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Abstract

Lineage plasticity and histologic transformation to small cell neuroendocrine prostate 
cancer (NEPC) is an increasingly recognized mechanism of treatment resistance in 
advanced prostate cancer. This is associated with aggressive clinical features and poor 
prognosis. Recent work has identified genomic, epigenomic, and transcriptome changes 
that distinguish NEPC from prostate adenocarcinoma, pointing to new mechanisms 
and therapeutic targets. Treatment-related NEPC arises clonally from prostate 
adenocarcinoma during the course of disease progression, retaining early genomic events 
and acquiring new molecular features that lead to tumor proliferation independent of 
androgen receptor activity, and ultimately demonstrating a lineage switch from a luminal 
prostate cancer phenotype to a small cell neuroendocrine carcinoma. Identifying the 
subset of prostate tumors most vulnerable to lineage plasticity and developing strategies 
for earlier detection and intervention for patients with NEPC may ultimately improve 
prognosis. Clinical trials focused on drug targeting of the lineage plasticity process and/or 
NEPC will require careful patient selection. Here, we review emerging targets and discuss 
biomarker considerations that may be informative for the design of future clinical studies.

Introduction

The treatment landscape of advanced prostate cancer 
continues to evolve. Drugs with varied mechanisms of 
action now being used in earlier disease settings, and 
patients are living longer with longer exposure to systemic 
therapies. However, systemic therapies are not curative, 
and the treatment-resistant state remains a major medical 
problem. Resistance mechanisms in prostate cancer are 
diverse, dependent on the biologic pathways targeted 
and typically occur in the context of activated androgen 
receptor (AR)-signaling. While the AR is the main key driver 
of prostate cancer initiation and progression, a subset of 
prostate cancers either start relatively AR-independent 

or, more commonly, they acquire AR-independence 
during the course of their disease. The frequency of 
AR-independence has been reported in up to 15–20% of 
CRPC tumors after treatment with potent AR-targeted 
drugs (e.g. abiraterone, enzalutamide) (Bluemn et al. 2017, 
Aggarwal et al. 2018, Abida et al. 2019). Developing effective 
therapies for AR-independent prostate cancer is particularly 
challenging, as there is heterogeneity even within this 
subset and continued clonal and sub-clonal evolution 
of castration-resistant tumors as they progress. One 
increasingly recognized mechanism of AR independence 
is lineage plasticity, a process that involves the acquisition 
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of alternative lineage programs to drive cancer growth and 
progression (Beltran et al. 2019) (Fig. 1). These alternative 
programs, commonly of neuronal or neuroendocrine 
lineage, are pointing to acquired pathways and targets 
that may be exploited therapeutically. Clinically, lineage 
plasticity may manifest as a histologic transformation from 
a prostate adenocarcinoma to a small cell neuroendocrine 
carcinoma (Beltran  et  al. 2011, Bluemn  et  al. 2017, 
Aggarwal  et  al. 2018). As new drugs enter the clinic for 
neuroendocrine prostate cancer, patient selection will be 
critical.

Missing link: why we need biomarkers

With increased recognition of diverse castration-resistant 
prostate cancer (CRPC) subtypes, metastatic biopsies are 
increasingly being performed. Genomic sequencing to 
look for actionable targets (e.g. DNA repair alterations) 
is now considered a standard of care. Metastatic biopsies 
have also identified morphologic heterogeneity within 
and across patients with CRPC. While most CRPC tumors 
retain characteristics of prostate adenocarcinoma, 
some may become poorly differentiated losing their 
luminal structure and/or acquiring characteristics of 
classical small cell carcinoma (Epstein  et  al. 2014). Small 
cell carcinoma is considered a poorly differentiated 
neuroendocrine carcinoma and can look and act similar 
to small cell neuroendocrine carcinomas arising in other 
anatomic sites (e.g. small cell lung cancer (SCLC)). While 
immunohistochemistry (IHC) is not required for the 
diagnosis of NEPC, IHC is often performed clinically as 

