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SUMMARY

A semi-implicit method for coupled surface-subsurface flows in regional scale is proposed and analyzed.
The flow domain is assumed to have a small vertical scale as compared to the horizontal extents. Thus,
after hydrostatic approximation, the simplified governing equations are derived from the Reynolds averaged
Navier-Stokes equations for the surface flow, and from the Darcy’s law for the sub-surface flow. A
conservative free-surface equation is derived from a vertical integral of the incompressibility condition and
extends to the whole water column including both, the surface and the subsurface wet domain. Numerically,
the horizontal domain is covered by an unstructured orthogonal grid that may include subgrid specifications.
Along the vertical direction a simple z-layer discretization is adopted. Semi-implicit finite difference
equations for velocities, and a finite volume approximation for the free-surface equation, are derived in such
a fashion that, after simple manipulation, the resulting discrete free-surface equation yields a single, well
posed, mildly nonlinear system. This system is efficiently solved by a nested Newton type iterative method
which yields simultaneously the pressure and a nonnegative fluid volume throughout the computational grid.
The time step size is not restricted by stability conditions dictated by friction or surface wave speed. The
resulting algorithm is simple, extremely efficient and very accurate. Exact mass conservation is assured
also in presence of wetting and drying dynamics, in pressurized flow conditions, and during free-surface
transition through the interface. A few examples illustrate the model applicability and demonstrate the
effectiveness of the proposed algorithm. Copyright c⃝ 2015 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: free-surface flow; semi-implicit method; subgrid resolution; mildly nonlinear system;
surface-subsurface flow; pressurized flow

1. INTRODUCTION

Numerical modelling of coupled surface-subsurface flows is an interesting task that has received

considerable attention for several decades. Preliminarily, one has to choose an appropriate set of

governing differential equations whose validity needs to be established in both, the surface and in

the subsurface flow domain. For surface flows the choice may range from an oversimplified diffusion

approximation of the Saint Venant equations to the full three-dimensional Navier-Stokes equations

∗Correspondence to: vincenzo.casulli@unitn.it
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2 VINCENZO CASULLI

with complex free-surfaces. For the sub-surface dynamic, the choice of a differential model may

range from the Boussinesq equation to the three-dimensional Richards equation that includes non-

hydrostatic pressure and variably unsaturated flows [1].

Numerically, surface and subsurface flows have often received separate attention and in most

cases impressive results have been produced and reported. Several attempts have been made

to couple surface and subsurface numerical models with different coupling strategies (see, e.g.,

[2, 3, 4, 5] and the numerous references therein). The simplest (non-iterative) strategy consists in

applying sequentially, within each time step, the surface flow model and the subsurface model. The

accuracy of this approach can be improved by adopting an iterative coupling having the objective to

better approximate the boundary conditions at the interface between the surface and the subsurface

region. The higher computational effort required by an iterative approach may be compensated by

the better accuracy so achieved, but a rigorous convergence analysis of an iterative approach may be

difficult to establish [6] and mass conservation is often inaccurate especially in presence of wetting

and drying dynamics, in pressurized flow conditions, in inhomogeneous porous medium, and during

free-surface transition through the interface.

The spatial domain of environmental flows in regional scale is typically characterized by having

a much larger horizontal extent than the vertical one. These flows are prevalently horizontal and the

hydrostatic approximation (also known as Dupuit’s assumption) is assumed to be valid throughout

[1]. One further assumes that the flow is confined below by an impervious bedrock, and above by a

free-surface (phreatic surface or water table) which may intersect an impermeable ceiling, in which

case below the ceiling the flow is said to be pressurized. With these assumptions the pressure can

be conveniently expressed in terms of the free-surface elevation (or piezometric head) and the two

flows, namely the surface flow and the subsurface flow, share the same (hydrostatic) pressure.

In the present investigation a conservative form of the free-surface equation is derived in such a

fashion that the time rate of the water level is expressed in terms of the total balance over the entire

water column and includes both, the surface and the subsurface horizontal fluxes. The resulting free-

surface equation incorporates the normal velocity boundary condition at the impervious bottom, the

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
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A SEMI-IMPLICIT METHOD FOR COUPLED SURFACE-SUBSURFACE FLOWS 3

kinematic boundary condition at the free surface and the normal flow continuity at the interface

between the surface and the subsurface flow region.

Numerically, semi-implicit methods are known to be stable at a minimal computational cost [7,

8, 9, 10]. Additionally, when subgrid geometrical details are properly incorporated into a numerical

model for surface flows, then significant improvements of numerical accuracy may be achieved on

relatively coarse computational grids [11, 12, 13]. Similarly, efficient and highly accurate numerical

methods for subsurface flows can be derived by using semi-implicit approximations that incorporate

subgrid geometrical details [14, 15, 16]. Here, these methods are generalized to form a single semi-

implicit algorithm that applies to coupled surface-subsurface flows, and simplifies to either a surface

or a subsurface model as particular cases.

Specifically, only the velocities in the free-surface equation, and the pressure gradient, the vertical

viscosity and the friction in the discrete velocity equations are approximated at the new time level.

Next, a formal substitution of the unknown velocities into the discrete free-surface equation leads

to a reduced mildly non linear system where the new free-surface elevations are the only unknowns.

This system is iteratively solved by a properly devised converging method [14, 15] which yields,

simultaneously, the new free-surface location and the corresponding nonnegative fluid volume

on each water column of the horizontal computational grid. Once the new free surface (hence

the pressure) is known, the horizontal velocities are readily computed from the discrete velocity

equations. Finally, the new vertical component of the velocity is recovered recursively from a finite

volume approximation of the incompressibility condition.

