 → xi) > λ(xi → xi+1)}.

Then by following [5, Theorem 2.2], for any S ⊂ [d], we set β(S) to be the number of

maximal chains m in L such that D(m) = S. It is known from [5], that

HSK[L](t) = h(t)
(1− t)d+2
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where

h(t) =
∑
S⊂[d]

β(S)t|S|.

Our main goal is to interpret h(t) in terms of r̃P(t).

In the following, we recall the definition of uppermost chain (already used in the proof

of Proposition 4.3.2), adding a nice EL-labelling.

Definition 4.3.10 Let L be a simple planar distributive lattice of rank d+ 1.

(i) Let m0 : x0 < x1 < · · · < xd < xd+1 be the maximal chain of L with xt = (it, jt) for all

0 ≤ t ≤ d+ 1 satisfying the following property: (i0, j0) = (0, 0), (id+1, jd+1) = maxL,

and for any (k, `) ∈ L with k = it for some t, if ` ≥ jt then (k, `) = (is, js) for some

s ≥ t. We call such an m0 the uppermost chain of L. We label the edges of m0 by

λ(xt → xt+1) = t+ 1 for 0 ≤ t ≤ d.

(ii) Let x, y ∈ L such that x < y. Then the uppermost chain from x to y in L is the

uppermost chain of the sublattice L ∩ [x, y].

Figure 4.15.(I) illustrates an example of an uppermost chain between two elements

x, y of L, while Figure 4.15.(II) illustrates an example of an uppermost chain of a lattice

L. The uppermost chains are indicated by thick lines.

x

y

(A) The uppermost chain between x and y. (B) The uppermost chain of L

Figure 4.15: Two examples of uppermost chains

In [28], the following EL-labelling is defined for simple planar distributive lattices.

Definition 4.3.11 We label all the edges in the Hasse diagram of L as follows. If it+1 =

it + 1, in other words if xt → xt+1, is a horizontal edge, then we label by t+ 1 all the edges
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of L of the form (it, j) → (it+1, j). If jt+1 = jt + 1, that is, if xt → xt+1 is a vertical edge,

then we label by t + 1 all the edges of L of the form (i, jt)→ (i, jt+1). In [28, Proposition

6], it is shown that λ is an EL-labelling.

In Figure 4.16, we use Definition 4.3.11 for the EL-labeling λ. The chain marked with

thick line is the uppermost chain of L.

1

2
3

4
5

6 7

1 1 1
2

3 3 3
4

4

5 5
6

6

6

7

7

Figure 4.16: The EL-labelling for a parallelogram polyomino

Throughout the following text, we will follow the EL-labelling given in Defini-

tion 4.3.10. The following remarks are immediate consequences of Definition 4.3.10 (see

Figure 4.16).

Remark 4.3.12 (i) Let (i, j)→ (i, j + 1) and (k, l)→ (k, l + 1) be two edges in L with

i ≤ k and j + 1 ≤ l. Then λ((i, j)→ (i, j + 1)) < λ((k, l)→ (k, l + 1)).

(ii) Let (i, j) → (i + 1, j) and (k, l) → (k + 1, l) be two edges in L with i + 1 ≤ k and

j ≤ l. Then λ((i, j)→ (i+ 1, j)) < λ((k, l)→ (k + 1, l)).

(iii) Let (i, j)→ (i, j+1) and (k, l)→ (k+1, l) be two edges in L with i ≤ k and j+1 ≤ l.

Then λ((i, j)→ (i, j + 1)) < λ((k, l)→ (k + 1, l)).

(iv) Let (i, j)→ (i+ 1, j) and (i+ 1, j)→ (i+ 1, j+ 1) be two edges in L. If (i, j+ 1) /∈ L,

then (i, j)→ (i+ 1, j) and (i+ 1, j)→ (i+ 1, j+ 1) appear in the uppermost chain of

L and λ((i, j)→ (i+ 1, j)) < λ((i+ 1, j)→ (i+ 1, j + 1)). However, if (i, j + 1) ∈ L,

then (i, j) → (i, j + 1) and (i, j + 1) → (i + 1, j + 1) are edges in L. Moreover, due

to (3) we have λ((i, j) → (i, j + 1)) < λ((i, j + 1) → (i + 1, j + 1)). Following the
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Definition 4.3.10, we have

λ((i, j)→ (i, j + 1)) = λ((i+ 1, j)→ (i+ 1, j + 1))

and

λ((i, j + 1)→ (i+ 1, j + 1)) = λ((i, j)→ (i+ 1, j))

which gives

λ((i, j)→ (i+ 1, j)) > λ((i+ 1, j)→ (i+ 1, j + 1))

(v) From (1)–(4), we can compute the descent set of a maximal chain m in L. If m

contains edges of the form (i, j) → (i + 1, j) and (i + 1, j) → (i + 1, j + 1) and

(i, j + 1) ∈ L, then we have a descent at (i+ 1, j).

(vi) Let x = (i, j), y = (p, q) ∈ L with i < p and j < q and let c : x = x0 < x1 < . . . <

xl = y be the uppermost chain between x and y. It follows that if (i, j+ 1) ∈ L, then

x1 = (i, j + 1). That is, in c there are no descents. Similarly one proves that in an

uppermost chain there are no descents.

The following definition is needed for the Proposition 4.3.14.

Definition 4.3.13 Let C = [(i, j), (i + 1, j + 1)] be a cell in a simple planar distributive

lattice L. Then the lower left corner (i, j) of C is denoted by l(C). Given any maximal

chain m in a simple planar distributive lattice L, we say that m has a descent at cell C if

m passes through the edges (i, j)→ (i+ 1, j) and (i+ 1, j)→ (i+ 1, j + 1).

Proposition 4.3.14. Let L be a simple planar distributive lattice. Then the following are

equivalent.

1. There exists a maximal chain m in L with |D(m)| = r.

2. There exists C1, C2, . . ., Cr cells of L with l(Ck) = (ik, jk) for 1 ≤ k ≤ r

i1 < i2 < . . . < ir and j1 < j2 < . . . < jr.

Observe that the chain m has descents exactly at C1, . . . Cr.

Proof. (1) ⇒ (2) Let m : x0 < x1 < · · · < xd < xd+1 be a maximal chain with descent set

D(m) = {l1, . . . , lr} with l1 < . . . < lr. Then xl1 < xl2 < . . . < xlr . From Remark 4.3.12.(5)
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and Definition 4.3.13, for any i ∈ {1, . . . , r} there exists a cell Ci such that lower right

corner and the lower left corner of Ci are xli and xli−1, respectively. We now prove that for

any k = 1, . . . , r− 1 we have ik < ik+1 and jk < jk+1. From the fact that, xlk−1 < xlk+1−1 it

follows that ik ≤ ik+1. By contraposition, assume that ik = ik+1 for some k, then we have

that xlk−1 = (ik, jk), xlk = (ik + 1, jk) and xlk+1−1 = (ik, jk+1). That is, xlk 6< xlk+1−1, hence

m is not a chain and this is a contradiction. Hence ik < ik+1 and similarly jk < jk+1.

(2)⇒ (1) For a cell C in L, let r(C) be its lower right corner. Let c0 be the uppermost

chain between (0, 0) and (i1, j1) and for 1 ≤ k ≤ r − 1 let ck be the uppermost chain

between r(Ck) = (ik + 1, jk) and l(Ck+1) = (ik+1, jk+1) and let cr be the uppermost chain

between r(Cr) and (m,n). From the concatenation of c0c1 . . . cr, we obtain in a natural

way a maximal chain m of L. We prove that m has descent at C1, C2, . . . , Cr. We fix

k ∈ {1, . . . , r}. Since (ik, jk) → (ik + 1, jk) ∈ E(m), it is sufficient to prove (ik + 1, jk) →

(ik + 1, jk + 1) ∈ E(m). The assertion follows from the inequalities on i1 < . . . < ir and

j1 < . . . < jr and Remark 4.3.12.(6) applied to the uppermost chain ck+1. Therefore, m

has descent at Ck. This completes the proof.

In order to prove Theorem 4.3.8, we premise the following lemma which shows that

given any set of non-attacking rooks in a parallelogram polyomino, one can find an equiv-

alent set of non-attacking rooks whose lower left corners appear in a chain.

Lemma 4.3.15. Let P be a parallelogram polyomino and let F = {A1, . . . , Ad} ∈ R. Then

there exists G = {B1, . . . , Bd} ∈ R with l(Bk) = (ik, jk) for 1 ≤ k ≤ d such that

i1 < i2 < . . . < id and j1 < j2 < . . . < jd

and F ∼ G.

Proof. Let l(Ai) = (xi, yi) for i = 1, . . . , d. We prove the assertion by applying induction

on d.

Let d = 2 and assume that A = {A1, A2} is labelled such that x1 < x2. If y1 < y2

then the statement holds trivially. If y1 > y2, then by using the assumption that P

is a parallelogram polyomino and hence a distributive lattice, we conclude that the join

b1 = (x2, y1) and the meet b2 = (x1, y2) of A1 and A2 belong to V (P). In particular, b1
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and b2 are lower left corners of some cells of P and A1 and A2 are antidiagonal cells of a

rectangle of P . Let B1 and B2 be the cells having lower left corners b1 and b2, respectively.

It follows that the set {B1, B2} satisfies the assertion. Now, let d > 2 and assume that

the assertion is true for all of the sets containing d− 1 non-attacking rooks. We label the

elements of A in a way such that x1 < x2 < . . . < xd. Let k ∈ {1, . . . , d} such that yk < yi

for any i 6= k. If k = 1, then we set B1 = A1 and we apply the inductive hypothesis on the

set {A2, . . . , Ad} to get the desired result.

If k > 1, then let B1 and Ck be the cells whose lower left corners are respectively (x1, yk)

and (xk, y1). Then {A2, . . . , Ak−1, Ck, Ak+1, . . . , Ad} is a set of d − 1 non-attacking rooks

and by applying the inductive hypothesis the assertion follows.

Now we state the proof of Theorem 4.3.8.

Proof of Theorem 4.3.8. Let

HSK[P](t) =

∑
k
hkt

k

(1− t)dimK[P] .

We show that for any k one has r̃k = hk. For k = 0, 1 one has r̃k = hk.

For k ≥ 2, by Proposition 4.3.14 the maximal chains with descent set of cardinality k in P

seen as a planar distributive lattice are in bijection with the sets F of non-attacking rooks

B1, . . . , Bk with l(B`) = (i`, j`) for 1 ≤ ` ≤ k such that i1 < i2 < . . . < ik and j1 < j2 <

. . . < jk. Thanks to Lemma 4.3.15, such sets F are the representatives of the equivalence

classes of Rk/ ∼, that is r̃k = hk.

As a consequence of Theorem 4.3.8, we observe that the Conjecture 4.3.5 holds for

L-convex polyominoes, too. As stated in Section 4.1, the coordinate ring of an L-convex

polyomino is isomorphic to the coordinate ring of a suitable Ferrer diagram. Then the

conclusion follows from the fact that every Ferrer diagram is a particular parallelogram

polyomino. We also note that the Hilbert series of Ferrer diagram was given in [20].

From Lemma 2.4.3, it follows that for a parallelogram polyomino P the coordinate

ring K[P ] is a Cohen-Macaulay domain. Furthermore, from deg h(t) = reg K[P ], we obtain

the following corollary of Theorem 4.3.8.

Corollary 4.3.16. Let P be a parallelogram polyomino. Then reg K[P ] = r(P).
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4.3.3 Gorenstein parallelogram polyominoes

Given a polyomino P , we call P Gorenstein if K[P ] is Gorenstein. In this Subsection

we discuss the Gorenstein parallelogram polyominoes. Although the Gorenstein distributive

lattices are completely characterized in [42], we plan to give a combinatorial interpretation

of the Gorenstein parallelogram polyominoes in the language of polyominoes. Our aim

is to compare the conditions on a parallelogram polyomino to be Gorenstein with the

conditions found in Section 4.1 for L-convex polyominoes and in Section 4.2 for simple thin

polyominoes.

LetM(P) be the set of the maximal rectangles of P . We generalize Definition 4.2.17

with the following.

Definition 4.3.17 Let S be a rectangular (resp. square) subpolyomino of a parallelogram

polyomino P . Then S is said to be single if there exists a unique maximal rectangle

R ∈M(P) such that S ⊆ R and S ∩R′ = ∅ for all R′ ∈M(P) with R′ 6= R. We say that

P has the S-property if each maximal rectangle R of P has a unique single square.

To see an illustration of the above definition, consider the parallelogram polyomino P

given in Figure 4.17.(i). P has six maximal rectangles

{A,B}, {B,C,E}, {C,D,E, F, }, {D,F,H}, {E,F,G}, {F,G,H, I}

The maximal rectangle {A,B} has A as its single square, and the maximal rectangle

{F,G,H, I} has I as its single square. However, other rectangles do not have a single

square or a single rectangle because each of their cells belong to other rectangles as well.

The maximal rectangles {A,B} and {F,G,H, I} are special in a sense that {A,B} is the

unique maximal rectangle containing min(P) (as a distributive lattice) and {F,G,H, I} is

the unique maximal rectangle containing max(P).

Next, we prove that if a maximal rectangle R in a parallelogram polyomino P contains

either min(P) or max(P) then R must contain a single rectangle. Given a parallelogram

polyomino P , we set min(P) = (0, 0) throughout the following text.

Lemma 4.3.18. Let P be a parallelogram polyomino. Then there exists a unique R ∈
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M(P) such that (0, 0) ∈ V (R). In particular, the maximal rectangle R has a single rectan-

gle.

Proof. By contraposition, assume that there are two distinct maximal rectangles R,R′ of

P , such that (0, 0) ∈ V (R)∩V (R′). Let a, b, c, d ∈ V (P) be such that V (R) = [(0, 0), (a, b)]

and V (R′) = [(0, 0), (c, d)]. Since R and R′ are distinct, without loss of generality, we

may assume that a < c and b > d. From Proposition 4.3.2, it follows that P is a simple

planar distributive lattice. Therefore, (c, b) ∈ V (P) because it is the join of (a, b) and

(c, d). This shows that the rectangle R̃ with V (R̃) = [(0, 0), (c, b)] contains both R and

R′, a contradiction to the maximality of R and R′. Therefore, we conclude that there

exists a unique maximal rectangle R that contains (0, 0). In addition, we obtain that the

cell with lower left corner (0, 0) only belongs to R. This shows that R must have a single

rectangle.

In the following text, for a given parallelogram polyomino P , the unique maximal

rectangle of P containing min(P) = (0, 0) is denoted by R0. Let P ′ be a subpolyomino of

P . Then P \ P ′ is a collection of cells obtained by removing all cells of P ′ from P . Next,

we introduce a new family of parallelogram polyominoes.

Definition 4.3.19 A parallelogram polyomino P is said to be shortenable if P \ R0 is a

parallelogram polyomino. Moreover, P is well-shortenable if P is shortenable and either

P \R0 is a rectangle or P \R0 is a well-shortenable parallelogram polyomino. The sequence

of polyominoes {Pi}i=1,...,l such that P1 = P \R0, and Pi+1 = Pi\Ri where Ri is the unique

rectangle containing min(Pi), is called the derived sequence of P .

We observe that a thin parallelogram polyomino and an L-convex parallelogram poly-

omino (Ferrer diagram) are well-shortenable. In particular, for a Ferrer diagram the defi-

nition of derived sequence coincides with the one of Section 4.1.

Example 4.3.20 We give an example of a shortenable polyomino that is not well-

shortenable. Let P be the parallelogram polyomino in Figure 4.17.(i). We observe that

the maximal rectangle R0 of P is the maximal rectangle on the cells A and B, and the

polyomino P1 = P \ R0 is a parallelogram polyomino (see Figure 4.17.(ii)). Then P is
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shortenable. However, the rectangle R1 on the cells {C,D,E, F} in P1 is such that P1 \R1

is not a parallelogram polyomino (without rotation), see Figure 4.17.(iii).

