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Abstract

In this Thesis, we analyze three variational and geometric problems,
that extend classical Euclidean issues of the calculus of variations to
more general classes of spaces. The results we outline are based on the
articles [Ved21; MV21] and on a forthcoming joint work with Nicolussi
Golo and Serra Cassano. In the first place, in Chapter 1 we provide a
general introduction to metric measure spaces and some of their prop-
erties.

In Chapter 2 we extend the classical Talenti’s comparison theorem
for elliptic equations to the setting of RCD(K,N) spaces: in addition the
the generalization of Talenti’s inequality, we will prove that the result
is rigid, in the sense that equality forces the space to have a symmetric
structure, and stable.

Chapter 3 is devoted to the study of the Bernstein problem for in-
trinsic graphs in the first Heisenberg group H1: we will show that under
mild assumptions on the regularity any stationary and stable solution
to the minimal surface equation needs to be intrinsically affine.

Finally, in Chapter 4 we study the dimension and structure of the
singular set for p-harmonic maps taking values in a Riemannian mani-
fold.
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Introduction

A very widespread approach in modern research in the Calculus of Variations is to reframe
classical Euclidean questions on broader classes of spaces, rather than just Euclidean ones; and
in particular, to adapt such problems to specific families of metric measure spaces, such as spaces
with a non-vanishing curvature, or Sub-Riemannian spaces. The intention behind this effort is
to generalize classical results to new environments, in order to better understand their structures
and geometrical properties.

Following this trend, in this thesis we look at three different variational and geometric prob-
lems which are fairly well established in the Euclidean setting: namely, the Talenti problem
for solutions to elliptic equations, the Bernstein problem for area-minimizing graphs, and the
regularity of minimizers of the p-energy. However, each of these problems is here explored in
a different setting: respectively, on RCD(K,N) spaces, on the first Heisenberg group, and for
maps taking values on closed Riemannian manifolds.

Simplifying a bit, on a Euclidean domain Ω ⊂ Rn one would study the minimizers of the
following functionals:

Jf (u) .=
∫

Ω

(
|∇u|2 − fu

)
dx

A(u) .=
∫

Ω

√
1 + |∇u|2 dx

Ep(u) .=
∫

Ω
|∇u|p dx,

defined for any u : Ω → R belonging to a suitable Sobolev space (depending on the relevant
boundary conditions), with f ∈ L2(Ω) in the definition of Jf and p ∈ (1,∞) in the definition of
Ep. A wide range of very well-known techniques can be applied to the analysis of such functionals
– as a starting point, once an admissible class of functions is suitably selected, one can retrieve
existence of minimizers through the direct method of calculus of variations, and uniqueness
through convexity. Furthermore, to each functional F of the form above one can associate a
Euler-Lagrange equation that is satisfied (at least weakly) by minimizers, by expanding the
identity d

dεF(u+ εφ)
∣∣∣
ε=0

= 0 for any sufficiently regular test function φ.
Among the many issues connected to the minimization problems above, the Euclidean back-

ground of this thesis lies in the three aforementioned problems:
1. Talenti’s comparison problem for minimizers of Jf in W 1,2(Ω), which concerns the inter-

action between elliptic boundary value problems and symmetrization techniques;

2. Bernstein’s problem for local minimizers of the area functional A: explicitly, the problem
of understanding whether local minimizers defined on the whole Rn are forced to be affine
functions;
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3. Regularity of the minima of Ep in W 1,p(Ω) (with fixed boundary conditions, in Rn).

In the following paragraphs, we present a more detailed overview to such problems, as well as
an introduction to the non-Euclidean framework where each of them is approached.

New settings: metric measure spaces

In Chapter 1, we introduce the notion of metric measure space (X, d,m), that is a space endowed
with a distance that makes the topology complete and separable, and with a measure finite on
bounded sets.

Under this quite general assumption, thanks to the work of several authors [HK95; Haj96;
Che99; HK00; Sha00; AGS14a] it is possible to develop a consistent version of the first order
calculus: indeed, a Lipschitz function u from X to R can be equipped at any point with a
notion of slope |∇u| which takes the place of the norm of the gradient; one can then define the
Sobolev space H1,p(X, d,m) as the set of functions which can be approximated in Lp by Lipschitz
functions with slopes uniformly bounded in Lp.

Within this framework, we select the classes of spaces of our interest: namely, RCD(K,N)
spaces, having Ricci curvature bounded from below by K and dimension bounded from above
by N in a synthetic sense, see Section 1.3; and Carnot-Carathéodory spaces – and in particular
the Heisenberg groups Hn –, seen here as subsets of Rn equipped with a family X1, . . . , Xm of
smooth vector fields that induce a metric structure, see Section 1.4.

RCD(K,N) spaces and Talenti’s Theorem

Symmetrizations and Talenti’s problem in Rn When dealing with variational problems on
subsets of Rn, symmetrizing domains and functions often proves useful, as it permits to reduce
the problem to the study of spherically symmetric objects.

For domains Ω ⊂ Rn, this means considering the unique ball Ω⋆ centered at the origin
and having the same Lebesgue measure as Ω; for non-negative functions f : Ω → R, the
symmetrized f⋆ is the unique function on Ω which is radial, decreasing in the radial direction,
and equimeasurable with f : superlevels of f⋆ have the same measure of the corresponding
superlevels of f .

In more precise terms, if we denote by µf (t) .= L n({f > t}) the distribution function of
f , then the one-dimensional decreasing rearrangement f ♯ is the pseudo-inverse of µf , and the
Schwarz-symmetrization f⋆ is obtained by f⋆(x) .= f ♯(ωn|x|n), where ωn is the Lebesgue measure
of the unit ball.

The class of problems which is in literature named after Giorgio Talenti concerns the inter-
play between symmetrization techniques and elliptic boundary value problems. The strategy of
exploiting symmetrizations to tackle comparison problems related to elliptic partial differential
equations carries numerous consequences. At the time when Talenti proved the theorem we
outline below, it was already well-known that they could be used to prove that the principal
frequency of vibration of an elastic membrane is minimal when the membrane is disk-shaped
(see the work of Faber and Krahn). Thanks to the work of several authors (Szegő [Sze30], Pólya
and Weinstein [PW50] and Payne [Pay62] among the others), the same strategy proves that
the electric condenser (of the form Ω0 \ Ω1, with Ωi bounded domains) with minimal capacity
is the spherical annulus, and that the cylindrical beam with maximal torsional rigidity has a
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disk-shaped section. Among the other consequences, by the use of Talenti’s Theorem one can
easily extend the latter result to hollow cables: a cable maximizes the torsional rigidity if its
section and the hole are concentric circles.

Going into more detail, Talenti’s problem asks to compare minimizers of the above-defined
functional Jf among maps in W 1,2

0 (Ω), with minimizers of the symmetrized functional

(1) J ⋆
f⋆(v) .=

∫
Ω⋆

(
|∇v|2 − f⋆v

)
dx

among maps v ∈ W 1,2
0 (Ω⋆), where f ∈ L2(Ω). Equivalently, looking at the associated Euler-

Lagrange equations, one would compare the outcomes of the following procedures:

(a) Solve a Poisson problem of the type

(2)
{

−∆u = f in Ω ⊂ Rn

u = 0 on ∂Ω
,

with f ∈ L2(Ω); then consider the Schwarz symmetrization u⋆ of u.

(b) Solve the symmetrized Poisson problem

(3)
{

−∆v = f⋆ in Ω⋆ ⊂ Rn

v = 0 on ∂Ω⋆
.

The result of Talenti [Tal76], which builds on previous work of Weinberger [Wei62] and Bandle
[Ban76]) and has been since then revisited by several authors (see [Bae19; Lio79; Kes06]) states
that the inequality u⋆ ≤ v holds in Ω⋆, and if equality holds then Ω was already a ball.

The crucial (heuristic) steps in the proof of such result are the following:

• The symmetrized problem −∆v = f⋆ can be actually reduced to the solution of a ordinary
differential equation, leveraging the spherical symmetry of f⋆: in particular, the solution
v is explicit (clearly depending on f⋆).

• Looking at how u⋆ is defined starting from u♯, it is clear that the relevant estimate to prove
is u♯ ≤ v♯. Up to a (pseudo-)inversion, this reduces to estimating µu(t) with an explicit
quantity depending on f⋆.

• The key comparison at the core of this result is that the measure of the superlevels {|u| > t}
can be estimated by the measure of the ball having the same perimeter of {|u| > t}, by
means of the isoperimetric inequality; in particular

(4) µu(t) = L n({|u| > t}) ≤ Cn Per({|u| > t})
n

n−1 .

• The final tool needed to complete the argument relies on the coarea formula to estimate
the perimeter above with the derivative of t 7→

∫
{|u|>t}|∇u|. Notice that nowhere in the

previous points it was used that u solves an elliptic problem: by suitably choosing a one-
parameter family of test functions in the weak formulation of the problem, we use this
information to estimate d

dt
∫
{|u|>t}|∇u|.

As we will see, up to adapting the tools involved, the same scheme can be fruitfully exploited
on much more general spaces, namely RCD(K,N) spaces with K > 0 and N ∈ (1,∞).



10 Introduction

RCD(K,N) spaces In the setting of smooth Riemannian manifolds, lower bounds on the Ricci
tensor play a paramount role for a wide variety of results, ranging from results in comparison
geometry and isoperimetry (Laplacian bounds for distance functions; Bishop-Gromov volume
comparison; Sobolev and Poincaré-Sobolev inequalities; see [Pet16, Chapter 7]), to analytical
and PDE-related problems (such as the Li-Yau inequality for solutions to the heat equations,
[LY86]).

The introduction of RCD(K,N) metric measure spaces in the study of geometrical problems
stems from the need to extend those results to non-smooth spaces: by Gromov’s Precompactness
Theorem [Gro07, Theorem 5.3], it is known that the class of Riemannian manifolds with Ricci
curvature bounded from below and diameter bounded from above is precompact in the Gromov-
Hausdorff topology; however the limit of a converging sequence may fail to be a smooth manifold.

In the series of articles [CC97; CC00a; CC00b] by Cheeger and Colding, it is shown that
several of the results mentioned above specifically hold for such limit spaces; building on this
observation, in the first of those papers [CC97, Appendix 2] the authors remark the need of
finding a synthetic condition that encodes “Ricci curvature bounded from below”, in the sense
that it does “not depend on the existence of an underlying smooth structure, or indeed, make
any reference to the notion of smoothness”.

The response to such need came from the pioneering work of Lott, Villani [LV09] and Sturm
[Stu06a; Stu06b], which independently introduced the notion of CD(K,N) spaces (forK ∈ R and
N > 1) through optimal transport tools, and in particular by looking at the (distorted) convexity
of a entropy functional along the geodesics in the Wasserstein space. This approach has its roots
in the work of McCann [McC94], Cordero-Erausquin, McCann and Schmuckenschläger [CMS01],
Otto and Villani [OV00], Sturm and Von Renesse [RS05] who proved that such properties hold
in Euclidean and Riemannian settings, and can be used to prove a number of geometrical
inequalities, such as the Brunn-Minkowski and Prékopa-Leindler inequalities.

In this thesis, we will focus on the RCD(K,N) subclass of CD(K,N) metric measure spaces,
with K > 0 and N ∈ (1,∞); the “R” in the name stands for Riemannian, as a further condition is
added in order to single out Riemannian-like spaces and rule out Finsler-like ones. The family of
RCD(K,N) spaces is closed under Gromov-Hausdorff convergence [GMS15]; moreover, many of
the results that hold for smooth manifolds with lower bounds on the Ricci tensor can be extended
to this new setting. Of special interest to our aim is the fact that a Lévy-Gromov inequality
holds [CM17; CM18]: in the case where K > 0, one can identify a family of (normalized) model
spaces (JK,N , deu,mK,N ) with curvature bounded from below by K and dimension bounded from
above by N ; if E ⊂ X is any measurable subset of a (normalized) RCD(K,N) space (X, d,m)
with m(E) = v, then the comparison

(5) PerX(E) ≥ inf
{

PerJK,N
(A)

∣∣∣∣∣ A is a measurable subset of the (K,N)-model space
and mK,N (A) = v

}

holds, where we still denote by Per a suitable notion of perimeter in metric measure spaces
[Mir03].

RCD(K,N) version of Talenti’s theorem If (X, d,m) is a RCD(K,N) space, then a weak
formulation of the problem (2) on a subset Ω and for a L2(Ω,m) map f is available; moreover,
the symmetrization of a set Ω is still available, but now lives in the respective (K,N)-model
space (JK,N , deu,mK,N ). Whenever Ω ⊂ X and f : Ω → R are measurable, one can also retrieve
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the symmetrized function f⋆ as a function from Ω⋆ ⊂ JK,N to [0,∞]. The Talenti problem
thus has a consistent formulation on RCD(K,N) spaces as well: we have enough structure to
consider a weak elliptic problem on (X, d,m), to symmetrize the solution u, and to compare it
with the solution v to the symmetrized problem.

In Chapter 2, and based on the work [MV21], we will show that the inequality u⋆ ≤ v still
holds: going back to the strategy outlined in Rn, we will see that it can be successfully translated
in terms of RCD spaces. Indeed, the solution v on the model space still has an explicit solution,
derived from a new ordinary differential equation; a version of the Coarea formula holds here as
well ([Mir03]); and crucially, the isoperimetric inequality can be replaced by the aforementioned
Lévy-Gromov inequality.

Finally, we will show that the result is rigid: once the equality holds between u⋆ and v (even
at a single point), the space (X, d,m) is forced to have a peculiar structure: namely, it needs
to be a spherical suspension. What’s more, the result is stable as well, in the sense that when
u⋆ and v are close enough (in L2), then the space (X, d,m) is arbitrarily close to a spherical
suspension in the measured Gromov-Hausdorff topology.

The first Heisenberg group and Bernstein’s problem

Bernstein’s problem When Ω ⊂ Rn−1 is an open set with C2 boundary, it can be proved that
the unique classical C2 solution to the minimal surface equation

(6) div ∇f√
1 + |∇f |2

= 0

with fixed boundary conditions minimizes the area functional A(·,Ω) among the functions having
the same boundary conditions ([Giu84, Theorem 13.8]). A natural question which arises in this
context is whether functions f : Rn−1 → R that satisfy the minimal surface equation in the
whole Rn−1 (and are thus area minimizers in any bounded domain) are constrained to be affine
– in other words, the graph of f is a hyperplane of Rn.

In the two dimensional case (i.e., for functions from R2 to R), several affirmative proofs are
available, the first of which was given by the Russian mathematician Sergej Bernstein, after
whom the problem is named [Ber27]. Unluckily, neither Bernstein’s proof, nor the subsequent
proofs given by means of complex analysis tools (see [Hop50; Mic50; Ber51; Nit57]) have a higher
dimension counterpart.

In 1963, a result contained in an article by Fleming in the framework of integral currents
gave a new alternative proof for the 2-dimensional Bernstein Theorem which could potentially
be extended to higher dimensions [Fle62, Lemma 2.2 and Paragraph 5]; moreover, in 1965 De
Giorgi showed that if counterexamples to the Bernstein problem exist in Rn (i.e., functions from
Rn−1 to R), than there must exist at least a minimal cone in Rn−1 [De 65].

By showing that no such minimal cones exist in Rk with k ≤ 7, Simons proved that the
Bernstein conjecture held for functions from Rn−1 to R with n ≤ 8. However, Simons himself
proposed an example of stable cones in R8, which turned out to be minimal thanks to a proof by
Bombieri, De Giorgi and Giusti [BDG69]. In the same paper, Bombieri, De Giorgi and Giusti
provided a counterexample to the Bernstein conjecture for functions from R8 → R, establishing
a complete solution of the problem.
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The Heisenberg group The simplest examples of non-Euclidean Carnot-Carathéodory spaces
(and in particular the simplest non-trivial Carnot groups) are the Heisenberg groups Hn with
n ≥ 1. Among the many equivalent definitions and descriptions available of the Heisenberg
group (see [Ste93] for a complex-analytical approach, [Hal03; Hal13] for the role it plays in
quantum physics), we treat it here as the space R2n+1 endowed with a metric induced by a family
X = {X1, . . . , Xn, Y1, . . . , Yn} of vector fields that satisfy the so-called Hörmander condition. If
we denote by · the group operation

(7) (x,y, t) · (x′,y′, t′) = (x + x′,y + y′, t+ t′ + 1
2
(
⟨x,y′⟩ − ⟨x′,y⟩

)
)

on Hn ≃ R2n+1, then (Hn, ·) is a Lie group and X arises as a left-invariant family with respect
to · that generates the whole Lie algebra of the group.

In this setting, one can consider maps between two complementary and homogeneous sub-
groups W and V of Hn: in that case, the intrinsic graph will be an object lying in the space Hn

and having the structure

(8) GraphH(f) .= {ξ · f(ξ) | ξ ∈ ω}, ω ⊂ W, f : W → V.

In particular, in the first Heisenberg group H1 ≃ R3, we will be interested in graphs of maps
from the vertical plane {(0, y, t) | y, t ∈ R} (which can be thought as R2) to the horizontal line
{(x, 0, 0) | x ∈ R}. By [ASV06], the horizontal perimeter of the subgraph of such maps in an
“intrinsic” cylinder ω ·R is expressed (under mild regularity assumptions) by the area functional

(9) A(f ;ω) .=
∫
ω

√
1 + |∇ff |2 dL 2,

where ∇ff is an appropriately defined intrinsic gradient. Hence, one can formulate an adapted
version of the Bernstein problem for intrinsic graphs of the above type: is it true that any map
that is stationary (or stable) with respect to variations in the area functional has a vertical plane
as a intrinsic graph?

The Bernstein problem in H1 The answer to such question varies considerably based on the
regularity assumed on the map f , and on the variational assumption: i.e., if we ask that the map
is simply stationary (the first variation vanishes, or the minimal surface equation is satisfied),
or stable (non-negative second variations), or perimeter minimizing. In Chapter 3, we look at
the problem under the stability assumption and a regularity which is weaker than Lipschitz
but stronger than Sobolev: in this situation, we will prove that the question has an affirmative
answer.

The problem in H1 has a substantially different nature than in the Euclidean Rn, and in
fact even different from higher dimensional Heisenberg groups. In this case, indeed, the minimal
surface equation takes the form

(10) ∇f

 ∇ff√
1 + (∇ff)2

 = 0,

where ∇f .= ∂y + f∂t is a single vector field. When f is a C2(R2,R) solution to the minimal
surface equation, the authors in [BSV07] showed, by reducing the problem to a double Burgers’
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equation, that R2 is foliated by parabolas of the type

(11) γ(υ, τ) = a(τ)
2 υ2 + b(τ)υ + τ

so that

(12) f(γ(υ, τ), τ) = a(τ)υ + b(τ);

in particular, the intrinsic graph of f is ruled by horizontal lines. If f is also stable, than the
above parabolas have coefficients a and b independent from τ , and the intrinsic graph of f is
thus a vertical plane. Thanks to [GR15, Corollary 5.2], it was then proved that the same result
holds for C1 functions, as a consequence of a more general version of the Bernstein Theorem
(i.e., holding for arbitrary complete oriented stable surfaces of class C1 without singular points,
see [GR15, Theorem 5.1]).

A careful modification of the strategy above, that exploits suitable Lagrangian parametriza-
tions of R2, makes it possible to extend the result from C2 to Lipschitz [NS19] and to an even
weaker condition, which is the purpose of our Chapter 3.

In particular, we will prove the following:

Theorem 0.1. Let f ∈ W 1,1
loc (R2,R) ∩ C0(R2) be such that exp(|∇f |) ∈ Lβloc(R2,R) for some

β ≥ 1. If f is stable, then its intrinsic graph is a vertical plane.

Minimizers of p-harmonic manifold-valued maps

A classical result in the theory of degenerate quasilinear differential equations states that any
minimizer u ∈ W 1,p(Ω,R) of the functional

(13) Ep(u) =
∫

Ω
|∇u|p dLm

with fixed (and regular enough) boundary conditions has locally C1,α regularity (for the sake
of consistency with Chapter 4, Ω is here a subdomain of Rm). This was proved independently
by Ural′ceva [Ura68] and Uhlenbeck [Uhl77]; a simpler proof can be found in [Eva82]. Such
minimizers solve weakly the Euler-Lagrange equation

(14) ∆pu
.= div

(
|∇u|p−2∇u

)
= 0,

and are thus consistently called p-harmonic functions.
In Chapter 4, we will treat the problem of minimizing the functional

(15) u 7→ Ep,N (u) .=
∫

Ω

m∑
i=1

(
N∑
α=1

(
∂uα

∂xi

)2) p
2

dLm

among maps u ∈ W 1,p(Ω,RN ) which take values in a fixed closed Riemannian manifold N . As
one immediately sees, the issue of regularity is here much more delicate: the map x 7→ x

|x| from
the m-dimensional ball to the (m − 1)-dimensional sphere turns out to be a minimizer for the
E2,Sm−1 functional, without even being continuous.

Moreover, one could still look at variations in the target space: this can be done by con-
sidering u + εφ with ε > 0 and with φ a smooth test function, and then projecting back onto
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N : however, being a critical point with respect to this class of variations does not give any
regularity (except on very specific cases, see e.g. [Hél90]), as there are examples of maps with
this property that are everywhere discontinuous [Riv95].

A way of treating this problem is to look at the dimension, the relevant measure and the
geometric structure of the singular set S(u), defined as

(16) S(u) .= {x ∈ Ω | u is not continuous at x}

when u is a minimizer. With this in mind, a series of results were proved in the last decades:

• p = 2: in 1982, Schoen and Uhlenbeck proved through a dimension reduction argument
that any 2-energy minimizing map is C0,α outside of a set of Hausdorff dimension at most
m−3 (see [SU82]). Furthermore, by standard elliptic regularity, the regularity outside the
singular set can be improved to C∞.

• p ∈ (1,∞): in 1987, Schoen and Uhlenbeck’s result was extended to p-harmonic maps
by Hardt and Lin [HL87]. The best regularity one can achieve outside the singular set is
C1,α; so any p-energy minimizing map is C1,α outside of a set of Hausdorff dimension at
most m− ⌊p⌋ − 1. Notice that the case m ≤ p was already completely solved here: in this
case, there are no singular points, and the map is everywhere C1,α. The only case worth
studying is m > p.

• p = 2: later, Cheeger and Naber [CN13b] proved that the singular set of a 2-minimizing
map with energy bounded by Λ satisfies the following estimate:

(17) Lm(Br(S(u)) ∩B′
)

≤ C(m,N ,Λ, ε)r3−ε

for any ε > 0; it is assumed that the dimension of the domain is at least 3. This implies that
the Minkowski dimension of S(u) is at most m− 3, but gives no bound on the Minkowski
content. Here a notion of quantitative stratification of the singular set was introduced, and
the result was obtained through a relatively simple covering of each singular stratum (and
by making explicit the link between singular set and stratification).

• p ∈ (1,∞): in a more recent paper, Naber, Valtorta and Veronelli [NVV19] extended the
estimate (17) to p-minimizing maps: they showed that in this case

(18) Lm(Br(S(u)) ∩B′
)

≤ C(m,N ,Λ, p, ε)r⌊p⌋+1−ε

for any ε > 0. It is assumed that the dimension of the domain is greater than p: we have
already noticed, however, that this is the only interesting case.

• p = 2: finally, Naber and Valtorta [NV17] improved the estimate (17) for 2-minimizing
maps, removing the dependence on the parameter ε: assuming that m > 2, then the
singular set of a 2-minimizing map with energy bounded by Λ satisfies

(19) Lm(Br(S(u)) ∩B′
)

≤ C(m,N ,Λ)r3;

and thus the upper Minkowski content of S(u) is bounded by a constant C. Moreover, in
the same article they showed that S(u) is actually (m − 3)-rectifiable. The main idea to
prove both the Minkowski estimate and rectifiability was to replace the simple covering
argument of [CN13b] with a more refined one, which makes use of a suitable version of
Reifenberg Theorem.
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In Chapter 4 (based on the article [Ved21]), we will extend the technique of Naber and Valtorta
[NV17] to the case of p-energy minimizing maps, and even to p-stationary p-harmonic maps
under some assumptions (i.e., maps that are stationary with respect to internal variations, or
explicitly to one-parameter families of diffeomorphisms in the domain Ω). We will thus prove:

Theorem 0.2. Let u ∈ W 1,p(Ω,N ) be a map with p-energy bounded by Λ. Assume that one of
the following two conditions hold:

(m) either u is minimizing (with N any compact Riemannian manifold with no boundary, see
Assumption 4.1 in Chapter 4);

(s) or N is a homogeneous space with a left-invariant metric, p is not an integer, and u is
p-stationary.

Then there exists a constant CS(m,N ,Λ, p) such that for any r > 0

(20) Lm(Br(S(u)) ∩B1(0)) ≤ CSr
⌊p⌋+1.

In particular, the Minkowski dimension of S(u) is at most m−⌊p⌋−1, and the upper Minkowski
content is bounded by CS .

Furthermore, the singular set S(u) is (m− ⌊p⌋ − 1)-rectifiable.

What is relevant about stationary p-harmonic maps is that a monotonicity formula holds for
a suitably normalized p-energy

(21) r 7→ ϑ(x, r) .= rp−m
∫
Br(x)

|∇u(y)|p dy

for any x (see Theorem 4.32). Moreover, when minimality is added (or additional conditions on
N and p), a classical ε-regularity result holds: there exists a ε0 such that ϑ(x, r) < ε0 implies
that u is C1,α-regular in B r

2
(x) for some α > 0 (see Section 4.3). Finally, we will also make

use of a version of the Reifenberg Theorem introduced by Naber and Valtorta in [NV17] (see
Section 4.5.2).

Other contributions

In this paragraph, derived from the article [PPV21], we summarize a further result obtained
in the field of Multi-marginal Optimal Transportation during the Ph.D. studies, which was not
included in this thesis.

Consider a metric space (X, d), and a m-tuple of Borel probability measures µ1, µ2, ..., µm on
it. Given a cost function c : Xm → R, we call Monge’s multi-marginal optimal transport problem
the minimization problem

(22) minimize
∫
X
c(x1, T2(x1)..., Tm(x1))dµ1(x1)

among (m − 1)-tuples of mappings (T2, ..., Tm) with the constraint that (Ti)♯µ1 = µi, where
the subscript ♯ denotes the push-forward of measures. Depending on the specific ambient space
(X, d) and on the cost function, a first relevant problem is to determine if the minimum is
attained, and in that case if it is unique and has an explicit formulation.
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When m = 2, (22) reduces to the well known classical optimal transport problem of Monge:
we refer the reader to the monographs [Vil03; Vil09; San15] for comprehensive surveys. A
particularly relevant cost function, in this case, is represented by the squared distance c(x1,x2) =
d2(x1,x2). For this cost, when X = Rn, a seminal theorem of Brenier [Bre87; Bre91] asserts that
there exists a unique minimizer to (22). This result has been extended to a much wider class
of geometrical settings, beginning with the work of McCann when X is a Riemannian manifold
[McC01].

In the case of the Heisenberg group Hn endowed with the Carnot-Carathéodory distance dcc
(see Section 1.4.1), the existence and uniqueness of an optimal map when m = 2 was established
by Ambrosio and Rigot in [AR04]. In the same article, a representation of such map is given in
terms of the exponential map of the Lie group Hn, modeled on an analogous representation in
the Euclidean and Riemannian setting.

In the multi-marginal case (i.e., whenm ≥ 3), the natural counterpart of the squared distance
is for many aspects the cost function

(23) c(x1, . . . ,xm) .= inf
y∈X

m∑
i=1

d2(xi,y).

When this cost is considered on the Euclidean Rn, a pioneering article by Gangbo and Świȩch
[GŚ98] showed that there exists a unique solution to the Monge minimization problem. An
analogous result was proved on Riemannian manifolds by Kim and Pass [KP15].

The purpose of the article [PPV21] is to extend, under some additional assumptions, the
existence and uniqueness result to the multimarginal transport problem on (Hn, dcc) with the
cost proposed in Equation (23). The additional assumptions make use of the notion of barycenter
of a m-tuple: we say that y is a barycenter for (x1, . . . ,xm) if it realizes the minimum in the
definition of the cost: explicitly,

(24)
m∑
i=1

d2(xi,y) = inf
z∈Hn

m∑
i=1

d2(xi, z).

Then what we can prove, as a consequence of a more general result, is the following ([PPV21,
Corollary 28]):

Theorem 0.3. Let µ1, . . . , µm be compactly supported, absolutely continuous probability mea-
sures on Hn, and let c be the cost associated to dcc. Assume that the set

(25) {y ∈ Hn | y is a barycenter for (x1, . . . ,xm) with xi ∈ spt(µi)}

has zero µi-measure for all i = 1, . . . ,m. Then there exists a unique (Hn)m−1-valued optimal
map in the Monge problem.

Moreover, the same result holds when replacing the Carnot-Carathéodory distance with the
Gauge distance

(26) dg([ζ, t], [ζ ′, t′]) .= 4
√

|ζ − ζ ′|4 + (t− t′)2

in the definition of the cost (see [PPV21, Remark 30]). More interestingly, when the squared
distance is replaced by the pth power of the distance with p > 2 in Equation (23), the theorem
holds even without the need of the extra assumption on the set of barycenters [PPV21, Paragraph
4.1].
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Chapter 1

Preliminaries

In this preliminary chapter, we recall in the first place some very general facts about metric
measure spaces; then, we particularize the results we need to the specific contexts of RCD(K,N)
spaces and Carnot-Carathéodory spaces. Indeed, many geometrical properties of the spaces we
work on can be shown to descend from the underlying metric-measure structure.

From now on, when we talk about metric measure spaces, we mean triples of the type (X, d,m)
where d : X × X → [0,+∞) is a distance on X and m is a measure on B(X), the Borel σ-algebra
induced by d. More precisely, unless otherwise stated, in this Chapter we will always make (and
keep in the background) the following assumptions:

Assumption 1.1 (Metric measure spaces). (X, d,m) is a metric measure space satisfying:

• (X, d) is a complete and separable metric space;

• m ≥ 0 is a Borel measure, finite on balls. ♢

Somewhat surprisingly, this pretty minimal setting already has enough structure to develop
a theory of Sobolev functions, and consistent tools of differential calculus. There are at least
three different approaches to this problem, which turn out to be (non-trivially) equivalent.
For the purposes of this thesis, the most convenient method to define weak differentiability is
through approximation by Lipschitz functions, which play the role of the smooth functions in
the Euclidean setting.

1.1 General tools on metric measure spaces

First of all, we introduce the tools that are already available once the distance d is defined on X
(that is, we do not make use of the measure m).

Notation 1.2 (Balls). In the whole thesis, when (X, d) is a metric space, x ∈ X and r > 0, we
will use the notation Br(x) – or sometimes B(x, r), when the involved expressions make use of
typographically heavier symbols – to denote the open metric ball of radius r around x:

(1.1) Br(x) = B(x, r) .= {y ∈ X | d(x, y) < r}.
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Moreover, if S ⊂ X, we will instead use the notations Br(S) or B(x, r) to denote the r-fattening
or r-neighborhood of S:

(1.2) Br(S) = B(S, r) .= {y ∈ X | d(S, y) < r},

where as usual d(S, y) .= infx∈S d(x, y). ♢

The first object we introduce is the slope of a real-valued function: for smooth functions on
Rn, it coincides at any point with the norm of the gradient; however, it is much more general,
since it is defined for any function on a metric space (and it is particularly meaningful for locally
Lipschitz functions).

Definition 1.3 (Slope). Let (X, d) be a metric space and u : X → R be a real valued function.
We define the slope of u at the point x ∈ X as

♢(1.3) |∇u|(x) .=

lim supy→x
|u(x)−u(y)|

d(x,y) if x is not isolated
0 otherwise.

The slope functional u 7→ |∇u| is by construction convex:

Lemma 1.4 (Convexity of the slope). Let u, v : X → R and λ ∈ (0, 1). Then

(1.4) |∇(λu+ (1 − λ)v)|(x) ≤ λ|∇u|(x) + (1 − λ)|∇v|(x) for all x ∈ X,

provided both sides are finite.

Proof. This is an immediate consequence of the triangle inequality and the subadditivity of the
limit superior:

|∇(λu+ (1 − λ)v)|(x) ≤ lim sup
y→x

[
λ

|u(x) − u(y)|
d(x, y) + (1 − λ) |v(x) − v(y)|

d(x, y)

]
≤

≤ λ lim sup
y→x

|u(x) − u(y)|
d(x, y) + (1 − λ) lim sup

y→x

|v(x) − v(y)|
d(x, y) ,

(1.5)

which proves the statement.

A second notion which only needs a metric structure to be defined is the notion of geodesic
curve; for the purpose of this thesis, its importance mainly lies in the role it plays in the definition
of RCD spaces (Section 1.3).

Definition 1.5 (Geodesics). We say that a curve γ ∈ C0([0, 1],X) is a constant speed geodesic
if d(γ(s), γ(t)) = |s − t|d(γ(0), γ(1)) for any s, t ∈ [0, 1]. We denote by Geo(X) the family of
constant speed geodesics on X.

Moreover, for any t ∈ [0, 1], the evaluation map et is defined on Geo(X) as

♢(1.6) et(γ) .= γ(t) for any γ ∈ Geo(X).

Metric spaces in which any pair of points admits a geodesic joining them is called a geodesic
space:

Definition 1.6 (Geodesic space). Let (X, d) be a metric space. We say that (X, d) is a geodesic
space if for any pair (x, y) ∈ X there exists at least a constant speed geodesic γ ∈ Geo(X) such
that γ(0) = x, γ(1) = y. ♢
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1.1.1 Sobolev spaces on metric measure spaces

The purpose of this paragraph is to define the class of Sobolev functions in the metric-measure
setting; as already noted, one has many options to tackle this problem (and see [AG16] for an
overview). Here we define the space H1,p through Lp-approximation with Lipschitz functions
(see Remark 1.15 for an alternative approach).

Definition 1.7 (Sobolev space and relaxed slope). Let (X, d,m) be a complete separable metric
measure space, and let p ∈ (1,+∞). We say that f ∈ Lp(X,m) belongs to the Sobolev space
H1,p(X, d,m) if
(1.7)

there exists a sequence of Lipschitz functions {fn}n∈N ⊂ Lipb(X, d) ∩ Lp(X,m) such that

∥fn − f∥Lp(X,m) → 0 and lim sup
n→∞

∫
X

|∇fn|p dm < ∞.

In this case, we say that g ∈ Lp(X,m) belongs to the relaxed slope RS(f) of f if there exists
g̃ ∈ Lp(X,m) and an approximating sequence {fn}n∈N ⊂ Lipb(X, d) ∩ Lp(X,m) such that

1. g̃ ≤ g m-almost everywhere;

2. ∥fn − f∥Lp(X,m) → 0 and |∇fn| ⇀ g̃ weakly in Lp(X,m). ♢

Lemma 1.8 (Characterization of RS(f) through strong approximation). Let f ∈ Lp(X,m). If
g ∈ RS(f), then there exist {g̃n}n∈N, g̃ ∈ Lp(X,m) and {fn}n∈N ⊂ Lipb(X, d) ∩ Lp(X,m) such
that

1. g̃ ≤ g m-almost everywhere;

2. ∥fn − f∥Lp(X,m) → 0 and ∥g̃n − g̃∥Lp(X,m) → 0;

3. |∇fn| ≤ g̃n

Proof. By definition of RS(f) there exists a sequence φn ∈ Lipb(X, d)∩Lp(X,m) which converges
strongly to f and whose slopes converge weakly to a function g̃ ≤ g. By a version of the Mazur’s
Lemma (see [Bre11, Corollary 3.8 and exercise 3.4.1]), there exists a convex combination of
functions in ⋃n∈N{|∇φn|} which converges strongly to g̃: more precisely for any n ∈ N one can
find a subset of indices In ⊂ N ∩ [n,∞) and coefficients {λn,i}i∈In

such that ∑i∈In
λn,i = 1 and

(1.8) g̃n
.=
∑
i∈In

λn,i|∇φi| −→ g̃ strongly in Lp(X,m).

Now it is enough to take

(1.9) fn
.=
∑
i∈In

λn,iφi

so that

(1.10) ∥fn − f∥Lp(X,m) ≤
∑
i∈In

λn,i∥φi − f∥ → 0

as n → ∞, and |∇fn| ≤ g̃n by convexity of the slope.
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The following lemma contains a few properties of the relaxed slope RS(f); in particular, the
existence of a ∥·∥Lp-minimizing element will be fundamental.

Lemma 1.9 (Properties of the relaxed slope). The following properties hold for the relaxed slope:

(i) a map f ∈ Lp(X,m) belongs to H1,p(X, d,m) if and only if the relaxed slope of f is not
empty;

(ii) if f ∈ H1,p(X, d,m), then RS(f) is convex in Lp(X,m);

(iii) if f ∈ H1,p(X, d,m), then RS(f) is (strongly, thus also weakly) closed in Lp(X,m).

(iv) if f ∈ H1,p(X, d,m), then RS(f) admits a unique element of minimal Lp norm.

Proof. Part (i): The first assertion follows by the fact that the condition

(1.11) lim sup
n→∞

∫
X

|∇fn|p dm < ∞

guarantees the existence of a subsequence of {fn}n∈N such that the slopes |∇fn| converge weakly
in Lp(X,m).

Part (ii): The convexity of RS(f) follows by the convexity of the slope (Lemma 1.4): let
g,G ∈ RS(f), with g ≥ g̃, G ≥ G̃, and fn, Fn the respective approximating sequences for f such
that |∇fn| converges weakly to g̃ and |∇Fn| converges weakly to G̃. Let λ ∈ (0, 1). Then the
sequence λfn + (1 − λ)Fn ∈ Lipb(X, d) ∩ Lp(X,m) still converges to f in the strong Lp(X,m)
sense, and by convexity its slope is bounded from above by λ|∇fn|+(1−λ)|∇Fn|. In particular,
up to subsequences, |∇(λfn+(1−λ)Fn)| converges weakly in Lp(X,m) to a function h such that

(1.12) h ≤ λg̃ + (1 − λ)G̃ ≤ λg + (1 − λ)G.

Thus λg + (1 − λ)G ∈ RS(f).
Part (iii): Let {gm}m∈N ⊂ RS(f), and assume that gm → g strongly in Lp as m → ∞. By

Lemma 1.8, we can find {g̃m,n}n∈N, g̃m ∈ Lp(X,m) and {fm,n}n∈N ⊂ Lipb(X, d) ∩ Lp(X,m) such
that

1. g̃m ≤ gm;

2. ∥fm,n − f∥Lp(X,m) → 0 and ∥g̃m,n − g̃m∥Lp(X,m) → 0 as n → ∞ for any m;

3. |∇fm,n| ≤ g̃m,n for any m,n ∈ N.

Through a simple diagonal argument, we can find a selection of indices {nm}m∈N such that both
∥fm,nm − f∥Lp(X,m) and ∥g̃m,nm − g̃m∥Lp(X,m) → 0 as m → ∞. Let Fm

.= fm,nm , G̃m
.= g̃m,nm .

Now

lim sup
m∈N

∥|∇Fm|∥Lp(X,m) ≤ lim sup
m∈N

∥G̃m∥Lp(X,m) =

= lim sup
m∈N

∥g̃m∥Lp(X,m) ≤ lim sup
m∈N

∥gm∥Lp(X,m) = ∥g∥Lp(X,m).
(1.13)

In particular, up to subsequences, |∇Fm| converges weakly to a function g̃ ∈ Lp(X,m) and both
G̃m and g̃m converge weakly to a function γ ∈ Lp(X,m). Exploiting the inequalities g̃m ≤ gm
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and |∇Fm| ≤ G̃m and the convergence of gm to g, we have that g̃ ≤ γ ≤ g m-almost everywhere
(indeed, the set {u ∈ Lp(X,m) | u ≥ 0} is convex and strongly closed, thus it is weakly closed).
Summarizing, we have: g̃ ≤ g m-almost everywhere, Fm → f strongly in Lp and |∇Fm| ⇀ g̃;
this is exactly the weak characterization of the relaxed slope given in Definition 1.7.

Part (iv): the existence and uniqueness of a element of minimal norm is a direct consequence
of the previous points (and the direct method of calculus of variations): if gn ∈ RS(f) is a
sequence such that limn∥gn∥Lp = inf{∥g∥Lp | g ∈ RS(f)}, then up to subsequences it converges
weakly to a map ḡ, which belongs to RS(f) by weak closedness; moreover, by the properties of
weak convergence ∥ḡ∥Lp ≤ lim infn∥gn∥Lp holds. Thus ḡ has minimal norm, and it is the unique
such element by convexity of the set RS(f) and of the norm.

Part (iv) of Lemma 1.9 allows the following definition:

Definition 1.10 (Minimal relaxed slope). Let u ∈ H1,p(X, d,m). We define the minimal p-relaxed
slope |∇u|∗,p ∈ Lp(X,m) as the element of RS(u) with minimal Lp norm. ♢

Proposition 1.11 (Locality properties). Let (X, d,m) be a metric measure space, let p ∈ (1,+∞)
and let f, φ ∈ H1,p(X,m). Then:

(i) |∇f |∗,p = |∇φ|∗,p m-a.e. on the set {f = φ};

(ii) If g1, g2 ∈ RS(f), then also min{g1, g2} ∈ RS(f);

(iii) In particular, |∇f |∗,p is also minimal in the m-a.e. sense:

(1.14) |∇f |∗,p ≤ g m-almost everywhere for any g ∈ RS(f).

Proof. See [AGS14a, Lemma 4.4].

Finally, this procedure allows to define an energy functional which takes the place of the
Dirichlet energy of the smooth setting:

Definition 1.12 (Cheeger energy). Let (X, d,m) be a metric measure space, let p ∈ (1,+∞) and
let f ∈ Lp(X,m). The p-Cheeger energy of f is defined as

(1.15) Chp(f) .= inf
{

lim inf
n→∞

1
p

∫
X

|∇fn|p dm
∣∣∣∣∣ fn ∈ Lip(X) ∩ Lp(X,m)

∥fn − f∥Lp → 0

}
,

where |∇fn|(x) is the slope of fn at the point x. ♢

Remark 1.13 (Cheeger energy, Sobolev spaces and relaxed slope). It is trivial to see that the
following hold:

• A map f ∈ Lp(X,m) belongs to the Sobolev space H1,p(X, d,m) if and only if its Cheeger
energy is finite;

• If f ∈ H1,p(X, d,m), then its Cheeger energy can be characterized as

(1.16) Chp(f) = 1
p

∫
X

|∇f |p∗,p dm,

where |∇f |∗,p is the minimal p-relaxed slope of f . ♢
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Definition 1.14 (H1,p norm). For any map f ∈ H1,p(X, d,m) we define

(1.17) ∥f∥H1,p(X,d,m)
.=
(
∥f∥Lp(X,m) + pChp(f)

) 1
p =

(
∥f∥Lp(X,m) +

∫
X

|∇f |p∗,p dm
) 1

p

.

The space H1,p(X, d,m), endowed with the norm ∥·∥H1,p(X,d,m) has the structure of a Banach
space. ♢

We refer the reader to [HKST15; BB11; Che99; Amb18] for details.

Remark 1.15 (Newtonian spaces). We mention here an alternative definition for Sobolev spaces,
and an equivalence result which is in fact rather deep: one can define N1,p(X, d,m) to be the
space of functions f ∈ Lp(X,m) such that

(1.18)
there exist f̃ ∈ Lp and g ∈ Lp with g ≥ 0 such that

f̃ = f m-a.e. and
∣∣∣f̃(γ1) − f̃(γ0)

∣∣∣ ≤
∫
γ
g dσ for Modp-a.e. curve γ;

we say that a property holds “for Modp-almost every curve” if it fails on a family of curves of zero
p-modulus: i.e., there exists a nonnegative Borel function ϱ ∈ Lp(X,m) such that

∫
γ ϱdm = ∞ for

any curve γ for which the property fails (see [BB11, Proposition 1.37] for this characterization).
Then one can prove what follows:

• Even for functions f ∈ N1,p(X, d,m) one can retrieve an object |∇f |w which plays the role
of the modulus of the gradient, chosen as the g with minimal Lp-norm in Equation (1.18).
Historically, it is called minimal p-weak upper gradient in this context.

• Let (X, d) be a complete separable metric space, and m be a Borel measure satisfying the
condition m(Br(x)) ≤ aebr

2 for any x, r and for some a, b > 0; then N1,p(X, d,m) and
H1,p(X, d,m) actually coincide for all p ∈ (1,∞), and the minimal p-weak upper gradient
(for functions in N1,p) coincides with the minimal p-relaxed slope (defined for functions in
H1,p(X, d,m)). A proof of this very deep equivalence result can be found for example in
[AG16, Sections 2 and 3]; see also [AGS14a; AGS13].

Since the assumptions which guarantee the equivalence will always be satisfied in the following
chapters, from now on we will generally use the more established term minimal weak upper
gradient in place of minimal relaxed slope, and we will adopt the symbol |∇f |w, even when we
will actually be working with the definition of H1,p space. ♢

Remark 1.16. A priori the minimal p-weak upper gradient may depend on p; however in
locally doubling and Poincaré spaces (see Section 1.1.3) it is independent of p by the deep work
of Cheeger [Che99]. Again, in the following chapters we will work under this assumption, thus
we will be allowed to neglect this possible issue. ♢

The Cheeger functional Ch2 is not in general a quadratic form. As we will see in Section 1.3,
when this happens the geometrical properties of the space (X, d,m) sensibly improve. We give
a name to this condition:
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Definition 1.17 (Infinitesimal Hilbertianity). We say that (X, d,m) is infinitesimally Hilbertian
if the Cheeger energy Ch2 defined in (1.15) is a quadratic form on H1,2(X, d,m) (equivalently,
if H1,2(X, d,m) is a Hilbert space). In that case, we still denote by Ch the symmetric bilinear
form associated to Ch = Ch2. ♢

Another class of functions which will be widely used in the sequel – in particular, in the
Dirichlet problem of Chapter 2 – is that of Sobolev space with zero boundary values:

Definition 1.18 (The space H1,p
0 (X, d,m)). Let (X, d,m) be a complete separable metric measure

space, and let Ω ⊂ X be open. We define the space H1,p
0 (Ω, d,m) as the closure of Lipc(Ω, d)

with respect to the norm of H1,p(X, d,m):

♢(1.19) H1,p
0 (Ω, d,m) .= Lipc(Ω, d)H

1,p(X,d,m)
.

As a last definition for this paragraph, we introduce a local notion of Sobolev space, which
relies on the definition given in [AH18, Definition 2.14]. We specialize to the case p = 2, which
is the only one we will use: see Section 2.3.2.

Definition 1.19 (Local Sobolev space). Let (X, d,m) be a metric measure space and let Ω ⊂ X
be an open subset. We say that f ∈ L2(Ω,m) belongs to H1,2(Ω, d,m) if

(a) for any φ ∈ Lipc(X, d) with spt(φ) ⊂ Ω, it holds φf ∈ H1,2(X, d,m) (where H1,2(X, d,m)
is the global Sobolev space defined in Definition 1.7);

(b) |∇f |w ∈ L2(Ω,m). ♢

Notice that the property (a), together with the locality properties of the minimal weak upper
gradient, guarantees that the condition in (b) is well posed (see again [AH18]).

Notation 1.20 (Classical Sobolev spaces). So far, we have presented the notations H1,p(X, d,m),
N1,p(X, d,m), H1,p

0 (Ω, d,m) and H1,2(Ω, d,m) for different classes of Sobolev spaces on metric
measure spaces. If Ω ⊂ Rm is an open subset of a Euclidean space, we keep the notation
W 1,p(Ω,R) for the classical Sobolev space defined through integration by parts:

(1.20) W 1,p(Ω,R) .=

u ∈ Lp(Ω,Lm)

∣∣∣∣∣∣∣∣∣∣
there exists gi ∈ Lp(Ω,Lm) such that∫

Ω
u
∂φ

∂xi
dLm = −

∫
Ω
φgi dLm

for all φ ∈ C∞c (Ω,R) and all i = 1, . . . ,m.


The relation between this space and the spaces of type H1,p defined before is given by the
classical Meyer-Serrin Theorem (see for example [Eva10, Paragraphs 5.3.2 and 5.3.3]), which
states that C∞(Ω,R) ∩W 1,p(Ω,R) is dense in W 1,p(Ω,R); moreover, when Ω = R, the space of
compactly supported C∞ functions is dense in W 1,p(Rm,R).

Moreover, if N ≥ 2, we define the space of multi-valued Sobolev functions W 1,p(Ω,RN ) as

(1.21) W 1,p(Ω,RN ) =
{
u = (u1, . . . , uN ) : Ω → RN

∣∣∣ ui ∈ W 1,p(Ω,R) for all i ∈ {1, . . . , N}
}
,

where W 1,p(Ω,R) is the classical Sobolev space defined in Notation 1.20. This will be used
both in Chapter 3 for Sobolev homeomorphism between domains of RN , and in Chapter 4 for
manifold-valued Sobolev mappings. ♢
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1.1.2 Wasserstein distance on P(X)

The aim of this short paragraph is to give a very basic introduction to the optimal transport
tools needed in the definition of curvature-dimension conditions (Section 1.3); we refer the reader
to the classical references [AGS08; Vil09] for a much more extended treatise.

Notation 1.21 (Probability measures). For any metric space (Y, dY), we denote by P(Y) the
space of Borel probability measures on Y; moreover, we denote by P2(Y) the space of Borel
probability measures with finite second moment, i.e.:

(1.22) P2(Y) .=
{
µ ∈ P(Y)

∣∣∣∣ ∫
X

d2
Y(x, xo) dµ(x) < +∞

}
,

where xo ∈ Y is any fixed point. ♢

Definition 1.22 (Wasserstein distance). The Wasserstein distance W2 on the space P2(X) is
defined as

(1.23) W2(µ0, µ1) .= inf
{∫

X×X
d2(x, y) dγ(x, y)

∣∣∣∣ γ ∈ P(X × X), π(0)
♯ γ = µ0, π

(1)
♯ γ = µ1

}
,

for any µ0, µ1 ∈ P2(X), where π(0) is the projection on the first component, π(1) is the projection
on the second component, and the subscript ♯ indicates the pushforward of the measure. ♢

Remark 1.23. It can be proved that (P2(X),W2) is a metric space [AG13, Theorem 3.2];
moreover, under our assumption of completeness and separability, it is a geodesic space whenever
(X, d) itself is geodesic [AG13, Theorem 3.10]. ♢

Definition 1.24 (Dynamical optimal plans). For any pair of measures µ0, µ1 in P2(X), the set
of dynamical optimal plans are defined as

♢(1.24) OptGeo(µ0, µ1) .=
{
ν ∈ P(Geo(X))

∣∣∣∣∣ (e0, e1)♯ν realizes the minimum
in Equation (1.23)

}
.

1.1.3 Doubling and Poincaré spaces

A fruitful approach to the study of the geometry of metric measure spaces is to look for conditions
that allow to exploit analogies with the smooth setting; and to do so while keeping a high level
of generality at the same time.

After the work of several authors [BB11; HK00; HKM06], it is now well established that
requiring the space to be doubling and Poincaré bears several helpful consequences. Although
they will mostly be kept in the background in the following chapters – and implied by more
restrictive conditions, see Propositions 1.66, 1.67 and 1.85 –, we will need them in several
different points (characterization of pmG convergence in Section 1.1.4, existence of solutions for
uniformly elliptic problems in Chapter 2).

Definition 1.25 (Doubling measures). We say that the metric measure space (X, d,m) is doubling
if there exists a constant Cdb > 0 such that

(1.25) m(B(x, 2r)) ≤ Cdbm(B(x, r))

for all points x ∈ X and all radii r > 0. ♢
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Since we will need it in Remark 1.71, we state here a first consequence of the doubling
property alone (see [BB11, Proposition 3.1] for a proof)

Lemma 1.26. Any complete metric space endowed with a doubling measure is proper ( i.e., all
closed bounded sets are compact).

Proof. Let (X, d,m) be doubling, and let Ω ⊂ X with D
.= diam Ω < ∞, where diam Ω .=

supx,y,∈Ω d(x, y). We will show Ω is totally bounded.
For any ε > 0, the number of disjoint balls of radius ε contained in Ω is bounded by

C(D, ε, Cdb) .= C
⌈log2

D
ε
⌉

db : indeed, let {Bε(xj)}Nj=1 be disjoint balls with Bε(xj) ⊂ Ω; let ȷ̂ be
such that m(Bε(xȷ̂)) = minj=1,...,N m(Bε(xj)). Then applying the doubling property ⌈log2

D
ε ⌉

times we obtain:

m(Bε(xȷ̂)) ≤ 1
N

N∑
j=1

m(Bε(xj)) ≤

≤ 1
N

m(Ω) ≤ 1
N

m(BD(xȷ̂)) ≤ 1
N
C(D, ε, Cdb)m(Bε(xȷ̂)).