The resulting algorithm is relatively simple, extremely accurate, and numerically stable.

Moreover, exact mass conservation is assured throughout also in presence of wetting and drying

and during the free-surface transition from surface to the subsurface region or viceversa.

The remainder of this paper is organized as follows: the governing differential equations are

first introduced and discussed in Section 2. In Section 3 the discrete flow variables are defined on

a staggered computational grid that may include subgrid specifications. Then, a non linear semi-

implicit method is derived in Section 4. In Section 5 a practical solution algorithm is provided.

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)

Prepared using fldauth.cls DOI: 10.1002/fld

Page 3 of 25

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

4 VINCENZO CASULLI

Several hints and remarks are outlined in Section 6 and, finally, in Section 7 this method is applied

to some illustrative examples of different surface-subsurface flow problems.

2. THE GOVERNING DIFFERENTIAL EQUATIONS

For the sake of simplicity, the three-dimensional free-surface flow of an incompressible fluid is

considered to be bounded by an impervious bedrock located at z = −h(x, y) and by an impermeable

ceiling located at z = c(x, y) ≥ −h(x, y). Both h(x, y) and c(x, y) are assumed to be known for all

(x, y) ∈ Ω where Ω denotes the horizontal extent of the region being investigated. Additionally,

the surface and the sub-surface flow regions are separated at z = −s(x, y) where the soil level

s(x, y) is prescribed for all (x, y) ∈ Ω and satisfies −h(x, y) ≤ −s(x, y) ≤ c(x, y). The porous

material is characterized by a porosity ϵ(x, y, z) and hydraulic conductivity K(x, y, z) that are

prescribed for all (x, y) ∈ Ω and for all z ∈ [−h(x),−s(x)]. For notational convenience the porosity

function is prolonged as ϵ(x, y, z) = 1 for all z ∈ [−s(x, y), c(x, y)] and ϵ(x, y, z) = 0 for all

z /∈ [−h(x, y), c(x, y)].

Note that if s(x, y) = h(x, y) for all (x, y) ∈ Ω, then the subsurface region is being neglected

and only surface flow is allowed. Likewise, if s(x, y) = −c(x, y) for all (x, y) ∈ Ω, then the surface

region is being neglected and only subsurface flow is permitted.

2.1. Governing equations for surface flows

Within a Cartesian coordinate system (x, y, z) where the x, y-axis are horizontal and the vertical z-

axis is oriented upward along the gravity direction, the horizontal momentum equations for surface

flows are given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −g

∂η

∂x
+

∂

∂x

(
νh

∂u

∂x

)
+

∂

∂y

(
νh

∂u

∂y

)
+

∂

∂z

(
νv

∂u

∂z

)
(1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −g

∂η

∂y
+

∂

∂x

(
νh

∂v

∂x

)
+

∂

∂y

(
νh

∂v

∂y

)
+

∂

∂z

(
νv

∂v

∂z

)
(2)
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A SEMI-IMPLICIT METHOD FOR COUPLED SURFACE-SUBSURFACE FLOWS 5

where u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) are the unknown velocity components in the

horizontal x-, y- and in the vertical z-directions, respectively; t is the time; g is the gravitational

acceleration; η(x, y, t) is the free-surface elevation; and νh and νv are prescribed non-negative

coefficients of horizontal and vertical viscosity, respectively.

Without loss of generality, the wind friction is neglected so that the boundary conditions at the

free-surface and at the solid walls are assumed to be

νv ∂u
∂z = 0

νv ∂v
∂z = 0


at z = η,

νv ∂u
∂z = γu∗

νv ∂v
∂z = γv∗


at z = −s and z = c (3)

where γ(x, y, t) is a nonnegative bottom friction coefficient and u∗ and v∗ are the horizontal velocity

components near the solid boundary.

The differential Equations (1)–(2) are the model equations that describe the surface flow

within a time dependent three-dimensional domain which is identified by (x, y) ∈ Ω and s(x, y) +

min[η(x, y, t), c(x, y)] > 0.

At the initial time t = 0 the velocities u(x, y, z, 0), v(x, y, z, 0) and w(x, y, z, 0) are prescribed as

initial conditions. The initial fluid position is specified by prescribing η(x, y, 0) for all (x, y) ∈ Ω.

2.2. Governing equations for sub-surface flows

The horizontal velocities in the sub-surface region are given by

u = −K∂η

∂x
(4)

v = −K∂η

∂y
(5)

where K(x, y, z) is the nonnegative hydraulic conductivity.

The differential Equations (4)–(5) are the model equations that describe the subsurface flow

within a time dependent three-dimensional domain which is identified by (x, y) ∈ Ω and h(x, y) +

min[η(x, y, t), c(x, y),−s(x, y)] > 0.

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
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6 VINCENZO CASULLI

Note that at any point (x, y) ∈ Ω, if −s(x, y) < η(x, y, t) < c(x, y), then the unknown function

η(x, y, t) represents the free-surface elevation. If η(x, y, t) ≤ −s(x, y) then the surface layer is dry,

Equations (1)–(2) do not apply at (x, y), and η(x, y, t) represents the phreatic surface or water table

of the subsurface wet region. Finally, if η(x, y, t) ≥ c(x, y) then (x, y) is pressurized and η(x, y, t)

represents the piezometric head. In all cases the unknown function η(x, y, t) in Equations (1)–(2)

and (4)–(5) represents the local (hydrostatic) pressure.

