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We show how engineered classical noise can be used to generate constrained Hamiltonian dy-
namics in atomic quantum simulators of many-body systems, taking advantage of the continuous
Zeno effect. After discussing the general theoretical framework, we focus on applications in the con-
text of lattice gauge theories, where imposing exotic, quasi-local constraints is usually challenging.
We demonstrate the effectiveness of the scheme for both Abelian and non-Abelian gauge theories,
and discuss how engineering dissipative constraints substitutes complicated, non-local interaction
patterns by global coupling to laser fields.
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Laboratory experiments with atomic quantum-
degenerate gases have established a synergetic link
between atomic physics and condensed matter [1–3], and
hold prospects for a similar connection to high-energy
physics [4–12]. Loaded into optical lattices, cold atoms
realize Hubbard models, which can be designed and
controlled via external fields to mimic the dynamics of
quantum many-body systems in equilibrium and non-
equilibrium situations [3, 13]. While a focus of research
during the last decade has been the development of a
toolbox for designing specific lattice Hamiltonians [1–3],
we address below the problem of implementing desired
Hubbard dynamics in the presence of constraints, i.e.,
we wish to keep the system dynamics within a certain
subspace of the total Hilbert space. A familiar way of
imposing such constraints is to add an energy penalty to
the Hamiltonian [14]. Below, we describe an alternative
scenario that is based on driving the system with
engineered classical noise, exploiting the Zeno effect
[15–20]. As we will see, ‘adding noise’ provides a general
tool to implement – in an experimentally efficient and
accessible way – highly nontrivial constraints in quantum
many-body systems.

The present work is motivated by the ongoing quest to
build a quantum simulator for Abelian and non-Abelian
lattice gauge theories (LGTs) with cold atoms in opti-
cal lattices [5–12]. LGTs play a prominent role in both
particle and condensed matter physics: in the standard
model, the interaction between constituents of matter are
mediated by gauge bosons [21–24], and in frustrated mag-
netism, quantum spin liquids are suitably described in
the language of gauge theories [14, 25, 26]. The key fea-
ture of a LGT is the presence of local (gauge) symmetries.
The generators Gax of these local gauge transformations,
with x denoting lattice sites and a a color index, commute
with the lattice Hamiltonian, [H0,G

a
x] = 0 for all x, a, and

thus provide local conservation laws. They can be inter-
preted in analogy to Gauss’s law from electrodynamics,
as they constrain the dynamics of the system to a physical
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FIG. 1. Dissipative protection of gauge invariance in im-
plementations of a lattice gauge theory (LGT). (a) The dy-
namics H0 happens within the physically relevant subspace
HP , defined by Gax∣ψ⟩ = 0, but gauge-variant perturbations
H1 may drive the system into the unphysical subspace HQ
(where Gax∣ψ⟩ ≠ 0). (b) LGTs consist of fermions ψx liv-
ing on sites, coupled to gauge fields Ux,x+1 living on links.
The dynamics can be constrained to the physical subspace by
coupling independent noise sources linearly to each genera-
tor. The multi-site structure of the generators implies that
the noise has to be correlated quasi-locally in space.

subspace HP given by the constraints Gax∣ψ⟩ = 0 [27]. In
high-energy physics, gauge symmetries are from funda-
mental considerations exact, but in quantum simulations
these symmetries will normally be approximate on some
level in the microscopic model. Thus, the microscopic
Hamiltonian will be of the form Hmicro = H0 +H1, with
H0 ∼ J the desired gauge-invariant part, and H1 ∼ λ
a perturbation, which drives the system dynamics out-
side of the gauge-invariant subspace HP , see Fig. 1(a).
A central challenge of quantum simulating LGTs is to
introduce mechanisms that suppress these errors.

Gauge constraints via classical noise. A common strat-
egy to restrict the dynamics to a certain subspace is by
adding an energy penalty to the microscopic Hamiltonian:
Hmicro =H0+H1+HU , with HU ∼ U ≫ λ. In this case, to
order λ2/U , manifolds with different eigenvalues of HU

become decoupled. In the context of LGTs, one can use
HU = U ∑x,a(G

a
x)

2 to impose the Gauss law constraints
[5, 7, 9, 14, 28, 29]. Since in a LGT the generators Gax are
complicated expressions of the matter and gauge fields –
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especially in non-Abelian models – adding an interaction
term involving the square of these poses a formidable
challenge [30]. In contrast, we pursue here the strategy
of enforcing the constraints Gax∣ψ⟩ = 0 by adding classical
noise terms [31, 32] to the microscopic Hamiltonian

Hmicro(t) =H0 +H1 +
√

2κ∑
x,a

ξax(t)G
a
x , (1)

which are linear in Gax and involve independent white-
noise processes ξax(t) with ⟪ξax(t)ξ

b
y(t

′)⟫ = δxyδabδ(t− t
′).

Each realization of the noise will give rise to an evolu-
tion of the system described by a stochastic state vector
∣ψ(t)⟩. Averaging over the noise fluctuations leads to the
density operator ρ = ⟪∣ψ(t)⟩ ⟨ψ(t)∣⟫, obeying the master
equation (see supplemental material [33])

ρ̇ = −iHeffρ + iρH
†
eff + 2κ∑

x,a

GaxρG
a
x , (2)

with non-Hermitian Hamiltonian Heff ,

Heff =H0 +H1 − iκ∑
x,a

(Gax)
2 .

The effective Hamiltonian Heff contains a damping term
involving the square of the generators, introduced by
the noisy single-particle terms in Hamiltonian (1). For
κ/λ ≫ 1, this term constrains the evolution to HP . In
fact, this scale separation of a large rate vs. a small en-
ergy scale provides the dissipative analogue of the en-
ergetic protection described above, which relies on the
separation of two energy scales. In the present case, the
protection term arises from a linear coupling of the gen-
erators to a classical noise source, which – in contrast to
an energy penalty HU – does not require complicated,
non-local two-body interactions.

To demonstrate the dissipative protection explicitly,
we integrate out the dynamics of the gauge-variant space
HQ, defined by Gax∣ψ⟩ ≠ 0, to leading order in λ/κ. De-
noting by P the projector on HP , we obtain the following
master equation for the gauge-invariant part of the den-
sity operator ρPP = PρP

ρ̇PP = −iH̃eff ρPP + iρPP H̃
†
eff ,

with effective non-Hermitian Hamiltonian

H̃eff ≈ P(H0 +H1)P − iPH1Q
1

κ∑x,a(G
a
x)

2
QH1P , (3)

where Q = 1 − P [33]. Starting from an initial state
∣ψ0⟩ ∈ HP , the evolution under this Hamiltonian is re-
stricted to HP , but reduces the norm of the state vector,
signifying the transfer of population to the gauge-variant
subspace HQ. This population transfer sets a timescale
t ≲ κ/λ2 below which the dissipative protection of local
quantities is effective. Therefore, in the strong-noise limit
considered in this work, gauge invariance is protected for
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FIG. 2. (a) System dynamics of a U(1) LGT in the ideal case
(H0, top) and under the effect of undesired single particle tun-
neling (H1, bottom); (b) on-site Hilbert spaces. (c-f) Dissipa-
tive protection of quench dynamics in a U(1) QLM with Ns =
4 sites connected by Nl = 3 links (open boundary conditions).
(c) Population of gauge-invariant subspace. (d,f) Average vi-
olation of gauge constraint, quantified by g2

= ∑xG
2
x/Ns.

(e) Average electric field E = ∑xEx,x+1/Nl. In panels (c-
e), blue curves indicate the ideal dynamics. Red curves show
the detrimental influence of gauge-variant fermion tunneling
(λ/J = 0.25). The arrows show how increasing κ restores the
ideal dynamics (green curves; κ/J = 1,2.5,5,10,20,40,80).
Panel (f) shows the scaling with κ of ⟨g2

⟩ at a fixed time; the
black line is a guide to the eye indicating a scaling ∝ 1/κ.
All results are obtained from the full master equation with
Hamiltonian H0 +H1 (see text), starting from the eigenstate
of H0 for m→∞.

times long compared to the time scales at which errors
accumulate without the engineered noise, t ∼ 1/λ.

This suppression of transitions by fast classical fluctu-
ations is related to motional narrowing [34, 35], and to
dynamical decoupling techniques [36] such as bang-bang
control [16, 37], which suppress unwanted couplings to
an environment, e.g., in a quantum information context.
More specifically, our scheme can be seen as a classical
analogue of the quantum Zeno effect [17, 38], which has
been discussed in the context of quantum control [18–20],
but also of quantum many-body systems [39–42]. In the
standard quantum Zeno effect, the required dissipation
originates from an interaction of the system with quan-
tum fluctuations of the bath or frequent measurements,
while here the dissipation is simulated by classical fluc-
tuations of the perturbation field.