cells typically express classical neuroendocrine markers 
such as chromogranin, synaptophysin, INSM1, NSE, CD56 
(Epstein et al. 2014). It is important to note that expression 
of these neuroendocrine markers is sometimes observed in 
poorly differentiated/high-grade adenocarcinomas. Large 
cell carcinoma variants or tumors with mixed features of 
small cell or large cell carcinoma admixed with classical 
prostate adenocarcinoma are also observed in later stages 
of prostate cancer. The term ‘neuroendocrine prostate 
cancer (NEPC)’ has been used to broadly encompass 
prostate cancers that have neuroendocrine features based 
on morphology and IHC staining for neuroendocrine 
markers. While NEPC tumors often lack expression of the 
androgen receptor (AR) and downstream AR-regulated 
targets (such as prostate-specific antigen (PSA)), this is 
not universal, reflecting the spectrum and continuum of 
lineage plasticity (Beltran et al. 2019). Of note, a subset of 
CRPC tumors lack morphologic features and IHC markers 
of NEPC and also lack AR expression and have thus been 
termed ‘double negative prostate cancer’ (Bluemn  et  al. 
2017). Whether this represents a distinct entity or a state 
within the continuum of lineage plasticity toward NEPC is 
not well established clinically. Other acquired alternative 
lineage phenotypes such as squamous and gastrointestinal 
programs have also been observed in later stage CRPC 
(Shukla et  al. 2017, Labrecque  et  al. 2021), suggesting 
potentially differential trajectories within the lineage 
plasticity process. Clinically, patients with NEPC typically 
develop progression in the setting of low or non-rising 
serum PSA levels (but not always) and may have elevated 
serum neuroendocrine markers (such as chromogranin, 
NSE) or carcinoembryonic antigen (CEA) levels and/or 

Figure 1
Schematic of the lineage plasticity process in 
prostate cancer.
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develop visceral or atypical sites of metastases (e.g. lytic 
bone, parenchymal brain) (Conteduca  et  al. 2019). While 
these clinical characteristics are not specific for NEPC, 
aggressive clinical features have been used as inclusion 
criteria for clinical trial enrolment (Aparicio  et  al. 2013, 
Corn et al. 2019). Specifically, the aggressive variant prostate 
cancer (AVPC) criteria have been used within platinum 
chemotherapy trials in CRPC and include the presence of 
exclusive visceral metastases, low PSA and bulky disease, 
high lactose dehydrogenase levels, elevated CEA, lytic bone 
metastases, and/or NEPC histology (Aparicio et al. 2013).

While most NEPC tumors are recognized in later 
stages after patients have had prior therapies for metastatic 
CRPC, they can also arise de novo, either as pure small cell 
carcinoma or mixed with high-grade adenocarcinoma. Both 
treatment-emergent and ‘de novo’ NEPC share common 
genomic aberrations as prostate adenocarcinoma (e.g. with 
the prostate cancer-specific TMPRSS2-ERG fusion present in 
approximately 40–50%) (Beltran  et  al. 2011, Chedgy  et  al. 
2018), supporting their common cellular origin, but they 
are enriched with certain acquired alterations including loss 
of RB1 and TP53–alterations universally present in other 
poorly differentiated neuroendocrine carcinomas such as 
SCLC and acquired in EGFR-mutated lung adenocarcinomas 
that transform to SCLC (George  et al. 2015, Niederst  et al. 
2015, Beltran  et  al. 2016b, Park  et  al. 2018). The presence 
of RB1 loss or combined tumor suppressor losses (RB1, 
TP53, PTEN) in men with CRPC even without histologic 
evidence of NEPC has been associated with aggressive 
disease and poor prognosis (Aparicio et al. 2016, Abida et al. 
2019). Epigenetic alterations, including changes in DNA 
methylation, chromatin accessibility, SWI/SNF, and histone 
marks are distinguishing features of NEPC, suggesting a key 
role of epigenetics in driving histologic transformation 
(or trans-differentiation) from prostate adenocarcinoma to 
NEPC (Beltran et al. 2016b, Dardenne et al. 2016, Cyrta et al. 
2020, Baca  et  al. 2021). Activation and coordination of 
lineage determining transcription factors (e.g. ASCL1, 
BRN2, ONECUT2, MYCN, FOXA1) (Dardenne  et  al. 2016, 
Lee  et  al. 2016, Bishop  et  al. 2017, Rotinen  et  al. 2018, 
Guo et al. 2019, Baca et al. 2021), pluripotency factors (e.g. 
SOX2) (Bishop  et al. 2017, Mu  et al. 2017), and homeobox 
genes (eg. HOXB5, HOXB6) (He  et  al. 2021), as well as 
dysregulation of prostate cancer genes in the context of AR 
therapy (eg. ERG, SPINK1) (Mounir et al. 2015, Tiwari et al. 
2020), and/or downregulation of other transcription 
factors (e.g. REST) (Lapuk  et  al. 2012, Zhang  et  al. 2015) 
further drive transcriptional changes and associated 
lineage reprogramming (He  et  al. 2021). This lineage  
reprogramming may be mediated by an intermediary, 

de-differentiated ‘stem like’ state before cells differentiate 
toward a neuronal developmental/neuroendocrine-like 
phenotype with loss of AR dependence (Fig. 1). Based 
on the study of metastatic tumors, we developed a 
70-gene signature (NEPC score) that distinguishes NEPC 
from prostate adenocarcinoma (Beltran  et  al. 2016b). 
Interestingly, this NEPC score has been found to be inversely 
correlated with AR signaling not only in metastatic CRPC 
(Abida  et  al. 2019) but also in primary untreated tumors  
(Mahal et al. 2018).