(1.26)

As a consequence, if ε > 0, we can build by induction a finite family of balls
{
B ε

2
(xk)

}M
k=1

,
all contained in Ω, such that any y ∈ Ω belongs to some Bε(xk): in particular, Ω is totally
bounded.

If Ω is also closed, by the completeness of the ambient space X it is compact ([Fol99, Theorem
0.25]).

Remark 1.27. An interesting consequence of the doubling property alone is that if (X, d,m) is a
doubling space (with m finite on bounded sets), then the Sobolev space H1,p(X, d,m) is reflexive
and separable for any p ∈ (1,∞), and Lipschitz functions with bounded support are dense in
H1,p(X, d,m). This was proved in [ACD15, Corollary 41 and Proposition 42]. ♢

Definition 1.28 (Poincaré). Let q, p ≥ 1. We say that a metric measure space (X, d,m) supports
a (weak) (q, p)-Poincaré inequality if there exist constants CPI > 0 and λ ≥ 1 such that for any
u integrable on X, any ball B ⊂ X and any upper gradient g of u it holds that

(1.27)
(

−
∫
B

∣∣∣∣u− −
∫
B
u

∣∣∣∣q dm
) 1

q

≤ CPI diam(B)
(

−
∫
λB
gp dm

) 1
p

.

We say that (X, d,m) satisfies a strong Poincaré inequality if the above condition holds with
λ = 1. ♢

Notice that, by the characterization in [BB11, Proposition 4.13], we could equivalently ask
that Equation (1.27) holds for (any measurable u and) any p-weak upper gradient – in particular,
it holds for the minimal weak upper gradient |∇u|w of functions u ∈ H1,p(X, d,m).

We collect in the following proposition some properties that hold for any doubling and
Poincaré space:

Proposition 1.29. Let (X, d,m) be a metric measure space which satisfies the doubling condition
and supports a (1, p)-Poincaré inequality. Then:
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(i) X is connected;

(ii) m has no atoms: m({x}) = 0 for any x ∈ X.

Remark 1.30 (References for the proof). The proofs can be found in [BB11, Chapter 4]: in
particular, (i) is Proposition 4.2 therein, (ii) is Corollary 4.3. ♢

Finally, we state here a corollary to the Poincaré inequality – also known in the smooth
setting with the name of Poincaré inequality – which will be explicitly used in Remark 2.3 in
the context of uniformly elliptic operators on RCD(K,N) spaces.

Proposition 1.31 (Poincaré inequality for H1,p
0 ). Let (X, d,m) be a (complete, separable) metric

measure space which supports a (p, p)-Poincaré inequality. Let Ω ⊂ X be a bounded set such that
m(Ω) < m(X). There exists a constant C0 > 0 such that for any u ∈ H1,p

0 (Ω, d,m) the inequality

(1.28)
∫

Ω
|u|p dm ≤ C0

∫
Ω

|∇u|pw dm

holds. In particular,

(1.29) ∥u∥pH1,p(X,d,m) ≤ C̃0

∫
Ω

|∇u|pw dm for any u ∈ H1,p
0 (Ω, d,m)

for some constant C̃0.

The proposition is proved in [BB11, Corollary 5.54]. Notice that the condition m(Ω) < m(X)
could be replaced by the weaker condition that X \ Ω has positive p-capacity; however, we will
not need this notion in the future.

1.1.4 Convergence of spaces

In order to perform limiting arguments on the class of metric measure space, one can endow
such class (or suitable subclasses) with an appropriate topology. In the following scheme, we do
so; again, we always implicitly refer to complete, separable metric spaces.

1. Hausdorff distance: Let (X, d) be a metric space, and let A,B ⊂ X. The Hausdorff distance
between A and B is defined as

(1.30) dH(A,B) .= inf{ε > 0 | A ⊂ Bε(B) and B ⊂ Bε(A)};

recall that Bε(E) is the ε-neighborhood of the set E.

2. Gromov-Hausdorff distance: Building on the notion of Hausdorff distance, one can con-
struct a notion of distance between metric spaces: if (X, dX) and (Y, dY) are metric spaces,
the Gromov-Hausdorff distance between them is defined as

(1.31) dGH((X, dX), (Y, dY)) .= inf

dH(f(X), g(Y))

∣∣∣∣∣∣∣∣
(Z, dZ) metric spaces,

f : X ↪→ Z and g : Y ↪→ Z
isometric embeddings

.
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This notion was introduced by Gromov in [Gro81b; Gro81a]; a complete introduction to
this theory can be found in [BBI01, Chapter 7]. It can be shown that dGH defines a finite
distance on the space of isometry classes of metric measure spaces ([BBI01, Theorem
7.3.30]). Quoting a quite helpful heuristics from [Vil09, Remark 27.7], “two spaces are
close in Gromov–Hausdorff topology if they look the same to a short-sighted person”.

3. Gromov-Hausdorff convergence: For a sequence of compact metric spaces Xn
.= (Xn, dn),

and a further compact metric space X∞
.= (X∞, d∞), we say that {Xn}n∈N Gromov-

Hausdorff converges to X∞ if limn→∞ dGH(Xn,X∞) = 0.

4. GH convergence and ε-isometries: It can be shown that Xn n→∞−−−→
GH

X∞ is equivalent to the
existence of a sequence of real numbers εn ↓ 0 and a sequence of εn-isometries fn : Xn →
X∞; i.e.,

(1.32) sup
x,y∈Xn

|dn(x, y) − d∞(fn(x), fn(y))| ≤ εn and X∞ ⊂ B(fn(Xn), εn)

(see [Vil09, Definition 27.6]).

5. Pointed Gromov-Hausdorff convergence: For non-compact metric spaces, a notion which
proves to be more useful than the standard Gromov-Hausdorff convergence is the pointed
Gromov-Hausdorff convergence, which can be thought as “Gromov-Hausdorff convergence
of balls around a point”; we refer the reader to [BBI01, Definition 8.1.1]. Let Xn

.= (Xn, dn)
and X∞

.= (X∞, d∞) be metric spaces, and let xn ∈ Xn, x∞ ∈ X∞. We say that the pointed
metric spaces (Xn, xn) converge to (X∞, x∞) (and use the term pGH-convergence) if the
following holds: fix any ε,R > 0; for any n ∈ N greater than a suitable N = N(ε,R), there
exists a Borel map fR,εn : BR(xn) → X∞ such that

fR,εn (xn) = x∞;(1.33)

sup
x,y∈BR(xn)

∣∣∣dn(x, y) − d∞(fR,εn (x), fR,εn (y))
∣∣∣ ≤ ε;(1.34)

BR−ε(x∞) ⊂ B
(
fR,εn (BR(xn)), ε

)
.(1.35)

6. Measured Gromov-Hausdorff convergence: up until now, there was no reference measure
involved; when considering compact metric measure spaces, the natural notion of con-
vergence can be again characterized in a simple way through ε-isometries: we say that
(Xn, dn,mn) mGH−−−→ (X∞, d∞,m∞) if there exist a sequence of real numbers εn ↓ 0 and a
sequence of measurable εn-isometries fn : Xn → X∞ such that (fn)♯mn ⇀ m∞ (weakly in
the topology of measures).

7. Pointed measured Gromov-Hausdorff convergence: The case of noncompact metric measure
spaces needs again different tools than in the compact setting. In order to consider the
convergence of pointed metric measure spaces, an approach proposed by Fukaya [Fuk87]
is to look simultaneously at pointed Gromov-Hausdorff convergence (in the non-compact
version) and weak convergence of measures. That is: we say that (Xn, dn,mn, xn) pmGH−−−−→
(X∞, d∞,m∞, x∞) if

• (Xn, dn, xn) pGH−−−→ (X∞, d∞, x∞);
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• the measures
(
fR,εn

)
♯
(mn⌞BR(xn)) weakly converge to m∞⌞BR(x∞) for a.e. R > 0,

where fR,εn are the maps from the definition of pGH convergence.

8. Pointed measure Gromov convergence: In [GMS15], an alternative notion of convergence
of pointed metric measure spaces was proposed; of the four characterizations given therein,
we are interested in the “extrinsic notion” (Definition 3.9 therein), although one can show
it is equivalent to a completely intrinsic one. Firstly, we say that two metric measure
spaces (Y, dY,mY), (Z, dZ,mZ) are isomorphic if there exists an isometric embedding ι :
spt(mY) → Z such that ι♯(mY) = mZ. Let now {(Xn, dn,mn, xn)}n∈N and (X∞, d∞,m∞, x∞)
be pointed metric measure spaces, and let {Xn}n∈N and X∞ be the respective equivalence
classes. We say that Xn

pmG−−−→ X∞ (“pointed measure Gromov converge”) provided there
exists a (complete, separable) metric space

(
X̂, d̂

)
and isometric embeddings ιn : Xn → X̂,

ι∞ : X∞ → X̂ such that ιn(xn) → ι∞(x∞) and

(1.36)
∫
φd(ιn)♯(mn) −→

∫
φ d(ι∞)♯(m∞)

for every φ ∈ C0
b(X̂) with bounded support.

9. In the same article ([GMS15, Theorem 3.30]), it was proved that pmGH convergence
of pointed metric measure spaces {(Xn, dn,mn, xn)}n∈N implies pmG convergence of the
corresponding equivalence classes; the converse holds (Theorem 3.33 in [GMS15]) whenever
the metric measure spaces {(Xn, dn,mn)}n∈N are all doubling with the same doubling
constant Cdb > 0 (and the support of the limit measure coincides with the whole limit
space).

10. The topology that induces the mGH convergence (for compact metric measure spaces)
is metrizable when restricted to spaces of uniformly bounded diameter (see for example
[Vil09, Chapter 27] and [GMS15]): thus, in that case, one can construct a metric dmGH
such that

(1.37)

(Xn, dn,mn) n→∞−−−→
mGH

(X∞, d∞,m∞)

if and only if
dmGH((Xn, dn,mn), (X∞, d∞,m∞)) n→∞−−−→ 0.

In particular, for a sequence of compact, uniformly doubling metric measure spaces with
uniformly bounded diameter (such as RCD(K,N) spaces with fixed K > 0, see Sec-
tion 1.3), the pmG convergence – which is the most manageable in terms of computations
– implies the convergence with respect to the metric dmGH.

Remark 1.32. A well-known result of Gromov (see [Gro07, Theorem 5.3]) states that, if K ∈ R,
then the family of pointed n-dimensional Riemannian manifolds with Ricci curvature bounded
from below by K is precompact in the pGH topology. However, it is not closed with respect
with this convergence: the limit space may fail to have a Riemannian structure. In Section 1.3
we will define a class of spaces – satisfying the so-called RCD(K,N) condition – that represents
a better class in which to look for limits of Riemannian manifolds. ♢
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1.1.5 Perimeter and coarea formula on metric measure spaces

In this Section, we introduce a notion of perimeter on metric measure spaces which extends
the classical one on Rn, and we state a general form of the coarea formula. For the sake of
completeness, we do this passing through the metric definition of BV∗ functions, which was
first introduced in the articles [Amb01; Amb02; Mir03]; an overview of the different equivalent
definitions can be found in [AD14], and in [AG16, Chapter 5].

Definition 1.33 (BV∗, total variation). Let (X, d,m) be a metric measure space. We define the
space BV∗(X, d,m) as

(1.38) BV∗(X, d,m) .=

f ∈ L1(X,m)

∣∣∣∣∣∣∣
there exist {fn}n∈N ⊂ Liploc(X, d) such that

fn
L1
−→ f and lim sup

n→∞

∫
X

|∇fn| dm < +∞

.
Here Liploc(X, d) is the family of functions f : X → R such that for any x ∈ X there exists r > 0
such that f ∈ Lip(Br(x), d): if (X, d) is locally compact, it coincides with the family of functions
that are Lipschitz on any compact set; if (X, d) is compact it is simply Lip(X, d) (this is the case
of RCD(K,N) spaces with K > 0).

If f ∈ BV∗(X, d,m) and A ⊂ X is open, then we define the total variation of f in A as

♢(1.39) |Df |∗(A) .= inf
{

lim inf
n→∞

∫
A

|∇fn| dm
∣∣∣∣ {fn}n∈N ⊂ Liploc(X, d) and fn

L1(A,m)−−−−−→ f

}
.

The following proposition was proved in [Mir03]:

Proposition 1.34. Let f ∈ BV∗(X, d,m). The map A 7→ |Df |∗(A) is the restriction to open
sets of a unique finite Borel measure on X, which we still denote by |Df |∗(·).

Definition 1.35 (Perimeter). Let E ∈ B(X), where B(X) denotes the class of Borel sets of (X, d).
We define the perimeter measure in E as Per(E; ·) .= |DχE |∗, where χE is the characteristic
function of E. In particular, for any open A ⊂ X,

Per(E;A) .= inf
{

lim inf
n→∞

∫
A

|∇fn| dm
∣∣∣∣ fn ∈ Liploc(A) and fn → χE in L1(A,m)

}
.

If Per(E; X) < ∞, we say that E is a set of finite perimeter.
Thanks to Proposition 1.34, when E is a fixed set of finite perimeter, the map A 7→ Per(E;A)
is the restriction to open sets of a finite Borel measure on X, which can be characterized as

♢(1.40) Per(E;B) .= inf{Per(E;A) | A open, A ⊃ B}.

For a given volume v, the isoperimetric profile of a metric measure space at v is defined
through a minimization of the perimeter:

Definition 1.36 (Isoperimetric profile). Let (X, d,m) be a metric measure space with m(X) = 1.
The isoperimetric profile I = I(X,d,m) : [0, 1] → [0,+∞) is defined as

♢(1.41) I(X,d,m)(v) .= inf{Per(E) | E ∈ B(X),m(E) = v}, v ∈ [0, 1].
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Remark 1.37 (Outer Minkowski content). In the literature, the isoperimetric profile of a metric
measure space is sometimes defined with the outer Minkowski content in place of the perimeter;
i.e., with the quantity

(1.42) m+(E) .= lim inf
ε↓0

m(Bε(E)) − m(E)
ε

.

For the purposes of this thesis, the two approaches are equivalent (see [CM18; CM17]). A version
of the Minkowski content in Rn will appear again in Chapter 4. ♢

We now state a suitable version of the coarea formula for BV∗ functions on metric measure
spaces, which was first proved in [Mir03, Proposition 4.2 and Remark 4.3]; see also the discussion
in [AG16, Chapter 5]. In Proposition 1.70, we’ll state a version adapted to the RCD(K,N) case.

Proposition 1.38 (Coarea formula). Let u ∈ BV∗(X, d,m). For almost every t ∈ R, {u > t} has
finite perimeter, and

(1.43)
∫ +∞

−∞
Per({u > t};A) dt = |Du|∗(A) for all A ∈ B(X).

Moreover, if f : X → R is Borel measurable,

(1.44)
∫ +∞

−∞

(∫
A
v(x)d Per({u > t};A)(x)

)
dt =

∫
A
v(x) d|Du|∗(x). for all A ∈ B(X).

1.1.6 Rearrangements and symmetrizations

As a last step before specializing to particular classes of metric measure spaces, we recall here
the classical definition of decreasing rearrangement appearing in the theory of symmetrizations
(see for example [Kes06]). These notions will play a role in Section 1.2.3 and Section 1.3.1, and
thus in the proof of the Talenti Theorem 2.14.

Throughout the section (X,m) will be a measure space with m(X) = 1, and Ω ⊂ X will be
an open subset.

Definition 1.39 (Distribution function). Let u : Ω → R be a measurable function. We define its
distribution function µ = µu : [0,+∞) → [0,m(Ω)] as

♢(1.45) µ(t) .= m({|u| > t}).

Definition 1.40 (Decreasing rearrangement u♯). Let u : Ω → R be a measurable function. We
define u♯ : [0,m(Ω)] → [0,∞] as

♢(1.46) u♯(s) .=

ess sup |u| if s = 0
inf{t ∈ [0,+∞) | µu(t) < s} if s > 0

.

The decreasing rearrangement u♯ plays the role of a generalized inverse of the distribution
function µ = µu:

• if µ is continuous at t̄ with µ(t̄) = s̄, and µ is not constant in any interval of the type
[t̄, t̄+ δ) with δ > 0, then u♯(s̄) = t̄;



1.1. General tools on metric measure spaces 33

• if µ is continuous at t̄ with µ(t̄) = s̄, and [t̄, t̄ + δ̄) is the largest interval of this type on
which µ is constant, then u♯(s̄) = t̄+ δ̄;

• if µ has a jump discontinuity at t̄, with limτ→t̄± µ(τ) = s̄±, then u♯(s) = t̄ for any s ∈
(s̄−, s̄+].

As the name itself suggests, u♯ can be easily shown to be non-increasing; moreover, it is by
definition left-continuous.

Remark 1.41. The choice of defining a non-negative decreasing rearrangement u♯ (i.e., of con-
sidering the superlevels of the absolute value of u in the definition of µu) is not the only mean-
ingful one: for example, the textbook [Kes06], which deals with similar problems, makes the
opposite choice (see [Kes06, Remark 1.1.2] therein). As we will see, our choice will be helpful
in the proof of the Talenti Theorem 2.14; however, in the paragraph 2.2.1 we will introduce the
alternative definition with the name of signed decreasing rearrangement. ♢

We prove here a lemma which only needs the very definition of decreasing rearrangement:

Lemma 1.42. Let Ω ⊂ X have finite measure; let f : Ω → R be integrable and let E ⊂ Ω be
measurable. Then: ∫

E
f dm ≤

∫ m(E)

0
f ♯(s) ds.

Moreover, if f is non-negative, equality holds if and only if (f
∣∣
E

)♯ ≡ (f ♯)
∣∣∣
[0,m(E)]

.

Proof. The proof is analogous to the one proposed in [Kes06, Chap. 1] in Euclidean setting, we
report it briefly for the reader’s convenience. Preliminarily, we observe that∫

E
f dm ≤

∫
E

|f | dm and f ♯ = |f |♯,

thus we can assume without loss of generality that f is non-negative.
First notice that, by equimeasurability,

(1.47)
∫
E
f dm =

∫ m(E)

0
(f
∣∣
E

)♯(s) ds.

Moreover, for any t ∈ R, we have:{
x ∈ E

∣∣∣ f ∣∣
E
> t
}

= E ∩ {x ∈ Ω | f > t} ⊂ {x ∈ Ω | f > t},

thus whenever s < m(E):{
t > 0

∣∣∣ m(f ∣∣
E
> t
)
< s

}
⊃ {t > 0 | m(f > t) < s}.

As a consequence, taking the infimum of the two sets in the previous inclusion, we get the
inequality

(f
∣∣
E

)♯(s) ≤ f ♯(s),

which gives, together with Equation (1.47), the desired result.



34 Chapter 1. Preliminaries

1.2 Weighted intervals

In this section, we specialize some of the notions from Section 1.1 to the case where (X, d,m) is a
weighted interval, and develop some of the tools needed in the sequel in the framework of model
spaces (see Section 1.3.1). Some of the results proposed in this Section are a generalization of
results proved for model spaces in [MV21].

The precise setting is the following:

Assumption 1.43. The setting for the whole present section will be the (complete, separable)
metric measure space (I, deu,mh), where:

• I
.= [a, b] ⊂ R is a closed bounded interval, and deu is the standard Euclidean distance on

it;

• h : I → [0,∞) will be a density, with
∫ b
a h dL 1 = 1;

• mh
.= hL 1⌞I is a probability measure on I.

We will denote by H : [a, b] → [0, 1] the distribution function H(x) .=
∫ x
a hdx = mh([a, x]).

Moreover, we’ll denote by I̊ = (a, b) the interior of I. ♢

The (global) Sobolev space H1,p(I, deu,mh), introduced in Definition 1.7, admits a handy
characterization:

Proposition 1.44. Let I, h and mh be as in Assumption 1.43. Let p ∈ (1,∞). Assume that
h

1
1−p ∈ L1

loc(̊I). Then the following holds:

(i) The Sobolev space H1,p(I, deu,mh) can be characterized as:

(1.48) H1,p(I, deu,mh) =
{
v ∈ Lp(I,mh)

∣∣∣∣∣ ∃ṽ ∈ ACloc(̊I) such that
v = ṽ a.e. and ṽ′ ∈ Lp(I,mh)

}
,

and the minimal weak upper gradient of a function v ∈ H1,p(I, deu,mh) coincides m-a.e.
with |v′|.

(ii) Let Ω ⊂ I be open relatively to I. Then the local Sobolev space H1,p
0 (Ω, deu,mh) coincides

with

(1.49) C∞c (Ω)H
1,p(I,deu,mh)

.

Remark 1.45 (References for the proof). We summarize here some useful references for the
previous result:

• The inclusion “⊃” in Equation (1.48) is rather easy, once one knows the equivalence be-
tween H1,p and N1,p (Remark 1.15).

• For a proof of “⊂”, see [BBS20, Proposition 1.3], which deals with the equality |∇v|w = |v′|
at almost every internal point of I.

• Equation (1.49) follows from the approximation in H1,p(I, deu,mh) of Lipschitz functions
with C∞ functions, which is proved for example in [HKM06, Lemma 1.11].
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• Notice that this result takes this quite simple form thanks to the fact that we are dealing
with a one-dimensional weighted space which admits an ad hoc argument (namely, the
argument in [BBS20, Section 6]). The theory of Sobolev spaces on weighted Euclidean
domains is quite rich: see [BB11, Appendix A.2] and [HKST15, Section 14.2] for the
unbounded case with a weight h which makes mh doubling and Poincaré; other related
results can be found in [BBK06; HKM06; Kil94]; a more general approach to weighted
Sobolev spaces on non Euclidean metric measure spaces can be found in [APS19].

♢

Lemma 1.46. Let I, h and mh be as in Assumption 1.43. Let p ∈ (1,∞).
Assume that Ω ⊂ I is a open subinterval (relatively to I). If u ∈ H1,p(I, deu,mh) ∩ C0(I) is

supported in Ω̄, and u = 0 on the boundary of Ω, then u ∈ H1,p
0 (Ω, deu,mh).

Proof. The proof is analogous to the one of [HKM06, Lemma 1.26]: for any ε > 0, the function
uε

.= (u − ε)+ belongs to H1,p(I, deu,mh) and has support compactly contained in Ω, thus it
belongs toH1,p

0 (Ω, deu,mh) (see [HKM06, Lemma 1.25(i)]). Moreover, uε → u inH1,p(I, deu,mh):
since H1,p

0 (Ω, deu,mh) is a closed subset of H1,p(I, deu,mh), this implies the statement of the
lemma.

Remark 1.47. The application of Lemma 1.46 we are interested in is the case where Ω = [a, x)
with x ∈ I̊ = (a, b). ♢

1.2.1 Weighted intervals: isoperimetric profile

In Proposition 1.50, we will analyse the isoperimetric profile of a class of weighted intervals. Let
us define the class of density functions involved.

Definition 1.48 (Log-concave). We say that h : I̊ → R+ is strictly log-concave in I̊ if x 7→
log h(x) is strictly concave in I̊. If h ∈ C1(̊I), it is equivalent to ask that (log h)′ is strictly
increasing in I̊. ♢

Lemma 1.49 (Properties of log-concave functions). Let I, h and mh be as in Assumption 1.43.
Assume the following: h(a) = h(b) = 0 and h > 0 in I̊; h belongs to C1(̊I) ∩ C0(I); and h is
strictly log-concave in I̊. Then:

(i) h admits a unique maximum at a point xh ∈ I̊;

(ii) limx→a
h′

h = +∞ and limx→b
h′

h = −∞.

Proof. The map x 7→ log h(x) is C1 in I̊, and satisfies

(1.50) lim
x→a

log h(x) = lim
x→b

log h(x) = −∞.

Thus it admits at least a maximum point, and by concavity it is unique. Moreover, (log h)′ = h′

h

is strictly increasing in I̊: by Equation (1.50) this implies that limx→a
h′

h = +∞ and limx→b
h′

h =
−∞.
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Proposition 1.50 (Isoperimetric profile of (I, deu,mh)). Let I, h and mh be as in Assump-
tion 1.43. Assume the following: h(a) = h(b) = 0 and h > 0 in I̊; h belongs to C1(̊I) ∩ C0(I);
and h is strictly log-concave in I̊. Then the isoperimetric profile Ih of the weighted interval
(I, deu,mh) is given by the following formula:

Ih(v) = min
{
h(H−1(v)), h(H−1(1 − v))

}
, v ∈ [0, 1].

Moreover, the inf in Equation (1.41) is attained at one of the intervals

(1.51) (a, H−1(v)) and (H−1(1 − v), b),

possibly both if their perimeters coincide.

In other words: Ih(v) coincides with the density function computed either at the point x
such that mh([a, x]) = v or at the point x such that mh([x, b]) = v.

Proof. The proof is a slight modification of [Bob96], we include it here for the reader’s conve-
nience. Thanks to [CM18, Proposition 3.1], we know that if E has finite perimeter in I, then it
is mh-equivalent to a countable union of closed disjoint intervals, i.e. there exists a sequence of
pairwise disjoint intervals {[ai, bi]}i∈N such that [ai, bi] ⊂ I and

(1.52) mh

E△
⋃
i∈N

[ai, bi]

 = 0,

thus it suffices to consider such unions. Moreover, by the same result, if Equation (1.52) holds
then one has:

Per(E) =
∞∑
i=0

(h(ai) + h(bi)).

Step 1. We claim that one of the intervals in Equation (1.51) is minimal among the class
of closed intervals. Let v ∈ (0, 1); notice that the problem trivializes at 0 and 1. We denote by
fv : (a, H−1(1 − v)) → I the function defined by

fv(x) .= H−1(H(x) + v),

that is: fv(x) is the unique element of I such that the interval (x, fv(x)) has mh-measure v.
Notice that H(fv(x)) −H(x) = v, thus h(fv(x))f ′v(x) = h(x).

Moreover, we denote by pv : (a, H−1(1 − v)) → (0,+∞) the function

pv(x) .= Per((x, fv(x))) = h(x) + h(fv(x)).

By differentiating with respect to x, one finds:

p′v(x) = h′(x) + h′(fv(x))f ′v(x) = h(x)
(
h′(x)
h(x) + h′(fv(x))

h(fv(x))

)
.

By definition of (strict) log-concavity the map z 7→ h′(z)
h(z) is always strictly decreasing; on the other

hand, fv(·) is strictly increasing. As a consequence, the map x → p′
v(x)
h(x) is strictly decreasing;

moreover, by Lemma 1.49, it tends to +∞ when x ↓ 0, while it tends to −∞ when x ↑ H−1(1−v).
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This means there exists a value xv such that p′v > 0 on (a, xv) and p′v < 0 on
(
xv, H

−1(1 − v)
)
;

this means precisely that the minimum is attained at one of the intervals in Equation (1.51).
We also notice that

(1.53) xv < xh and fv(xv) > xh

must hold, where xh is the unique maximum of h (see Lemma 1.49). Indeed, at xv it holds that

(1.54) 0 = p′v(xv) = h′(xv) + h′(fv(xv))f ′v(xv).

In particular, since f ′v > 0 everywhere, h′(xv) and h′(fv(xv)) have opposite signs. But h has xh
as its unique maximum point, thus it must lay between xv and fv(xv).

Step 2. We claim that one of the intervals in Equation (1.51) is also minimal among finite
unions of closed intervals. Let now

E =
n⋃
i=1

[ai, bi], n ≥ 2,

with a1 ≥ a, bn ≤ b, and bi−1 < ai < bi < ai+1. Denote by vi the measure mh([ai, bi]).
We will move each interval to the left or to the right, keeping the measure constant and

lowering the perimeter. Notice that at least one of the following conditions holds true:

a1 < xv1 or an > xvn ;

indeed, if a1 ≥ xv1 , then an > b1 ≥ f(xv1) > xh > xvn (here Equation (1.53) has been used).
Up to a reflection, we can assume without loss of generality that a1 < xv1 . Then we define E0
as

E0
.= [a, fv1(a)] ∪

n⋃
i=2

[ai, bi].

E0 now has the same measure as E and smaller perimeter. If n = 2, we skip to the end of
the procedure; if otherwise n > 2, we proceed inductively in the following way: at each step
1 ≤ j ≤ n− 2, the set Ej−1 will be the union of n+ 1 − j closed intervals:

Ej−1 =
n+1−j⋃
i=1

[aji , b
j
i ], vji

.= mh

(
[aji , b

j
i ]
)
,

with aj1 = a. We consider the second of those intervals:

• if aj2 ≤ x
vj

2
, then we replace [a, bj1] and [aj2, b

j
2] with [a, f

vj
1+vj

2
(a)].

• if aj2 > x
vj

2
, then we replace [aj2, b

j
2] and [aj3, b

j
3] with

[
f−1
vj

2+vj
3
(bj3), bj3

]
.

The new set Ej is a union of n − j closed intervals, having the same mh-measure of Ej−1 and
smaller or equal perimeter.

At the end of the procedure, we are left with the union of two intervals; applying the same
argument once again, the final set Ẽ is either the interval [a, fv(a)] (in which case the claim is
proven), or a union of type [a, b̃] ∪ [ã, b]. In the latter case, however, we can repeat the above
argument for the interval [b̃, ã] and the measure 1 − v: we move it to the left or to the right
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applying the same criterion as before, and take the complementary in I. This is an interval of
the same type as Equation (1.51), with the same measure of E but lower perimeter.

Step 3. Finally, we show that one of the intervals in Equation (1.51) is also minimal among
countable unions of disjoint intervals. Assume E = ⋃

i∈N[ai, bi]. Since E has finite perimeter,
the only accumulation points for the ai’s can be a and b. Assume a is an accumulation point;
fix b̃ ∈ (a, xh) and let I .=

{
i ∈ N

∣∣∣ bi ≤ b̃
}

. Let Ē .= ⋃
i∈I [ai, bi] and v̄

.= mh(Ē). The set

[a, fv̄(a)] ∪
⋃

i∈N\I
[ai, bi]

has the same measure and lower perimeter than E. Repeating, if necessary, the procedure at b,
we find a set which is a finite union of closed intervals and lowers the perimeter of E, so we can
recover the result from Step 2.

1.2.2 Weighted intervals: Poisson problem

Definition 1.51 (Laplacian on the weighted interval). Let again (I, deu,mh) be as in Assump-
tion 1.43. Assume that h(a) = h(b) = 0 and h belongs to C1(̊I)∩C0(I). We define the weighted
Laplacian

(1.55) ∆h : C2(̊I)∩C1(I) → C0(̊I)

on the interval I̊ as:

∆hη
.= η′′ + (log(h))′η′ = η′′ + h′

h
η′.(1.56)

Notice that, for any η∈ C2(̊I) ∩ C1(I) and any function φ∈ C1(̊I) ∩ C0(I), using that h = 0
on ∂I, one has ∫

I
η′φ′ dmK,N = −

∫
I

(
φη′′h+ φη′h′

)
dL 1 = −

∫
I
φ∆K,Nη dmK,N ,

consistently with Definition 1.51.
Accordingly with Definition 1.51, given an interval Ω ⊂ I, open in the topology of I, and

f ∈ L2(Ω,mh), we say that a function w is a weak solution to −∆hw = f in Ω (with appropriate
boundary conditions) if it solves

−w′′ − h′

h
w′ = f in Ω

in a distributional sense. In particular, we will be interested in the following Dirichlet problem:

Definition 1.52. Let Ω .= [a, r1) with a < r1 < b and let f ∈ L2(Ω,mh). We say that
w ∈ H1,2(I, deu,mh) is a weak solution to

(1.57)
{

−∆hw = f in Ω = [a, r1)
w(r1) = 0

if:
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(i)
∫

[a,r1]
w′φ′ dmh =

∫
[a,r1]

fφdmh for any φ ∈ C∞c ([a, r1));

(ii) Boundary condition: w ∈ H1,2
0 ([a, r1), deu,mh), where the latter space is the closure of the

family C∞c ([a, r1)) in the topology of H1,2(Ω, deu,mh) (see Proposition 1.44). ♢

In the next proposition, we give an explicit solution to the problem in (1.57).

Proposition 1.53. Assume the following: h(a) = h(b) = 0 and h > 0 in I̊; h belongs to
C1(̊I) ∩ C0(I); and h is strictly log-concave in I̊. Let Ω .= [a, r1) with a < r1 < b. Let f ∈
L2(Ω,mh). The problem in Equation (1.57) admits a unique weak solution w ∈ H1,2

0 (Ω, deu,mh),
which can be represented as

(1.58) w(ϱ) =
∫ r1

ϱ

1
h(r)

∫ r

a
f(s) dmh(s) dr, ∀ϱ ∈ [a, r1],

Proof. We first show that a weak solution must coincide with the function in Equation (1.58),
and then we prove that such function is actually a solution to Equation (1.57).

Step 1. Let w ∈ H1,2
0 (Ω, deu,mh) be a weak solution to Equation (1.57). We prove that the

weak derivative of w coincides mh-a.e. with the function

g(x) .= − 1
h(x)

∫ x

a
f(s) dmh(s).

Indeed, for any test function φ ∈ C∞c ([a, r1)) one has, by the Fubini-Tonelli Theorem:∫
Ω

(−g(x))φ′(x) dmh(x) =
∫ r1

a

(∫ r1

a
χ[a,x](s)f(s)φ

′(x)
h(x) dmh(s)

)
dmh(x)

=
∫ r1

a
f(s)

(∫ r1

s
φ′(x) dL 1(x)

)
dmh(s) =

= −
∫ r1

a
f(s)φ(s) dmh(s).

(1.59)

Thus, since w is a weak solution to Equation (1.57), for any φ ∈ C∞c ([a, r1))

(1.60)
∫

Ω

[
g(x) − w′(x)

]
h(x)φ′(x) dL 1(x) = 0.

By a classical result (see for example [Bre11, Lemma 8.1]), there exists a constant C ∈ R
such that w′(x)h(x) = g(x)h(x) + C for mh-a.e. x ∈ Ω. This however implies that for any
φ ∈ C∞c ([a, r1))

0 = C

∫ r1

a
φ′(x) dL 1(x) = Cφ(a),

hence C = 0.
Now w is a H1,2(Ω, deu,mh) function, thus in particular it belongs to the classical Sobolev space
H1,2((a + ε, r1), deu,L 1) for any ε > 0 (because of the assumptions h > 0 in I̊ and h ∈ C0(I));
moreover, w satisfies w′ = g a.e. and w(r1) = 0. Thus, by well known results about Sobolev
functions on intervals (see [Bre11, Theorem 8.2], w coincides with the function in Equation (1.58)
for mh-a.e. ϱ ∈ Ω.
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Step 2: Let now w be defined as in Equation (1.58). Since the integrand is continuous on
(a, r1], w is a C1 function on (a, r1] (with w(r1) = 0). By straightforward computations, we
show that w and w′ are L2(Ω,mh) functions. Indeed, by Hölder inequality we have that

(1.61)
∫ r

a
|f(s)| dmh(s) ≤ ∥f∥L2(Ω,mh)H(r)

1
2 .

In particular,

|w(ϱ)| ≤ ∥f∥L2(Ω,mh)

∫ r1

ϱ

H
1
2 (r)
h(r) dr(1.62)

|w′(ϱ)| ≤ ∥f∥L2(Ω,mh)
H

1
2 (ϱ)
h(ϱ) ,(1.63)

and thus, using the Jensen inequality and the Tonelli Theorem,

∥w∥2
L2(Ω,mh) ≤ ∥f∥2

L2(Ω,mh)

∫ r1

a

∫ r1

a

H(r)h(ϱ)
h2(r) χ[ϱ,r1](r) dϱdr = ∥f∥2

L2(Ω,mh)

∫ r1

a

(
H(r)
h(r)

)2
dr

(1.64)

∥∥w′∥∥2
L2(Ω,mh) ≤ ∥f∥2

L2(Ω,mh)

∫ r1

a

H(r)
h(r) dr,

(1.65)

which are both finite by assumption: indeed, limr↓0
H(r)
h(r) = 0 by Lemma 1.49.

Secondly, the boundary condition in Definition 1.52 is satisfied (i.e., w ∈ H1,2
0 (Ω, deu,mh)):

this is a consequence of Lemma 1.46 and the fact that w(r1) = 0.
Finally, by tracing back the identity in Equation (1.59), the very same argument shows that

w is a weak solution to Equation (1.57).

Corollary 1.54. Let the assumptions of Proposition 1.53 hold. If, in addition, the density
function h is symmetric with respect to the middle point of I, then w can be also expressed as

(1.66) w(ϱ) =
∫ H(r1)

H(ϱ)

1
I2
h(σ)

∫ σ

a
f ◦H−1(t) dtdσ, ∀ϱ ∈ [a, r1].

Proof. We show that the expressions in Equation (1.58) and Equation (1.66) coincide:∫ r1

ϱ

1
h(r)

∫ r

a
f(s) dmh(s) dr =

∫ r1

ϱ

1
h2(r)

(∫ r

0
f(s)h(s) ds

)
h(r) dr

=
∫ H(r1)

H(ϱ)

1
h2(H−1(σ))

∫ σ

a
f ◦H−1(t) dtdσ

and by Proposition 1.50 it holds that I = h◦H−1. We have used the change of variables t = H(s)
in the internal integral and the change of variables σ = H(r) in the external integral.

1.2.3 Weighted intervals: rearrangements

Let u be a measurable function defined on a measured space (X,m), and let (I, deu,mh) be
a weighted interval. The decreasing rearrangement u♯ of u defined in Section 1.1.6 can be
“reparametrized” so that it becomes equimeasurable with u in the measure space (I,mh):
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Definition 1.55 (Equimeasurable decreasing rearrangement). Let (X, d,m) be a metric measure
space with m(X) = 1; let Ω ⊂ X be a Borel subset with measure m(Ω) = v ∈ [0, 1] and u : Ω → R
be a Borel measurable function. Let us fix a weighted interval (I, deu,mh), with I

.= [0, b], and
let Rh,v ∈ I be such that mh([0, Rh,v]) = v (i.e., Rh,v

.= H−1(v)). We define the equimeasurable
decreasing rearrangement u⋆h : [0, Rh,v] → [0,∞] as u⋆h

.= u♯ ◦H; explicitly:

♢(1.67) u⋆h(x) .= u♯(mh([0, x])).

Remark 1.56. Being the composition of H, which is increasing, and u♯, which is non-increasing,
u⋆h is still a non-increasing function. ♢

We state here a collection of useful facts concerning the decreasing rearrangement of a func-
tion: these are quite standard and can be found for instance in [Kes06, Chapter 1] in the context
of Euclidean spaces (grounding on a slightly different definition of µu: namely, the one we will
call µsg

u in Definition 2.16); the proofs contained there still work with very few straightforward
modifications.

Proposition 1.57. Let (X, d,m) be a metric measure space with m(X) = 1; let Ω ⊂ X be a Borel
subset with measure m(Ω) = v ∈ [0, 1]. Let us fix a weighted interval (I, deu,mh), with I

.= [0, b],
and let Rh,v

.= H−1(v). Let u : Ω → R be a Borel measurable function. Let u♯ : [0, v] → [0,∞]
be its decreasing rearrangement and u⋆h : [0, H−1(v)] → [0,∞] be its equimeasurable decreasing
rearrangement on (I, deu,mh). Then:

(a) u, u♯ and u⋆h are equimeasurable, in the sense that

m({|u| > t}) = L 1({u♯ > t}) = mh({u⋆h > t})

for all t > 0. The same identities hold true with the symbols ≥, <, ≤ instead of >.

(b) If u ∈ Lp(Ω,m) for some 1 ≤ p ≤ ∞, then u♯ ∈ Lp([0, v],L 1) and u⋆h ∈ Lp([0, Rh,v],mh).
The converse implications also hold. In that case, moreover,

∥u∥Lp(Ω,m) = ∥u♯∥Lp([0,v],L 1) = ∥u⋆h∥Lp([0,Rh,v ],mh).

(c) If u, v ∈ Lp(Ω,m) for some 1 ≤ p ≤ ∞, then∥∥u⋆h − v⋆
∥∥
Lp([0,Rh,v ],mh) =

∥∥u♯ − v♯
∥∥
Lp([0,v],L 1) ≤ ∥u− v∥Lp(Ω,m).

Moreover, it is easy to show that even in this setting the classical Hardy-Littlewood inequality
holds (see [Kes06, Theorem 1.2.2])

Proposition 1.58 (Hardy-Littlewood inequality). Let X and Ω ⊂ X be as before. Let u ∈ Lp(Ω,m)
and v ∈ Lq(Ω,m), with 1

p + 1
q = 1. Then

(1.68)
∫

Ω
uv dm ≤

∫ m(Ω)

0
u♯v♯dL 1 =

∫ H−1(m(Ω))

0
u⋆v⋆dmh.

Finally, we give a (necessary and) sufficient condition for a function to coincide with its
equimeasurable decreasing rearrangement.
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Lemma 1.59. Let (I, deu,mh) be a weighted interval and φ : I → [0,+∞) be a non-increasing
and non-negative function. Then φ⋆h(x) = φ(x) for all x ∈ I \ L, where L is a countable set.

Proof. The claim is equivalent to showing that φ♯ = φ ◦H−1 except on a countable set, that is:

(1.69) inf{t | mh({φ > t}) < s} = φ ◦H−1(s), s ∈ [0, 1]

out of a countable set. Let L ⊂ I be the set of points where φ is not left continuous (which is
countable since φ is nonincreasing), and fix any s ∈ [0, 1] \H(L).
If mh({φ > t}) < s for some t, then mh({φ > t}) < mh([0, H−1(s)]) and thus

{φ > t} ⊊ [0, H−1(s)].

We infer that φ(H−1(s)) ≤ t, and thus

(1.70) φ ◦H−1(s) ≤ inf{t | mh({φ > t}) < s}, ∀s ∈ [0, 1] \H(L).

Assume by contradiction that the inequality in (1.70) is strict for some s0 ∈ (0, 1] \H(L). Then
there exists ε > 0 such that

(1.71) φ ◦H−1(s0) + ε < inf{t | mh({φ > t}) < s0}.

Since by assumption φ is left-continuous at H−1(s0), we can find σ < s0 such that

(1.72) φ(H−1(σ)) < φ(H−1(s0)) + ε.

Since {φ > φ(H−1(σ))} ⊂ [0, H−1(σ)], we infer that

(1.73) mh({φ > φ(H−1(σ))}) ≤ σ < s0.

The combination of (1.71), (1.72) and (1.73) yields the contradiction

(1.74) φ(H−1(σ)) < inf{t | mh({φ > t}) < s0} ≤ φ(H−1(σ)).

This concludes the proof.

1.3 RCD(K,N) spaces

In the classical framework of geometric analysis, Riemannian manifolds with a lower bound on
the Ricci curvature constitute the natural setting for a plethora of results: if M is a manifold
with Ric ≥ K, on M the Bishop-Gromov Theorem holds (volume comparison between balls in
M and balls in a model space, see [Pet16, Lemma 7.1.4]), as well as a Lévy-Gromov inequality
(perimeter-volume ration comparison), a Cheeger-Gromoll Splitting Theorem (if K ≥ 0 and M
contains a line, then M can be split in a product N ×R as a Riemannian manifold), and many
other useful results.

Moreover, as already mentioned, the family of manifolds such that Ric ≥ K is precompact
in the pmGH topology for any K ∈ R; however, even if {Mn, gn, xn} is a converging sequence
of pointed Riemannian manifold, it has been shown that singularities can emerge in the limit
(see for example [CCT02]).
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In this section, we define a class of metric measure spaces that satisfy a condition that
encodes “Ricci curvature bounded from below, dimension bounded from above”; this class will
include manifolds with lower bounds on the Ricci curvature, will be closed under pmGH limits,
and allows to generalize many of the Riemannian results.

First, we give some preliminary definitions: we define a notion of dimension-dependent en-
tropy for measures in P(X) and a family of distortion coefficients. We will say that (X, d,m)
satisfies the above mentioned condition if and only if the entropy is “(K,N)-geodesically convex”
in the Wasserstein space P(X), where we adopt a distorted version of convexity which makes
use of the distortion coefficients.

Definition 1.60 (Rényi entropy). Let (X, d,m) be a metric measure space. The Rényi entropy
functional EN : P(X) → [0,∞] is defined as

♢(1.75) EN (µ) .=
∫

X
ϱ1− 1

N dm, where µ = ϱm + µs and µs ⊥ m.

Definition 1.61 (Distortion coefficients). For any ϑ > 0 and t ∈ [0, 1], the distortion coefficients
are defined as

(1.76) τ
(t)
K,N (ϑ) .= t

1
N σ

(t)
K,N (ϑ)

N−1
N ,

where

♢(1.77) σ
(t)
K,N (ϑ) .=



∞ if Kϑ2 ≥ Nπ2

sin(tϑ
√
K/N)

sin(ϑ
√
K/N)

if 0 < Kϑ2 < Nπ2

t if Kϑ2 < 0 and N = 0, or if Kϑ2 = 0
sinh(tϑ

√
K/N)

sinh(ϑ
√
K/N)

if Kϑ2 ≤ 0 and N > 0

.

We are now in force to define the curvature-dimension condition CD(K,N):

Definition 1.62 (CD(K,N) and CD∗(K,N)). Let (X, d,m) be a metric measure space. We say
that (X, d,m) verifies the CD(K,N) condition for some K ∈ R, N ∈ (1,∞) if: for any pair of
probability measures µ0, µ1 ∈ P(X) with bounded support and with µ0, µ1 ≪ m, there exists
ν ∈ OptGeo(µ0, µ1) and an optimal plan π ∈ P(X × X) such that µt

.= (et)♯ν ≪ m and

(1.78) EN ′(µt) ≥
∫ [

τ
(1−t)
K,N ′ (d(x, y))ϱ−

1
N ′

0 + τ
(t)
K,N ′(d(x, y))ϱ−

1
N ′

1

]
dπ(x, y)

for any N ′ ≥ N , t ∈ [0, 1].
We say that (X, d,m) verifies the CD∗(K,N) condition if the above inequality holds with the

coefficients σK,N ′ in place of τK,N ′ :

♢(1.79) EN ′(µt) ≥
∫ [

σ
(1−t)
K,N ′ (d(x, y))ϱ−

1
N ′

0 + σ
(t)
K,N ′(d(x, y))ϱ−

1
N ′

1

]
dπ(x, y).

Definition 1.63 (RCD(K,N) spaces). We say that (X, d,m) satisfies the RCD(K,N) condition
(respectively, the RCD∗(K,N) condition) if it satisfies the CD(K,N) condition (respectively,
the RCD∗(K,N) condition) and it is infinitesimally Hilbertian (see Definition 1.17). ♢
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Remark 1.64 (RCD ⇔ RCD∗). The condition CD(K,N) is stronger than CD∗(K,N). In
[CM21, Corollary 13.7], however, the authors proved that the conditions RCD(K,N) and
RCD∗(K,N) are actually equivalent (i.e., equivalence holds when the infinitesimally hilber-
tianity is added) if the measure is finite, which will be the case in Chapter 2. Thus, from now
on, we will always adopt the terminology RCD(K,N) to indicate them. ♢

Remark 1.65 (Scaling properties and standard normalizations). From the very definitions, it is
not difficult to check that for any λ and c > 0 the following implication holds

(1.80) (X, d,m) is an RCD(K,N) space =⇒ (X, λd, cm) is an RCD
(
λ−2K,N

)
space.

If K > 0, the Bonnet-Myers Theorem (proved for CD(K,N) spaces in [Stu06b]) implies that
(X, d) is compact with m(X) ∈ (0,∞). Thanks to the scaling property (1.80), up to constant
scalings, we will be often allowed to assume m(X) = 1 and K = N − 1 (see Section 2.3.1). ♢

For the following result, see [Stu06b, Theorem 2.3, Corollary 2.4] and [Vil09, Theorem 18.8].
For K > 0 the quantity sK,N coincides up to a constant to the density hK,N which will appear
in Section 1.3.1, and vK,N is thus up to a constant the volume of a ball around the tip in the
model space (JK,N , deu,mK,N ).

Proposition 1.66 (Bishop-Gromov, doubling). Let (X, d,m) be a metric measure space satisfying
the CD(K,N) condition for K ∈ R and N ∈ (1,∞). Denote by sK,N (t) the quantity

(1.81) sK,N (t) .=



(
sin
(√

K
N−1 t

))N−1
if K > 0

tN−1 if K = 0(
sinh

(√
|K|
N−1 t

))N−1
if K < 0

and by vK,N (r) .=
∫ r

0 sK,N (t) dt. Then the map

(1.82) r 7→ m(Br(x))
vK,N (r)

is non-decreasing for any x ∈ X. In particular, if K ≥ 0, then (X, d,m) is doubling.

Proposition 1.67. Let (X, d,m) be a CD(0, N) space for some N ∈ (0,∞). Then (X, d,m)
supports the (weak) (1, 1)-Poincaré inequality

(1.83) −
∫
B

∣∣∣∣u− −
∫
B
u

∣∣∣∣ dm ≤ 2N+1 diam(B)−
∫

2B
g dm

for any u integrable on X, any ball B ⊂ X and any upper gradient g of u. As a further conse-
quence, it also satisfies a (weak) (p, p)-inequality for any p ≥ 1.

Proof. The (1, 1)-Poincaré inequality is proved in [Raj12, Theorem 2]. Then by the Hölder
inequality a (1, p)-Poincaré inequality is satisfied for any p ≥ 1; then by [HK00, Theorem 5.1],
together with the Bishop-Gromov inequality (Proposition 1.66), a (p, p)-inequality holds.
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Remark 1.68 (Riemannian curvatures). In the next Remark 1.69, we will see how the above
definitions interact with smooth ambient spaces. Before doing that, we briefly recall some
Riemannian notions; we refer to [Pet16, Chapter 3] or [Car92, Chapter 2] for the underlying
definitions.

If (M, g) is a n-dimensional Riemannian manifold, we denote by T (M) the set of smooth
vector fields on M. By the Fundamental Theorem of Riemannian Geometry (or Levi-Civita
Theorem, [Pet16, Theorem 2.2.2, Chapter 2]) there exists a unique affine connection ∇ : T (M)×
T (M) → T (M) which is both symmetric and compatible with the Riemannian metric. This is
called the Levi-Civita connection on (M, g).

The Levi-Civita connection ∇ satisfies the following Koszul identity: whenever U, V,W ∈
T (M), one has

2g(∇UV,W ) = U(g(V,W )) + V (g(W,U)) −W (g(U, V ))+
− g(W, [V,U ]) − g(U, [V,W ]) − g(V, [U,W ]).

(1.84)

We then define the Riemannian curvature tensor as the (1, 3)-tensor defined by

(1.85) Rg(U, V )W .= ∇U∇VW − ∇V ∇UW − ∇[U,V ]W,

and the Ricci tensor Ricg(V,W ) as the trace of U 7→ Rg(U, V )W . We use the same symbol Ricg
for the quadratic form associated to Ricg, i.e. the quadratic form V 7→ Ricg(V, V ).

It can be shown that the Ricci curvature Ricg at the point p ∈ M can be expressed as

(1.86) Ricg(v, v) =
n∑
i=2

sec(v, ei) =
n∑
i=2

gp(Rp(ei, v)v, ei)

whenever v ∈ TpM is a unit tangent vector and {v, e2, . . . , en} is a orthonormal basis for the
tangent space TpM and sec is the sectional curvature. ♢

Remark 1.69 (When is a weighted manifold/interval an RCD space?). Let us assume that

(1.87) (X, d,m) = (M, dg, h volg)

is the metric measure space induced by a weighted n-dimensional Riemannian manifold (M, g)
– that is dg and volg are the distance and the volume form induced by the metric g – with
a C2 density function h : M → (0,∞). Then, by [Stu06b, Theorem 1.7], (M, dg, h volg) is a
RCD(K,N) space with N ≥ n if and only if Ricg,h,N −Kg is positive semidefinite, where

(1.88) Ricg,h,N
.= Ricg − (N − n)

∇2
gh

1
N−n

h
1

N−n

;

here Ricg is the classical (smooth) Ricci curvature and ∇2 is the Hessian. When h is constant
and N = n, this reduces to the classical Ricg ≥ Kg.

When (X, d,m) = (I, deu,mh) as in Section 1.2, in particular, the condition becomes

(1.89)
(
h

1
N−1

)′′
+ K

N − 1h
1

N−1 ≥ 0;

this can be used to show that the model spaces in Section 1.3.1 are actually RCD(K,N). ♢
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Next, we adapt Proposition 1.38 to the case we will need in Chapter 2.

Proposition 1.70 (Coarea formula, RCD version). Let (X, d,m) be an RCD(K,N) space for
some K ≥ 0, N ∈ (1,∞). Let Ω ⊂ X be an open domain and u : Ω → R be a non-negative
function in W 1,2

0 (Ω). Then for any t > 0

(1.90)
∫
{u>t}

|∇u|w dm =
∫ ∞
t

Per({u > r}) dr.

More generally, for any Borel function f : Ω → R and for any t > 0, it holds that∫
{u>t}

f |∇u|w dm =
∫ ∞
t

(∫
f d Per({u > r})

)
dr.