Dissipative protection in Abelian LGTs. As a first illus-
trative and conceptually simple example, we demonstrate
protection of gauge invariance in a one-dimensional U(1)
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lattice model, the Schwinger model, whose Hamiltonian
takes the form [43]

H0 =∑
x

[J(ψ†
xUx,x+1ψx+1+h.c.)+m(−1)xψ†

xψx+
g̃2

2
E2
x,x+1].

(4)
Here, ψx are (staggered) fermionic matter fields defined
on the vertices of the lattice, Ux,x+1 are the gauge fields
defined on the bonds between x and x+1 (see Fig. 1(b)),
and Ex,x+1 is the corresponding electric field, satisfy-
ing [Ex,x+1,Ux,x+1] = Ux,x+1 [21–24]. The potential term
∼m corresponds to a mass term for the fermionic fields,
whose alternating sign stems from the use of ‘staggered
fermions’ [25]; J and g̃ are the tunneling and gauge-
coupling coefficients, respectively. The generators of the
U(1) gauge transformations for this model are given by
Gx = ψ

†
xψx −Ex,x+1 +Ex−1,x + [(−1)x − 1]/2. The corre-

sponding Gauss law Gx∣ψ⟩ = 0 is the lattice equivalent of
the one of continuum quantum electrodynamics. In the
Wilson formulation of LGTs [25, 44], Ux,x+1 are complex
phase variables, but for our purposes the quantum link
model (QLM) formalism [43, 45–48] is more convenient,
where the link variables are represented by spin degrees of
freedom, i.e., Ux,x+1 ≡ S

+

x,x+1,Ex,x+1 ≡ S
z
x,x+1. We choose

here a representation using spin-1/2 degrees of freedom,
which corresponds to a 1D version of the Schwinger
model with a finite electric flux running through the sys-
tem, also known as finite θ-angle [5, 43]. Despite its
semplicity, this model displays various interesting fea-
tures related to gauge theories, such as confinement and
string-breaking phenomena [5, 43].

The system dynamics between two sites as induced
by Eq. (4) is sketched in Fig. 2(a-b). On the left-hand
side, a typical gauge-invariant state ∣ϕ⟩ is illustrated,
where the Gauss law is satisfied at both vertices. Un-
der the action of the correlated tunneling contained in
H0, (ψ†

x+1S
−

x,x+1ψx + h.c.), the fermion tunnels from x

to x + 1, and the center spin S⃗x,x+1 flips, preserving
gauge invariance in the final state ∣ϕ′⟩. Processes of
this kind describe the creation of a particle-antiparticle
pair accompanied by an excitation of the gauge field. In
typical implementations, additional gauge-variant imper-
fections appear, such as single-fermion tunneling H1 =

λ∑x(ψ
†
x+1ψx + h.c.). Once such processes are allowed,

the system dynamics involves states of the form ∣ϕ′′⟩,
where the condition Gx∣ϕ

′′⟩ = 0 is not satisfied for all x,
thus leading to leakage into HQ. Imperfections of this
kind correspond to a creation of a particle-antiparticle
pair without any effect on the gauge fields, destroying
gauge invariance.

To illustrate the dissipative protection in this model,
we study quantum-quench dynamics as illustrated in
Fig. 2(c-f), where we prepare the system in the ground
state of m = ∞ and quench to m = 0 at time t = 0. The
system evolves under H0 given by Eq. (4) plus a gauge-
variant fermion hopping H1 [49]. For λ ≠ 0, gauge invari-
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FIG. 3. U(2) LGT. (a) Basic dynamics of Eq. (5). The
matter/gauge-field coupling corresponds to a simultaneous
color-conserving tunneling of one fermion at site x to the link
x,x + 1 (red) and a rishon at x,x + 1 to the site x + 1 (blue,
dashed). Matter and rishon sites are denoted by squares and
circles, respectively; the blocks x and x + 1 are indicated
by continuous and dashed contours. (b) An example for a
gauge-variant process: correlated tunneling similar to panel
(a), but accompanied by a change of color. (c) Numerical
analysis of two building blocks, evolving under H0 plus vari-
ous error terms (calculations for the full master equation (2);
for details see [33]). Red line: κ = 0, green dashed lines:
κ/J = 5,10,20,40,80,160 (increasing along the arrow).

ance is clearly violated and the evolution of observables
deviates from the ideal case (red curves in panels (c-e)).
Increasing the strength κ of the dissipation (green curves)
gradually restores the ideal dynamics (blue curves). The
expected scaling ∝ 1/κ of the protection mechanism is
confirmed in panel (f). While this example illustrates
that the dissipative protection works in principle, we now
apply the same mechanism to a more complicated non-
Abelian LGT, where enforcing gauge invariance via noise
may prove a considerable advantage in the design of an
atomic quantum simulator.

Dissipative protection in non-Abelian LGTs. We now
illustrate the dissipative protection of gauge invariance
for a non-Abelian LGT, namely a U(2) QLM that may
be realistically realized in cold-atom experiments (see be-
low). The presence of color (gauge) degrees of freedom
allows to investigate in this simplified model physical
phenomena related to general non-Abelian gauge the-
ories like QCD, such as chiral symmetry breaking and
confinement, and its phase diagram may support exotic
condensate phases [9]. Its Hamiltonian, which belongs
to a class of more general QLMs including U(N) and
SU(N) symmetries, reads H0 = HJ + Hm [50], where
Hm =m∑x(−1)xψα†

x ψαx describes staggered fermions and
HJ is the interaction between matter and gauge field

HJ = J∑
x

ψα†
x U

αβ
x,x+1ψ

β
x+1+h.c. ≡ J∑

x

ψα†
x rαx l

β†
x+1ψ

β
x+1+h.c.

(5)
Here, α,β = 1,2 represents the U(2) color degree of free-
dom (repeated indices are contracted). As before, the
fermionic matter fields ψαx live on the vertices of a lat-
tice, while for non-Abelian gauge fields it is convenient
to represent link variables by rishon fermionic fields lαx
and rαx living on the links to the left and right of a given

site, Uαβx,x+1 ≡ rαx l
β†
x+1 [43, 48] (see Fig. 3(a)). The U(2)
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gauge symmetry is split into a U(1) part, with generator

Gx = ψ
α†
x ψαx −(l

α†
x+1l

α
x+1−r

α†
x rαx )/2+(l

α†
x l

α
x−r

α†
x−1r

α
x−1)/2−1 ,

and a SU(2) part, with generators

Gax = ψ
α†
x σaαβψ

β
x + r

α†
x σaαβr

β
x + l

α†
x σ

a
αβl

β
x , a = 1,2,3.

The Gax commute with all Gx and satisfy [Gax,G
b
y] =

2iδxyεabcG
c
x, where εabc is the Levi–Civita tensor and σa

are Pauli matrices.
The basic system dynamics described by HJ is illus-

trated in Fig. 3(a): it corresponds to a simultaneous
hopping of two particles, namely ψx to rx and simul-
taneously lx+1 to ψx+1. The color of both particles is
preserved during the process ([H0,G

a
x] = 0). In a typ-

ical microscopic implementation, one may obtain addi-

tional, undesired color-changing terms of the form H
(1)
1 =

λ∑x(ψ
2†
x+1l

1
x+1 r

1†
x ψ

2
x + h.c.), as illustrated in Fig. 3(b).

These do not commute with all generators, and therefore
violate gauge invariance. To estimate the effect of terms
such as this one, we analyzed the exact time evolution for
two building blocks of the U(2) model. We included vari-

ous realistic errors similar to H
(1)
1 that are specific for the

cold-atom implementation described in [33], comprising a
large class of generic errors. As Fig. 3(c) shows, without
protection the mean value of the sum of all generators,
g2 = ∑x(G

2
x+∑a(G

a
x)

2)/Ns, quickly acquires large values,
indicating the loss of gauge-invariance (red line). How-
ever, under the noise protection generated by Eq. (1),
gauge invariance may be retained on the time scale of sev-
eral tunneling events (green dashed lines). This example
demonstrates that the proposed protection mechanism
works also for more complicated non-Abelian models in-
cluding several non-commuting generators.