2.3. Free-surface and interface condition

At the common interface between surface and subsurface regions continuity of mass transfer

is assumed. Moreover, fluid incompressibility in both regions is assured by the following

incompressibility condition

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (6)

By using the Leibniz integral rule and the kinematic boundary conditions at the impervious

bottom and at the free-surface, integration of the continuity equation (6) over the depth yields the

following free-surface equation in conservative form

∂

∂t

(∫ η

−h

ϵ dz

)
+

∂

∂x

(∫ η

−h

u dz

)
+

∂

∂y

(∫ η

−h

v dz

)
= 0 (7)

Equation (7) is the vertically integrated continuity equation expressing a mass balance over the

entire water column for all (x, y) ∈ Ω and for all t > 0. Note that this equation includes both, the

surface and the subsurface horizontal fluxes. In addition to the normal velocity boundary condition

at the impervious bottom, and the kinematic boundary condition at the free surface, Equation (7)

also incorporates the normal flow continuity at the interface between the surface and the subsurface

flow region.
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n

iη

j
δ

)( jr)( jl
j

Γ

i
Ω

n

k,ju

Figure 1. Discrete flow variables on a staggered orthogonal grid

3. UNSTRUCTURED GRID AND SUBGRID

In order to solve equations (1)–(7) numerically, the region Ω is covered by an unstructured

orthogonal grid [10] consisting of a set of non-overlapping convex polygons Ωi, i = 1, 2, ..., Np

separated by Ns sides Γj , j = 1, 2, . . . , Ns. Within each polygon a center must be identified in such

a way that the segment joining the centers of two adjacent polygons and the side shared by the two

polygons, have a non empty intersection and are orthogonal to each other (see Figure 1).

Once Ω has been covered with an unstructured orthogonal grid, each polygon Ωi may have an

arbitrary number of sides. Let Si denote the set of sides of the ith polygon. The left and the right

polygons which share the jth internal side are identified by the indices ℓ(j) and r(j), respectively.

Moreover, ℘(i, j) denotes the neighbor of polygon i that shares side j with the ith polygon. The

nonzero distance between the centers of two adjacent polygons which share the jth internal side is

denoted with δj and the length of each side is denoted by λj , j = 1, 2, ..., Ns.

Along the vertical direction a simple finite difference discretization, not necessarily uniform, is

adopted. By denoting with zk+ 1
2

a given level surface, the vertical discretization step is defined by

∆zk = zk+ 1
2
− zk− 1

2
, k = 1, 2, . . . , Nz .

The three-dimensional space discretization consists of bathymetry shaved volumes contained in

prisms whose horizontal faces are the polygons at two consecutive level surfaces, and whose height

is ∆zk. The discrete water surface elevation ηni at time level tn, assumed to be constant within each

polygon, is located at the center of the ith polygon.
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~

2
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λ

)y,x(s
)y,x(h

Figure 2. Vertical cross section along edge Γj

For any prescribed water level ηni , i = 1, 2, . . . , Np, a value for ηnj along each internal edge Γj

is derived from the nearest grid values by taking, e.g., the average, the upwind or the maximum

between ηnℓ(j) and ηnr(j) (see Figure 2).

The wet length of the jth edge at zk+ 1
2

is given by

λn
j,k+ 1

2
=

∫
Γj

H
(
min(ηnj , c)− zk+ 1

2

)
H
(
zk+ 1

2
+ s
)
dΓ (8)

where H is the Heaviside step function which is one when its argument is strictly positive and zero

otherwise. Note that 0 ≤ λn
j,k+ 1

2

≤ λj .

The nonnegative surface wet area of each vertical face of the computational grid is taken to be

ānj,k =

∫
Γj

∆z̄nj,kdΓ (9)

where ∆z̄nj,k is the surface wetted distance between zk+ 1
2

and zk− 1
2

along Γj . Specifically, ∆z̄nj,k is

given by ∆z̄nj,k = max[0,min(zk+ 1
2
, ηnj , c)−max(zk− 1

2
,−s)]. Note that 0 ≤ ānj,k ≤ λj∆zk.

Likewise, the nonnegative subsurface wet area of each vertical face of the computational grid is

taken to be

ãnj,k =

∫
Γj

∆z̃nj,kdΓ (10)

where ∆z̃nj,k is the subsurface wetted distance between zk+ 1
2

and zk− 1
2

along Γj . Specifically, ∆z̃nj,k

is given by ∆z̃nj,k = max[0,min(zk+ 1
2
, ηnj ,−s)−max(zk− 1

2
,−h)]. Note that 0 ≤ ãnj,k ≤ λj∆zk.
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A SEMI-IMPLICIT METHOD FOR COUPLED SURFACE-SUBSURFACE FLOWS 9

Moreover, by denoting with anj,k the total face wet area, namely anj,k = ānj,k + ãnj,k, one has 0 ≤

anj,k ≤ λj∆zk

The horizontal surface and subsurface velocities perpendicular to each wet vertical face of

the computational grid, assumed to be constants over the face, are denoted with ūn
j,k and ũn

j,k,

respectively. Additionally, if the total face wet area is at least partially wet (anj,k > 0), then the

corresponding face average horizontal velocity is given by

un
j,k =

ūn
j,kā

n
j,k + ũn

j,kã
n
j,k

anj,k
(11)

The positive direction for un
j,k , ūn

j,k and ũn
j,k is chosen to go from ℓ(j) to r(j).