A B

C D

E F G

H I

(A) P

C D

E F G

H I

(B) P1 = P \ {A,B}

G

H I

(C) P1 \ {C,D,E, F}

Figure 4.17: A shortenable polyomino that is not well-shortenable

In order to characterize the parallelogram polyominoes that are shortenable, we prove

the following.

Lemma 4.3.21. Let P be a parallelogram polyomino. Assume that R0 has size s×t and its

single rectangle R has size s′× t′ with s′ < s and t′ < t. Then there exist R′, R′′, R̃ ∈M(P)

as in Figure 4.18.

(0, 0)

R

R0

R′

R′′

R̃

Figure 4.18

Proof. Let P = (S1,S2). Since s′ < s and t′ < t, then all cells of R0 with lower left

corner (a, b) with either s′ ≤ a or t′ ≤ b belong to some other maximal rectangles of P as

well. Using the fact that R0 ∈ M(P), we observe that S2 takes a north step at (s, 0). By

using the assumptions s′ < s and t′ < t and R is the single rectangle of R0, we conclude

that S2 changes the direction from north to east at (s, t′). Then the coordinates of R′ are
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determined by the next north turn of S2. Similar argument on S1 shows the existence of

R′′. The existence of R̃ is guaranteed by the fact that P is a parallelogram polyomino and

hence a distributive lattice, therefore the join of the diagonal corners of R′ and R′′ must

belong to V (P).

In the following, we give a characterization of parallelogram polyominoes that are

shortenable in terms of the size of the single rectangle of R0.

Lemma 4.3.22. Let P be a parallelogram polyomino and assume R0 has size s× t. Then

P is shortenable if and only if the single rectangle R of R0 has size s′× t′ with either s′ = s

or t′ = t.

Proof. By contraposition, assume that R has size s′ × t′ with s′ < s and t′ < t. From

Lemma 4.3.21 there exist in P the maximal rectangles in Figure 4.18. We consider the

polyomino P1 = P \R0. We observe that (s′, t), (s, t′) ∈ V (P1) with s′ < s and t′ < t, that

is a contradiction to the fact that P is parallelogram.

Conversely, assume that V (R) = [(0, 0), (s′, t)] with s′ < s. Then using Proposition 4.3.2,

we obtain P \ R0 is the parallelogram polyomino that corresponds to the sublattice L ∩

[(s′, t),maxL].

We now want to link the shortenability to the Gorensteinness. Hibi showed in [42,

page 105] that given a distributive lattice L, the Hibi ring K[L] is Gorenstein if and only

if the poset P of the join-irreducible elements of L is pure, i.e. all of the maximal chains

have the same length. Hence we look at the structure of the poset of the join-irreducible

elements of parallelogram polyomino P that we identify as a distributive lattice.

Let H0, H1, . . . , Hn be the maximal edge horizontal intervals of P and V0, V1, . . . , Vn

be the maximal edge vertical intervals of P . Note that H0 ∩ V0 = {(0, 0)} = minL. Set

hi = min(Hi) for all 1 ≤ i ≤ n and vj = min(Vi) for all 1 ≤ j ≤ m (see Figure 4.19). Then

h1 ≤ h2 ≤ . . . ≤ hn and v1 ≤ v2 ≤ . . . ≤ vm are two maximal chains of P .
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(A) The join-irreducible elements are the

minimum of the maximal horizontal and

vertical edge intervals

h1

h2

h3

h4

v1

v2

v3

v4

(B) The poset P of join-irreducible elements

Figure 4.19

In Section 4.1, we prove that an L-convex polyomino P with derived sequence

(Pk)k=1,...,t for some t is Gorenstein if and only if the bounding box of any Pk is a square. For

parallelogram polyominoes the latter condition is necessary but not sufficient, as shown in

Figure 4.20. The polyomino P in Figure 4.20 is known to be non-Gorenstein from Theorem

4.2.18, while P , P1 and P2 have square bounding boxes.

(A) P (B) P1 (C) P2

Figure 4.20: An example of non-Gorenstein parallelogram polyomino with square bounding

boxes

Next, we prove that a Gorenstein parallelogram polyomino is well-shortenable.

Lemma 4.3.23. Let P be a parallelogram polyomino. If P is Gorenstein, then P is well-

shortenable.

Proof. Let P be Gorenstein. Then due to [42, page 105], the poset P of join-irreducible
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elements of P is pure. Assume that P is not shortenable. Then by using Lemma 4.3.22,

we obtain that if R0 has size s× t with t ≤ s then the single rectangle of R has size r × q

with V (R) = [(0, 0), (r, q)] with q ≤ r, r < s and q < t. From Lemma 4.3.21, we can find

the maximal rectangle R′ with V (R′) = [(0, q), (u, t)] with u > s as shown in Figure 4.21.

hq

ht

× ×

×

vr vs

vs+1
R

R′

Figure 4.21

We observe that hq and vs+1 correspond to (0, q) and (s+1, q), respectively. The latter

implies that hq ≤ vs+1. We consider the following maximal chains of the poset P ,

h1 ≤ h2 ≤ . . . ≤ hn, h1 ≤ h2 ≤ . . . ≤ hq ≤ vs+1 ≤ . . . ≤ vn.

The first chain has length n while the second one has length n− s+ q < n since q < t ≤ s.

This contradicts the Gorensteinness of P . Therefore, we conclude that P is shortenable

and hence, P1 = P \R0 is a parallelogram polyomino.

To show that P is well-shortenable, it is enough to show that P1 is Gorenstein. In-

deed, if P1 is Gorenstein then by following the previous argument, it is shortenable and

the conclusion follows by applying the same argument. Let P1 be the poset of the join-

irreducible elements of P1. Assume that the single rectangle R of R0 (in P) is such that

V (R) = [(0, 0), (r, t)] ⊂ V (R0) = [(0, 0), (s, t)]. Then min(P1) = (r, t) and in P we have

vr ≤ ht+1. If P1 is not Gorenstein, we exhibit two chains in P that have different lengths.

Let

c1 ≤ c2 ≤ . . . ≤ cl, d1 ≤ d2 ≤ . . . ≤ dh

be two chains with ci, dj ∈ V (P1) = {vr+1, . . . , vn, ht+1, . . . , hn} and l 6= h. If c1 = d1 =

ht+1, then h1 ≤ . . . ≤ ht ≤ c1 ≤ c2 ≤ . . . ≤ cl and h1 ≤ . . . ≤ ht ≤ d1 ≤ d2 ≤ . . . ≤ dh are

two maximal chains of P having different lengths, a contradiction to the Gorensteinness of

P . Similar arguments hold for the case c1 = d1 = vr+1. We are left with the case c1 = ht+1
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and d1 = vr+1. Since vr ≤ ht+1, then

v1 ≤ . . . ≤ vr ≤ c1 ≤ c2 ≤ . . . ≤ cl, v1 ≤ . . . ≤ vr ≤ d1 ≤ d2 ≤ . . . ≤ dh

are two chains of P having lengths r+ l and r+h and since h 6= l, then they have different

lengths and P is not Gorenstein, a contradiction. This shows that P \ R0 is Gorenstein

and hence shortenable.

In order to link the Gorensteinness with the S-property, we prove that a parallelogram

polyomino with S-property is well shortenable.

Lemma 4.3.24. Let P be a parallelogram polyomino with S-property. Then P is shorten-

able.

Proof. Let S be the single square of R0. Assume that R0 has size s× t and S has size r× r

with r < min{s, t}. From Lemma 4.3.21, there exist some maximal rectangles R′, R′′ and R̃

as in Figure 4.18. We observe that in this case R′, R′′ are contained in R0 ∪ R̃, that is they

do not have single squares, and it is a contradiction to the fact that P has the S-property.

Therefore, either r = s or r = t and the conclusion follows from Lemma 4.3.22.

Corollary 4.3.25. Let P ⊆ [m,n] be a parallelogram polyomino with S-property, let

R0, . . . , Rl be the maximal rectangles of P having single squares S0, S1, . . . Sl of sizes

t1 × t1, . . . , tl × tl, respectively. For any i ∈ 1, . . . , l let ci = ∑i
j=1 tj. Then, we have

V (Si) ∩ V (Si+1) = (ci, ci) and m = n = cl. Moreover P is well-shortenable.

Proof. From Lemma 4.3.24 we have that V (S0) = [(0, 0), (t1, t1)] and P is shortenable.

Let P1 = P \ R0. From Lemma 4.3.24 applied to P1, we obtain that S1 is such that

V (S1) = [(t1, t1), (c2, c2)]. We recursively consider the polyomino Pi obtained from from

Pi−1 by removing the rectangle Ri and we obtain from Lemma 4.3.24.that V (Si+1) =

[(ci, ci), (ci+1, ci+1)]. The polyomino Pl is a square, that is cl = m = n and P is well-

shortenable.

Now we prove the main theorem of this section.

Theorem 4.3.26. Let P be a parallelogram polyomino. The following are equivalent:
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(i) P is Gorenstein;

(ii) P has the S-property.

Proof. (i)⇒(ii). From Lemma 4.3.23, we have that P is well shortenable. Moreover, from

the proof of Lemma 4.3.23 it arises that all of the polyominoes in the derived sequence are

Gorenstein, that is they have square bounding boxes due to the pureness of the poset. In

particular, P ⊂ [(0, 0), (n, n)].

First, we show that the single rectangle R of R0 is a square. Let P be the poset of

the join-irreducible elements of P . Assume that

V (R) = [(0, 0), (s, t)] ⊂ V (R0) = [(0, 0), (q, t)]

with s 6= t. Hence min V (P1) = (s, t) and in P we have vs ≤ ht+1. This gives that the two

chains

v1 ≤ . . . ≤ vs ≤ vs+1 ≤ . . . ≤ vn, v1 ≤ . . . ≤ vs ≤ ht+1 ≤ . . . ≤ hn

have different lengths and this is a contradiction to the assumption that P is Gorenstein.

That is s = t. Furthermore, we claim that there exists a unique maximal rectangle R1

containing R̃ = R0\R, namely [(s, 0), (q, s)]. Let R′1 = [(a, b), (c, d)] be a maximal rectangle

such that R′1 ∩ R̃ 6= ∅, that is s ≤ a ≤ q and b < s. From the property of parallelogram

polyominoes, we also obtain that b ≥ 0. If b > 0, then the rectangle [(a, 0), (c, d)] is a

rectangle containing R′1, contradicting its maximality. That is, we have b = 0. We observe

that c ≤ q, otherwise the rectangle [(0, b), (c, s)] is a maximal rectangle having non-empty

intersection with R, contradiction. Moreover d > s, otherwise R′1 ⊆ R̃. The latter implies

that all of the maximal rectangle having non-empty intersection with R̃ have lower left

corner on the edge interval [(s, 0), (q, 0)]. Then, there exists a unique maximal rectangle

R1 with vertices [(s, 0), (q, u)] where u is the minimum of the heights of such rectangles.

We now show that R1 has a single rectangle. If this is not the case, then there exists a

maximal rectangle R2 such that R1 ⊆ R0∪R2 and V (R2) = [(s, s), (a, b)] with a > q, hence

hs ≤ vq+1 in P . This implies that

h1 ≤ . . . ≤ hs ≤ vq+1 ≤ . . . ≤ vn, h1 ≤ . . . ≤ hn
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are two chains having lengths n− q+s and n, respectively. Since s < q, then n− q+s < n,

contradicting the Gorensteinnes of P . In particular this implies that any maximal rectangle

has a single rectangle. By using a similar technique on any polyomino of the derived

sequence we obtain that all of the rectangles of P have a single square.

(ii)⇒(i). We assume that P has the S-property. To have the Gorensteinness, we have

to prove that for any edge in the Hasse diagram of the poset P of the form vs → ht+1 (or

hc → vd+1), we have s = t (or c = d). We follow the notation of Corollary 4.3.25. From

the latter result we obtain that if S0 has size t0 × t0 and S1 has size t1 × t1. Then R0 has

either size t0× (t0 + t1) or (t0 + t1)× t0, that is either ht0 → vt0+1 or vt0 → ht0+1. Since P is

well-shortenable, we inductively apply the same argument to find that for any k ∈ {1, . . . l}

either hck
→ vck+1 or vck

→ hck+1.

Moreover, assume that hr → vs is an edge of the poset P such that ck−1 + 1 ≤ r < ck for

some k. It follows that s > ck + 1 and there exists a maximal rectangle in M(P) of size

a×b with b = ck−r that has non-empty intersection with Sk. This leads to a contradiction

to the fact that Sk is single.

Now, we give a description of Gorenstein parallelogram polyominoes in terms of the

2-colored Motzkin paths (see Section 2.3). To do this, we need the following terminologies

Definition 4.3.27 (i) Let S : s1, . . . , sl be a north-east path. A sequence of consecutive

north steps (resp. east steps) si, . . . , si+k makes a maximal block of length k in S if

either i = 1 or si−1 is an east step (resp. north step), and either i + k = l or si+k+1

is a north step (resp. east step). Note that in S, a maximal block of length k of

consecutive north steps (resp. east steps) corresponds to a maximal block of k 1s

(resp. 0s) in its binary representation.

(ii) Let P = (S1,S2) be a parallelogram polyomino. A sequence of consecutive elements

s1, s2, . . . , sl of S1 (resp. S2) is called a maximal NE-block if there exists i ∈ {1, . . . l}

such that s1 . . . si is a maximal block of north steps (resp. east steps) and si+1 . . . sl

is a maximal block of east steps (resp. north steps).

For example, for the parallelogram polyomino given in Figure 2.15, the binary repre-
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sentation of S1 is u(P) : 10110100. The maximal NE-block in S1 are 10, 110 and 100. The

NE-blocks in S1 determine the corners in S1. Similarly, the maximal NE-block in S2 are

001, 01, and 011 and the NE-blocks in S2 determine the corners in S2. We emphasize that

in S1 each NE-block starts with a north step, while an NE-block in S2 starts with an east

step.

Theorem 4.3.28. Let P = (S1,S2) be a parallelogram polyomino. P has the S-property if

and only if the following conditions hold:

1. in S1, each maximal block of length k of consecutive north steps is followed by a

maximal block of length k of consecutive east steps.

2. in S2, each maximal block of length k of consecutive east steps is followed by a maximal

block of length k of consecutive north steps.

Proof. Assume that P has the S-property. We need to show that P satisfies the conditions

(1) and (2). We proceed by induction on the total number l of maximal rectangles of P .

If l = 1, then P itself is a rectangle. Using the assumption that P has the S-property, we

see that P is in fact a square of size t × t. This shows that binary representations of S1

and S2 are given by

u(P) : 11 . . . 1︸ ︷︷ ︸
t times

00 . . . 0︸ ︷︷ ︸
t times

, `(P) : 00 . . . 0︸ ︷︷ ︸
t times

11 . . . 1︸ ︷︷ ︸
t times

as claimed.

Now assume that l ≥ 2 and the assertion is true for any parallelogram polyomino with

l − 1 maximal rectangles. Let the size of R0 be s × t. Assume that t < s, and the case

when t > s can be discussed in a similar way. The assumption that P has the S-property

together with Lemma 4.3.22 and 4.3.24 shows that the single square S of R0 has size t× t.

Consider the parallelogram polyomino P ′ = P \R0 given by some paths (S ′1,S ′2). Then P ′

has the S-property, too. We observe that since S is single square, the path S1 is of the

form

11 . . . 1︸ ︷︷ ︸
t times

00 . . . 0︸ ︷︷ ︸
t times

u(P ′).

where u(P ′) is the binary representation of S ′1. By using the inductive hypothesis on P ′

we conclude that P satisfies the condition (1). Moreover, again by using the inductive
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hypothesis on P ′, we see that S ′2 satisfies condition (2). That is, the binary representation

`(P ′) of S ′2 starts with a block of s− t 0s followed by a block of s− t 1s, in particular

00 . . . 0︸ ︷︷ ︸
s−t times

β.

Hence `(P) is given by

00 . . . 0︸ ︷︷ ︸
s times

11 . . . 1︸ ︷︷ ︸
t times

β

This shows that S2 satisfies the condition (2).