Optical-lattice implementation. In ultracold-atom im-
plementations where the color index is represented by
different internal atomic states, the standard strategy to
suppress gauge-variant terms via quadratic energy penal-
ties U(Gax)

2 amounts to engineering numerous local and
non-local interactions with fine-tuned coefficients. From
this regard, our dissipative approach is advantageous,
since the preservation of gauge invariance requires driving
the system with terms that are only linear in the gener-
ators. In the ultracold-atoms setting, the on-site single-
particle noise terms ξax(t)G

a
x can be realized by coupling

internal atomic states to laser fields with suitable ampli-
tude or phase noise, where noisy AC-Stark shifts and Ra-
man processes allow to impose the constraints on Gx and
G3
x as well as G1,2

x (see [33]). Using high-resolution ob-
jectives [51–54], it is possible to engineer an independent
noise source for each generator, as required by Eq. (1).
However, in the common case where the dominant gauge-
variant perturbations couple only nearest neighbors, one
can simplify the experimental setup by using a noise pat-
tern that is repeated periodically. In this way, one can

enforce local gauge invariance by using global addressing
together with a superlattice structure [33].

The last ingredient to quantum simulate the SU(2)
LGT is then a natural realization of H0 that does not
interfere with the dissipative protection and thus does
not lead to undesired heating of the system by the noise.
In [33], we illustrate how models with U(N) interac-
tions (in particular focusing on the conceptually sim-
pler U(2) case) can be engineered in spinor gases, where
spin-changing collisions combined with state-dependent
optical potentials provide a natural realization of the
two-body interaction terms constituting HJ . Ideas along
these lines for Abelian theories have also been discussed
in Ref. [12].

The scheme outlined above could also be combined
with energetic protection in cases where, e.g., the interac-
tions only protect an Abelian symmetry, while the more
challenging non-Abelian contributions are imposed via
noise. This would facilitate the realization of previous
proposals [9], extending their regime of applicability and
providing additional means to improve the accuracy of
gauge invariance in microscopic realizations.

Scaling and Imperfections. In contrast to quantum-
computing purposes, we are interested here in many-
body properties, such as the expectation value of low-
order correlations and order parameters [55]. This en-
sures, in general, better scalability properties: while the
leakage out of the P subspace is expected to increase with
the system size, order parameters that quantify gauge
invariance, such as g2, are not severely affected by the
system size itself. While checking these expectations for
sufficiently large system sizes with LGTs is outside of
computational capabilities, we have tested these scalings
in the context of a simplified model where local conser-
vation laws are imposed in the same dissipative manner.
The results are described in Ref. [33] and clearly support
these claims.

To further address the feasibility of our proposal, we
have performed a numerical analysis of typical error
sources in realistic setups, such as particle loss and im-
perfect noise addressing. In particular, we found that
the effects of the latter commonly scale as ε2κ for short
timescales, where ε is the strength of the imperfections,
and not as εκ as naively expected. This is due to the
particular characteristics of the most common address-
ing errors, which do not directly affect the gauge invari-
ant subspace (see [33] for details).

Conclusions and Outlook. We have shown how classi-
cal noise can serve as a resource to engineer constrained
Hamiltonian dynamics in quantum simulators, and in
particular how Abelian and non-Abelian gauge invari-
ance can be protected in atomic lattice implementations.
The dissipative scheme has advantages with respect to
the more conventional energy punishment, as coupling to
generators is linear, local, and introduced by a physical
resource which is independent of the engineered Hamil-
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tonian dynamics. For gauge-variant perturbations that
do not couple distant sites, the noise protection can be
realized by global beams in a superlattice configuration.
The mechanism is universal, as it can be extended to any
symmetry and dimensionality, and can be applied to dif-
ferent microscopic systems beyond cold atom gases, such
as superconducting qubits and trapped ions [28, 29].
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J. J. Garćıa-Ripoll, J. I. Cirac, G. Rempe, and S. Dürr,
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Supplemental Material to

Constrained dynamics via the Zeno effect in quantum simulation:
Implementing non-Abelian lattice gauge theories with cold atoms

In this supplemental material, we show how classical noise leads to an effective evolution within
a gauge-invariant subspace, suppressing gauge-variant errors. We also present a possible im-
plementation of a non-Abelian lattice gauge theory that does not interfere with the engineered
noise, relying on spin-changing scattering processes between two fermionic species in a spin-
dependent optical lattice. Moreover, we show on a simplified model that local observables are
protected independently of system size.

NOISE PROTECTION IN THE MASTER EQUATION FORMULATION

Here, we present the derivation of the effective master equation described by Eq. (3) of the main text. This provides
an intuitive explanation of the non-Hermitian part of the effective Hamiltonian Heff in terms of a loss of population
to the gauge-variant subspace.

Elimination of classical noise variables

We start from the Hamiltonian coupled to classical Gaussian white noise variables, Eq. (1) in the main text. The
associated time evolution of the system density matrix is governed by the master equation, [1, 2]

ρ̇ = L0ρ +∑
x,a

ξax(t)L
a
xρ, (S1)

L0ρ = −i[H,ρ], L
a
xρ = −i

√
2κ[Gax, ρ]. (S2)

Here, the total Hamiltonian is given as H =H0 +H1 with H0(H1) the gauge invariant (gauge variant) pieces as in the
main text. We interpret Eq. (S1) as a Stratonovich stochastic differential equation (SDE) dρ = L0dt +∑x,a dW

a
xL

a
xρ,

where the dW a
x are independent Wiener increments [3]. This equation can be converted to an Ito SDE, which then

allows us to average over the classical noise in a straightforward manner. As a result of this procedure, we obtain the
following master equation for the noise-averaged density operator ⟪ρ⟫ :

⟪ρ̇⟫ = L0⟪ρ⟫ +
1
2∑
x,a

L
a
xL

a
x⟪ρ⟫ = −i[H,⟪ρ⟫] + κ∑

x,a

(2Gax⟪ρ⟫G
a
x − (Gax)

2
⟪ρ⟫ − ⟪ρ⟫(Gax)

2
) . (S3)

This is the result quoted in Eq. (2) of the main text, where we dropped the angular brackets for notational simplicity.
Note that κ can be much larger than the system energy scales entering H0,H1, respectively.

Projected Master Equation

We are interested in the detrimental situation where the scales in the total Hamiltonian H = H0 + H1, H0 ∼ J
and H1 ∼ λ, are of the same order, J ≈ λ. On the other hand, the scale of the dissipative terms ∼ κ is assumed to
obey κ ≫ λ. In this regime, we can adiabatically eliminate the fast dynamics generated by the dissipative part of
the evolution. Note that, crucially, the desired gauge-invariant Hamiltonian H0 and the gauge-variant perturbation

http://dx.doi.org/doi:10.1038/nature09827
http://dx.doi.org/doi:10.1038/nature09827
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H1 can involve comparable energy scales; the protection mechanism builds only on the noise level κ being the largest
scale in the problem. We introduce projectors P and Q = 1−P, where P projects on the gauge invariant subspace HP
of the Hilbert space, as in the main text. The operators read in these projections (we replace ⟪ρ⟫ → ρ for notational
simplicity),

ρ = (
ρPP ρPQ
ρQP ρQQ

) , H = (
HPP HPQ
HQP HQQ

) , Gax = (Gax)
†
= (

0 0
0 Gax

) , (S4)

where ρPP = PρP etc. In particular, the Hermitian gauge generators act nontrivially only in the gauge-variant
subspace. Adiabatically eliminating the coherences ρPQ, we find the evolution in the physical subspace

∂tρPP ≈ −i[HPP , ρPP] −HPQ(κ∑
x,a

GaxG
a
x)

−1
QQ

HQPρPP − ρPPHPQ(κ∑
x,a

GaxG
a
x)

−1
QQ

HQP , (S5)

which is the master equation for the effective Hamiltonian given in Eq. (3) of the main text (note for comparison with
the text HPQ = PHQ = PH1Q and analogous for HQP ; H0 has vanishing matrix elements in the above projection).
This equation does not have Lindblad form and therefore may seem to violate the conservation of probability. To see
that this is in fact not the case, we have to study ∂ttrρ = ∂ttrρPP +∂ttrρQQ, where ∂tρQQ = −i(HQPρPQ−ρQPHPQ)+
κ∑x,a[2G

a
xρQQG

a
x − {GaxG

a
x, ρQQ}] in the above decomposition. There is an explicit cancellation between the terms,

which separately do not preserve the norm. The net effect of the second and third terms in (S5), therefore, is a loss
of probability to be in the gauge-invariant subspace.

SPIN-CHANGING COLLISIONS AND LOCAL NOISE OPERATIONS FOR OPTICAL LATTICE
IMPLEMENTATIONS

In this section, we explain how to implement the two crucial ingredients for a quantum simulation of a U(2) lattice
gauge theory, (i) a way to generate the dynamics H0 that is robust against the added noise, and (ii) a possibility to
couple the noise to the symmetry generators.