The face average (surface and subsurface) vertical velocity is defined on each horizontal wet face

of the computational grid and is denoted by wn
i,k+ 1

2

. The corresponding total wet area is given by

ani,k+ 1
2
=

∫
Ωi

H
(
min(ηni , c)− zk+ 1

2

)
H
(
zk+ 1

2
+ h
)
dΩ (12)

and satisfies 0 ≤ an
i,k+ 1

2

≤ Pi.

4. FINITE DIFFERENCE – FINITE VOLUME APPROXIMATION

Equations (1)–(7) will be discretized on an unstructured orthogonal grid by using a finite difference

approximation for the velocity Equations (1)–(5) and a finite volume approximation for the

continuity Equations (6)–(7).

4.1. Finite difference approximation for surface horizontal velocities

With a semi-implicit method the terms to be discretized at the new time level are carefully

selected as to obtain a stable method with a minimal computational effort [7, 8, 9, 10]. Thus, the

advective and the viscous terms of the momentum equations are discretized explicitly, whereas

the pressure gradient in the momentum equations, and the velocities in the free-surface equation

(7) are discretized implicitly. Moreover, the vertical viscosity and the wall friction terms are taken

implicitly. Thus, since Equations (1)–(2) are invariant under solid rotation of the x and y axis on

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
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10 VINCENZO CASULLI

the horizontal plane, a consistent semi-implicit finite-difference discretization for the momentum

Equations (1)–(2) on each edge Γj is taken to be

ānj,kū
n+1
j,k = ānj,kFūn

j,k − g∆tānj,k
ηn+θ
r(j) − ηn+θ

ℓ(j)

δj
−∆tγn

j,kū
n+1
j,k

+ ∆t

{
λn
j,k+ 1

2
νvj,k+ 1

2

ūn+1
j,k+1 − ūn+1

j,k

∆zk+ 1
2

− λn
j,k− 1

2
νvj,k− 1

2

ūn+1
j,k − ūn+1

j,k−1

∆zk− 1
2

}

k = m̄j , m̄j + 1, . . . , M̄n
j (13)

where F is any stable non-linear difference operator that includes a spatial discretization of the

advective and horizontal viscous terms; ∆t is the time step size; ηn+θ = θηn+1 + (1− θ)ηn and

θ ∈ [ 12 , 1] is an implicitness parameter; γn
j,k is a nonnegative wall friction coefficient which accounts

for the boundary conditions (3) and is proportional to the wetted perimeter of the (j, k)th vertical

face at solid walls; and m̄j and M̄n
j denote the lowest and the highest surface wet vertical face,

respectively. As indicated m̄j and M̄n
j depend on their spatial location j and M̄n

j may also

change with the time level tn in order to account for the free-surface dynamics. Clearly, ānj,k > 0

for all k = m̄j , m̄j + 1, . . . , M̄n
j ; moreover λn

j,k+ 1
2

> 0 for all k = m̄j , m̄j + 1, . . . , M̄n
j − 1, and

λn
j,m̄− 1

2

= λn
j,M̄+ 1

2

= 0.

A particular form for F in Equation (13) can be chosen in a variety of ways, such as by using

an Eulerian-Lagrangian scheme [7, 8, 9, 10], or an explicit conservative formulation [17]. Since

this topic is widely covered in the literature, a specific formulation for obtaining Fūn
j,k will not be

elaborated in the present study. Here, we only insist that F be a stable operator in the sense that if

F is only conditionally stable, then that stability condition will be the stability condition required

by the method being developed.

Of course, Equation (13) is defined only on wet vertical faces, i.e., where ānj,k > 0. On dry faces

ūn+1
j,k = 0 is assumed. Thus, for any structure given to F , one has exactly one linear equation (13)

for each unknown surface velocity ūn+1
j,k .
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4.2. Finite difference approximation for subsurface horizontal velocities

The Darcy’s Equations (4)–(5) do not contain time derivatives, thus they must be satisfied at each

time level. These equations are invariant under solid rotation of the x and y axis on the horizontal

plane. Hence, within the subsurface flow region, and with a properly oriented coordinate system, a

simple implicit finite difference approximation for Equations (4)–(5) is taken to be

ũn+1
j,k = −Kj,k

ηn+1
r(j) − ηn+1

ℓ(j)

δj
, k = m̃j , m̃j + 1, . . . , M̃n

j (14)

where Kj,k is the face averaged hydraulic conductivity; and m̃j and M̃n
j denote the lowest and the

highest subsurface wet vertical face, respectively. As indicated m̃j and M̃n
j depend on their spatial

location j and M̃n
j may also change with the time level tn in order to account for the free-surface

dynamics. Clearly, ãnj,k > 0 for all k = m̃j , m̃j + 1, . . . , M̃n
j .

Of course, Equation (14) is defined only on wet vertical faces, i.e., where ãnj,k > 0. On dry faces

ũn+1
j,k = 0 is assumed. Thus, for each unknown subsurface velocity ũn+1

j,k , one has exactly one linear

equation (14).