To prove the converse, assume that P satisfies the conditions (1) and (2). We need

to show that P has the S-property. We proceed by induction on the total number e ≥ 2

of maximal NE-blocks in S1 and S2. In other words, we apply the induction on the total

number of corners in S1 and S2.

For e = 2, from the conditions (1) and (2) we get that in S1 (resp. S2) the maximal

NE-block has size 2t for some t ∈ N. More precisely, S1 (resp. S2) has a maximal block

of t north-steps (resp. east-steps) followed by a block of t east-steps (resp. north-steps).

Then the binary representations of S1 and S2 are

u(P) : 11 . . . 1︸ ︷︷ ︸
t times

00 . . . 0︸ ︷︷ ︸
t times

and `(P) : 00 . . . 0︸ ︷︷ ︸
t times

11 . . . 1︸ ︷︷ ︸
t times

and the polyomino is a square.

Now, let e ≥ 3 and assume that any parallelogram polyomino having a total number

of maximal NE-blocks equal to e − 1 has the S-property. Let P ′ = P \ R0. It follows

from Lemma 4.3.24 that P ′ is a parallelogram polyomino. Set P ′ = (S ′1,S ′2). To prove

that P has the S-property, it is enough to show that R0 has a single square and that P ′

has the S-property. In particular, we prove that S ′1 and S ′2 satisfy conditions (1) and (2),

respectively. Then the conclusion will follow by using inductive hypothesis on P ′ and the

existence of single square in R0.

If R0 has size s× t with t < s, then u(P) begins with a maximal block of t 1s and by

using condition (1), there is a maximal block of t 0s following it. Therefore, u(P) is of the

following form

11 . . . 1︸ ︷︷ ︸
t times

00 . . . 0︸ ︷︷ ︸
t times

u(P ′).
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This shows that R0 has a single square of size t × t and S ′1 satisfies the condition (1).

Moreover, by using the assumption that P satisfies condition (2), we obtain that `(P)

starts with a maximal block of s 0s followed by a maximal block of s 1s. We write

00 . . . 0︸ ︷︷ ︸
s times

11 . . . 1︸ ︷︷ ︸
s times

β.

where β is binary sequence consistent with condition (2). Then `(P ′) takes the following

form

00 . . . 0︸ ︷︷ ︸
s−t times

11 . . . 1︸ ︷︷ ︸
s−t times

β.

which shows that P ′ satisfies the condition (2). Moreover, the total number of maximal

NE-blocks in P ′ is e − 1 (because one maximal NE-block is at the beginning of S1). By

using the inductive hypothesis, we conclude that P ′ has the S-property. Then, it follows

that P has the S-property as well.

With the help of Theorem 4.3.26, to be able to describe Motzkin paths associated

with Gorenstein parallelogram polyominoes, it is enough to see the impact of conditions

(1) and (2) of Theorem 4.3.28 on the associated Motzkin paths. Let P = (S1,S2) be a

Gorenstein parallelogram polyomino with associated Motzkin pathMP . Note that in S1,

a maximal block of length k of consecutive north steps corresponds to a combination of k

rise and α-colored horizontal steps inMP . Indeed, this combination of rise and α-colored

horizontal steps in MP is maximal in a sense that it is followed by either a fall or a β-

colored horizontal step. Similarly, a maximal block of length k of consecutive east steps

corresponds to a maximal block of a combination of k fall and β-colored horizontal steps in

MP . Hence, the condition (1) of Theorem 4.3.28 translates as: inMP each maximal block

of a combination of k rise and α-colored horizontal steps must be followed by a maximal

block of a combination of k fall and β-colored horizontal steps.

To translate condition (2) forMP , we consider the reflection ofMP through the x-

axis. We denote this reflection byMP . The reflectionMP corresponds to the coding given

in (2.1) applied to the matrix that contains `(P) as first row and u(P) as the second row.

Then the condition (2) of Theorem 4.3.28 translates as: in MP each maximal block of a

combination of k fall and β-colored horizontal steps must be followed by a maximal block
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of a combination of k rise and α-colored horizontal steps. We formulate this discussion in

the following corollary.

Corollary 4.3.29. Let P = (S1,S2) be a parallelogram polyomino with associated Motzkin

path MP . Let MP be the reflection of MP through x-axis. Then P is Gorenstein if and

only if the following conditions hold:

1. inMP each maximal block of a combination of k rise and α-colored horizontal steps

must be followed by a maximal block of a combination of k fall and β-colored horizontal

steps;

2. inMP each maximal block of a combination of k fall and β-colored horizontal steps

must be followed by a maximal block of a combination of k rise and α-colored hori-

zontal steps.

We give an illustration of Corollary 4.3.29 in the following example.

Example 4.3.30 The Figure 4.22 shows a Gorenstein parallelogram polyomino. The as-

sociated Motzkin path MP is shown on the left side and its reflection through x-axis is

shown on the right side. The Motzkin path MP and its reflection satisfy the conditions

(1) and (2) of Corollary 4.3.29.

Figure 4.22: A Gorenstein parallelogram polyomino satisfying conditions (1) and (2) of

Corollary 4.3.29

The Figure 4.23 shows a non-Gorenstein parallelogram polyomino. The associated

Motzkin pathMP is shown on the left side and its reflection through x-axis is shown on

the right side. The Motzkin pathMP fails the condition (1) of Corollary 4.3.29. However,

its reflection satisfies the condition (2) of Corollary 4.3.29.

139



Figure 4.23: A non-Gorenstein parallelogram polyomino satisfying condition (2) of Corol-

lary 4.3.29
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CONCLUSION

In conclusion, in this thesis we have studied the algebraic invariants and properties of the ideals

associated to polyominoes. Many results have been obtained on this topic. There are several

open problems, such as finding a complete classifications of the polyominoes P having a prime

ideal IP or a Gorenstein K[P], determine whether for any polyomino P the coordinate ring is

Cohen-Macaulay and finding precise formulas for the Hilbert series of K[P]. We have a strong

belief that some insights to work in these directions are given in Conjecture 3.1.10, Question

3.1.10 and Conjecture 4.3.5.

Furthermore, finding similar combinatorial conditions for the algebraic invariants the ideals arising

from t-minors for t > 2 could be of interest for the modern research.
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Chapter 5

APPENDIX: FURTHER WORKS

In this chapter, we present two further works done during PhD that do not involve

polyominoes. In fact, both of them involve simple graphs and simplicial complexes. In

Section 5.1, we enter into the world of monomial ideals associated to graphs, the edge

ideals. In particular, we study a class of graphs that arise from Zn, circulant graphs. We

characterize the chordal circulant graphs as the ones that are disjoint union of complete

graphs and then we give a formula for their induced matching number. Both of these results

allow us to study the Castelnuovo-Mumford regularity of the edge ideal of circulant graphs,

due to the results in [30, 48]. In Section 5.2, we study some algebraic and combinatorial

properties and invariants of the binomial edge ideal of graphs, such as Serre’s condition,

strongly unmixedness and accessibility that are widely studied in the paper [9]. To keep

this chapter detached from the rest of the work, we introduce in the next sections all of the

basic notations needed. The references for this chapter are [72] and [50]

5.1 CHORDAL CIRCULANT GRAPHS AND INDUCED MATCHING

NUMBER

Let G be a finite simple graph with vertex set V (G) and edge set E(G). Let C be a

cycle of G. An edge {v, w} in E(G) \ E(C) with v, w in V (C) is a chord of C. A graph G

is said to be chordal if every cycle has a chord.

We recall that a circulant graph is defined as follows. Let S ⊆ T := {1, 2, . . . ,
⌊
n
2

⌋
}. The

circulant graph G := Cn(S) is a simple graph with V (G) = Zn = {0, . . . , n − 1} and

E(G) := {{i, j} | |j − i|n ∈ S} where |k|n = min{|k|, n − |k|}. Given i, j ∈ V (G) we call

labelling distance the number |i − j|n. By abuse of notation we write Cn(a1, a2, . . . , as)

instead of Cn({a1, a2, . . . , as}).

Circulant graphs have been studied under combinatorial ([10, 11]) and algebraic ([71])

points of view. In the former, the authors studied some families of circulants, i.e. the d-th

powers of a cycle, namely the circulants Cn(1, 2, . . . , d) (that we will analyse in Subsection

5.1.3) and their complements. In the latter, the author studied some properties of the edge
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ideal of circulants. Let R = K[x0, . . . , xn−1] be the polynomial ring on n variables over a

field K. The edge ideal of G, denoted by I(G), is the ideal of R generated by all square-

free monomials xixj such that {i, j} ∈ E(G). Some algebraic properties and invariants of

R/I(G) can be derived from combinatorial properties of G. Chordality and the induced

matching number have been used to give bounds on the Castelnuovo-Mumford regularity

of R/I(G) (see Subsection 5.1.1).

In Subsection 5.1.2 we prove that a circulant graph is chordal if and only if it is either

complete or a disjoint union of complete graphs.

In Subsection 5.1.3 we give an explicit formula for the induced matching number of a circu-

lant graph Cn(S) depending on the cardinality and the structure of the set S. Moreover, by

using Macaulay2, we compare the Castelnuovo-Mumford regularity of R/I(G) with ν(G),

the lower bound of Theorem 5.1.3, when G is the d-th power of a cycle and n is less than

or equal to 15. We report the result in Table 5.1.

5.1.1 Preliminaries

In this Subsection we recall some concepts and notation that we will use later on in

this chapter.

We recall that the circulant graph Cn(1, 2, . . . , bn2 c) is the complete graph Kn. More-

over, we compute the number of components of a circulant graph with the following

Lemma 5.1.1. Let S = {a1, . . . , ar} be a subset of T and let G = Cn(S) be a circulant

graph. Then G has gcd(n, a1, . . . , ar) disjoint components. In particular, G is connected if

and only if gcd(n, a1, . . . , ar) = 1.

For a proof see [7]. From Lemma 5.1.1 it follows that if n = dk, then the disjoint

components of Cn(a1d, a2d, . . . , asd) are d copies of the circulant graph Ck(a1, a2, . . . , as).

Let G be a graph. A collection C of edges in G is called an induced matching of G

if the edges of C are pairwise disjoint and the graph having C has edge set is an induced

subgraph of G. The maximum size of an induced matching of G is called induced matching

number of G and we denote it by ν(G).
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Let G be a graph. The complement graph Ḡ of G is the graph whose vertex set

is V (G) and whose edges are the non-edges of G. We conclude the section by stating

some known results relating chordality and induced matching number to the Castelnuovo-

Mumford regularity. The first one is due to Fröberg ([30, Theorem 1])

Theorem 5.1.2. Let G be a graph. Then reg R/I(G) ≤ 1 if and only if Ḡ is chordal.

The second one is due to Katzman ([48, Lemma 2.2]).

Theorem 5.1.3. For any graph G, we have reg R/I(G) ≥ ν(G).

When G is the circulant graph Cn(1), namely the cycle on n vertices, we have the

following result due to Jacques ([47]).

Theorem 5.1.4. Let Cn be the n-cycle and let I = I(Cn) be its edge ideal. Let ν = bn3 c

denote the induced matching number of Cn. Then

reg R/I =


ν if n ≡ 0, 1 (mod 3)

ν + 1 if n ≡ 2 (mod 3).

5.1.2 Chordality of Circulants

The aim of this section is to prove the following

Theorem 5.1.5. Let G be a circulant graph. Then G is chordal if and only if there exists

d ≥ 1 such that n = dm and G = Cn(d, 2d, . . . , bm2 cd).

The ⇐) implication is trivial. If d = 1, then G is the complete graph Kn, while if

d > 1, then G is the disjoint union of d complete graphs Km.

To prove ⇒) implication we need some preliminary results.

Lemma 5.1.6. Let G = Cn(S) be a circulant graph. Let us assume that there exists a ∈ S

with k = ord(a) ≥ 4 such that {
a, 2a, . . . ,

⌊
k

2

⌋
a
}
* S.

Then G is not chordal.
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Proof. Since k ≥ 4, then {a} ⊂ {a, 2a, . . . , bk2ca}. If
{
a, 2a, . . . ,

⌊
k
2

⌋
a
}
* S, then we have

two cases:

(1S) {a, 2a, . . . , ra, (r+ t)a} ⊆ S and (r+ 1)a, . . . , (r+ t− 1)a /∈ S, with r ≥ 1 and t ≥ 2;

(2S) {a, 2a, . . . , ra} ⊆ S and (r + 1)a, . . . , bk2ca /∈ S, with 1 ≤ r < bk2c.

(1S) We want to find a non-chordal cycle of G. We consider the edges {0, (r+ t)a}, {0, a},

{a, (r + 1)a} (see Figure 5.1). If (r + 1)a is adjacent to (r + t)a, then we found a

non-chordal cycle of G. Otherwise, we apply the division algorithm to r+ t and r+1,

0
a

(r + 1)a(r + t)a

Figure 5.1: Some edges of a non-chordal cycle of G.

that is

r + t = (r + 1)q + s 0 ≤ s ≤ r.

From the vertex (r+ 1)a we alternately add a and ra to get the multiples of (r+ 1)a,

until q(r + 1)a. If s = 0, then we get (r + t)a, otherwise 0 < s ≤ r and sa ∈ S so

we join q(r+ 1)a and (r+ t)a. The above cycle has length greater than or equal to 4

because the vertices 0, a, (r+1)a, (r+t)a are different. Furthermore, it is non-chordal

because by construction any pair of non-adjacent vertices in the cycle has labelling

distance in {(r + 1)a, . . . , (r + t− 1)a}.

(2S) As in case (1S), we want to construct a non-chordal cycle ofG. We write k = bk2c+d
k
2e

and bk2c = qr + t with 0 ≤ t ≤ r − 1. Now we write dk2e = qr + s, where

s =


t if k even

t+ 1 if k odd,
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and we take the cycle on vertices
{

0, ra, 2ra, . . . , qra,
⌊
k

2

⌋
a,
⌊
k

2

⌋
a+ ra,

⌊
k

2

⌋
+ 2ra, . . .

⌊
k

2

⌋
a+ qra

}
. (5.1)

Since r < bk2c, then q ≥ 1 and in the case q = 1, s > 0. That is, the cycle on vertices

(5.1) has length at least 4 and it is not chordal because by construction any pair of

non-adjacent vertices in the cycle has labelling distance in {(r + 1)a, . . . , bk2ca}.

In any case G is not chordal and the assertion follows.

An immediate consequence of the previous Lemma is

Corollary 5.1.7. Let G = Cn(S) be a circulant graph. If there exists a ∈ S with k =

ord(a) ≥ 4 such that gcd(a, n) /∈ S, then G is not chordal.

Lemma 5.1.8. Let G = Cn(S) be a circulant graph. If a1, . . . , ar ∈ S and gcd(a1, . . . , ar) /∈

S, then G is not chordal.

Proof. We proceed by induction on r.

Let r = 2 and let a1, a2 ∈ S be such that c = gcd(a1, a2) /∈ S. We consider

a = gcd(a1, n), b = gcd(a2, n), d = gcd(a, b).

From Corollary 5.1.7, we have that if one between a, b does not belong to S, then G is not

chordal. Hence a, b ∈ S. We have that d divides c and we distinguish two cases. If d ∈ S,

since c = td /∈ S for some t, then by Lemma 5.1.6 G is not chordal. Therefore, from now on

we suppose d /∈ S. Since a and b divide n, then lcm(a, b) = ab
d
divides n. We want to find

a non-chordal cycle of G having length 4. Let ra + sb = d (mod n) be a Bézout identity

of a and b. From Lemma 5.1.6, if one between ra and sb is not in S, then G is not chordal.

Hence, let us assume ra, sb ∈ S. Now we consider the cycle

{0, ra, ra+ sb = d, sb}.

Since d /∈ S, then the edge {0, d} /∈ E(G). We distinguish two cases about ra − sb. If

ra− sb /∈ S, then the assertion follows.
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If ra− sb ∈ S, then we set

kd = gcd(ra− sb, n)⇒ k = gcd
(
r
(
a

d

)
+ s

(
b

d

)
,
n

d

)
.

If kd is not in S, then from Corollary 5.1.7 G is not chordal. Hence, we consider kd ∈ S.