Correlated hopping from spin-changing collisions

In the rishon representation as used in Eq. (5) of the main text, the correlated hopping term HJ is a product of
four field operators. In a gas of ultracold atoms, such products appear naturally in the form of atom–atom scattering
processes, providing us with an elegant possibility of realizing H0 via spin-changing collisions.

Scattering Hamiltonian

In second quantization, two-body collisions between atoms are described by the Hamiltonian

Hint =
1

2
∑

α,β,γ,δ
∫ d3rd3r′Ô†

γ(r)Ô
†
δ(r

′
)V̂ γ,δα,β (r, r

′
)Ôβ(r

′
)Ôα(r) . (S6)

Here, the Ôα denote (fermionic) field operators and the greek indices α ≡ {sα,mα} summarize internal states mα

as well as a species index sα. At low temperatures, we can express the interaction matrix elements as a contact
interaction V̂ γ,δα,β (r, r

′) = V γ,δα,β δ(r − r′), which gives

Hint =
1

2
∑

α,β,γ,δ
∫ d3rÔ†

γ(r)Ô
†
δ(r)V

γ,δ
α,β Ôβ(r)Ôα(r) . (S7)

The interaction obeys the Pauli exclusion principle, it conserves angular momentum, mδ =mα+mβ−mγ , and it cannot
change the species, sα = sδ and sβ = sγ . Moreover, for fermions, the interaction matrix elements are anti-symmetric

V γ,δβ,α = V δ,γα,β = −V
γ,δ
α,β etc.

The V
m′1,m

′

2
m1,m2 (where we suppressed the species index) are not all independent, but can be expressed by just a few

parameters VF , where F denotes the total spin of the two-particle eigenstates, with associated magnetic quantum
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trapped
internal 
states

trapped
species color 1 color 2

(b)
links sites

(a)

FIG. S1. Implementation of the non-Abelian model. (a) The U(2) model sketched on the top can be realized by the arrangement
of the spin-dependent optical lattice given at the bottom. Φ and Ψ are two fermionic atom species with internal states
m = − 3

2
,− 1

2
, 1

2
, 3

2
, trapped as indicated. (b) Mapping of internal states to colors.

number MF . For atoms with individual spins F1,2, one has [4]

V
m′1,m

′

2
m1,m2 =∑

F

⟨F1,m
′

1, F2,m
′

2∣F,MF ⟩ ⟨F,MF ∣F1,m1, F2,m2⟩VF , (S8)

where the ⟨F1,m1, F2,m2∣F,MF ⟩ are Clebsch–Gordan coefficients. For homonuclear scattering, symmetry require-
ments restrict the total spin to F = 0,2, . . . , F1 + F2 − 2, F1 + F2, whereas for heteronuclear scattering one has
F = 0,1, . . . , F1 + F2 − 1, F1 + F2.

Expansion in Wannier functions of the optical lattice

The main idea to pass from the scattering Hamiltonian (S7) to HJ is to associate a spatial dependence to certain
scattering processes. This can be achieved via a spin-dependent optical lattice. Since in that case different spin
states occupy different lattice wells, certain spin-changing collisions are necessarily accompanied by hopping processes
(similar to the Abelian implementation proposed in [5]). As a concrete example, we consider two fermionic species,
denoted by s = Ψ,Φ, each with four internal degrees of freedom m = − 3

2
,− 1

2
, 1

2
, 3

2
(for simplicity, we assume that these

are the sublevels of a F1,2 = 3/2 hyperfine manifold). We denote the associated field operators by ÔΦ,mα(r) ≡ Φmα(r)

and ÔΨ,mα(r) ≡ Ψmα(r). The atoms are loaded in the species-dependent optical lattice sketched in Fig. S1(a). Every
second well will represent a site x, and can only be populated by a single species in an alternating fashion; e.g., Φ for
x even and Ψ for x odd. Further, the sites trap only two internal states, say, m = −1/2,3/2. The links ⟨x,x + 1⟩ are
represented by the remaining wells. They can be populated by both species but only by the remaining two internal
states (m = −3/2,1/2). Spin-dependent optical lattices (although in simpler configurations) are routinely produced
in experiment [6–9]. To illustrate the main idea how to obtain HJ from spin-changing collisions, we consider in the
following first an idealized case. Afterwards, we show that in more realistical situations various imperfections appear.
These, however, can be sufficiently suppressed by the engineered noise.

In a sufficiently deep optical lattice, we can as usual expand the field operators in terms of Wannier functions,

Ôα(r) = ∑
i∈Aα

Ôi,αwi(r) , (S9)

where Ôi,α annihilates a fermion in state α at well i, with associated Wannier function wi(r). The sum runs over the
set of wells Aα that are accessible to atoms in state α. In the following, odd wells become associated to sites x of the
quantum link model by (i + 1)/2 = x, and even lattice wells denote the corresponding links ⟨x,x + 1⟩. To achieve the
desired correlated hoppings, we choose a spin-dependent lattice where Aα = {x ∣x even} if sα = Φ and mα = −1/2,3/2,
Aα = {x ∣xodd} if sα = Ψ and mα = −1/2,3/2, and Aα = {⟨x,x + 1⟩} if mα = −3/2,1/2. For simplicity, we assume that
wi(r) depends only on whether the well denotes a link or a site, but not on species or spin state.

In this Wannier expansion (using, without loss of generality, real Wannier functions), the collision Hamiltonian



9

(a)

(b)

(c)

{
{

1

2

FIG. S2. Microscopic process generating the correlated hopping HJ ; (a,b) real-space and (c) spin-space representation. (a) The
correlated hopping corresponds to a fermion of one color (red) jumping to an adjacent rishon site with a simultaneous hopping
of a rishon (sketched here for a different color, blue) to the next site. (b) Occupied Wannier functions before (top) and after
the hopping (bottom) are shaded. The correlated hopping is generated by a spin-changing collision taking place in the region
where all four Wannier functions overlap. (c) The collision changes the internal states of a fermion of species Φ and one of Ψ,
which has to be accompanied by a hopping process due to the spin dependence of the optical lattice (as sketched in Fig. S1(a)).

becomes

Hint =
1

2
∑

α,β,γ,δ

∑
i∈Aα

∑
j∈Aβ

∑
k∈Aγ

∑
`∈Aδ

V γ,δα,β ∫ d3r wi(r)wj(r)wk(r)w`(r)Ô
†
k,γÔ

†
`,δÔj,βÔi,α . (S10)

Already for moderately deep lattices, due to the exponential decay of Wannier functions, we can neglect terms
involving wells that are not nearest neighbors or constituted by the triples x−1, ⟨x − 1, x⟩ , x (we assume that the wells
associated to the links ⟨x,x + 1⟩ are much deeper than wells associated to the sites x, so that the overlap of triples
⟨x − 1, x⟩ , x, ⟨x,x + 1⟩ can be neglected).

Due to the spin-dependence of the optical lattice, collision terms including the three wells x − 1, ⟨x − 1, x⟩ , x are
necessarily spin-changing (see Fig. S1(a)). If, for the moment, we assume that all corresponding scattering rates are
equal, these collision terms yield the Hamiltonian

H ′

int/J = ∑
x even

∑
σ,σ′= 3

2 ,−
1
2

(Φσ †
x Φσ−1

x,x+1Ψσ′−1 †
x,x+1Ψσ′

x+1 + h.c.) + ∑
xodd

Φ↔ Ψ (S11)

+ ∑
x even

[Φ
1
2 †
x,x+1Φ

−
1
2

x Ψ
−

1
2 †

x+1 Ψ
1
2

x,x+1 + ∑
σ= 3

2 ,−
1
2

(Φσ †
x Φσ−1

x,x+1Ψ
−

1
2 †

x+1 Ψ
1
2

x,x+1 +Φ
1
2 †
x,x+1Φ

−
1
2

x Ψσ−1 †
x,x+1Ψσ

x+1) + h.c.] + ∑
xodd

Φ↔ Ψ ,

where J ≡ Jγ,δα,β = V
γ,δ
α,β ∫ d3r wx(r)w

2
x,x+1(r)wx+1(r), with sα = sδ = Φ and sβ = sγ = Ψ.