Remark 1.71. Notice that Proposition 1.70 follows from the BV version (Proposition 1.38),
combined with [GH16, Remark 3.5]; indeed, the CD(K,N) condition with K ≥ 0, N ∈ (1,∞)
implies properness of the space: CD(K,N) spaces are doubling by Proposition 1.66, and doubling
spaces are proper by Lemma 1.26. ♢

1.3.1 Model spaces with fixed curvature and dimension

Here we introduce a particular class of weighted intervals, which will be at the core of Chapter 2:
for any K > 0 and N ∈ (1,∞), we define an interval JK,N and weight function hK,N such that the
corresponding metric measure space models a space with curvature below by K and dimension
bounded above by N .

Definition 1.72 (Model space). Let K > 0 and N ∈ (1,∞). Define:

(a) the interval JK,N
.=
[
0, π

√
N−1
K

]
;

(b) the probability density function hK,N on JK,N :

(1.91) hK,N (t) .= 1
cK,N

sinN−1
(
t
√

K
N−1

)
,

where cK,N is the normalizing constant

(1.92) cK,N
.=
∫
JK,N

sinN−1
(
t
√

K
N−1

)
dL 1(t);

(c) the measure mK,N
.= hK,NL 1⌞JK,N .

With these notations, we call model space of curvature K and dimension N the metric mea-
sure space (JK,N , deu,mK,N ), where deu is the standard Euclidean distance. For the sake of
convenience, we will also denote by HK,N the cumulative distribution function of mK,N , i.e.:

HK,N (x) .= mK,N ([0, x]) =
∫ x

0
hK,N (t) dt.

Finally, we also denote by DK,N the diameter of JK,N , i.e. DK,N
.= π

√
N−1
K , and by IK,N the

isoperimetric profile of (JK,N , deu,mK,N ). ♢
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Remark 1.73. From Equation (1.89) and the definition (1.91) it is immediate that the space
(JK,N , deu,mK,N ) is a RCD(K,N) space. ♢

The following lemma is an elementary consequence of the definitions of hK,N and HK,N :

Lemma 1.74. Let K > 0 and N ∈ (1,∞) be fixed. Then:

1. If γ1(K,N) .= 1
cK,N

(
K
N−1

)N−1
2 , then

lim
t→0+

hK,N (t)
tN−1 = γ1(K,N), and hK,N (t) ≤ γ1(K,N)tN−1 ∀t ∈ JK,N .

Moreover, for any r1 ∈
(

0, π
√

N−1
K

)
there exists C = C(r1,K,N) > 0 such that

hK,N (t) ≥ C tN−1, ∀t ∈ (0, r1).

2. HK,N is invertible on JK,N ; moreover, if γ2(K,N) .= γ1(K,N)
N :

lim
t→0+

HK,N (t)
tN

= γ2(K,N), and HK,N (t) ≤ γ2(K,N)tN ∀t ∈ JK,N ;

lim
t→0+

H−1
K,N (t)
t

1
N

= 1
γ2(K,N) 1

N

, and H−1
K,N (t) ≥ 1

γ2(K,N) 1
N

t
1
N ∀t ∈ (0, 1).

Let us particularize the definitions of Section 1.1.6 to the case of a function defined on a
RCD(K,N) space, with the rearrangement being defined on the corresponding (K,N)-model
space. Notice that the condition CD(K,N) on curvature and dimension, together with the
assumption that (X, d,m) is essentially non-branching, would be enough to ensure a Pólya-Szegő
inequality, as shown in [MS19].

Definition 1.75 ((K,N)-Schwarz symmetrization). Let (X, d,m) be a metric measure space sat-
isfying the RCD(K,N) condition for some K > 0 and N ∈ (1,∞). Let Ω ⊂ X be a Borel
subset with measure m(Ω) = v ∈ [0, 1] and u : Ω → R be a Borel measurable function. Let
RK,N,v

.= H−1
K,N (v) ∈ [0, DK,N ], so that mK,N ([0, RK,N,v]) = v. Then we define:

(i) The (K,N)-Schwarz symmetrization of Ω as the interval Ω⋆
K,N

.= [0, RK,N,v) ⊂ JK,N .

(ii) The (K,N)-Schwarz symmetrization u⋆K,N : Ω⋆
K,N → [0,∞] as the equimeasurable de-

creasing rearrangement of u on (JK,N , deu,mK,N ). In particular: u⋆K,N
.= u♯ ◦ HK,N , and

explicitly:

(1.93) u⋆K,N (x) .= u♯(mK,N ([0, x])).

When the context is clear (and for the whole Chapter 2), we will drop everywhere the subscript
“K,N”. ♢

Remark 1.76. With the Definitions 1.72 and 1.75, all the results of Sections 1.1.6, 1.2.1 and 1.2.2
are valid in (JK,N , deu,mK,N ): in particular the explicit formula for the isoperimetric profile
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(Proposition 1.50) in the form IK,N (v) = hK,N (H−1
K,N (v)) for all v ∈ [0, 1], the explicit solution to

the Poisson problem (Equations (1.58) and (1.66)), the sufficient condition for coincidence with
the rearrangement (Lemma 1.59). Indeed, hK,N is log-concave: the map z 7→ (log hK,N )′(z) =
h′

K,N (z)
hK,N (z) coincides with

z 7→
√
K(N − 1) cot

(√
K
N−1z

)
,

thus it is always decreasing. Moreover, hK,N is always positive in ˚JK,N , it is symmetric with
respect to the center of the interval, it belongs to C1(JK,N ) (in particular, h−1 ∈ L∞loc( ˚JK,N )),
and it takes the value zero at the extrema. ♢

Remark 1.77 (Interpretations). When N ∈ N, mK,N ([0, x)) represents the measure of the
geodesic ball of radius x on the N -dimensional sphere of Ricci curvature K, endowed with
the canonical metric. Notice however that Definition 1.72 makes sense when N is not a natural
number as well.

This interpretation also gives an intuition behind the choice of boundary conditions in the
Poisson problem (Definition 1.52). When N is an integer, we think of (JK,N , deu,mK,N ) as the
sphere S = SNK of dimension N and Ricci curvature K. Consider a geodesic ball Br1(p) ⊂ S; we
look for radial solutions ŵ(x) = w(d(x, p)) of the Dirichlet problem−∆Sŵ(x) = f(d(x, p)) on Br1(p)

ŵ = 0 on ∂Br1(p)
,

where ∆S is the classical Laplace-Beltrami operator on S. Then the condition w(r1) = 0 comes
from the Dirichlet condition on ∂Br1(p). ♢

1.3.2 The Lévy-Gromov inequality

Consider a N -dimensional Riemannian manifold (M, g) with Ricci curvature bounded from
below by K > 0, and an open subset Ω ⊂ M; let, moreover,

(
SNK , volS

)
be the N -dimensional

sphere of constant Ricci curvature K, and B ⊂ SNK be a ball satisfying volg(E)
volg(M) = volS(B)

volS(SN
K) . In

this setting, the Lévy-Gromov inequality

(1.94) Per(E; M)
volg(M) ≥ Per(B;SNK)

volS(SNK)

holds (see [Gro07, Appendix C]). In other words, if ISN
K

is the isoperimetric profile of the sphere
(as a metric measure space with the usual metric and normalized volume measure), then

(1.95) Per(E; M)
volg(M) ≥ ISN

K

(
volg(E)
volg(M)

)
.

An RCD(K,N) version of the Lévy-Gromov isoperimetric inequality was firstly obtained by
Cavalletti and Mondino in [CM17] for the outer Minkowski content (see Remark 1.37) and then
in [CM18] for the perimeter; the argument adopted there is out of the scope of this thesis, and
is based on a technique of localization via L1-optimal transportation.

Below, we state the result in the form that involves the perimeter:
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Proposition 1.78 (Lévy-Gromov inequality). Let (X, d,m) be an RCD(K,N) metric measure
space with K > 0 and N ∈ (1,∞). Then for any E ∈ B(X)

(1.96) Per(E) ≥ IK,N (m(E)).

In particular, the isoperimetric profile of (X, d,m) is bounded from below by IK,N .

1.3.3 Compactness of RCD(K,N) spaces

As already mentioned, the class of RCD(K,N) metric measure spaces with fixed K > 0 is com-
pact with respect to the mGH convergence. This will be particularly useful in the compactness
argument for the stability of the Talenti Theorem (Section 2.3.1): we state here a self-contained
version.

Proposition 1.79 (Compactness and stability of RCD(K,N) sequences). Fix K > 0 and N ∈
(1,∞). Every sequence of RCD(K,N) spaces {(Xi, di,mi)}i∈N admits a subsequence which con-
verges in the mGH sense to a metric measure space (X, d,m), and (X, d,m) itself satisfies the
RCD(K,N) condition. The statement still holds for K ≤ 0, up to replacing mGH convergence
with the pmGH one.

Remark 1.80. The result follows from these observations:

• A classical precompactness result of Gromov [Gro07, Proposition 5.2] – already used in
Remark 1.32 – states that a sequence {(Xi, di,mi)}i∈N of metric measure spaces is pre-
compact if and only if the maximum number N(ε,R) of disjoint balls of radius ε that fit
in a ball BR(x) ⊂ Xi of radius R is uniformly bounded for all the spaces in the sequence.
We have already seen in the proof of Lemma 1.26 that this holds for uniformly doubling
metric measure spaces: and this happens for RCD(K,N) spaces by Proposition 1.66.

• The fact that the class of RCD(K,N) spaces is stable under mGH convergence follows
from stability of the CD(K,N) class (see [LV09, Section 5.3]), from the stability of the
RCD(K,∞) class under pmG convergence (see [GMS15, Theorem 7.2]) and from the al-
ready mentioned equivalence of pmG and pmGH convergence for RCD(K,N) spaces (see
the previous Section 1.1.4 on the Convergence of Spaces, and [GMS15, Section 3.5]). ♢

1.4 Carnot-Carathéodory spaces and the Heisenberg group

Consider an open connected subset Ω of Rn, with n ≥ 2, and let X1, . . . , Xm – with 1 ≤ m ≤ n

– be a family of vector fields in Ω with locally Lipschitz coefficient; we’ll often use the symbol X
to indicate the family {X1, . . . , Xm} as a whole. Such a family induces a metric space structure
on Ω, on which – roughly speaking – the only available paths are those whose tangent at any
point belongs to the space generated by X.

Let us introduce some basic definitions:

Definition 1.81 (Basic sub-Riemannian notions). Let X be a family of vector fields as before;
denote by cij ∈ Liploc(Ω) be the coefficients such that

(1.97) Xj(x) =
n∑
i=1

cij(x) ∂

∂xi
.
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X-admissible curves: Let I ⊂ R be an interval. We will say that a Lipschitz curve γ : I → Ω
is X-admissible if there exist bounded measurable functions h1, . . . , hm ∈ L∞(I,R) such that

(1.98) d
dtγt =

m∑
j=1

hj(t)Xj(γt);

if, in addition, |(h1, . . . , hm)| ≤ 1 almost everywhere, we say that γ is X-subunit.
Carnot-Carathéodory distance: For any pair of points x, y ∈ Ω, we define

(1.99) dcc(x, y) .= inf
{
T > 0

∣∣∣∣∣ there exists a X-subunit curve γ : [0, T ] → Ω
such that γ(0) = x, γ(1) = y

}
.

It can be shown that dcc is an extended distance (in the sense that it can take the value +∞).
When it is a true distance (i.e., when dcc < +∞ for any pair of points), we call (Ω, dcc) a
Carnot-Carathéodory space, or CC-space in brief.

Horizontal gradient: If u ∈ L1
loc(Ω,L n), we denote by Xu the vector Xu .= (X1u, . . .Xmu),

where we see each Xj as a differential operator; in other words, Xju is the linear combination
of distributional derivatives

(1.100) Xju
.=

n∑
i=1

cij
∂u

∂xj
.

Sobolev space W 1,p
X : We define the Sobolev space W 1,p

X (Ω) as

(1.101) W 1,p
X (Ω) .= {u ∈ Lp(Ω,L n) | Xju ∈ Lp(Ω,L n) for any j ∈ {1, . . . , n}},

which is, when endowed with the norm

(1.102) ∥u∥
W 1,p

X (Ω)
.= ∥u∥Lp(Ω,L n) +

m∑
j=1

∥Xju∥Lp(Ω,L n),

a Banach space. ♢

The connection between the Sobolev space W 1,p
X defined in Equation (1.101) and the Sobolev

spaces of H1,p-type introduced in Section 1.1.1 is given by the following Meyers-Serrin-type
result, which can be found in [HK00, Theorem 11.9]:

Proposition 1.82 (W 1,p
X = H1,p

X ). Let Ω and X be as before, and assume that (Ω, dcc) is a
CC-space. If u ∈ W 1,p

X (Ω), then there exists a sequence {uk}k∈N ⊂ C∞(Ω) such that uk → u

and Xjuk → Xju (for any j) in in Lp(Ω).

For general families of vector fields X = {X1, . . . , Xm}, the extended distance dcc may not
be finite – a trivial example is the family consisting of X1 = ∂

∂x1
alone, as a vector field in

the plane R2. Below we state a classical result, discovered independently by W.L. Chow and
P.K. Rashevskii, which ensures that this does not happen. Let us first introduce the Hörmander
condition.

Definition 1.83 (Hörmander condition). Let now Ω ⊂ Rn be an open connected set. Let X =
{X1, . . . , Xm} be a family of vector fields in C∞(Rn,Rn) (actually, C∞ on a neighborhood of Ω
would be enough).
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We formally define the Lie bracket [Xj , Xk] as the vector field XjXk − XkXj ; precisely, if
Xj(x) = ∑n

i=1 cij(x) ∂
∂xi

for any j ∈ {1, . . . ,m} and x ∈ Ω, then

(1.103) [Xj , Xk](x) .=
n∑
i=1

(
n∑
ℓ=1

(cij(x)∂cℓk(x)
∂xi

− cik(x)∂cℓj(x)
∂xi

)
)
∂

∂xi
.

We denote by L{X1, . . . , Xm}(x) the linear subspace of Rn generated by the Xi’s and their
iterated Lie brackets at each x ∈ Ω.

We say that the family X satisfies the Hörmander condition in Ω if the rank of the subspace
L{X1, . . . , Xm}(x) is n at each point of Ω (i.e., if L{X1, . . . , Xm}(x) = Rn at each point). ♢

Theorem 1.84 (Chow-Rashevskii). Let X = {X1, . . . , Xm} be a family of vector fields belonging
to C∞(Rn,Rn). If the family X satisfies the Hörmander condition in Ω, then any pair of points
x, y ∈ Ω can be joined by a X-admissible curve; in particular, dcc(x, y) < +∞.

Moreover, if for any x ∈ Ω the linear subspace L{X1, . . . , Xm}(x) is generated by iterated
Lie brackets of length at most ℓ – that is, by vector fields of type

(1.104) Xj1 , [Xj1 , Xj2 ], . . . , [Xj1 , Xj2 , [. . . , Xjℓ ], . . .]

with j1, . . . , jℓ = 1, . . . ,m –, then for any compact K ⋐ Ω there exist constants C1, C2 > 0 such
that

(1.105) C1|x− y| ≤ dcc(x, y) ≤ C2|x− y| for all x, y ∈ K.

A proof of (the first part of) the Chow-Rashevskii Theorem can be found in [Bel96, Theorem
2.4, and the whole Section 2.1] or in [ABB20, Section 3.2.1]; the estimate in Equation (1.105) is
due to Nagel, Stein and Wainger and can be found in [NSW85, Proposition 1.1].

Any Carnot-Carathéodory space induced by a family of vector fields satisfying the Hörmander
condition, has varoius geometric properties when seen from the perspective of metric measure
spaces:

Proposition 1.85. Let X = {X1, . . . , Xm} be a family of vector fields in C∞(Rn,Rn) that
satisfies the Hörmander condition in Ω. The Carnot-Caratheodory space (Ω, dcc,L n) associated
to X is locally doubling and Poincaré.

The fact that the space is locally doubling is again a consequence of the work of Nagel, Stein
and Wainger: we refer to [NSW85, Theorem 1]. The Poincaré-type inequality is instead due
to Jerison [Jer86]; we also refer to [HK00, Theorem 11.20] and references therein for a more
articulate discussion on the matter.

Finally, inspired by the Euclidean definition of perimeter ([EG15, Section 5.1]), one can
adapt such notion to the sub-Riemannian setting:

Definition 1.86 (sub-Riemannian perimeter). Let X = {X1, . . . , Xm} be C∞ vector fields on Ω.
For each Xj , we denote by X∗j the adjoint operator of Xj in L2(Ω), i.e. the unique operator

such that:

(1.106)
∫

Ω
uXjv dL n =

∫
Ω
vX⋆

j udL n for all u, v ∈ C1
0(Ω);
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we define the horizontal divergence divX of a vector field φ ∈ C1
c(Ω ∈ Rm) as

(1.107) divX φ
.= −

m∑
j=1

X∗j φj .

Finally, mimicking the Euclidean definition, for any measurable E ⊂ Rn we define its X-perimeter
in Ω as

♢(1.108) PerX(E; Ω) .= sup
{∫

E
divX φ

∣∣∣∣ φ ∈ C1
c(Ω,R2n with |φ|R2n ≤ 1)

}
.

It was proved in [AGM15] that this notion of perimeter actually coincides with the one
inherited from the metric measure space structure (Ω, dcc,L n) through Definition 1.35.

1.4.1 The Heisenberg group

In this Section, we will define the Heisenberg group Hn as the space R2n+1 ≃ Cn × R endowed
with a particular group operation, and more precisely as the Carnot-Carathéodory space induced
by this structure.

Recall that we call a Lie group any group which is also equipped with a differentiable manifold
structure, so that the map (x, y) 7→ x · y−1 is differentiable.

Let us first fix some notations: we will represent a point p in R2n+1 as p = [x,y, t] with
x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn, t ∈ R. Alternatively and equivalently, we can
think of p as a point in Cn × R with p = [z, t], z = x + iy.

Let α ∈ R \ {0}, and consider the following operation: for any p, p′ ∈ R2n+1 ≃ Cn × R with
p = [z, t], p′ = [z′, t′],

p · p′ .= [z + z′, t+ t′ + αℑ⟨z, z′⟩] =
= (x + x′,y + y′, t+ t′ + α

(
⟨x,y′⟩ − ⟨x′,y⟩

)
).

(1.109)

It can be proved that, for any choice of α ̸= 0, the space R2n+1 ≃ Cn × R endowed with this
operation has a group structure, with group identity o = [0, 0] and [z, t]−1 = [−z,−t]. We will
(temporarily) use the symbol Hn

α to indicate the Lie group obtained by endowing such space
with the above defined α-dependent group law.

Definition 1.87 (Left translation and left invariance). For any p ∈ Hn, the left-translation map
τp : Hn → Hn is defined as

(1.110) τp(q)
.= p · q.

We say that a vector field X ∈ C∞(R2n+1,R2n+1) is left invariant if dτpX = X for any p ∈
Hn. ♢

Notice that, if p = (x,y, t), the differential dτp is (at any point) the linear map whose matrix
in the canonical coordinates of R2n+1 is represented as

(1.111) Lp =

 1n×n 0n×n 0n×1
0n×n 1n×n 0n×1
−αy⊺ αx⊺ 1


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In particular, one can immediately see that the left-invariant vector fields obtained by translating
the canonical basis at the origin are expressed as

Xi
.= ∂

∂xi
− αyi

∂

∂t
, Yi

.= ∂

∂yi
+ αxi

∂

∂t
for i ∈ {1, . . . , n}; T

.= ∂

∂t
(1.112)

in the canonical coordinate system.

Remark 1.88. It is readily seen that the relations

[Xi, Xj ] = 0 = [Yi, Yj ] for all i, j ∈ {1, . . . , n}(1.113)
[Xi, Yj ] = 0 for all i ̸= j ∈ {1, . . . , n}(1.114)
[Xi, Xi] = 2αT for all i ∈ {1, . . . , n}.(1.115)

hold. In particular, the family of left invariant vector fields X .= {X1, . . . , Xn, Y1, . . . , Yn} induces
a Carnot-Carathéodory structure, since it satisfies the Hörmander condition (Definition 1.83)
and thus the Chow-Rashevskii Theorem 1.84. More precisely, the Heisenberg group is a partic-
ular instance of a Carnot group, a concept which will not be deepened in this thesis outside the
context of the Heisenberg group. ♢

We finally make a choice on the value of α ̸= 0 we will adopt: such a choice is only dictated
by the ease of computations; other choices are frequently found in literature (typically α = −2).

Definition 1.89 (Heisenberg group). Let n ≥ 1. We define the Heisenberg group Hn as the Lie
group obtained by endowing R2n+1 ≃ Cn×R with the group law in Equation (1.109) with α = 1

2
(and by extension the CC-space

(
Hn, dcc,L 2n+1) induced by it). The space Hn admits at any

point a basis of left invariant vector fields represented by

Xi
.= ∂

∂xi
− 1

2yi
∂

∂t
for i ∈ {1, . . . , n}(1.116)

Yi
.= ∂

∂yi
+ 1

2xi
∂

∂t
for i ∈ {1, . . . , n}(1.117)

T
.= ∂

∂t
(1.118)

which satisfy the relation [Xi, Yi] = T for any i ∈ {1, . . . , n} (all the other commutators being
zero).

We will denote by HHn the horizontal subbundle of Hn, i.e. the subbundle of the tangent
bundle spanned by the vector fields X1, . . . , Xn, Y1, . . . , Yn. ♢

The Heisenberg group is equipped with a family of non-isotropic dilations:

Definition 1.90 (Dilations). On the Heisenberg group Hn we define the family of automorphisms
{δλ}λ>0 as

(1.119) δλ((x,y, t)) .= (λx, λy, λ2t)

for any (x,y, t) ∈ Hn. ♢

Then the following lemma holds for the Carnot-Carathéodory distance on Hn:
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Lemma 1.91. The Carnot-Carathéodory distance dcc on Hn is left invariant, in the sense
that dcc(g · p, g · q) = dcc(p, q) for any g, p, q ∈ Hn, and it is homogeneous, in the sense that
dcc(δλ(p), δλ(q)) = dcc(p, q) for any p, q ∈ Hn and λ > 0.

Notation 1.92. In Chapter 3, we will often use the symbol PerH to denote the sub-Riemannian
perimeter (Equation (1.108)) in the sub-Riemannian Heisenberg group Hn. ♢

Remark 1.93 (Hn as the Gromov-Hausdorff limit of Riemannian manifolds). The notions of
Gromov-Hausdorff type convergence of metric (measure) spaces from Section 1.1.4 can be used
to realize (Hn, dcc) as the limit of Riemannian manifolds. Indeed, for any ε > 0 consider the
metric tensor gε on R2n+1 for which the family {X1, . . . , Xn, Y1, . . . , Yn, Tε} is a orthonormal
basis, where Tε

.=
√
εT . Let then dε be the distance associated to gε through

(1.120) dε(x, y) .= inf
{∫ 1

0
∥γ′(t)∥ε dt

∣∣∣∣∣ γ : [0, 1] → R2n+1 is a curve
with γ(0) = x, γ(1) = y

}
,

where ∥·∥ε is the norm associated to gε – i.e., in particular,

(1.121) ∥γ′(t)∥2
ε =

n∑
j=1

(
γ′j(t)2 + γ′n+j(t)2

)
+ γ′2n+1(t)2

whenever

(1.122) γ′(t) =
n∑
j=1

(
γ′j(t)Xj(γ(t)) + γ′n+j(t)Yj(γ(t))

)
+ γ′2n+1(t)Tε(γ(t)).

In [Cap+07, Section 2.4], the authors prove that the metric spaces
(
R2n+1, dε

)
converge in the

pointed Gromov-Hausdorff sense to (Hn, d) (by taking, for instance, the origin as the selected
point).

This approach to the Heisenberg group proves fruitful from many points of view: for exam-
ple, again in [Cap+07], geodesics in the space (Hn, dcc) are recovered as limits of Riemannian
geodesics in (R2n+1, dε); as a further example, notions of intrinsic curvature (for curves) and
mean curvature (for surfaces) where proposed in [BTV17; BTV20] as limits of the corresponding
Riemannian ones. ♢

Remark 1.94 (Is Hn a RCD(K,N) space?). In the above Remark 1.93, we have seen that
(Hn, dcc) can be obtained as a Gromov-Hausdorff limit of Riemannian spaces (and in particu-
lar, the corresponding metric measure space

(
Hn, dcc,L 2n+1) is a pointed measured Gromov-

Hausdorff limit of the same manifolds with the Lebesgue measures). In sight of Remark 1.32
and Proposition 1.79 one can wonder if the approximants have Ricci curvature bounded from
below, or more generally if such a space satisfies a CD(K,N) condition as in Section 1.3.

The Ricci curvatures of the approximanting Riemannian manifolds (R2n+1, gε) can be com-
puted explicitly (this is completely done in [Cap+07, Paragraph 2.4.2] for the case n = 1):
unfortunately, it can be shown that Ricgε(Tε, Tε) is not uniformly bounded from below when
ε ↓ 0 (while gε(Tε, Tε) = 1 by the definition of gε). Indeed, by Equation (1.86), at each point
p ∈ R2n+1 one can compute

(1.123) Ricgε(Tε, Tε) =
n∑
j=1

(sec(Tε, Xj) + sec(Tε, Yj));
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here by the properties of the Levi-Civita connection and the fact that [Tε, Xj ] = [Tε, Yj ] = 0 for
any j = 1, . . . , n it holds

sec(Tε, Xj) = gε(Rgε(Tε, Xj)Xj , Tε) = gε
(
∇Tε∇XjXj − ∇Xj ∇TεXj − ∇[Tε,Xj ], Tε

)
= −gε

(
∇Xj ∇TεXj , Tε

)(1.124)

and analogously

(1.125) sec(Tε, Yj) = −gε
(
∇Yj ∇TεYj , Tε

)
.

Using the Koszul identity 1.84 – and recalling that the Xj ’s, the Yj ’s and Tε form an orthonormal
basis, so the first three terms in the formula are null –, one can see that

(1.126) ∇TεXj = − 1
2
√
ε
Yj and ∇TεYj = 1

2
√
ε
Xj ;

the same Koszul formula applied once again gives

gε
(
∇Xj ∇TεXj , Tε

)
= 1

4
√
ε
gε([Xj , Yj ], Tε) = 1

4ε(1.127)

gε
(
∇Yj ∇TεYj , Tε

)
= − 1

4
√
ε
gε([Yj , Xj ], Tε) = 1

4ε.(1.128)

Inserting this into Equation (1.123), one gets that

(1.129) Ricgε(Tε, Tε) = − n

2ε ;

thus the Gromov-Hausdorff approximants of Hn do not have uniformly bounded Ricci curvatures.
Worse than that, in [Jui09] the author proves that no CD(K,N) condition can hold for the

Heisenberg group
(
Hn, dcc,L 2n+1). This is obtained by constructing a pair of compact sets in Hn

that make the (0, N)-Brunn-Minkowski inequality fail for any N ([Jui09, Lemma 3.1]); instead,
such inequality always holds on CD(0, N) spaces by [Stu06b, Proposition 2.1]. Using the scaling
properties of CD spaces and Hn, one can show that

(
Hn, dcc,L 2n+1) can not be CD(K,N) with

K < 0 either (see [Jui09, Remark 3.3]).
It is worth to mention that, up to replacing the distortion coefficients of Definition 1.61 with

suitable coefficients adapted to the Heisenberg setting, one can still recover on Hn a entropy
inequality in analogy with Equation (1.79) ([BKS18, Theorem 1.2]); following this argument,
one can find a suitable form of the aforementioned Brunn-Minkowski inequality that holds in
Hn ([BKS18, Corollary 4.2]). ♢

Finally, for maps defined on domains of Hn, an adjusted notion of regularity can be given,
which takes into consideration the privileged directions X1, . . . , Xn, Y1, . . . , Yn:

Definition 1.95 (Horizontally C1 functions). Let Ω ⊂ Hn be an open set, and let f ∈ C0(Ω). We
call horizontal gradient of f the distribution ∇Hf := (X1f, . . . ,Xnf, Y1f, . . . , Ynf). Then f is
said to be of class C1

H(Ω) its horizontal gradient ∇Hf is represented by a continuous function. ♢

Building on the definition of C1
H functions, one can adapt to Hn the Euclidean notion of

“regular surface” by considering level sets of C1
H maps:
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Definition 1.96 (H-regular surface). We shall say that S ⊂ Hn is an H-regular surface if for
every p ∈ S there exist a neighborhood Ω ⊂ Hn and a function f ∈ C1

H(Ω) such that ∇Hf ̸= 0
in Ω and S ∩ Ω = {q ∈ Ω | f(q) = 0}.

In that case, we define the horizontal normal νS at the point p ∈ S ∩ Ω as

♢(1.130) νS(p) .= ∇Hf(p)
|∇Hf(p)| .

Even though we will not need it, let us point out that for H-regular surfaces a version of the
Implicit Function Theorem is available, in the sense that H-regular functions can be locally seen
as the intrinsic graphs of functions defined on subsets of {(x,y, t) ∈ Hn | x1 = 0} (see [FSS01,
Theorem 6.5]).



Chapter 2

Symmetrizations and uniformly elliptic
equations on RCD spaces

In this Chapter, we overview the results obtained in a joint work with Andrea Mondino [MV21]
on a Talenti-type comparison Theorem on RCD(K,N) spaces. Furthermore, an easy extension
to the case with obstacle is added in Section 2.2.1.

In the Euclidean space, the Schwarz symmetrization of a set Ω ⊂ Rn is defined as the unique
ball Ω⋆ centered at the origin and having the same Lebesgue measure of Ω. If f : Ω → R is a
measurable function, its symmetrization f⋆ is defined on Ω⋆ as the unique radial function which
is non-increasing in the radial direction and is equimeasurable with f (in the sense that all the
super levels {f⋆ > t} have the same Lebesgue measure as {|f | > t}).

In the study of geometric and variational problems, Schwarz symmetrizations often prove
useful: indeed, exploiting their properties, one can frequently simplify a complex problem by
reducing it to the study of spherically symmetric objects. Specifically, the notion of Schwarz
symmetrization of a function plays a notable role in proving results such as the Rayleigh-Faber-
Krahn Inequality, as well as several variational inequalities for differential boundary problems.

A classical problem, historically known as the “Talenti comparison theorem”, is to compare
the outcomes of the following procedures:

(a) Solve a Poisson problem of the type

(2.1)
{

−∆u = f in Ω ⊂ Rn

u = 0 on ∂Ω
,

with f ∈ L2(Ω); then consider the Schwarz symmetrization u⋆ of u.

(b) Solve the symmetrized Poisson problem

(2.2)
{

−∆v = f⋆ in Ω⋆ ⊂ Rn

v = 0 on ∂Ω⋆
.

A result of Talenti [Tal76] (which builds on the work of Weinberger [Wei62] and Bandle [Ban76])
states that the inequality u⋆ ≤ v holds in Ω⋆, and if equality holds then Ω was already a ball. We
refer the reader to [Ban80; Bae19; Lio79; Kes06; PS51] for different proofs and related topics.
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In this Chapter, we set up the same problem on RCD(K,N) spaces with K > 0 and N ∈
(1,∞), and we show that an analogous estimate holds; moreover, the result is rigid, in the sense
that equality at just one point forces the space to assume a particular structure (a spherical
suspension, see Definition 2.24); and it is stable, in the sense that if u⋆ and v are close enough
in L2-norm, then the space is arbitrarily close to a spherical suspension in measured Gromov-
Hausdorff topology. Since N -dimensional Riemannian manifolds with Ricci curvature bounded
from below by K > 0 are in particular RCD(K,N) spaces, a smooth version of these results can
be obtained from the RCD version: we refer the reader to [MV21, Section 6].

Recall that, by Remark 1.65, if K > 0 a generalized version of the Bonnet-Myers theorem
implies that spt(m) is compact and thus m(X) < ∞: up to a constant normalization of the
measure, we can thus assume that m(X) = 1. Thus, the setting for this Chapter will be the
following:

Assumption 2.1. For the whole Chapter 2, (X, d,m) will be a metric measure space verifying
the RCD(K,N) condition for some K > 0 and N ∈ (1,∞) (see Definition 1.63). We will always
assume that m(X) = 1.

Moreover, Ω ⊂ X will be an open connected subset with m(X \ Ω) > 0. ♢

Recall that the definition of (K,N)-Schwarz symmetrization can be found in Definition 1.75:
domains and functions on RCD(K,N) spaces can be symmetrized, and the symmetrizations now
live on the model space (JK,N , deu,mK,N ).

2.1 Elliptic problems on RCD(K,N) spaces

In the next sections, we will deal with arbitrary uniformly elliptic operators: we summerize here
the properties we need.

Assumption 2.2 (Uniformly elliptic operators). From now on we will assume E : L2(X,m) ×
L2(X,m) → [−∞,∞] to be a non-negative definite bilinear form such that the following proper-
ties hold:

(a) Strong locality: E(u, v) = 0 whenever u(x)(v(x) + c) = 0 for m-a.e. x ∈ X, for some
constant c ∈ R.

(b) α-uniform ellipticity: there exists α > 0 such that for any u ∈ L2(X,m)

(2.3) E(u, u) ≥ αCh(u, u),

where Ch = Ch2 is the 2-Cheeger energy defined in Definition 1.12.

(c) E is of order 1: there exists β > 0 such that E(u, u) ≤ β∥u∥2
H1,2(Ω,d,m) for every u ∈

H1,2(Ω, d,m). ♢

Remark 2.3. Notice that, since RCD(K,N) spaces satisfy a (local) Poincaré inequality, Propo-
sition 1.31 holds, and thus Equation (2.3) implies that

(2.4) E(u, u) ≥ CΩ∥u∥2
H1,2(X,d,m) for all u ∈ H1,2

0 (Ω, d,m)

for some constant CΩ > 0. ♢
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Definition 2.4. Let E be as in Assumption 2.2. Let Ω ⊂ X be an open subset such that
m(Ω) < m(X), and let f ∈ L2(Ω,m). Let K ⊂ H1,2

0 (Ω, d,m) be a closed convex subset of
H1,2

0 (Ω, d,m). Consider the following problems:

(MP) Minimization problem: find u ∈ K which minimizes the functional

(2.5) JE,f (v) .= 1
2E(v, v) −

∫
Ω
fv dm

among functions v ∈ K.

(WP) Weak problem: find u ∈ K such that

♢(2.6) E(u, v − u) ≥
∫

Ω
f(v − u) dm for all v ∈ K.

As a first step, we recap what can be said about the existence and uniqueness of solutions
for the above defined problems; for the sake of completeness, we sketch a simple proof for the
case where E is symmetric. A complete reference for these issues in a more general setting can
be found in [KS80, Chapter II, Sections 1 and 2].

Proposition 2.5. Let E ,Ω, f,K be as in Definition 2.4. Then:

(i) If E is symmetric, then any solution to the minimization problem (MP) solves the weak
problem (WP).

(ii) If E is symmetric, then the minimization problem (MP) admits at least a solution (and
thus (WP) also does).

(iii) The weak problem (WP) admits at most a solution (and thus (MP) also does, when E is
symmetric).

Proof. Statement (i): Let u ∈ K be a minimum for the functional JE,f , and let v ∈ K be a test
function. Consider, for any ε ∈ (0, 1), the function vε

.= u + ε(v − u), which belongs to K by
convexity. By minimality of u,

(2.7) 1
2E(vε, vε) −

∫
Ω
fvε dm ≥ 1

2E(u, u) −
∫

Ω
fudm.

The bilinearity and symmetry of E thus imply that

(2.8) 1
2ε · 2E(u, v − u) + 1

2ε
2E(v − u, v − u) − ε

∫
Ω
f(v − u) dm ≥ 0;

rearranging and dividing by ε > 0,

(2.9) E(u, v − u) −
∫

Ω
f(v − u) dm ≥ −1

2εE(v − u, v − u).

Since this holds for any ε ∈ (0, 1), (i) follows.
Statement (ii): The proof for the existence of a minimum is an instance of the classical direct

method of the calculus of variations. Let

(2.10) d
.= inf{JE,f (u) | u ∈ K},
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and notice that d > −∞ because (by Equation (2.4) and Hölder inequality) for any u ∈ K

(2.11) JE,f (u) ≥ 1
2
[
CΩ∥u∥2

L2(Ω,m) − 2∥f∥L2(Ω,m)∥u∥L2(Ω,m)

]
≥ 1

2CΩ
∥f∥L2(Ω,m) > −∞.

Fix a minimizing sequence {un}n∈N in K such that

(2.12) lim
n→∞

JE,f (un) = d;

it is easy to see that {un}n is bounded in H1,2(X, d,m), thus up to subsequences it converges to
a function u weakly in H1,2(X, d,m); by closedness of K, u ∈ K (by the Mazur’s Lemma, weak
and strong closedness are equivalent because of the convexity of K). Moreover, by coercivity
on H1,2

0 (Ω, d,m), the functional v 7→ E(v, v) is weakly lower semicontinuous on H1,2
0 (Ω, d,m) as

a consequence of the Riesz Representation Theorem; by continuity of v 7→
∫

Ω fv dm, then, the
functional JE,f is lower semicontinuous: thus

(2.13) JE,f (u) ≤ lim inf JE,f (un) = inf{JE,f (u) | u ∈ K}.

Statement (iii): Let u1, u2 ∈ K be two solutions to the weak problem (WP). We can use u1
as a test function for u2 and vice versa:

(2.14) E(u1, u2 − u1) ≥
∫

Ω
f(u2 − u1) dm and E(u2, u1 − u2) ≥

∫
Ω
f(u1 − u2) dm;

adding up, and considering the uniform ellipticity assumption,

(2.15) CΩ∥u1 − u2∥H1,2(X,d,m) ≤ E(u1 − u2, u1 − u2) ≤ 0.

In particular, u1 = u2.

Proposition 2.6. The weak problem (WP) admits a unique solution even when E is not sym-
metric.

Proof. We refer the reader to [KS80, Lemma 2.2].

Lemma 2.7. Consider the problem in Definition 2.4. If the family K coincides with the whole
H1,2

0 (Ω, d,m), then the weak problem (WP) is equivalent to

(WP′) find u ∈ K such that

(2.16) E(u,w) =
∫

Ω
fw dm for all w ∈ H1,2

0 (Ω, d,m).

Proof. Let u ∈ H1,2
0 (Ω, d,m) be the unique solution to the weak problem, and let w be a test

function in H1,2
0 (Ω, d,m). Both v+

.= u+w and v−
.= u−w can be used in Equation (2.6): thus

we have that

(2.17)
E(u,w) ≥

∫
Ω
fw dm

E(u,−w) ≥
∫

Ω
f(−w) dm,

which implies, by bilinearity of E , the thesis. The converse is trivial.
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2.2 A Talenti-type comparison theorem for RCD(K,N) spaces

In this Section, we prove a version of Talenti’s comparison theorem in the RCD setting; the
proof follows the same scheme as the one given in [Kes06, Section 3.1] for the Euclidean setting.

Definition 2.8 (Domain of LE). Let E be a uniformly elliptic bilinear form as in Assumption 2.2.
We define the domain of LE as the set

(2.18) DΩ(LE)
.=

u ∈ H1,2(Ω, d,m)

∣∣∣∣∣∣∣
∃f ∈ L2(Ω,m) such that

E(u, v) =
∫

Ω
fv dm for all v ∈ H1,2(Ω, d,m)

.
If u ∈ DΩ(LE) and f satisfies the condition in Equation (2.18), we write −LE(u) = f . ♢

The problem we are interested in, in this Section, is the one coming from Proposition 2.6:

Definition 2.9 (Dirichlet problem on (Ω, d,m)). Let E be a uniformly elliptic bilinear form as
in Assumption 2.2; let Ω ⊂ X be an open domain and let f ∈ L2(Ω,m). We say that a function
u ∈ H1,2(X, d,m) is a weak solution to the Dirichlet problem

(2.19)

−LE(u) = f in Ω
u = 0 on ∂Ω

if u ∈ H1,2
0 (Ω, d,m) and

(2.20) E(u, v) =
∫

Ω
fv dm, for any v ∈ H1,2(Ω, d,m).

By Proposition 2.6 (and Lemma 2.7), this Dirichlet problem admits a unique solution u ∈
H1,2

0 (Ω, d,m). ♢

Remark 2.10. An alternative (but slightly less general) approach would be to adopt the lan-
guage of differential calculus on metric measure spaces, as introduced for example in [Gig18].
In particular, let A be an element of the L2(X)-normed L∞(X)-module L2(T ∗X) ⊗L2(T ∗X) and
assume it is concentrated on Ω. Assume there exists α > 0 such that for any X ∈ L2(TX)

∣∣
Ω

(2.21) A(X,X) .= A(X ⊗X) ≥ α|X|2,

where we have denoted by |·| the pointwise norm of X, and by L2(TX)
∣∣
Ω the sub-module of the

tangent module whose elements are concentrated on Ω. Recall now that for an infinitesimally
Hilbertian metric measure space X and a function u ∈ H1,2(X, d,m) we can define the gradient
∇u ∈ L2(TX) as the image of the differential du ∈ L2(T ∗X) through the canonical isomorphism
between the two L∞-modules. If we denote by EA : H1,2(Ω, d,m) × H1,2(Ω, d,m) → R the
bilinear form defined by

(2.22) EA(u, v) .=
∫

Ω
A(∇u,∇v) dm,

then for any f ∈ L2(Ω,m), we say that u is a weak solution to the equation −LEA
(u) = f if

♢(2.23) EA(u, v) =
∫

Ω
A(∇u,∇v) dm =

∫
Ω
fv dm, ∀v ∈ H1,2(Ω, d,m).
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Before passing to the proof of the main comparison theorem, we establish few auxiliary
results. We begin with a simple lemma which only requires (X,m) to be a measure space and
Ω ⊂ X to be measurable with finite measure.

Lemma 2.11. Let f, u ∈ L2(Ω,m), with Ω ⊂ X measurable domain with finite measure. Define

(2.24) F (t) .=
∫
{u>t}

(u− t) f dm, ∀t ∈ R.

Then F is differentiable out of a countable set C ⊂ R, and

(2.25) F ′(t) = −
∫
{u>t}

f dm, ∀t ∈ R \ C.

Proof. The proof is quite standard, however we recall it for the reader’s convenience.
First of all notice that m({u = t}) > 0 for an at most countable set C ∈ R. Let t ∈ R \ C and
h > 0. Then

F (t+ h) − F (t) =
∫
{u>t+h}

(u− t) f dm − h

∫
{u>t+h}

f dm

−
[∫
{u>t+h}

(u− t) f dm +
∫
{t<u≤t+h}

(u− t) f dm
]

= −h
∫
{u>t+h}

f dm −
∫
{t<u≤t+h}

(u− t) f dm,

(2.26)

which implies

(2.27)
∣∣∣∣∣F (t+ h) − F (t)

h
+
∫
{u>t+h}

f dm
∣∣∣∣∣ ≤

∫
{t<u≤t+h}

|f | dm.

The right hand side converges to 0 by Hölder inequality and continuity of the measure, recalling
that m({u = t}) = 0. An analogous procedure works for F (t− h) − F (t): we find

(2.28)
∣∣∣∣∣F (t− h) − F (t)

−h
+
∫
{u>t−h}

f dm
∣∣∣∣∣ ≤

∫
{t−h<u≤t}

|f | dm;

taking the limit as h → 0, this gives the claimed identity.

The next step toward a Talenti Theorem is an estimate which involves the α-uniform ellip-
ticity of E and a suitable choice of test functions in the Dirichlet problem Equation (2.20).

Lemma 2.12. Let Ω ⊂ X be an open domain with finite measure, E be as in Assumption 2.2
and f ∈ L2(Ω,m). Let u ∈ H1,2(Ω, d,m) be a weak solution to −LE(u) = f . Then for L 1-a.e.
t > 0 it holds:

(2.29)
(

− d

dt

∫
{|u|>t}

|∇u|w dm
)2

≤ − 1
α
µ′(t)

∫
{|u|>t}

|f | dm,

where µ = µu is the distribution function of u and |∇u|w denotes the minimal 2-weak upper
gradient of u.
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Proof. Let t > 0 be fixed, and consider the following test function:

(2.30) vt
.= (u− t)+ − (u+ t)− =


u− t = |u| − t if u > t

0 if |u| ≤ t

u+ t = −(|u| − t) if u < −t
.

It is easy to see that vt still belongs to the space H1,2(Ω, d,m), thus it can be used as a test
function in Equation (2.20) to obtain

(2.31) E(u, vt) =
∫

Ω
fvt dm =

∫
{u>t}

(u− t) f dm −
∫
{−u>t}

(−u− t) f dm.

By applying Lemma 2.11 we obtain that, for L 1-a.e. t > 0, t 7→ E(u, vt) is differentiable with

(2.32) − d

dt
E(u, vt) =

∫
{u>t}

f dm −
∫
{u<−t}

f dm ≤
∫
{|u|>t}

|f | dm.

For fixed t > 0 and h > 0, by bilinearity of E it holds that

(2.33) E(u, vt+h) − E(u, vt) = E(u, vt+h − vt).

Moreover, we can explicitly write
(2.34)

vt+h − vt = − sgn(u)
[
(|u| − t)χ{t<|u|≤t+h} + hχ{|u|>t+h}

]
=



h if u < −t− h

−(u+ t) if −t− h ≤ u < −t
0 if |u| ≤ t

−(u− t) if t < u ≤ t+ h

−h if u > t+ h

.

Notice that, by strong locality and bilinearity of E , for any B ∈ B(X)

(2.35) 0 = E(uχB, χB) + E(uχX\B, χB) = E(u, χB).

In particular, it follows from Equations (2.33) to (2.35) that
E(u, vt+h) − E(u, vt)

h
= − 1

h

[
E
(
u, (u+ t)χ{−t−h≤u<−t}

)
+ E

(
u, (u− t)χ{t<u≤t+h}

)]
= − 1

h

{
E
(
uχ{−t−h≤u<−t}, uχ{−t−h≤u<−t}

)
+

+ E
(
uχ{t<u≤t+h}, uχ{t<u≤t+h}

)}
.

(2.36)

By α-uniform ellipticity, then, the following estimate holds true:

(2.37) − 1
α

E(u, vt+h) − E(u, vt)
h

≥ 1
h

∫
{t<|u|≤t+h}

|∇u|2w dm.

Consequently, the following chain of inequalities holds for all t ∈ R and h > 0:(1
h

∫
{t<|u|≤t+h}

|∇u|w dm
)2

≤
(

1
h

∫
{t<|u|≤t+h}

|∇u|2w dm
)(

m({t < |u| ≤ t+ h})
h

)
≤ 1
α

(
−E(u, vt+h) − E(u, vt)

h

)(
−µ(t+ h) − µ(t)

h

)
.

(2.38)

Hence, if t is a differentiability point for t 7→ E(u, vt), letting h → 0 and using Equation (2.32)
we get exactly the desired result.
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A further estimate is needed: here is where the Coarea Formula (1.90) and the Lévy-Gromov
inequality (1.96) are exploited.

Corollary 2.13. Let (X, d,m) be an RCD(K,N) space for some K > 0, N ∈ (1,∞). Let Ω ⊂ X
be an open domain and u : Ω → R be a function in H1,2(Ω, d,m). Then the map

(2.39) t 7→
∫
{|u|>t}

|∇u|w dm

is absolutely continuous and

(2.40) − d

dt

(∫
{|u|>t}

|∇u|w dm
)

≥ IK,N (m({|u| > t})) = IK,N (µ(t)).

Proof. The absolute continuity of t 7→
∫
{|u|>t}|∇u|w dm is an immediate consequence of the

identity

(2.41)
∫
{|u|>t}

|∇u|w dm =
∫ ∞
t

Per({|u| > r}) dr

in Proposition 1.70. Differentiating such a formula, we get that for almost every t > 0 one has

(2.42) − d

dt

(∫
{|u|>t}

|∇u|w dm
)

= Per({|u| > t})

and thus we can use the Lévy-Gromov inequality this is greater than or equal to IK,N (m({|u| >
t})) = IK,N (µu(t)).

We have now the tools needed to prove our first main result.

Theorem 2.14 (A Talenti-type comparison for RCD(K,N) spaces). Let (X, d,m) be space sat-
isfying the RCD(K,N) condition for some K > 0, N ∈ (1,∞), with m(X) = 1, and let Ω ⊂ X
be an open domain with measure m(Ω) = v ∈ (0, 1). Let f ∈ L2(Ω,m). Let E be a α-uniformly
elliptic bilinear form as in Assumption 2.2 and assume that u ∈ H1,2

0 (Ω) is a weak solution to
the equation −LE(u) = f .

Let also w ∈ H1,2(Ω⋆, deu,mK,N ) be a weak solution (as in Definition 1.52) to the problem

(2.43)
{

−α∆K,Nw = f⋆ in Ω⋆

w(r1) = 0
,

where Ω⋆ = [0, rv), rv
.= H−1

K,N (v) > 0 is such that mK,N ([0, rv)) = m(Ω), and f⋆ is the Schwarz
symmetrization of f . Then

1. u⋆(x) ≤ w(x), for every x ∈ [0, rv].

2. For any 1 ≤ q ≤ 2, the following Lq-gradient estimate holds:

(2.44)
∫

Ω
|∇u|qw dm ≤

∫ rv

0
|w′(ϱ)|q dmK,N (ϱ).
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Remark 2.15. The Dirichlet problem in Equation (2.43) can be explicitly rewritten as

(2.45)


− w′′ −

h′K,N
hK,N

w′ = 1
α
f⋆ in Ω⋆

w(H−1
K,N (m(Ω))) = 0

,

by the definition of ∆K,N and HK,N . ♢

Proof. We split the proof of the two statements:
Proof of 1. By combining Lemma 1.42, Lemma 2.12 and Corollary 2.13, we obtain the

following chain of inequalities:

IK,N (µ(t))2 ≤
(

− d

dt

∫
{|u|>t}

|∇u|w dm
)2

≤ − 1
α
µ′(t)

∫
{|u|>t}

|f | dm

≤ − 1
α
µ′(t)

∫ µ(t)

0
f ♯(s) ds

(2.46)

for almost every t > 0, which can be rewritten as

(2.47) 1 ≤ − µ′(t)
α IK,N (µ(t))2

∫ µ(t)

0
f ♯(s) ds

for almost every t ∈ (0,M), where M = ess supu. For ξ > 0 let

(2.48) F (ξ) .=
∫ ξ

0
f ♯(s) ds.

Let now 0 ≤ τ ′ < τ ≤ M . Integrating Equation (2.47) from τ ′ to τ we get

(2.49) τ − τ ′ ≤ 1
α

∫ τ

τ ′

F (µ(t))
IK,N (µ(t))2 (−µ′(t)) dt, 0 ≤ τ ′ < τ ≤ M.

Using the change of variables ξ = µ(t) on the intervals where µ is absolutely continuous, and
observing that the integrand is non-negative, we obtain

(2.50) τ − τ ′ ≤ 1
α

∫ µ(τ ′)

µ(τ)

F (ξ)
IK,N (ξ)2 dξ, 0 ≤ τ ′ < τ ≤ M.

Let us fix s ∈ (0, µ(0)) and let η > 0 be a small enough parameter (that will eventually tend to
0); consider τ ′ = 0 and τ = u♯(s) − η. Notice that, since u♯(s) is the infimum of the τ̃ such that
µ(τ̃) < s, we have that µ(τ) ≥ s. Using again the non-negativity of the integrand, for any η > 0
we obtain that

(2.51) u♯(s) − η ≤ 1
α

∫ µ(0)

s

F (ξ)
IK,N (ξ)2 dξ, ∀s ∈ (0, µ(0)).

Letting η ↓ 0 and enlarging the integration interval, we get:

(2.52) u♯(s) ≤ 1
α

∫ m(Ω)

s

1
IK,N (ξ)2

∫ ξ

0
f ♯(t) dtdξ, ∀s ∈ (0,m(Ω)).
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Notice that on (µ(0),m(Ω)) the function u♯ vanishes. Finally, by the definition of the sym-
metrized function u⋆ = u♯ ◦HK,N , we obtain

(2.53) u⋆(x) ≤ 1
α

∫ m(Ω)

HK,N (x)

1
IK,N (ξ)2

∫ ξ

0
f⋆(H−1

K,N (t)) dtdξ, ∀x ∈ JK,N .

Now we can recognize that the right hand side coincides with the characterization of w we
obtained in Equation (1.66), since rv was chosen so that HK,N (rv) = m(Ω). Note that, since
the integrand is non-negative, w is non-increasing, and takes the value zero at rv.

Proof of 2. We start by noticing that

(2.54)
∫

Ω
|∇u|qw dm =

∫
{|u|>0}

|∇u|qw dm,

since |∇u|w = 0 m-a.e. on {u = κ} for any κ ∈ R. Let M := ess supΩ |u|; fix t > 0 and
0 < h < M − t. By using the Hölder inequality (with exponents 2

q and 2
2−q ) one gets

(2.55) 1
h

∫
{t<|u|≤t+h}

|∇u|qw dm ≤
(

1
h

∫
{t<|u|≤t+h}

|∇u|2w dm
) q

2(m({t < |u| ≤ t+ h})
h

) 2−q
2
.