Since gcd
(
a
d
, b
d

)
= 1, then gcd

(
k, a

d

)
= gcd

(
k, b

d

)
= 1, and

gcd
(
k,
ab

d2

)
= 1 ⇒ gcd

(
kd,

ab

d

)
= d. (5.2)

Hence lcm
(
kd, ab

d

)
= k ab

d
divides n. We distinguish two cases. If k = 1, then we obtain

the contradiction d ∈ S, arising from the assumption ra − sb ∈ S. If k 6= 1, then k is a

new proper divisor of n. We set a′ = kd and b′ = ab
d
, we apply the steps above and we find

a k′ so that k′ a′b′
d

divides n, and so on. By applying the steps above to a′ and b′ a finite

number of times, we could either find a k′ equal to 1 or we could get new proper divisors

of n, that are finite in number. We want to study the case n = a′b′

d
. Let

va′ + zb′ = d

be a Bézout identity, we assume va′ − zb′ ∈ S, and we set

hd = gcd
(
va′ + zb′, n

)
.

We have that ha′b′
d

= hn divides n, that is hn = n and h = 1. It implies d ∈ S, that

is a contradiction arising from the assumption va′ − zb′ ∈ S. Hence va′ − zb′ /∈ S and

{0, va′, d, zb′} is a non-chordal cycle of G. It ends the induction basis. For the inductive

step, we suppose the statement true for r−1 and we prove it for r. We have to prove that if

gcd(a1, . . . , ar) /∈ S, then G is not chordal. By inductive hypothesis if gcd(a1, . . . , ar−1) /∈ S,

then G will be not chordal. Hence we assume b = gcd(a1, . . . , ar−1) ∈ S. By applying the

inductive basis to ar and b,we obtain that G is not chordal.

Now we are able to complete the proof of Theorem 5.1.5.

Proof of Theorem 5.1.5.⇒). Under the hypothesis that G is chordal, we also assume that

G is connected and we prove that d = 1, that is G = Kn. By contradiction assume that
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the graph is not complete, namely G = Cn(a1, . . . , as) with s < bn2 c. From Lemma 5.1.1,

G is connected if and only if gcd(a1, . . . , as, n) = 1.

Let b = gcd(a1, . . . , as).

If b /∈ S, then from Lemma 5.1.8 G is not chordal. If b ∈ S, we have 1 = gcd(n, a1, . . . , as) =

gcd(n, gcd(a1, . . . , as)) = gcd(n, b). If 1 /∈ S, then from Lemma 5.1.8, G is not chordal.

Then 1 ∈ S and from Lemma 5.1.6 the graph G is not chordal, that is a contradiction. If

G is not connected, then it has a = gcd(n, S) distinct components, each of m = ord(a)

vertices. By Lemma 5.1.6, S = {a, 2a, . . . , bm2 ca} and each component is the complete

graph Km.

Example 5.1.9 Here we present three examples of non-chordal circulant graphs Cn(S).

(i) Take n = 15 and S = {2, 3, 4, 7}. If we take a = 2, then ord(a) = 15 and 2a = 4,

3a = 6, n− 4a = 7, and n− 6a = 3. Hence, we are in case (1S) of Lemma 5.1.6 with

S = {a, 2a, 4a, 6a}. We observe that the cycle on vertices

{0, a, 3a, 4a} = {0, 2, 6, 8}

is not chordal because 6 /∈ S.

(ii) Take n = 10, S = {3, 4} and a = 3. We have ord(a) = 10. Moreover n − 2a = 4,

hence this is the case (2S) of Lemma 5.1.6 with S = {a, 2a}. We have bn2 c = dn2 e = 5,

and

5 = qr + t = 2 · 2 + 1.

Hence, we take the cycle on vertices

{0, 2a, 4a, 5a, 7a, 9a} = {0, 6, 2, 5, 1, 7}

that is not chordal because 1, 2 and 5 do not belong to S.

(iii) We take n = 30 and S = {2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15}. We observe that gcd(5, 2) =

1 /∈ S, hence we are in the case of Lemma 5.1.8 with a1 = a = 5 and a2 = b = 2. We

observe that ord(a) = 6, ord(b) = 15 and 2a = 10, 3a = 15, b, 2b, . . . , 7b ∈ S. We take

a Bezóut identity of a and b

1 = ra+ sb = 5 · 1− 2 · 2.
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We take the cycle on vertices {0, 5, 1,−4}. The quantity ra− sb = 5 + 4 = 9 belongs

to S and k = gcd(9, 30) = 3, while gcd(k, ab) = gcd(3, 10) = 1 and n = abk = 30.

Hence we write

1 = vab+ sk = 10− 3 · 3,

and we take the cycle on vertices {0, 10, 1,−9}. The quantity 10 + 9 = 19 does not

belong to S, hence the cycle above is not chordal.

5.1.3 Induced matching number of Circulant graphs

In this section we compute the induced matching number for any circulant graph

Cn(S). Then we plot a table representing the behaviour of reg R/I(G) with respect to the

lower bound described in Theorem 5.1.3, when G is the d-th power of the cycle, namely

G = Cn(1, 2, . . . , d). For the computation we used Macaulay2 (see [33]).

Definition 5.1.10 Let G be a graph with edge set E(G). We say that two edges e, e′ are

adjacent if e ∩ e′ = v and v ∈ V (G). We say that e, e′ are 2-adjacent if there exist v ∈ e

and u ∈ e′ such that {u, v} ∈ E(G).

Remark 5.1.11 From Definition 5.1.10, an induced matching of G is a subset of E(G)

where the edges are not pairwise adjacent or 2-adjacent.

Then we have the following

Theorem 5.1.12. Let G = Cn(S) be a connected circulant graph, let s = |S| and let

r = minS. Then ν(G) = b |E(G)|
t
c where

t =


s2 + (|A|+ 1)s if n

2 /∈ S

s2 + (|A|+ 1)s− 2 if n
2 ∈ S,

with

A =
{
r + a : a ∈ S and r + a ∈ V (G) \ S

}
.

If G has d = gcd(n, S) components, then ν(G) = d·ν(Cn/d(S ′)), where S ′ = {s/d : s ∈ S}.

Proof. We consider some disjoint subsets of E(G), Ei i = 1, . . . ,m consisting in an edge

ei = {u, v = u + s} for an s ∈ S , the edges {v, w = v + s} for an s ∈ S adjacent to ei,
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and the edges {w,w + s} for an s ∈ S 2-adjacent to ei. By suitably choosing the ei, the

{ei}i=1,...,m is the biggest induced matching and m = ν(G). So we have only to count the

edges in any set Ei.

We assume that s = |S|, r = minS and S = {a0 = r, a1, . . . , as−1}, we assume that the

edge e = {0, r} is in the induced matching, and let E ′ be the set containing e and the

edges adjacent or 2-adjacent to e. The edges adjacent to e are {0, ai} for i = 1, . . . , s − 1

and {r, bi = r + ai} for i = 0, . . . , s − 1. The above edges are all distinct. The edges

2-adjacent to e are {aj, aj + ai} for j ∈ {1, . . . , s − 1}, i ∈ {0, . . . , s − 1} and {bj, bj + ai}

for i, j ∈ {0, . . . , s − 1}. The edges above may not be all distinct. In fact, it can happen

that some bj coincides with some ak, in that case {bj, bj + ai} = {ak, ak + ai} for any

i ∈ {0, . . . , s− 1}. Then, we only consider {bj, bj + ai} for i ∈ {0, . . . , s− 1} when bj ∈ A.

To sum up, in the set E ′ we find:

a) The s edges {0, ai} for i ∈ {0, . . . , s− 1};

b) The s2 edges {aj, aj + ai} for i, j ∈ {0, . . . , s− 1};

c) The s · |A| edges {b, b+ ai} for i ∈ {0, . . . , s− 1} and b ∈ A.

If as−1 = n
2 , then bs−1 = r+ as−1 ∈ A and the edges {as−1, as−1 + as−1 = 0} of point b) and

{bs−1, bs−1 + as−1 = r} of point c) are already counted. The assertion follows.

For the case disconnected, let d = gcd(n, S) be the number of disjoint connected

components of the graph G. Since the components are disjoint, it turns out that ν(G) is d

times the induced matching number of one component. That component is Cn/d(S ′) where

S ′ = {s/d : s ∈ S}, hence the assertion follows.

The formula in Theorem 5.1.12 can be written in a compact way when G is the d-th

power of a cycle. We set Cd
n = Cn({1, 2, . . . , d}).

Corollary 5.1.13. Let G = Cd
n be the d-th power of a cycle and d < bn2 c. Then

ν(G) =
⌊

n

d+ 2

⌋
.

Proof. We want to apply Theorem 5.1.12, with s = d and |E(G)| = nd. We have r = 1

and A = {d+ 1}. Hence it follows that t = d2 + d+ d · 1 = d2 + 2d = d(d+ 2), that is

ν(G) =
⌊

nd

d(d+ 2)

⌋
=
⌊

n

d+ 2

⌋
.

150



In Table 5.1, we compare the values of reg R/I(Cd
n) for n ≤ 15 and 1 ≤ d ≤ bn2 c. We

highlight that the regularity of R/I(G) is strictly greater than ν(G) in two different cases:

(1) when G = Cn and n ≡ 2 (mod 3).

(2) when G = C
bn

2 c−1
n and n is odd.

The two anomalous cases were expected: in case (1), we know from Theorem 5.1.4 that

reg R/I(G) = ν + 1; in case (2), ν(G) = 1 while Ḡ = Cn(bn2 c) that is a cycle and hence

it is not chordal; hence from Theorem 5.1.2 we know that reg R/I(G) = 2. In general, it

seems that apart from cases (1) and (2), the Castelnuovo-Mumford regularity of the d-th

power of a cycle grips the bound of ν(G).
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G ν(G) reg R/I(G) G ν(G) reg R/I(G)

C6({1}) 2 2 C12({1, 2, 3}) 2 2

C6({1, 2}) 1 1 C12({1, 2, 3, 4}) 2 2

C7({1}) 2 2 C12({1, 2, 3, 4, 5}) 1 1

C7({1, 2}) 1 2 C13({1}) 4 4

C8({1}) 2 3 C13({1, 2}) 3 3

C8({1, 2}) 2 2 C13({1, 2, 3}) 2 2

C8({1, 2, 3}) 1 1 C13({1, 2, 3, 4}) 2 2

C9({1}) 3 3 C13({1, 2, 3, 4, 5}) 1 2

C9({1, 2}) 2 2 C14({1}) 4 5

C9({1, 2, 3}) 1 2 C14({1, 2}) 3 3

C10({1}) 3 3 C14({1, 2, 3}) 2 2

C10({1, 2}) 2 2 C14({1, 2, 3, 4}) 2 2

C10({1, 2, 3}) 2 2 C14({1, 2, 3, 4, 5}) 2 2

C10({1, 2, 3, 4}) 1 1 C14({1, 2, 3, 4, 5, 6}) 1 1

C11({1}) 3 4 C15({1}) 5 5

C11({1, 2}) 2 2 C15({1, 2}) 3 3

C11({1, 2, 3}) 2 2 C15({1, 2, 3}) 3 3

C11({1, 2, 3, 4}) 1 2 C15({1, 2, 3, 4}) 2 2

C12({1}) 4 4 C15({1, 2, 3, 4, 5}) 2 2

C12({1, 2}) 3 3 C15({1, 2, 3, 4, 5, 6}) 1 2

Table 5.1: The behavior of reg R/I(G) with respect to ν(G) for G = Cd
n.

5.2 (S2)-CONDITION AND COHEN-MACAULAY BINOMIAL EDGE

IDEAL

Binomial edge ideals have been introduced in [37] and, independently, in [60]. They

are associated to finite simple graphs, in fact they arise from the 2-minors of a 2×n matrix

related to the edges of a graph with n vertices. The problem of finding a characterization
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of Cohen–Macaulay binomial edge ideals has been studied intensively by many authors.

There are several attempts at this problem available for some families of graphs. Some

recent papers in this direction are [8] and [9]. In the latter, the authors introduce two

combinatorial properties strictly related to the Cohen-Macaulayness of binomial edge ideals:

accessibility and strongly unmixedness. In particular, they prove

JG strongly unmixed =⇒ JG Cohen-Macaulay =⇒ G accessible.

In the same article, they show that the three conditions are equivalent for chordal and

traceable graphs.

On the other hand, a fundamental condition to describe Cohen-Macaulay modules is

the so-called Serre’s condition (Sr). N. Terai, in [79], translates this condition into nice

combinatorial terms for the class of squarefree monomial ideals. In general, for any ideal

I ⊆ S, it holds true

S/I Cohen-Macaulay =⇒ S/I satisfies Serre’s condition (S2).

The main aim of this Section is to combine all the above-mentioned algebraic and

combinatorial notions, showing that

S/JG satisfies Serre’s condition (S2) =⇒ G accessible,

and finding a large family of graphs that satisfies all of them. To reach the goal, in

Subsection 5.2.2, we describe the simplicial complex ∆< such that in(JG) = I∆< , for any

term order <. It is well known that in(JG) is a squarefree monomial ideal. In [19], the

authors prove that a binomial edge ideal JG satisfies the Serre’s condition (S2) if and only

if in(JG) satisfies it, as well. We exploit this fact and the knowledge of ∆< to prove that if

JG satisfies (S2)-condition, then G is accessible, improving the results of [9].

In Subsection 5.2.3, we focus on accessible graphs. In particular, in Proposition 5.2.15

we show that any accessible graph induces, in a natural way, blocks with whiskers that are

accessible, too. The latter gives us a sufficient condition for having non-Cohen-Macaulay

binomial edge ideals. In literature, many of the examples of non-Cohen-Macaulay JG are

blocks with whiskers (see [67], [68], [8], and [9]). This fact and Proposition 5.2.15 motivate
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us to study accessible blocks with whiskers. In particular, we identify all the blocks with

whiskers having cycle rank 3 (See Figure 5.3) and among them we characterize the accessible

ones (see Figures 5.4 and 5.5). This represents a further step in the study of graphs with a

given cycle rank, following the works done in [67] and [68], where the author classifies the

complete intersection ideals by means of cycle rank (0 in that case), and all the Cohen-

Macaulay graphs with cycle rank 1 and 2. Moreover, we observe that the number of blocks

with whiskers of a given cycle rank is finite (Lemma 5.2.16 and Lemma 5.2.19). We define

a rich family of blocks with whiskers of a given cycle rank that we call chain of cycles

(see Definition 5.2.24), and we provide necessary conditions for being accessible. Finally,

under certain hypotheses on the structure of these graphs (see Setup 5.2.34), we find an

infinite subfamily of chain of cycles G for which all the above-mentioned algebraic and

combinatorial properties for G and JG are equivalent (see Theorem 5.2.39).

In the last Subsection, we give a computational classification of all the indecompos-

able Cohen-Macaulay binomial edge ideals of graphs with at most 12 vertices (see Theo-

rem 5.2.40). This result has been obtained by using a C++ implementation of the algo-

rithms related to the combinatorial properties of accessibility, (S2)-condition and strongly-

unmixedness. The implementation is freely downloadable from the website [51]. This

computation and Theorem 5.2.11 lead us to the following.

Conjecture 5.2.1 Let G be a graph. Then G is accessible if and only if S/JG satisfies

Serre’s condition (S2).

In [9], the authors conjecture that accessible graphs are the only with Cohen-Macaulay

binomial edge ideal. Our computation supports this conjecture. Finally, among the blocks

that, after adding suitable whisker, satisfy Theorem 5.2.40 we find two polyhedral graphs,

hence Question 5.2.43 naturally arises.

5.2.1 Preliminaries

In this subsection we recall some concepts and notation on graphs, simplicial complexes

and binomial edge ideals that we will use in the article (see also [37],[66],[8], [79]).