4.3. Finite volume approximation for the incompressibility condition

The continuity Equation (6) is approximated at the new time level tn+1 in such a fashion that the

resulting face averaged velocity field is discrete divergence-free in every control volume below the

free-surface. Indeed, a volume integral of Equation (6) yields a consistent finite volume form of the

incompressibility condition (6) which is given by

(∑
j∈Si

σi,ja
n
j,ku

n+1
j,k

)
+ ani,k+ 1

2
wn+1

i,k+ 1
2

− ani,k− 1
2
wn+1

i,k− 1
2

= 0 (15)

where anj,k and an
i,k± 1

2

are the total wet areas; un+1
j,k and wn+1

i,k± 1
2

are the corresponding new face

averaged velocities; and σi,j is a sign function associated with the orientation of the normal

velocities defined on the jth vertical faces. Specifically,
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σi,j =
r(j)− 2i+ ℓ(j)

r(j)− ℓ(j)

The vertical k index in Equation (15) ranges from mi to Mn
i − 1, where mi and Mn

i denote

the lowest and the highest control volume within the ith water column. Incompressibility in the

top (Mn
i th) control volume has to account for the free-surface dynamic and will result from a

conservative approximation of the free-surface equation (7). Thus, one has exactly one linear

equation (15) for each unknown vertical velocity wn+1
i,k+ 1

2

, k = mi,mi + 1, . . . ,Mn
i − 1.

4.4. Finite volume approximation for the free-surface equation

Finally, in order to close the system, a consistent discretization of the free-surface Equation (7) in

flux form is obtained upon integration of Equation (7) over the ith polygon. This yields the following

semi-implicit finite volume approximation

Vi(η
n+1
i ) = Vi(η

n
i )−∆t

∑
j∈Si

σi,j

 M̄n
j∑

k=m̄j

ānj,kū
n+θ
j,k +

M̃n
j∑

k=m̃j

ãnj,kũ
n+θ
j,k

 (16)

where ūn+θ
j,k = θūn+1

j,k + (1− θ)ūn
j,k; ũn+θ

j,k = θũn+1
j,k + (1− θ)ũn

j,k; and

Vi(η
n+1
i ) =

∫
Ωi

[∫ ηn+1
i

−∞
ϵ(x, y, z)dz

]
dx dy (17)

is the water volume within the ith water column for the specified water level ηn+1
i , for any porosity

distribution ϵ, and for any prescribed geometric detail h, s and c.

Equation (16) applies to each water column identified by the corresponding polygon Ωi. Thus,

one has exactly one equation (16) for each unknown water level ηn+1
i , i = 1, 2, . . . , Np. Moreover,

equation (16) expresses an exact mass balance for every water column regardless of the free-surface

locations ηni and ηn+1
i . This equation, however, is mildly nonlinear and the nonlinearity resides

in the definition of the fluid volume Vi(η
n+1
i ) at the left hand side of Equation (16). Note that if

the fluid volume Vi(η
n+1
i ) is linearized as Vi(η

n+1
i ) = Vi(η

n
i ) + V ′

i (η
n
i )(η

n+1
i − ηni ), then Equation

(16) becomes linear but mass conservation can no longer be guaranteed.
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)(Vi η

ih− 0
η

hh is− ic

Figure 3. Graphical representation of a simple piecewise linear volume function

Figure 3 illustrates the volume variability in the very simple case of constants h(x, y) = hi,

s(x, y) = si and c(x, y) = ci for all (x, y) ∈ Ωi, and constant porosity distribution ϵ(x, y, z) = ϵi

for all (x, y) ∈ Ωi and for all z ∈ [−hi,−si]. In this case the i-th fluid volume remains zero for

all η ≤ −hi, it grows linearly with slope ϵiPi when −hi ≤ η ≤ −si, it grows with a steeper slope

Pi when −si ≤ η ≤ ci, and finally remains constant Vi(η) = Pi[ϵi(hi − si) + si + ci] when the ith

water column is pressurized, that is for all η ≥ ci. In all cases the fluid volume Vi(η
n+1
i ) is always a

nonnegative and non decreasing function of ηn+1
i .

All together, Equations (13), (14), (15) and (16) constitute a mildly nonlinear system of at most

Nz(2Ns +Np) equations. This system has to be solved at each time step in order to determine the

new field variables ūn+1
j,k , ũn+1

j,k , wn+1
i,k+ 1

2

and ηn+1
i throughout the computational grid.

5. SOLUTION ALGORITHM

The system of Nz(2Ns +Np) equations formed by (13)-(16) can be conveniently decomposed

into a reduced mildly nonlinear system of Np equations for ηn+1
i ; a set of Ns independent linear

tridiagonal systems of at most Nz equations for the surface horizontal velocities ūn+1
j,k ; NsNz explicit

equations for the subsurface horizontal velocities ũn+1
j,k ; and a set of Np independent recursive

formulas to derive the new vertical velocity wn+1
i,k+ 1

2

from the impervious bottom to the free-surface.

Specifically, equations (13)-(14) and (16) are first written in vector notation as
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14 VINCENZO CASULLI

An
j ū

n+1
j = Gn

j − g∆t
ηn+θ
r(j) − ηn+θ

ℓ(j)

δj
ānj (18)

ũn+1
j = −Kn

j

ηn+1
r(j) − ηn+1

ℓ(j)

δj
(19)

Vi(η
n+1
i ) = Vi(η

n
i )−∆t

∑
j∈Si

σi,j

[(
ā⊤
)n
j
ūn+θ
j +

(
ã⊤
)n
j
ũn+θ
j

]
(20)

where An
j , is a symmetric, positive definite, tridiagonal matrix that includes bottom friction and

vertical viscosity terms; ūn+1
j and ũn+1

j are vectors containing the unknown surface velocities

ūn+1
j,k and the subsurface velocities ũn+1

j,k , respectively; ānj,k and ãnj are vectors whose entries are

the vertical face areas ānj,k and ãnj,k, respectively; and Gn
j is a vector containing the known explicit

terms in Equation (13).