By the very same computations we already performed in Lemma 2.12, exploiting the test func-
tions vt ∈ H1,2(Ω, d,m) defined in Equation (2.30) (see Equations (2.32), (2.37) and (2.38)), we
can let h tend to zero in Equation (2.55) and obtain that the map

(2.56) t 7→
∫
{|u|>t}

|∇u|qw dm

is absolutely continuous on (0,M) and thus

(2.57)
∫

Ω
|∇u|qw dm =

∫ M

0
− d

dt

∫
{|u|>t}

|∇u|qw dmdt;

moreover

(2.58) − d

dt

∫
{|u|>t}

|∇u|qw dm ≤
(

1
α

∫
{|u|>t}

f dm
) q

2

(−µ′(t))
2−q

2 .

Let us now adopt again the notation

(2.59) F (ξ) .=
∫ ξ

0
f ♯(s) ds,

as in Equation (2.48). Exploiting again Lemma 1.42, we get:

(2.60) − d

dt

∫
{|u|>t}

|∇u|qw dm ≤
(
F (µ(t))

α

) q
2
(−µ′(t))

2−q
2

for almost every t. In order to obtain a clean term µ′(t) at the right hand side, we multiply
both sides of Equation (2.60) with the respective sides of Equation (2.47) raised at the power
q
2 . This gives, for almost every t ∈ (0,M):

(2.61) − d

dt

∫
{|u|>t}

|∇u|qw dm ≤
(

F (µ(t))
αIK,N (µ(t))

)q
(−µ′(t)).
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Inserting this last inequality in Equation (2.57) and changing the variables as usual with ξ = µ(t),
the following estimate holds:

(2.62)
∫

Ω
|∇u|qw dm ≤

∫ m(Ω)

0

(
F (ξ)

αIK,N (ξ)

)q
dξ.

Finally, we recall that w has an explicit expression we can differentiate: by differentiating
Equation (1.58) (with datum f⋆

α ), we find for all ϱ ∈ (0, rv)

(2.63) w′(ϱ) = − 1
hK,N (ϱ)

∫ HK,N (ϱ)

0

1
α
f⋆(H−1

K,N (t)) dt = −F (HK,N (ϱ))
αhK,N (ϱ) .

Thus, the following identity holds true:∫ rv

0
|w′(ϱ)|q dmK,N =

∫ rv

0

(
F (HK,N (ϱ))
αhK,N (ϱ)

)q
hK,N (ϱ) dϱ =

∫ m(Ω)

0

(
F (ξ)

αIK,N (ξ)

)q
dξ,(2.64)

where we have used the change of variables ξ = HK,N (ϱ) and the characterization of the isoperi-
metric profile IK,N (ξ) = hK,N (H−1

K,N (ξ)). Comparing with Equation (2.62), we obtain the
claimed Lq-gradient estimate.

2.2.1 Notes for the obstacle case

A variant of the problem approached in this Section 2.2 is the following:

(OB) Find u ∈ Kob(Ω, d,m) such that

(2.65) E(u, v − u) ≥
∫

Ω
f(v − u) dm for all v ∈ Kob(Ω, d,m)

where Kob(Ω, d,m) is the family

(2.66) Kob(Ω, d,m) .=
{
w ∈ H1,2

0 (Ω, d,m)
∣∣∣ w ≥ 0 a.e. in Ω

}
.

Then this new problem, which is known in the literature as (an instance of) the obstacle problem,
still admits a unique solution, by Proposition 2.6: indeed, Kob(Ω, d,m) is convex and strongly
closed. We refer to [KS80, Chapter II, Section 6] for a description of the problem in Rn.

In order to explore how this problem interacts with symmetrizations, let us give a slightly
different notion of the decreasing rearrangement introduced in Definition 1.40:

Definition 2.16 (Signed decreasing rearrangement). Let f : Ω → R be a measurable function.
We define µsg = µsg

f : R → [0,m(Ω)] as

(2.67) µsg(t) .= m({f > t}).

We define f sg♯ : [0,m(Ω)] → [−∞,∞] as

(2.68) f sg♯(s) .=

ess sup f if s = 0
inf
{
t ∈ R

∣∣∣ µsg
f (t) < s

}
if s > 0

.

In practice, we remove the absolute value from the definition of the distribution function of u,
and then consider the pseudo-inverse of this new function. The relationship between f ♯ and f sg♯

is expressed by f ♯ = |f |sg♯. ♢
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Moreover, we give a signed definition of the (K,N)-Schwarz symmetrization (Definition 1.55
and Equation (1.93)):

Definition 2.17 (Signed (K,N)-Schwarz symmetrization). Let (X, d,m) be a metric measure
space satisfying the RCD(K,N) condition for some K > 0 and N ∈ (1,∞). Let Ω ⊂ X be a
Borel subset and u : Ω → R be a Borel measurable function. Let Ω⋆

K,N be the (K,N)-Schwarz
symmetrization of Ω. Then we define the signed (K,N)-Schwarz symmetrization usg⋆

K,N : Ω⋆
K,N →

R as:

(2.69) usg⋆
K,N (x) .= usg♯(mK,N ([0, x]))

for any x ∈ Ω⋆
K,N . ♢

Some of the results that held for the problem −LE(u) = f have an analogous version here.
In particular, Lemma 2.12 becomes:

Lemma 2.18. Let Ω ⊂ X be an open domain with finite measure, E be as in Assumption 2.2
and f ∈ L2(Ω,m). Let u ∈ H1,2(Ω, d,m) be a solution to (OB). Then for L 1-a.e. t > 0 it holds:

(2.70)
(

− d

dt

∫
{u>t}

|∇u|w dm
)2

≤ − 1
α
µ′(t)

∫
{u>t}

f dm.

Notice that the real difference with Lemma 2.12 lies in the lack of the absolute value of f in the
integral at the right hand side (u is already non-negative by the assumption u ∈ Kob(Ω, d,m)).

Proof. The proof follows the same scheme of Lemma 2.12. Let t > 0 be fixed, and consider
now the functions vt

.= (u − t)+ ∈ Kob(Ω, d,m). Both w+
t
.= u + vt and w−t

.= u − vt belong to
Kob(Ω, d,m), thus they can be used as test functions in Equation (2.65): by the same method
as in the proof of Lemma 2.7, then, it holds that (for these particular functions vt):

(2.71) E(u, vt) =
∫

Ω
fvt dm =

∫
{u>t}

(u− t) f dm.

By applying Lemma 2.11 we obtain that, for L 1-a.e. t > 0, t 7→ E(u, vt) is differentiable with

(2.72) − d

dt
E(u, vt) =

∫
{u>t}

f dm.

Moreover, for any fixed t > 0 and h > 0, we can replicate the argument from Equation (2.33)
to Equation (2.37) (noting that the pieces where u < 0 vanish here). Consequently, as in
Equation (2.38) we get for all t ∈ R and h > 0:

(2.73)
(

1
h

∫
{t<u≤t+h}

|∇u|w dm
)2

≤ 1
α

(
−E(u, vt+h) − E(u, vt)

h

)(
−µ(t+ h) − µ(t)

h

)
.

Hence, if t is a differentiability point for t 7→ E(u, vt), letting h → 0 and using Equation (2.72)
we obtain the new result.

Lemma 2.19. Let E = Ch, and let u be a solution to (OB). If u has a continuous representative
ũ ∈ C0(Ω), then u satisfies −∆u = f on the open set Ω̃ .= {ũ > 0}.
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Proof. Assume without loss of generality that u ∈ C0(Ω). Let φ ∈ Lipc(Ω̃). Then u admits a
minimum δ > 0 in spt(φ); consider then the test functions u± Lφ, with L .= δ

maxΩ φ
: they both

belong to Kob(Ω, d,m), thus we get

(2.74) Ch(u,±Lφ) ≥
∫

Ω
(±Lφ)f dm.

By bilinearity of Ch, this implies (as in Lemma 2.7) that

(2.75) Ch(u, φ) =
∫

Ω̃
fφdm for any φ ∈ Lipc(Ω̃);

By the definition of H1,2
0 (Ω̃, d,m) as the closure of Lipc(Ω̃) in the topology of H1,2(X, d,m), the

previous relation holds for any φ ∈ H1,2
0 (Ω̃, d,m)

Proposition 2.20 (The “model space” case). Let ω = [0, r1) ⋐ JK,N , g ∈ L2(ω,mK,N ) be a
non-increasing function, and assume that v ∈ Kob(ω, deu,mK,N ) is the unique solution to the
obstacle problem
(2.76)

Ch(v, φ− v) =
∫
ω
v′(φ− v)′ dmK,N ≥

∫
ω
g(φ− v) dmK,N for all φ ∈ Kob(ω, deu,mK,N ).

Then v has the form:

(2.77) v(ϱ) =


∫ x̄
ϱ

1
hK,N (r)

∫ r
0 g(x) dmK,N (x) dr if ϱ ∈ [0, x̄)

0 if ϱ ∈ [x̄, r1)

where

(2.78) x̄
.= inf

{
ξ ∈ (0, r1)

∣∣∣∣∣
∫ ξ

0
g dmK,N < 0

}
.

Remark 2.21. Notice that x̄ is allowed to take the values 0 (when g < 0 mK,N -almost every-
where, and in that case v ≡ 0 is trivially a solution) and r1 (when

∫
ω f dmK,N > 0).

Furthermore, if x̄ > 0, then the map G(r) .=
∫ r

0 g dmK,N is strictly negative for r ∈ (x̄, r1) (by
definition), and strictly positive for r ∈ (0, x̄): this depends on the fact that g is non-increasing
(and thus G is concave) and that G > 0 in a right neighborhood of 0. ♢

Proof. By Proposition 2.5, the solution v is the unique minimizer in Kob(ω, deu,mK,N ) of the
functional

(2.79) w 7→
∫
ω

[1
2(w′)2 − gw

]
dmK,N ;

by the Pólya-Szegő inequality (see Theorem 2.26 in the next section) and the Hardy-Littlewood
one (see Proposition 1.58), using the fact that g is non-increasing, it holds that

(2.80)
∫
ω

[1
2((vsg⋆)′)2 − gvsg⋆

]
dmK,N ≤

∫
ω

[1
2(v′)2 − gv

]
dmK,N ,

so we obtain that v = vsg⋆ and thus v is non-increasing as well.
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Notice that by the characterization in Proposition 1.44 v is continuous: on the one hand,
this implies that the set {v > 0} is an interval of type [0, s); on the other hand, we can apply
Lemma 2.19, which ensures that v coincides in ωs

.= [0, s) with the solution to the Dirichlet
problem in that same domain ωs, with boundary datum v(s) = 0.

Let now

(2.81) G(r) .=
∫ r

0
g(x) dmK,N (x)

for any r ∈ [0, r1] and

(2.82) vs(ϱ) .=
(∫ s

ϱ

G(r)
hK,N (r) dr

)
χ[0,s)(ϱ)

for any s, ϱ ∈ [0, r1]. By the previous argument and by Equation (1.58), v coincides with vσ for
some σ ∈ [0, r1]. Trivially, σ ≤ x̄, otherwise v would assume negative values for ϱ close to σ.

Assume by contradiction that σ < x̄ strictly. We can use vx̄ ∈ Kob as a test function in
Equation (2.80): hence we have, for any ϱ ∈ [0, r1]:

vx̄(ϱ) − vσ(ϱ) =


∫ x̄
σ

G
hK,N

dr if ϱ < σ∫ x̄
ϱ

G
hK,N

dr if σ ≤ ϱ < x̄

0 if ϱ ≥ x̄

(2.83)

v′σ(ϱ) = − G

hK,N
(ϱ)χ(0,σ)(ϱ)(2.84)

v′x̄(ϱ) − v′σ(ϱ) = − G

hK,N
(ϱ)χ(σ,x̄)(ϱ).(2.85)

Thus the relation (2.76) with v = vσ and φ = vx̄ has 0 as a left hand side (because v′σ(v′x̄−v′σ) = 0
almost everywhere), while on the right hand side we have by the Fubini-Tonelli Theorem:

∫
ω
g(vx̄ − vσ) dmK,N =

=
∫ σ

0
g(ϱ)

(∫ x̄

σ

G(r)
hK,N (r) dr

)
dmK,N (ϱ) +

∫ x̄

σ
g(ϱ)

(∫ x̄

ϱ

G

hK,N
dr
)

dmK,N (ϱ) =

=
∫ x̄

σ

G(r)
hK,N (r)

∫ σ

0
g(ϱ) dmK,N (ϱ) dr +

∫ x̄

σ

∫ x̄

σ

G(r)
hK,N (r)g(ϱ)χ(ϱ,x̄)(r) dr dmK,N =

=
∫ x̄

σ

G(r)
hK,N (r)

∫ σ

0
g(ϱ) dmK,N (ϱ) dr +

∫ x̄

σ

G(r)
hK,N (r)

∫ r

σ
g(ϱ) dmK,N (ϱ) dr =

=
∫ x̄

σ

G(r)
hK,N (r)

∫ r

0
g(ϱ) dmK,N (ϱ) dr =

∫ x̄

σ

G2(r)
hK,N (r) dr,

(2.86)

which is strictly positive by Remark 2.21. This contradicts the fact that vσ solves Equa-
tion (2.76).

Theorem 2.22 (Talenti with obstacle). Let (X, d,m) be an RCD(K,N) space for some K > 0,
N ∈ (1,∞), with m(X) = 1, and let Ω ⊂ X be an open domain with measure m(Ω) = v ∈ (0, 1).
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Let f ∈ L2(Ω,m). Let E be a α-uniformly elliptic bilinear form as in Assumption 2.2. Assume
that u ∈ Kob(Ω, d,m) is a solution to the obstacle problem.

Let also v ∈ Kob(Ω⋆, deu,mK,N ) be a solution to the symmetrized obstacle problem

(2.87)
∫

Ω⋆
v′(φ− v)′ dmK,N ≥

∫
Ω⋆
f sg⋆(φ− v) dmK,N for all φ ∈ Kob(ω, deu,mK,N ).

Then it holds that {u⋆ > 0} ⊂ {v > 0}, and the inequality u⋆ ≤ v holds almost everywhere.

Proof. The proof follows almost verbatim the one of Theorem 2.14.
Without loss of generality, we can assume that m({f > 0}) > 0, otherwise both problems

have the constant function 0 as the unique solution.
The function v is already known thanks to Proposition 2.20: if we let

(2.88) G(r) .=
∫ r

0
f sg⋆ dmK,N ,

then v(x) = χ[0,x̄)(x)
∫ x̄
x

G(r)
hK,N (r) dr, with

(2.89) x̄
.= inf

{
s ∈ (0, r1)

∣∣∣∣ ∫ s

0
f sg⋆ dmK,N < 0

}
.

In order to estimate u, we can again combine a suitable version of Lemma 1.42 (with f sg♯ in
place of f ♯), Lemma 2.18 (in place of Lemma 2.12) and Corollary 2.13, to obtain:

(2.90) IK,N (µ(t))2 ≤ − 1
α
µ′(t)

∫ µ(t)

0
f sg♯(s) ds

for almost every t > 0, where µ is again the distribution function of u (which is non-negative,
thus µu = µsg

u ). Let us define

(2.91) F sg(ξ) .=
∫ ξ

0
f sg♯(s) ds,

and notice that F = G ◦H−1
K,N .

On the one hand, Equation (2.90) already implies that F sg(m({u > 0})) ≥ 0, thus by
Proposition 2.20

(2.92) m({u > 0}) ≤ mK,N ({v > 0}) ⇒ {u⋆ > 0} ⊂ {v > 0}.

On the other hand, by concavity of F sg (and the fact that F (0) > 0 by the assumption
m({f > 0}) > 0) we get that F sg > 0 for all ξ ∈ (0, µ(0)); we can repeat the argument
from Equation (2.47) to Equation (2.51) (and let again η ↓ 0) to obtain that

(2.93) u♯(s) ≤ 1
α

∫ µ(0)

s

F sg(ξ)
IK,N (ξ)2 dξ, ∀s ∈ (0, µ(0)).

By definition of x̄, the integrand in the previous equation is nonnegative for any ξ < HK,N (x̄),
thus we can enlarge again the domain of integration:

(2.94) u♯(s) ≤ 1
α

∫ HK,N (x̄)

s

F sg(ξ)
IK,N (ξ)2 dξ, ∀s ∈ (0, µ(0)),
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which implies, for any x such that x < H−1
K,N (m({u > 0})),

(2.95) u⋆(x) ≤ 1
α

∫ HK,N (x̄)

HK,N (x)

F sg(ξ)
IK,N (ξ)2 dξ = 1

α

∫ x̄

x

G(r)
hK,N (r) dr.

In particular, on the set {u⋆ > 0}, the estimate u⋆ ≤ v holds by Proposition 2.20, while on the
remaining part of the interval it holds trivially because u ≡ 0 and v ≥ 0.

2.3 Rigidity and Stability

2.3.1 Rigidity in the Talenti-type theorem

Let u ∈ H1,2(Ω, d,m) and w ∈ H1,2([0, rv), deu,mK,N ) be as in Theorem 2.14. The next problem
we want to approach is the equality case, that is, what we can say about the original metric
measure space when u⋆ = w; in fact, we will prove that if the equality is attained at least at
one point, then the metric measure space is forced to have a particular structure, namely it is a
spherical suspension. We recall that, in the Euclidean case Ω ⊂ Rn, the condition u⋆ = w forces
Ω to be a ball and both u and f to be radial.

In order to tackle this question, we recall the definition of a spherical suspension, we state the
Rigidity Theorem for the Lévy-Gromov inequality (as proved in [CM18]) and the Pólya-Szegő
Theorem for RCD(K,N) spaces, which was proved in [MS19].

Definition 2.23 (Warped product). Let (B, dB,mB) and (F, dF ,mF ) be geodesic metric measure
spaces and f : B → [0,∞) be a Lipschitz function. Let d be the pseudo-distance on B × F

defined by

(2.96) d((p, x), (q, y)) .= inf{L(γ) | γ(0) = (p, x), γ(1) = (q, y)},

where, for any absolutely continuous curve γ = (γB, γF ) : [0, 1] → B × F ,

(2.97) L(γ) .=
∫ 1

0

(
|γ′B|2 + (f ◦ γB)2|γ′F |2

) 1
2 dt.

Given N ≥ 1, we define B ×N
f F to be the metric measure space

(2.98) ((B × F )/∼, d,m),

where ∼ is the equivalence relation associated to the pseudo-distance d and m
.= fNmB⊗mF . ♢

Definition 2.24 (Spherical suspensions). We say that an RCD(N − 1, N) space (X, d,m) is a
spherical suspension if it is isomorphic to a warped product [0, π]×N−1

sin Y for an RCD(N−2, N−1)
space (Y, dY,mY) with mY(Y) = 1. ♢

Just for simplicity, the following results are stated in the case of RCD(N − 1, N) spaces;
indeed when K > 0 it is not restrictive to assume K = N − 1 by (1.80). Notice, moreover, that
this assumption only affects the Rigidity statements, while the Pólya-Szegő inequality holds in
the very same form for general K > 0.
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Theorem 2.25 (Rigidity for Lévy-Gromov, [CM18]). Let (X, d,m) be an RCD(N − 1, N) space
for some N ∈ [2,+∞), with m(X) = 1. Assume there exists v̄ ∈ (0, 1) such that I(X,d,m)(v̄) =
IN−1,N (v̄). Then (X, d,m) is a spherical suspension: i.e., there exists an RCD(N − 2, N − 1)
space (Y, dY,mY) with mY(Y) = 1 such that

(2.99) (X, d,m) is isomorphic as a metric measure space to [0, π] ×N−1
sin Y.

Theorem 2.26 (Pólya-Szegő for RCD(N −1, N) spaces, [MS19]). Let (X, d,m) be an RCD(N −
1, N) space for some N ∈ [2,+∞), with m(X) = 1. Let Ω ⊂ X be an open subset with measure
m(Ω) = v ∈ (0, 1) and let rv ∈ (0, π) such that mN−1,N ([0, rv]) = v. Then, for every p ∈ (1,∞),
the following hold:

(i) Pólya-Szegő comparison: for any u ∈ W 1,p
0 (Ω), it holds that u⋆(rv) = 0 and

(2.100)
∫ rv

0
|∇u⋆|p dmN−1,N ≤

∫
Ω

|∇u|p dm.

(ii) Rigidity: if there exists u ∈ H1,2(Ω, d,m) such that u ̸≡ 0, and u attains equality in
Equation (2.100), then (X, d,m) is a spherical suspension.

(iii) Rigidity for Lipschitz functions: if there exists u ∈ H1,2(Ω, d,m) ∩ Lip(Ω) with u ̸≡ 0
and ∇u ̸= 0 m-a.e. in spt(u), achieving equality in Equation (2.100), then (X, d,m) is a
spherical suspension and u is radial: that is, u is of the form u = g(d(·, x0)), with x0 being
the tip of a spherical suspension structure of X, and g : [0, π] → R satisfying |g| = u⋆.

The following rigidity result for the Talenti-type comparison theorem will build on top of
the rigidity in the Lévy-Gromov and Pólya-Szegő inequalities.

Theorem 2.27 (Rigidity for Talenti in RCD). Let (X, d,m) be an RCD(N−1, N) space for some
N ∈ [2,∞), with m(X) = 1, and let Ω ⊂ X be an open domain with measure m(Ω) = v ∈ (0, 1).
Let f ∈ L2(Ω,m), with f ̸≡ 0. Let E be a α-uniformly elliptic bilinear form as in Assumption 2.2
and assume that u ∈ H1,2(Ω, d,m) is a weak solution to the equation −LE(u) = f . Let also
w ∈ H1,2(I, deu,mN−1,N ) be a solution to the problem

(2.101)
{

−α∆N−1,Nw = f⋆ in I

w(rv) = 0

where I = [0, rv), rv ∈ (0, π) is such that mN−1,N ([0, rv)) = v, and f⋆ is the Schwarz sym-
metrization of f . Assume that u⋆(x̄) = w(x̄) for a point x̄ ∈ [0, rv). Then:

1. u⋆ = w in the whole interval [x̄, rv];

2. (X, d,m) is a spherical suspension, i.e. there exists an RCD(N−2, N−1) space (Y, dY,mY)
with mY(Y) = 1 such that (X, d,m) is isomorphic as a metric measure space to [0, π]×N−1

sin Y;

3. if x̄ = 0, u ∈ Lip(Ω) and |∇u|w ̸= 0 m-a.e. in spt(u), then u is radial: that is, u is of the
form u = g(d(·, x0)), with x0 being the tip of a spherical suspension structure of X, and
g : [0, π] → R satisfying |g| = u⋆.
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In order to establish Theorem 2.27, we first prove a preliminary lemma which will also be
useful in Section 2.3.2: in the same setting of the Talenti-type Theorem, the difference w − u⋆

is non-increasing.

Lemma 2.28. Let (X, d,m), Ω, f , E, u and w be as in Theorem 2.14. Then the map x 7→
w(x) − u⋆(x) is non-increasing on [0, rv].

Proof of Lemma 2.28. Since w − u⋆ = (w♯ − u♯) ◦ HK,N , with HK,N strictly increasing, it is
enough to show that w♯ − u♯ is non-increasing in [0,m(Ω)].
Recall that the function w♯ : [0,m(Ω)] → R can be expressed as:

w♯(s) = 1
α

∫ m(Ω)

s

F (ξ)
I2
K,N (ξ) dξ

where F (ξ) .=
∫ ξ

0 f
♯(s) ds as usual. As a preliminary observation, notice that this explicit repre-

sentation gives some useful information on the regularity and behavior of w♯ itself: indeed, w♯ is a
continuously differentiable function on (0,m(Ω)), and it strictly decreasing in [0, rv] (since f ̸≡ 0).
Moreover, as a consequence of the Pólya-Szegő Theorem, u⋆ belongs to H1,2

0 ([0, rv), deu,mK,N )
and it is thus locally absolutely continuous in the interior (0, rv); the same conclusion thus holds
for u♯. Hence the result is proved if we can show that

(2.102) (w♯ − u♯)′ ≤ 0 almost everywhere in (0,m(Ω)).

By the continuity of u♯ and by the definition of symmetrization, we have that u♯(µ(t)) = t

for all t ∈ (0,M) (i.e. µ is the right inverse of u♯), where M .= supu. In particular, (u♯ ◦µ)′ ≡ 1
in (0,M). On the other hand, (w♯ ◦ µ)′ ≥ 1 a.e. in (0,M) by Equation (2.47). Hence,[

(w♯)′ ◦ µ− (u♯)′ ◦ µ
]
µ′ ≥ 0 a.e. in (0,M).

Moreover, µ′ is strictly negative a.e. in (0,M), again by the fact that [(u♯)′ ◦ µ]µ′ = 1 almost
everywhere. This shows that in fact

(2.103)
(
w♯
)′

(µ(t)) ≤
(
u♯
)′

(µ(t)) for a.e. t ∈ (0,M).

Now, let s0 ∈ (0,m(Ω)) be a point where u♯ is differentiable. If (u♯)′(s0) = 0, then trivially
(w♯ − u♯)′(s0) < 0 so the inequality (2.102) is proved. Otherwise, u♯(s) > u♯(s0) for any
s < s0 (by the fact that u♯ is monotone), so in particular s0 = µ(u♯(s0)): by Equation (2.103),
(w♯ − u♯)′(s0) ≤ 0.

Proof of Theorem 2.27. The first statement (u⋆ = w in [x̄, rv]) is a direct consequence of the
monotonicity of w − u⋆ (Lemma 2.28), of the assumption w(x̄) = u⋆(x̄) and of the Talenti
inequality w − u⋆ ≥ 0 in [0, rv].

This also implies that µ(t) = ν(t) for any t ∈ (0, u⋆(x̄)), where ν is the distribution function
of w; hence, for any such t, equality holds in Equation (2.46), in particular in the Lévy-Gromov
inequality: all the superlevels {|u| > t} satisfy IN−1,N (m({|u| > t})) = Per({|u| > t}). By the
rigidity in the Lévy-Gromov inequality, this implies that (X, d,m) is a spherical suspension.
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Assume now x̄ = 0 (thus u⋆ = w in [0, rv]), u ∈ Lip(Ω) and |∇u|w ̸= 0 m-almost everywhere
in spt(u). Putting together the gradient comparison inequality (2.44) (with q = 2) and the
Pólya-Szegő inequality (Equation (2.100)), we find

(2.104)
∫ r1

0
|∇u⋆|2 dmN−1,N ≤

∫
Ω

|∇u|2 dm ≤
∫ r1

0
|∇w|2 dmN−1,N .

The equality assumption, however, implies that the first and the last expressions coincide: thus,
equality in the Pólya-Szegő inequality is achieved. By rigidity in the Pólya-Szegő inequality,
then, u is radial.

2.3.2 Stability

In this Section, we will prove a stable version of the rigidity result (Theorem 2.27); we only
consider the case where E = Ch, so that LE is the Laplacian. We first need to recall some results
on the convergence of metric measure spaces and of functions defined therein.

Assumption 2.29. From now on, the following assumptions will be made:
Spaces: {Xi}i∈N = {(Xi, di, xi,mi)}i∈N and X = (X, d, x,m) will be pointed metric measure

spaces satisfying the RCD(N − 1, N) condition for some N ≥ 2, with mi(Xi) = 1, m(X) = 1.
Convergence of spaces: we will assume that Xi converge in the pmGH sense to X ; by the

already cited [GMS15, Section 3.5], pmGH convergence coincides in our setting with pmG
convergence; thanks to the discussion in Section 1.1.4, the following conditions hold:

(GH1) Xi and X are all contained in a common metric space (Y, d), with di = d
∣∣
Xi×Xi

, and xi → x;

(GH2) sptmi = Xi and sptm = X;

(GH3) The measures mi narrowly converge to m:

(2.105) lim
i→∞

∫
Y
φdmi =

∫
Y
φ dm for all φ ∈ Cb(Y),

where Cb(Y) is the space of continuous and bounded functions on (Y, d). ♢

Remark 2.30 (L2 functions). Assume that BRi(xi) and BR(x) are metric balls in Xi and X
respectively. Let fi ∈ L2(BRi(xi),mi) and f ∈ L2(BR(x),m) be L2 functions on such balls; by
extending such functions to be 0 out of the balls on which they are defined, we can equivalently
assume fi ∈ L2(Xi,mi) and f ∈ L2(X,m); by the assumption that the spaces Xi and X are
contained in Y, up to a further extension we actually have fi ∈ L2(Y,mi) and f ∈ L2(Y,m). ♢

Definition 2.31 (Convergence of L2 functions). Let fi ∈ L2(BRi(xi),mi) and f ∈ L2(BR(x),m)
as in Remark 2.30. Following [GMS15, Definition 6.1], we say that:

(a) fi ⇀ f in the weak L2 sense if

lim
i→∞

∫
Y
φfi dmi =

∫
Y
φf dm for all φ ∈ Cb(Y)

sup
i

∥fi∥L2(BRi
(xi),mi) < ∞.
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(b) fi → f in the strong L2 sense if, in addition,

lim
i→∞

∥fi∥L2(BRi
(xi),mi) = ∥f∥L2(BR(x),m). ♢

Moreover, the following definition from [AH18, Definition 2.6] will be needed:

Definition 2.32 (Weak H1,2 convergence). Let fi ∈ H1,2(BRi(xi),mi) and f ∈ H1,2(BR(x),m).
We say that the fi’s are weakly convergent in H1,2 to f if fi ⇀ f in the weak L2 sense and
supi Chi(f) is finite, where Chi is the Cheeger energy with respect to the metric measure struc-
ture of Xi. ♢

In order to obtain the stability result, we establish a series of auxiliary lemmas of indepen-
dent interest. We start by showing that L2-strong convergence of maps implies the pointwise
convergence of the distribution functions to the distribution function of the limit.

Lemma 2.33 (Convergence of distribution functions). Let Xi
pmGH−→ X be pointed metric measure

spaces satisfying Assumption 2.29. Let BRi(xi) and BR(x) be metric balls in Xi and X respec-
tively, and let fi ∈ L2(BRi(xi),mi) and f ∈ L2(BR(x),m). Assume µi

.= µfi
and µ

.= µf are
the distribution functions of fi and f respectively. If fi → f L2-strongly, then µi(t) converges
to µ(t) for every t ∈ (0,+∞) \ C, where C is a countable set.

Proof. Let us fix t ∈ (0,+∞). We need to show that (except for a countable number of such t)

(2.106) lim
i→∞

mi({|fi| > t}) = m({|f | > t}).

Notice that

{x ∈ Xi | |fi(x)| > t} = {x ∈ Xi | (x, |fi(x)|) ∈ Y × (t,+∞)}
{x ∈ X | |f(x)| > t} = {x ∈ X | (x, |f(x)|) ∈ Y × (t,+∞)}.

Given a map g : Y → R, we denote by i × g : Y → Y × R the map i × g(x) .= (x, g(x)); by the
argument above, it holds that

{x ∈ Xi | |fi(x)| > t} = (i × |fi|)−1(Y × (t,+∞))
{x ∈ X | |f(x)| > t} = (i × |f |)−1(Y × (t,+∞)).

Define νi and ν to be the following push-forward measures on Y × R

(2.107) νi
.= (i × |fi|)♯mi, ν

.= (i × |f |)♯m.

Our goal (Equation (2.106)) is equivalent to show that

(2.108) lim
i→∞

νi(Y × (t,+∞)) = ν(Y × (t,+∞)).

Notice that the topological boundary of Y × (t,+∞) is Y × {t}, which is ν-negligible for all but
a countable set of t > 0 by the finiteness of m:

(2.109) ν(Y × {t}) = m((i × |f |)−1(Y × {t})) = m({|f | = t}).
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Thus, it is sufficient to show that the measures νi converge narrowly to ν in Y ×R. To this aim,
notice that for every φ ∈ Cb(Y×R), one has∫

Y×R
φ(x, s) dνi =

∫
Y
φ(x, |fi(x)|) dmi,

∫
Y×R

φ(x, s) dν =
∫

Y
φ(x, |f(x)|) dm.

Arguing as in [AGS14b, Theorem 5.4.4(iii)] (see also [GMS15, Equation (6.6)]), one can show
that the items in the left converge to the one in the right. This proves the statement.

In [AH18, Theorem 4.2], a variant of the following proposition was established. The proof
contained therein can be straightforwardly adapted to the present case.

Proposition 2.34 (Compactness of local Sobolev functions). Let Xi
pmGH−→ X be pointed metric

measure spaces satisfying Assumption 2.29. Let Ri → R be a convergent sequence of radii with
Ri, R > 0. Let fi ∈ H1,2(BRi(xi), d,mi) have bounded H1,2-norm: supi∥fi∥H1,2 < +∞. Then
there exists a function f ∈ H1,2(BR(x), d,m) such that {fi}i∈N converges L2-strongly to f , up
to a subsequence.

Remark 2.35. The aforementioned [AH18, Theorem 4.2] deals with the same problem, but with
Ri = R for all i. A quick way to deduce our case from this is to look at the “rescaled” spaces
Xi as X̃i

.=
(
Xi, RRi

di, xi,mi

)
: for any ϱ, ε > 0, let F ϱ,εi be the maps that arise in the definition

of the pmGH convergence of the Xi’s to X (see Section 1.1.4).
Then the maps

(2.110) F̃ ϱ,εi
.= F

Ri
R
ϱ, ε

2
i

provide the convergence of X̃i to X (the condition Ri → R is essential for Equation (1.34)).
Moreover, the functions fi from Proposition 2.34 still have bounded H1,2

(
Xi, RRi

di,mi

)
norm in

the new balls BR(xi) (i.e., the balls with respect to the new rescaled distance); thus the result
of [AH18] can be applied. Finally, the L2-strong convergence is preserved by the rescaling (it
does not depend on the distance).

The same observation can be done for the results from [AH18] used in Lemma 2.38. ♢

The next step is to prove that L2-strong convergence of functions with bounded H1,2-norms
implies L2-strong convergence of the symmetrizations.

Lemma 2.36. Let Xi,X , Ri, R, fi satisfy the assumptions of Proposition 2.34, and let fi con-
verge in the strong L2 sense to f ∈ H1,2(BR(x), d,m). Then, up to subsequences, the f⋆i converge
to f⋆ in the strong L2(JN−1,N ,mN−1,N ) sense.

Proof. By Proposition 1.57 and by the Pólya-Szegő inequality (2.100), the norms of the func-
tions f⋆i in H1,2(JN−1,N , deu,mN−1,N ) are bounded by C

.= supi∥fi∥H1,2(BRi
(xi),d,mi) < ∞,

which implies that the f⋆i also converge (up to subsequences) to a function g in the strong
L2(JN−1,N ,mN−1,N ) sense. It remains to prove that f⋆ = g (at least mN−1,N -almost every-
where).

By Lemma 2.33, the distribution functions µfi
converge pointwise to µf out of a countable

set; similarly, µf⋆
i

converge to µg out of a countable set. By equi-measurability of fi and f⋆i ,
however, we have that µfi

= µf⋆
i
, thus µf = µg out of a countable set. Since both µf and µg
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are non-increasing and continuous, it follows that µf ≡ µg and thus f ♯ ≡ g♯, which in turn
implies f⋆ ≡ g⋆. Now g was the L2-limit of a sequence of non-increasing functions, thus it is
non-increasing itself. By Lemma 1.59, we conclude that f⋆ = g⋆ = g out of a countable set.

In view of what we seek to achieve in Lemma 2.38, we need the next elementary convergence
result, which we shortly prove for the sake of completeness.

Lemma 2.37. Let Xi
pmGH−→ X be pointed metric measure spaces satisfying Assumption 2.29.

Let Ri → R be such that mi(BRi(xi)) = v ∈ (0, 1) for all i ∈ N. Then m(BR(x)) = v.

Proof. For any ε > 0, the inclusions BR−ε(x) ⊂ BRi(xi) ⊂ BR+ε(x) hold for i large enough.
Thus, by weak convergence of the measures, we have for any ε > 0:

m(BR−ε(x)) ≤ lim inf mi(BRi(xi)) = v, m(BR+ε(x)) ≥ lim supmi(BRi(xi)) = v.

Moreover, the following holds (because the space is length):

(2.111)
⋃
ε>0

BR−ε(x) = BR(x) ⊂ BR(x) =
⋂
ε>0

BR+ε(x).

Combining these two facts, and the fact that m(∂BR(x)) = 0 for every R > 0 (which is true on
RCD(K,N) spaces), implies the statement.

The next lemma analyses the convergence of solutions to the Poisson problem.

Lemma 2.38. Let Xi
pmGH−→ X be pointed metric measure spaces satisfying Assumption 2.29.

Let Ri → R be such that mi(BRi(xi)) = v ∈ (0, 1) for all i ∈ N. Let fi ∈ H1,2(BRi(xi), d,mi)
with

(2.112) sup
i

∥fi∥H1,2(BRi
(xi),d,mi) < ∞.

Assume that ui ∈ H1,2(BRi(xi), d,mi) are weak solutions to

(2.113)

−∆ui = fi in BRi(xi)
ui = 0 on ∂BRi(xi)

and wi ∈ H1,2(JN−1,N , deu,mN−1,N ) are weak solutions to

(2.114)

−∆N−1,Nwi = f⋆i in [0, rv)
wi = 0 at rv

where rv
.= H−1

N−1,N (v). Then, up to extracting a subsequence:

(i) fi converges in L2-strong to a function f ∈ L2(BR(x)) with m(BR(x)) = v; f⋆i converges
in L2-strong to f⋆;

(ii) ui converges in L2-strong to a weak solution u of

(2.115)

−∆u = f in BR(x)
u = 0 on ∂BR(x)



2.3. Rigidity and Stability 79

(iii) wi converges in L2-strong to a weak solution w of

(2.116)

−∆N−1,Nw = f⋆ in (0, rv)
w = 0 at rv.

Proof. Assertion (i) is granted by Lemma 2.36 and Lemma 2.37. In Equation (2.64), the fol-
lowing identity was proved:

(2.117)
∫ rv

0
|w′i(ϱ)|2 dmN−1,N =

∫ v

0

(
Fi(ξ)

hN−1,N (H−1
N−1,N (ξ))

)2

dξ,

where as usual Fi(ξ)
.=
∫ ξ

0 f
♯
i (t)dt. Notice that for any ξ ∈ (0, v)

(2.118) Fi(ξ)2 =
(∫ ξ

0
1 · f ♯i (t) dt

)2

≤
(
∥1∥L2(0,ξ)

∥∥f ♯i ∥∥L2(0,ξ)

)2
≤ ξ∥fi∥2

L2(BRi
(xi)) ≤ C2ξ,

where C .= supi∥fi∥H1,2(BRi
(xi),d,mi). Thus we have:

(2.119)
∥∥w′i∥∥L2((0,rv),mN−1,N ) ≤ C2c2

N−1,N

∫ v

0

ξ dξ
sin2N−2(H−1

N−1,N (ξ))
,

where cN−1,N > 0 is the constant appearing in the definition of hN−1,N . Since HN−1,N (ξ) is
of the same order as ξ 7→ ξN near 0, the integrand at the right hand side is asymptotic to
ξ1− 2N−2

N = ξ−1+ 2
N when ξ → 0. In particular, the integral is finite and only depends on N and

v: the L2-norm of w′i is thus uniformly bounded:

(2.120)
∥∥w′i∥∥L2((0,rv),mN−1,N ) ≤ C2c2

N−1,Nκ(N, v).

By the Poincaré inequality, the norms ∥wi∥H1,2([0,r1),deu,mN−1,N ) are also uniformly bounded.
Using the Talenti-type Theorem 2.14 with the associated gradient comparison (2.44), we infer
that the norms

(2.121) ∥ui∥H1,2(BRi
(xi),d,mi)

are uniformly bounded as well. Thus, by Proposition 2.34 (and up to subsequences), the ui’s
converge in L2-strong to a function u and the wi’s converge in L2 strong to a function w;
moreover, by Lemma 2.36, u⋆i converges in L2 strong to u⋆.

In order to prove point (ii) (and, analogously, point (iii)), we apply [AH18, Corollary 4.3]. To
this aim, observe that (up to subsequences) we can assume that ui converges to u also weakly in
H1,2 by [AH18, Proposition 3.1] (see also Remark 2.35). Moreover, every ψ ∈ H1,2

0 (BR(x), d,m)
can be recovered as the strong H1,2 limit of a sequence of functions ψi ∈ H1,2

0 (BRi(xi), d,mi) by
[AH18, Lemma 2.10]. Therefore we have:

• Ch(ui, ψi) =
∫

Y fiψi dmi by the definition of ui as a weak solution of the Poisson problem;

• limi→∞Ch(ui, ψi) = Ch(u, ψ) by [AH18, Corollary 4.3];

• limi→∞
∫

Y fiψi dmi =
∫

Y fψ dm by [GMS15, Equation (6.7)].
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In particular,

(2.122)
∫

Y
fψ dm = Ch(u, ψ),

thus u is a weak solution of Equation (2.115). An analogous argument proves statement (iii).

We finally have the tools to prove a stability result, by considering a contradicting sequence,
applying a compactness argument, and exploiting the already proven rigidity result on the limit
space.

Theorem 2.39 (Stability in the Talenti-type theorem). For every ε > 0, N ∈ [2,∞), v ∈ (0, 1)
and 0 < cl ≤ cu < ∞ there exists δ = δ(ε,N, v, cl

cu
) > 0 such that the following statement holds.

Assume:

(i) (X, d,m) is a RCD(N − 1, N) metric space with m(X) = 1 and Ω = BR(x) ⊂ X is an open
ball with m(Ω) = v;

(ii) f ∈ H1,2(Ω, d,m) with cl ≤ ∥f∥L2(Ω,d,m) ≤ ∥f∥H1,2(Ω,d,m) ≤ cu;

(iii) u ∈ H1,2(Ω, d,m) weakly solves −∆u = f ;

(iv) w ∈ H1,2([0, rv), deu,mN−1,N ) weakly solves −∆N−1,Nw = f⋆, with w(rv) = 0 and rv
.=

H−1
N−1,N (v).

If ∥u⋆ − w∥L2((0,rv),mN−1,N ) < δ, then there exists a spherical suspension (Z, dZ,mZ) such that

(2.123) dmGH((X, d,m), (Z, dZ,mZ)) < ε.

Proof. We argue by contradiction: assume there exist ε̄, N̄ , v̄, c̄ such that for any i ∈ N we
can find an RCD(N̄ − 1, N̄) space (Xi, di,mi), a ball Ωi = BRi(xi) ⊂ Xi, and functions fi ∈
H1,2(Ωi, di,mi), ui ∈ H1,2

0 (Ωi, di,mi), wi ∈ H1,2([0, rv), deu,mN−1,N ) such that for any i ∈ N

−∆ui = fi weakly, − ∆N−1,Nwi = f⋆i weakly, with wi(rv) = 0,

c̄ ≤ ∥f∥L2(Ω,d,m) ≤ ∥f∥H1,2(Ω,d,m) ≤ 1, ∥u⋆i − wi∥L2((0,rv),mN−1,N ) <
1
i
,

and moreover

(2.124) inf
{

dmGH((Xi, di,mi), (Z, dZ,mZ))
∣∣∣ (Z, dZ,mZ) is a spherical suspension

}
≥ ε̄.

Up to subsequences, we can assume that:

• (Xi, di, xi,mi) converge to an RCD(N − 1, N) space (X, d, x,m), and Assumption 2.29 is
satisfied (see Proposition 1.79); moreover, m(BR(x)) = v by Lemma 2.37;

• fi, ui and wi satisfy the conclusions of Lemma 2.38: that is, fi converges in L2-strong to
a function f ∈ L2(BR(x)); f⋆i converges in L2-strong to f⋆; ui converges in L2-strong to
a weak solution u of −∆u = f in BR(x) (with zero boundary condition); wi converges in
L2-strong to a weak solution w of −∆N−1,Nw = f⋆ in [0, rv) with w(rv) = 0.
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Notice that

(2.125) dmGH((X, d,m), (Z, dZ,mZ)) ≥ ε̄

for any spherical suspension (Z, dZ,mZ), by Equation (2.124). However, by the L2-strong con-
vergence of u⋆i to u⋆ (Lemma 2.36) and the L2-strong convergence of wi to w, one has

(2.126) ∥u⋆ − w∥L2([0,rv),mN−1,N ) = lim
i→∞

∥u⋆i − wi∥L2([0,rv),mN−1,N ) = 0,

which implies that u⋆ = w. Moreover, since f is the L2-strong limit of the fi’s, it has L2-norm
bounded from below by c̄, thus it is different from 0 on a non-negligible set. By the rigidity
in the Talenti-type comparison (Theorem 2.27), (X, d,m) needs to be a spherical suspension,
contradicting (2.125).

Corollary 2.40. For every ε > 0, N ∈ [2,∞), v ∈ (0, 1), 0 < cl ≤ cu < ∞ there exists δ1 =
δ1(ε,N, v, cl

cu
) > 0 such that the following statement holds. Assume that the conditions (i)-(iv)

of Theorem 2.39 hold. If w(0) − u⋆(0) < δ1, then there exists a spherical suspension (Z, dZ,mZ)
such that

(2.127) dmGH((X, d,m), (Z, dZ,mZ)) < ε.

Proof. By Lemma 2.28, w − u⋆ is non-increasing (and non-negative) in [0, rv]. Thus

∥u⋆ − w∥L2((0,rv),mN−1,N ) ≤ (w(0) − u⋆(0))
√
v.

The results follows from Theorem 2.39 with δ1 = δ√
v
.

2.4 Applications

2.4.1 Improved Sobolev embeddings

In this paragraph, we apply the Talenti-type comparison Theorem 2.14 to we deduce a series of
Sobolev-type inequalities in the framework of RCD(K,N) spaces (compare with [Kes06, Section
3.3] for the Euclidean setting).

Theorem 2.41. Let (X, d,m) be an RCD(K,N) space for some K > 0, N ∈ (1,∞), with
m(X) = 1. Let Ω ⊂ X be an open domain with measure v .= m(Ω) ∈ (0, 1). Let u : Ω → R be a
function in H1,2(Ω, d,m) and f ∈ L2(Ω,m). Assume that u is a weak solution to the equation
−LE(u) = f , where E is an α-uniformly elliptic bilinear form as in Assumption 2.2. Then the
following statements hold:

1. If f ∈ Lp(Ω,m) with N
2 < p ≤ ∞, then u ∈ L∞(Ω,m) and

(2.128)
∥u∥L∞(Ω,m) ≤ c1(K,N, v, p)

α
∥f∥Lp(Ω,m),

with c1(K,N, v, p) .=
∫ v

0

ξ
1− 1

p

hK,N (H−1
K,N (ξ))2 dξ < ∞,

where we adopt the convention that 1
p = 0 if p = ∞.
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2. If f ∈ Lp(Ω,m) with 2 ≤ p ≤ N
2 , and q ≥ 1 is such that q

(
1
p − 2

N

)
< 1, then u ∈ Lq(Ω,m)

and

(2.129)

∥u∥Lq(Ω,m) ≤ c2(K,N, v, p, q)
α

∥f∥Lp(Ω,m),

with c2(K,N, v, p, q) .=

∫ v

0

∫ v

s

ξ
1− 1

p

hK,N (H−1
K,N (ξ))2 dξ

qds


1
q

< ∞.

Proof. By Theorem 2.14, u♯ satisfies the following inequality (see Equation (2.52)):

(2.130) 0 ≤ u♯(s) ≤ 1
α

∫ m(Ω)

s

1
IK,N (ξ)2

∫ ξ

0
f ♯(t) dtdξ, ∀s ∈ (0,m(Ω)).

If f ∈ Lp(Ω,m) for some p ∈ [2,∞], then by Hölder inequality, by equimeasurability of f
and f ♯ (Proposition 1.57), and by the characterization of the isoperimetric profile on JK,N
(Proposition 1.50 and Remark 1.76),

(2.131) u♯(s) ≤ 1
α

∥f∥Lp(Ω,m)

∫ m(Ω)

s

ξ
1− 1

p

hK,N (H−1
K,N (ξ))2 dξ,

with the convention that 1
p = 0 if p = ∞. Now by the estimates on hK,N (Lemma 1.74) there

exist constants C0 > 0 and C1 > 0 only depending on K > 0, N ∈ (1,∞) and v = m(Ω) ∈ (0, 1)
such that for all ξ ∈ [0,m(Ω)]

(2.132) hK,N (H−1
K,N (ξ)) ≥ C0(H−1

K,N (ξ))N−1 ≥ C1ξ
N−1

N .

We can thus draw the following conclusions:
Case 1: If N

2 < p ≤ ∞, then

(2.133)
∫ m(Ω)

s

ξ
1− 1

p

hK,N (H−1
K,N (ξ))2 dξ ≤ 1

C2
1

∫ m(Ω)

0
ξ

2
N
− 1

p
−1 dξ = v

2
N
− 1

p(
2
N − 1

p

)
C2

1
< ∞, ∀s ∈ [0, v].

By Equation (2.131) and by equimeasurability of u and u♯, this implies Equation (2.128).
Case 2: If p = N

2 and q ≥ 1, then

(2.134)

∫ m(Ω)

s

ξ
1− 1

p

hK,N (H−1
K,N (ξ))2 dξ

q ≤ 1
C2q

1
(log v − log s)q

and thus

∥u∥qLq(Ω,m) = ∥u♯∥qLq((0,v)) ≤
∥f∥qLp(Ω,m)

αq

∫ v

0

∫ v

s

ξ
1− 1

p

hK,N (H−1
K,N (ξ))2 dξ

qds
≤

∥f∥qLp(Ω,m)

C2q
1 αq

∫ 1

0
(− log s)q ds < ∞.

(2.135)
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Case 3: If 2 ≤ p < N
2 and q ≥ 1, with q

(
1
p − 2

N

)
< 1, then

(2.136)

∫ m(Ω)

s

ξ
1− 1

p

hK,N (H−1
K,N (ξ))2 dξ

q ≤ 1
C2q

1

(
1
p − 2

N

)q (s 2
N
− 1

p − v
2
N
− 1

p

)q

and thus

∥u∥qLq(Ω,m) = ∥u♯∥qLq((0,v)) ≤
∥f∥qLp(Ω,m)

αq

∫ v

0

∫ v

s

ξ
1− 1

p

hK,N (H−1
K,N (ξ))2 dξ

qds
≤

∥f∥qLp(Ω,m)

C2q
1 αq

(
1
p − 2

N

)q ∫ v

0

(
s

2
N
− 1

p − v
2
N
− 1

p

)q
ds < ∞.

(2.137)

Let now 2 ≤ p ≤ ∞. If we define DΩ,p(LE) to be the space

(2.138) DΩ,p(LE)
.= {u ∈ DΩ(LE) | LE(u) ∈ Lp(Ω,m)},

where DΩ(LE) is the space defined in Definition 2.8, then Theorem 2.41 can be restated as
follows:

Corollary 2.42 (Improved Sobolev embeddings). Let (X, d,m) be an RCD(K,N) space for some
K > 0, N ∈ (1,∞), with m(X) = 1. Let Ω ⊂ X be an open domain with measure v

.=
m(Ω) ∈ (0, 1) and u : Ω → R be a function in H1,2(Ω, d,m). Let E be a bilinear form satisfying
Assumption 2.2 with uniform ellipticity parameter α.

(a) If N
2 < p ≤ ∞, then H1,2(Ω, d,m) ∩DΩ,p(LE) ⊂ L∞(Ω) with

(2.139) ∥u∥L∞(Ω,m) ≤ C(K,N, v, p, α)∥LE(u)∥Lp(Ω,m).

(b) If 2 ≤ p ≤ N
2 and 1 ≤ q <

(
1
p − 2

N

)−1
, then H1,2(Ω, d,m) ∩DΩ,p(LE) ⊂ Lq(Ω) with

(2.140) ∥u∥Lq(Ω,m) ≤ C(K,N, v, p, q, α)∥LE(u)∥Lp(Ω,m).

2.4.2 An alternative proof for the RCD(K,N) version of Rayleigh-Faber-Krahn-
Bérard-Meyer comparison theorem

A classical application of the theory of symmetrizations is the proof of the conjecture proposed
by Lord Rayleigh: the principal frequency of vibration of a membrane of given area is minimal
when the shape of the membrane is a disk. In the Euclidean setting, this was proved by Faber
[Fab23] and Krahn [Kra25] using symmetrizations.

An analogous result was proved for the p-Laplacian by Mondino and Semola [MS19] in the
general setting of essentially non-branching CD(K,N) spaces (for K > 0), as a consequence of
a Pólya-Szegő type inequality.

We give below an alternative proof in case p = 2, based instead on Talenti’s comparison
theorem for RCD spaces.

Firstly, we recall the notions of first eigenfunction and first eigenvalue of the Laplacian:
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Definition 2.43. Let Ω ⊂ X be an open domain. For any non-zero function w ∈ H1,2(Ω, d,m)
we define the Rayleigh quotient to be

(2.141) RΩ(w) .=
∫

Ω|∇w|2w dm∫
Ωw

2 dm .