With significant advances in our understanding of 
the biological underpinnings of lineage plasticity and the 
mechanisms that drive the development of NEPC, there 
is a growing need for biomarkers to (1) more accurately 
diagnose NEPC in the clinic and (2) potentially predict 
NEPC transformation before it develops or identifies 
patients in the process of lineage plasticity while 
progressing on standard therapies for early intervention 
strategies. This has important therapeutic implications. 
For instance, if the target of interest is expressed only 
when neuroendocrine lineage is present, then an accurate 
biomarker to identify NEPC and/or the target would be 
needed. If the goal of therapy is to prevent or reverse 
lineage plasticity (for instance, through epigenetic 
modulation), then a biomarker to identify tumors without 
neuroendocrine differentiation would be ideal, and 
co-targeting or alternating strategies (targeting AR and 
non-AR pathways) may be rationally developed.

Relationship between target and therapy

Patients with histologically confirmed small cell NEPC 
or CRPC with aggressive variant clinical features (AVPC) 
are often treated with systemic therapy regimens used 
for SCLC, based on clinical, pathologic, and molecular 
similarities between NEPC and SCLC (Berchuck  et  al. 
2021). Similar to SCLC, they tend to be initially responsive 
to platinum-based chemotherapy with objective response 
rates of 50–60% (Sella  et  al. 2000, Papandreou  et  al. 
2002). The combination of carboplatin with the taxane 
chemotherapy cabazitaxel is now supported by the 
National Comprehensive Cancer Network (NCCN) 
guidelines as an option for patients with aggressive variant 
clinical features or unfavorable genomics (loss of function 
alterations involving at least two of PTEN, TP53, and RB1). 
In a phase II study, 113 men meeting AVPC clinical criteria 
were treated with carboplatin plus docetaxel followed 
by cisplatin plus etoposide at progression (Aparicio  et  al. 
2013). The median progression-free survival (PFS) with 
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carboplatin plus docetaxel was 5.1 months, and the 
median overall survival was 16.0 months (95% CI 13.6–
19.0) (Aparicio  et  al. 2013). In a follow-up randomized 
phase II study (Corn et al. 2019), 160 men with metastatic 
CRPC, stratified by the presence of AVPC features, were 
randomized to cabazitaxel vs cabazitaxel plus carboplatin. 
There was a more substantial improvement in PFS favoring 
combination chemotherapy (cabazitaxel plus carboplatin) 
in men with AVPC (HR 0.58 (95% CI 0.37–0.89) compared 
with those without AVPC (HR 0.74 (95% CI 0.46–1.21)). The 
mechanisms of response of NEPC and AVPC to this regimen 
may also be influenced by underlying tumor suppressor 
loss and/or DNA repair aberrations. The combination of 
cabazitaxel with carboplatin has a particular rationale 
in NEPC, given the activity of cabazitaxel in CRPC and 
mixed tumor histologies (both adenocarcinoma and NEPC 
elements) frequently observed within the spectrum of 
NEPC (Epstein et al. 2014).

For those patients with pure small cell carcinoma, SCLC 
regimens such as carboplatin-etoposide with or without 
the anti-PDL1 immune checkpoint inhibitor atezolizumab 
(based on the IMpower133 trial (Horn  et  al. 2018)) may 
also be considered. Docetaxel with carboplatin is also a 
reasonable option for patients who have not previously 
received docetaxel, given the frequent mixed CRPC/NEPC 
features. A major clinical challenge is in what to do next 
after platinum-based chemotherapy. There are limited data 
in the second line and beyond settings. For mixed tumors 
with both adenocarcinoma and NEPC elements, the choice 
of therapy depends on the dominant histology and clinical 
context. Next line SCLC regimens may be considered for 

those with small cell NEPC; these include lurbinectedin, 
topotecan, pembrolizumab, ipilimumab/nivolumab. 
Given limited data, we would encourage participation in 
clinical trials. Further, ADT should be considered in both 
de novo and treatment-related NEPC cases (even small cell 
carcinomas) given tumor heterogeneity.