Throughout this section, all graphs will be finite and simple, namely undirected graphs
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with no loops nor multiple edges. Let G be a graph with vertex set [n] = {1, . . . , n}. If

e = {u, v} ∈ E(G), with u, v ∈ V (G), we say that u and v are adjacent and the edge

e is incident with u and v. We denote by NG(v) (or simply N(v) if G is clear from the

context) the set of vertices of G adjacent to v. The degree of v ∈ V (G), denoted deg v, is

the number of edges incident with v. An edge {u, v} ∈ E(G), where deg v = 1, is called

whisker on u. Given u, v ∈ V (G), a path from v to u of length n is a sequence of vertices

v = v0, . . . , vn = u ∈ V (G), such that for each 1 ≤ i, j ≤ n, {vi−1, vi} ∈ E(G) and vi 6= vj

if i 6= j. A subset C of V (G) is called a clique of G if for all u, v ∈ C, with u 6= v, one

has {u, v} ∈ E(G). A maximal clique is a clique that cannot be extended by including

one more adjacent vertex. A vertex v is called free vertex of G if it belongs to only one

maximal clique, otherwise it is called an inner vertex of G. If T ⊆ V (G), we denote by

G \ T the induced subgraph of G obtained by removing from G the vertices of T and all

the edges incident in them. A set T ⊂ V (G) is called cutset of G if cG(T \{v}) < cG(T ) for

each v ∈ T , where cG(T ) (or simply c(T ), if the graph is clear from the context) denotes

the number of connected components of G \ T . We denote by C(G) the set of all cutsets of

G. When T ∈ C(G) consists of one vertex v, v is called a cutpoint. A connected induced

subgraph of G that has no cutpoint and is maximal with respect to this property is called

a block.

A subgraph H of G spans G if V (H) = V (G). In a connected graph G, a chord of a

tree H that spans G is an edge of G not in H. The number of chords of any spanning tree

of a connected graph G, denoted by m(G), is called the cycle rank of G and it is given by

m(G) = |E(G)| − |V (G)|+ 1.

Let S = K[{xi, yj}1≤i,j≤n] be the polynomial ring in 2n variables with coefficients in a

field K. Define fij = xiyj − xjyi ∈ S. The binomial edge ideal of G, denoted by JG, is the

ideal generated by all the binomials fij, for i < j and {i, j} ∈ E(G).

The cutsets of a graph G are essential tools to describe the primary decomposition

and several algebraic properties of JG. Let T ∈ C(G) and let G1, . . . , Gc(T ) denote the

connected components of G \ T . Let

PT (G) =
(⋃
i∈T
{xi, yi}, JG̃1

, . . . , JG̃c(T )

)
⊆ S
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where G̃i, for i = 1, . . . , c(T ), denotes the complete graph on V (Gi). It holds

JG =
⋂

T∈C(G)
PT (G). (5.3)

A graph G is decomposable, if there exist two subgraphs G1 and G2 of G, and a

decomposition G = G1 ∪G2 with {v} = V (G1)∩ V (G2), where v is a free vertex of G1 and

G2. If G is not decomposable, we call it indecomposable.

Let H be a graph. The cone G of v on H is the graph with V (G) = V (H) ∪ {v} and

edges E(G) = E(H) ∪ {{v, w} | w ∈ V (G)}.

A cutset T of G is said accessible if there exists t ∈ T such that T \ {t} ∈ C(G). G is

said accessible if JG is unmixed and C(G) is an accessible set system, that is all non-empty

cutsets of G are accessible.

To describe the reduced Gröbner basis of JG, in [37] the following concept has been

introduced. Let i and j be two vertices of G with i < j. A path i = i0, i1, . . . , ir = j from

i to j is called admissible if

(i) ik 6= i` for k 6= `;

(ii) for each k = 1, . . . , r − 1 one has ik < i or ik > j;

(iii) for any {j1, . . . , js} subset{i1, . . . , ir}, the sequence i, j1, . . . , js, j is not a path.

Given an admissible path π : i = i0, i1, . . . , ir = j from i to j, where i < j, define the

monomial

uπ =
∏
ik>j

xik

 ∏
i`<i

yi`

 .
Theorem 5.2.2. Let G be a graph on [n]. Let < be the lexicographic order on S induced

by x1 > x2 > · · · > xn > y1 > · · · > yn. Then the set

G =
⋃
i<j

{uπfij | π is an admissible path from i to j}

is the reduced Gröbner basis of JG with respect to <.

A finitely generated graded module M over a Noetherian graded K-algebra R is said

to satisfy the Serre’s condition (Sr), or simply M is an (Sr) module if, for all p ∈ Spec(R),

the inequality

depth Mp ≥ min(r, dimMp)
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holds true. The Serre’s conditions are strictly connected with the Cohen-Macaulayness of

a module, in fact M is Cohen–Macaulay if and only if it is an (Sr) module for all r ≥ 1.

A simplicial complex ∆ on the set of vertices [n] is a collection of subsets of [n] which

is closed under taking subsets, that is, if F ∈ ∆ and F ′ ⊆ F , then also F ′ ∈ ∆. Every

element F ∈ ∆ is called a face of ∆; the size of a face F is defined to be |F |, that is, the

number of elements of F , and its dimension is defined to be |F | − 1. The dimension of ∆,

which is denoted by dim(∆), is defined to be d− 1, where d = max{|F | | F ∈ ∆}. A facet

of ∆ is a maximal face of ∆ with respect to inclusion. Let F(∆) denote the set of facets of

∆. It is clear that F(∆) determines ∆. A set N ⊆ [n] that does not belong to ∆ is called

nonface of ∆. We say that ∆ is pure if all facets of ∆ have the same size. The link of ∆

with respect to a face F ∈ ∆, denoted by lk∆(F ), is the simplicial complex

lk∆(F ) = {G ⊆ [n] \ F | G ∪ F ∈ ∆}.

A simplicial complex ∆ is called connected if, for every F,G ∈ F(∆), there exists a sequence

of facets F = F0, . . . , Fm = G such that, for every 0 ≤ i, j ≤ m− 1, we have Fi ∩ Fi+1 6= ∅

and Fi 6= Fj, where i 6= j. We say that the sequence F = F0, . . . , Fm = G connects F and

G.

Let R = K[z1, . . . , zk] be the polynomial ring in k variables over a field K, and let

∆ be a simplicial complex on [k]. For every subset F ⊆ [k], we set zF = ∏
i∈F zi. The

Stanley–Reisner ideal of ∆ over K is the ideal I of R which is generated by those squarefree

monomials zF with F 6∈ ∆. In other words, I∆ = (zF | F ∈ N (∆)), where N (∆) denotes

the set of minimal nonfaces of ∆ with respect to inclusion. The Stanley–Reisner ring of ∆

over K, denoted by K[∆], is defined to be K[∆] = R/I∆.

A simplicial complex ∆ is said to satisfy Serre’s condition (Sr) over K, or simply ∆

is an (Sr) simplicial complex over K, if the Stanley–Reisner ring K[∆] of ∆ satisfies Serre’s

condition (Sr). An immediate consequence of [79, Theorem 1.4] is the following result that

provides a useful combinatorial tool to check if ∆ is (S2).

Proposition 5.2.3. Let K be a field and ∆ a simplicial complex. Then ∆ is (S2) over K

if and only if, for every face F ∈ ∆ with dim(lk∆(F )) ≥ 1, the simplicial complex lk∆(F )

is connected. In particular, the (S2) property of a simplicial complex is independent from
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the base field.

5.2.2 Simplicial complex of binomial edge ideals and (S2)-condition

The aim of this section is to prove that if S/JG satisfies the Serre’s condition (S2),

then G is an accessible graph.

Let < be a monomial order on S and in(I) denote the initial ideal of an ideal I with

respect to <. A consequence of [19, Theorem 1.3] is that, if I is an ideal and in(I) is a

square-free monomial ideal, then, for any r ∈ N, S/I satisfies Serre’s condition (Sr) if and

only if S/in(I) does. Since in(JG) is square-free (see [19, Section 3.2]), it follows that to

study the (S2) condition for S/JG it is sufficient to study it for S/in(JG).

From now on, we fix the lexicographic order on S induced by x1 > x2 > · · · > xn >

y1 > · · · > yn.

Let T ∈ C(G) and let G1, · · · , Gc(T ) be the connected components induced by T . By

Theorem 5.2.2, it follows immediately

in(JG) = (xiyjuπ | π is an admissible path from i to j, with i < j) ,

and

in(PT (G)) =
(⋃
t∈T
{xt, yt}

)
+

c(T )∑
k=1

(xiyj | i, j ∈ V (Gk) and i < j) .

Moreover, thanks to [18], it holds

in(JG) =
⋂

T∈C(G)
in(PT (G)). (5.4)

Define

PT (vv) =
(⋃
t∈T
{xt, yt}

)
+

c(T )∑
k=1

({xi | i ∈ V (Gk), i < vk} ∪ {yj | j ∈ V (Gk), j > vk})

where vv = (v1, . . . , vc(T )) ∈ V (G1)× · · · × V (Gc(T )).

Lemma 5.2.4. Let G be a graph. Let T ∈ C(G) and let G1, · · · , Gc(T ) be the connected

components induced by T . Then

in(PT (G)) =
⋂

vv∈V (G1)×···×V (Gc(T ))
PT (vv).
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Proof. “ ⊆ ” Let u be a generator of in(PT (G)). If u ∈ {xt, yt} for t ∈ T , then u ∈ PT (vv),

for all vv ∈ V (G1) × · · · × V (Gc(T )). Let u = xiyj, with i < j and i, j ∈ V (Gk), for

some k = 1, . . . , c(T ), and consider vk, the k-th component of vv. When vk ≤ i, then

yj ∈ PT (vv), when vk > i, then xi ∈ PT (vv). Hence, the monomial xiyj ∈ PT (vv) for all

vv ∈ V (G1)× · · · × V (Gc(T )).

“ ⊇ ” Let u be a generator of ⋂vv∈V (G1)×···×V (Gc(T )) PT (vv). If xt divides u, for

some t ∈ T , then u ∈ in(PT (G)), as well. Assume that xt does not divide u, for

any t ∈ T . For k = 1, . . . , c(T ), denote Jk = (xiyj | i, j ∈ V (Gk) and i < j) and

Ivk
= ({xi | i ∈ V (Gk), i < vk} ∪ {yj | j ∈ V (Gk), j > vk}), for vk ∈ V (Gk). Then

in(PT (G)) =
(⋃
t∈T
{xt, yt}

)
+

c(T )∑
k=1

Jk

and

PT (vv) =
(⋃
t∈T
{xt, yt}

)
+

c(T )∑
k=1

Ivk
.

Note that Ivk
and Jk are both ideals of Sk = K[xi, yi]i∈V (Gk). Moreover, Ivk

and Ivh
, with

vk ∈ Gk, vh ∈ Gh and k 6= h, are defined on a disjoint set of variable, and the same holds

for the Jk’s. It is sufficient to prove that

Jk ⊇
⋂

vk∈V (Gk)
Ivk
.

Assume that u ∈ ⋂vk∈V (Gk) Ivk
. Note that u can not be the product of only xi’s (resp.

yj’s). Indeed, when vk = min{a | a ∈ V (Gk)} (resp. vk = max{b | b ∈ V (Gk)}), then no xi
belongs to Ivk

(resp. no yj belongs to Ivk
). Now, suppose, by contradiction, that for any

xiyj that divides u, it holds i > j. Set vk = min{i | xi divides u}. Then all the xi’s and

yj’s that divide u do not belong to Ivk
, namely u 6∈ Ivk

. It follows that if xiyj divides u,

then i < j and u ∈ Jk.

Let T ∈ C(G) and let G1, . . . , Gc(T ) denote the connected components of G \ T . For

i = 1, . . . , c(T ), let |V (Gi)| = mi and V (Gi) = {vi1, . . . , vimi
}. Given vv =

(
v1
j1 , . . . , v

c(T )
jc(T )

)
∈

V (G1)× · · · × V (Gc(T )), define

F (T,vv) =
c(T )⋃
i=1

{
{yj | j ≤ viji} ∪ {xj | j ≥ viji}

}
.
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Since in(JG) is a squarefree monomial ideal, then there exists a unique simplicial

complex ∆< such that in(JG) = I∆< . By Equation (5.4) and Lemma 5.2.4, we obtain the

following description of ∆<.

Corollary 5.2.5. Let G be a graph. Then in(JG) = I∆<, where

F(∆<) =
⋃

T∈C(G)
{F (T,vv) : vv ∈ V (G1)× · · · × V (Gc(T ))}.

For a graded S-module M we denote by H(t) = ∑d
i=0(hi(M))ti/(1 − t)d the Hilbert

series of M and by h = (h0, . . . , hd) its h-vector. The following result, by a well known

formula that relates f -vector with h-vector, gives a way to compute the invariant by ∆<

as defined above.

Corollary 5.2.6. The h-vector of ∆< is

hk =
k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1(∆<).

for k = 0, . . . , d.

In [4], authors provide a formula to compute the multiplicity of S/JG. By knowing

∆< such that in(JG) = I∆< and by Corollary 5.2.6, one can easily obtain another simple

way to get the multiplicity.

In the following, we deeply use the simplicial complex ∆< defined in Corollary 5.2.5

to prove that if S/JG satisfies the Serre’s condition (S2), then the graph G is accessible.

Nevertheless, we observe that the simplicial complex is strongly related to the chosen

monomial order also for very simple graphs, as the following Example shows.

Example 5.2.7 Let G = P2 be the path on 3 vertices with E(G) = {{1, 2}, {2, 3}} and

fix the lexicographic order on S induced by x1 > x2 > x3 > y1 > y2 > y3. Then,

C(G) = {∅, {2}} and I∆< = (x1y2, x2y3), where

∆< = {F (∅, (1)), F (∅, (2)), F (∅, (3)), F ({2}, (1, 3))}

= {{x1, y1, x2, x3}, {y1, x2, y2, x3}, {y1, y2, x3, y3}, {x1, y1, x3, y3}}.
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One can immediately observe that all the facets in ∆< contain the variables y1 and x3. Con-

sider now the same graph but with a different vertex labelling with E(G) = {{1, 3}, {2, 3}}.

Fix the same term order for S. Then, C(G) = {∅, {3}} and I∆< = (x1y3, x2y3, x1y2x3),

where

∆< = {F (∅, (1)), F (∅, (2)), F (∅, (3)), F ({3}, (1, 2))}

= {{x1, y1, x2, x3}, {y1, x2, y2, x3}, {y1, y2, x3, y3}, {x1, y1, x2, y2}}.

In this case, only the variable y1 is contained in all the facets of ∆<. This implies that the

two simplicial complexes are not isomorphic.

Remark 5.2.8 Let G be a graph on [n]. Let T ∈ C(G) and v ∈ T be a cutpoint of G that

induces two connected components, H1 and H2. For i = 1, 2, let Ti ⊆ T ∩V (Hi). If T1 and

T2 are cutsets of G, then T1 ∪ T2 is a cutset of G.

Lemma 5.2.9. Let G be a graph on [n]. Let T ∈ C(G) and v ∈ T be a cutpoint of G

that induces two connected components, H1 and H2. For i = 1, 2, let Ti = T ∩ V (Hi). If

S1 = T1 ∪ {v} and S2 = T2 ∪ {v} are accessible cutsets of G, then T is an accessible cutset

of G.

Proof. By hypothesis, S1 and S2 are accessible, that is there exist v1 ∈ S1 and v2 ∈ S2 such

that S1 \ {v1}, S2 \ {v2} ∈ C(G). If v1 = v2 = v, then, by Remark 5.2.8, T1 ∪ T2 = T \ {v}

is a cutset of G, namely T is accessible. If at least one between v1 and v2 is not v, assume

v1 6= v, then, by Remark 5.2.8, S1 \ {v1} ∪ T2 = T \ {v1} is a cutset of G, namely T is

accessible.

Remark 5.2.10 Let G be a graph and T ∈ C(G). If all the cutset T ′, with T ′ ⊂ T , are

accessible, then T contains a cutpoint. The proof of this fact is the same of [9, Lemma 4.1].

Theorem 5.2.11. Let G be a graph such that S/JG satisfies the Serre’s condition (S2).

Then G is an accessible graph.