We say that:

(i) λΩ
.= inf

{
RΩ(w)

∣∣∣ w ∈ H1,2
0 (Ω), w ̸≡ 0

}
is the first eigenvalue of the Laplacian in Ω with

Dirichlet homogeneous conditions;

(ii) u ∈ H1,2
0 (Ω) is a first eigenfunction of the Laplacian in Ω (with Dirichlet homogeneous

conditions) if it minimizes RΩ among functions w ∈ H1,2
0 (Ω), w ̸≡ 0 (that is, RΩ(u) = λΩ).

When (X, d,m) = (JK,N , deu,mK,N ), v ∈ (0, 1), and Ω = [0, H−1
K,N (v)), we will denote the first

eigenvalue with λK,N,v. ♢

Theorem 2.44. Let (X, d,m) be an RCD(K,N) space for some K > 0, N ∈ (1,∞), and let
Ω ⊂ X be an open domain with measure v .= m(Ω) ∈ (0, 1). Then:

(i) λ(Ω) ≥ λK,N,v;

(ii) There exists a unique first eigenfunction of the Laplacian in Ω, up to multiplication by a
constant; such an eigenfunction can be chosen to be strictly positive and continuous in Ω;

(iii) If u is a positive first eigenfunction, then 0 < u⋆ ≤ w in [0, rv), where rv
.= H−1

K,N (v) and
w is a solution to −∆K,Nw = λΩu

⋆ in [0, rv) with w(rv) = 0.

Proof. Step 1: A first eigenfunction exists. This was already proved for example in [MS19,
Theorem 4.3], but we recall here the argument: let {un}n be a minimizing sequence for RΩ with
un ∈ H1,2

0 (Ω), ∥un∥L2(Ω,m) = 1 and
∫

Ω|∇u|2w dm ↘ λΩ. Since the embedding H1,2(X, d,m) ⊂
L2(X,m) is compact for an RCD(K,N) space with K > 0, N ∈ (1,∞) (see [GMS15, Proposition
6.7]), the sequence un converges to a function u ∈ H1,2

0 (Ω) in the strong L2(Ω,m) sense. Thus
∥u∥L2(Ω,m = 1; moreover, from the very definition of λΩ and by the L2-lower semicontinuity of
the Cheeger energy, it holds that

(2.142) λΩ ≤
∫

Ω
|∇u|2w dm ≤ lim inf

n→∞

∫
Ω

|∇un|2w dm = λΩ.

Thus u is a first eigenfunction.
Step 2: Any first eigenfunction u ∈ H1,2

0 (Ω) actually weakly solves

(2.143)
{

−∆u = λΩu in Ω
u = 0 on ∂Ω

.

This relies on a standard variational argument: for any w ∈ H1,2
0 (Ω), we can explicitly compute

the derivative of ε 7→ RΩ(u+ εw) at ε = 0:

(2.144) d
dεRΩ(u+ εw)

∣∣∣∣
ε=0

= 2Ch(u,w) − λΩ
∫

Ω uw dm
∥u∥L2(Ω)

.
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Since this derivative must vanish, the identity Ch(u,w) = λΩ
∫

Ω uw dm needs to hold for any
w ∈ H1,2

0 (Ω), which proves that u weakly solves Equation (2.143).
Step 3: Since RCD(K,N) spaces are locally doubling and Poincaré (see [Stu06b; Raj12]),

the Harnack-type results proved in [LMP06] hold in these spaces: hence any first eigenfunction
is continuous (Theorem 5.1 therein), and is strictly positive in Ω up to multiplying by a constant
(Corollary 5.7 and Corollary 5.8 therein). The same results also imply the uniqueness of the
first eigenfunction up to a multiplicative constant: if u1 and u2 are two first eigenfunctions with
u1
u2

non-constant, then there exists γ > 0 such that u1 − γu2 is a first eigenfunction that changes
sign in Ω.

Step 4: Let now w be a solution to −∆K,Nw = λΩu
⋆ in [0, rv) with w(rv) = 0. By

the definition of w and by using w itself as a test function, it holds that
∫ rv

0 |∇w|2w dmK,N =
λΩ
∫ rv

0 u⋆w dmK,N ; by the Talenti-type theorem it holds that 0 < u⋆ ≤ w. Thus

(2.145) λK,N,v ≤
∫ rv

0 |∇w|2w dmK,N∫ rv
0 w2 dmK,N

= λΩ

∫ rv
0 u⋆w dmK,N∫ rv
0 w2 dmK,N

≤ λΩ

∫ rv
0 w2 dmK,N∫ rv
0 w2 dmK,N

= λΩ.
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Chapter 3

Minimizers of the area functional in the
first Heisenberg group

In this chapter, we prove a version of the Bernstein Theorem for stable intrinsic graphs in H1

under an assumption on the regularity which is lower than Lipschitz – thus more general than
the version currently available. Such result is based on a joint work with Sebastiano Nicolussi
Golo and Francesco Serra Cassano, still unpublished at the moment of the writing of this thesis;
and relies on a work by Ambrosio, Nicolussi Golo and Serra Cassano ([ANS], still unpublished
itself) on the Sobolev regularity of the flow of an ordinary differential equation under suitable
assumptions on the underlying vector field.

Around the year 1915, Sergej Bernstein proved that any solution to the planar minimal
surface equation defined on the whole plane

(3.1) ∂x
∂xψ√

1 + |∇ψ|2
+ ∂y

∂yψ√
1 + |∇ψ|2

= 0

is necessarily affine [Ber27]. As the techniques proposed by Bernstein are specifically dependent
on the dimension 2 of the domain, this raised the problem of determining if such statement holds
in higher dimension: precisely, to understand whether solutions to the minimal surface equation
defined on the whole Rn have hyperplanes as graphs.

A complete solution to this issue came after several contributions between the 1920s and the
1960s, and is embodied in the following theorem:

Theorem 3.1 (Euclidean Bernstein Theorem for graphs). Let n ≥ 2. The following statements
hold:

(i) If n ≤ 8, then any solution ψ : Rn−1 → R to the (classical) minimal surface equation

(3.2) div

 ∇ψ√
1 + |∇ψ|2

 = 0

is affine.

(ii) If n ≥ 9, then there exist analytic solutions ψ : Rn−1 → R to the (classical) minimal
surface equation which are not affine.
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The problem for maps with graph in H1 needs to be reformulated in order to take care of
the specific structure of the space: in this chapter, we will focus on maps defined on a vertical
plane W of H1 and taking values in a horizontal line V complementary to the vertical plane.

In this new setting, the area functional for smooth functions f ∈ C2(W,V) takes the form

(3.3) A(f ; U) .=
∫
U

√
1 + |∇ff |2 dL 2

where ∇f = ∂y + f∂t, so that the minimal surface equation derived from the first variation of
A has the form

(3.4) ∇f

 ∇ff√
1 + |∇ff |2

 = 0.

Unfortunately, the lack of convexity of the area functional in H1 implies that solutions to Equa-
tion (3.4) are not automatically minimizers of the area, and there are explicit examples of smooth
solutions which are not affine: this suggests that the second variation of A should be considered
as well. We will say that a map f (not necessarily smooth) is stable if d

dεA(f + εφ; U) = 0 and
d2

dε2 A(f + εφ; U) ≥ 0 for any bounded domain U and any test function φ ∈ C∞c (U).
The question that interests us is thus the following:

(3.5) Are all stable maps f from W to V affine?

As we will see in Section 3.1.2, this question admits different answers based on the regularity
we allow f to have; our Theorem 3.17 gives a positive answer under a condition weaker than
Lipschitz. A first positive answer was given in [BSV07] for C2 functions, by showing that the
minimal surface equation can be rephrased in terms of a double Burgers’ operator, by studying
the new equation through its characteristic curves, and by selecting among the solutions those
which are also stable. An extension to C1 functions was proved in [GR15, Corollary 5.2] in a
more general framework. The same technique as in [BSV07], suitably adapted to compensate
the lack of regularity, has been used in [NS19] for the Lipschitz case, and will also be used in
this chapter.

3.1 The first Heisenberg group

Particularizing the definitions of Section 1.4.1 to the case where n = 1, the first Heisenberg
group H1 can be represented as the group structure obtained by endowing R3 with the (non-
commutative) operation
(3.6)
(x, y, t) ·

(
x′, y′, t′

) .= (
x+ x′, y + y′, t+ t′ + 1

2
(
xy′ − x′y

))
, for all (x, y, t),

(
x′, y′, t′

)
∈ R3.

Definition 3.2 (Vertical planes). In this context, we say that Γ ⊂ H1 is a vertical plane if it is
of the form

♢(3.7) Γ = {(x, y, t) | x = ay + b} for some a, b ∈ R.
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Notation 3.3. In the whole chapter, we will denote by W and V the following complementary
and homogeneous subgroups of H1:

(3.8) W .=
{

(0, y, t) ∈ H1
∣∣∣ (y, t) ∈ R2

}
; V .=

{
(x, 0, 0) ∈ H1

∣∣∣ x ∈ R
}
.

Here by complementary we mean that H1 can be decomposed as W · V, where · is the group
operation of H1. Homogeneous means that δλ(W) ⊂ W and δλ(V) ⊂ V for any λ > 0, where δλ
are the dilations defined in Definition 1.90. ♢

In general, if ω ⊂ W is open and g : ω → V is a map, the intrinsic graph of g is given by

(3.9) Γg
.= {(0, y, t) · g(0, y, t) | (0, y, t) ∈ ω}.

from now on, however, we will prefer to identify the vertical plane W with R2 = Ry ×Rt and its
complementary V with R; thus we have:

Definition 3.4 (Intrinsic graphs and subgraphs in H1). For a function f : ω → R, ω ⊂ R2, the
intrinsic graph is defined as the subset

Γf
.=
{

(0, y, t) · (f(y, t), 0, 0)
∣∣∣ (y, t) ∈ ω ⊂ R2

}
=

=
{(

f(y, t), y, t− 1
2yf(y, t)

) ∣∣∣∣ (y, t) ∈ ω ⊂ R2
}(3.10)

of H1.
The intrinsic subgraph is defined as the subset

Ef
.=
{

(0, y, t) · (x, 0, 0)
∣∣∣ (y, t) ∈ ω ⊂ R2, x < f(y, t)

}
(3.11)

of H1. ♢

Remark 3.5. Let us notice explicitly the easy fact that the intrinsic graph of a function f is a
vertical plane as in Definition 3.2 if and only if f has the form f(y, t) = ay+ b for some a, b ∈ R
(and if and only if Ef is a vertical halfspace). ♢

As in the classical Bernstein problem, we are interested in functions whose subgraph has
locally minimal H-perimeter (see Definition 1.86 and Notation 1.92):

Definition 3.6. Let ω ⊂ R2 and f : ω → R. We say that f is H-perimeter minimizing in the
intrinsic cylinder ω · R if its intrinsic subgraph Ef is a minimizer of the perimeter in Ω: i.e.,

(3.12) PerH(Ef , Ω̃) ≤ PerH(T ; Ω̃)

for any open set Ω̃ compactly contained in ω · R and any measurable T ⊂ ω · R such that
T △ Ef ⊂ Ω̃. ♢

3.1.1 Area functional, stationariety and stability

Next, we introduce one of the most fundamental notions of this chapter, the intrinsic gradient
of a function defined on the subspace W: it will appear in the characterization of H-regular
intrinsic graphs (Theorem 3.9), as well as in the expression of the area functional.
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Definition 3.7. Let ω be an open subset of R2 = Ry × Rt.

1. The intrinsic gradient operator f 7→ ∇ff maps any function f ∈ L1
loc(ω) to the distribution

defined by

(3.13) ⟨∇ff, ψ⟩ .=
∫
ω

(
f∂yψ + 1

2f
2∂tψ

)
dL 2(y, t) for all ψ ∈ C∞c (ω).

2. Moreover, whenever f ∈ L∞loc, we define ∇f : W 1,1
loc (ω) → L1

loc(ω) as the first order linear
differential operator defined by

(3.14) ∇fφ
.= ∂yφ+ f∂tφ for all φ ∈ W 1,1

loc (ω).

3. In a completely equivalent way to Equation (3.14), when f ∈ C0(ω) we will often implicitly
use the notation ∇f to indicate the continuous vector field ∇f : ω → R2 defined on ω by
∇f (y, t) = (1, f(y, t)).

It is clear that whenever f ∈ W 1,1
loc (ω) ∩L∞loc(ω), the distribution ∇ff defined in Equation (3.13)

is represented by the L1
loc function ∇ff defined in Equation (3.14), so there is no ambiguity in

this double definition. ♢

Remark 3.8. Despite them being related by the next Theorem 3.9, the intrinsic gradient just
defined is an object of substantially different nature from the horizontal gradient in H1 as defined
in Definition 1.95: while the latter is defined for functions on open domains of the whole H1,
the former acts on maps defined on open domains of W ≃ R2. ♢

Exploiting the intrinsic gradient defined above, one can characterize H-regular surfaces de-
fined by intrinsic graphs, in analogy with the Euclidean case. Indeed, the following theorem can
be obtained combining [ASV06] and [BS10, Theorem 1.2] in the case n = 1:

Theorem 3.9. Let ω ⊂ R2 be open, and let f : ω → R be a continuous function. Let Γf be the
intrinsic graph of f . Then the following are equivalent:

(a) Γf is an H-regular surface, and ν1
Γf

(p) < 0 for all p ∈ S, where νΓf
=
(
ν1

Γf
, ν2

Γf

)
is the

horizontal normal to νΓf
.

(b) The distribution ∇ff defined in Equation (3.13) is represented by a continuous function.

We can now give the following definition (which, again, differs substantially from the defini-
tion of C1

H given in Definition 1.95):

Definition 3.10 (Intrinsic C1). Let ω ⊂ W ≃ R2 be an open set, and let f : ω → R. We say
that f is intrisically C1, and we write f ∈ C1

W(ω), whenever one of the equivalent conditions
(a), (b) of Theorem 3.9 is satisfied. ♢

For a large class of functions, the H-perimeter of the intrinsic subgraph and the horizontal
normal to the intrinsic graph admit a manageable representation, which reminds of the Euclidean
counterpart. The following theorem, which deals with the case of C1

W functions, was first proved
in [ASV06, Theorem 1.2].
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Theorem 3.11 (Perimeter of intrisic subgraphs). Let ω ⊂ R2 be open, and let f ∈ C1
W(ω)

be an intrinsically C1 function. Let Γf and Ef be the intrinsic graph and the subgraph of f ,
respectively; let F : ω → Ef be defined as f(A) := A · f(A) for all A ∈ ω. Then Ef is a set of
locally finite H-perimeter in ω · R and we have:

νEf
(p) =

− 1√
1 + |∇ff |2

,
∇ff√

1 + |∇ff |2

(F−1(p)
)

for all p ∈ Γf(3.15)

PerH(Ef ;ω · R) =
∫
ω

√
1 + |∇ff |2 dL 2(3.16)

where PerH(·;ω · R) is the subriemannian perimeter of H1 (see Notation 1.92) in the cylinder
ω · R.

In [MSV08, Definition 3.1], the authors present two classes of “intrinsic Sobolev” functions
W 1,1

W,loc(ω) and W 1,1
W,T,loc(ω), satisfying the inclusions

(3.17) W 1,1
W,T,loc(ω) ⊂ W 1,1

W,loc(ω) ⊂ L2
loc(ω),

and such that:

• For any function in the (larger) class W 1,1
W,loc(ω), the perimeter formula Equation (3.16)

still holds in any U compactly contained in ω [MSV08, Theorem 3.4].

• For any function in the (smaller) class W 1,1
W,T,loc(ω), a weak formulation for the first and

second variation of the area functional is available [MSV08, Theorem 3.5].

Moreover, in the same paper, the further inclusion W 1,1
loc (ω) ∩ C0(ω) ⊂ W 1,1

W,T,loc(ω) is proved
[MSV08, Proposition 3.6]. Since this is the class of functions we need, we can finally give the
following definitions and results.

Definition 3.12. Let ω ⊂ R2 be an open set, and f : ω → R be a W 1,1
loc (ω) ∩ C0(ω) function.

For any bounded measurable subset U ⊂ ω, we define the area of f in U as

(3.18) A(f ; U) .=
∫
U

√
1 + |∇ff |2 dL 2,

where ∇ff is the L1
loc function defined in Definition 3.7. ♢

Proposition 3.13. Let ω ⊂ R2 be open, and let f ∈ W 1,1
loc (ω) ∩ C0(ω). Then for any U ⋐ ω the

perimeter of the subgraph Ef in U · R is represented by the formula

(3.19) PerH(Ef ; U · R) = A(f ; U) =
∫
U

√
1 + |∇ff |2 dL 2.

Moreover, if f is H-perimeter minimizing, then for any ψ ∈ C∞c (ω)

(3.20) IVf (φ) .=
∫
ω

∇ff√
1 + (∇ff)2

(
∇fφ+ (∂tf)φ

)
dL 2 = 0
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and

(3.21) IIVf (φ) .=
∫
ω


(
∇fφ+ (∂tf)φ

)2

(1 + (∇ff)2) 3
2

+ (∇ff)∂t(φ2)
(1 + (∇ff)2) 1

2

dL 2 ≥ 0

hold.

Finally, if the Sobolev regularity of f is better than W 1,1
loc , we can enlarge the class of test

functions we can consider in the first and second variation formulas:

Lemma 3.14. Let ω ⊂ R2 be open, and let f ∈ W 1,q
loc (ω) ∩ C0(ω) with q ∈ (2,∞) be a H-

perimeter minimizer. Then the formulas Equation (3.20) and Equation (3.21) hold for any
U ⋐ ω and any φ ∈ W 1,2

0 (U).

Proof. Let us fix U ⋐ ω and φ ∈ W 1,2
0 (U). Let {φj}j∈N ⊂ C∞c (U) be a sequence of smooth

functions such that φj → φ in W 1,2(U).
Then we have, by using the Hölder inequality, that:

(3.22)
∥∥∥∇fφj − ∇fφ

∥∥∥
L2(U)

≤ ∥∂y(φj − φ)∥L2(U) + ∥f∥L∞(U)∥∂t(φj − φ)∥L2(U)
j→∞−−−→ 0

and

(3.23) ∥(∂tf)(φj − φ)∥L1(U) ≤ ∥∂tf∥Lq(U)∥φj − φ∥L2(ω)
j→∞−−−→ 0,

so that IVf (φj) → IVf (φ) as j → ∞; notice indeed that the quotient ∇ff√
1+(∇ff)2

is bounded. In
particular, Equation (3.20) holds for φ.

Moreover, IIVf (φ) can be written as

IIVf (φ) =
∫
ω

[
1

(1 + (∇ff)2) 3
2

(∇fφ)2 + 2 ∂tf

(1 + (∇ff)2) 3
2

(φ∇fφ)+

+ (∂tf)2

(1 + (∇ff)2) 3
2
φ2 + ∇ff√

1 + (∇ff)2
φ∂tφ

]
dL 2,

(3.24)

where the following relations hold:

• (∇fφj)2 j→∞−−−→ (∇fφ)2 in L1(U), again by Equation (3.22);

• (∂tf)φj∇fφj
j→∞−−−→ (∂tf)φ∇fφ in L1(U), by the Morrey’s inequality (which ensures that

φj → φ in any Lr(U) space with r ∈ [1,∞), see [Bre11, Corollary 9.11]), the Hölder
inequality and the Dominated Convergence Theorem;

• (∂tf)2φ2
j
j→∞−−−→ (∂tf)2φ2 in L1(U), by the same argument as the previous point;

• φj∂tφj
j→∞−−−→ φ∂tφ in L1(U), by the W 1,2 strong convergence of φj to φ.

In particular, IIVf (φj) → IIVf (φ) as j → ∞.
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The previous result makes the following definition possible:

Definition 3.15. Let ω ⊂ R2 be an open set, and let f : ω → R belong to W 1,q
loc (ω) ∩ C0(ω) for

some q > 2. We say that:

• f is stationary in ω if

(3.25 | 1VF)
∫
U

∇ff√
1 + (∇ff)2

(
∇fφ+ (∂tf)φ

)
dL 2 = 0

for any U ⋐ ω and any φ ∈ W 1,2
0 (U); sometimes we will also say that f satisfies the weak

minimal surface equation for intrinsic graphs.

• f is stable in ω if it is stationary and

(3.26 | 2VF)
∫
U


(
∇fφ+ (∂tf)φ

)2

(1 + (∇ff)2) 3
2

+ (∇ff)∂t(φ2)
(1 + (∇ff)2) 1

2

dL 2 ≥ 0

for any U ⋐ ω and any φ ∈ W 1,2
0 (U).

Thanks to Lemma 3.14, whenever f is H-perimeter minimizing, it is both stationary and stable.
♢

Remark 3.16 (Case n ≥ 2). Let us point out that the definitions and the results introduced in
this paragraph can be extended to the higher-dimensional Heisenberg groups Hn with n ≥ 2: in
that case, the operator ∇f is replaced by a family of 2n− 1 differential operators; then one can
find a characterization of maps from R2n to R whose intrinsic graph is a H-regular surface in
terms of this new intrinsic operator, as well as a formula for the perimeter and first and second
variation formulas (see for example [ASV06; MSV08]). ♢

3.1.2 The Bernstein problem(s) in H1

In the context of the first Heisenberg group, the expression Bernstein-type problems refers to a
wide range of questions regarding functions defined on the whole R2, which take the following
form:

(3.27 | BP)
if f : R2 → R belongs to a suitable class of functions X (R2,R),

and f is stationary/stable/H-perimeter minimizing,
is it true that the intrinsic graph of f is a vertical plane?

In Section 3.5 we will prove the following result, concerning the case of stable functions:

Theorem 3.17. Let f ∈ W 1,1
loc (R2,R) ∩ C0(R2) be such that exp(|∇f |) ∈ Lβloc(R2,R) for some

β ≥ 1. If f is stable, then its intrinsic graph is a vertical plane.

Remark 3.18 (State of art). To the best of our knowledge, the state of art on the general
Bernstein problem (3.27 | BP) at the writing of this thesis is the following:
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• Even when restricting to X (R2,R) = C2(R2,R), the answer is negative for the case of
maps which are only stationary: indeed, in [DGN08] it is proved that the map

(3.28) φα(y, t) .= − αyt

1 + 2αy2 , (y, t) ∈ R2

is stationary for any α > 0, but it is not stable (nor H-perimeter minimizing) and its
intrinsic graph is not a vertical plane. This phenomenon does not appear in the Euclidean
setting, where any solution to Equation (3.25 | 1VF) is a minimizer by convexity.

• For stable maps, Nicolussi Golo and Serra Cassano proved in [NS19, Theorem 1.1] that the
problem (3.27 | BP) has an affirmative answer when f ∈ Liploc(R2) – thus, for a smaller
class than Theorem 3.17 – by generalizing the techniques introduced in [BSV07] for the
case of C2 functions.

• On the other hand, in the same paper they find a counterexample for the conjecture in
the Sobolev class W 1,p

loc (R2) with p ∈ [1, 3), and even a counterexample in W 1,2
loc (R2) with

C1
W regularity (see [NS19, Sections 7 and 8]).

• When the class X (R2,R) is too large, the answer to (3.27 | BP) is negative even for H-
perimeter minimizers: indeed, in [MSV08, Section 2] it is shown by a calibration argument
that the map

(3.29) φ(y, t) .= − sgn(t)
√

|t|, (y, t) ∈ R2

is H-perimeter minimizing. On the positive side, in addition to the results that hold for
stable maps, Young recently proved in [You21] that any area minimizing intrinsic graph
which is ruled by horizontal lines is a vertical plane – here horizontal lines mean curves
of the type {p · (λx, λy, 0) | λ ∈ R}, with p ∈ H1 and (x, y) ∋ R2. This in particular shows
that the stable counterexamples of [NS19] are not actually area-minimizers. ♢

Remark 3.19 (Other version of the Bernstein problem). Just as in the Euclidean setting, several
variations of the above-described problem are possible:

• Instead of looking at intrinsic graphs, one can generalize to the case of complete regular
surfaces which minimize the H-perimeter. Even for C2-regular surfaces in H1 ≃ R3 (in
the Euclidean sense), the Bernstein conjecture turns out to be false; however, perimeter
minimizers are completely classified: a complete, oriented, connected C2-surface in H1

minimizes the H-perimeter if and only if it is either a Euclidean plane or congruent to the
hyperbolic paraboloid t = 2xy (see [HRR10]). If, in addition, we ask that S is a (C1)
surface such that the characteristic set

(3.30) Char(S) .=
{
p ∈ S

∣∣∣ HH1
p ⊂ TpS

}
is empty, then S must be a vertical plane (see [GR15]); here HH1 is the horizontal sub-
bundle of H1, and TpS is the tangent space to S at p.

• Another possibility is to look at t-graphs, i.e. graphs of functions defined on the horizontal
plane

{
(x, y, 0) ∈ H1 ∣∣ (x, y) ∈ R2} ([Che+05; GP02]). In this case, the above-mentioned
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result for general surfaces provides a smooth counterexample to the Bernstein conjecture:
the map φ(x, y) = 2xy has a minimizing t-graph without being affine. Moreover, by
lowering the regularity, the class of minimizing t-graphs grows considerably: we refer to
[Rit09] for several counterexamples with Lipschitz or even C1,1 regularity.

• Finally, let us mention that the Bernstein problem has been partially explored in the higher
dimensional Heisenberg groups: for t-graphs, the conjecture is false (see [SV20, Paragraph
4.1]). On the Heisenberg groups Hn with n ≥ 5 one can find counterexamples to the
problema for intrinsic graphs (i.e., minimal intrinsic graphs which are not vertical planes)
by adapting the Euclidean counterexamples in high dimensions (see [BSV07, Section 5.2]);
the cases n = 2, 3, 4 remain, to our knowledge, open. ♢

3.1.3 Homeomorphic Lagrangian parametrizations

Consider a stable map f defined on a subset ω of R2. The strategy in the next sections will be
to find a “reparametrizion” Ψ : ω̃ → ω of the domain ω such that horizontal segments in ω̃ are
mapped to integral curves of ∇f . A thorough introduction to Lagrangian parametrizations in
this setting can be found for example in [BCS15].

Remark 3.20 (Beware of the notation). For the sake of clarity: in the following paragraphs, the
map f will frequently be thought as a “time-dependent vector field” on R; however, there might
be some confusion with the sets of coordinates adopted: here the “time variable” is y, the “space
variable” is t (in order to be consistent with the usual notation in the Heisenberg group H1).

When this point of view is adopted, the vector field ∇f : ω → R2 plays the role of the
time-independent vector field associated to f . ♢

Notation 3.21. Let A ⊂ R2. In what follows, for any r ∈ R we define

(3.31) A1,r
.= {t ∈ R | (r, t) ∈ A} and A2,r

.= {y ∈ R | (y, r) ∈ A}

to be the sections of A with r fixed. Moreover, we’ll denote by π1(y, t) .= y and π2(y, t) .= t the
projections on the first and second coordinate respectively. ♢

Definition 3.22 ((Bi-Sobolev) Lagrangian homeomorphism). Let ω, ω̃ ⊂ R2 be open sets. We
say that Ψ : ω̃ → ω is a Lagrangian homeomorphism associated to ∇f if:

1. Ψ is a homeomorphism;

2. Ψ has the form Ψ(υ, τ) = (υ, χ(υ, τ)) with χ continuous and χ(υ, ·) non-decreasing for any
υ;

3. For any τ ∈ R, the map Ψ(·, τ) is absolutely continuous on subintervals of ω̃2,τ and satisfies

(3.32) ∂υΨ(υ, τ) = ∇f (Ψ(υ, τ)) (or equivalently, ∂υχ(υ, τ) = f(υ, χ(υ, τ)))

for a.e. υ.

We will say that Ψ is a locally (p̄-)bi-Sobolev Lagrangian homeomorphism if both Ψ ∈ W 1,p̄
loc (ω̃, ω)

and Ψ−1 ∈ W 1,p̄
loc (ω, ω̃) for some p̄ ≥ 1 (see Notation 1.20 for the classical definition of multi-

valued Sobolev functions). ♢
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Remark 3.23. Notice that bijectivity and continuity of Ψ are enough to ensure that Ψ−1 is
also continuous, by Brouwer’s Invariance of Domain Theorem, and thus that Ψ is indeed a
homeomorphism. ♢

3.2 Useful properties for bi-Sobolev parametrizations

As a first step towards the Bernstein problem for intrinsic graphs, in the forthcoming Section 3.3
we will analyze the consequences of the weak minimal surface equation for intrinsic graphs
Equation (3.25 | 1VF) on a domain ω ⊂ R2, under a Sobolev regularity assumption on f , and
assuming the existence of a locally bi-Sobolev Lagrangian parametrization of ω. In particular,
we will work under the following assumption.

Assumption 3.24. Let ω ⊂ R2 be an open connected set and f ∈ C0(ω;R). Assume that the
following holds:

• Sobolev regularity of f : there exists q̄ > 2 such that f belongs to the local Sobolev
space W 1,q̄

loc (ω,R).

• Parametrization of ω: there exists p̄ ≥ 1 such that ω ⊂ R2 admits a locally bi-Sobolev
Lagrangian parametrization Ψ: ω̃ → ω associated to ∇f , of the form Ψ(υ, τ) = (υ, χ(υ, τ)),
with Sobolev exponent p̄ ≥ 1.

The Sobolev regularity of Ψ is equivalent to the condition that χ : ω̃ → R belongs to the Sobolev
space W 1,p̄

loc (ω̃). As the argument develops, we will be more precise on the lower bounds we’ll
need on p̄ and q̄ and on the relationship between them. ♢

Since Ψ is a bi-Sobolev homeomorphism, it holds that for any ῡ the function χῡ
.= χ(ῡ, ·) is

invertible. Moreover, for almost every ῡ the map χῡ belongs to W 1,p
loc (ω̃1,ῡ)) as a consequence

the Fubini Theorem (see [EG15, Theorem 4.21]). Moreover, Ψ−1 can be expressed as

(3.33) Ψ−1(y, t) =
(
y, χ−1

y (t)
)
.

Finally, the p̄-Sobolev integrability of Ψ−1 is equivalent to the condition that (y, t) 7→ χ−1
y (t)

belongs to the Sobolev space W 1,p̄
loc (ω).

Notation 3.25. From now on, we will frequently denote by χυ the map from ω̃1,υ to ω1,υ defined
by χυ(τ) .= χ(υ, τ); consistently, χ−1

υ will be the inverse of such map. ♢

Notation 3.26. In this Chapter, we will sometimes use the symbol DΨ to denote the weak
differential of Ψ: i.e., the function in Lp(ω̃,R2×2) whose components satisfy the “integration by
parts” formula (1.20). By classical results, at the points where Ψ is classically differentiable, DΨ
coincides with the classical differential ∇Ψ (see [HK14, Theorem A.15, Corollary A.16]). More-
over, we will soon put ourselves in the condition of having differentiability almost everywhere
(see Proposition 3.31, part 3). ♢

Definition 3.27. Let Ψ ∈ W 1,p̄
loc (ω̃;ω). We denote by JΨ the Jacobian determinant of Ψ, i.e.

the determinant of the weak differential DΨ. ♢
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3.2.1 Area formula and consequences

First of all, we show that the Sobolev assumption on Ψ guarantees the validity of a suitable
form of the so-called area formula – a tool that will prove useful to perform change of variables
inside integrals.

Definition 3.28 (Lusin (N)-condition). We say that a map Φ : Ω → Rn defined on an open set
Ω ⊂ Rn satisfies the Lusin (N) condition if

♢(3.34 | N) for each E ⊂ Ω such that L n(E) = 0, we have L n(Φ(E)) = 0.

Proposition 3.29 (Lusin condition for Sobolev homeomorphisms). Let ω ⊂ R2 be open, f ∈
C0(ω), and Ψ ∈ W 1,p̄

loc (ω̃;ω) be a p̄-Sobolev Lagrangian homeomorphism associated to ∇f . Then
Ψ satisfies the Lusin (N) condition.

Proof. Let E ⊂ ω̃ have L 2-measure zero. Recall that Ψ can be written as Ψ(υ, τ) = (υ, χ(υ, τ)),
with χ ∈ W 1,p̄

loc (ω̃).
By the already mentioned classical result [EG15, Theorem 4.21(i)] on Sobolev functions

restricted to lines (and by continuity of χ), for almost every υ ∈ π1(ω̃) the map χυ = χ(υ, ·)
belongs to W 1,p̄

loc (ω̃1,υ). By local absolute continuity, χυ then satisfies the Lusin (N) condition
for almost every υ; moreover, L 1(E1,υ) = 0 for almost every υ. Thus L 1(χυ(E1,υ)) = 0 for
almost every υ, which in turn by the Fubini-Tonelli Theorem implies that L 2(Ψ(E)) = 0, since
the representation

(3.35) Ψ(E) = {(υ, χυ(τ)) | (υ, τ) ∈ E} =
⋃
υ∈R

{υ} × χυ(E1,υ)

holds.

Thanks to the validity of the Lusin (N)-condition, one can prove a particularly manageable
version of the Area Formula for Lagrangian homeomorphisms:

Proposition 3.30 (Area formula). Let ω ⊂ R2 be open, f ∈ C0(ω), and Ψ ∈ W 1,p̄
loc (ω̃;ω) be a

p̄-Sobolev Lagrangian homeomorphism associated to ∇f . Then the area formula

(3.36 | AF)
∫
ω̃

(η ◦ Ψ)∂τχ dυ dτ =
∫
ω
η dy dt

holds for any non-negative (or summable) Borel function η : ω → R.

Proof. By Proposition 3.29, Ψ satisfies the Lusin (N) condition; by [HK14, Theorem A.35], it
holds that for any non-negative Borel function η

(3.37)
∫
ω̃
η(Ψ(υ, τ))|JΨ(υ, τ)| dυ dτ =

∫
ω
η(y, t)N(Ψ, ω̃, (y, t)) dy dt,

where JΨ is the Jacobian determinant and N is the multiplicity function (i.e., the cardinality of
Ψ−1(y, t) ∩ ω̃). Since Ψ is a homeomorphism, N ≡ 1 in ω; moreover, the Jacobian determinant
can be explicitly computed, since

(3.38) DΨ(υ, τ) =
(

1 0
0 ∂τχ(υ, τ)

)
,
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with ∂τχ being almost everywhere greater than or equal to 0 (because χ(υ, ·) ∈ W 1,p̄
loc (ω̃1,υ) for

almost every υ, and it is non-increasing for every υ). This implies the validity of the formula as
stated in Equation (3.36 | AF).

In the following proposition, we state a couple of useful properties of Ψ under Assump-
tion 3.24.

Proposition 3.31 (Properties of Ψ). Let ω ⊂ R2 be open, f ∈ C0(ω), and Ψ ∈ W 1,p̄
loc (ω̃;ω) be a

locally p̄-bi-Sobolev Lagrangian homeomorphism associated to ∇f . Then:

1. If p̄ ≥ 1, then ∂τχ(υ, τ) > 0 for almost every (υ, τ) ∈ ω̃.

2. If p̄ ≥ 1, then 1
|∂τχ|p̄−1 ∈ L1

loc(ω̃).

3. If p̄ > 2, then Ψ is almost everywhere differentiable and the classical differential coincides
with the weak one.

4. If Ψ is differentiable at x ∈ ω̃ and Jψ(x) > 0, then Ψ−1 is differentiable at Ψ(x) and
∇Ψ−1(Ψ(x)) = ∇Ψ(x)−1.

Proof. As already noted in the proof of Proposition 3.30, ∂τχ(υ, τ) ≥ 0 almost everywhere in
ω̃. Moreover, since Ψ−1 is also p̄-Sobolev, χ−1

υ ∈ W 1,p̄
loc (ω1,υ) also holds for almost every υ; thus

χ−1
υ satisfies the Lusin (N) condition for every υ out of a negligible set N . For any such υ, let

(3.39) Aυ
.=
{
τ ∈ ω̃1,υ

∣∣ (χυ)′ = 0
}
.

By absolute continuity of χυ,

(3.40) L 1(χυ(Aυ)) =
∫
Aυ

(χυ)′ dL 1 = 0;

since χ−1
υ satisfies the Lusin (N) condition, L 1(Aυ) = 0; as this holds for almost every υ, the

first statement follows.
Concerning the L1 summability of |∂τχ|1−p̄, observe that, for any measurable set K com-

pactly contained in ω̃, the chain of identities

∫
K

1
|∂τχ(υ, τ)|p̄−1 dL 2(υ, τ) =

∫
K

|JΨ(υ, τ)|
|∂τχ(υ, τ)|p̄

dL 2(υ, τ) =

=
∫

Ψ(K)

1
|∂τχ(Ψ−1(y, t))|p̄

dL 2(y, t) =
∫

Ψ(K)

∣∣∣∣ d
dtχ

−1
y (t)

∣∣∣∣p̄dL 2(y, t)

(3.41)

holds by the Area Formula (3.36 | AF). By the local Sobolev regularity of Ψ−1, the last term is
finite.

The last two statements in the proposition, regarding the almost everywhere differentiability
of Ψ and the differential of the inverse, are classical results: the first can be found in [EG15,
Theorem 6.5], the second one in [HK14, Lemma A.29].
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3.2.2 Maps of finite distortion and regularity of the composition

This paragraph is dedicated to a sequence of technical intermediate result, which will carry as a
consequence the Sobolev regularity of the composition of suitable Sobolev functions, as well as
a chain rule formula. The following definitions are borrowed from [HK14, Definition 1.11 and
page 91].

Definition 3.32 (q-distortion function). Let Ω ⊂ Rn be an open connected set, and let Φ : Ω →
Rn. We say that Φ has finite distortion if Φ ∈ W 1,1

loc (Ω,Rn), JΦ ∈ L1
loc(Ω), and there exists

K : Ω → [1,∞] satisfying

(3.42) ∥DΦ(x)∥n ≤ K(x)JΦ(x) and K(x) < ∞ for a.e. x ∈ Ω.

Here ∥·∥ represents the operator norm and JΦ is the Jacobian determinant.
For such a map Φ and a value q ∈ [1,∞), we define the q-distortion function as

♢(3.43) KΦ
q (x) .=


∥DΦ(x)∥q

|JΦ(x)| if JΦ(x) > 0

0 otherwise.

Definition 3.33 (Continuity of composition operator between Sobolev spaces). Let Ω1,Ω2 ⊂ Rn
be open sets, Φ : Ω1 → Ω2 and 1 ≤ p ≤ q < ∞. Let the composition (with Φ) operator be
defined as TΦu

.= u ◦ Φ for any map u : Ω → R. We say that TΦ is continuous from W 1,q
loc (Ω2) to

W 1,p
loc (Ω1) if

(3.44)
TΦu ∈ W 1,p

loc (Ω1) whenever u ∈ W 1,q
loc (Ω2),

and ∥D[TΦu]∥Lp(Ω1) ≤ C∥Du∥Lq(Ω2).

Analogously, we say that TΦ is continuous from W 1,q
loc (Ω2)∩C(Ω2) to W 1,p

loc (Ω1) if Equation (3.44)
holds whenever W 1,q

loc (Ω2) ∩ C(Ω2). ♢

In our setting, Ψ : ω̃ → ω is a homeomorphism between subsets of R2, with Ψ,Ψ−1 ∈ W 1,p̄

and JΨ = ∂τχ > 0 almost everywhere. In this case, the following lemma holds; since it is a
consequence of a result contained in the unpublished (at the writing of this thesis) [ANS], we
give here a short proof based on the same computations.

Lemma 3.34. Let Ψ : ω̃ → ω be a locally bi-Sobolev homeomorphism with Sobolev exponent
p̄ > 2. Assume that JΨ > 0 almost everywhere. For any q > 0, let rp̄(q) = r(q) be defined as

(3.45) rp̄(q)
.=
(
q

p̄
+ 2
p̄− 2

)−1
> 0.

Then Ψ has finite distortion and (KΨ
q )r ∈ L1

loc(ω̃).

Proof. By our assumptions, we can apply [HK14, Theorem 1.6], which guarantees that Ψ has
finite distortion.

Let now U ⋐ ω̃, and notice that by definition of KΨ
1

(3.46)
∫
U

∣∣∣KΨ
q (x)

∣∣∣r dx =
∫
U

∥DΨ(x)∥qr|JΨ(x)|−r dx;
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we are omitting the dependence of r on q and p̄. Let α .= p̄
qr , and notice that

(3.47) α = 1 + p̄

q

2
p̄− 2 > 1;

we can thus use α and its Hölder conjugate β .= α⋆ as exponents in the Hölder inequality, so
that

(3.48)
∫
U

∣∣∣KΨ
q (x)

∣∣∣r dx ≤
(∫
U

∥DΨ(x)∥p̄ dx
) 1

α
(∫
U

|JΨ(x)|−rβ dx
) 1

β

.

The first term at the right hand side is finite, by the assumption that Ψ ∈ W 1,p̄
loc (ω̃, ω). On the

other hand, by the Area Formula (Proposition 3.30) and the almost everywhere differentiability
of Ψ and Ψ−1 (parts 3 and 4 of Proposition 3.31), one has:∫

U
|JΨ|−rβ dx =

∫
U

|JΨ−1(Ψ(x))|rβ+1|JΨ(x)| dx =

=
∫

Ψ(U)
|JΨ−1(y)|rβ+1 dy ≤

∫
Ψ(U)

∥∥∥DΨ−1(y)
∥∥∥2(rβ+1)

.
(3.49)

Notice that we have also used the Hadamard inequality |detM | ≤ ∥M∥n that holds for any real
n× n matrix M , and the fact that

(3.50) 1
β

+ rq

p̄
= 1 ⇒ 1

βr
= 1
r

− q

p̄
= 2
p̄− 2 > 0.

By the same computation, one shows that 2(rβ + 1) = p̄, so that the right hand side of Equa-
tion (3.49) is also finite.

Moreover, for homeomorphisms that satisfy the condition KΨ
q ∈ Lr for some q and r, the

following proposition holds:

Proposition 3.35. Let ω̃, ω ⊂ R2 be open sets, and let Ψ ∈ W 1,1
loc (ω̃, ω) be a homeomorphism of

finite distortion. Let 2 ≤ α < q. If (Kψ
q )

α
q−α ∈ L1

locω̃, then TΨ is continuous from W 1,q
loc (ω) ∩

C0(ω) to W 1,α(ω̃), and the chain rule D(u ◦ Ψ)(x) = Du(Ψ(x)) · DΨ(x) holds for almost every
x ∈ ω̃, for any u ∈ W 1,q

loc (ω) ∩ C0(ω).

Therefore, in our case the following observations hold:

• Summability of KΨ
q : if p̄ > 2, we can apply Lemma 3.34 with any q > 0 and obtain that

KΨ
q ∈ Lrloc(ω̃) with

(3.51) r = r(q) .=
(
q

p̄
+ 2
p̄− 2

)−1
> 0.

• Sobolev regularity of composition with Ψ: assume p̄ > 2, and let q ≥ p̄ be an
arbitrary number. We can apply the Regularity of Composition Proposition 3.35; the
exponent which is denoted by α therein is here chosen to be

(3.52) p = pp̄(q)
.=
(1
p̄

+ 1
q

p̄

p̄− 2

)−1
;

indeed, in this case, the identity pp̄(q)
q−pp̄(q) = rp̄(q) holds for any q > 0, where rp̄(q) > 0 is

the exponent defined in Lemma 3.34.
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Thanks to these observations, we obtain what follows: the composition operator associated to
a locally bi-Sobolev homeomorphisms maps (high enough) Sobolev spaces to Sobolev spaces.

Proposition 3.36 (Regularity of composition). Let ω̃, ω ⊂ R2 be open sets, and let Ψ : ω̃ → ω be
a locally bi-Sobolev homeomorphism with Sobolev exponent p̄ > 2. Assume that

(3.53) q ≥ max
{
p̄,

p̄2

(p̄− 1)(p̄− 2)

}
.

Then the operator TΨ associated to the composition with Ψ is continuous from W 1,q
loc (ω) ∩ C0(ω)

to W 1,p(q)
loc (ω̃), where

(3.54) p(q) .=
(1
p̄

+ 1
q

p̄

p̄− 2

)−1
.

In particular, if u ∈ C0(ω) belongs to W 1,q
loc (ω) for any q ∈ [1,∞), then u ◦ Ψ ∈ W 1,p

loc (ω̃) for any
1 ≤ p < p̄.

Finally, if u ∈ W 1,q
loc (ω) ∩ C0(ω) for with q satisfying Equation (3.53), then the chain rule

holds for u ◦ Ψ.

Remark 3.37. For the sake of clearness: the assumption q ≥ p̄2

(p̄−1)(p̄−2) is only needed in order
to ensure that p(q) ≥ 1. Moreover, the condition is already contained in q ≥ p̄ whenever p̄ is big
enough (namely, p̄ ≥ 2 +

√
2). ♢

As a corollary, we can apply Proposition 3.36 to the case of bi-Sobolev Lagrangian homeo-
morphisms associated to a vector field ∇f :

Corollary 3.38 (Sobolev regularity of ∂υχ). Let ω ⊂ R2, f ∈ W 1,q̄
loc (ω) and Ψ ∈ W 1,p̄

loc (ω̃;ω)
satisfy Assumption 3.24, with the Sobolev exponents of Ψ and f satisfying

(3.55) p̄ > 2 and q̄ ≥ max
{
p̄,

p̄2

(p̄− 1)(p̄− 2)

}
.

Then the map ∂υχ = f ◦ Ψ : ω̃ → R belongs to W 1,p(q̄)(ω̃), where p(q̄) is defined as in Equa-
tion (3.54).

Finally, as a further consequence, we write explicitly some formulas descending from the
chain rule for Sobolev functions, in order to be able to recall them later:

Corollary 3.39 (Chain rule). Let ω ⊂ R2, f ∈ W 1,q̄
loc (ω) and Ψ ∈ W 1,p̄

loc (ω̃;ω) satisfy Assump-
tion 3.24, with the Sobolev exponents of Ψ and f satisfying p̄ > 2 and q̄ ≥ max

{
p̄, p̄2

(p̄−1)(p̄−2)

}
.

Then:

1. ∂υχ ∈ W 1,p(q̄)(ω̃) satisfies

∂2
υχ(υ, τ) = ∂υf(υ, χ(υ, τ)) = (∇ff) ◦ Ψ(υ, τ),(3.56)

∂τ∂υχ(υ, τ) = ∂τf(υ, χ(υ, τ)) = [(∂tf ◦ Ψ) · ∂τχ](υ, τ).(3.57)

2. ∂υ∂τχ = ∂τ∂υχ holds as an equality between distributional derivatives.
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3. More generally, if φ ∈ W 1,q
loc (ω) with q ≥ max

{
p̄, p̄2

(p̄−1)(p̄−2)

}
, then

∂υ(φ ◦ Ψ) = (∇fφ) ◦ Ψ ∈ L
p(q)
loc (ω̃),(3.58)

∂τ (φ ◦ Ψ) = (∂tφ ◦ Ψ) · ∂τχ ∈ L
p(q)
loc (ω̃),(3.59)

so that in particular,

(∂tφ) ◦ Ψ = ∂τ (φ ◦ Ψ)
∂τχ

,(3.60)

(∂yφ) ◦ Ψ = ∂υ(φ ◦ Ψ) − (f ◦ Ψ)∂τ (φ ◦ Ψ)
∂τχ

(3.61)

also hold, and they both belong to Lϱ(q)
loc (ω̃) if there exists ϱ(q) ≥ 1 satisfying 1

ϱ(q) = 1
p̄−1 +

1
p(q) .

Proof. This is an easy consequence of the chain rule established in Proposition 3.36, and by the
fact that ∂τχ is almost everywhere positive (by Proposition 3.31) and its reciprocal belongs to
Lp̄−1

loc (ω̃) (again Proposition 3.31).

3.3 First variation

In this section, we explore the consequences of the first variation formula (3.25 | 1VF) alone under
the Assumption 3.24: as a first step, we obtain some results on a general domain ω. Then, in
Section 3.3.2, we analyze the case of functions defined on the whole Rn, again satisfying (locally)
the weak minimal surface equation and admitting a bi-Sobolev Lagrangian parametrization.

3.3.1 Local results

Let again ω ⊂ R2, f ∈ W 1,q̄
loc (ω) and Ψ ∈ W 1,p̄

loc (ω̃;ω) be as in Assumption 3.24; recall that
Ψ(υ, τ) = (υ, χ(υ, τ)). Assume, in addition, that p̄ > 2 and q̄ ≥ max

{
p̄, p̄2

(p̄−1)(p̄−2)

}
, in order to

be allowed to apply Corollary 3.38.

Definition 3.40 (Regularizations). From now on, {ϱε}ε>0 ∈ C∞c
(
R2) will be the standard family

of mollifiers on R2; in particular, ϱε is supported on the ball Bε(0) of radius ε. For any ε is
small enough, we will consider the regularized function χε

.= χ ∗ ϱε, i.e.:

(3.62) χε(υ, τ) = χ ∗ ϱε(υ, τ) =
∫
ω̃
χ(υ′, τ ′)ϱε(υ − υ′, τ − τ ′) dL 2(υ′, τ ′),

defined for any pair (υ, τ) ∈ ω̃ such that d((υ, τ), ∂ω̃) > ε. If K ⋐ ω̃ is compactly contained in
ω̃, and εK

.= d(K, ∂ω̃), then χε belongs to C∞(K) for any 0 < ε < εK . ♢

Remark 3.41 (Properties of the regularizations). The following properties hold true for the
regularized functions χε in a set K ⋐ ω̃, whenever ε ∈ (0, εK):

1. ∂τχε = (∂τχ)∗ϱε; ∂τ∂υχε = (∂τ∂υχ)∗ϱε; indeed, both χ and ∂υχ belong to W 1,1
loc (ω̃) under

our assumptions (see Corollary 3.38), and standard properties of the regularizations imply
that the regularization of weak derivatives coincide with the derivative of regularizations;
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2. χε → χ in W 1,p̄(K); moreover, ∂υχε → ∂υχ in W 1,p(K) for any p ∈ [1, p(q̄)] (see Corol-
lary 3.38);

3. ∂τχε > 0 holds everywhere in K: indeed, for (υ, τ) ∈ K and ε ∈ (0, εK),

(3.63) ∂τ (χε)(υ, τ) =
∫
Bε(0)

∂τχ(υ − υ′, τ − τ ′)ϱε(υ′, τ ′) dL 2(υ′, τ ′),

and ∂τχ > 0 almost everywhere, while ϱε > 0 in Bε(0);

4. 0 < 1
∂τχε

≤
(

1
∂τχ

)
ε

pointwise in K. Indeed, by Hölder inequality, for any x = (υ, τ) ∈ K,

1 = ∥ϱε∥L1(Bε(0)) ≤
∥∥∥∥√∂τχ(x− ·)ϱε(·)

∥∥∥∥
L2(Bε(0))

∥∥∥∥∥
√

ϱε(·)
∂τχ(x− ·)

∥∥∥∥∥
L2(Bε(0))

=

=
√
∂τχε(x) ·

√( 1
∂τχ

)
ε

(x)

(3.64)

5. By the last property and by the fact that
(

1
∂τχ

)
ε

→ 1
∂τχ

in Lp̄−1(K), it holds that

♢(3.65) lim sup
ε↓0

∥∥∥∥ 1
∂τχε

∥∥∥∥
Lp̄−1(K)

≤
∥∥∥∥ 1
∂τχ

∥∥∥∥
Lp̄−1(K)

.

Notation 3.42. Following the notation adopted in [NS19], for any map u : ω → R we will
denote by ũ the composition u ◦ Ψ : ω̃ → R. ♢

Theorem 3.43. Let ω ⊂ R2, f ∈ W 1,q̄
loc (ω) and Ψ ∈ W 1,p̄

loc (ω̃;ω) be as in Assumption 3.24.
Assume that the Sobolev exponents p̄ and q̄ satisfy

(3.66 | PQ) 2 < p̄ ≤ q̄ and 1
p̄

+ 1
p̄−1

2
+ 1
p(q̄) ≤ 1.

Assume that f is stationary. Let σ ∈ [1,∞] be such that

(3.67) σ ≥ 2
(

p̄

p̄− 2

)2
and 1

σ
≤ 1 −

(
1
p̄

+ 1
p̄−1

2
+ 1
p(q̄)

)
.

Then

(3.68)
∫
ω̃

∂2
υχ√

1 + (∂2
υχ)2∂υϑ dL 2(υ, τ) = 0

for any ϑ ∈ W 1,σ(ω̃) ∩ C0
c(ω̃).

Remark 3.44. The technical condition (3.66 | PQ) is stronger than the assumption needed in
Proposition 3.36. Moreover, by the definition of p(q̄), the inequality on the right can be restated
as

(3.69) 2
p̄

+ 2
p̄− 1 + p̄

q̄

1
p̄− 2 ≤ 1;

in particular, if p̄ is large enough it is already implied by p̄ ≤ q̄. ♢
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Proof. We first show an adapted version of the first variation formula (3.25 | 1VF) that exploits
the existence of the parametrization Ψ; then, we apply it to a suitably chosen class of test
functions.