Emerging targets for lineage plasticity and NEPC have 
been discovered through combined clinical and preclinical 
studies (Fig. 2), and several trials are now underway. Several 
of these targets are shared with SCLC, such as DLL3, 
AURKA, EZH2, and DNA repair pathways. Understanding 
the relationship between target expression and pathway 
activation with therapeutic responses to these agents 
will be critical for patient selection, especially since these 
features may not be present at the time of the patient’s 
initial diagnosis. NEPC tumors express cell surface 
markers that may be exploited therapeutically. CEACAM5 
(carcinoembryonic antigen-related cell adhesion molecule 
5) and DLL3 (delta-like ligand 3) are two examples of cell 
surface proteins also present in other cancers such as 
colon cancer and SCLC, respectively (Thompson et  al. 
1991, Saunders et al. 2015). Lee et al. (2018) evaluated cell 
surface profiles using gene expression data and validated 
CEACAM5 as a marker enriched in NEPC and a promising 
target for cell-based immunotherapy. As a proof of concept, 
they developed an engineered chimeric antigen receptor T 
cells targeting CEACAM5, which induced antigen-specific 
cytotoxicity in NEPC models (Lee  et  al. 2018). Further 
clinical investigation targeting CEACAM5 is planned for 
men with NEPC. We identified DLL3 as another cell surface 
protein, a notch inhibitory ligand, highly expressed in the 

Figure 2
Representation of relative abundance of features 
and patient-based studies and models along the 
continuum from localized prostate cancer (PCa) to 
castration-resistant adenocarcinoma (CRPC-
Adeno) to androgen receptor (AR)-independent 
CRPC. The schematic includes the frequencies of 
relevant genomic and epigenomic aberrations 
associated with neuroendocrine prostate cancer 
and the relative number of patient-based studies 
and models that exist to study each of these 
disease states, evidencing the yet modest 
availability of tissue-based and liquid biopsy-
based studies in the setting of AR independent 
CRPC, where disease control is especially limited. 
AR, androgen receptor; CRPC, castration-resistant 
prostate cancer.
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majority of NEPC (76.6%) as well as a subset of aggressive 
CRPC tumors (12.5%), and not expressed in benign tissues 
(Puca et al. 2019). DLL3 is being investigated as a therapeutic 
target for both NEPC and SCLC. The anti-DLL3 × CD3 
Bi-specific T cell Engager AMG757 (Amgen) and the DLL3-
targeted tri-specific T cell activating construct HPN328 
(Harpoon) are in early phase clinical trials (NCT04471727, 
NCT04702737).

Other immune targeted approaches are also being 
investigated in NEPC. Though immune checkpoint 
inhibitors are commonly used in SCLC and sometimes 
extrapolated to treat small cell NEPC, there have been 
limited data reported to date for this subgroup of prostate 
cancers. In a recent study by Brady et  al. (2021), digital 
spatial profiling revealed that the majority of metastatic 
CRPC and NEPC tumors are devoid of significant 
inflammatory infiltrates and lack PD1, PD-L1, and CTLA4. 
Consistent with this, Brown et al. (GU ASCO 2021) recently 
reported results of 19 patients with NEPC or aggressive 
variant clinical features treated with the PD-L1 inhibitor 
avelumab in a single-arm phase 2 study (NCT03179410). 
Radiographic response rate was 6.7%. One complete 
response was observed in a patient that also harbored 
tumor microsatellite instability and MSH2 mutation. 
Median radiographic progression-free survival was 1.8 
months (95% CI 1.6–2.0) and median time on therapy 
was 56 days (range 28–356). Median overall survival was 
7.4 months (85% CI 2.8–12.5). Given this limited single-
agent activity, combination immunotherapy is now being 
tested. Ongoing clinical trials include a phase 2 basket 
study of ipilimumab plus nivolumab for rare GU tumors 
with a small cell carcinoma arm (NCT03333616), a phase 
1/2 study of pembrolizumab plus BXCL701, an oral innate 
immunity activator (NCT03910660), and a phase 1 study 
of pembrolizumab in combination with platinum-based 
chemotherapy (NCT03582475).