The first line of Eq. (S11) describes simultaneous tunneling of one particle from a site x + 1 to a link ⟨x,x + 1⟩ and
of a second particle from the link to the neighboring site x. This gives exactly the desired correlated tunneling terms
HJ if we use the mapping

for even x ∶

Φ3/2,−1/2
x Ð→ ψ1,2

x , Φ
1/2,−3/2
x,x+1 Ð→ r1,2

x , Φ
1/2,−3/2
x−1,x Ð→ l1,2x , Ψ

1/2,−3/2
x,x+1 Ð→ l1,2x+1 , Ψ

1/2,−3/2
x−1,x Ð→ r1,2

x−1 , (S12a)

for odd x ∶

Ψ3/2,−1/2
x Ð→ ψ1,2

x , Ψ
1/2,−3/2
x,x+1 Ð→ r1,2

x , Ψ
1/2,−3/2
x−1,x Ð→ l1,2x , Φ

1/2,−3/2
x,x+1 Ð→ l1,2x+1 , Φ

1/2,−3/2
x−1,x Ð→ r1,2

x−1 . (S12b)

In the quantum link model, we interpret the operators ψ1,2
x as fermions on sites x, and r1,2

x and l1,2x as the associated
left and right rishons. All of these appear in two colors, labeled 1 and 2. Their translation back to the physical internal
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states can be found in Fig. S1(b). Via this mapping, the first line of Eq. (S11), gives rise to the desired dynamics

HJ =J∑
x

[ψ2†
x−1r

2
x−1 l

1†
x ψ

1
x + ψ

1†
x−1r

1
x−1 l

1†
x ψ

1
x + ψ

2†
x−1r

2
x−1 l

2†
x ψ

2
x + ψ

1†
x−1r

1
x−1 l

2†
x ψ

2
x] + h.c. (S13a)

=J∑
x
∑

c,d=1,2

ψc†x−1r
c
x−1l

d†
x ψ

d
x + h.c. (S13b)

The associated process is explained in Fig. S2.
Besides the desired terms, the interaction Hamiltonian (S10) leads to a series of undesired terms, which can reach

energy scales comparable to the desired ones. For example, the second line of Eq. (S11) contains color-changing
processes that are gauge-variant perturbations. Following the mapping (S12), these can be written as

H
(1)
1 = ψ2†

x l
1
xr

1†
x−1ψ

2
x−1 + ∑

c=1,2

(ψ2†
x l

1
xψ

c†
x−1r

c
x−1 + l

c†
x ψ

c
xr

1†
x−1ψ

2
x−1) + h.c. . (S14)

Another perturbation appears when we relax the idealized assumptions leading to Eq. (S11). Without unrealistic fine

tuning, the scattering elements Jγ,δα,β will not be all equal because of differences in the Clebsch–Gordan coefficients for
different spin states. One can capture this effect by including the error term

H
(2)
1 =∑

x
∑

c,d=1,2

∆Jcd ψ
c†
x−1r

c
x−1l

d†
x ψ

d
x + h.c. . (S15)

In the formulation of this error term, we exploited symmetries of the microscopic scattering interaction to reduce the
number of independent scattering matrix elements to just two, namely J12 = J21 and J11 = J22. These determine the
strength of the desired correlated hopping, J ≡ (J11 + J12)/2, and of the error term ∆Jcd ≡ Jcd − J . Other error terms
appear due to scattering processes that do not involve all three wells of a building block, such as on-site density–density
interactions. All of these terms are listed in Table I, along with exemplary values for their strength, which are used
in the numerics (see below). Besides the error terms appearing due to scattering processes, as listed in Table I, gauge
variance could be broken by single-particle tunneling. In the above geometry, however, the Wannier functions of the
rishon wells are strongly localized, so that rishon tunneling can be neglected. Additionally, the sites are occupied by
two species in an alternating pattern, precluding nearest-neighbor tunneling between sites x and x + 1. Therefore,
single-particle tunneling is strongly suppressed compared to the desired dynamics and other error sources.

Numerical simulation of a small system

To illustrate the dissipative protection scheme for the case of the U(2) quantum link model, we have performed
exact numerical simulations of a small system consisting of two building blocks with periodic boundary conditions.
The results are displayed in Fig. 3(b) of the main text and were obtained by integrating the master equation (2) of the
main text, with the Hamiltonian containing all terms listed in Table I. The gauge-invariant initial state was chosen
to be

∣ψ0⟩ =
1

√
2
(l1†

1 ψ
2†
1 − l2†

1 ψ
1†

1 )
1

√
2
(l1†

2 ψ
2†
2 − l2†

2 ψ
1†

2 ) ∣0⟩ (S16)

and has exactly one rishon per link. If the gauge-variant terms are suppressed by dissipation, then the single occupa-
tion of links is approximately conserved by the dynamics, which has the advantage of making rishon density–density
interactions irrelevant (allowing to neglect the barred-out terms in Table I). The choice of one rishon per link corre-
sponds to choosing a particular representation of U(2), although other possibilities (like, e.g., two rishons per link)
are also allowed. In general, a one-rishon-per-link representation is possible for all U(N) QLMs (but not in the SU(N)
case) [10, 11]. As can be seen from Fig. 3(b) of the main text, gauge invariance is violated for vanishing dissipation
(κ = 0), and restored for increasing κ/J , thus confirming the versatility of the dissipative protection scheme also for
the non-Abelian U(2) quantum link model.

Realization of noise constraints

Now, we briefly describe how the noise sources required by Eq. (1) of the main text can be added to the optical-
lattice setup outlined in the previous section. In the following, we first describe the noise protection on individual
building blocks and then discuss how the protection for the entire system can be constructed from these.
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process species mα,mβ ; mγ ,mδ Wannier used value

overlap [J]

J ∑c,d=1,2 ψ
c†
x−1r

c
x−1l

d†
x ψ

d
x + h.c. J = (J11 + J12)/2 1

J11 ∑c=1,2 ψ
c†
x−1r

c
x−1l

c†
x ψ

c
x + h.c. ΦΨ 3

2
, 1

2
; 1

2
, 3

2
I0 2.03

J12 ∑c=1,2 ψ
c†
x−1r

c
x−1l

c̄†
x ψ

c̄
x + h.c. ΦΨ − 1

2
, 1

2
; − 3

2
, 3

2
I0 −0.03

∑c=1,2 (ψ2†
x l

1
xψ

c†
x−1r

c
x−1 + l

c†
x ψ

c
xr

1†
x−1ψ

2
x−1) + h.c. ΦΨ 1

2
,− 3

2
; − 1

2
,− 1

2
I0 0.05

ψ2†
x l

1
xr

1†
x−1ψ

2
x−1 + h.c. ΦΨ 1

2
,− 1

2
; − 1

2
, 1

2
I0 1.97

ψ2†
x r

2
xr

1†
x ψ

1
x + ψ

2†
x l

2
xl

1†
x ψ

1
x + h.c. ΦΦ ,ΨΨ 3

2
,− 3

2
; 1

2
,− 1

2
I1 2 × 0.32 , 2 × 0.3

n1
xn

2
x ΦΦ ,ΨΨ 3

2
,− 1

2
; 3

2
,− 1

2
I2 2 × 0.46 , 2 × 0.37

n1
r,xn

2
r,x + n

1
l,xn

2
l,x ΦΦ ,ΨΨ 1

2
,− 3

2
; 1

2
,− 3

2
I3 ((((

((((2 × 0.55 , 2 × 0.44

n1
r,xn

2
l,x+1 + n

2
r,xn

1
l,x+1 ΦΨ − 3

2
, 1

2
; − 3

2
, 1

2
I3 ��4.21

n1
r,xn

1
l,x+1 ΦΨ 1

2
, 1

2
; 1

2
, 1

2
I3 ���64.77

n2
r,xn

2
l,x+1 ΦΨ − 3

2
,− 3

2
; − 3

2
,− 3

2
I3 ���66.54

∑c=1,2 n
c
x(n

c
r,x + n

c
l,x) ΦΦ ,ΨΨ 3

2
, 1

2
; 3

2
, 1

2
I1 2 × 0.09 , 2 × 0.07

∑c=1,2 n
c
x(n

c̄
r,x + n

c̄
l,x) ΦΦ ,ΨΨ 3

2
,− 3

2
; 3

2
,− 3

2
I1 2 × 0.42 , 2 × 0.37

∑c=1,2 n
c
x(n

c
r,x−1 + n

c
l,x+1) ΦΨ 3

2
, 1

2
; 3

2
, 1

2
I1 0.92

n1
x(n

2
r,x−1 + n

2
l,x+1) ΦΨ 3

2
,− 3

2
; 3

2
,− 3

2
I1 0.87

n2
x(n

1
r,x−1 + n

1
l,x+1) ΦΨ 1

2
,− 1

2
; 1

2
,− 1

2
I1 1.16

r2†
x r

1
xl

1†
x+1l

2
x+1 + h.c. ΦΨ − 1

2
, 3

2
; 3

2
,− 1

2
I3 ���59.67

ψ2†
x ψ

1
xl

1†
x+1l

2
x+1 + ψ

2†
x ψ

1
xr

1†
x−1r

2
x−1 + h.c. ΦΨ 3

2
,− 3

2
; − 1

2
, 1

2
I1 0.39

ψ1†
x+1l

2
x+1r

2†
x ψ

1
x + h.c. ΦΨ 3

2
,− 3

2
; − 3

2
, 3

2
I0 1.91

TABLE I. Interaction strengths for the scattering processes contained in Hint. For reference, the first row contains the desired
correlated hopping HJ , which is generated by the physical processes in the second and third row. The difference between
J11 and J12 leads to the gauge-variant perturbation given in Eq. (S15). All other scattering processes of Hint constitute
additional error terms. The second column gives the processes in terms of the rishon representation of the U(2) model. Here,
we defined c̄ = (c mod 2) + 1, as well as ncx = ψc†x ψ

c
x, ncr,x = rc†x r

c
x, and ncl,x = lc†x l

c
x. The second (third) column contains the

involved species (internal levels). The fourth column gives the Wannier overlaps entering the interaction strengths, which
read I0 = ∫ d3r wx−1,x(r)w