Step 1. Let us first fix a test function φ̃ ∈ W 1,σ(ω̃) ∩ C0
c(ω̃). Let φ .= φ̃ ◦ Ψ−1. By

Proposition 3.36 and by the first bound of Equation (3.67), the new test function φ belongs
to the space W 1,2(ω) ∩ C0

c(ω). Hence we can apply the first variation formula (3.25 | 1VF) to
deduce that φ̃ satisfies

(3.70)
∫
ω

∇ff√
1 + (∇ff)2

(
∇f
(
φ̃ ◦ Ψ−1

)
+ (∂tf)

(
φ̃ ◦ Ψ−1

))
dL 2 = 0.

Now, again by Proposition 3.36, the chain rule can be applied to φ̃ ◦ Ψ−1; by Corollary 3.39,
∇ff ◦ Ψ = ∂2

υχ and ∂tf ◦ Ψ = ∂τ (f◦Ψ)
∂τχ

; finally, applying the Area Formula (3.36 | AF) we get

(3.71)
∫
ω̃

∂2
υχ√

1 + (∂2
υχ)2

[
∂τχ∂υφ̃+ φ̃∂τ f̃

]
dL 2(υ, τ) = 0 for any φ̃ ∈ W 1,σ(ω̃) ∩ C0

c(ω̃).

Step 2. Now fix a function ϑ ∈ W 1,σ(ω̃) ∩ C0
c(ω̃). Let K .= sptϑ ⋐ ω̃. Fix ε0

.= 1
2d(K, ∂ω̃)

and the ε0 neighborhood of K, i.e.

(3.72) K0
.=
{

(υ, τ) ∈ R2
∣∣∣ d((υ, τ),K) ≤ ε0

}
⋐ ω̃.

For any ε ∈ (0, ε0), consider the regularized function χε = χ ∗ ϱε, which belongs to C∞(K0).
Our goal is to use φ̃ε

.= ϑ
∂τχε

with ε > 0 small enough as test functions in Equation (3.71), and
then let ε ↓ 0.

Notice that:

• φ̃ε = ϑ
∂τχε

belongs to the space of admissible test functions: indeed, 1
∂τχε

∈ C∞(K0),
because ∂τχ > 0 everywhere in K0.

• We can compute:

(3.73) ∂τχ∂υφ̃ε + φ̃ε∂τ f̃ = ∂υϑ
∂τχ

∂τχε
+ ϑ

∂τ∂υχ(∂τχε − ∂τχ) + ∂τχ(∂τ∂υχ− ∂τ∂υχε)
(∂τχε)2 .

Let us prove that

(3.74) ∂2
υχ√

1 + (∂2
υχ)2

[
∂τχ∂υφ̃ε + φ̃ε∂τ f̃

]
→ ∂2

υχ√
1 + (∂2

υχ)2∂υϑ in L1(ω̃) as ε → 0.

Step 3. Indeed, by Equation (3.73):∥∥∥∥∥ ∂2
υχ√

1 + (∂2
υχ)2

[
∂τχ∂υφ̃ε + φ̃ε∂τ f̃ − ∂υϑ

]∥∥∥∥∥
L1

=

=
∥∥∥∥∥ ∂2

υχ√
1 + (∂2

υχ)2

[
∂υϑ

∂τχ− ∂τχε
∂τχε

+ ϑ∂τ∂υχ
∂τχε − ∂τχ

(∂τχε)2 + ϑ∂τχ
∂τ∂υχ− ∂τ∂υχε

(∂τχε)2

]∥∥∥∥∥
L1

,

(3.75)

thus, by Hölder inequality and triangle inequality, the left hand side is smaller than or equal to
(3.76)∥∥∥∥ ∂2

υχ√
1+(∂2

υχ)2

∥∥∥∥
L∞

[∥∥∥∥∂υϑ∂τχ− ∂τχε
∂τχε

∥∥∥∥
L1

+
∥∥∥∥ϑ∂τ∂υχ∂τχε − ∂τχ

(∂τχε)2

∥∥∥∥
L1

+
∥∥∥∥ϑ∂τχ∂τ∂υχ− ∂τ∂υχε

(∂τχε)2

∥∥∥∥
L1

]
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Exploiting the Lσ integrability of ϑ and ∂υϑ, and then using again the Hölder inequality (once
with exponents (σ, p̄, p̄− 1), then twice with exponents (σ, p̄, p(q), p̄−1

2 )), one obtains∥∥∥∥∂υϑ∂τχ− ∂τχε
∂τχε

∥∥∥∥
L1

≤ ∥∂υϑ∥Lσ ∥∂τχ− ∂τχε∥Lp̄

∥∥∥∥ 1
∂τχε

∥∥∥∥
Lp̄−1

(3.77) ∥∥∥∥ϑ∂τ∂υχ∂τχε − ∂τχ

(∂τχε)2

∥∥∥∥
L1

≤ C∥ϑ∥Lσ ∥∂τ∂υχ∥Lp(q)∥∂τχε − ∂τχ∥Lp̄

∥∥∥∥ 1
∂τχε

∥∥∥∥2

Lp̄−1
(3.78) ∥∥∥∥ϑ∂τχ∂τ∂υχ− ∂τ∂υχε

(∂τχε)2

∥∥∥∥
L1

≤ C∥ϑ∥Lσ ∥∂τχ∥Lp̄∥∂τ∂υχ− ∂τ∂υχε∥Lp(q̄)

∥∥∥∥ 1
∂τχε

∥∥∥∥2

Lp̄−1
,(3.79)

where (3.78) and (3.79) hold thanks to the fact that 1
σ + 1

p̄ + 1
p(q̄) + 1

p̄−1
2

≤ 1.
Collecting all the information obtained until now, letting ε ↓ 0 and exploiting the estimate

(3.80) lim sup
ε↓0

∥∥∥∥ 1
∂τχε

∥∥∥∥
Lp̄−1(K)

≤
∥∥∥∥ 1
∂τχ

∥∥∥∥
Lp̄−1(K)

,

we get that

(3.81) 0 =
∫
ω̃

∂2
υχ√

1 + (∂2
υχ)2

[
∂τχ∂υφ̃ε + φ̃ε∂τ f̃

]
dL 2(υ, τ) ε→0−−−→

∫
ω̃

∂2
υχ√

1 + (∂2
υχ)2∂υϑ dL 2(υ, τ),

which is the statement we wanted to prove.

Let us now state a quite easy lemma that ensures we can usefully exploit the identity (3.68).

Lemma 3.45. Let ω̃ ⊂ R2 be an open domain such that ω̃2,τ is convex for any τ ∈ π2(ω̃). Let
h ∈ L1(ω̃). If

(3.82)
∫
ω̃
h(υ, τ)∂υϑ(υ, τ) dL 2(υ, τ) = 0 for any ϑ ∈ C∞c (ω̃),

then (up to a modification on a negligible set) h does not depend on the first variable; i.e., there
exists g : π2(ω̃) → R such that h(υ, τ) = g(τ) for L 2-almost every (υ, τ) ∈ ω̃ (here π2(υ, τ) = τ

is the projection on the second coordinate).

Proof. Let ϱε ∈ C∞c (R2) be the standard family of mollifiers as before. Let hε
.= h ∗ ϱε; we

have already observed that hε ∈ C∞(ω̃ε), where ω̃ε is the set of points (υ, τ) ∈ ω̃ such that
d((υ, τ), ∂ω̃) > ε; moreover, hε → h almost everywhere in ω̃.
By Equation (3.82), the distributional derivative ∂υh is zero; thus ∂υhε = (∂υh) ∗ ϱε = 0; in
particular, since this last term is a classical partial derivative of a smooth function, for any
(υ, τ) ∈ ω̃ε it holds that ∂υhε(υ, τ) = 0. This fact, together with the smoothness of hε, implies
that hε is independent of υ, i.e. hε(υ, τ) = gε(τ) for some function gε.
As already noted, for almost every (υ, τ) ∈ ω̃

(3.83) h(υ, τ) = lim
ε↓0

hε(υ, τ) = lim
ε↓0

gε(τ),

which allows to conclude.

Exploiting together the first variation formula on the reparametrized domain Theorem 3.43
and the easy Lemma 3.45, we obtain a first consequence of the stationariety:
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Corollary 3.46. Let ω ⊂ R2, f ∈ W 1,q̄
loc (ω) and Ψ ∈ W 1,p̄

loc (ω̃;ω) be as in Assumption 3.24, with
ω̃ = Υ × T , where Υ and T are open intervals. Assume that the Sobolev exponents p̄ and q̄

satisfy Equation (3.66 | PQ). Assume that f is stationary.
Then for any fixed υ̂ ∈ (υ1, υ2) the map χ can be written in ω̃ as

(3.84) χ(υ, τ) = (υ − υ̂)2

2 ∇ff(υ̂, χ(υ̂, τ)) + (υ − υ̂)f(υ̂, χ(υ̂, τ)) + χ(υ̂, τ)

with ∇ff(υ̂, χ(υ̂, ·)) ∈ C0(T ). In particular, if υ̂ belongs to the (full-measure) set

(3.85) Υ0
.=

υ ∈ Υ

∣∣∣∣∣∣∣∣∣
χυ = χ(υ, ·) ∈ W 1,p̄

loc (T )
χ−1
υ (·) ∈ W 1,p̄

loc (χυ(T ))

f ◦ Ψ(υ, ·) = ∂υχ(υ, ·) ∈ W
1,p(q̄)
loc (T )

,
then χ can be written as

(3.86) χ(υ, τ) = a(τ)
2 (υ − υ̂)2 + b(τ)(υ − υ̂) + c(τ)

in ω̃, with c : (τ1, τ2) → c((τ1, τ2)) locally p̄-bi-Sobolev homeomorphism, c(τ) = χ(υ̂, τ), and

(3.87) a(τ) .= ∇ff(υ̂, c(τ)) ∈ W 1,p(q̄)((τ1, τ2);R), b(τ) .= f(υ̂, c(τ)) ∈ W 1,p(q̄)((τ1, τ2);R).

If we further assume that f is well-posed as a time-dependent vector field, then Ψ is the unique
such parametrization satisfying Ψ(υ̂, τ) = c(τ) for any τ ∈ T .

Remark 3.47. Recall that f ∈ C0(Υ ×T ) is a well-posed time-dependent vector field if for any
(υ̂, τ̂) ∈ Υ × T there exists ε > 0 such that

(3.88)


d

dυγ(υ) = f(υ, γ(υ))

γ(υ̂) = τ̂

admits a unique C1 solution on (υ̂ − ε, υ̂ + ε). ♢

Proof. Let us denote ω̃ = Υ × T , with Υ = (υ1, υ2), T = (τ1, τ2).
Step 1. By local Sobolev regularity of f , Ψ and Ψ−1, by Corollary 3.38 and by the Fubini-

Tonelli Theorem, the set Υ0 has full measure in Υ. On the other hand, the set

(3.89) T0
.=
{
τ ∈ T

∣∣∣ χ(·, τ) ∈ W 1,p̄
loc (Υ) and ∂υχ(·, τ) ∈ W

1,p(q̄)
loc (Υ)

}
has also full measure in T , by the same argument.

Step 2. The stationariety of f implies that Theorem 3.43 can be applied. By Lemma 3.45
and Equation (3.68), there exists g : T → (−1, 1) such that for almost every (υ, τ) ∈ ω̃

(3.90) ∂2
υχ(υ, τ)√

1 + (∂2
υχ(υ, τ))2 = g(τ);

this easily implies that for any such (υ, τ)

(3.91) ∂2
υχ(υ, τ) = a(τ) .= g(τ)√

1 − g2(τ)
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holds.
Step 3. For any τ ∈ T0 let

(3.92) Υτ
.= {υ ∈ Υ | Equation (3.91) holds at (υ, τ)},

and let

(3.93) T1
.=
{
τ ∈ T0

∣∣∣ L 1(Υ \ Υτ ) = 0
}

;

by Step 2, T1 has full measure in T .
Step 4. Fix υ̂ ∈ Υ. For any τ ∈ T1, by Sobolev regularity (and continuity) of ∂υχ(·, τ) it

holds that

(3.94) ∂υχ(υ, τ) = ∂υχ(υ̂, τ) + (υ − υ̂)a(τ)

for every υ ∈ Υ, and by Sobolev regularity (and continuity) of χ(·, τ)

(3.95) χ(υ, τ) = χ(υ̂, τ) + (υ − υ̂)∂υχ(υ̂, τ) + (υ − υ̂)2

2 a(τ)

holds for every υ ∈ Υ.
Step 5. If υ̂′ ∈ Υ \ {υ̂}, for any τ ∈ T1 it holds that

(3.96) a(τ) = 2
(υ̂′ − υ̂)2

[
χ(υ̂′, τ) − χ(υ̂, τ) − (υ̂′ − υ̂)∂υχ(υ̂, τ)

]
;

thus a coincides in T1 with a function which is continuous in the whole T . As a consequence,
by the continuity of χ, Equation (3.95) holds for any (υ, τ) ∈ Υ × T . By the chain rule
(Corollary 3.38), a = ∂2

υχ(υ̂, ·) coincides with ∇ff(υ̂, χ(υ̂, τ)).
Step 6. As a further consequence, if υ̂ ∈ Υ0, then again by Equation (3.96) (choosing also

υ̂′ ∈ Υ0) it holds that a ∈ W
1,p(q̄)
loc (Υ). Concluding, if υ̂ ∈ Υ0 we have shown that Equation (3.86)

holds for all (υ, τ) ∈ ω̃ with:

• c(τ) = χ(υ̂, τ) (which is locally p̄-bi-Sobolev by our choice of υ̂ in Υ0);

• b(τ) = ∂υχ(υ̂, τ) = f(υ̂, χ(υ̂, τ)) = f(υ̂, c(τ)) (which is p(q̄)-Sobolev, again by our choice
of υ̂);

• a(τ) = ∂2
υχ(υ̂, τ) = (∇ff)(υ̂, c(τ)), which is p(q̄)-Sobolev by Equation (3.96).

This completes the proof.

As a consequence, stationary functions under the Sobolev Assumption 3.24 are intrinsically
C1:

Corollary 3.48. Let the assumptions be the same as in Corollary 3.46. Then ∇ff ∈ C0(ω),
and thus f ∈ C1

W(ω).

Proof. We can write ∇ff as

(3.97) ∇ff = (∇ff ◦ Ψ) ◦ Ψ−1;

and now Ψ−1 is continuous by assumption, and ∇ff ◦ Ψ = ∂2
υχ by Corollary 3.39. By the

previous Corollary 3.46, ∂2
υχ(υ, τ) = a(τ) is continuous, thus the assertion follows.
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The goal of the future Section 3.3.2 will be to retrieve a global parametrization of the whole
R2, starting from local parametrizations of rectangles having the form of the one obtained in
Corollary 3.46. In sight of this, it would be useful to perform further reparametrizations so that
the term c(τ) therein is a predetermined function (for example, c(τ) = τ), while still maintaining
the Sobolev regularity of all the functions involved (with possibly lower exponent). The following
results go in this direction.

Lemma 3.49 (One-dim. Sobolev composition). Let I, J ⊂ R be open intervals, let α ≥ 1 and
β > 1; let h ∈ W 1,α

loc (I, J) be non-decreasing and u ∈ W 1,β
loc (J,R). Then for γ = γ(α, β) defined

by

(3.98) γ(α, β) .= αβ

α+ β − 1 ∈ [1, β)

it holds that u ◦ h ∈ W 1,γ
loc (I,R).

Proof. Fix a compact set K ⋐ I. The map u◦h is bounded and absolutely continuous in K, and
the chain rule holds for u ◦h (see for example [SV69, Corollary 4]). By assumption, the integral∫
K |h′|α is finite; moreover, by the change of variables formula (see again [SV69, Corollary 6]),

(3.99)
∫
K

|u′ ◦ h|β|h′| =
∫
K

(
|u′|β ◦ h

)
h′ =

∫
h(K)

∣∣u′∣∣β < ∞.

For any γ ∈ [1, β), by the Hölder inequality (with exponents β
γ and its Hölder conjugate),

(3.100)
∫
K

∣∣(u ◦ h)′
∣∣γ =

∫
K

|u′ ◦ h|γ
∣∣h′∣∣ γ

β |h′|γ
(

1− 1
β

)
≤
(∫

K
|u′ ◦ h|β|h′|

) γ
β
(∫

K
|h′|γ

β−1
β−γ

)1− γ
β

.

With our choice of γ(α, β), both factors are finite.

Lemma 3.50 (Reparametrization). Let Ψ : ω̃ → ω be a locally p̄-bi-Sobolev homeomorphism
with ω̃ = Υ × T = (υ1, υ2) × (τ1, τ2) and

(3.101) Ψ(υ, τ) =
(
υ,
a(τ)

2 (υ − υ̂)2 + b(τ)(υ − υ̂) + c(τ)
)

in ω̃, with c : (τ1, τ2) → c((τ1, τ2)) locally p̄-bi-Sobolev homeomorphism and Sobolev coefficients
a ∈ W 1,p(q̄)((τ1, τ2);R), b ∈ W 1,p(q̄)((τ1, τ2);R). Let ψ : T̂ → T be a locally p̄-bi-Sobolev non-
decreasing homeomorphism. Then

(3.102) Ψ̂(υ, τ) .= Ψ(υ, ψ−1(τ)) =
(
υ,
â(τ)

2 (υ − υ̂)2 + b̂(τ)(υ − υ̂) + ĉ(τ)
)

is a locally bi-Sobolev homeomorphism with Sobolev exponent

(3.103) p̂
.=
(1
p̄

+ 1
p̄− 2

)−1
,

and â, b̂, ĉ ∈ W 1,γ
loc (T̂ ), γ being the Sobolev exponent coming from Lemma 3.49 with α = p̄,

β = p(q̄).
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Proof. Define Φ(υ, τ) .= (υ, ψ−1(τ)) so that Ψ̂ .= Ψ ◦ Φ. Both Φ and Ψ are, by definition, locally
p̄-bi-Sobolev homeomorphisms; applying Proposition 3.36 to both Ψ̂ and Ψ̂−1, we deduce that
Ψ̂ is a locally p̂-bi-Sobolev homeomorphism. Moreover, by the previous Lemma 3.49 on the
composition of one-dimensional Sobolev mappings, the statement regarding â, b̂, ĉ holds.

Corollary 3.51 (Lagrangian reparametrization). Let ω ⊂ R2, f ∈ W 1,q̄
loc (ω) and Ψ ∈ W 1,p̄

loc (ω̃;ω)
be as in Assumption 3.24, with ω̃ = Υ × T , Υ and T open intervals. Assume that the Sobolev
exponents p̄ and q̄ satisfy Equation (3.66 | PQ) and p̄ ≥ 2 +

√
2. Assume that f is stationary,

and well-posed as a time-dependent vector field.
For any υ̂ ∈ Υ0 (where Υ0 is defined in Equation (3.85)), there exists a unique Lagrangian

parametrization Ψ̂ : ϖ → ω of ω of the form

(3.104) Ψ̂(υ, τ) = (υ, χ̂(υ, τ)) =
(
υ,
â(τ)

2 (υ − υ̂)2 + b̂(τ)(υ − υ̂) + τ

)
, ϖ = Υ × T̂ ,

with

(3.105) â(τ) = ∇ff(υ̂, τ), b̂(τ) = f(υ̂, τ), a, b ∈ W 1,γ
loc (T̂ ),

γ being the Sobolev exponent coming from Lemma 3.49 with α = p̄, β = p(q̄). Moreover, Ψ̂ turns
out to be a locally bi-Sobolev Lagrangian homeomorphism with Sobolev exponent

(3.106) p̂
.=
(1
p̄

+ 1
p̄− 2

)−1
≥ 1.

Proof. Let υ̂ ∈ Υ0. Define T̂ .= χ−1
υ̂ (T ) and ψ = χυ̂, and apply Lemma 3.50: we obtain a new

locally bi-Sobolev homeomorphism Ψ̂, with Sobolev exponent p̂ (greater than or equal to 1 by
our assumption on p̄). It is immediate to show that ∂υΨ̂(υ, τ) = ∇f (Ψ̂(υ, τ)) holds for Ψ as
well; the uniqueness follows by the constraint Ψ̂(υ̂, τ) = τ for all τ , by the requirement that Ψ̂ is
a Lagrangian parametrization, and by the well-posedness of f (which ensures that trajectories
in ω do not meet).
Finally, by Corollary 3.46, χ could be written as

(3.107) χ(υ, τ) = a(τ)
2 (υ − υ̂)2 + b(τ)(υ − υ̂) + χυ̂(τ),

with a, b ∈ W
1,p(q̄)
loc (T ); by the representation of a and b given in Corollary 3.46, and by

Lemma 3.50, Equation (3.105) holds.

3.3.2 Global results

The results stated until now involved a fixed domain ω ⊂ R2 together with a stationary Sobolev
map f on ω; moreover, we had set an a priori assumption on the existence of a locally bi-Sobolev
homeomorphic Lagrangian parametrization of ω associated to ∇f . The next step is to move to
maps defined on the whole R2; we still make an a priori assumption on the (local) existence of
Lagrangian parametrizations, which will be justified in Section 3.5.

Assumption 3.52. We will assume that the following conditions hold:
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• Sobolev regularity of f : f is a map defined on R2 such that f ∈ W 1,q̄
loc (R2,R) ∩ C0(R2)

for some q̄ > 2;

• Well-posedness of f : f is well-posed as a time-dependent vector field on R;

• Existence of parametrizations “in small”: there exist p̄ ≥ 1 and ℓ > 0 such that any
open bounded connected subset ω ⊂ R2 of width smaller than ℓ (that is, L 1(π1(ω)) < ℓ)
admits a locally bi-Sobolev Lagrangian homeomorphism associated to ∇f with Sobolev
exponent p̄. ♢

Thanks to a result proved in the article (to appear) [ANS], we’ll be able to retrieve in Sec-
tion 3.5 a condition that guarantees this assumption is satisfied. However, if f is also stationary,
this assumption alone is enough to constrain the intrinsic graph of f to be ruled by horizontal
lines:

Theorem 3.53. Let f : R2 → R satisfy Assumption 3.52, with q̄ and p̄ satisfying Equa-
tion (3.66 | PQ) and p̄ ≥ 2 +

√
2. Assume that f is stationary in R2. Then there exists υ̂ ∈ R

such that

(3.108 | Ψ) Ψ(υ, τ) .=
(
υ,
a(τ)

2 (υ − υ̂)2 + b(τ)(υ − υ̂) + τ

)
, with

{
a(τ) .= ∇ff(υ̂, τ)
b(τ) .= f(υ̂, τ)

,

defines a locally p̂-bi-Sobolev Lagrangian homeomorphism associated to ∇f mapping the whole
R2 onto itself, with γ-Sobolev coefficients a and b. The Sobolev exponents p̂ and γ are both
defined in Lemma 3.50.

Proof. We proceed as follows: we first show that for any (υ0, τ0) ∈ R2 the Cauchy problem

(3.109)
{
γ̇(υ) = f(υ, γ(υ))
γ(υ0) = τ0

admits a solution globally defined in time; such a solution is a quadratic polynomial, and the
coefficients are Sobolev-regular in τ0 when υ0 is fixed and suitably chosen.

Step 1. Fix (υ0, τ0) ∈ R2. By assumption, every narrow enough neighborhood ω0 of (υ0, τ0)
admits a locally bi-Sobolev Lagrangian parametrization Ψ0 : ω̃0 → ω0 associated to ∇f ; up to
restricting ω̃0 and ω0 we can assume ω̃0 = Υ × T is a rectangle. By Corollary 3.46, such Ψ0 has
the form (υ, a(τ)υ2 + b(τ)υ + c(τ)). In particular, the unique local solution to Equation (3.109)
is a quadratic polynomial:

(3.110) γ(υ) = a0υ
2 + b0υ + c0.

Assume by contradiction that the maximal interval I(υ0, τ0) for the Cauchy Problem (3.109) is
(right) bounded by sup I(υ0, τ0) = M : let

(3.111) (υ1, τ1) =
(
υ1, a0υ

2
1 + b0υ1 + c0

)
∈
(
M − ℓ

4 ,M
)

be a point belonging to the trajectory of γ and close to the supremum of I(υ0, τ0). Fix a
neighborhood U of (υ1, τ1) that contains the whole trait of curve

(3.112) (υ, a0υ
2 + b0υ + c0), υ ∈

(
M − ℓ

4 ,M + ℓ

4

)
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but is narrower than ℓ. Now U also admits a Lagrangian parametrization associated to f ;
again by Corollary 3.46, the second component of this new parametrization still needs to be a
quadratic polynomial in υ (at least in a thin tubular neighborhood of the trajectory (3.112)).
By the well-posedness of f , the trajectory passing through (υ1, τ1) coincides with (3.112): this
implies that the polynomial γ in Equation (3.110) is a solution to the Cauchy Problem (3.109)
at least up to M+ ℓ

4 , contradicting the definition of M as the supremum of the maximal interval.
Step 2. By assumption, any set of the form Ak

.= (0, ℓ2)×(−k, k) admits a locally bi-Sobolev
Lagrangian parametrization Ψk(υ, τ) = (υ, χk(υ, τ)); we can find a suitable υ̂ which makes each
χkυ̂ p̄-bi-Sobolev and each (χkυ̂)′ p(q̄)-Sobolev; thus for any k, by Corollary 3.51, we can find a
(uniquely determined) reparametrization of a strip containing {υ̂} × (−k

2 ,
k
2 ) having the form

of Equation (3.108 | Ψ). Notice that now a and b are globally defined in R and locally Sobolev
with exponent γ, while Ψ is locally p̂-bi-Sobolev.

Step 3. Once υ̂ is selected as in the previous step, the map Ψ in Equation (3.108 | Ψ) is
continuous in the whole R2 (by the continuity of the coefficients in the quadratic representation);
the curves υ 7→ Ψ(υ, τ) are global solutions to the differential equation in (3.109); Ψ in surjective
(by existence of solutions for (3.109) for any initial datum) and injective (by uniqueness of
solution); thus it is a Lagrangian homeomorphism associated to ∇f by Brouwer’s Invariance of
Domain Theorem.

Step 4. Finally, for any bounded domain ω having width smaller than ℓ, there exists a locally
p̄-bi-Sobolev Lagrangian homeomorphism as in Corollary 3.46; up to reparametrizing through a
locally p̄-bi-Sobolev homeomorphism of the type (υ, τ) → (υ, c−1(τ)), it must coincide with Ψ.
In particular, by Lemma 3.50, the restriction of Ψ to Ψ−1(ω) is locally bi-Sobolev with Sobolev
exponent p̂.

3.4 Second variation

In this section, we discuss the consequences of stability under the Assumption 3.52 of existence
of local Sobolev Lagrangian homeomorphisms.

First of all, we can replicate [NS19, Lemma 5.3]; half of it comes free of charge from [Gol18].
Observe that no stability or stationariety are needed at this stage: the main content of the
statement is that if the integral curves of ∇f describe parabolic trajectories, then by uniqueness
the defining coefficients of two such trajectories are related to each other.

Lemma 3.54. Let a, b ∈ C0(R) and let f ∈ C0(R2;R) be a well-posed time-dependent vector
field. Define

(3.113) χ(υ, τ) .= a(τ)
2 υ2 + b(τ)υ + τ.

Assume that Ψ: (υ, τ) 7→ (υ, χ(υ, τ)) is a Lagrangian homeomorphism from R2 to Ψ(R2) asso-
ciated to ∇f . Then:

(i) For all τ1 ̸= τ2 ∈ R,

(3.114)
either a(τ1) = a(τ2) and b(τ1) = b(τ2)

or 2a(τ1) − a(τ2)
τ1 − τ2

>

(
b(τ1) − b(τ2)
τ1 − τ2

)2
.
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(ii) Assume in addition that a, b ∈ W 1,1
loc (R) and Ψ is locally bi-Sobolev of exponent p̄ > 3

2 .
Then for a.e. τ ∈ R we have

(3.115)
either a′(τ) = b′(τ) = 0
or 2a′(τ) > b′(τ)2.

Proof. Part (i) is proved in [Gol18, Lemma 3.3] as a consequence of the definition of Ψ as a
homeomorphism (in particular, injectivity).
In order to prove (ii) we proceed in a similar fashion to [NS19, Lemma 5.3]. By the assumption
that a, b belong to W 1,1

loc (R), they are almost everywhere differentiable in R with derivatives in
L1

loc; if τ̂ ∈ R is a differentiability point for both a and b, then:

• by the first part the inequality 2a′(τ̂) ≥ b′(τ̂)2 is granted, thus it only remains to show
that equality holds only if both terms are zero;

• if 2a′(τ̂) = b′(τ̂)2, then for any υ ∈ R we have:

(3.116) ∂τχ(υ, τ̂) = b′(τ̂)2

4 υ2 + b′(τ̂)υ + 1 =
(
b′(τ̂)

2 υ + 1
)2
,

which is null at υ = − 2
b′(τ̂) .

Let now Ek be the set defined by

(3.117) Ek
.=
{
τ ∈ [−2k, 2k]

∣∣∣∣∣ a and b are differentiable at τ ,
2a′(τ) = b′(τ)2 ≥ k−2

}
for k ∈ N,

and Ẽk
.= [−2k, 2k] × Ek. The set Ek is obtained as the intersection of the differentiability

sets of a and b (which are measurable and have full measure) and the sets (2a′ − (b′)2)−1({0})
and (a′)−1

([
1

2k2 ,∞
))

, which are measurable themselves because a′, b′ ∈ L1
loc. Then by the

Fubini-Tonelli theorem

(3.118)
∫
Ẽk

1
|∂τχ(υ, τ)|p̄−1 dυ dτ =

∫
Ek

∫ 2k

−2k

1∣∣∣ b′(τ)
2 υ + 1

∣∣∣2p̄−2 dυ

dτ.

Now we can observe what follows:

• Since
∣∣∣− 2

b′(τ)

∣∣∣ ≤ |2k| for any τ ∈ Ek by the definition of Ek itself, the internal integral at
the right hand side of (3.118) diverges for any τ ∈ Ek (because p̄ ≥ 3

2);

• Moreover, by the second part Proposition 3.31 and the Sobolev assumption on Ψ, we know
that the left hand side of (3.118) is finite.

Hence, we conclude that L 1(Ek) = 0 for all k ∈ N; as a consequence, the set

(3.119) E
.=
{
τ ∈ R

∣∣∣∣∣ a and b are differentiable at τ ,
2a′(τ̂) = b′(τ̂)2 ̸= 0

}
=
⋃
k∈N

Ek

is L 1-negligible as well.
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Next, we show how stability interacts with the existence of Lagrangian paramterizations.
The results is a new inequality derived from the second variation formula (Equation (3.124)).

Lemma 3.55 (Integration by parts). Let h ∈ W 1,2
loc (Rn) ∩ C0

c(Rn). Let i ∈ {1, . . . , n}. Let
g ∈ L2

loc(Rn) be such that for almost every x̂i
.= (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 the map

gx̂i

.= g(x1, . . . , xi−1, ·, xi+1, . . . , xn) belongs to W 1,1
loc (R), and ∂xig ∈ L2

loc(Rn). Then

(3.120)
∫
Rn
h(∂xig) dL n = −

∫
Rn

(∂xih)g dL n

holds.

Proof. By a classical result ([EG15, Theorem 4.21(i)]), for almost every x̂i ∈ Rn−1 the map
hx̂i

.= h(x1, . . . , xi−1, ·, xi+1, . . . , xn) belongs to W 1,1
loc (R); thus ∂xi(hg) exists almost everywhere

Rn and

(3.121)
∫
Rn
∂xi(hg)dL n =

∫
Rn
h(∂xig) +

∫
Rn

(∂xih)g dL n;

as a further consequence, ∂xi(hg) ∈ L1
loc(Rn). Now by Fubini’s Theorem

(3.122)
∫
Rn
∂xi(hg)dL n =

∫
Rn−1

(∫
R

(hx̂i
gx̂i

)′ dxi
)

dx̂i,

and the internal integral equals 0, by the local absolute continuity of hx̂i
gx̂i

and the fact that h
has compact support.

Lemma 3.56. Let f ∈ W 1,q̄
loc (R2) ∩ C0(R2;R), and let Ψ : R2 → R2 be a locally p̂-bi-Sobolev

Lagrangian homeomorphism associated to ∇f , with p̂ > 2. Assume that Ψ has the form

(3.123) Ψ(υ, τ) =
(
υ,
a(τ)

2 (υ − υ̂)2 + b(τ)(υ − υ̂) + τ

)
with υ̂ ∈ R and a, b ∈ W 1,γ

loc (R). Finally, assume that f is stable ( i.e., it is stationary and
satisfies Equation (3.26 | 2VF)). Then for all φ̃ ∈ W 1,σ(R2) ∩ C0

c(R2) it holds that
(3.124)∫

R2

(∂υφ̃)2
a′

2 (υ − υ̂)2 + b′(υ − υ̂) + 1
(1 + a2)

3
2

− φ̃2 2a′ − (b′)2(
a′

2 (υ − υ̂)2 + b′(υ − υ̂) + 1
)
(1 + a2)

3
2

dυ dτ ≥ 0,

where σ is chosen so that σ ≥ 2
(

p̂
p̂−2

)2

Proof. The proof follows essentially the same lines and computations as [NS19, Lemma 5.4],
up to making sure that the involved tools are still exploitable in the Sobolev setting. We can
assume without loss of generality that υ̂ = 0.

Step 1. Let φ̃ ∈ W 1,σ(R2)∩C0
c(R2); the map φ .= φ̃◦Ψ−1 belongs to W 1,2

loc (R2)∩C0
c(R2) by

Proposition 3.36, thus it can be used as a test function in Equation (3.26 | 2VF). In particular,
using the Area Formula (3.36 | AF),

(3.125)
∫
R2



(
∇fφ+ (∂tf)φ

)2

(1 + (∇ff)2) 3
2

+ (∇ff)∂t(φ2)
(1 + (∇ff)2) 1

2

 ◦ Ψ

(∂τχ) dL 2 ≥ 0
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Here we exploit the formulas in Corollary 3.39 and find that:

(3.126)

(
∇fφ

)
◦ Ψ = ∂υφ̃ ∂tf ◦ Ψ = ∂τ∂υχ

∂τχ
= a′υ + b′

a′

2 υ
2 + b′υ + 1(

∂tφ
2
)

◦ Ψ = 2φ̃∂τ φ̃
∂τχ

= ∂τ (φ̃2)
∂τχ

(
∇ff

)
◦ Ψ = ∂2

υχ = a(τ)

so that the previous inequality becomes

0 ≥
∫
R2

∂τχ

(1 + a2)
3
2

[
(∂υφ̃)2 + a′υ + b′

∂τχ
∂υ(φ̃2) + (a′υ + b′)2

(∂τχ)2 φ̃2 + a(1 + a2)∂τ (φ̃2)
∂τχ

]
dL 2 =

(3.127)

=
∫
R2

[
∂τχ

(1 + a2)
3
2

(
(∂υφ̃)2 + (a′υ + b′)2

(∂τχ)2

)
+ ∂υ(φ̃2) a′υ + b′

(1 + a2)
3
2

+ ∂τ (φ̃2) a

(1 + a2)
1
2

]
dL 2 =

(3.128)

=
∫
R2

[
∂τχ

(1 + a2)
3
2

(
(∂υφ̃)2 + (a′υ + b′)2

(∂τχ)2

)
− φ̃2 a′

(1 + a2)
3
2

− φ̃2 a′

(1 + a2)
3
2

]
dL 2 =

(3.129)

=
∫
R2

(∂υφ̃)2
a′

2 υ
2 + b′υ + 1

(1 + a2)
3
2

+
(a′υ + b′)2 − 2a′

(
a′

2 υ
2 + b′υ + 1

)
(1 + a2)

3
2
(
a′

2 υ
2 + b′υ + 1

) dL 2

(3.130)

where the equality in (3.129) comes from the integration by parts (Lemma 3.55); up to rear-
ranging the terms in the last line, the statement is proved.

Corollary 3.57. Let a, b ∈ W 1,γ
loc (R) be such that Equation (3.124) holds for any φ̃ ∈ W 1,σ(R2)∩

C0
c(R2). Then for almost every τ̂ ∈ R and for every ψ ∈ W 1,σ(R) ∩ C0

c(R) it holds that

(3.131)

∫
R

(
ψ′(υ)

)2(a′(τ̂)
2 (υ − υ̂)2 + b′(τ̂)(υ − υ̂) + 1

)
dυ ≥

≥
(
2a′(τ̂) − (b′(τ̂))2

) ∫
R

(ψ(υ))2

a′(τ̂)
2 (υ − υ̂)2 + b′(τ̂)(υ − υ̂) + 1

dυ.

Proof. For simplicity, denote by λ the function

(3.132) λ(υ, τ) .= a′(τ)
2 (υ − υ̂)2 + b′(τ)(υ − υ̂) + 1,

defined for every υ ∈ R and τ ∈ R up to modifications on a negligible set. Let ϱε ∈ C∞c be the
standard uni-dimensional mollifier for any ε > 0; fix τ̂ ∈ R such that a and b are differentiable
at τ̂ , and ψ ∈ W 1,σ(R) ∩ C0

c(R) and let

(3.133) φ̃ε(υ, τ) .= ψ(υ)
√
ϱε(τ − τ̂).

so that ∂υφ̃ε(υ, τ) = ψ′(υ)
√
ϱε(τ − τ̂).
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By Equation (3.124) and the Fubini-Tonelli Theorem, it holds that
(3.134)∫
R
ϱε(τ − τ̂)

(
1

(1 + a2)
3
2

∫
R

(
ψ′(υ)2

)
λ(υ, τ) dυ

)
dτ ≥

∫
R
ϱε(τ − τ̂)

(
2a′ − (b′)2

(1 + a2)
3
2

∫
R

ψ(υ)2

λ(υ, τ) dυ
)

dτ.

Letting ε ↓ 0, and recalling the standard properties of pointwise convergence of the regular-
izations,

(3.135) 1
(1 + a2)

3
2

∫
R

(
ψ′(υ)2

)
λ(υ, τ) dυ = 2a′ − (b′)2

(1 + a2)
3
2

∫
R

ψ(υ)2

λ(υ, τ) dυ

holds, which is exactly the needed identity.

As a last step towards the Bernstein-type Theorem 3.59, we recall a lemma from [BSV07]
which clarifies how Equation (3.131) will be used:

Lemma 3.58. Let A,B ∈ R be such that B2 ≤ 2A, and set h(υ) .= A
2 υ

2 +Bυ + 1. If

(3.136)
∫
R
ψ′(υ)2h(υ) dυ ≥ (2A−B2)

∫
R

ψ(υ)2

h(υ) dυ for every ψ ∈ C1
c(R),

then B2 = 2A.

Proof. See [BSV07, p. 45].

Finally, we state a Bernstein-type Theorem for stable maps, in the most general form avail-
able from the results in this section.

Theorem 3.59. Let f : R2 → R satisfy Assumption 3.52, with q̄ and p̄ satisfying Equa-
tion (3.66 | PQ) and p̄ > 3 +

√
5. Assume that f is stable in R2. Then there exist υ̂ ∈ R

and a, b ∈ R such that

(3.137) Ψ(υ, τ) .=
(
υ,
a

2(υ − υ̂)2 + b(υ − υ̂) + τ

)
,

defines a Lagrangian homeomorphism associated to ∇f mapping the whole R2 onto itself. In
particular, ∇ff is constant, and the intrinsic graph of f is a vertical intrinsic plane.

Proof. First of all, by stationariety, f admits a p̂-Sobolev Lagrangian homeomorphism which
has the form of Equation (3.108 | Ψ) with γ-Sobolev coefficients a and b (Theorem 3.53). By our
assumption on p̄, the new Sobolev coefficient p̂ turns out to be greater than 2.
Up to translations in the first coordinate, by Lemmas 3.56 and 3.58 and Corollary 3.57, for
almost every τ ∈ R it holds that b′(τ)2 = a′(τ). By Lemma 3.54 (again up to translating υ̂

to 0), then a and b must satisfy a′(τ) = b′(τ) ≡ 0 for almost every τ ∈ R. Since a and b are
absolutely continuous, this implies they are constant in R.
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3.5 Regularity of f

In this final Section, we retrieve a condition that ensures the validity of Assumption 3.52. As
already mentioned, we make use of a result proved by Ambrosio, Nicolussi Golo and Serra
Cassano in [ANS], which has not yet been published at the writing of this thesis and has been
personally communicated to the author.

Let us first introduce the condition we will need: no a priori existence on parametrizations
is required.

Assumption 3.60. We assume that the following hold:

• Sobolev regularity of f : f ∈ W 1,q̄
loc (R2,R) ∩ C0(R2) for some q̄ > 2;

• Exponential summability for ∂tf : there exists β ∈ [1,∞) such that

(3.138) exp(|∂tf(·, ·)|) ∈ Lβloc(R
2,R);

equivalently, exp(|β ∂tf(·, ·)|) ∈ L1
loc(R2,R). ♢

Remark 3.61. It is easy to see that the second condition implies that in fact ∂tf ∈ Lqloc(R2)
for any q ∈ [1,∞). Moreover, if M(β, q) .= inf

{
x > 0

∣∣∣ xq ≤ eβx
}

and K ⊂ R2 is a compact set,
then the estimate

(3.139)
∫
K

|∂tf(y, t)|q dy dt ≤ M(β, q)qL 2(K) + ∥exp(|∂tf(·, ·)|)∥Lβ(K)

holds.
By the same observation, notice that if f ∈ W 1,1

loc (R2,R) ∩ C0(R2) is such that exp(|∇f |) ∈
Lβloc(R2) for some β ≥ 1, then both conditions in Assumption 3.60 are satisfied. ♢

The exponential summability condition on ∂tf implies that f is well posed as a time-
dependent vector field. Although this is somewhat known in literature, we give here a self-
contained proof based on the Osgood criterion, which provides the uniqueness for solutions
([Har02, Chapter III, Corollary 6.2]), while the existence is ensured by the continuity of f ; we
first introduce such criterion in the form we need it. Again, the reader should be aware that
the notation might be misleading: the variable y should be thought as the time variable (see
Remark 3.20).

Lemma 3.62 (Osgood criterion). Let I,Ω ⋐ R and let f ∈ C0(I × Ω,R). Assume that there
exist φ ∈ L1(I, [0,+∞)) and a modulus of continuity ξ ∈ C0([0,∞), [0,∞)) such that

(3.140)
∫ 1

0

dδ
ξ(δ) = ∞, ξ(0) = 0, and ξ(δ) > 0 for all δ > 0

and

(3.141) |f(y, t1) − f(y, t2)| ≤ φ(y)ξ(|t1 − t2|)

for all y ∈ I, t1, t2 ∈ Ω. Then f is well posed.

Well-posedness under Assumption 3.60 follows. The same result can be extended to weaker
conditions on the integrability of ∂tf ([ANS]).
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Proposition 3.63 (Well posedness under Assumption 3.60). Let I,Ω ⋐ R be bounded open inter-
vals and let f ∈ W 1,1(I × Ω;R) ∩ C0(I × Ω) be such that

(3.142)
∫
I×Ω

exp(β|∂tf |(y, t)) dL 2 < ∞

for some β ≥ 1. Then f is well posed as a time-dependent vector field.

Proof. By the absolute continuity of f(y, ·) on almost every line ([EG15, Theorem 4.21]), for
almost every y and for every t1 < t2 ∈ Ω one has

(3.143) |f(y, t1) − f(y, t2)|
|t1 − t2|

≤ 1
|t1 − t2|

∫ t2

t1
|∂tf(y, t)| dt.

Then by the Jensen Inequality it holds that:

(3.144) exp
(
β

|f(y, t1) − f(y, t2)|
|t1 − t2|

)
≤ 1

|t1 − t2|

∫ t2

t1
exp(β|∂tf(y, t)|) dt

and by algebraic computations

(3.145) β
|f(y, t1) − f(y, t2)|

|t1 − t2|
≤ log

( 2|Ω|
|t1 − t2|

∫
Ω

1
2|Ω|

sup{4, exp(β|∂tf(y, t)|)} dt
)
,

where we denote by |Ω| the length L 1(Ω) of Ω. Now notice that both 2|Ω|
|t1−t2| and the integral at

the right hand side of Equation (3.145) are greater than or equal to 2; and there exists K > 0
such that

(3.146) log(ab) ≤ Ka log b for any a, b ≥ 2

– in other words, (a, b) 7→ log(ab)
a log b is bounded from above on [2,∞)2. Thus, if we let

ξ(δ) .= −βδ log δ(3.147)

φ(y) .= 1
2|Ω|

∫
Ω

sup{4, expβ|∂tf(y, t)|} dt,(3.148)

then φ ∈ L1(I) by the assumption (3.142) and the Fubini-Tonelli Theorem; moreover, in that
case, Equation (3.145) gives exactly

(3.149) |f(y, t1) − f(y, t2)| ≤ ξ(|t1 − t2|)φ(y),

which is what we need to apply the Osgood criterion (Lemma 3.62).

The following result we state is really the only one we need from [ANS], and is here exploited
to make sure that the flow of the non-autonomous vector field f has Sobolev regularity. Let us
first precise what we mean by flow of a well-posed vector field; everything will be particularized
to the case of one spatial dimension.

Definition 3.64 (Flow of a vector field). Let I,Ω ⋐ R and let f ∈ C0(I × Ω,R) be a well-posed
non-autonomous vector field. For any pair (υ0, τ0) ∈ I × Ω, let Iυ0,τ0 be the maximal interval on
which the solution γυ0,τ0 to

(3.150)


dγ
dυ = f(υ, γ(υ))

γ(υ0) = τ0
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is defined. For any υ, υ0 ∈ I, we denote by Ωυ,υ0 ⊂ Ω the set of points τ0 such that the solution
starting from τ0 at time υ0 still exists at time υ:

(3.151) Ωυ,υ0
.= {τ0 ∈ Ω | Iυ0,τ0 ∋ υ}.

Then we define Xυ,υ0 : Ωυ,υ0 → Ω as

(3.152) Xυ,υ0(τ0) .= γυ0,τ0(υ)

and the flow of f as

(3.153) X(υ; υ0, τ0) .= Xυ,υ0(τ0)

for any υ, υ0, τ0 for which it is defined. ♢

The regularity result we need is here stated in its local form:

Theorem 3.65 (Regularity of the flow). Let I ⊂ R be a bounded interval and Ω ⊂ R be a bounded
open set. Let f ∈ L1

loc(I,W
1,1
loc (Ω,R)) ∩ C0

c(I × Ω,R) be a compactly supported time-dependent
vector field defined on I × Ω. Denote by ℓ the length of I.

Assume that there exists some p > 1 such that

(3.154)
∫
I

∫
Ω

exp
(
ℓp2

p− 1 |∂τf(υ, τ)|
)

dτ dυ < ∞.

Then (f is well posed and)

(3.155) Xυ,υ0 ∈ W 1,p(Ω,R) with
∫

Ω
|∂τX(υ; υ0, τ)|p dτ ≤ Λp

for any υ, υ0 ∈ I, where

(3.156) Λp
.= ℓ

1
1−p

∫
I

∫
Ω

exp
(
ℓp2

p− 1 |∂τf(υ, τ)|
)

dτ dυ < ∞.

Thanks to Theorem 3.65, then, we find:

Proposition 3.66. Let f : R2 → R satisfy Assumption 3.60. Then it satisfies Assumption 3.52.
More precisely, for any p̄ > 1 there exists ℓ > 0 such that any open bounded connected subset
ω ⊂ R2 of width smaller than ℓ (that is, L 1(π1(ω)) < ℓ) admits a locally bi-Sobolev Lagrangian
homeomorphism associated to ∇f with Sobolev exponent p̄.

Proof. Let p̄ > 1 be fixed, and let

(3.157) ℓ
.= p̄− 1

p̄2 β.

Fix a bounded connected domain ω ⊂ R2 of width smaller than ℓ, and let I,Ω ⊂ R be bounded
intervals such that |I| ≤ ℓ and ω is compactly contained in I × Ω.

Step 1. Let φ ∈ C∞c (I × Ω) be a smooth cut-off function such that 0 ≤ φ ≤ 1, φ ≡ 1 on
ω, and φ has compact support in I × Ω; consider f̂ .= φf in I × R. It is now enough to prove
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that I × Ω admits a locally p̄-bi-Sobolev Lagrangian homeomorphism Ψ associated to ∇f̂ : in
that case, the restriction of such a homeomorphism to Ψ−1(ω) is a locally bi-Sobolev Lagrangian
homeomorphism associated to ∇f which parametrizes ω. Notice that ∂tf̂ satisfies

(3.158) exp
(
|∂tf̂ |

)
≤ exp

(
∥∂tφ∥∞∥f∥L∞(I×Ω)

)
exp(|∂tf |) ∈ Lβloc(I × Ω)

and ∥f̂∥L∞(I×Ω) = ∥f∥L∞(ω).
Step 2. By Equation (3.158) and by Proposition 3.63, the non-autonomous vector field f̂

is well posed; since it is also bounded in I × Ω, the solution to the Cauchy problem

(3.159 | CP)
{
γ̇(υ) = f̂(υ, γ(υ))
γ(υ0) = τ0

is defined on the whole interval I for any pair (υ0, τ0) ∈ I × Ω. Let us select a fixed time υ̂ ∈ I.
Using the same notations as in Definition 3.64, for any υ ∈ I and τ ∈ Ω we define:

χ(υ, τ) .= X(υ; υ̂, τ) = Xυ,υ̂(τ),(3.160)
Ψ(υ, τ) .= (υ, χ(υ, τ));(3.161)

namely, χ(υ, τ) is the evaluation at time υ of the solution to Equation (3.159 | CP) with initial
time υ̂ and initial position τ . Let us show that Ψ: I × Ω → I × Ω is a locally p̄-bi-Sobolev
Lagrangian homeomorphism between I × Ω and itself.

Step 3. Ψ is bijective: this is guaranteed by the uniqueness of the solution to Equa-
tion (3.159 | CP) and by the global existence for any initial datum. Notice that for any (υ, τ) ∈
I × Ω the image Ψ(υ, τ) still belongs to I × Ω thanks to the fact that f̂ has compact support.

Step 4. For any υ ∈ I, τ 7→ χ(υ, τ) is a locally p̄-Sobolev homeomorphism of Ω onto Ω;
moreover, for any υ ∈ I it holds that

(3.162)
∫

Ω
|∂τχ(υ, τ)|p̄ dτ ≤ Λp(Ω)

where Λp is a constant only depending on Ω (and thus independent of υ). This is a direct
consequence of the previous Theorem 3.65: indeed, by Assumption 3.60 (and in particular
(3.138)) and our choice of ℓ (Equation (3.157)), it holds that exp

(
ℓp̄2

p̄−1 |∂tf̂ |
)

lies in L1(I × Ω).
Thus, Equation (3.155) is satisfied on Ω.

Step 5. The map τ 7→ χ(υ, τ) is invertible for any υ ∈ I, and its inverse is χ−1
υ (τ) =

X(υ̂; υ, τ): this follows again by the uniqueness of the solution to Equation (3.159 | CP). In
particular, following the same argument of the previous point, χ−1

υ is locally p̄-Sobolev; and
thus χ(υ, ·) is a locally p̄-bi-Sobolev homeomorphism.

Step 6. The map υ → χ(υ, τ) is Lipschitz in I for any τ , with Lipschitz constant bounded
by ∥f∥L∞(ω). Indeed,

(3.163) |χ(υ, τ) − χ(υ′, τ)| =
∣∣∣∣∫ υ

υ′
f̂(s, χ(s, τ)) ds

∣∣∣∣ ≤ ∥f∥L∞(ω)|υ − υ′|.

An analogous argument shows that υ 7→ χ−1
υ (τ) is also Lipschitz with the same constant.