Formal substitution of ūn+1
j and ũn+1

j from (18) and (19) into (20) yields the following discrete

free-surface equation

Vi(η
n+1
i )− θ∆t

∑
j∈Si

{[
gθ∆t

(
ā⊤A−1ā

)n
j
+
(
ã⊤K

)n
j

] ηn+1
℘(i,j) − ηn+1

i

δj

}
= bni (21)

where bni is given by

bni = Vi(η
n
i )−∆t

∑
j∈Si

σi,j

[
(1− θ)

(
ā⊤u+ ã⊤ũ

)n
j
+ θ

(
ā⊤A−1G

)n
j

]
Equations (21) can be assembled into a sparse, mildly nonlinear system of Np equations for

ηn+1
i . This system has a symmetric, and at least positive semi-definite linear part. Thus, in absence

of ceiling (c ≡ ∞), if the porosity function ϵ(x, y, z) is a non decreasing function of the vertical

coordinate z for all (x, y) ∈ Ω, then the mildly nonlinear system of Equations (21) can be efficiently

solved to machine accuracy by a Newton type method with quadratic convergence rate [11, 18].

In general, however, the volume functions Vi(η) are neither concave nor convex (see Figure 3).

Consequently a direct application of the Newton method to system (21) may fail to converge unless

the initial guess is sufficiently close to the unknown solution [13, 14, 19]. For this reason a nested

Newton type method described in Reference [15] is better suited because fast convergence can
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be assured under rather general assumptions on the soil properties and geometric details (see also

[13, 14, 19, 20, 21]).

Once the new free-surface location has been determined, Equations (18) constitute a set of Ns

linear, tridiagonal systems with at most Nz equations each. All these systems are independent

from each other, symmetric and positive definite. Thus, they can be conveniently solved by a direct

method to obtain the horizontal surface velocities ūn+1. The discrete subsurface velocities ũn+1 are

readily determined from Equations (19).

Finally, now that the new horizontal velocities have been computed throughout, the new vertical

component of the velocity can be diagnostically determined from the discrete incompressibility

condition (15). This equation, in fact, can be rearranged to yield the following recursive relation for

the face averaged vertical velocities in each water column

wn+1
i,m− 1

2

= 0;

wn+1
i,k+ 1

2

=
an
i,k− 1

2

wn+1
i,k− 1

2

−
∑

j∈Si
σi,ja

n
j,ku

n+1
j,k

an
i,k+ 1

2

, k = mi,mi + 1, . . . ,Mn
i − 1 (22)

In summary, assuming the knowledge of ūn, ũn, wn and ηn from the previous time level tn,

each time step is advanced by preliminarily determining the wet lengths λn from (8) and the wet

areas ān, ãn and an from (9), (10) and (12), respectively; then the mildly nonlinear system (21) is

solved iteratively to obtain simultaneously the new water level ηn+1 and the corresponding fluid

volumes V (ηn+1); next, the new horizontal velocities ūn+1 are obtained as solution of the Ns

linear tridiagonal Systems (18); the discrete subsurface velocities ũn+1 are readily determined from

Equation (19); and, finally, the new vertical velocities wn+1 are diagnostically determined from

Equation (22).

6. HINTS AND REMARKS

It can be shown that the stability of the semi-implicit method (13)-(16) remains independent of the

celerity, friction and vertical viscosity provided that 1
2 ≤ θ ≤ 1 (see [9]). The stability does depend

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)

Prepared using fldauth.cls DOI: 10.1002/fld

Page 15 of 25

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

16 VINCENZO CASULLI

on the discretization of the advection and horizontal viscosity terms. In other words, when F is

stable and 1
2 ≤ θ ≤ 1, then the resulting discrete model (13)-(16) is also stable.

It should be noted that, the size and the structure of the mildly nonlinear system (21) is

independent from the vertical resolution and from the prescribed subgrid details. Subgrid, and

vertical resolution affect the assembly of Equation (21) and the number of equations for horizontal

and vertical velocities. Moreover, since a major part of the computational effort is required to

determine the free-surface elevation from Equations (21), a detailed subgrid data and a fine vertical

resolution can be adopted with an acceptable increase of the corresponding computational effort.

On the other hand, if only one vertical layer is specified (Nz = 1), then equations (13)-(16)

simplify to a consistent approximation for the coupled surface-subsurface model governed by

the two-dimensional shallow water equations for the surface flow, and by the two-dimensional

Boussinesq equations for the subsurface flow. A one-dimensional model with arbitrarily shaped

cross sections is also obtained from the present formulation by further arranging the unstructured

orthogonal grid in such a fashion that each polygon Ωi has at the most 2 neighbors.

Additionally, if/where the soil level coincides with the impervious bottom (s(x, y) = h(x, y)),

then only surface flow is allowed and can be simulated by the present method as a particular case.

This case was reported in Reference [12]. Similarly, if/where the soil level coincides with the ceiling

(s(x, y) = −c(x, y)), then only subsurface flow is allowed and can be simulated by the present

method as another particular case (see [15]).

More importantly, when this method is applied to a complex flow region which includes extended

shallow areas, deep and shallow tributaries, then each section of the region gets its own correct

representation without any special treatment at the interfaces.

The proposed method, whose general formulation has been presented above in its simplest form,

can be further modified in many ways to simulate a variety of specific free-surface problems. As an

example, sources and/or sinks can be included by simply allowing a nonzero right hand side to the

continuity Equations (6)-(7). Also, additional forces such as Coriolis or baroclinic pressure can be

considered by including appropriate terms to the velocity Equations (1)-(2) and (4)-(5). This implies
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a reformulation of the term Fun
j in (13), hence a modified right hand side of System (21) will result.