2
x(r)wx,x+1(r), I1 = ∫ d3r w2

x(r)w
2
x,x+1(r), I2 = ∫ d3r w4

x(r), and I3 = ∫ d3r w4
x,x+1(r). Due to the

different extension of Wannier functions (wells associated to links are deeper), their strength will increase from I0 to I3, with
precise values depending on the implementation. In our numerical calculations, we choose the relative weights 1 ∶ 5 ∶ 25 ∶ 30.
Furthermore, we use the scattering lengths (with a0 the Bohr radius) V ΨΦ

F=0 = −220a0, V ΨΦ
F=1 = 280a0, V ΨΦ

F=2 = −250a0, V ΨΦ
F=3 = 300a0,

as well as V ΦΦ
F=0 = 36a0, V ΦΦ

F=2 = 4a0, and V ΦΦ
F=0 = 40a0, V ΦΦ

F=2 = 5a0. The actual values of these parameters will depend on details
of the experimental realization. They are chosen here to give a sensible order-of-magnitude estimate. We adjusted them only
in a rough way in order to keep the most detrimental errors small, but assumed no fine tuning. From these scattering lengths,
together with the Wannier overlaps, one obtains the relative interaction strengths as given in the last column. In cases where
there are two entries, the first one is for even and the second for odd sites (corresponding to intra-species scattering of Φ and Ψ,
respectively). Intra-species scattering processes have a factor of 2 with respect to inter-species collisions due the contribution
from exchange interactions. Finally, in our numerical calculations, we assume a representation where there is only one fermionic
rishon per link, such that the density-density interactions which are barred out do not contribute (see text).
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Before proceeding to the specific example of the U(2) quantum link model, we stress that the Hermitian nature of the
generators leads to the following additional freedom in the implementation: The Lindblad terms appearing in Eq. (2)
of the main text, 2GρG −G2ρ − ρG2 ≡ D[G]ρ are invariant under a constant shift, i.e., D[G + const. × 1]ρ = D[G]ρ.
This means that constants appearing in the generators can be ignored, since their presence is not important for
the dissipative dynamics that we are interested in. In the following, we will exploit this fact several times to show
how protection by classical noise can be achieved for the specific case of the U(2) model. To do so, we consider
color-changing and color-preserving generators separately.

Color-preserving generators Gx and G3
x

The generators Gx and G3
x are linear functions of fermion and rishon number operators and hence preserve the

color degree of freedom. The corresponding terms in the noise Hamiltonian appearing in Eq. (1) of the main text can
be written as

H ′

noise =
√

2κ∑
x

ξ3
x(t)G

3
x +

√
2κ∑

x

ξx(t)G
′

x (S17)

=
√

2κ∑
x

ξ3
x(t) [N

1
x −N

2
x] +

√
2κ∑

x

ξx(t) [ψ
α†
x ψαx −

1

2
(lα†
x+1l

α
x+1 − r

α†
x rαx ) +

1

2
(lα†
x l

α
x − r

α†
x−1r

α
x−1)] . (S18)

Here, N c
x = ncx + n

c
l,x + n

c
r,x is the total number of particles with color c = 1,2 on building block x. In addition, G′

x

denotes Gx without the constant contribution, which we dropped due to its irrelevance as explained above. Noise
terms as in the above Hamiltonian can be realized by noisy AC-Stark shifts introduced by off-resonant lasers with
intensity noise. Note that the generators involve atoms in several wells, which leads to a spatially correlated noise
pattern. This can be achieved easily by using the same noise signal to control the AC-Stark shift on the involved
wells, or even by using the same laser to address those wells.

Color-changing generators G1
x and G2

x

To enforce the conservation laws corresponding to the remaining generators G1
x and G2

x, we have to realize the noise
Hamiltonian

H ′′

noise =
√

2κ∑
x

[ξ1
x(t)G

1
x + ξ

2
x(t)G

2
x] (S19)

=
√

2κ∑
x

[(ξ1
x(t) + iξ

2
x(t))(ψ

2†
x ψ

1
x + l

2†
x l

1
x + r

2†
x r

1
x) + h.c.] . (S20)

In the second line, we have combined the noise sources such that they appear as a single, complex valued noise signal
ξ1 + iξ2. From the above expressions it is evident that the noise has to change the color degree of freedom. Since color
is represented by internal levels in the setup proposed above, it is natural to employ Raman transitions for realizing
such terms. A suitable arrangement of lasers is shown in Fig. S3(a), which is described by the following Hamiltonian:

HRaman =
Ω1Ω∗

3

∆
ψ2†
x ψ

1
x +

Ω2Ω∗

4

∆
l2†
x l

1
x +

Ω2Ω∗

4

∆
r2†
x r

1
x + h.c.

+
∣Ω1∣

2

∆
ψ1†
x ψ

1
x +

∣Ω3∣
2

∆
ψ2†
x ψ

2
x +

∣Ω2∣
2

∆
(r1†
x r

1
x + l

1†
x l

1
x) +

∣Ω4∣
2

∆
(r2†
x r

2
x + l

2†
x l

2
x) . (S21)

Here, the Ωi are the complex Rabi frequencies on the corresponding transitions, and ∆ is the detuning of the transitions
from the excited states. The first line in Eq. (S21) yields exactly the desired terms displayed in Eq. (S20), provided

we have
Ω1Ω∗3

∆
=

Ω2Ω∗4
∆

∝ ξ1
x(t) + iξ

2
x(t). This may be realized by choosing Ω1 = Ω2 = Ω(t), and Ω3 = Ω4 = Ω(t)eiδφ(t),

where Ω(t) is taken to be real for simplicity, such that Eq. (S21) becomes

HRaman =
Ω2(t)

∆
eiδφ(t) [(ψ2†

x ψ
1
x + l

2†
xl l

1
x + r

2†
x r

1
x) + h.c.] +

Ω2(t)

∆
(N1

x +N
2
x) . (S22)

For brevity, we introduce the “intensity” I(t) ≡ Ω2(t)/∆ ≡ I0 + δI(t), with mean I0 and fluctuations of magnitude
δI(t). For small fluctuations δI/I0 ≪ 1 and δφ≪ 1 as illustrated in Fig. S3(b), we can expand I(t)eiδφ ≈ I0 + δI(t) +
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FIG. S3. Raman lasers for imposing the noise constraints associated with G1,2
x . Upper panels: (a) Setup for generating G1

x

and G2
x simultaneously using a single Raman transition. (b) The two required noise processes are realized by uncorrelated

fluctuations of intensity (δI) and phase (δφ). Lower panels: (c) Setup employing one Raman transition per generator. (d) The
two required noise sources are realized as independent intensity fluctuations δIi, i = 1,2, on the two transitions. The grey levels
are not trapped on the respective wells (boxes denote sites, and circles denote links, see Fig. S1).

iI0δφ(t) + . . ., such that Eq. (S22) becomes

HRaman ≈ I0 [G1
x +N

1
x +N

2
x] + [(δI(t) + iI0δφ(t))(ψ

2†
x ψ

1
x + l

2†
x l

1
x + r

2†
x r

1
x) + h.c.] + δI(t) [N1

x +N
2
x] . (S23)

The first bracket only gives rise to trivial dynamics, as long as we are in the gauge-invariant subspace (where G1
x

has eigenvalue 0) and the number of particles N1
x +N

2
x per building block is preserved, as it is the case for a system

evolving according to H ′

int (see Table I). The second bracket is the desired noise Hamiltonian displayed in Eq. (S20),
with ξ1+ iξ2 ∝ δI + iI0δφ, such that intensity and phase fluctuations coupling to G1

x and G2
x, respectively. In addition,

the third bracket is an undesired random stark shift, which is again irrelevant due to the conservation of N1
x +N

2
x .