Step 7. The map χ : I × Ω → Ω is continuous: indeed, if (υ, τ), (υ′, τ ′) ∈ I × Ω, then

(3.164)
∣∣χ(υ, τ) − χ(υ′, τ ′)

∣∣ ≤ |χ(υ, τ) − χ(υ, τ ′)| + ∥f∥L∞(Ω)|υ − υ′|
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and the conclusion follows by the continuity of χ(υ, ·).
Step 8. The map (υ, τ) 7→ Ψ(υ, τ) is locally p̄-bi-Sobolev. We show that it is p̄-Sobolev,

since the regularity of Ψ−1 works similarly. The following upper bounds

∥χ(υ, ·)∥W 1,p̄(Ω) ≤ Λp(Ω) for any υ ∈ I,(3.165)
∥χ(·, τ)∥W 1,∞(I) ≤ ∥f∥L∞(ω) for any τ ∈ R(3.166)

hold (uniformly in υ and τ respectively); as a consequence, it is easy to see that the derivatives
of such functions are actually the weak partial derivatives of χ (see [HK14, Theorem A.15]), and
for any ω̂ ⋐ I × R we have that ∂τχ ∈ Lp̄(ω̂), ∂υχ ∈ L∞(ω̂). Moreover, by standard properties
of the operator norm, the weak differential of Ψ satisfies
(3.167)

∥DΨ(υ, τ)∥p̄op ≤
(
1 + |∂τχ(υ, τ)|2 + |∂υχ(υ, τ)|2

) p̄
2 ≤ C(p̄)

(
1 + |∂τχ(υ, τ)|p̄ + |∂υχ(υ, τ)|p̄

)
,

thus for any ω̂ ⋐ I × R the norm ∥DΨ∥Lp̄(ω̂) is finite.
Step 9. Collecting all the information we proved so far, Ψ is a continuous (Step 7) and

bijective (Step 3) map from I × R to itself; thus it is a homeomorphism (by the Invariance of
Domain); it is locally p̄-bi-Sobolev (Step 8); by the definition of χ (Step 2), χ(υ, ·) is non-
decreasing for any υ ∈ I and χ solves ∂υχ(υ, τ) = f̂(υ, χ(υ, τ)), thus Ψ is actually a Lagrangian
homeomorphism associated to f̂ .

Corollary 3.67. Let f : R2 → R satisfy Assumption 3.60, with q̄ high enough. If f is stable,
then its intrinsic graph is an intrinsic plane.

Proof. The statement is a consequence of Proposition 3.66 and Theorem 3.59; the only thing to
notice is that one needs q̄ to be sufficiently big so that there exists p̄ ∈ (3 +

√
5, q̄] such that p̄, q̄

satisfy Equation (3.66 | PQ).



Chapter 4

Minimizers of the p-energy among maps
taking values on a Riemannian manifold

The main issue of this chapter will be the problem of estimating the dimension of the singular set
of a map taking values in a Riemannian manifold, and minimizing the p-Dirichlet energy. The
strategies and proofs will be based on the article [Ved21]: the main difference in the results ob-
tained is that here we explicit the case of stationary maps under specific additional assumptions
on p and on the target (assumptions borrowed from [TW95], which we use extensively).

It is clear that, contrary to the case of real-valued p-harmonic functions (or even RN -valued),
no global smoothness result can hold: the simple example of the projection map x 7→ x

|x| to the
sphere shows that there exist p-energy minimizing maps that have discontinuities. We should also
take in consideration that external variations alone are not sufficient to achieve any regularity
result: a result of Rivière [Riv95] shows that one can build weakly p-harmonic maps from the
n-dimensional ball to the (n− 1)-dimensional sphere that are discontinuous everywhere.

Our result will be stated in terms of the Minkowski (or Hausdorff) dimension of the singular
set, which is bounded by m − ⌊p⌋ − 1; moreover, we will retrieve an upper bound on the
appropriate Minkowski content (or Hausdorff measure) of the singular set, and its rectifiability.
Our strategy is based on the scheme introduced in [NV17], which in turn refines the strategy of
[CN13b].

4.1 Setting

Assumption 4.1 (Setting). The setting (and consequent notations for spaces, dimensions and
parameters) will be the following:

• Ω ⊂ Rm is an open connected domain which contains a large enough ball BR̄(0). The
size of the needed radius R̄ will be the result of a sequence of intermediate lemmas, thus
it will be better explained as the argument develops: for the moment, let us just fix the
condition R̄ > 0.

• (N , hN ) is an n-dimensional closed (compact with no boundary) Riemannian manifold.
Thanks to the celebrated Nash Embedding Theorem (see [Nas54]), we can assume that N
isometrically embeds in a Euclidean space RN , with N high enough.
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• u is a map from Ω to N .

• p ∈ (1,m), where m is the dimension of the domain. ♢

When u is a map between Ω and N , we define its singular set as follows:

Definition 4.2 (Singular set). Let u : Ω → N . Then the singular set of u is defined as the
subset

(4.1) S(u) .= {x ∈ Ω | u is not continuous at x}

of Ω. ♢

Remark 4.3. A bit of clarification regarding Assumption 4.1:

• The overall goal of this chapter will be to estimate from above the Hausdorff dimension of
S(u) ∩ B1(0), and study its k-rectifiability, when u is a p-harmonic map. We thus allow
ourselves to be vague about the assumptions on the domain Ω (Assumption 4.1) because
the problem we will address is of local nature: up to rescaling, there’s no harm in the
assumption we have made – i.e., that Ω ⊃ BR̄(0) with R̄ > 4.

• More generally, again by the locality of the problem, the argument we will use also works
when Ω ⊂ M, an m-dimensional Riemannian manifold.

• In the literature, alternative assumptions on the target manifold N can be found; for our
purposes, instead of considering an abstract closed manifold, it would be sufficient to ask
that N is a (not necessarily closed) Riemannian manifold embedded in RN and that u
takes values in a fixed compact subset of N . ♢

Before discussing various definitions regarding p-harmonicity, let us fix some notations on
manifold-valued Sobolev mappings.

Definition 4.4 (Sobolev maps into N ). Let Ω,N , p be as in Assumption 4.1, with N embedded
in RN .

The manifold-valued Sobolev space W 1,p(Ω,N ) is defined as

(4.2) W 1,p(Ω,N ) .=
{
u ∈ W 1,p

(
Ω,RN

) ∣∣∣ u(x) ∈ N for almost every x ∈ Ω
}
,

where W 1,p
(
Ω,RN

)
is the class of multi-valued Sobolev maps from Notation 1.20. ♢

For Sobolev maps in W 1,p(Ω,N ), we define the p-Dirichlet energy as follows:

Definition 4.5 (p-energy). The p-energy functional Ep : W 1,p(Ω,N ) → R is defined as

♢(4.3) Ep(u) .=
∫

Ω
|∇u|p dx =

∫
Ω

(
m∑
i=1

N∑
α=1

(
∂uα

∂xi
(x)
)2) p

2

dx.
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Remark 4.6 (The Riemannian p-energy). Up to adapting some details, the definition of Ep also
works in the case where Ω is a domain in a Riemannian manifold (M, g) and (N , h) is an
arbitrary (not necessarily embedded) Riemannian manifold. Indeed, in this case, one can write

(4.4) Ep(u) .=
∫

Ω
|∇u(x)|pN d volg,

where volg is the volume form associated to the metric g. In a local coordinate chart, we would
have:

(4.5) |∇u(x)| =

√√√√gij(x)
〈
∂u

∂xi
(x), ∂u

∂xj
(x)
〉
N
, d volg =

√
det g dLm,

where the scalar product ⟨·, ·⟩N is the Riemannian scalar product in the target N . ♢

The aim of this chapter is to study the maps which are critical points or minimizers of the
p-energy functional. The results we will describe work under general conditions in the case of
minimality; under stronger assumptions on N , it will instead be enough to assume criticality
with respect to two classes of variations:

Definition 4.7. Let u ∈ W 1,p(Ω,N ). We say that:

1. u is a weakly p-harmonic map if it is a critical point of the p-energy functional with respect
to external variations, i.e.: for any ξ ∈ C∞c (Ω,RN ), it holds:

(4.6) d
dt

∫
Ω

|∇(ΠN (u+ tξ))|p
∣∣∣∣
t=0

= 0,

where ΠN is the nearest-point projection onto N , defined on a tubular neighborhood of
N itself.

2. u is a stationary p-harmonic map if it is weakly p-harmonic and it is a critical point of the
p-energy functional with respect to compact variations in the domain (internal variations).
Explicitly: let Φ = {φt}t∈I be any smooth family of diffeomorphisms of Ω, with I open
interval containing 0; assume that φ0 ≡ idΩ, and that there exists a compact set K ⊂ Ω
such that φt

∣∣
Ω\K = idΩ\K for any t ∈ I; then

(4.7) d
dtEp(u ◦ φt)

∣∣∣∣
t=0

= d
dt

∫
Ω

|∇(u ◦ φt)(x)|pdx
∣∣∣∣
t=0

= 0.

3. u is a p-energy minimizing map if Ep(u) ≤ Ep(v) for any compact set K ⊂ Ω and for any
v ∈ W 1,p(Ω,N ) such that u

∣∣
Ω\K ≡ v

∣∣
Ω\K (more precisely: u = v almost everywhere in

Ω \K). ♢

Before making some initial considerations about the above definitions, let us establish a
notation for the blow up of a map:

Notation 4.8 (Blow ups). If Ω ⊂ Rm is open, Br(x) ⊂ Ω and u : Ω → N , we denote by Ω−x
r

the set

(4.8) Ω − x

r
.= {y ∈ Rm | x+ ry ∈ Ω} ⊃ B1(0);
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moreover, we define the blow-up of u (centered at x, with scale r) as the map Tx,ru : Ω−x
r → N

defined as

♢(4.9) Tx,ru(y) = u(x+ ry).

Remark 4.9 (Blow up of p-harmonic maps). It is trivial to see that each of the three properties
listed in the above Definition 4.7 is stable under blow ups: if u ∈ W 1,p(Ω,N ) is weakly p-
harmonic (resp. p-stationary, resp. p-energy minimizing) in Ω, then Tx,ru ∈ W 1,p

(
Ω−x
r ,N

)
is

weakly p-harmonic (resp. p-stationary, resp. p-energy minimizing) in Ω−x
r . ♢

Remark 4.10. The class of p-energy minimizers clearly contains that of stationary p-harmonic
ones, which by definition contains that of weakly p-harmonic maps. The condition (4.7) without
the requirement of weak harmonicity is sometimes referred to as weak Noether p−harmonicity
[Hél02]; if u belongs to C2(Ω,N ) and is weakly p-harmonic, then it is also stationary: indeed
any internal variation can be retrieved as an external one (see for example [Hél02, Theorem
1.3.6 and Paragraph 1.4.5]). ♢

Remark 4.11 (The case p ≥ m). Notice that:

• If p > m, then any map in W 1,p(Ω,N ) is Hölder continuous by the Sobolev embedding
theorem. In particular S(u) = ∅ whenever u ∈ W 1,p(Ω,N ).

• Even in the equality case, it has been proven (for example in [NVV19, Theorem 2.19])
that p-energy minimizers have no singular points.

In sight of this, the assumption 1 < p < m we initially made is not restrictive and captures all
the interesting cases. ♢

Notation 4.12 (Second fundamental form, stress p-energy tensor). By taking admissible varia-
tions in Definition 4.7, one can show that weak p-harmonicity and p-stationariety can be asso-
ciated to suitable Euler-Lagrange equations (Theorem 4.13): let us fix some notation which will
be useful in the next Theorem 4.13:

• We denote by A the second fundamental form of the embedding N ↪→ RN : it is defined
as the unique map that associates a pair of tangent vector fields (X,Y ) ∈ T (N ) × T (N )
to a normal vector field A(X,Y ) ∈ (T (N ))⊥ in such a way that

(4.10) ⟨ν,A(X,Y )⟩ = ⟨∇Xν, Y ⟩

for every normal section ν : N → (T (N ))⊥. With a slight abuse of notation, when
u ∈ W 1,p(Ω; N ) we will also denote with A the operator

(4.11) A(∇u,∇u) =
m∑
i=1

A(∇iu,∇iu).

• If u ∈ W 1,p(Ω,N ), we denote by S(u) = Sik(u) the stress p-energy tensor :

♢(4.12) Sij(u) .= |∇u|p−2
[1
p

|∇u|2δij − ⟨∇iu,∇ju⟩
]
.
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The following theorem collects the essential information on the Euler-Lagrange equations
satisfied by p-harmonic maps. We refer to [Mos05] for proofs and discussions.

Theorem 4.13. Let Ω,N , u, p be as in Assumption 4.1. Then:

A. If u is weakly p-harmonic, then it satisfies

(4.13 | WH) −∆pu = |∇u|p−2A(u)(∇u,∇u)

in the distributional sense, that is:

(4.14)
∫

Ω
|∇u|p−2⟨∇u,∇φ⟩ dx = −

∫
Ω

|∇u|p−2A(u)(∇u,∇u)φdx,

for any φ ∈ C∞c (Ω,RN ).

B. If u is stationary p-harmonic, then it satisfies

(4.15 | SH) div S(u) = 0

in the distributional sense, that is:

(4.16)
∫

Ω
|∇u|p−2

m∑
i,j=1

[
p⟨∇iu,∇ju⟩ − |∇u|2δij

]∂Xk

∂xi
dx = 0

for any X ∈ C∞c (Ω,Rm).

4.1.1 The projection map to the sphere

In order to give a motivation for the study of singular sets of p-harmonic maps, we devote this
paragraph to a basic example of a p-harmonic map with a point of discontinuity.

Indeed, a notable example of such a phenomenon is the projection of the unit ball on its
boundary, namely the map x 7→ x

|x| ; which, as one can immediately see, has a singularity at the
origin. In this subsection, we will restrict to the case m = N = n+ 1, and consider the map

(4.17) u0 : Bm → Sm−1, u(x) = x

|x|
.

The minimality of the p-energy of u0 has been widely studied [HKL86; CG89; AL88; HLW98;
Hon01; Bou06] and a complete picture is still missing (namely, minimality is not yet established
for all values of p).

We begin with weak-harmonicity:

Proposition 4.14. For any 1 ≤ p < m, the map u0 is weakly p-harmonic.

Proof. All the terms appearing in Equation (4.13 | WH) can be computed by hand: we have, for
all x ̸= 0 and 1 ≤ j, k ≤ m:

(4.18) uk0(x) = xk
|x|
, and thus ∂uk0

∂xj
(x) = |x|2δjk − xjxk

|x|3
;
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more compactly,

(4.19) ∇u0(x) = |x|2 id −x · xT

|x|3
, and |∇u0(x)| =

√
m− 1
|x|

.

As a side note, this shows in particular that u0 ∈ W 1,p(Bm, Sm−1) for any p ∈ [1,m). Moreover,
one has:

• div
(
|∇u0|p−2∇u0

)
can be computed as

div
(
|∇u0|p−2∇u0

)
= (m− 1)

p
2−1 div |x|2 id −x · xT

|x|p+1 =

= (m− 1)
p
2−1

div(|x|2 id −x · xT )
|x|p+1 −

(
|x|2 id −x · xT

)
· ∇
(
|x|p+1

)
|x|2p+2

 =

= (m− 1)
p
2−1 (1 −m)x

|x|p+1 = −(m− 1)
p
2

x

|x|p+1 ,

(4.20)

where we have used that ∇
(
|x|p+1

)
= (p+ 1)|x|p−1x.

• The second fundamental form of the sphere Sm−1, evaluated at the point x ∈ Sm−1, is
given by

(4.21) A(X,Y ) = ⟨X(x), Y (x)⟩x for any X,Y ∈ Γ(TSm−1).

Thus the right hand side of Equation (4.13 | WH) is given by

(4.22) |∇u0|p−2A(u0)(∇u0,∇u0) = |∇u0|p−2|∇u0|2u = (m− 1)
p
2

|x|p+1 x.

This proves the statement.

The question of minimality is actually more delicate. For p ∈ {1, 2, . . . ,m − 1}, a direct
argument by Avellaneda and Lin is available ([AL88], based on a similar strategy by Lin [Lin87]
for the case p = 2):

Theorem 4.15. Let m ≥ 2, and p ∈ {1, . . . ,m− 1}. Then the projection map u0 : Bm → Sm−1

minimizes the p-energy.

Sketch of proof. For any subset I ⊂ {1, . . . ,m} and map u ∈ C∞(Bm,Rm), let ωI(u) be defined
as the differential form

(4.23) ωI(u) .=
m∧
i=1

βi, with βi =

dui if i ∈ I

dxi if i ̸∈ I
;

then, for any u ∈ C∞(Bm,Rm) define

(4.24) Sp(u) .=
∑
|I|=p

ωI(u).

Notice that:
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1. By density of smooth functions, the definition of Sp admits a natural extension to the case
u ∈ W 1,p(Bm,Rm).

2. By the Stokes’ Theorem,

(4.25) Sp(u) = Sp(v) whenever u and v coincide on ∂Bm = Sm−1.

3. Sp(u) is rotationally invariant: if R ∈ SO(m), then Sp(Ru)(Rx) = Sp(u)(x).

4. As a side note: when p = 2, the expression for Sp sensibly simplifies (cfr. [Lin87]):

S2(u) =

 ∑
1≤i,j≤m

(
∂ui

∂xi
∂uj

∂xj
− ∂uj

∂xi
∂ui

∂xj

)dx1 ∧ · · · ∧ dxn =

=
[
(div u)2 − tr(∇u)2

]
dx1 ∧ · · · ∧ dxn.

(4.26)

Now we first estimate the p-energy of a map v with the integral of Sp(v), we compute the latter
when v ≡ u0 on Sm−1, then we show that for v = u0 the two expressions coincide.

Step 1. Let us fix x ∈ Bm and an arbitrary v ∈ W 1,p(Bm,Sm−1). By rotational invariance,
we can assume that v(x) = (0, . . . , 0, 1): this implies in particular that we can assume ∂v

∂xn
(x) = 0.

By triangle inequality we have that

(4.27) |Sp(v)(x)| ≤
∑
|I|=p

|ωI(v)(x)|

The norm of a decomposable m-covector of the form β1 ∧ · · · ∧ βm can be explicitly computed
through

(4.28) |β1 ∧ · · · ∧ βm|2 = det({⟨βi, βj⟩}1≤i,j≤m) = det(B)2,

where B is the matrix having the expressions of the βi’s with respect to the canonical basis of
Rm as rows. By the Hadamard’s inequality, then, for any such m-covector we have

(4.29) |β1 ∧ · · · ∧ βm| ≤
m∏
i=1

∥βi∥;

going back to Equation (4.27), this implies

(4.30) |Sp(v)(x)| ≤
∑

1≤i1<···<ip≤m
|dvi1(x)| . . . |dvip(x)|,

and by our assumption v(x) = (0, . . . , 0, 1) the summation at the right hand side can be restricted
to the indices 1 ≤ i1 < · · · < ip ≤ m − 1. By the classical MacLaurin’s inequality and the
Cauchy-Schwarz inequality, the right hand side can be estimated by

∑
1≤i1<···<ip≤m−1

|dvi1(x)| . . . |dvip(x)| ≤ 1
(m− 1)p

(
m− 1
p

)(
m−1∑
i=1

|dvi(x)|
)p

≤ 1
(m− 1)p

(
m− 1
p

)
(m− 1)

p
2

(
m−1∑
i=1

|dvi(x)|2
) p

2

= 1
(m− 1)

p
2

(
m− 1
p

)
|∇v(x)|p.

(4.31)
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Joining the estimates in Equation (4.30) and Equation (4.31), and integrating in Bm, we get

(4.32)
∫
Bm

Sp(v)(x) ≤
∫
Bm

|Sp(v)(x)| dx ≤ 1
(m− 1)

p
2

(
m− 1
p

)
Ep(v).

Step 2. Assume now that the map v satisfies v = u0 = id on the boundary ∂Bm = Sm−1.
By the Stokes’ Theorem (Equation (4.25)),

(4.33)
∫
Bm

Sp(v)(x) =
∫
Bm

Sp(id)(x) =
∫
Bm

(
m

p

)
dx1 ∧ · · · ∧ dxm =

(
m

p

)
ωm,

where id(x) = x is the identity map and ωm is the volume of Bm. In particular by Equa-
tion (4.32), for any such v,

(4.34) Ep(v) ≥ (m− 1)
p
2(m−1

p

) (
m

p

)
ωm = (m− 1)

p
2

m

m− p
ωm.

Step 3. On the other hand, the p-energy of u0 can be computed explicitly: since |∇u0(x)| =√
m−1
|x| , we have

(4.35) Ep(u0) = (m− 1)
p
2

∫
Bm

dx
|x|p

= (m− 1)
p
2

∫ 1

0

rm−1H m−1(Sm−1)
rp

dr = (m− 1)
p
2
mωm
m− p

.

Thus, for any map v ∈ W 1,p(Bm,Sm−1) which coincides with u0 on ∂Bm we have proved that
Ep(v) ≥ Ep(u0).

Remark 4.16 (What about non-integer p’s?). To the best of our knowledge, the minimality of
u0 for the p-energy functional has been proved in the following cases:

• When p ∈ {1, . . . ,m− 1} is an integer (first in [CG89]);

• When p ∈ (m− 1,m) ([HLW98]);

• When p ∈ (2,m− 2
√
m− 1] ([Wan98]).

In [Hon01], the author observed that the p-minimality of u ∈ W 1,p(Bm,Sm−1) follows if one
can show that u minimizes the weighted p-energy

∫
Bm |x|2−p|∇u| dx. In the same paper, the

claim that u0 actually minimizes the weighted energy for any p ∈ (1,m) is made; however, it
was later found in [Bou06] that the proof contained an error, and it is even possible to built a
counterexample. The general case thus seems to remain open. ♢

4.1.2 Measures for the singular set

In sight of Section 4.1.1, it makes sense to look for results that, roughly speaking, ensure that
the singular set is not too big. Our main regularity result about p-harmonic maps can be stated
in the form of an estimate on the dimension of the singular set. Let us makes this statement
more precise.
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Definition 4.17 (Hausdorff measure). Let k ∈ [0,+∞). We denote by ωk the quantity

(4.36) ωk
.= π

k
2

Γ
(
1 + k

2

) ,
where Γ(a) .=

∫∞
0 e−xxa−1 dx is the Euler function – notice that ωk = L k(B1(0)) when k is an

integer.
For any δ > 0 and S ⊂ Rm, we denote by H k

δ (S) the quantity

(4.37) H k
δ (S) .= inf

{ ∞∑
i=0

ωk

(diam(Si)
2

)k ∣∣∣∣∣ S ⊂
∞⋃
i=0

Si and diam(Si) < δ

}
.

Then the k-dimensional Hausdorff measure of S is defined as

(4.38) H k(S) .= lim
δ↓0

H k
δ (S).

H k is then an outer measure on Rm, and hence its restriction to the σ-algebra of the H k-
measurable sets (in the Carathéodory sense) is a measure. ♢

A related but non coincident concept is the Minkowski content of a set:

Definition 4.18. Let k ∈ [0,+∞), and let ωk be defined as in Definition 4.17. Let S ⊂ Rm We
define the upper and lower k-dimensional Minkowski content of S respectively as

M k
∗ (S) .= lim inf

ϱ↓0

Lm(Bϱ(S))
ωm−kϱm−k

(4.39)

M k∗(S) .= lim sup
ϱ↓0

Lm(Bϱ(S))
ωm−kϱm−k

.(4.40)

When M k
∗ (S) = M k∗(S), we denote by M k(S) the common value. ♢

Lemma 4.19. Let S ⊂ Rm, and let 0 ≤ k < h.

(i) If M k
∗ (S) < ∞, then M h

∗ (S) = 0. The same holds for M k∗ and M h∗.

(ii) If S is Borel-measurable, the above implication also holds for H k and H h.

This allows to define the Hausdorff and Minkowski dimensions as follows:

Definition 4.20. Let S ⊂ Rm be a Borel-measurable set. We define:

dimM∗(S) .= inf
{
k ∈ [0,∞)

∣∣∣ M k
∗ (S) = 0

}
(4.41)

dimM ∗(S) .= inf
{
k ∈ [0,∞)

∣∣∣ M k∗(S) = 0
}

(4.42)

dimH (S) .= inf
{
k ∈ [0,∞)

∣∣∣ H k(S) = 0
}
. ♢

Remark 4.21 (H k and M k). Some remarks are in order:

• The definition of Hausdorff measure can be generalized to any metric space: indeed, the
only notion involved in the definition is that of diameter of a set, which is available
whenever a distance is present.
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• The Minkowski content itself has a metric-measure counterpart: in Remark 1.37 we defined
an outer Minkowski content of sets, which had to be thought as an alternative to the
perimeter measure; if S ⊂ Rm is a Lebesgue-measurable set with Lm(S) = 0, then the
outer Minkowski content of Remark 1.37 coincides with the lower (m − 1)-dimensional
Minkowski content of Definition 4.18.

• The Minkowski content is not a measure, as it is not additive on disjoint sets; moreover,
simple (fractal) examples show that in general M k

∗ < M k∗ can hold strictly (see [Mat95,
Section 5.5]). ♢

4.1.3 Rectifiability

A second result we will achieve concerns the rectifiability of the singular set. In this paragraph,
we give a brief introduction to this notion, again in the Euclidean setting (see [Mat95, Chapter
15]):

Definition 4.22 (k-rectifiability). Let S ⊂ Rm be a H k-measurable set for some k ∈ {1, . . . ,m}.
We say that S is k-rectifiable if there exist countably many Lipschitz maps {fi}i∈N from Rk to
Rm such that

(4.43) H k

(
S \

∞⋃
i=0

fi(Rk)
)

= 0

holds. ♢

Remark 4.23. Let us briefly comment the above definition:

(a) First of all, the term “k-rectifiable” is not universally associated in literature to the above
notion: some classical sources ([Fed69; AFP00; Mag12]) prefer the expression “countably
H k-rectifiable”, and keep the term “k-rectifiable” for the cases in which S \

⋃∞
i=0 fi(Rk)

is actually empty.

(b) Being k-rectifiable in the above sense is equivalent to being H k-almost everywhere con-
tained in a countable union of smooth k-dimensional submanifolds of Rm [Fed69, Theo-
rem 3.2.29]: while this shows the importance of the notion (up to arbitrarily small sets,
a k-rectifiable set is a finite union of smooth pieces), this approach is often proves less
convenient than working with Lipschitz maps.

(c) In the Euclidean setting, rectifiability carries several useful consequences, such as the
existence and uniqueness of approximate tangent spaces [Mat95, Theorem 15.19], suitable
forms of the area formula [AFP00, Theorem 2.91] and of the coarea formula [AFP00,
Theorem 2.93]. More generally, notions of rectifiability comparable to the above-given
one appear ubiquitously in many areas of geometric measure theory – let us just mention
that rectifiable currents play a fundamental role in the study of the regularity theory for
mass-minimizing currents [Alm00; FF60].

(d) Also in the general context of metric measure spaces with curvature bounds from below
(see Section 1.3), rectifiability has been widely studied in the recent years; namely, it has
been proved that RCD(K,N) spaces are actually rectifiable in an appropriate sense (see
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[CC00b, Section 5] for the Ricci limit case, [MN19, Theorem 1.1] for the general RCD
case). ♢

We also state here an estimate of the Hausdorff measure with the Minkowski content in the
case of rectifiable sets: we refer to [AFP00, Proposition 2.101] for a proof.

Lemma 4.24 (M k
∗ ≤ H k). Let S ⊂ Rm be H k-measurable, with k ∈ {1, . . . ,m}. If S is

k-rectifiable, then H k(S) ≤ M k
∗ (S).

4.1.4 Main results for the singular set

Equipped with the definitions given in Sections 4.1.2 and 4.1.3, we can finally state the main
result of this Chapter. We need one last definition:

Definition 4.25 (Homogeneous space, left invariant metric). We say that the manifold N is a
homogeneous space if it can be realized as a quotient G/H, where G is a connected Lie group
and H is a closed subgroup. Recall that a Lie group is a group which is also equipped with a
differentiable manifold structure, so that the map (x, y) 7→ x ·y−1 is differentiable; moreover, we
denote by G/H the space of left cosets {xH | x ∈ G}.

We say that the metric g on the homogeneous space N ≃ G/H is left-invariant if the action
of G on G/H induced by the left multiplication acts by isometries (with respect to g). ♢

Theorem 4.26 (Singular set). Let u ∈ W 1,p(Ω,N ) be a map with p-energy bounded by Λ.
Assume that one of the following two conditions hold:

(m) either u is minimizing (with N arbitrary closed Riemannian manifold without boundary);

(s) or N is a homogeneous space with a left-invariant metric, p is not an integer, and u is
p-stationary.

Then there exists a constant CS(m,N ,Λ, p) such that for any r > 0

(4.44) Lm(Br(S(u)) ∩B1(0)) ≤ CSr
⌊p⌋+1.

In particular, the Minkowski dimension of S(u) is at most m−⌊p⌋−1, and the upper Minkowski
content is bounded by CS .

Furthermore, the singular set S(u) is (m−⌊p⌋−1)-rectifiable. In particular, by Lemma 4.24,
the k-dimensional Hausdorff measure of S(u) is also bounded by CS .

The proof will follow from the following two facts, which will be proved in the next sections:
S(u) is contained in a quantitative singular stratum (Proposition 4.49); and such stratum satisfies
a bound on the Minkowski content analogous to Equation (4.44) and the same rectifiability
property (Theorem 4.56).

Remark 4.27. It is worth remarking that no such regularity result can hold if one only assumes
weak p-harmonicity: in the case p = 2, a famous theorem by Rivière [Riv95] shows that for any
C∞ boundary datum one can find a weakly 2-harmonic map from the 3-dimensional unit ball
to the unit sphere in R3 such that the singular set coincides with the whole ball B̄1(0) ⊂ R3. ♢
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4.2 Monotonicity formula and cone splitting

Various formulations of the Monotonicity Formula for the normalized energy have been used in
the context of p-harmonic maps; the most convenient to introduce here is a weighted version,
for technical reasons which will become clear in the next Sections.

Assumption 4.28 (Weight). In the sequel, ψ ∈ C∞c ([0,∞)) is a fixed non-negative function,
satisfying

spt(ψ) = [0, tb], ψ(0) = 1,(4.45)
ψ′(t) < 0 in [0, tb), ψ′(t) ≤ −ξ in [0, ta)(4.46)

for some fixed numbers 0 < ta < tb and ξ > 0. Moreover, since this will be needed in Section 4.6,
we will actually assume 2 < ta < tb: this choice will be better explained in Remark 4.74. When
x, y ∈ Rm and r > 0, we will also denote by Ψx,r the radial function Ψx,r(y) .= ψ

(
|y−x|
r

)
. ♢

Definition 4.29 (Weighted normalized energy). Let u be aW 1,p(Ω,N ) map. Let ψ ∈ C∞c ([0,∞))
be as in Assumption 4.28. For all x ∈ Ω and r > 0 such that Btbr(x) ⊂ Ω, we define the weighted
normalized p-energy as the function

(4.47) ϑp,ψ[u](x, r) .= rp−m
∫

Ω
Ψx,r(y)|∇u(y)|p dy = rp−m

∫
B(x,tbr)

ψ

( |y − x|
r

)
|∇u(y)|p dy.

We will always drop the subscripts p and ψ, and most of times also the argument [u], since it
will be clear from the context. ♢

Remark 4.30 (Classical normalized energy). A common choice in the literature is to define ϑ
as in Equation (4.47), but with ψ = χ[0,1] being the characteristic function of the interval [0, 1]
(which is not an admissible choice in our definition). The consequences are only of technical
nature rather than substantial: we just remark here that for any Br(tbx) ⊂ Ω

(4.48) ψ(1)ϑp,χ[0,1](x, r) ≤ ϑp,ψ(x, r) ≤ tm−pb ϑp,χ[0,1](x, tbr);

in particular, for example, the results of Section 4.3 (obtained in the literature for the classical
normalized energy) still work here just by adjusting the constants involved. ♢

Proposition 4.31 (Scale invariance). If u ∈ W 1,p(Ω,N ), x ∈ B1(0) and r > 0, the following
identity holds:

(4.49) ϑ[Tx,ru](0, 1) = ϑ[u](x, r).

As a further consequence, if also w ∈ Ω−x
r and τ > 0 is small enough, then:

(4.50) ϑ[Tx,ru](w, τ) = ϑ[u](x+ rw, rτ).

Proof. The result is a rather simple computation: since the identity

(4.51) ∇(Tx,ru)(y) = r∇u(x+ ry)
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holds for any y ∈ Ω−x
r , then we have

(4.52) ϑ[Tx,ru](w, τ) = τp−m
∫

Ω−x
r

ψ

( |x+ rw − (x+ ry)|
rτ

)
rp|∇u(x+ ry)|p dy.

By the change of variables z = x+ ry,

(4.53) ϑ[Tx,ru](w, τ) = (rτ)p−m
∫

Ω
ψ

(
x+ rw − z

rτ

)
|∇u(z)|p dz,

which is what we need.

Theorem 4.32 (Monotonicity formula). Let u be a stationary p-harmonic map, and let ϑ denote
the weighted normalized energy as in Definition 4.29 (with fixed weight ψ as in Assumption 4.28).
Fix x ∈ Ω and r > 0 such that Btbr(x) ⋐ Ω. Then ϑ(x, ·) has a derivative at r and the following
equality holds:

(4.54 | MF) d
drϑ(x, r) = −prp−m−2

∫
Ω

|y − x|ψ′
( |y − x|

r

)
|∇u(y)|p−2|∂rx(y)u(y)|2 dy,

where for any y we define rx(y) .= y−x
|y−x| to be the unit vector in the direction connecting x to y.

Proof. We will proceed in two steps.
Step 1. We first consider the case x = 0, r = 1; the general case will then follow by scale

invariance. In particular, we have to prove the following identity:

(4.55) d
drϑ(0, r)

∣∣∣∣
r=1

= −p
∫

Ω
|y|ψ′(|y|)|∇u(y)|p−2

∣∣∣∣〈∇u, y
|y|

〉∣∣∣∣2dy.
The key idea is to find a suitable vector field to plug into the Euler-Lagrange equation (4.16):
thus, we consider the following one:

Y (y) = ψ(|y|)y ∈ C∞c (Rm,Rm).

A simple computation gives, for 1 ≤ i, j ≤ m,

∂Y j

∂yi
= ψ′(|y|)yiyj

|y|
+ ψ(|y|)δij .

Then, with this choice of Y , the integral appearing in Equation (4.16) reads:

(4.56)
∫

Ω
|∇u|p−2

[
p|y|ψ′(|y|)

∣∣∣∂ y
|y|
u
∣∣∣2 − |y|ψ′(|y|)|∇u|2 + (p−m)ψ(|y|)|∇u|2

]
dy;

this follows by a straightforward computation, and by the fact that:

(4.57)
m∑

i,j=1
⟨yi∇iu, yj∇ju⟩ = |y|2

〈
m∑
i=1

yi
|y|

∇iu,
m∑
j=1

yj
|y|

∇ju

〉
= |y|2

∣∣∣∂ y
|y|
u(y)

∣∣∣2.
Now by Equation (4.16) the integral in (4.56) is zero; hence Equation (4.55) follows easily, just
by taking the derivative of ϑ(0, ·) at r = 1 (and changing the order of integral and derivative):

(4.58) d
drϑ(0, r) = (p−m)rp−m−1

∫
Ω
ψ

( |y|
r

)
|∇u(y)|p dy+

+ rp−m
∫

Ω
ψ′
( |y|
r

)(
−|y|
r2

)
|∇u|p dy.
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Step 2. Consider now the general case: arbitrarily fix x ∈ Ω and r̄ > 0 such that Br̄(x) ⋐ Ω.
By scale invariance, we know that ϑ[u](x, r) = ϑ[Tx,ru](0, 1) for all r in a neighborhood of r̄.
Hence in particular

(4.59) d
drϑ[u](x, r)

∣∣∣∣
r=r̄

= d
drϑ[Tx,ru](0, 1)

∣∣∣∣
r=r̄

.

Notice that by Step 1 we have information about the quantity d
dsϑ[Tx,r̄u](0, s) at s = 1, which

is not directly the information we seek, but is really close. Indeed, a simple computation (which
involves nothing more than the definition of Tx,r) shows that the two quantities are related by

(4.60) d
dsϑ[Tx,r̄u](0, s)

∣∣∣∣
s=1

= r̄
d
drϑ[Tx,ru](0, 1)

∣∣∣∣
r=r̄

.

Thus we have:
d
drϑ(x, r̄) = 1

r̄

d
dsϑ[Tx,r̄u](0, s)

∣∣∣∣
s=1

= −p

r̄

∫
BR̄(0)

|y|ψ′(|y|)|∇Tx,r̄u(y)|p−2
∣∣∣∂ y

|y|
Tx,r̄u(y)

∣∣∣2dy
= −pr̄p−1

∫
BR̄(0)

|y|ψ′(|y|)|∇u(x+ r̄y)|p−2
∣∣∣∂ y

|y|
u(x+ r̄y)

∣∣∣2dy.
(4.61)

By performing the change of variables w = x+ r̄y, we obtain exactly the desired result.

Corollary 4.33. Let u ∈ W 1,p(Ω,N ) be a stationary p-harmonic map, and let y ∈ B1(0);
assume R1, R2 and R are radii satisfying R2 ≤ R

ta
< R1. Then the following inequality holds for

some constant C1(m,R,R1, p) (provided both sides are well defined):

(4.62)
∫
BR(y)

|∇u(z)|p−2|⟨∇u(z), y − z⟩|2 dz ≤ C1(ϑ(y,R1) − ϑ(y,R2)).

In particular, taking R2 = 1, R = max{2, ta}, and R1 > R/ta we also get

(4.63)
∫
B1(0)

|∇u(z)|p−2|⟨∇u(z), y − z⟩|2 dz ≤ C2(ϑ(y,R1) − ϑ(y, 1)),

with C2 depending only on R1,m, p.

Proof. By Theorem 4.32:

(4.64) ϑ(y,R1) − ϑ(y,R2) ≥
∫ R1

R
ta

prp−m−2
∫
BR(y)

|z − y|
[
−ψ′

( |z − y|
r

)]
|∇u|p−2|∂ryu|2 dz dr.

Since z ∈ BR(y) and r ≥ R
ta

, by the assumptions on ψ made in Assumption 4.28 we have:

(4.65) −ψ′
( |z − y|

r

)
≥ ξ.

The two integrals can be then separated and we get:

(4.66) ϑ(y,R1) − ϑ(y,R2) ≥ pξ
Rp−m−1

1 −
(
R
ta

)p−m−1

p−m− 1

∫
BR(y)

|∇u(z)|p−2 |⟨∇u(z), z − y⟩|2

|z − y|
dz.

But now notice that |z − y|−1 ≥ R−1: inequality (4.62) is proved. The last statement (Equa-
tion (4.63)) follows from the fact that B1(0) ⊂ BR(y), because y ∈ B1(0) and R ≥ 2.
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A straightforward consequence of the monotonicity formula is that the constancy of ϑ[u](x, ·)
in an interval implies that u is 0-homogeneous in a ball around x.

Definition 4.34 (0-homogeneity). Let x ∈ Rm, R > 0 and u : BR(x) → N . We say that u is
a 0-homogeneous map in BR(x) (with respect to x) if u(y) = u(z) whenever y, z ∈ BR(x) and
y − x = λ(z − x) for some λ > 0. ♢

Corollary 4.35. Let 0 < s < r; let u ∈ W 1,p(Ω,N ) be a p-stationary harmonic map, and
Btbr(x) ⋐ Ω. Let ϑ denote the weighted normalized energy as in Definition 4.29. If

(4.67) ϑ(x, r) − ϑ(x, s) = 0,

then u is 0-homogeneous in Btbr(x) (with respect to x).

Moreover, by simple geometric considerations, if a map is 0-homogeneous with respect to
different points, then it is invariant along the affine subspace generated by those points: this is
a version of the principle known in the literature as cone-splitting principle (see [CN13a]). Let
us first give some precise definitions.

Notation 4.36 (Grassmannians and affine subspaces). Let 0 ≤ k ≤ m be an integer. We denote
by Gk(Rm) the family of k-dimensional linear subspaces of Rm, and by Hk(Rm) the family of
k-dimensional affine subspaces. ♢

Definition 4.37 (Invariance with respect to a subspace). Let 0 ≤ k ≤ m be an integer and
L ∈ Gk(Rm) be a k-dimensional linear subspace. Let x ∈ Rm and R > 0. We say that a
function u : BR(x) → N is L-invariant in BR(x) if u(y) = u(z) whenever y, z ∈ BR(x) and
z − y ∈ L. ♢

The following result is thus a consequence of Corollary 4.35:

Corollary 4.38 (Cone splitting). Let 0 < s < r; let u ∈ W 1,p(Ω,N ) be a p-stationary harmonic
map, and let ϑ denote the weighted normalized energy as in Definition 4.29. Let 0 ≤ k ≤ m be
an integer. If there exist k + 1 points {xi}ki=0 such that:

(a) xi ∈ B 1
2 tbr

(x0) ⊂ Ω for any i = 1, . . . , k;

(b) {xi}ki=0 span a k-dimensional affine subspace L;

(c) For all i = 0, . . . , k,

(4.68) ϑ(xi, r) − ϑ(xi, s) = 0;

then u is 0-homogeneous at any point of L ∩B 1
2 tbr

(x0) and L-invariant in B 1
2 tbr

(x0).

4.3 ε-regularity and strong compactness

In this section, we first introduce two versions of the so-called ε-regularity, a deep tool which
will be used in Section 4.4 to link singular stratifications with the singular set; we then analyze
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limits of p-minimizing and p-stationary maps. Let us stress that here lies the mian difference
of this chapter – in terms of tools and results – with the article [Ved21]: therein, the only case
tackled is that of p-minimizing maps.

Both results are far from being trivial and build on the work of several authors; we state
them here in the concise version that we will need, and then in Remark 4.41 we list a collection
of references that provide the different parts of the proof.

Proposition 4.39 (ε-regularity). Let u ∈ W 1,p(Ω,N ) and Br(x) ⋐ Ω.

(m) There exist two constants ε0 = ε0(m,N , p) and α(m,N , p) such that the following holds.
If u is a minimizer for the p-energy and ϑ(x, r) < ε0, then u is C1,α-regular in B r

2
(x).

(s) Let us assume in addition that N is a homogeneous space with a left invariant metric.
There exist two constants ε0 = ε0(m,N , p) and α(m,N , p) such that the following holds.
If u is a p-stationary map and ϑ(x, r) < ε0, then u is C1,α-regular in B r

2
(x).

Theorem 4.40 (Strong compactness). Let {un}n∈N be a sequence of maps in W 1,p(Ω,N ) with
bounded p-energy, let p ∈ (1,∞) and assume Br(x) ⋐ Ω is compactly contained in Ω.

(m) If each un is p-energy minimizing, then there exists ū ∈ W 1,p(Br(x),N ) such that un → ū

in the strong W 1,p(Br(x),N ) sense, and ū is a p-minimizing map.

(s) Let us assume in addition that N is a homogeneous space with a left invariant metric, and
that p ̸∈ N. If each un is p-stationary harmonic, then there exists ū ∈ W 1,p(Br(x),N )
such that un → ū in the strong W 1,p(Br(x),N ) sense, and ū is a p-stationary map.

Remark 4.41 (References and timeline). The ε-regularity result was first established for the case
of 2-energy minimizing maps by Schoen and Uhlenbeck in [SU82]; the case of p-minimizers for
arbitrary p was proved in [HL87, Corollary 2.7 and Theorem 3.1]. When u is only p-stationary –
but even weakly harmonic would be enough at this stage – and under the additional assumptions
on N introduced in Proposition 4.39, the ε-regularity was proved by Toro and Wang in [TW95,
Corollary 3.2].

Concerning the result of strong compactness, some crucial steps are the following:

• Weak convergence in W 1,p follows trivially by the boundedness of the energy (and the
compactness of N ) and the Rellich-Kondrachov Compactness Theorem.

• In the case of minimizing maps, the fact that the convergence is actually strong was
established by Schoen and Uhlenbeck in [SU82, Proposition 4.6] for the case p = 2 and
extended by Hardt and Lin in [HL87, Corollary 2.8] to the case of generic p.

• The minimality of the limit map ū relies on a result of Luckhaus [Luc88]; a concise proof
for the case p = 2 can be found in [Sim96, Section 2.9].

• The case of stationary maps is more convoluted and relies on a fine analysis of the defect
measure (i.e., the measure ν such that |∇un|2dx ⇀ |∇u|2dx + ν in the weak sense of
measures): it can is proved in [NVV19, Proposition 3.14] and is partially based on a
preceding work of Lin [Lin99]. ♢
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We give here a name to the assumptions on N which guarantee the validity of a ε-regularity
Theorem for p-stationary maps, in order to be able to recall them later:

Notation 4.42 (Additional assumptions on N ). We say that N satisfies the condition (4.69 | εR)
if

♢(4.69 | εR) (N , hN ) is a homogeneous space and hN is a left-invariant metric.

Given the wide use we will make of the Strong Compactness (Theorem 4.40), especially
starting from Section 4.5.4, we also give a name to the assumptions on both u and N needed to
make it work:

Notation 4.43 (Strong compactness). We will say that a map u ∈ W 1,p(Ω,N ) satisfies the
condition (4.70 | SC) if

♢(4.70 | SC)
either u is p-energy minimizing;

or N satisfies (4.69 | εR), p is not an integer and u is p-stationary.

4.4 Singular set and quantitative stratifications

In this section we introduce a quantitative generalization of the “invariance with respect to a
subspace” notion, given in Definition 4.37.

Notation 4.44 (Directional derivatives). Let u ∈ W 1,p(Ω,N ), and assume L ∈ Gk(Rm) is a
k-dimensional linear subspace of Rm. We denote by either |∇Lu| or |⟨∇u, L⟩| the quantity

(4.71) |∇Lu| .=
(

k∑
i=1

|⟨∇u, vi⟩|2
) 1

2

,

where {v1, . . . , vk} is any orthonormal basis of L. ♢

Definition 4.45 (Almost invariance). Let u ∈ W 1,p(Ω,N ), and let Br(x) ⊂ Ω. Fix k ∈
{0, . . . ,m} and a parameter η > 0. We say that u is (η, k)-invariant in Br(x) if there ex-
ists a linear subspace L ∈ Gk(Rm) such that

(4.72) rp−m
∫
Br(x)

|∇Lu(y)|p dy < η.

Equivalently, there exists L ∈ Gk(Rm) such that

(4.73)
∫
B1(0)

|∇LTx,ru(y)|p dy < η.

When this condition holds for some η and k, we will generically refer to it as “almost invariance”.
♢

An essential class of objects in our analysis is the family of singular strata of a function:
vaguely speaking, we classify the points of B1(0) ⊂ Ω according to their “degree of almost
invariance”.
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Definition 4.46 (Quantitative stratification). Let u ∈ W 1,p(Ω,N ). Fix k ∈ {0, . . . ,m}, a radius
r > 0 and a parameter η > 0. We define the singular kth stratum of u, with scale parameter r
and closeness parameter η as the subset of B1(0) defined by

Skη,r(u) .= {x ∈ B1(0) | u is not (η, k + 1)-invariant in Bs(x) for any s ≥ r} =

=
{
x ∈ B1(0)

∣∣∣∣∣ sp−m
∫
Bs(x)

|∇Lu|p dy ≥ η for all L ∈ Gk+1(Rm) and s ≥ r

}
.

(4.74)

Moreover, we denote by Skη (u) the intersection
(4.75)

Skη (u) .=
⋂
r>0

Skη,r(u) = {x ∈ B1(0) | u is not (η, k + 1)-invariant in Bs(x) for any s > 0},

for any given η and k. ♢

The following relations can be immediately seen to hold:

Lemma 4.47 (Inclusions and trivial strata). Let u ∈ W 1,p(Ω,N ). If k′ ≤ k ∈ {0, . . . ,m},
0 < r′ ≤ r and η′ ≥ η > 0, then

(4.76) Sk′
η′,r′(u) ⊂ Skη,r(u).

Moreover, for any η > 0 and r > 0, the stratum Smη,r(u) coincides with the whole B1(0).

In the following proposition we show that the definition of almost invariance given above
implies an “almost 0-homogeneity” condition at a smaller scale. Not only: given a ball Br(x)
where u is (δ̄, k)-invariant for a suitable δ̄ = δ̄(η), all the points in B 1

2 r
(x) are both (η, k)-invariant

and almost 0-homogeneous with respect to the aforementioned smaller scale.

Proposition 4.48. Let η,Λ > 0 be fixed parameters, and m,N , p as in Assumption 4.1. There
exists a constant γ̄(m, p,Λ, η), with 0 < γ̄ < 1

2 , such that the following holds. Define δ̄ .= γ̄2(m−p).
Let u ∈ W 1,p(Ω,N ) be a map with bounded p-energy Ep(u) ≤ Λ, and let Br(x) ⊂ B1(0). Assume
u is (δ̄, k)-invariant in Br(x):

(4.77) rp−m
∫
Br(x)

|∇Lu|p dz < δ̄ for some L ∈ Gk(Rm).

Then for any y ∈ B 1
2 r

(x) there exists a radius γ̄r ≤ ry ≤ 1
2r such that u satisfies the following

almost invariance and almost 0-homogeneity conditions in Bry (y):

rp−my

∫
Bry (y)

|∇Lu|p dz < η,(4.78)

ϑ(y, ry) − ϑ
(
y, 1

2ry
)
< η.(4.79)

Proof. By scale invariance, it is sufficient to prove the statement for x = 0, r = 1. Choose
γ̄(m, p,Λ, η) so that

(4.80) γ̄ < min
{

2−
Λ
η
−1
, η

1
m−p ,

1
2

}
.
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Consider a point y ∈ B 1
2
(0); assume, by contradiction, that for all i such that 2−i ≥ γ̄ we have

(4.81) ϑ
(
y, 2−i

)
− ϑ

(
y, 2−i−1

)
≥ η.

Then we should have:

(4.82) Λ > ϑ

(
y,

1
2

)
≥

⌊
Λ
η

+1
⌋∑

i=1

(
ϑ
(
y, 2−i

)
− ϑ

(
y, 2−i−1

))
≥
⌊Λ
η

+ 1
⌋
η > Λ,

a contradiction. Thus for any y ∈ B 1
2
(0) we have a radius ry ∈

[
γ̄, 1

2

]
for which (4.79) holds.

Moreover, by (4.80) we also have:

(4.83) rp−my

∫
Bry (y)

|∇Lu|p dz ≤ γ̄p−mδ̄ = γ̄m−p < η,

which concludes the proof.

The bridge between singular stratification and singular set of a p-harmonic map is given by
the following proposition, which strongly relies on the ε-regularity Theorem (Proposition 4.39).
This result can be seen as a quantitative version of the following known fact ([HL87, Theorem
4.5] for p-minimizers, [TW95, Theorem 2] for p-stationary maps): a p-minimizing map (or p-
stationary, under the additional condition Equation (4.69 | εR) on N ) which is 0-homogeneous
and invariant along a (m− ⌊p⌋)-linear subspace must be constant.

Proposition 4.49 (Singular set and stratification). Let u ∈ W 1,p(Ω,N ) and Λ > 0. Assume that
N and u satisfy the assumption (4.70 | SC) for the strong compactness theorem:

(m) either u is minimizing (with N arbitrary closed Riemannian manifold without boundary);

(s) or N is a homogeneous space with a left-invariant metric, p is not an integer, and u is
p-stationary.

Assume that Ep(u) < Λ. There exists η = η(m,N ,Λ, p) such that for all r > 0 (small) we have

(4.84) S(u) ∩B1(0) ⊂ Sm−⌊p⌋−1
η,r (u).

Proof. We give a proof for the case (m): the case of p-stationary maps follows the same lines,
by replacing the respective versions of Proposition 4.39 and theorem 4.40.

For any i ∈ N, let γi
.= γ̄
(
m,Λ, p, 1

i

)
be the constant given by Proposition 4.48 when η = 1

i ,
and let δi

.= γ
2(m−p)
i .

We argue by contradiction: assume that for all i ∈ N there exists a p-minimizing map ui
with Ep(ui) ≤ Λ, a singular point xi ∈ S(ui), a ri > 0 and a (m− ⌊p⌋)-plane Li such that

(4.85)
∫
B1(0)

|∇LiTxi,riui|
p < δi.

Up to precomposing with a rotation of the space, we can assume Li = L for all i, for some affine
subspace L. By Proposition 4.48, we have

(αiri)p−m
∫
Bαiri (xi)

|∇Lui|p dz < 1
i

(4.86)

ϑ[ui](xi, αiri) − ϑ[ui]
(
xi,

1
2αiri

)
<

1
i

(4.87)
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for a sequence {αi}i, with γi ≤ αi ≤ 1
2 . The maps Txi,αiriui are p-minimizing, and they are

uniformly bounded in W 1,p(B1+ε(0),N ) for some ε (by compactness of N and by the bound on
the p-energy); thus, up to subsequences, they weakly converge to a map ũ ∈ W 1,p(B1+ε(0),N ).
By Theorem 4.40, the convergence is actually strong in W 1,p(B1(0),N ), and ũ is a p-minimizer
in B1(0). But now by strong W 1,p(B1(0),N ) convergence and by (4.86), (4.87) we have∫

B1(0)
|∇Lũ|p = 0,(4.88)

ϑ[ũ](0, 1) − ϑ[ũ]
(

0, 1
2

)
= 0;(4.89)

so ũ is p-minimizing, (m − ⌊p⌋)-invariant on B1(0) and 0-homogeneous on B1(0). By [HL87,
Theorem 4.5] (or [TW95, Theorem 2] in the p-stationary case), this implies that ũ is constant
on B1(0): thus in particular ϑ[ũ](0, ·) ≡ 0 in (0, 1). However, by the fact that xi ∈ S(ui), and
by the ε-regularity Proposition 4.39, we have:

(4.90) ϑ[Txi,αiriui](0, s) ≥ ε0 ∀s > 0,

which implies ϑ[ũ](0, s) ≥ ε0 by W 1,p-convergence: we have reached a contradiction.