Proof. To prove the statement, we suppose that G is not accessible and we show that

S/JG does not satisfy the Serre’s condition (S2). If G is not accessible then JG is not
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unmixed or C(G) is not an accessible set system. If JG is not unmixed, then it is known

that the (S2)-condition is not satisfied. Hence, we can suppose that JG is unmixed but

C(G) is not an accessible set system. Let T ∈ C(G) be the non-empty cutset with the

minimum cardinality such that T \ {v} 6∈ C(G), for every v ∈ T . Let T = {w1, . . . , wk},

with k > 1, and G1, . . . , Gk+1 be the connected components of G \ T . For i = 1, . . . , k + 1,

let |V (Gi)| = mi and V (Gi) = {vi1, . . . , vimi
}.

Fix the lexicographic order on S induced by the total order

w1 < · · · < wk < v1
1 < · · · < v1

m1 < · · · < vk+1
1 < · · · < vk+1

mk+1
(?)

Thanks to [19, Theorem 1.3], it is sufficient to prove that S/in(JG) does not satisfies

the Serre’s condition (S2).

Consider vv = (v1
m1 , . . . , v

k+1
mk+1

) ∈ V (G1)× · · · × V (Gk+1) and

F (T,vv) =
k+1⋃
i=1

{
yvi

1
, . . . , yvi

mi
, xvi

mi

}
∈ F(∆<).

The set

F =
k⋃
i=1

{
yvi

1
, . . . , yvi

mi

}
∪
{
yvk+1

1
, . . . , yvk+1

mk+1
, xvk+1

mk+1

}
is a subset of F (T,vv), that is a face of ∆<. Consider the link of ∆< with respect to

F . The sets A = {xv1
m1
, . . . , xvk

mk
} and B = {yw1 , . . . , ywk

} belong to lk∆<(F ). In fact,

thanks to the order (?), A ∩ F = ∅ and A ∪ F = F (T,vv) ∈ F(∆<), whereas, B ∩ F = ∅

and B ∪ F = F (∅,u) ∈ F(∆<), where u = (vk+1
mk+1

). Since |A| = |B| = k > 1, it

follows dim lk∆<(F ) ≥ 1. Assume, by contradiction, that lk∆<(F ) is connected, that is

there exists a sequence of facets A = F0, F1, . . . , Ft+1 = B of lk∆<(F ) such that, for

every 0 ≤ i, j ≤ t, Fi ∩ Fi+1 6= ∅ and Fi 6= Fj when i 6= j. First of all, suppose that

Ft ∩ B = {ywi
}, for some i = 1, . . . , k. Without loss of generality, assume i = 1. Then

there exists F (T ′,v) ∈ F(∆<) such that F (T ′,v) = Ft ∪ F . Note that yw1 ∈ F (T ′,v) but

ywi
6∈ F (T ′,v), for i 6= 1, otherwise Ft ∩ B ⊃ {yw1}. Since ywi

6∈ F (T ′,v), for i 6= 1, and

yv ∈ F (T ′,v), for v ∈ (V (G)\T )∪{w1}, that is either v = w1 or v > wk, then xwi
6∈ F (T ′,v),

for i 6= 1. From the fact that xwi
, ywi

6∈ F (T ′,v), it follows that T ′ = {w2, . . . , wk} and

v = (v2
m2 , . . . , v

k+1
mk+1

). This implies that T ′ = T \ {w1} ∈ C(G), but this is in contradiction

with the hypothesis that T is not an accessible cutset.
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Now, suppose that |Ft ∩ B| > 1. Note that |Ft ∩ B| < k, otherwise Ft ∩ B = B,

that is Ft = Ft+1 = B, which contradicts the hypothesis on Fi. Without loss of generality,

assume Ft∩B = {yw1 , . . . , ywa}, with 1 < a < k. There exists F (T ′′,v′) ∈ F(∆<) such that

F (T ′′,v′) = Ft∪F . For i > a, it holds ywi
6∈ Ft, hence ywi

6∈ F (T ′′,v′). Since yv ∈ F (T ′,v),

for every v > wk, then xwi
6∈ F (T ′,v), for i = 1, . . . , k. Therefore, xwi

, ywi
6∈ F (T ′′,v′) for

i > a and T ′′ = {wa+1, . . . , wk}. By hypothesis, T is the smallest not accessible cutset,

then any cutset which is a proper subset of T is accessible. Since T ′′ ⊂ T , then T ′′ is

accessible and, by Remark 5.2.10, T ′′ contains a cutpoint, we say wa+1. Then wa+1 induces

two connected components, H1 and H2. Let Ti = T ∩ V (Hi), for i = 1, 2. For i = 1, 2,

Ti ∪ {wa+1} is a cutset of G. By the minimality of T , both T1 ∪ {wa+1} and T2 ∪ {wa+1}

are accessible cutsets of G. By Lemma 5.2.9, also T = T1 ∪ T2 ∪ {wa+1} is an accessible

cutset, which is a contradiction.

It follows that lk∆<(F ) is not connected, and then S/in(JG) does not satisfy the Serre’s

condition (S2).

Let G be a graph such that JG is unmixed. The following results state that to verify

the Serre’s condition (S2) for S/JG is not necessary to check the link of all the faces F of

∆<.

Proposition 5.2.12. Let G be a graph on [n], with n ≤ 12, such that JG is unmixed. For

all monomial order < and all F ∈ ∆< such that dimF < bn+1
2 c it holds that lk∆<(F ) is

connected.

Proof. We have implemented a computer program, see [51], that checks the Serre’s condi-

tion (S2) for S/JG. By means of it, we have verified that the statement holds. In particular,

there exists a unique family of graphs such that lk∆<(F ) is disconnected for F ∈ ∆< with

dimF = bn+1
2 c, that is the one in Example 5.2.13.

Example 5.2.13 Let G be a graph on [n] obtained by joining s + 1 complete graphs

G1, . . . , Gs+1 such that G1 = · · · = Gs = Ks+1, if n is odd Gs+1 = Ks+1, otherwise

Gs+1 = Ks+2, and Gi∩Gj = H, where H = Ks, for all 1 ≤ i < j ≤ s+1. See Figure 5.2 for
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an example, with n = 7. We observe that C(G) = {∅, T}, where T = V (H). Moreover, JG
is unmixed but G is a block that is not a complete graph, hence JG is not Cohen-Macaulay

by [4]. Fix the lexicographic order on S induced by x1 > · · · > xn > y1 > · · · > yn.

Let V (H) = {n − s + 1, . . . , n}, and consider F = {y1, . . . , yn−s, xn−s} ∈ ∆<. Note that

dimF = n − s = bn+1
2 c. The facets of the link of F in ∆< are only two: F (∅, n − s) \ F

and F (T, (1, . . . , n− s)) \ F , which are respectively {xn−s+1, . . . , xn} and {x1, . . . , xn−s−1}

and they are obviously disjoint. It follows that lk∆<(F ) is disconnected.
1

5

7 6

3

24

Figure 5.2

Proposition 5.2.14. Let G be a graph on [n] such that JG is unmixed. Let F =

{xi1 , . . . , xit , yj1 , . . . , yjs} ∈ ∆<, with 1 ≤ j1 < · · · < js < i1 < · · · < it ≤ n and

dimF ≤ n− 2. Then lk∆<(F ) is connected.

Proof. If F = ∅, then lk∆<(F ) = ∆< is connected. In fact, any facets of ∆< have a non-

empty intersection with a facet F (∅, v), for some v ∈ V (G), and F (∅, v1) ∩ F (∅, v2) 6= ∅,

for all v1, v2 ∈ V (G). Hence, assume F = {xi1 , . . . , xit , yj1 , . . . , yjs} ∈ ∆<, with 1 ≤ j1 <

· · · < js < i1 < · · · < it ≤ n and dimF ≤ n − 2. Let F1, F2 be facets of lk∆<(F ). If

F1 ∩ F2 6= ∅, then they are connected and there is nothing to prove. Therefore, we may

assume that F1∩F2 = ∅. F ∪F1 and F ∪F2 are facets of ∆< and both of them contain yjs .

By Corollary 5.2.5, there exist xa ∈ F ∪ F1 and xb ∈ F ∪ F2 such that js ≤ a, b ≤ i1. Let

a = min{a | xa ∈ F ∪ F1 and js ≤ a ≤ i1} and b = min{b | xb ∈ F ∪ F2 and js ≤ b ≤ i1}.

Note that, if a = b = i1, then yi1 ∈ F ∪Fi, for i = 1, 2, but yi1 6∈ F , then yi1 ∈ F1∩F2,

164



which is a contradiction since F1 and F2 are supposed to be disjoint. Moreover, if a, b < i1

and a = b, then xa ∈ F1 ∩ F2, which is a contradiction, as well. Therefore, let a 6= b, and,

without loss of generality, suppose a < b. Consider the facets F (∅,vv), for a ≤ vv ≤ b,

namely F (∅,vv) = {xi | vv ≤ i ≤ n} ∪ {yj | 1 ≤ j ≤ vv}. Note that, for all a ≤ vv ≤ b,

F (∅,vv)∩F = F , hence F vv = F (∅,vv) \F = {xi | vv ≤ i ≤ n, i 6= i1, . . . , it}∪ {yj | 1 ≤

j ≤ vv, j 6= j1, . . . , js} is a facet of lk∆<(F ). Consider the sequence F1,F a,F a+1, . . . ,F b, F2

of facets of lk∆<(F ). Note that F1 ∩F a ⊇ {xa} and F b ∩ F2 ⊇ {yb}. If i1 = js + 1, then

a = js and b = i1, since dimF ≤ dim ∆< − 2, there exists either i∗ > i1 such that xi∗ 6∈ F

or j∗ < js such that yj∗ 6∈ F . It follows that either F a∩F b ⊇ {xi∗} or F a∩F b ⊇ {yj∗}, that

is F1,F a,F b, F2 is a sequence of facets of lk∆<(F ) that connects F1 and F2. If i1 6= js + 1

and a+ 1 6= i1, it holds F a∩F a+1 ⊇ {xa+1} and F i∩F i+1 ⊇ {yi} for all i = a+ 1, . . . , b−1.

If i1 6= js + 1 and a+ 1 = b = i1, then F a ∩F b = {yi1}. Hence, F1,F a,F a+1, . . . ,F b, F2 is a

sequence of facets of lk∆<(F ) that connects F1 and F2. Therefore, lk∆<(F ) is connected.

5.2.3 Accessible blocks with whiskers

In this section we study a particular class of accessible graphs. We know from [9,

Theorem 4.12] and [4] that if an accessible graph is a block, then it is a complete graph. It

arises a natural question:

“Under which hypotheses a block with whiskers is accessible?”

Let G be a connected graph such that JG is unmixed and B be a block of G. Denote

by W = {w1, . . . , wr} the set of cutpoints of G which are vertices of B. Then

G = B ∪
(

r⋃
i=1

Gi

)
(5.5)

where V (Gi) ∩ V (B) = {wi} for i = 1, . . . , r, and B \W,G1 \ {w1}, . . . , Gr \ {wr} are the

connected components of G \W .

By the decomposition (5.5), we define a block with whiskers, namely B, a graph ob-

tained, roughly speaking, by replacing each subgraph Gi with a whisker. That is

1. V (B) = V (B) ∪ {f1, . . . , fr};

2. E(B) = E(B) ∪ {{wi, fi} | i = 1, . . . , r}.
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Note that V (B) = V (G)/ ∼, where the relation ∼ identifies each vertex of B with itself

and, for i = 1, . . . , r, if a, b ∈ V (Gi)\{wi}, then a ∼ b, and we denote by fi the equivalence

class of V (Gi) \ {wi}.

Proposition 5.2.15. Let G be an accessible graph and let B be a block of G. The graph

B constructed as above is accessible.

Proof. Let π : V (G) → V (G)/ ∼ be the canonical projection. Let T ∈ C(B). By con-

struction, for any i = 1, . . . , r fi is a free vertex of B, hence T ⊂ V (B). Denote by π the

restriction of π to V (G) \ T . We prove that π induces a bijection between the connected

components of G \ T and the ones of B \ T .

Let A be a connected component of G \ T . For any i = 1, . . . , r, let Gi be the

connected component of G \W , where W is the set of all the cutpoints of B. Let a, b ∈ A,

and a, a1, . . . , a`, b be a path in V (G) \ T from a to b. If a and b belong to the same Gi,

then π(a) = π(aj) = π(b) = fi, for all j = 1, . . . , `. Therefore, they are obviously connected

inB \ T . If a ∈ B, and b ∈ Gi, then there exists j such that aj, . . . , a` ∈ Gi ∪ {wi} with, in

particular, aj = wi. Then π(a) = a,π(a1) = a1, . . . ,π(aj−1) = aj−1, fi is a path from π(a)

and π(b) = fi. The other cases follow by the same argument. Therefore, if A is a connected

component of G \ T , then π(A) is a connected component of B \ T .

Let D be a connected component of B \ T . Let c, d ∈ D and let c, u1, . . . , u`, d be

a path in D from c to d. Note that, by the definitions of path and B, for i = 1, . . . , `,

ui ∈ V (B) \ T , that is π−1(ui) = ui. If c = fj (resp. d = fj) for some j = 1, . . . , r, then

set π−1(c) = v (resp. π−1(d) = v), where v ∈ V (Hj) and {wj, v} ∈ E(G). Otherwise,

π−1(c) = c (resp. π−1(d) = d). Then, π−1(c), u1, . . . , u`,π
−1(d) is a path in V (G) \ T . It

follows that if D is a connected component of B \ T , then (D \ {fj}j∈J) ∪ ⋃j∈J Gj is a

connected component of G \ T , where J is the set of indices such that fj ∈ D.

The bijection between the connected components of G\T and the ones ofB\T implies

cG(T ) = cB(T ). Since JG is unmixed by hypothesis, then JB is unmixed, as well. Moreover,

if T ∈ C(B), then T ∈ C(G). Due to the accessibility of G, there exists a vertex a such that

T \ {a} ⊂ V (B) is a cutset of G and so, using the bijection, T \ {a} is a cutset of B, that

B is accessible.
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A block with a fixed number of vertices, say n, and minimum number of edges is a

cycle Cn. It is useful to connect the degree of the vertices with the cycle rank.

Lemma 5.2.16. Let G be a connected graph. The cycle rank of G is

m(G) = 1 +
∑
v∈V (G)(deg v − 2)

2 .

Proof. From ([34, Theorem 4.5(a)]), we know m(G) = q − p + 1 where q = |E(G)| and

p = |V (G)|. We can see

2q =
∑

v∈V (G)
deg v and p =

∑
v∈V (G)

1.

So, we conclude that

m(G) = q − p+ 1 = 1 +
∑
v∈V (G)(deg v − 2)

2 .

By the previous lemma, we observe that fixed a cycle rank of G the number of vertices

with degree greater than 2 is bounded, but we do not have any information on the number

of vertices v with deg v ≤ 2. We will show that under the hypothesis of accessibility this

cardinality is bounded, too.

Now we are going to state some general results for accessible blocks that we are going

to exploit for the classification of accessible graphs with cycle rank 3 and in Subsection

5.2.4. Let us introduce some notation.

Definition 5.2.17 Given a block B, we say that a vertex v ∈ V (B) is pivotal if deg v ≥ 3.

Definition 5.2.18 Let B be a block and let a, b ∈ V (B) be two pivotal vertices. A path

Li of length i from a to b and such that any v ∈ V (Li) \ {a, b} is not pivotal is said a line

from a to b.

Lemma 5.2.19. Let G be an accessible graph and B a block of G. If two pivotal vertices

a, b of B are connected by a line Li, with i ≥ 2, then a is a cutpoint in B and b is not.

Moreover, the following conditions hold:
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1. i < 4;

2. if i = 3, there exists a unique vertex c ∈ V (Li) \ {a, b} which is a cutpoint in B. In

particular, c is such that {a, c} ∈ E(G);

3. if m(G) ≥ 3, there are no other lines Lj from a to b, with j ∈ {2, 3}.

Proof. By Proposition 5.2.15, we can focus on the graph B which is accessible, too.