In order to realize the noise protection scheme outlined in the main text, the two signals δφ(t) and δI(t) need
to represent white noise sources. Since white noise is an idealization, we briefly describe how to choose the noise
processes if we assume that they behave as Ornstein–Uhlenbeck processes [2]

dδI = −iγI δI dt +
√
DI dWI , (S24)

dδφ = −iγφ δφdt +
√
Dφ dWφ , (S25)

with relaxation rates γI,φ, diffusion constants DI,φ, and uncorrelated Wiener increments dWI,φ [3]. The white-noise
limit is reached when the correlation times 1/γI,φ are much shorter than any other time-scale of the problem, in
particular 1/γI,φ ≪ 1/λ, with λ the scale of the gauge-variant error terms. The diffusion constants can then be
adjusted to meet the conditions for the small-noise expansion carried out above, i.e., ⟪δI2⟫ = DI/2γI ≪ I2

0 and
⟪δφ⟫ =Dφ/2γφ ≪ 1, such that the second bracket in Eq. (S23) realizes the desired noise Hamiltonian Eq. (S20).

Averaging over the noise in Eq. (S23) and taking the white-noise limit [3] yields, in accordance with our earlier
developments in Sec. , a master equation with two Lindblad terms:

⟪ρ̇⟫∝ κ1D[G1
x +N

1
x +N

2
x]⟪ρ⟫ + κ2D[G2

x]⟪ρ⟫ . (S26)

where κ1 = DI/2γ
2
I and κ2 = I2

0Dφ/2γ
2
φ. Since Nx = N1

x + N
2
x is a constant of motion under H ′

int, we can finally

replace D[G1
x +Nx] → D[G1

x], as discussed above. The coupling scheme presented here thus gives rise to the desired
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dissipative coupling to the generators G1,2
x . Together with the noisy AC-Stark shifts coupling to Gx and G3

x outlined
in the previous subsection one is thus able to realize the intended dissipative protection of gauge-invariant dynamics.

Finally, we point out an alternative for the realization of H ′′

noise, which is depicted in Fig. S3(c,d): Instead of using
a single Raman transition with amplitude and phase noise, one could realize Eq. (S20) by using a separate Raman
transition for G1

x and G2
x. This scheme works analogously to the one described above, but requires only intensity

noise.

Multiple building blocks

If the gauge-variant perturbations contained in H1 couple sites at arbitrarily long distances, noisy Raman beams
and AC-Stark shifts should address all building blocks in an independent manner, with noise correlations only within
a given building block. Such independent noise sources can be achieved by the high-resolution techniques developed in
recent years, either by shining lasers beams onto the sample through holographic masks [12, 13], or by high-resolution
microscopes such as employed in Refs. [14, 15]. In the latter case, microscopic dipole traps have been demonstrated
that can be controlled independently and that have as little separation as less than 1µm. Such focusing techniques
should be sufficient to shine noise-modulated, focused Raman beams only on the few neighboring sites constituting a
given building block.

However, a drastic simplification will be possible if perturbations do not couple distant lattice wells. This will be the
case in most practical implementations, since typical perturbations contained in H1 act only locally, examples being
nearest-neighbor collisions or tunnelings. Namely, if perturbations couple only neighboring building blocks x and x+1,
one can allow the noise on building block x to be correlated to the one on x+ 2. Exploiting that neighboring building
blocks are occupied by different species, one can then use two interleaved bundels of standing waves, one acting on
species Φ and one on Ψ. The noisy AC-Stark shifts and Raman transitions generated by these global beams are
then uncorrelated between building blocks x and x + 1, and thus suppress the nearest-neighbor perturbations H1. In
cases where longer-range perturbations become relevant, one may need to increase the periodicity after which the noise
modulation is repeated, for example by applying the noise via global beams in a superlattice configuration. Therefore,
since in most implementations perturbations will be of short range, one can circumvent the need for beams that act
only on a few wells by global beam configurations. The numerical calculations in the next section demonstrate how, in
the absence of long-range perturbations, such staggered noise sources can indeed replace the completely independent
ones.

In all cases, the correct coupling to the generators requires strictly speaking a step-like profile of the laser beams,
with support only on a given building block. Realistically, and especially when using standing-wave configurations,
one can expect deviations from this profile. Small deviations, however, prove to be irrelevant. Namely, a finite overlap
of a beam to the next building block may be disregarded, since here a different species resides to which the laser will
not couple. Further, an imperfect weight of the noise sources within a given building block will typically induce errors
only at second order in the imperfection strength (as explained in the following section).

Imperfections

Finally, we assess the influence of imperfections on the dissipative protection scheme. In an experimental realization
of the scenario described in this work, the noise may not couple perfectly to the generators, but to slightly different
operators G̃ax = G

a
x+εf

a
x , with ε≪ 1. Since the resulting dissipative terms in the master equation (S3) read κ(2G̃axρG̃

a
x−

ρ(G̃ax)
2 − (G̃ax)

2ρ), the effects of such addressing errors scale, in general, linearly with ε. However, the most common
case will simply be a perturbed relative weight of the different terms in the generators, such as fx = ψ†

xψx for the
U(1) model considered in the main text. In this case [Gx, fx] = 0 and the effects of imperfect coupling scale as ε2κ,
as long as the system remains in the gauge-invariant subspace. Requiring that ε be small compared to the scale J
imposes ε ≪

√
J/κ (instead of ε ≪ J/κ as one would expect naively). In Fig. S4, we present numerical simulations

of the master equation for the U(1) model including such imperfections. The blue curve in panel (a) displays the
time evolution of the electric field for perfectly engineered noise, while the green curve represents the behavior for
imperfect noise addressing. The quadratic scaling in ε is confirmed by the analysis presented in panel (b).
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FIG. S4. Influence of imperfections on quench dynamics in a U(1) model (same scenario as in Fig. 2 of the main text). (a)
Blue curve: perfectly engineered noise (κ/J = 10, λ/J = 0.25). Solid green curve: imperfect noise addressing with ε = 0.05 (see
text). Dashed green curve: evolution under an onsite decay modeled by Lindblad terms γ0∑x(2ψxρψ

†
x −ψ

†
xψxρ− ρψ

†
xψx) with

γ0/J = 0.05. (b) Scaling of the error due to imperfect noise addressing, estimated by the relative deviation of ⟨E(t′ = t1,2)⟩
from a perfect implementation of dissipative protection (E0). From the fitted straight line (black), we find that the error scales
as ∼ ε2.1.

DISSIPATIVE PROTECTION AND SCALING WITH THE SYSTEM SIZE

In view of possible applications in cold atoms systems, one of the key aspects of dissipative protection of Hilbert
sub-space dynamics is the scaling properties as a function of the system size, or, in general, the number of degrees
of freedom. In this section, we address this issue by means of exact numerics on small systems of different size.
In particular, we look at the scaling of low-order correlations, such as order parameters. Let us briefly recall all
fundamental ingredients of the dissipative protection scenario:

• the total Hilbert space is separated into a gauge-invariant part HP and a gauge-variant part HQ, with associated
projection operators P, Q;

• the Hamiltonian H0 respects the separation between the two spaces, i.e., H0 ≡ PH0P +QH0Q;

• the Hamiltonian H1 mixes the two subspaces, i.e. H1 ≡ QH1P +PH1Q +QH1Q (scale λ);

• a set of classical noise sources ξα(t) protects HP by coupling to a set of Hermitian operators Gα, defined by
Gα∣ψ⟩ = 0 if and only if ∣ψ⟩ ∈HP ;

• an initial state ∣ψ0⟩ ∈HP ;

• an observable M(t) that quantifies how the system leaves HP (this observable has close ties with g2(t) discussed
in the main text in the case of gauge theories).

In the remainder of this section, we will show that the following two statements on the system dynamics hold: i)
On the one hand, the timescale associated with the exponential departure of the system dynamics from the protected
Hilbert subspace as measured by the wave-function overlap ⟨P⟩ (t) is expected to scale linearly with the system size,
that is, the corresponding decay time would scale as τP ≃ κ/(Nλ2). The reason for this is that the number of finite
matrix elements connecting the two subspaces (HP ,HQ) scales (in general) extensively with the system size.

ii) On the other hand, low-order correlations, and in particular order parameters, are not expected to follow
this scaling. On the contrary, in the regime of protected dynamics, t≪ κ/λ2, one expects that low-order correlation
functions are not dramatically affected by H1, since the latter only induces local changes on the system density matrix,
while preserving global properties. The corresponding decay time for observables is then τob = κ/λ

2. This insensitivity
to external perturbations (or imperfections) is just the reason why we care about ”phases” in a condensed-matter
phase diagram in the first place.