NEPC tumors express higher levels of cell cycle genes 
including aurora kinase A (AURKA), aurora kinase B 
(AURKB), and polo kinase (PLK1) (Beltran  et  al. 2011). 
Aurora-A has also been shown to stabilize N-myc during 
NEPC progression (as also observed in neuroblastoma, 
another neuroendocrine tumor (Otto  et  al. 2009)). 
Expression of Aurora A has also been linked mechanistically 
with TP53 mutation via expression of miR-25 leading to 
reduced levels of FBXW7 which encodes an E3 ubiquitin 
ligase that regulates Aurora A (Li et  al. 2015). Targeting 
aurora kinase in the context of underlying RB1 loss (present 
in the majority of NEPC) is synthetically lethal (Gong et al. 
2019, Oser et al. 2019), providing additional rationale. The 
Aurora kinase A inhibitor alisertib was tested in a phase 

2 clinical trial for patients with clinical or pathologic 
features of NEPC (Beltran  et  al. 2018). Though this study 
did not meet its primary endpoint of PFS in a biomarker-
unselected population, exceptional responders were 
observed. Further investigation, potentially in the context 
of N-myc gain or RB1 loss, may be warranted. Anaplastic 
lymphoma kinase (ALK) is a receptor tyrosine kinase that 
also cooperates with N-myc to drive neuroendocrine 
differentiation, and chemical and pharmacologic 
inhibition of ALK has shown activity in preclinical models 
of both NEPC and N-myc-driven neuroblastoma; these 
data point to additional potential shared vulnerabilities 
between NEPC and other neuroendocrine tumors that 
may be exploited clinically (Unno  et  al. 2021). RET is 
another kinase identified as preferentially activated in 
NEPC with potential therapeutic implications (Drake et al. 
2013). Although the phase 3 trial of cabozantinib (which 
targets RET as well as other kinases such as MET, VEGFR2, 
FLT3, c-KIT) was negative for overall survival in metastatic 
CRPC (Smith et al. 2016), it is currently being evaluated in 
a biomarker-selected subgroup of CRPC (NCT04631744) as 
well as in combination with atezolizumab (NCT04446117).

Targeting DNA repair is an area of interest in NEPC, 
given clinical responses to platinum chemotherapy 
and similarities with SCLC. The frequency of genomic 
aberrations involving DNA repair pathways is similar 
in treatment-related NEPC as other CPRC tumors 
(approximately 20% harboring pathogenic mutations in 
homologous recombination genes), and potentially more 
common in de novo cases (Beltran et al. 2016b, Chedgy et al. 
2018). Upregulation of DNA repair genes in NEPC has 
also been associated with activation of PARP1/2 by N-Myc 
(Zhang et al. 2018, Liu et al. 2019). While poly (ADP-ribose) 
polymerase (PARP) inhibitors are currently indicated for 
specific genomic alterations linking with the Food and 
Drug Administration (FDA) label in CRPC, their use in 
additional contexts is not yet established. A phase 2 study of 
induction chemotherapy with carboplatin plus cabazitaxel 
followed by maintenance PARP inhibitor therapy with 
olaparib in patients with aggressive variant clinical 
features including NEPC is ongoing (NCT03263650). The 
combination of PARP inhibitor and ataxia telangiectasia 
and rad3-related (ATR) inhibitor therapy has also shown 
preclinical activity in CRPC tumors with combined TP53 
and RB1 loss, reflecting a potential targetable vulnerability 
resulting from replication stress (Nyquist  et  al. 2020). 
In SCLC, combined inhibition of ATR (bertosertib) and 
topoisomerase (topotecan) is also synergistic; an overall 
response rate of 36% was seen with this combination 
including durable regressions in patients with platinum-
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resistant disease (Thomas  et  al. 2021). SCLC tumors with 
high neuroendocrine differentiation and enhanced 
replication stress were more likely to respond. These data 
suggest that replication stress may also be a potential 
therapeutic vulnerability in NEPC.

Though lineage plasticity may be facilitated by 
underlying genomic aberrations, such as loss of RB1 and 
TP53, the most striking differences between NEPC and 
prostate adenocarcinoma are epigenetic. Recent DNA 
methylation, ChIPseq, and ATACseq studies support 
transcriptional reprogramming mediated by epigenetic 
regulators and driven by key lineage determining 
transcription factors (TFs). EZH2 is an epigenetic regulator, 
part of the polycomb repressive complex 2 (PRC2), involved 
in histone methylation (H3K27me3) and gene repression. 
EZH2 is overexpressed in CRPC compared with primary 
tumors, and even more so in NEPC (Beltran  et  al. 2016b, 
Ku et al. 2017, Puca et al. 2018). There is a suggestion based 
on preclinical studies that targeting EZH2 can reverse 
plasticity in the setting of underlying tumor suppressor 
loss or N-myc gain, re-sensitizing tumors to enzalutamide 
(Dardenne  et  al. 2016, Kleb  et  al. 2016, Ku  et  al. 2017). 
EZH2 can also activate the AR in the setting of AR-driven 
disease (Xu  et  al. 2012). Clinical trials investigating 
the combination of EZH2 inhibitor therapy with 
potent AR inhibition are underway for late-stage CRPC 
(NCT03480646, NCT03460977, NCT04179864). Ongoing 
correlative studies may elucidate molecular subsets within 
responders in these trials.