An additional advection diffusion equation may also be included to model the transport of scalar

variables such as salinity, water temperature and/or pollutants.

7. NUMERICAL TESTS

The accuracy, the efficiency and the robustness of the proposed method for simulating surface

flow problems within a subgrid environment has been already documented in the recent literature

[11, 12, 13, 22, 23] and will not be duplicated here. Also, the applicability of this method to simulate

saturated-unsaturated flows in confined-unconfined aquifers has been shown in [15, 18, 14, 19].

In this section the applicability the above method is briefly shown on a few illustrative test cases

where the interaction of surface and subsurface flows plays an important role. Specifically, the first

test case concerns a one-dimensional flow and water exchange between a tidal basin and an adjacent

lagoon through an interposed sandy embankment. In a second test, the overland two-dimensional

flow resulting from an intense and long lasting rainfall on a V-shaped catchment basin is simulated

with and without soil absorbtion. Finally, a three-dimensional computation of a dam break flow

illustrates the inundation of ‘porous’ building located along the flood plain.

The proposed method has been implemented in a single, general purpose computer code which

includes options for scalar transport, for baroclinic and for non hydrostatic pressure. The specific

momentum advection operator that is used for these test cases is an Eulerian-Lagrangian extension

of the explicit conservative scheme discussed in References [17, 20]. Moreover, the bottom friction

coefficient adopted in these specific tests is assumed to be γ = g

√
(u∗)2+(v∗)2

C2
z

, where Cz is the

Chezy’s bed roughness coefficient.

In every run the system of free-surface Equations (21) is solved to machine accuracy in order

to obtain a precise mass conservation. In all tests the qualitative aspects of the computed results

will be emphasized. All calculations have been performed on a laptop with an Intel i7 CPU having

2.80GHz clock frequency and 6GB of RAM.
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Figure 4. Low tide, high tide, and tidal fluctuation computed at both sides of the sandy embankment

7.1. Flow in a tidal lagoon

In this test the flow and water exchange between an idealized tidal basin and an adjacent lagoon

is simulated. The tidal basin and the lagoon are separated by a trapezoidal sandy embankment

characterized by a constant porosity ϵ = 0.3 and hydraulic conductivity K = 0.01m/s (see

Figure 4). For the surface flow the horizontal viscosity is neglected (νh = 0) and the Chezy’s bed

roughness coefficient is taken to be Cz = 50m/s.

Observations and measurements of an experimental two-dimensional groundwater transport

through the sand embankment between the wetland and the coastal area have been reported in

Reference [24]). Here, for simplicity, only a (one-dimensional) longitudinal section of the model

is considered.
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The one-dimensional horizontal flow region Ω = [−2.64, 2.64] has a total length L = 5.28m.

This region is covered with Np = 264 uniform segments Ωi of length λj = δj = 2 cm, and the

implicitness parameter is set to θ = 0.6. A constant depth is set to h(x) = 0; the trapezoidal sandy

embankment is prescribed by specifying s(x) = min
[
0,max

(
−0.33, 1

2 |x− 1.04| − 0.35
)]

; and

the ceiling is neglected (c(x) = ∞).

At the initial time t0 = 0 the flow is at rest and the prescribed initial water level is set to

η(x, t0) = 0.274m everywhere. Then a no flow boundary condition is prescribed at the right

boundary (u(L2 , t) = 0), and a periodic (tidal) boundary condition on the free-surface elevation is

prescribed at the left boundary as η(−L
2 , t) = 0.214 + a cos(2πt/T ), where T = 355 s is the tidal

period and a = 0.06m is the tidal amplitude. The simulation is carried on for 10 tidal cycles with

a time step size ∆t = 5 s. The elapsed computing time to complete the entire simulation is only

Tcpu = 6 s.

Figure 4 shows the water level at low and at high tide. This figure also shows the time series for

the water level relative to the mean sea level in the tidal basin and in the lagoon, respectively. The

water surface oscillation in the lagoon has a near 900 phase lag compared with the tidal oscillation,

and the average water level in the lagoon is higher than that in the tidal basin. These results are in

good agreement with the measurements, and with previously computed results [2, 4, 24, 25]).

7.2. Overland flow over a V-shaped catchment

In this test the overland flow resulting from an intense and long lasting rainfall is simulated and

compared with and without soil absorbtion, see References [26, 27]. The spatial V-shaped domain

includes an overland region, a channel and a subsurface region characterized by constant porosity

ϵ = 0.1 and hydraulic conductivity K = 5× 10−5m/s. For the surface flow the horizontal viscosity

is neglected (νh = 0) and the Chezy’s bed roughness coefficient is taken to be Cz = 10m/s.

The flow domain Ω consists of a 1000m× 1620m slope which includes a 1000m long channel

of width D = 20m. The depth of the channel has a slope sc = 0.02 and varies from 0m at

the upstream end to 20m at the downstream end, whereas the surface slope is ss = 0.05 in the
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Figure 5. V-catchment and discharge at the channel outflow

transversal direction perpendicular to the channel. Thus, assuming that the origin is located at the

center of Ω, the soil level is given by s(x, y) = −0.05|x| for all (x, y) ∈ Ω and |x| ≥ 10m; and

s(x, y) = 10− 0.02y for all (x, y) ∈ Ω and |x| < 10m (see Figure 5).