Model: Dissipative protection of a ferromagnet state

The above qualitative observations require in general quantitative techniques to be benchmarked. However, perform-
ing unbiased numerical simulations of the LGTs presented in the main text is very challenging because of constraints
in the system sizes achievable due to both the structure of the gauge theory, and the complexity of a full master
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equation treatment. Therefore, we consider a simplified scenario in which the scaling of the protection mechanism is
expected to behave similarly as for the LGTs we are interested in. In particular, we study the dynamics of a circular
chain consisting of N spin-1/2 particles under dissipative protection of a ferromagnetic state. This way, we have
dimHP = 1 and dimHQ ≃ 2N , such that the ratio of subspace dimensions is far less favourable than for the LGT
models presented in the main text. To be more specific, the ingredients for the model are as follows:

• as the protected space, we make the extreme choice of choosing a single state, namely the ↓-ferromagnet:

∣F ⟩ =
N

∏
j=1

⊗∣ ↓⟩j , HP = {∣F ⟩}. (S27)

This state will also serve as the initial condition for the quantum dynamics, and defines a relevant order parameter
to be preserved, M(t) = ∑j⟨s

z
j ⟩t/N , where M(0) = −0.5;

• all other states in the spin chain define the subspace HQ;

• as the Hamiltonian H0 that preserves the initial state we choose a general Ising-interaction:

H0 = h∑
i

szi + Jz ∑
<i,j>

szi s
z
j ; (S28)

• H1 can have many possible forms; we choose

H1 = ∆∑
i

sxi + J ∑
<i,j>

sxi s
x
j , (S29)

such that the coherent part H0 +H1 of the model cannot be reduced to single-particle dynamics;

• regarding the dissipative protection of the initial state, we choose two different noise configurations, which are
in close analogy to the LGTs presented in the main text:

1. a pair of noise sources keeping the magnetisation on the even/odd sub lattices fixed:

Hnoise =
√
κξeven(t) ∑

i even

szi +
√
κξodd(t) ∑

iodd

szi , (S30)

which corresponds to two jump operators Ceven/odd = ∑i even/odd s
z
i

2. a set of N noise sources:

Hnoise =
√
κ∑

i

ξi(t)s
z
i , (S31)

which corresponds to N jump operators Ci = s
z
i

The various effects of the dissipative and Hamiltonian dynamics are illustrated qualitatively in Fig. S5: While the
noise sources pin the local magnetization in the down state (left panel), the Hamiltonian terms in H1 try to flip spins
and thereby destroy the ferromagnetic order (right panel).

In Figs. S6, S7 and S8 we present results obtained for up to N = 10 spins by numerical solution of the master
equation as formulated in Eqs. S1-S3, with the role of the Gax played by the Ci or Ceven/odd. We have investigated
various parameter regimes in terms of both noise and energy scales, however, for the sake of concision, we only present
results for h = 0.5,∆ = 1.5 and Jz = J = 1.0 (J also provides the energy scale reference in the figures). Note that
Figs. S6 and S7 show results for N noise sources, while Fig. S8 concerns both noise configurations (a complete
overview will be presented elsewhere [16]). Notice that it is important to have all energy scales in H1 comparable or
larger than the ones in H0 in order to rule out a possible energetic protection.

Numerical Results

Population of the protected subspace

As a starting point, we benchmark our prediction i) about the population in the protected space, which for the
present model is nothing but the overlap with the only state in HP , that is:

P (t) = ⟨P⟩(t), P = ∣F ⟩⟨F ∣. (S32)
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FIG. S5. Cartoon of the spin model’s microscopic dynamics. Left side: a ferromagnetic state ∣F ⟩ is dissipatively protected by a
set of noise sources ξj(t) which pin the local magnetic field. Right panel: the system dynamics induced by H1 drives the system
out of the protected subspace HP by flipping spins on either single sites (due to ∆ ≠ 0, upper cartoon) or on nearest-neighbor
(due to interactions in the x-spin component, lower cartoon).

FIG. S6. Population in the protected subspace after an interaction quench, N sources. Left panel: fixed κ, various N (indices
in the legend). Middle panel: zoom-in on the left panel for short timescales. Right panel: fixed N , various κ (indices in the
legend). The line at τ ′ ∝ λ2

/κ represents an indicative timescale for fidelity decay at κ = 60. In all panels, points represent
the numerical results; In the first two panels, dashed lines indicate linear fits: the linear coefficient obtained out of the fit is
indicated in the legend as a0.

Fig. S6 presents typical results for the scaling of this figure-of-merit: In the right panel, we plot the scaling of P (t) as
a function of time for different protection strengths κ. In the first and second panel, we present typical results in the
protected regime, κ = 60 ≫ 1.5 = λ = max[∆, J], as a function of the system size N . P (t) deteriorates with the system
size, and moreover, as evidenced in the second panel, the short-time dynamics is characterised by a linear decay with
timescale τ ∝ 1/N . All results confirm our expectations from i), indicating that for this simple model, extracting a
proper large-N limit from limited size samples is feasible.

Many-body observables

We now turn to point ii) to address the behaviour of low-order correlation functions during the dissipatively
protected dynamics. An overview of the behavior of the ferromagnetic order parameter M(t) is presented in Fig. S7.
The first panel shows the scaling of M(t) as a function of time for different protection strengths: as expected, the
behaviour is very similar to the one reported in the main text for both Abelian and non-Abelian gauge theories. For
comparison, the second panel describes the unprotected case: there, magnetic order is lost at all system sizes on a
short timescale. The third panel shows the magnetisation scaling in the protected case, κ = 40. Here, all curves for
different system sizes practically overlap – appreciable differences appearing only far out of the protected regime,
defined by t≪ κ/λ2.

A more quantitative analysis of the finite-size scaling of M for different timescales and protections is provided in
Fig. S8. There, we plot the scaling of M(t) as a function of 1/N in order to check the efficiency of the protection
scheme in the thermodynamic limit. For very short timescales tJ = 0.4, the magnetisation is almost independent of
the system size, and its scaling is very well described by a linear scaling with finite and large magnetisation in the
thermodynamic limit. The unprotected case seems also to be almost system size independent.

Moving to longer timescales, the protected cases still scale as expected, namely, there is no appreciable dependence
on the system size: the extrapolated value of the order parameter in the thermodynamic limit differs from the
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FIG. S7. Magnetization scaling after an interaction quench, N sources. Left panel: fixed N = 10, various κ. Middle and right
panels: magnetisation scaling in the unprotected (middle) and protected regime (right) for different system sizes. In the first
panel, the dashed line at τ ′ ∝ λ2

/κ represent an indicative timescale for fidelity decay for κ = 60.

FIG. S8. Magnetization scaling after an interaction quench as a function of the inverse system size, for either unprotected
case (green squares), N-noise protection (blue triangles) and 2-noise protection (red circles). From left to right: snapshots at
different times tJ = 0.4,3.6,8.6. Dashed lines are linear fits as a function of 1/N : in the corresponding legend, the residue and
the extrapolated thermodynamic value are indicated (Res and M[0], respectively). In all cases, the protected dynamics leads
to an order parameter which is basically independent on the system size, and shows very weak dependence even on long-time
scales (right panel). The unprotected dynamics strongly depends on the system size.

finite-size one only at the percent level or lower. On the other hand, the unprotected case shows strong system-size
oscillations, as expected from the picture given in Fig. S7. Another interesting feature is that the two-source scheme
(red circles) performs almost as good as the N -source case (blue triangles), both in terms of absolute values than in
terms of scaling properties.

In summary, all results point toward an order-parameter decay-time independent of the system size, as argued
in ii), for both kind of protection schemes. This indicates that the protection scheme devised does not suffer from
N -scaling properties, even in the worst case scenario of a very small protected subspace investigated here. As in
the LGT case the Hilbert space has always a better scaling compared to the spin model discussed here, we expect
system-size independence to be very robust for the LGTs as well.
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[4] J. S. Krauser, J. Heinze, N. Fläschner, S. Götze, O. Jürgensen, D.-S. Lühmann, C. Becker, and K. Sengstock, Nat. Phys.

8, 813 (2012).
[5] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. A 88, 023617 (2013).
[6] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, Nature 425, 937 (2003).
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