Let a and b be two pivotal vertices of B connected by a line Li, with i ≥ 2. We observe

that T = {a, b} is a cutset of B, and hence of B. In fact, B \ T consists of at least two

connected components: Li \ {a, b} and B \Li. SinceB is accessible, at least one between a

and b has to be a cutpoint, assume a. Namely, there is a whisker {a, f} ∈ E(B). Moreover,

at most one of them is a cutpoint, otherwise there should be another whisker {b, f ′} and

cB(T ) = 4, namely {f}, {f ′}, Li \ {a, b} and B \ (Li ∪ {f, f ′}).

From now on, we assume that a is a cutpoint in B, while b is not.

(1) Let Li = a, a1, · · · , ai−1, b be a line from a to b. Assume i ≥ 4. T = {a, a2} ∈ C(B)

and using the same argument of above, a2 is not a cutpoint and B \ T consists of three

connected components: {f}, {a1} andB\(T∪{a1}). At the same time, T ′ = {a2, b} ∈ C(B)

but it induces only two connected components: {a3, . . . , ai−1} and B \ (Li \ {a, a1}), which

is a contradiction.

(2) Let i = 3 and L3 = a, a1, a2, b be a line from a to b. Since T = {a1, b} ∈ C(B),

B is accessible and b is not a cutpoint of B, then a1 is a cutpoint of B. Moreover, since

T ′ = {a, a2} ∈ C(B), then a2 is not a cutpoint otherwise, cB(T ) = 4.

(3) Suppose there are two lines L′j 6= Li, with i, j ∈ {2, 3}, from a to b. Consider the

cutset T = {a, b}. Then,B \T consists of at least 4 connected components: {f}, Li\{a, b},

L′j \ {a, b}, and B \ (Li ∪ L′j), which is a contradiction.

Lemma 5.2.20. Let G be an accessible graph and B a block of G. If two pivotal vertices

a, b of B are connected by a line L3, then {a, b} ∈ E(B).

Proof. It is sufficient to show that the vertices a and b are not separable. By Lemma 5.2.19,

a is a cutpoint in B and let {a, f} ∈ E(B) be the whisker on a. Then,

G \ {a, b} = {f} t (L3 \ {a, b}) tH,
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where H is a non-empty connected component of G \ {a, b}. Assume by contradiction that

a and b are separable. Let L3 = a, a1, a2, b be a line from a to b and let T be a minimal

cutset that separates a and b. T has vertices in L3 \ {a, b} and in H. If a1 ∈ T , then

T ′ = (T \ {a1}) ∪ {a2} is a cutset, as well. By Lemma 5.2.19 (2), a1 is a cutpoint, but a2

is not. Therefore, |T | = |T ′| but c(T ) = c(T ′) + 1, which is a contradiction.

As an application, by means of the implementation described in Subsection 5.2.5, we

will prove that the accessible blocks with whiskers of cycle rank 3 are the ones in Figures

5.4 and 5.5. From Lemma 5.2.16, we have a bound on the number of pivotal vertices and,

when m(G) = 3, it holds

∑
v pivotal vertices of G

(deg v − 2) = 2 (m(G)− 1) = 4.

All of the possible blocks with cycle rank 3 are showed in Figure 5.3, where the dot points

denote pivotal vertices v, the number is deg v − 2 and the dashed line represents a line

from a pivotal vertex to another. As regards accessible graphs B with m(B) = 3, they

are obtained from the blocks B in Figure 5.3 by adding opportune whiskers. By Lemma

5.2.19, there are no accessible graphs obtained from the blocks in the class of Figure 5.3

(A). In Figures 5.4 and 5.5, all the accessible graphs B with m(B) = 3 are displayed. As

regards Figure 5.4, the graphs (1)–(4) are obtained from the ones in Figure 5.3 (B), while

the graph (5) from the ones in Figure 5.3 (C). These five graphs are chain of cycles that

we characterize in the next section. Finally, the graphs in Figure 5.5 are all obtained from

the blocks in Figure 5.3 (D). In particular, they are obtained by the complete graph K4

substituting any edge by a line Li, with i ∈ 1, 2, 3, and by adding whiskers in order to have

accessibility of the graph. We denote this class of graphs by K4.

2

2

(A)

1 1

2

(B)

1 1

1 1

(C)

1
1 1

1

(D)

Figure 5.3: All classes of blocks having cycle rank 3.
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(1) (2) (3) (4) (5)

Figure 5.4: The accessible chains of cycles with cycle rank 3.
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Figure 5.5: The class K4.

In the next results, by focusing on the lines connecting two pivotal vertices, we exhibit

that, starting from blocks belong to the class (D) of Figure 5.3, there are no other possible

accessible blocks with whiskers than the graphs (1)–(4) in Figure 5.5.

Lemma 5.2.21. Let B be an accessible graph such that B is a block with m(B) = 3 that

belongs to the class (D) of Figure 5.3. Then in B there are at most two lines L2 that have

no vertex in common and there is no line L3.

Proof. Let a, b, c, d be the pivotal vertices of B. Without loss of generality, assume that

there are two lines L2 in B having a vertex in common: one from a to b and a second one

from a to c. We claim that a has a whisker in B and b and c have no whiskers. In fact,

{a, b} and {a, c} ∈ C(B). By Lemma 5.2.19, either a has a whisker or both b and c have

whiskers. Moreover, T = {a, b, c} ∈ C(B) and if b and c have whiskers c(T ) = 5. Hence the

claim follows.

Let a1 (resp. a′1) be the vertex of degree 2 in the line L2 from a to b (resp. to c). Let

T ′ = {c, d, a1} ∈ C(B) and T ′′ = {b, d, a′1} ∈ C(B). We observe that there are no subsets

of T ′ (resp. T ′′) disconnecting the block. Hence d, a1 and a′1 have whiskers. But, for

T ′′′ = {d, a1, a
′
1} ∈ C(B), it holds c(T ′′′) = 5, which is a contradiction.
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Finally, suppose by contradiction that we have a line L3 from a to b. By Lemma

5.2.20, {a, b} ∈ E(G). This implies that the cycle rank of G is greater than 3.

Corollary 5.2.22. The accessible graphs B such that B belongs to the class in Figure 5.3

(D) are all and only the graphs in K4 displayed in Figure 5.5.

Proof. If B has no line L2, then B is a K4 with or without whiskers (Figure 5.5 (1)).

If B has 2 lines L2,B is a bipartite graph and the only accessible bipartite graph with

cycle rank 3 is the one in Figure 5.5 (2).

Suppose B has exactly one line L2. Assume it is from a to b and denote by e the

unique vertex of degree 2 in L2. Let c and d be the other 2 pivotal vertices. We observe

that the non-empty cutsets of B are {a, b} and {c, d, e}. By Lemma 5.2.19, without loss of

generality, we may assume that a has a whisker and b has no whisker. Since {c, d, e} has

cardinality 3 and none of its subsets is a cutset of the block, we have that exactly 2 vertices

in {c, d, e} have a whisker. That is either both c and d have a whisker, or one whisker is

on e and the other one is, without loss of generality, on c. Then the obtained B are the

non-bipartite and non-complete graphs (3) and (4) in Figure 5.5.

5.2.4 Chain of cycles

In this section, we define a new family of graphs, the chain of cycles, and we classify

the ones with Cohen-Macaulay binomial edge ideal by means of combinatorial properties.

Given a graph G, we denote by Gv the graph obtained from G by adding edges {u,w}

to E(G) for all u,w ∈ V (G) adjacent to v. We recall the following definition given first in

[9].

Definition 5.2.23 Let G be a graph. JG is strongly unmixed if the connected components

of G are complete graphs or if JG is unmixed and there exists a cutpoint v of G such that

JG\{v}, JGv and JGv\{v} are strongly unmixed.

Definition 5.2.24 Let B be a block with m(B) = r such that B = ⋃r
i=1Di where Di

are cycles, and if j = i + 1 then E(Di) ∩ E(Dj) = E(P ), where P is a path, otherwise
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E(Di) ∩ E(Dj) = ∅. We call B a chain of cycles.

Lemma 5.2.25. Let B be an accessible graph such that B = ⋃r
i=1Di is a chain of cycles.

Then Di ∈ {C3, C4} and E(Di) ∩ E(Di+1) is an edge of B.

Proof. If r ∈ {1, 2}, the claim follows by [68]. From now on, assume r ≥ 3, that is

m(B) ≥ 3.

Let i = 1, and let a, b ∈ V (D1) ∩ V (D2) be pivotal vertices of B. By Lemma 5.2.19,

there is a unique line Li, with i ∈ {2, 3}, from a to b. Hence, we may assume E(D1)∩E(D2)

is an edge and D1 is either C3 or C4. By the same argument, Dr has the same property.

Let i ∈ {2, . . . , r−1} and let a, b ∈ V (Di)∩V (Di+1) be pivotal vertices of B. T = {a, b}

is a cutset of B and since B is accessible, either a or b is a cutpoint in B. Therefore,

E(Di) ∩ E(Di+1) is an edge, due to the unmixedness of JB.

Let a, b ∈ V (Di−1) ∩ V (Di) and c, d ∈ V (Di) ∩ V (Di+1) be pivotal vertices of B. Let

T = {a, b} and T ′ = {c, d}. Assume that c 6∈ T and, without loss of generality, Lj is a line

from a to c. We will prove that j = 1. By contradiction, suppose j > 1. Hence T ′′ = {a, c}

is a cutset. By Lemma 5.2.19 applied to T , in T ′ and T ′′ there are two distinct vertices

u, v ∈ {a, b, c} that are cutpoints. We obtain a contradiction since cB({u, v}) = 4.

It follows that {a, c} is an edge and either b = d or {b, d} is an edge. That is Di is

either C3 or C4.

Remark 5.2.26 By Lemma 5.2.25 we can relabel the vertices of B so that V (Di) ∩

V (Di+1) = {wi, ui} and such that if wi 6= wi+1 (resp. ui 6= ui+1) then the edge {wi, wi+1}

(resp. {ui, ui+1}) belongs to E(Di+1) and does not belong to any cycle Dj for j 6= i+ 1.

Lemma 5.2.27. Let B be an accessible graph such that B = ⋃r
i=1Di is a chain of cycles.

Following the labelling defined in Remark 5.2.26, every wi is a cutpoint in B and ui is not

a cutpoint in B.

Proof. We observe that {w1, u1} is a cutset of B. Hence, due to accessibility of B either

w1 or u1 is a cutpoint in B. Without loss of generality, we may assume w1 is a cutpoint.

We observe that also {u1, w2}, {w1, u2} are cutsets of B. Hence, w2 must be a cutpoint
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and u2 cannot be a cutpoint. Applying the same argument for all {wi, ui}, the assertion

follows.

Remark 5.2.28 From now on, thanks to Lemma 5.2.20 and Lemma 5.2.27, we may con-

sider the following partition of the set of vertices of B:

V (B) = W t U,

where W consists of all the cutpoints of B, and U = V (B) \ W . We observe that the

induced subgraphs on W and U (respectively) are paths.

Lemma 5.2.29. Let B be an accessible graph such that B = ⋃r
i=1Di is a chain of cycles.

If Di = C4, then Di+1 = C3.

Proof. By contradiction, suppose that Di and Di+1 are both C4. By Lemma 5.2.27, wi−1,

wi , wi+1 are all cutpoints while ui−1, ui, ui+1 are not cutpoints. We can see that T =

{wi−1, ui, wi+1} ∈ C(B) and c(T ) = 5. Contradiction.

Lemma 5.2.30. Let B be an accessible graph such that B = ⋃r
i=1Di is a chain of cycles.

Let v ∈ V (B) with deg(v) ≥ 5 or deg(v) ≥ 4 if v is a vertex of a C4. Then v is a cutpoint.

Proof. By hypothesis, we can identify Ti = {v, vi} ∈ C(B) for i = 1, 2, 3, with

{v1, v2},{v2, v3} ∈ E(B). Since B is accessible, we obtain that each Ti contains ex-

actly a cutpoint. By contradiction, assume that v is not a cutpoint. The latter im-

plies that v1, v2 and v3 belong to W , namely they are cutpoints in B. We observe that

T = {v, v1, v3} ∈ C(B), but c(T ) = 5. Contradiction.

Remark 5.2.31 Let G be a graph and let v, w ∈ V (G) with v 6= w. Then (G \ {v})w =

Gw \ {v}. Clearly V ((G \ {v})w) = V (Gw \ v) = V (G \ {v}). We have:

E(Gw \ {v}) = (E(G) ∪ {{x, y} | x, y ∈ NG(w)}) \ {{v, u} | u ∈ NGw(v)}.

Moreover, we observe that NGw(v) is either equal to NG(v) if {v, w} /∈ E(G) or to NG(v)∪

NG\{v}(w) if {v, w} ∈ E(G), that is

E(Gw \ {v}) = (E(G) \ {{v, u} | u ∈ NG(v)}) ∪ {{x, y} | x, y ∈ NG\{v}(w)}

= E((G \ {v})w).
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Lemma 5.2.32. Let G be a graph such that JG is unmixed and let v ∈ V (G) be a free

vertex of G. If JG\{v} is strongly unmixed, then JG is strongly unmixed.

Proof. We proceed by induction on the cardinality of C(G\{v}), hence set r = |C(G\{v})|.

If r = 0, then G \ {v} is a complete graph. The latter implies that G is a complete graph

with or without a whisker, and it is immediate to see that JG is strongly unmixed.

We assume r > 0 and the thesis true for any graph G \ {v} with |C(G \ {v})| < r. Let

{w} ∈ C(G \ {v}) such that the binomial edge ideals of (G \ {v}) \ {w}, (G \ {v})w, and

(G\{v})w\{w} are strongly unmixed. We observe that w is also a cutpoint for G, otherwise

{v, w} is a cutset for G contradicting the fact that v is a free vertex. Set H = G \ {v}.

Since H \ {w} is strongly unmixed, then it is unmixed and from [9, Proposition 5.2] we

have

C(H \ {w}) = {S ⊂ V (H \ {w}) : S ∪ {w} ∈ C(H)},

and since∅ ∈ C(H) cannot be expressed as S∪{w}, then |C(H\{w})| < r. From [9, Lemma

4.5.(1)], we have that C(Hw) ⊆ C(H) and {w} ∈ C(H) \ C(Hw), that is |C(Hw)| < r. From

Lemma [9, Lemma 5.5], one has C(Hw \ {w}) ⊆ C(Hw), that is |C(Hw \ {w})| < r. From

Remark 5.2.31, it follows that (G \ {v})w = Gw \ {v} and (G \ {v})w \ {w} = Gw \ {v, w}.

By combining the latter with the computation above, one has that from the inductive

hypothesis the assertion follows.

Lemma 5.2.33. Let G1 and G2 be two graphs and let G = G1 ∪G2 be such that V (G1) ∩

V (G2) = {v}, with v free vertex of G1 and G2. The following conditions are equivalent:

1. JG1 and JG2 are strongly unmixed (resp. G1 and G2 are accessible);

2. JG is strongly unmixed (resp. G is accessible).

Proof. With respect to accessibility the two conditions are equivalent by [66, Proposition

2.6] and [66, Lemma 2.3]. Now we focus on strong unmixedness.

(1)⇒(2). By [66, Proposition 2.6], JG is unmixed. Let {v1, . . . , vr} ⊂ V (G1) such that

vi is a cutpoint of Hi = G1 \{v1, . . . , vi−1} and JHi
is strongly unmixed. Let {u1, . . . , us} ⊂

V (G2) be the set satisfying the same property for G2.

Since v is a free vertex, it is neither a cutpoint of G1 nor a cutpoint of G2. Moreover,

for any a ∈ Gi, v remains a free vertex of Gi \ {a}.

174



We claim that G is strongly unmixed with respect to the sequence of vertices

v1, . . . , vr, u1, . . . , us,

adding v if necessary.

By [66, Proposition 2.6], G \ {v1} is decomposable in H1 and G2 whose ideals are

both unmixed. Hence JH1∪G2 is unmixed, as well. By the same argument, we can remove

the remaining vertices {v2, . . . , vr, u1, . . . , us} obtaining unmixed ideals. Now either all the

components are complete graphs or there is only one containing v that is decomposable

into 2 complete graphs. In this case, we add v to the sequence of cutpoints.