The flow region Ω is covered with a total of Np = 4050 uniform squares Ωi with λj = δj = 20m,

and the implicitness parameter is set to θ = 0.6. At the initial time t0 = 0 the fluid is at rest with

a constant water level η(x, y, t0) = 0 so that the surface water is confined within the channel. A

no flow boundary condition is applied everywhere except at at the downstream end of the channel

where the water level is maintained to be η = 0m for all times t > t0.

The flow is generated by a rainfall event with a high rainfall rate of r = 3× 10−6m/s which is

applied everywhere in Ω for 35 days, with zero rainfall for the subsequent 15 days of recession

[27, 28].

The simulation is carried on for 12 000 time steps with a time step size ∆t = 6min until the final

time T = 50 days is reached. Figure 5 (right) shows the resulting outflow hydrograph corresponding

to 3 different scenarios, namely (a) purely surface flow obtained by setting everywhere h(x, y) =

s(x, y), (b) coupled surface-subsurface flow that results from prescribing a 20m soil layer, i.,e.,

h(x, y) = s(x, y) + 20, and (c) flat impervious bottom given by prescribing h(x, y) = 40m for all

(x, y) ∈ Ω.

As expected, the purely surface flow shows sharper rising and receding limbs; with a 20m soil

layer the outflow hydrograph shows a rising limb occurring at a slower rate than for overland flow

alone and gets steeper as the soil becomes saturated. This is more evident with a flat impervious
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Figure 6. Three-dimensional dam break inundation

layer because in this case the subsurface region is larger permitting a larger water storage. The

receding limb shows a distinct break between the overland runoff component and the baseflow

component which continues for a longer period at a slower and more gradually declining rate. The

elapsed computing times to complete the three simulations are Tcpu = 128 s, Tcpu = 139 s, and

Tcpu = 144 s, respectively.

7.3. Three-dimensional dam break inundation

In this last test the inundation of a flood plain after a dam break is simulated. The flow domain Ω is

a rectangle of length L = 400m and width D = 200m partially occupied by a reservoir at the left-

hand side. At the right-hand side of the reservoir a 20m wide gate, placed symmetrically along the

center line in the longitudinal direction, connects the reservoir with the flood plain, which is open

only at the right-hand side. Additionally, a square building of side 12m is centrally located in Ω

(see Figure 6). This building is assumed as a porous material with a porosity ϵ = 0.8 and hydraulic

conductivity K = 50m/s [2]. For the surface flow the horizontal viscosity is neglected (νh = 0),

the vertical viscosity is set to νv = 10−3 m2/s, and the Chezy’s bed roughness coefficient is taken

to be Cz = 50m/s. Initially the water depth in the reservoir is 2m and the floodplain is dry.

Numerically, the horizontal domain Ω is covered with a uniform horizontal grid having grid size

λj = δj = 2m and resulting in Np = 20 000 control volumes for each vertical layer. Additionally,
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the vertical dimension of height H = 2m is discretized with 20 vertical layers having uniform

thickness ∆zk = 0.1m, and the implicitness parameter is set to θ = 1. At the initial time t0 = 0 the

gate is instantaneously removed and the dry region, including the building, gets flooded.

This simulation is carried out for 800 time steps using a time step size ∆t = 0.25s until a final time

T = 200 s is reached. The elapsed computing time to complete the entire simulation is Tcpu = 456 s.

Figure 6 shows the computed water levels at t = 140 s. These results are in good agreement with

the expectation and with previously computed results [2].

8. CONCLUSIONS

The governing differential equations for velocities are derived from the Navier-Stokes equations

and from the Darcy’s law under the assumption that the flow is prevalently horizontal so that the

hydrostatic approximation is valid. A conservative form of the free-surface equation expresses the

time rate of the water level in terms of both, the surface, and subsurface horizontal integral fluxes.

Numerically, an unstructured orthogonal grid, possibly including subgrid details, is chosen in

such a fashion that entire flow domain is represented with the desired spatial resolution. Then an

implicit finite difference approximation of the Darcy’s laws provides a linear relationship between

the horizontal subsurface velocities and the unknown water levels. Likewise, an appropriate semi-

implicit finite difference approximation of the momentum equations provides a linear relationship

between the horizontal surface velocities and the unknown water levels. A linear implicit finite

volume approximation of the incompressibility condition relates the unknown horizontal velocities

to the discrete vertical velocities in both, the surface and in the subsurface flow domain. Finally, the

free-surface equation is approximated by a conservative semi-implicit method expressing the new

water volumes in terms of the total horizontal fluxes over the entire water column.

From the computational point of view, a formal substitution of the unknown velocities into the

discrete free-surface equation leads to a well posed mildly non linear system where the new free-

surface elevations are the only unknowns. This reduced system can be solved iteratively and yields,

simultaneously, the new free-surface location and the corresponding fluid volume on each water
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column. Once the new free surface is known, the horizontal velocities are readily computed from

the discrete velocity equations and, finally, the new vertical component of the velocity is recovered

recursively from the discrete incompressibility condition.

The resulting method is extremely efficient, mass conservative, and the time step size is not

restricted by a stability conditions dictated by surface wave speed, wall friction or vertical viscosity.

Moreover, for any time step size the computed fluid volumes are assured to be everywhere

nonnegative and wetting and drying for both, the surface and the subsurface flow regions, is naturally

obtained at subgrid level. A few computational examples show the applicability of the proposed

method to a variety of surface-subsurface flow problems.
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