Targeting other epigenetic regulators, such as LSD1, 
BET, or DNA methyltransferase, are also under investigation 
in advanced CRPC and may have a rationale in NEPC 
(Conteduca 2021). Current ongoing trials of epigenetic 
drugs are also without patient selection for NEPC. Similarly, 
correlative studies may elucidate molecular mechanisms of 
response in these trials. This will require not only studying 
mediators of anti-tumor activity but also potential changes 
in tumor lineage programs that occur on therapy. DNA 
methylation changes, in particular, are distinguishing 
features of NEPC, detectable in both metastatic tumors 
and cell-free DNA (plasma) of patients (Beltran et al. 2016a, 
2020, Zhao  et  al. 2020). Integration of DNA methylation 
with transcriptomic data suggests epigenetic regulation 
of cell–cell adhesion, developmental, and stem-like 
pathways. Targeting DNA methyltransferases and/or other 
upstream mediators that regulate these processes are 
approaches under investigation. Of note, downregulation 
of protein kinase C (PKC) λ/ι results in the upregulation of 
serine biosynthesis and increases intracellular S-adenosyl 
methionine levels in NEPC, pointing to a potential 

metabolic regulation of DNA methylation during lineage 
plasticity (Reina-Campos  et  al. 2019). Additionally, the 
downstream TFs that mediate transcriptional changes 
associated with lineage reprogramming, such as BRN2, 
ASCL1, FOXA1, ONECUT2, MYCN, and others may also 
serve as potential therapeutic targets though TFs are much 
more challenging to target directly. Understanding the 
mechanisms and timing of epigenetic events and their 
cooperation in promoting and/or sustaining plasticity will 
be important for the development of rational biomarkers 
and combination strategies. If AR can indeed be re-activated 
by targeting epigenetic alterations, then combination or 
bipolar/alternating strategies may be tested.

Emerging biomarkers

Several tissue-based studies and preclinical studies have 
identified genomic, transcriptomic, and epigenetic 
differences between castration-resistant prostate 
adenocarcinoma and NEPC (Beltran et al. 2019). While these 
studies have fueled mechanistic studies and validation of 
new targets, in practice obtaining metastatic biopsies for 
extensive molecular analyses is a major clinical challenge. 
Biopsies, when performed to evaluate for NEPC, are often 
small and prioritized clinically to confirm the diagnosis 
(tumor morphology, IHC) and for targeted genomic assays 
to identify targets for FDA-approved therapies (e.g. olaparib, 
rucaparib, pembrolizumab). IHC staining for classical 
neuroendocrine markers is commonly performed clinically 
and may potentially be improved upon with other NEPC-
associated markers that can be measured in situ (e.g. IHC 
for RB1, DLL3, ASCL1, SWI/SNF complex members). The 
presence of combined tumor suppressor loss (RB1, TP53, 
PTEN) is often detected on targeted genomic assays in 
patients with NEPC as well as those with aggressive variant 
clinical features and may help identify patients for more 
aggressive systemic therapy regimens such as platinum-
based chemotherapy, as recently endorsed by the NCCN 
(Aparicio  et  al. 2016). The timing of their acquisition 
and evolution of these tumor suppressor losses, and the 
contribution of other co-occurring genomic and epigenomic 
DNA alterations, have not been extensively studied. To this 
end, we evaluated molecular changes in CRPC and NEPC in 
the context of a few specific drug targets (Fig. 3) illustrating 
how DNA-based changes (e.g. tumor suppressor loss, DNA 
methylation) might correlate with targets/pathways in 
CRPC or NEPC that are non-genomic based.

Despite the increased recognition of patients with CRPC 
that progress toward NEPC, the total number of profiled 
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patient tumors in the published literature remains low and 
there are differences in the diagnostic criteria, platforms, and 
analytics used. One challenge lies in the need for invasive 
biopsies. Evaluation of primary tumors suggests that most 
NEPC features (e.g. histology, RB1 loss, DNA methylation 
changes) are not typically detected early; however, there may 
be transcriptomic changes associated with AR independence 
early on (Mahal et al. 2018, Spratt et al. 2019). Whether these 
transcriptomic changes predict the future development of 
NEPC and/or therapy response in earlier disease settings (e.g. 
AR therapy vs chemotherapy) is yet to be reported. Given that 
most of the targetable alterations identified in NEPC appear 
to be acquired during therapy resistance, the development 
of non-invasive biomarkers (e.g. liquid biopsies, molecular 
imaging) to detect molecular changes associated with NEPC 
is a promising approach. Serial assessments allow for the 
charting of tumor dynamics over time and for specifically 
analyzing treatment-related changes and target expression. 
Furthermore, single-site metastatic biopsies do not always 
reflect the pathologic heterogeneity that may be seen within 
an individual patient; therefore, non-invasive biomarkers 
have an additional advantage in more accurately reflecting 
composite tumor burden and molecular intra-patient 
heterogeneity.