(2)⇒(1). We proceed by induction on the cardinality r of of C(G). We observe

that r ≥ 2 since G is decomposable, hence we take r = 2 as base case. In this case,

C(G) = {∅, {v}}, v is the unique cutpoint and G1 \ {v} and G2 \ {v} are both complete

graphs, that is G1 and G2 are complete graphs and the thesis follows. We assume r > 2

and that the thesis holds true for any graph H with |C(H)| ≤ r − 1. Since JG is strongly

unmixed, we take a cutpoint w ofG such that JG\{w}, JGw and JGw\{w} are strongly unmixed.

If w = v, then we obtain that JG1\{v} and JG2\{v} are strongly unmixed, and since v is a

free vertex of G1 and G2, then the assertion follows from Lemma 5.2.32. If w 6= v, we

assume without loss of generality that w ∈ V (G1 \ {v}). We obtain that G \ {w} has

two connected components, one H = H1 ∪ G2 with V (H1) ∩ V (G2) = {v} and another

component H2. From the strong unmixedness of JG\{w} and since |C(H)| ≤ r − 1, then

from the inductive hypothesis we obtain that JH1 , JG2 and JH2 are strongly unmixed and

since G1 \ {w} = H1 ∪ H2, then JG1\{w} is also strongly unmixed. By similar arguments,

one can prove that also J(G1)w and J(G1)w\{w} are strongly unmixed, that is JG1 is strongly

unmixed.

Set-up 5.2.34 Let B be a block with whiskers, where B = ⋃r
i=1Di is a chain of cycles,

satisfying the following properties:

(i) each Di ∈ {C3, C4};

(ii) if Di = C4 then Di+1 = C3;

(iii) E(Di) ∩ E(Di+1) = {{wi, ui}}, where wi is a cutpoint and ui is not a cutpoint;
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(iv) {wi, wi+1} ∈ E(Di+i) (resp. {ui, ui+1} ∈ E(Di+1)) or wi = wi+1 (resp. ui = ui+1);

(v) if D1 = C4 with V (D1) = {w0, w1, u0, u1} with {w0, w1}, {u0, u1} ∈ E(D1) then w0

and w1 are cutpoints, whereas u0 and u1 are not cutpoints;

(vi) if Dr = C4 with V (Dr) = {wr, wr+1, ur, ur+1} with {wr, wr+1}, {ur, ur+1} ∈ E(Dr)

then wr and wr+1 are cutpoints, whereas ur and ur+1 are not cutpoints;

(vii) if v ∈ V (B) with deg(v) ≥ 5 or deg(v) ≥ 4 with v a vertex of a C4 then v is a

cutpoint.

In Figure 5.6, an example of a graph B satisfying Setup 5.2.34 is displayed.

Figure 5.6: A graph B satisfying Setup 5.2.34

Lemma 5.2.35. Let B be a graph satisfying Setup 5.2.34, and let T ∈ C(B). Then for all

u ∈ U ∩ T there exists w ∈ W ∩ T such that {u,w} ∈ C(B).

Proof. By contradiction, assume that there exists u ∈ T ∩ U such that any vertex w ∈ W

for which {u,w} ∈ C(B) does not belong to T . Let T ′ = T \ {u}. We prove that cB(T ) =

cB(T ′). Let H be the connected component of B \ T ′ containing u. We prove that H \ u

is connected. Let v, v′ ∈ V (H \ {u}) and let π : v, v1, . . . , v`, v
′ be a path in H from v to

v′. If u /∈ V (π), then v and v′ are connected in H \ {u} through π. If u ∈ V (π), then

π : v, v1, . . . , vi−1, u, vi+1, . . . , v`, v
′.

We claim that there exists a path vi−1, z1, . . . , zm, vi+1 with {u, zj} ∈ C(B) and zj /∈

T for any j ∈ {1, . . . ,m}. If vi−1, vi+1 ∈ W , then vi−1 = wj, vi+1 = wk with j < k

as in the Setup 5.2.34, hence the vertices wj+1, . . . , wk−1 make a path between wj and

wk. Furthermore being wj, wk adjacent to u, then {u,wj+1}, . . . , {u,wk−1} ∈ C(B) and in

particular wj+1, . . . , wk−1 /∈ T . In this case, the claim follows.

Now, we deal with the case vi−1 or vi+1 ∈ U . Observe that any vertex u′ ∈ U adjacent
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to u is also adjacent to a vertex w′ ∈ W such that {u,w′} ∈ C(B). In fact, let Dk be the

cycle containing u and u′. The vertex w′ 6= u adjacent to u′ that belongs to Dk is such that

{u,w′} disconnects u′ from the rest of the graph. That is, if one or both of vi−1, vi+1 are

in U , by the previous arguments we find the desired path in W . In any of the above cases,

we find that H \ {u} is connected, that is T /∈ C(B). Contradiction.

Corollary 5.2.36. Let B be a graph satisfying Setup 5.2.34, and let T ∈ C(B). Then for

any u ∈ U ∩ T we have T ′ = T \ {u} ∈ C(B). In particular, C(B) is an accessible set

system.

Proof. Let a ∈ T ′. If a ∈ U , then from Lemma 5.2.35 there exists b ∈ W ∩ T such that

{a, b} ∈ C(B). In particular, b ∈ T ′ and cB(T ′) > cB(T ′ \ {a}). If a ∈ W , namely a is a

cutpoint of B, then cB(T ′) > cB(T ′ \ {a}).

Furthermore, for any non-empty T ∈ C(B) if u ∈ T ∩ U 6= ∅, then T ′ = T \ {u} ∈ C(B),

while if T ∩ U = ∅, then any w ∈ T is a cutpoint, hence T \ {w} ∈ C(B).

Proposition 5.2.37. Let B be a graph satisfying Setup 5.2.34. Then JB is unmixed.

Proof. We prove the statement by induction on r, the number of cycles in B.

If r = 1, then the claim follows. In fact, if D1 = C3, then B is a complete graph with

or without whiskers, hence JB is unmixed by [66, Proposition 2.6]. If D1 = C4, then B

has to satisfy the condition (6) in Setup 5.2.34, and the resulting graph is known to be

Cohen-Macaulay and hence unmixed.

Suppose r > 1. By induction hypothesis we have that JBk
is unmixed with Bk =⋃r

i=kDi and k > 1.

IfD1 = C3 with V (D1) = {u0, u1, w1} and E(D1)∩E(D2) = {{w1, u1}}. Let T ∈ C(B).

If w1 /∈ T , then T is a cutset for B2 and by induction hypothesis the assertion follows. We

distinguish the following cases:

1. w1 ∈ T and u1 /∈ T ;

2. w1, u1 ∈ T .

(1) Assume w1 ∈ T and u1 /∈ T . If T is a cutset of B2 the number of connected

components does not change. In fact, by adding the graph C3 and removing the vertex w1
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we only obtain that the connected component ofB2\T containing u1 now contains the graph

D1 \ w1. If T 6∈ C(B2), we claim that T ′ = T \ {w1} is a cutset of B2. We start observing

that the connected component of B2 \ T containing u1 contains D1 \ {w1} in B \ T . Since

by hypothesis for any a ∈ T ′ cB(T ) > cB(T \ {a}) we have that cB2
(T ′) > cB2

(T ′ \ {a}), the

claim follows. Hence, by induction hypothesis, cB2
(T ′) = |T ′|+ 1. Let H be the connected

component ofB2 \T ′ containing w1. By adding the vertex w1 to T ′, w1 disconnects H into

two connected components: the one containing u1 and the free vertex attached to w1.

(2) If w1, u1 ∈ T , then there exists v ∈ V (B2) adjacent to u1 such that u1 breaks the

connected component H of B \ (T \ {u1}) containing u1 in two, one containing v and one

containing u0. By Setup 5.2.34 (7), the vertices adjacent to u1 in B2 are either w1 and u

or w1, w, and u. In the former case, since w1 ∈ T , then u /∈ T and v = u, otherwise u1

is a free vertex in D1 \ w1. In the latter case, u,w ∈ V (D3), that is {u,w} ∈ C(B2). We

observe that {u,w} 6⊂ T , otherwise u1 is a free vertex of D1. The claim follows.

Moreover, from Corollary 5.2.36, T ′ = T \ {u1} is a cutset ofB such that w1 ∈ T ′ and

u1 /∈ T ′. By applying similar arguments to the case (1) we get that cB(T ′) = |T ′| + 1 and

T ′ ∩ {u1} breaks the component containing u1 in two: the vertex u0, and the component

containing the vertex v.

If D1 = C4 with V (D1) = {u0, w0, u1, w1}, then E(D1) ∩ E(D2) = {{w1, u1}}. Let

T ∈ C(B). Assume w0, w1 /∈ T , then T is a cutset for B2 and by induction hypothesis the

assertion follows. We now assume u0, u1 /∈ T and since {w0, u1} is the unique cutset of B

with cardinality 2 containing w0, then the cases w0 ∈ T and w1 /∈ T , w0 /∈ T and w1 ∈ T ,

w0, w1 ∈ T are analogous to the cases w1 /∈ T and w1 ∈ T of D1 = C3. In fact, in all of the

cases we obtain that T \ {w0} is a cutset of B, that is cB(T \ {w0}) = |T \ {w0}| + 1 and

the component containing u0 and f0 is eventually broken by w0. We now assume u1 ∈ T .

Observe that from Setup 5.2.34 (2) D2 = C3 and the vertex u ∈ U adjacent to u1 in B2

is such that {w1, u} ∈ E(B), otherwise u0, w1, w2, u are all adjacent to u1 contradicting

Setup 5.2.34 (7). That is either w0 or w1 ∈ T , u /∈ T , and from Corollary 5.2.36 T \ {u1}

is a cutset of B. From the above cases, we obtain cB(T \ {u1}) = |T \ {u1}| + 1 and u1

breaks the component containing u0 and u2. If u0 ∈ T , then, by Lemma 5.2.35, w1 ∈ T

and w0, u1 /∈ T , that is from Corollary 5.2.36 T \ {u0} is a cutset for B. By the previous
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cases we obtain cB(T \ {u0}) = |T \ {u0}|+ 1 and u0 breaks the component containing w0

and u1.

Remark 5.2.38 In Proposition 5.2.37, if we substitute D1 with a complete graph Kn, with

n ≥ 3, satisfying (3) in the Setup 5.2.34, then JB is unmixed.

Theorem 5.2.39. Let B be a graph. The following conditions are equivalent:

1. B satisfies Setup 5.2.34;

2. JB is Cohen-Macaulay;

3. S/JB is S2;

4. B is accessible;

5. JB is strongly unmixed.

Proof. We prove the following implications:

(5) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1) =⇒ (5).

By [9, Section 5], it holds (5) =⇒ (2).

It is a well known result that (2) =⇒ (3).

Theorem 5.2.11 states (3) =⇒ (4).

By Lemmas 5.2.25, 5.2.29, 5.2.27, 5.2.30, and observing that a C4 with 2 whiskers satisfying

Setup 5.2.34 (e) (or Setup 5.2.34 (f)) is accessible, we have (4) =⇒ (1).

To prove (1) =⇒ (5) we proceed by induction on the number s of cutpoints of B.

Let s = 1 and w be the cutpoint of B. Then B is a cone from w to exactly 2 graphs:

an isolated vertex and a path. By [66], JB is unmixed. Moreover B \ {w} is decomposable

into edges, therefore JB is strongly unmixed by Lemma 5.2.33, and Bw and Bw \ {w} are

complete graphs.

Suppose s > 1 and we focus on the cycle D1. Let w be the first cutpoint, namely

w = w0 if D1 = C4 or w = w1 if D1 = C3. We observe that B \ w = π ∪Bt+1, where

π : u0, u1, . . . , ut is a path, {ut} = V (π) ∩ V (Bt+1), and Bt+1 = ⋃r
i=t+1Di. If Dt+1 = C3,

then π ∪ Bt+1 is decomposable in ut. Note that Dt+1 cannot be a C4. In fact, if by

contradiction Dt+1 = C4, then Dt = C3 and ut−1, ut+1, w, wt are all adjacent to ut. That
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is deg ut ≥ 4 obtaining a contradiction and the claim follows. Therefore, by Lemma 5.2.33

and by induction hypothesis, JB\w is strongly unmixed.

Now we prove that JBw
is strongly unmixed, as well. Suppose Dt = C3 then

Bw = Kt+3∪Bt+1 with V (Kt+3)∩V (Dt+1) = {wt, ut} and the associated binomial edge ideal

is strongly unmixed by induction hypothesis. If Dt = C4 with V (Dt) = {wt−1, wt, ut−1, ut},

then Bw = Kt+3 ∪ D′t ∪ Bt+1 where D′t = C3, V (Kt+3) ∩ V (D′t) = {ut−1, wt} and

V (Bt+1)∩V (D′t) = {wt, ut}. We observe thatBw satisfies Setup 5.2.34 and Remark 5.2.38.

By induction hypothesis, the associated binomial edge ideal is strongly unmixed. It is

straightforward to observe that JBw\{w} is strongly unmixed, too.

5.2.5 Computation of graphs with n ∈ {2, . . . , 12} vertices

The main aim of this section is to prove, using a computational approach, that for

graphs G with at most 12 vertices the three conditions, JG strongly unmixed, JG Cohen-

Macaulay, and G accessible, holds true as conjectured in [9]. Finally, we discuss some

interesting examples obtained by direct computation.

Theorem 5.2.40. Let G be a graph on [n], with n ≤ 12. The following conditions are

equivalent:

1. S/JG is Cohen-Macaulay;

2. S/JG is S2;

3. G is accessible;

4. JG is strongly unmixed.

Proof. We know that

(4) =⇒ (1) =⇒ (2) =⇒ (3)

so, to prove the equivalence it is sufficient to show that (3) =⇒ (4).

To prove the claim we have implemented a computer program that, for a fixed number

n of vertices, performs the following steps (steps (S2), (S3) and (S4) work on the result of

the previous step):

(S1) compute all connected non isomorphic graphs on [n];
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(S2) thanks to Lemma 5.2.33, keep only the graphs which are indecomposable and

unmixed;

(S3) keep only the ones that are accessible;

(S4) keep only the ones that are strongly unmixed;

(S5) verify that the graphs obtained from step (S3) and (S4) are the same.

The previous procedure was executed for the graph whose number of vertices is be-

tween 2 and 12. Finally, we refer readers to [51] for a complete description of the algorithm

that we used.

We underline that the computation of the graphs with n = 12 vertices has been

obtained in a month of computation on a node with 4 CPU Xeon-Gold 5118 having in total

48 cores and 96 threads. All the graphs satisfying the equivalent conditions of Theorem

5.2.40 are downloadable from [51]. Within this set we would like to focus on the graphs

shown in the following example.

Example 5.2.41 By direct computation we obtain the two graphs in Figure 5.7.

(A) (B)

Figure 5.7: The accessibleW n.

The graphs in Figure 5.7 (A) and (B) are well known. In fact, the blocks that are

not edges are the so-called wheel graphs and they are denoted by W4 and W5, respectively.

Whereas the blocks with whiskers are called Helm graphs (see [84]).

We observe that if i > 5 then JW i
is not unmixed. In fact, in this case we have at

least 6 vertices of degree 4, say v1, . . . , v6. Without loss of generality, we may assume that
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{vi, vi+1} ∈ E(W i), for i = 1, . . . , 5. Moreover, assume that v is the vertex of degree i. We

can see that T = {v, v1, v3, v5} is a cutset such that c(T ) = 6.

We recall the following definition.

Definition 5.2.42 A polyhedral graph is a 3-connected planar graph.

The name of polyhedral derives from the fact that it is the graph whose vertices and

edges are the ones of a convex polyhedron.

By Example 5.2.41 and Definition 5.2.42, it is natural to ask

Question 5.2.43 Is it possible to find an infinite family of accessible graphs B such that

B is a polyhedral graph?
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