Especially in the setting of heterogeneous diseases 
such as metastatic prostate cancer, plasma cell-free DNA 

(cfDNA) studies have provided valuable observations, 
both at the genomic and epigenomic level. Relevant to the 
characterization of NEPC, we analyzed biopsy-confirmed 
castration-resistant adenocarcinoma and NEPC tumors 
along with matched cfDNA by whole-exome sequencing 
and whole-genome bisulfite sequencing and found that 
(1) cell-free DNA genomics recapitulates the relative 
contribution of key drivers (including loss of TP53, RB1, 
PTEN, amplification of MYC, MYCN, and AR), (2) serial 
sampling can track the emergence and clonal dominance of 
certain sub-clonal alterations, (3) the level of intra-patient 
genomic heterogeneity is higher in castration-resistant 
adenocarcinoma compared with NEPC, and (4) DNA 
methylation of cfDNA resembles tissue-based data and 
can identify NEPC-specific features (Beltran  et  al. 2020). 
Further, through serial sample analyses, we demonstrated 
that NEPC-associated DNA changes could be detected 
in the circulation prior to clinical evidence of NEPC. 
Key to this initial study was the availability of metastatic 
tissue biopsies that allowed for the assessment of inter 
and intrapatient similarities on a metastatic site basis 
and across sites, leading to the observation that NEPC-
associated alterations are generally conserved across sites, 
and, therefore, the data from cfDNA were not driven by the 
sites of metastases. There are several commercial platforms 
available for cell-free DNA analysis. While targeted cfDNA 

Figure 3
Gene expression of specific targets (EZH2, AURKA, DLL3) in CRPC and NEPC metastatic tissue biopsies, annotated by genomic tumor suppressor loss, 
NEPC-associated features informed by DNA methylation changes, and AR signaling. Epigenetic and genomic signals might be indicative of non-genomic-
based NEPC relevant targets/pathways. EZH2, enhancer of zeste 2; DLL3, delta-like ligand 3; CRPC, castration-resistant prostate cancer; NEPC, 
neuroendocrine prostate cancer; AR, androgen receptor.
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platforms are commonly used clinically in metastatic 
CRPC to evaluate for actionable genomic alterations, 
cfDNA methylation platforms such as GRAIL and others 
have mostly been geared toward cancer detection and 
minimal residual disease monitoring. Additional work is 
needed to leverage such technologies for the detection of 
specific cancer resistance phenotypes such as NEPC.

While the cfDNA sequencing is informative of 
genomic burden, the mutational load, the presence of 
specific somatic DNA and DNA methylation events, 
the noninvasive assessment of transcriptional profiles 
and expression of key targets are more challenging. 
Ulz and colleagues recently proposed a method for 
assessing transcription factor activity via cfDNA (Ulz et al. 
2019). Specifically, through whole-genome sequencing 
of cfDNA and nucleosome footprint analysis, they 
inferred transcription factor accessibility based on DNA 
fragmentation patterns. The authors showed the ability 
to distinguish NEPC from prostate adenocarcinoma 
based on differential accessibility of the binding sites 
of AR, REST, HOXB13, NKX3-1, and GRHL2. Potentially 
combining novel approaches with cfDNA methylation, 
cfDNA ChIPseq, or other technologies will provide a more 
comprehensive readout of the epigenetic landscape of 
NEPC with the ability to track dynamic and functional 
changes while on therapy.

Circulating tumor cells (CTCs) hold promise for not 
only detecting tumor burden (e.g. quantifying CTC count) 
but can also test morphologic differences between NEPC 
and adenocarcinoma tumor cells, and other drug targets 
and resistance mechanisms through mRNA or protein 
analyses. Using the Epic CTC platform, we identified low or 
absent AR expression, low cytokeratin expression, smaller 
morphology, and cell clusters more frequently in CTCs from 
men with NEPC compared to those with castration-resistant 
prostate adenocarcinoma (Beltran  et  al. 2016a). In another 
study of patients with AVPC, the presence of copy number 
alterations involving at least two tumor suppressor genes and 
genomic instability in DNA derived from single CTCs was 
associated with poor survival (Malihi  et  al. 2020). Overall, 
CTC heterogeneity has been associated with poor prognosis 
in patients with CRPC treated with AR-targeted therapies 
(Scher  et  al. 2017). In the multicenter PROPHECY study, 
CTCs were evaluated by the Epic platform in 107 men prior to 
receiving abiraterone or enzalutamide (Brown et al. 2021). Of 
these, 8.7% had NEPC features defined by cell morphology 
and size, and their presence along with chromosomal 
instability in CTCs was associated with poor prognosis. In 
addition to providing prognostic value, CTCs are also capable 
of detecting other tumor features such as expression of AR-V7, 

SLFN11, and DLL3 (Puca  et  al. 2019, Armstrong  et  al. 2020, 
Conteduca et al. 2020, McKay et al. 2021).

Extracellular vesicles (EVs) derived from metastatic 
tumor cells can also be detected in the circulation in men 
with CRPC, including those that are CTC-negative, and 
may carry tumor-associated proteins that can be quantified 
and tracked serially (Gerdtsson  et  al. 2021). The role of 
EVs as biomarkers to detect lineage plasticity is an area of 
active investigation (Bhagirath  et al. 2021). There are also 
emerging data regarding the ability of EVs to reprogram 
cells and they may play a functional role in driving lineage 
plasticity. For instance, EVs from integrin αVβ3 expressing 
prostate cancer cells are capable of stimulating tumor 
growth and driving neuroendocrine differentiation in 
tumor models (Quaglia et al. 2020).

Molecular imaging is another emerging non-invasive 
biomarker in CRPC. Recent studies have been focused 
on detecting prostate-cancer specific antigen (PSMA) 
expression in tumors through PET – computerized 
tomography (CT) imaging, as well as targeting PSMA lesions 
via radionuclide therapy (e.g. Lu-PSMA-617) or other 
approaches (Miyahira et al. 2020). There is a subset of CRPC 
that express lower levels of PSMA or lose PSMA expression 
in later stages of the disease, which can also be detected by 
PSMA PET-CT and metabolically-avid lesions confirmed 
with concurrent fluorodeoxyglucose (FDG) PET-CT (Thang 
et al. 2019). PSMA negativity or PSMA/FDG discordance on 
PET imaging has been associated with aggressive disease 
and poor prognosis (Thang et  al. 2019). When tumors 
lose AR expression (as seen in NEPC), PSMA expression 
may also be lost (Bakht  et  al. 2018). Whether PSMA/FDG 
imaging can be incorporated to improve the detection of 
NEPC is an area of active investigation. Efforts to detect 
NEPC via somatostatin receptor expression using Ga-68-
DOTATOC PET/CT have shown mixed results, with overall 
lower expression of somatostatins in NEPC compared 
with well-differentiated neuroendocrine tumors of the 
gastrointestinal tract or lung (Hope et al. 2015, Iravani et al. 
2021). Other PET tracers such as those evaluating DLL3 
(Sharma et al. 2017) are also under investigation.

Conclusions

In summary, NEPC is an aggressive variant of prostate 
cancer that most commonly develops in later stages of 
prostate cancer progression as a mechanism of resistance. 
Platinum-based chemotherapy such as carboplatin 
plus cabazitaxel has activity and is endorsed by NCCN 
guidelines, but the second line and beyond settings are 
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major clinical challenges. While there may be certain 
molecular features present at initial diagnosis that may 
contribute toward future development of lineage plasticity 
or AR independence, most NEPC alterations are acquired 
later. Metastatic biopsy studies and recent preclinical 
research have identified genes and pathways that 
coordinate together to turn ‘off’ the AR-driven luminal 
prostate program and turn ‘on’ the neuroendocrine 
lineage. Plasticity is facilitated by genomic aberrations 
(e.g. combined RB1, TP53 loss), and NEPC is characterized 
by distinct epigenetic changes. Trials targeting emerging 
genes/pathways in NEPC will require careful patient 
selection. Metastatic biopsies are invasive and challenged 
by pathologic heterogeneity even within individual 
patients. Incorporating non-invasive biomarkers to 
detect molecular features of NEPC (e.g. liquid biopsies, 
molecular imaging) into ongoing clinical studies across 
the prostate cancer continuum is essential. This will help 
track the lineage process and facilitate prioritization, and 
the validation studies needed for their incorporation 
into future clinical trials aimed at targeting NEPC and/or 
reversing plasticity.
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