Since we will make great use of compactness and limiting arguments, we will need an effective
notion of “points in general position” which is preserved when passing to the limit.

Definition 4.50. Given k + 1 points {xi}ki=0 in Rm (with 0 ≤ k ≤ m), and ϱ > 0, we say that
{xi}i are in ϱ-general position if for all j = 1, . . . , k

(4.91) d(xj , x0 + span{x1 − x0, . . . , xj−1 − x0}) ≥ ϱ.

We say that a set of points S spans ϱ-effectively a given k-subspace L ∈ Hk(Rm) if there exist
k + 1 points {x0, x1, . . . , xk} ⊂ S in ϱ-general position such that

♢(4.92) L = x0 + span{x1 − x0, . . . , xk − x0}.

Remark 4.51. Let {xi}ki=0 be points in Rm with 0 ≤ k ≤ m, and let ϱ > 0. Denote by
v0, v1, . . . , vk the vectors v0

.= 0 and vj
.= xj − x0 for any j = 1, . . . , k; denote by V0, V1, . . . , Vk

the linear subspaces Vj
.= span{v0, . . . , vj}. The condition in Equation (4.91) is clearly equivalent

to:

(4.93)
∣∣∣vj − πVj−1(vj)

∣∣∣ ≥ ϱ for all j = 1, . . . , k,

where πVj is the orthogonal projection on the subspace Vj . ♢

As we wanted, the notion of ϱ-general position passes to the limit:

Lemma 4.52 (Limits of points in ϱ-general position). For any j ∈ N, let {xij}ki=0 be k+ 1 points
of Rm in ϱ-general position, with ϱ > 0. Assume that xij

j→∞−−−→ x̄i for all i = 0, . . . , k. Then
{x̄i}ki=0 are still in ϱ-general position.
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Proof. Let us introduce, as in Remark 4.51, the following notations:

(4.94)
v0j = v̄0

.= 0 for all j ∈ N,
vij

.= xij − x0j , v̄i
.= x̄i − x̄0 for all j ∈ N, i = 1, . . . , k,

Vij
.= span{v0j , . . . , vij}, V̄i

.= span{v̄0, . . . , v̄i} for all j ∈ N, i = 0, . . . , k.

Then, by Remark 4.51, the statement is proved if we can show that

(4.95) lim
j→∞

∣∣∣vij − πVi−1,j (vij)
∣∣∣ =

∣∣∣v̄i − πV̄i−1
(v̄i)

∣∣∣ for all i ∈ {1, . . . , k}.

For i = 1, this is trivial since it simply says limj→∞|v1j | = |v̄1|. Assume it is true for i = 1, . . . , ı̂:
in particular, v̄1, . . . , v̄ı̂ are linearly independent. The orthogonal projections on Vı̂j and V̄ı̂ can
be represented for any v ∈ Rm by

(4.96) πVı̂j
(v) = Aı̂j

(
A⊤ı̂jAı̂j

)−1
Aı̂j
⊤v, πV̄ı̂

(v) = Āı̂
(
Ā⊤ı̂ Āı̂

)−1
Ā⊤ı̂ v,

where Aı̂j is the matrix whose columns are v1j , . . . , vı̂j , Āı̂ is the matrix whose columns are
v̄1, . . . , v̄ı̂ (the latter being a consequence of the linear independence assumption until ı̂). Thus

(4.97) lim
j→∞

πVı̂j
(vı̂+1,j) = πV̄ı̂

(v̄ı̂+1);

by continuity of the norm, Equation (4.95) holds for ı̂+1. By induction, the lemma is proved.

Lemma 4.53. Let {xi}ki=0 be points in Rm with 0 ≤ k ≤ m. Let ϱ > 0 be such that the
points are in ϱ-general position. Let D > 0 be such that diam({x1, . . . , xk}) ≤ D. Denote by
v0, v1, . . . , vk the vectors v0

.= 0 and vj
.= xj − x0 for any j = 1, . . . , k; denote by V0, V1, . . . , Vk

the linear subspaces Vj
.= span{v0, . . . , vj}. Then any v ∈ Vk can be written as

(4.98) v =
k∑
i=1

αivi

with

(4.99) |αi| ≤ |v|
ϱ

(
1 + D

ϱ

)k−i
for i = 1, . . . , k.

In particular,

(4.100) |αi| ≤ |v|c1(m,D, ϱ) with c1(m,D, ϱ) .= 1
ϱ

(
1 + D

ϱ

)m−1
.

Proof. We proceed by (reverse) induction.
Step 1. Let us estimate αk. We have:

(4.101) ⟨v, vk − πVk−1(vk)⟩ = αk⟨vk, vk − πVk−1(vk)⟩ = αk|vk − πVk−1(vk)|2,

where we have used the orthogonality of vk − πVk−1(vk) with the vectors v1, . . . , vk−1 and
πVk−1(vk). By the Cauchy-Schwarz inequality and the ϱ-general position of the points {xi}ki=0,
then:

(4.102) αk ≤ |v|
|vk − πVk−1(vk)|

≤ |v|
ϱ
.
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Step 2. Assume the statement is true for i = j + 1, . . . , k with j ∈ {1, . . . , k− 1}. Consider
the vector wj

.= ∑j
i=1 αjvj = v −

∑k
i=j+1 αjvj . Then again by orthogonality it holds that:

(4.103) ⟨wj , vj − πVj−1(vj)⟩ = αj
∣∣∣vj − πVj−1(vj)

∣∣∣2.
By Cauchy-Schwarz and by the ϱ-general position of the points {xi}ki=0,

(4.104) |αj | ≤ |wj |
ϱ

=

∣∣∣v −
∑k
i=j+1 αjvj

∣∣∣
ϱ

≤ 1
ϱ

|v| +
k∑

i=j+1
|αi||vi|

.
Here we can use the inductive assumption and the fact that |vi| ≤ D:

|αj | ≤ 1
ϱ

|v| +
k∑

i=j+1

|v|
ϱ

(
1 + D

ϱ

)k−i
D

 = |v|
ϱ

1 + D

ϱ

k−j−1∑
ℓ=0

(
1 + D

ϱ

)ℓ =

= |v|
ϱ

1 + D

ϱ

1 −
(
1 + D

ϱ

)k−j
−D

ϱ

 = |v|
ϱ

(
1 + D

ϱ

)k−j
.

(4.105)

This proves the statement.

Lemma 4.54 (Sufficient condition). Let S ⊂ Rm and let ϱ > 0. If S is not contained in
Bϱ(V ) for any (k − 1)-dimensional affine subspace V ∈ Hk−1(Rm), then S spans ϱ-effectively a
k-dimensional affine subspace.

Proof. We need to show that S contains k + 1 points {xi}ki=0 in ϱ-general position. By the
assumption, S is not empty, thus there exists a point x0 ∈ S. Let {x0, . . . , xj} be points of S
in ϱ-general position, with j ∈ {0, . . . , k− 1}: fix any (k− 1)-dimensional subspace V such that
x0 +span{x1 −x0, . . . , xj −x0} ⊂ V . Then by assumption there exists a point xj+1 ∈ S \Bϱ(V ):
in particular,

(4.106) d(xj+1, x0 + span{x1 − x0, . . . , xj − x0}) ≥ d(xj+1, V ) ≥ ϱ.

Hence {x0, . . . , xj , xj+1} are still in ϱ-general position. By induction, this proves the lemma.

The following corollary is a quantitative version of the Cone Splitting Corollary 4.38; the
proof is a simple compactness argument, based on Lemma 4.52 and on the Strong Compactness
Theorem 4.40.

Corollary 4.55 (Quantitative cone splitting). Let u ∈ W 1,p(Ω,N ) and Λ > 0. Assume that
N and u satisfy the condition (4.70 | SC) for the strong compactness theorem. Assume that
Ep(u) < Λ. Let 0 ≤ k ≤ m be an integer. Fix the constants η, p, γ, ϱ > 0. There exists a
constant ε > 0 (depending on m,N ,Λ, η, p, γ, ϱ) such that the following holds. If there exist
k + 1 points {xi}ki=0 such that:

(i) xi ∈ B
(
x0,

1
2 tbr

)
⊂ Ω for any i = 1, . . . , k;

(ii) {xi}ki=0 span ϱ-effectively a k-dimensional affine subspace L;
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(iii) For all i = 0, . . . , k,

(4.107) ϑ(xi, r) − ϑ(xi, γr) < ε;

then rp−m
∫
Btbr(x0)|∇Lu|p < η.

Proof. Up to rescaling, thanks to the scale invariance of ϑ, we can assume that r = 1 and x0 is
the origin. Let us assume by contradiction that there exist:

• sequences of points {xij}j∈N such that x0j = 0 for all j ∈ N, each xij with 1 ≤ i ≤ k

belongs to B
(
0, 1

2 tb
)
, and {xij}ki=1 span ϱ-effectively a k-dimensional affine subspace L

(which we can assume is the same for any j ∈ N, up to rotations);

• a sequence of maps {uj}j∈N that satisfy the condition (4.70 | SC);
and that the inequalities

ϑ[uj ](xij , 1) − ϑ[uj ](xij , γ) < 1
j

(4.108) ∫
Btb

(0)
|∇Luj |p dx ≥ η(4.109)

hold for any i ∈ {0, . . . ,m} and j ∈ N.
By the Strong Compactness Theorem 4.40, up to subsequences the maps uj converge in the

strong W 1,p sense to a stationary map ū ∈ W 1,p(Ω,N ); moreover, up to further subsequences,
for any i ∈ {1, . . . ,m} one has xij → x̄i ∈ B̄(0, tb) ∩ L, and the points {x̄i}ki=0 still ϱ-effectively
span L by Lemma 4.52. However, by strong W 1,p convergence and Equation (4.108) it is easy
to see that the limit map ū satisfies

ϑ[ū](x̄i, 1) − ϑ[ū](x̄i, γ) = 0(4.110) ∫
Btb

(0)
|∇Lū|p dx ≥ η,(4.111)

which contradicts the Cone Splitting lemma 4.38.

4.4.1 Main results for the singular strata

We are now in the condition to state the main theorem of this chapter, which concerns the
regularity and structure of singular strata in general, and has Theorem 4.26 as a corollary:

Theorem 4.56 (Singular strata). Let u ∈ W 1,p(Ω,N ) be a map with energy bounded by Λ. Let
η > 0 and 1 ≤ k ≤ m. Assume that N and u satisfy the condition Equation (4.70 | SC) for the
strong compactness theorem:

(m) either u is minimizing (with N arbitrary closed Riemannian manifold without boundary);

(s) or N is a homogeneous space with a left-invariant metric, p is not an integer, and u is
p-stationary.

Then there exists two constants Cstrat and δ0 depending on m,N , p,Λ, η such that for any r > 0

(4.112) Lm
(
Br(Skη,δ0r(u)) ∩B1(0)

)
≤ Cstratr

m−k.

Moreover, for any η > 0 and any 0 ≤ k ≤ m, the stratum Skη (u) is k-rectifiable.
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4.5 Reifenberg-type theorems and other technical results

The next step will be to introduce some more advanced techniques which allow us to analyze
the behaviour of each singular stratum at every scale r around a point x.

4.5.1 Jones’ numbers

In order to state Reifenberg Theorem (in a form which is suited to our context), we first need to
recall the definition of Jones’ numbers of a measure µ (first appeared in [Jon90]; for a detailed
introduction, see [Paj02]): this is a scale-invariant notion which quantifies how close spt(µ) is to
be contained in an affine k-space (near a given point).

Definition 4.57 (Jones’ numbers). Let x ∈ B1(0) and 0 < r < 1. Assume µ is a positive Radon
measure on Ω. For any k ∈ {0, . . . ,m} we define the k-dimensional Jones’ number of µ in Br(x)
as

(4.113) βkµ(x, r) .=
(
r−k inf

{∫
Br(x)

d(y, L)2

r2 dµ(y)
∣∣∣∣∣ L ∈ Hk(Rm)

}) 1
2

.

Here Hk(Rm) is again the collection of all the k-dimensional affine subspaces of Rm. ♢

Remark 4.58. The quantity βkµ is scale invariant in the following sense. Assume µ is a measure
on a ball Br(x); define the blow up measure µ̂ = µ̂kx,r on B1(0) as

(4.114) µ̂(A) .= r−kµ(x+ rA) ∀A ⊂ B1(0) measurable.

Then it is easy to compute that βkµ̂(0, 1) = βkµ(x, r). ♢

The Jones’ numbers admit an explicit representation in terms of the eigenvalues of the second
moment of µ.

Definition 4.59. Let µ be a measure with support in B1(0). We define:

(i) the center of mass of µ as the point xµcm ∈ B1(0) such that

(4.115) xµcm
.= −
∫
B1(0)

x dµ(x);

(ii) the second moment of µ as the bilinear form Qµ such that for all v, w ∈ Rm

(4.116) Qµ(v, w) .=
∫
B1(0)

[(x− xcm) · v][(x− xcm) · w] dµ(x).

We will usually drop the superscript µ when it is clear from the context. ♢

Since Q is symmetric and positive-definite, by the Spectral Theorem the associated matrix
(which we still denote by Q) admits an orthonormal basis of eigenvectors, with non-negative
eigenvalues. We denote with λµ1 , . . . , λ

µ
m the eigenvalues of Q in decreasing order, and with
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vµ1 , . . . , v
µ
m the respective eigenvectors (pairwise orthogonal and of norm 1), again dropping the

superscripts when they are clear; in particular:

λkvk =
∫
B1(0)

[(x− xcm) · vk](x− xcm) dµ(x);(4.117)

λ1 ≥ λ2 ≥ · · · ≥ λm.(4.118)

Finally, we denote by V µ
k (or V k) the following affine k-plane:

V µ
k
.= xµcm +Wµ

k(4.119)
Wµ
k
.= span

{
vµ1 , . . . , v

µ
k

}
.(4.120)

We are now ready to characterize βkµ:

Lemma 4.60. Let µ be a measure on B1(0). The affine space V µ
k achieves the minimum in the

definition of βkµ(0, 1). Moreover,

(4.121) βkµ(0, 1)2 =
∫
B1(0)

d2(y, V µ
k

)
dµ(y) = λµk+1 + · · · + λµm.

For a proof of this fact, see [NV17, Lemma 7.4] or [NV18, Subsection 6.1]. This is based
on the (visually helpful) fact that the eigenvalues λk and eigenvectors vk admit the following
characterization:

• λ1 is the maximum of
∫
B1(0)⟨x− xcm, v⟩2 dµ among vectors v of norm 1, and v1 is any

maximizing vector;

• λk is the maximum of the same operator among all unit vectors orthogonal to v1, . . . , vk−1,
and vk is any maximizing vector.

4.5.2 Reifenberg-type Theorems

The main hypothesis one needs, in order to apply Reifenberg Theorem in its different forms, is
a control on the Jones numbers of a suitable measure (e.g., H k restricted to a set). In all the
cases, the condition we need takes the following form:

Definition 4.61 (Reifenberg condition). Let µ be a positive Radon measure on Ω, and k ∈
{0, . . . ,m}. We say that µ satisfies the (k-dimensional) Reifenberg condition with constant δ if
for any x ∈ B1(0) and 0 < r < 1 we have:

♢(4.122 | k-Reif)
∫
Br(x)

∫ r

0
βkµ(y, s)2ds

s
dµ(y) < δrk.

As we will clarify in Theorem 4.63, two versions of Reifenberg Theorem are available for
our purposes: in one of them (necessary for the rectifiability of a set), one needs to check
(4.122 | k-Reif) on the restriction of the Hausdorff measure to the given set; the other one (nec-
essary for volume estimates) makes use of discrete measures as the following:
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Definition 4.62 (Measure associated to a disjoint family of balls). Assume C is a (discrete) subset
of B1(0), and F = {Brx(x)}x∈C is a collection of disjoint balls centered in C, each contained in
B2(0). For any k ∈ {0, . . . ,m}, we define the following measure associated to F :

(4.123) µF ,k
.=
∑
x∈C

rkxδx,

where δx is the Dirac measure centered at x. ♢

Theorem 4.63 (Reifenberg). There exist two constants CR and δR such that the following
statements hold true.

(i) Assume F is a family of disjoint balls with centers in C ⊂ B1(0), each contained in B2(0).
If µF ,k satisfies the condition (4.122 | k-Reif) with constant δR, then

(4.124)
∑
x∈C

rkx ≤ CR.

(ii) Assume S ⊂ B1(0) is a H k-measurable set. If H k⌞S satisfies the Reifenberg condition
(4.122 | k-Reif) with constant δR, then S is k-rectifiable and

(4.125) H k⌞S(Br(x)) ≤ CRr
k

for any x ∈ S and 0 < r < 1.

The original proof of this version of Reifenberg Theorem can be found in [NV17, Sections 5
and 6]; a more general form of it is contained in [ENV16, Section 2], while similar arguments
are developped in [DT12; ENV19; Mi18; Tor95; AT15].

Since we will need it in this form, for the sake of clarity we state here a rescaled version of
Theorem 4.63, part (i).

Corollary 4.64 (Reifenberg, rescaled version). Let Br̄(x̄) be a fixed ball. Assume F is a family
of disjoint balls with centers in C ⊂ Br̄(x̄), each contained in B2r̄(x̄). If µ = ∑

x∈C r
k
xδx satisfies

(4.126)
∫
Br̄r(w)

∫ r̄r

0
βkµ(y, s)2ds

s
dµ(y) < δR(r̄r)k

for all w ∈ Br̄(x̄) and all 0 < r < 1, then

(4.127)
∑
x∈C

rkx ≤ CRr̄
k.

Proof. It suffices to apply Theorem 4.63 to the measure µ̂x̄,r̄
.= r̄−kTx̄,r̄♯µ introduced in the

remark above: by using the change of variable formula for the integral, and exploiting the scale
invariance of βk we obtain the result.

Remark 4.65. Notice that the constants δR and CR for the rescaled version are the same as in
Theorem 4.63, and thus only depending on m. ♢
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4.5.3 Estimates on Jones’ numbers

The key estimate, linking the Jones’ numbers of a measure with the normalized p-energy of a
p-minimizing map, is given in the following theorem, which we prove in several steps.

Theorem 4.66 (Estimates on βkµ). Let u ∈ W 1,p(Ω,N ) be a stationary p-harmonic map. Fix
the following constants: 0 < r̄ ≤ 1, η > 0, σ > 1, k ∈ {1, . . . ,m}. Let x ∈ B1(0) and r > 0.
Assume u is not (η, k + 1)-invariant in Br̄r(x). There exists a constant C3(m, p, η, σ, r̄) such
that the following estimate

(4.128 | JN) βkµ(x, r)2 ≤ C3r
−k
∫
Br(x)

(ϑ(y, σr) − ϑ(y, r)) dµ(y)

holds for any positive Radon measure µ on Ω.

Remark 4.67 (The constant σ). When this theorem will be used in Section 4.6, we will assign
a precise value to σ; notice that in order that all the expressions involved are meaningful we
could need to enlarge the domain Ω (and thus R̄) according to σ (see Assumption 4.1). ♢

Remark 4.68 (Scale invariance application). By scale invariance (of both βkµ and ϑ), it will be
enough to prove the estimate for x = 0 and r = 1. Moreover, since the inequality does not
change when µ is multiplied by a constant, we can assume µ is a probability measure on B1(0).
That is: assuming u is not (η, k + 1)-invariant in Br̄(0), we will prove that

(4.129) βkµ(0, 1)2 ≤ C3

∫
B1(0)

(ϑ(y, σ) − ϑ(y, 1)) dµ(y)

for any measure µ with µ(B1(0)) = 1. ♢

Remark 4.69. By Lemma 4.60, βkµ(0, 1)2 admits an explicit representation as λµk+1 + · · · + λµm,
where λµ1 ≥ · · · ≥ λµm are the eigenvalues of the second moment of µ in decreasing order. We
have thus reduced the problem to showing:

(4.130) λµk+1 + · · · + λµm ≤ C

∫
B1(0)

(ϑ(y, σ) − ϑ(y, 1)) dµ(y);

since the eigenvalues are in decreasing order, we need to show even less:

♢(4.131) λµk+1 ≤ C

∫
B1(0)

(ϑ(y, σ) − ϑ(y, 1)) dµ(y).

Lemma 4.70 (Energy along eigenvectors). Let u be a stationary p-harmonic map, and µ a Radon
measure on B1(0); let {λj}j, {vj}j be the eigenvalues and eigenvectors of Qµ, as before. There
exists a constant C4(m,N , p) such that for all j = 1, . . . ,m the following holds:

(4.132) λj

∫
B1(0)

|∇u(z)|p−2|⟨∇u(z), vj⟩|2 dz ≤ C4

∫
B1(0)

(ϑ(y, σ) − ϑ(y, 1)) dµ(y).

Proof. Notice that if λj = 0, the statement is trivial by the Monotonicity Theorem 4.32. We
can thus assume that λj ≥ 0.
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Let us first estimate the quantity ⟨∇u(z), vj⟩ appearing in the integral at the left hand side.
By the definition of vj and λj as eigenvector and eigenvalue of Qµ, and by linearity of the integral
and the scalar product, we have:

λj⟨∇u(z), vj⟩ = ⟨∇u(z), λjvj⟩ = ⟨∇u(z),
∫
B1(0)

⟨y − xcm, vj⟩(y − xcm) dµ(y)⟩ =

=
∫
B1(0)

⟨y − xcm, vj⟩⟨∇u(z), y − xcm⟩ dµ(y).
(4.133)

Moreover, by the definition of center of mass and again by linearity,

(4.134)
∫
B1(0)

⟨y − xcm, vj⟩⟨∇u(z), xcm − z⟩ dµ(y) = 0;

observe indeed that the term ⟨∇u(z), xcm − z⟩ does not depend on the integration variable y
here. Thus, using the information from Equation (4.134) in Equation (4.133), we get:

(4.135) λj⟨∇u(z), vj⟩ =
∫
B1(0)

⟨y − xcm, vj⟩⟨∇u(z), y − z⟩ dµ(y).

Taking the squared norms of both sides and applying the Hölder inequality, this gives

λ2
j |⟨∇u(z), vj⟩|2 ≤

∫
B1(0)

⟨y − xcm, vj⟩2 dµ(y)
∫
B1(0)

|⟨∇u(z), y − z⟩|2 dµ(y)

= λj

∫
B1(0)

|⟨∇u(z), y − z⟩|2 dµ(y),
(4.136)

where the definitions of λj and vj have been used once again. Finally, dividing by λj , multiplying
both sides by |∇u(z)|p−2, and integrating in z ∈ B1(0) with respect to the Lebergue measure,
we get:
(4.137)

λj

∫
B1(0)

|∇u(z)|p−2|⟨∇u(z), vj⟩|2 dz ≤
∫
B1(0)

|∇u(z)|p−2
∫
B1(0)

|⟨∇u(z), y − z⟩|2 dµ(y) dz

Hence, the Tonelli Theorem and a direct application of Corollary 4.33 gives the desired result.

Now, thanks to the last result, we have an upper bound on the p-energy along the (k + 1)-
plane Vk introduced in Equation (4.119); but this is bounded from below by a constant, by the
lack of almost invariance in 0. We have all the ingredients to complete the proof of Theorem 4.66.

Proof of Theorem 4.66. Applying Lemma 4.70 to λ1, . . . , λk+1, and recalling that the λj ’s are
ordered decreasingly, we get:

λk+1

∫
B1(0)

|∇u|p−2
∣∣∣〈∇u, V µ

k+1

〉∣∣∣2 dz ≤
k+1∑
j=1

λj

∫
B1(0)

|∇u|p−2|⟨∇u, vj⟩|2 dz ≤

≤ (k + 1)C4

∫
B1(0)

(ϑ(y, σ) − ϑ(y, 1)) dµ(y).
(4.138)

On the other hand: since u is not (η, k + 1)-invariant in Br̄(0), and V µ
k+1 is a (k + 1)-plane, we

have by definition:∫
B1(0)

|∇u|p−2
∣∣∣〈∇u, V µ

k+1

〉∣∣∣2 dz ≥
∫
B1(0)

∣∣∣〈∇u, V µ
k+1

〉∣∣∣p dz ≥

≥
∫
Br̄(0)

∣∣∣〈∇u, V µ
k+1

〉∣∣∣p dz ≥ r̄m−pη.
(4.139)
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In particular, putting together Equation (4.138) and Equation (4.139) we obtain:

(4.140) λk+1 ≤ (k + 1)C4(σ,m, p)
ηr̄m−p

∫
B1(0)

(ϑ(y, σ) − ϑ(y, 1)) dµ(y),

which is (4.131).

4.5.4 A collection of structural lemmas

This section is devoted to building a series of “quantitative” geometric results about p-minimizing
mappings (and p-stationary ones, under the further conditions given by Equation (4.70 | SC)),
describing the behavior of some special subsets of S(u). Analogous results for (approximate)
2-harmonic maps can be found in [NV18, Section 4], although stated with some differences.

In Lemmas 4.71 to 4.73, recall that ta, tb are the structural constants introduced in Assump-
tion 4.28, describing some particular features of ψ.

In the first lemma we convey this idea: consider the set of points in B1(0) at which ϑ[u]
satisfies a suitable pinching condition; if it spans ϱ-effectively a k-dimensional plane L, then for
some δ > 0 the stratum Skη,δ(u) lies inside a fattening of L (see Definition 4.50 for the definition
of a set effectively spanning a k-plane). We remark that the proof has been partially reorganized
with respect to [Ved21], while maintaining the underlying structure.

Lemma 4.71 (Pinching). Let ϱ1, η > 0, 0 < λ1 < 1 and 0 < ς < 1 be (small enough) constants.
Define c = c(ς) .= 1

2(1 − ς)ta, where ta is introduced in Assumption 4.28.
There exist constants δ0, ε (depending on m, p,N ,Λ and on the parameters just introduced)

such that the following holds: for any p-stationary map u with energy bounded by Λ, if the set

(4.141) P .= {y ∈ Bcr(x) | ϑ(y, r) − ϑ(y, λ1r) < ε}

spans ϱ1r-effectively a k-plane L, then Skη,δ0r
(u) ∩Bcr(x) ⊂ Bϱ1r(L).

In the proof we drop the subscript 1 on ϱ and λ; it was introduced so that lemma is easier to
recall when we need it.

Proof. Assume without loss of generality that x = 0, r = 1. We are thus assuming that

(4.142) P = {y ∈ Bc(0) | ϑ(y, 1) − ϑ(y, λ) < ε} spans ϱ-effectively L ∈ Hk(Rm),

with λ and ϱ fixed and ε to be chosen. For a fixed point w ∈ Bc(0)\Bϱ(L) we need to show that

(4.143) τp−m
∫
Bτ (w)

|∇V u|p < η

for some τ ≥ δ0, with δ0 (to be determined) depending only on m, p,N ,Λ, η, ϱ, λ, ς, and for some
(k + 1)-dimensional plane V .

Step 1. First of all, assume from now on that τ < ς
2 ta (the choice of δ0 will be influenced

by this). In this way, for any w ∈ Bc(0), any y ∈ P ⊂ Bc(0), and any z ∈ Bτ (w) we have that

(4.144) |z − y| ≤ 2c+ τ < (1 − ς)ta + ς

2 ta =
(

1 − ς

2

)
ta,
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and thus Bτ (w) ⊂ B
(
y,
(
1 − ς

2
)
ta
)
. Thus one can apply the Monotonicity Formula, and in

particular Corollary 4.33 with

(4.145) R

ta
∈ (max{λ, (1 − ς)}, 1), R1 = 1, R2 = λ;

we obtain: ∫
Bτ (w)

|∇u(z)|p−2|⟨∇u(z), y − z⟩|2 dz ≤
∫
BR(y)

|∇u(z)|p−2|⟨∇u(z), y − z⟩|2 dz ≤

≤ C5(ϑ(y, 1) − ϑ(y, λ)) ≤ C5ε

(4.146)

whenever w ∈ Bc(0) and y ∈ P, where C5(m,λ, ς, p) is obtained from C1(m,R,R1, p) with the
aforesaid choices of R,R1, R2.

Step 2. Denote by y0, . . . , yk a set of points of K which ϱ-effectively span L. Define L̂ =
span{y1 − y0, . . . , yk − y0} to be the linear subspace associated to L. By Lemma 4.53, for any
v ∈ L̂ of norm 1, we have that:

(4.147) v =
k∑
i=1

αi(yi − y0), with |αi| ≤ c2(m, ϱ, ς),

where c2
.= c1(m, 2c(ς), ϱ) and c1 is the coefficient from Lemma 4.53. Hence, by a standard

estimate, and by Step 1:∫
Bτ (w)

|∇u(z)|p−2|∇vu(z)|2 dz ≤ 2
∑
i

α2
i

∫
Bτ (w)

|∇u|p−2|⟨∇u, yi − z⟩|2 dz+

+ 2
(∑

i

αi

)2 ∫
Bτ (w)

|∇u|p−2|⟨∇u, z − y0⟩|2 dz ≤

≤ C6(m, ϱ, ς, λ, p)ε.

(4.148)

As a consequence, if {v1, . . . , vk} is an orthonormal basis of L̂,

(4.149)
∫
Bτ (w)

|∇u(z)|p−2
k∑
i=1

|∇viu(z)|2 dz ≤ kC6(m, ϱ, ς, λ, p)ε ≤ C7(m, ϱ, ς, λ, p)ε

thus, along k directions, we have some information that goes in the direction we need (recall
that ε is a constant we still have to choose).

Step 3. For points w ∈ Bc(0) lying out of Bϱ(L), we need to gain another independent
direction of smallness, orthogonal to L; to do so, we consider the direction orthogonal to L and
passing through w, namely vk+1

.= w−πL(w)
|w−πL(w)| . Then we have:

∫
Bτ (w)

|∇u(z)|p−2∣∣∇vk+1u(z)
∣∣2 dz =

∫
Bτ (w)

|∇u|p−2
∣∣∣∣〈∇u(z), w − πL(w)

|w − πL(w)|

〉∣∣∣∣2 dz ≤

≤ 2
ϱ2

[∫
Bτ (w)

|∇u|p−2|⟨∇u(z), w − z⟩|2 dz+

+
∫
Bτ (w)

|∇u|p−2|⟨∇u(z), z − πL(w)⟩|2 dz
](4.150)
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where we have used the fact that |w − πL(w)| ≥ ϱ and the triangle inequality. The first term
only needs the Cauchy-Schwarz inequality and the bound on the energy to be estimated:

(4.151)
∫
Bτ (w)

|∇u(z)|p−2|⟨∇u(z), w − z⟩|2 dz ≤ τ2
∫
Bτ (w)

|∇u(z)|p dz ≤ ΛC8τ
2−(p−m),

where C8 is a “universal” constant only depending on our definition of the weighted normalized
energy (see Remark 4.30).

For the second term, we need to use again the Corollary 4.33 to the Monotonicity Formula,
as in the previous step: indeed, πL(w) ∈ L, thus by Lemma 4.53

(4.152)
πL(w) − y0 =

k∑
i=1

βi(yi − y0),

with |βi| ≤ |πL(w) − y0|c2(m, ϱ, ς) ≤ 2c(ς)c2(m, ϱ, ς) .= C9(m, ϱ, ς).

Thus in particular

(4.153) z − πL(w) =
(

1 −
k∑
i=1

βi

)
(z − y0) +

k∑
i=1

βi(z − yi),

and

|⟨∇u(z), z − πL(w)⟩|2 ≤

(1 −
k∑
i=1

βi

)2

+
k∑
i=1

β2
i

 k∑
i=0

|⟨∇u(z), z − yi⟩|2 ≤

≤ C10(m, ϱ, ς)
k∑
i=0

|⟨∇u(z), z − yi⟩|2.

(4.154)

Hence finally by Step 1:

∫
Bτ (w)

|∇u|p−2|⟨∇u(z), z − πL(w)⟩|2 dz ≤ C10(m, ϱ, ς)
k∑
i=0

∫
Bτ (w)

|∇u|p−2|⟨∇u(z), z − yi⟩|2 dz ≤

≤ C10(m, ϱ, ς)
k∑
i=0

C1(m, ς, λ, p)(ϑ(yi, 1) − ϑ(yi, λ)) ≤

≤ C11(m, ϱ, ς, λ, p)ε

(4.155)

and thus

(4.156)
∫
Bτ (w)

|∇u(z)|p−2∣∣∇vk+1u(z)
∣∣2 dz ≤ 2

ϱ2

(
ΛC8τ

2−(p−m) + C11(m, ϱ, ς, λ, p)ε
)

Step 4. Putting together the previous steps, we consider V = L̂⊕vk+1 = span{v1, . . . , vk+1};
a simple computation gives:

τp−m
∫
Bτ (w)

|∇V u|p dz ≤ τp−m
∫
Bτ (w)

|∇u(z)|p−2
k+1∑
i=1

|∇viu(z)|2 dz ≤

≤ C7(m, ϱ, ς)ετp−m + 2C11(m, ϱ, ς, λ, p)
ϱ2 ετp−m + 2ΛC8

ϱ2 τ2

(4.157)
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Thus, in order to conclude, we only need to choose τ (and thus δ0) so that the last term is
smaller than η

2 (and of ς
2 ta, from Step 1), and then choose ε such that also the sum of the first

two pieces is smaller than η
2 .

The upcoming lemma says the following: if we have a set of points that satisfy a suitable
“pinching condition with high energy” on ϑ, and they effectively span a k-subspace L, then
all the points of L inherit a similar pinching condition with high energy. Here we use the
(non established) terminology “high energy” with the meaning that theta assumes a value that
is close to the maximal possible value. This can be seen as a further quantitative version of
Corollary 4.38 (it is indeed applied to the limit of a contradicting sequence).

While Lemma 4.71 only required p-stationariety (in the form of the Corollary 4.33 to the
Monotonicity Formula), here we will also need to use the Strong Compactness Theorem; this is
thus where the assumption (4.70 | SC) comes into play.

Lemma 4.72 (High energy pinching). Let ϱ2, λ2, Λ, γ > 0. Let 0 < c < 1
2 tb.

There exists a constant δ1(ϱ2, λ2,Λ, γ, c) such that the following holds. Let u ∈ W 1,p(Ω,N )
be a map that satisfies (4.70 | SC) and has p-energy bounded by Λ; let E ≤ Λ and S ⊂ Ω; if
ϑ(y, r) ≤ E for all y ∈ Bcr(x) ∩ S, and the set

(4.158) H .= {y ∈ Bcr(x) ∩ S | ϑ(y, λ2r) > E − δ1}

spans ϱ2r-effectively a k-space L, then we have

(4.159) ϑ(z, λ2r) > E − γ

for all z ∈ Bcr(x) ∩ L.

In the proof we drop the subscript 2 on ϱ and λ; it was introduced so that lemma is easier to
recall when we need it.

Proof. Assume x = 0, r = 1. If the statement is false, one can find a sequence of maps {ui}i
that satisfy (4.70 | SC), k + 1 sequences of points {yij}i∈N in Bc(0) ∩ S (with j = 1, . . . , k + 1),
and a further sequence {zi}i in Bc(0) such that:

• {yij}k+1
j=1 spans ϱ-effectively a k-space L (which can be assumed to be the same for all i).

• ϑ[ui](yij , λ) > E − 1
i , and ϑ[ui](yij , 1) ≤ E.

• ϑ[ui](zi, λ) < E − γ, and zi ∈ L.

Up to subsequences, by the assumption (4.70 | SC) and Theorem 4.40, {ui} converges in W 1,p to
a map ū which is still p-stationary; furthermore, up to further subsequences, yij → ȳj ∈ B̄c(0),
and zi → z̄ ∈ B̄c(0) ∩ L. Moreover, the set of points {ȳj}k+1

j=1 still spans L, and we have
ϑ[ū](ȳj , λ) = E, which implies

(4.160) ϑ[ū](ȳj , 1) − ϑ[ū](ȳj , λ) = 0.

Thus ū is L-invariant in B̄c(0) by the Cone Splitting Corollary 4.38; so in particular both
ϑ[ū](z̄, λ) = E and ϑ[ū](z̄, λ) ≤ E − γ should hold.
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Finally, a result which states that the lack of almost invariance spreads uniformly along
pinched points. This is yet another quantitative rephrasing of the fact that if ϑ(·, r)−ϑ(·, λr) = 0
at two different (close) points, then u is invariant along the direction connecting them.

Lemma 4.73 (Lack of invariance near pinched points). Let λ > 0, σ0 ∈
(
0, 1

2 tb
)
, κ0 ∈ (0, 1).

There exists a constant ε such that the following holds. For any u ∈ W 1,p(Ω,N ) satisfying
(4.70 | SC) with energy bounded by Λ, if the following conditions are satisfied by a pair of points
x, y:

1. |x− y| < 1
2 tbr;

2. ϑ(x, r) − ϑ(x, λr) < ε;

3. ϑ(y, r) − ϑ(y, λr) < ε;

and u is not (η, k)-invariant in Bσr(x) for some σ0 ≤ σ ≤ 1
2 tb, then u is not (κ0η, k)-invariant

in Bσr(y).

Proof. Assume x = 0, r = 1. By contradiction, there exist: a sequence {ui}i of maps satisfying
(4.70 | SC), a sequence {yi}i of points in B 1

2 tb
(0) and a sequence {σi}i in [σ0,

1
2 tb] such that:

ϑ[ui](0, 1) − ϑ[ui](0, λ) < 1
i
,(4.161)

ϑ[ui](yi, 1) − ϑ[ui](yi, λ) < 1
i
,(4.162)

σp−mi

∫
Bσi (0)

|∇Lui|p > η ∀L ∈ Gk(Rm),(4.163)

σp−mi

∫
Bσi (yi)

∣∣∇L̃ui
∣∣p < κ0η ∃L̃ ∈ Gk(Rm).(4.164)

Up to subsequences, they converge, respectively, to a p-stationary map ū (in W 1,p), to a point
ȳ ∈ B̄ 1

2 tb
(0) and to a number σ̄ ∈

[
σ0,

1
2 tb
]
. Moreover, due to Equations (4.161) and (4.162) and

by the Lp-convergence of gradients, ū is 0-homogeneous with respect to both x = 0 and ȳ, thus
it is invariant along the direction ȳ

|ȳ| in B 1
2 tb

(0). Again by the fact that ui → ū in W 1,p(Ω,N ),
however, we also have that

σ̄p−m
∫
Bσ(0)

∣∣∇L̃ū
∣∣p ≥ η(4.165)

σ̄p−m
∫
Bσ(ȳ)

∣∣∇L̃ū
∣∣p ≤ κ0η;(4.166)

this contradicts the fact that the two left hand sides should be equal (by translation invariance
of ū).

Remark 4.74 (Assumptions on ψ, again). The structural constants ta and tb we introduced in
Assumption 4.28 were broadly used in these last few lemmas. In practice, the key feature (of ψ)
we need for our purposes is the possibility to work handily in the ball B1(0) (so for example we
require that 1 is an admissible value for c(ς) in Lemma 4.71). In the end, with the choice ta > 2
done in Assumption 4.28, we can apply Lemmas 4.71 and 4.72 with c = 1 and Lemma 4.73 with
|x− y| < r. ♢
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4.6 Covering arguments

In the sequel, if B = Br(x) and k is a positive number, we denote by kB the ball Bkr(x). We
first give two useful definitions of “sets of points satisfying a pinched condition”; we have (more
or less) already used both of them in Section 4.5.4.

Definition 4.75. Let u be a p-stationary map, x ∈ B1(0), r > 0. Assume E, λ, δ > 0 are fixed,
and S ⊂ B1(0). We define

H(x, r) = HSE,δ,λ(x, r) .= {y ∈ Br(x) ∩ S | ϑ(y, λr) > E − δ}
P(x, r) = PSδ,λ(x, r) .= {y ∈ Br(x) ∩ S | ϑ(y, r) − ϑ(y, λr) < δ}.

If B = Br(x), we also denote by HB,PB the sets H(x, r),P(x, r) respectively. ♢

Remark 4.76 (H and P). Heuristically H should be thought as a set of pinched points at which
ϑ(y, λr) has a value which is close to the maximum possible. We notice that:

(a) If all the parameters appearing are fixed, and u is such that ϑ(y, r) ≤ E for all y ∈ Br(x),
then H(x, r) ⊂ P(x, r);

(b) As a consequence, whenever H ϱ-effectively spans a k-subspace, also P trivially does. ♢

Notations and map of the constants. This will be the context for the whole section:

– m,N , p,Λ are fixed as in the previous sections (respectively: dimension of the domain,
target manifold, exponent for the energy, upper bound on the p-energy).

– u ∈ W 1,p(Ω,N ) is a p-minimizing harmonic map, or more generally a p-stationary map
under the condition (4.70 | SC) for the strong compactness theorem. Moreover, u has
p-energy bounded by Λ.

– We let ϱ ∈ (0, 1) be a fixed constant, and r = ϱȷ̂ for some ȷ̂ ∈ N≥1. The radius r will be
the scale parameter for the singular stratification, up to a constant. The constant ϱ will
be arbitrary in the first covering, and will be then suitably selected in the construction of
the second covering.

– η > 0 is the (fixed) closeness parameter for the stratification.

– k ∈ {1, . . . ,m} is the dimension parameter for the stratification.

– γ > 0 is a constant used for the pinching condition on ϑ. It will be arbitrary in the
construction of the first covering, then selected in Proposition 4.80.

– δ0 and ε are the constants produced by Lemma 4.71 when ϱ1 = λ1 = 1
5ϱ, η is the already

chosen closeness parameter and ς is chosen such that c(ς) = 1; δ1 is the constant produced
by Lemma 4.72 when ϱ2 = λ2 = 1

5ϱ, γ is the arbitrary parameter introduced above and
c = 1. We fix δ = δ(ϱ, η, γ) .= min{ε, δ1}.

– S is a subset of the stratum Skη,δ0r
(u) ∩B1(0).

– 0 < E ≤ Λ is such that ϑ(x, 1) ≤ E for all x ∈ B1(0) ∩ S.
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The goal of the upcoming constructions will be to build a “controlled” covering of S. In
words, the ultimate goal will be to cover S with balls B satisfying the following:

1. The sum of the kth powers of the radii is bounded by a universal constant.

2. Up to rescaling by a fixed constant, the balls are pairwise disjoint.

3. Either the radius of B is less than or equal to the fixed radius r; or the (normalized)
p-energy in B is lower than the “maximal initial p-energy” E by a fixed amount δ (E and
δ were introduced in the previous list of constants). In the latter case, we say that B
satisfies a uniform energy drop condition (see the below Definition 4.77).

This will be achieved in Proposition 4.82. Once we have this, we can then apply the same
reasoning to each of the balls where the p-energy drops uniformly (while keeping the other balls
as they are). At each step other balls of radius ≤ r are produced, while the p-energy continues to
drop uniformly in all the other balls. The procedure lasts a finite number of steps, until there’s
no energy left: indeed the total initial p-energy was bounded by a fixed constant Λ. This is the
content of Section 4.7.1. Let’s give a precise definition of energy drop:

Definition 4.77. We say that a ball B with radius rB satisfies the uniform (λ, δ)-energy drop
condition if

(4.167) ϑ(y, λrB) ≤ E − δ for all y ∈ S ∩B;

From now on λ = 1
5 and δ will be fixed (δ as in the Map of the Constants above), so we omit

them and simply say “uniform energy drop”. The terminology used here hides the fact that we
have in mind a fixed map u as in the Notations above. ♢

At first, we are only able to reach a partial result: we don’t manage to fully get a uniform
energy drop condition on the balls of the covering; but we can show that, in each ball, the points
for which the p-energy does not drop uniformly lie close to a (k − 1)-plane (so in the end they
can be controlled very efficiently). This is the content of the next subsection.

4.6.1 First covering

Recall that r = ϱȷ̂ is the scale parameter of the singular stratum we are considering. Here ϱ > 0
is a fixed parameter and ȷ̂ ∈ N: we are allowed to work with constants which depend on ϱ, but
not on ȷ̂.

Construction of the first covering We construct a covering F of S with the following proper-
ties:

1. F = G0 ∪ · · · ∪ Gȷ̂−1 ∪ Eȷ̂. If B ∈ Gh, then B = B
(
x, ϱh

)
for some x. If B ∈ Eȷ̂, then

B = B
(
x, ϱȷ̂

)
for some x. Mnemonic rule: when the construction of F is complete, the

subcovering Eȷ̂ is made of balls with radius equal to r, while the subcoverings labeled with
G are made of balls with radius greater than r.

2. If B
(
x, ϱh

)
∈ Gh with 0 ≤ h ≤ ȷ̂− 1, then H(x, ϱh) ⊂ B

(
V, 1

5ϱ
h+1

)
for some (k − 1)-affine

subspace V ∈ Hk−1(Rm); here H = HS
E,δ, 1

5ϱ
.
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3. If B,B′ ∈ F and B ̸= B′, then 1
5B ∩ 1

5B
′ = ∅.

4. If B(x, rx) ∈ G1 ∪ · · · ∪ Gȷ̂−1 ∪ Eȷ̂, then

ϑ

(
x,

1
5rx

)
> E − γ,(4.168)

x ∈ S
[
k; 1

2η; δ0rx

]
(u).(4.169)

The strategy will be to apply inductively the lemmas from Section 4.5.4 at different scales. We
thus proceed inductively on j ∈ {0, . . . , ȷ̂}.

Step 1, case A. If H(0, 1) is contained in B
(
V, 1

5ϱ
)

with V ∈ Hk−1(Rm), then we define
G0

.= {B(0, 1)}. The other subcoverings are left empty, and the process stops here.

Step 1, case B. If H(0, 1) is not contained in any neighborhood of the form B
(
V, 1

5ϱ
)

with
V ∈ Hk−1(Rm), then:

• by Lemma 4.54 (“Sufficient condition”), H(0, 1) spans 1
5ϱ-effectively a k-space L(0, 1) ∈

Hk(Rm) (and P(0, 1) also does by Remark 4.76);

• thus, by Lemma 4.71 (“Pinching”) with λ1 = ϱ1 = 1
5ϱ, S ∩ B(0, 1) is contained in

B
(
L(0, 1), 1

5ϱ
)
;

• by Lemma 4.72 (“High energy pinching”), with λ2 = ϱ2 = 1
5ϱ, for any z ∈ L(0, 1) ∩B(0, 1)

we have

(4.170) ϑ

(
z,

1
5ϱ
)
> E − γ;

• if γ is small enough (smaller than a constant depending on m, p, η, ϱ), by Lemma 4.73
(“Lack of invariance near pinched points”) with κ0 = 1

2 , λ = 1
5ϱ and σ = δ0ϱ, for any

z ∈ L(0, 1)∩B(0, 1) we have z ∈ S
[
k; 1

2η; δ0ϱ
]
(u) (because S[k; η; δ0ϱ](u) ⊃ S[k; η; δ0r](u)).

Cover S ∩ B(0, 1) with balls of radius ϱ with centers in L(0, 1) and such that 1
5B ∩ 1

5B
′ = ∅ if

B ̸= B′. Call E1 this covering.
If ȷ̂ = 1, i.e. the final radius r we want to reach is ϱ1, then we can stop here the procedure.

Otherwise, assume that B .= B(x, ϱ) ∈ E1 is a ball produced by Step 1, case B.

Step 2, case A. If H(x, ϱ) ⊂ B
(
V, 1

5ϱ
2
)

for some V ∈ Hk−1(Rm), then B is one of the balls
that we want to keep in our final covering F ; we define

(4.171) G1
.=
{
B(x, ϱ) ∈ E1

∣∣∣∣ H(x, ϱ) ⊂ B
(
V,

1
5ϱ

2
)

for some V ∈ Hk−1(Rm)
}
.
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Step 2, case B. If instead B /∈ G1, this means that H(x, ϱ) spans 1
5ϱ

2-effectively a k-space
L(x, ϱ), again by Lemma 4.54. Thus, applying Lemmas 4.71 to 4.73 with the same constants as
in Step 1, Case B, we get:

1. S ∩B(x, ϱ) ⊂ B
(
L(x, ϱ), 1

5ϱ
2
)

for some L(x, ϱ) ∈ Hk(Rm);

2. ϑ(z, 1
5ϱ

2) > E − γ for all z ∈ L(x, ϱ) ∩B(x, ϱ);

3. z ∈ S
[
k; 1

2η; δ0ϱ
2
]
(u) for all z ∈ L(x, ϱ) ∩B(x, ϱ).

Now we cover S ∩ B(x, ϱ) \
⋃

G1 with balls of radius ϱ2 such that for any pair B ̸= B′ of such
balls we have 1

5B ∩ 1
5B
′ = ∅ and 1

5B ⊂ B(x, ϱ) \
⋃

G1; define E2,x such a covering. Define

(4.172) E2
.=
⋃

{E2,x | B(x, ϱ) ∈ E1 \ G1}.

This concludes Step 2.
After the jth step, we have:

• j families of balls G0, . . . ,Gj−1, with the following properties: if B ∈ Gh then B = B
(
x, ϱh

)
for some x, and H

(
x, ϱh

)
is contained in B

(
V, 1

5ϱ
h+1

)
for some V ∈ Hk−1(Rm);

• A family Ej of balls of radius ϱj .

If j = ȷ̂, then we are done. Otherwise, we proceed in the same fashion. Let B = B
(
x, ϱj

)
∈ Ej .

Step j + 1, case A. If H(x, ϱj) ⊂ B
(
V, 1

5ϱ
j+1
)

for some V ∈ Hk−1(Rm), then B is one of the
balls that we want to keep in our final covering F ; we define

(4.173) Gj
.=
{
B
(
x, ϱj

)
∈ Ej

∣∣∣∣ H(x, ϱj) ⊂ B
(
V,

1
5ϱ

j+1
)

for some V ∈ Hk−1(Rm)
}
.

Step j + 1, case B. If instead B /∈ Gj , this means that H(x, ϱj) spans 1
5ϱ

j+1-effectively a
k-space L(x, ϱj). Thus, applying Lemmas 4.71 to 4.73 with the same constants as in Case B of
the previous steps, we get:

1. S ∩B ⊂ B
(
L(x, ϱj), 1

5ϱ
j+1
)

for some L(x, ϱj) ∈ Hk(Rm);

2. ϑ(z, 1
5ϱ

j+1) > E − γ for all z ∈ L(x, ϱj) ∩B
(
x, ϱj

)
;

3. z ∈ S
[
k; 1

2η; δ0ϱ
j+1
]
(u) for all z ∈ L(x, ϱj) ∩B

(
x, ϱj

)
.

Now we cover S ∩B
(
x, ϱj

)
\
⋃
h≤j

⋃
Gh with balls of radius ϱj+1 such that for any pair B ̸= B′ of

such balls we have 1
5B ∩ 1

5B
′ = ∅ and 1

5B ⊂ B(x, ϱ) \
⋃
h≤j

⋃
Gh; define Ej+1,x such a covering.

Define

(4.174) Ej+1
.=
⋃

{Ej+1,x | B(x, ϱ) ∈ Ej \ Gj}.

Iterating the procedure until ȷ̂, we obtain the desired construction.
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Definition 4.78. If F = G0 ∪· · ·∪Gȷ̂−1 ∪Eȷ̂ is the covering just constructed, define the following
sets of centers:

Dh
.=
{
x ∈ B(0, 1)

∣∣∣ B(x, ϱh) ∈ Gh
}
, 0 ≤ h ≤ ȷ̂− 1(4.175)

Dȷ̂
.=
{
x ∈ B(0, 1)

∣∣∣ B(x, ϱȷ̂) ∈ Eȷ̂
}

(4.176)

C .= D0 ∪ · · · ∪ Dȷ̂−1 ∪ Dȷ̂(4.177)
Cℓ

.= Dȷ̂−ℓ ∪ · · · ∪ Dȷ̂, 0 ≤ ℓ ≤ ȷ̂.(4.178)

Moreover, if x ∈ C, we will also denote by rx the radius of the ball centered at x which is
contained in F . Notice that

(4.179) Cℓ =
{
x ∈ C

∣∣∣ rx ≤ ϱȷ̂−ℓ
}
,

and C = Cȷ̂ ⊂ Cȷ̂−1 ⊂ · · · ⊂ C1 ⊂ C0 = Dȷ̂. ♢

The next step is probably the most important of the whole construction: indeed, we show
that we have a control on the kth powers of the radii of the balls in F . Here is where the refined
techniques of Section 4.5.2 become involved: we use Reifenberg Theorem 4.63 to achieve the
final estimate, and Theorem 4.66 to check Reifenberg’s hypothesis. Unfortunately, the proof is
a bit intricate: we split it in several subtheorems.

Remark 4.79. From now on, we will assume without loss of generality that ϱ is of the form
5−κ for some κ ∈ N. This does not affect in any way the general procedure (in the proof of
Proposition 4.82 we will choose ϱ as an arbitrary number smaller than a certain constant) and
simplifies a bit some computations. ♢

Proposition 4.80 (Volume estimates). Let F = {B(x, rx)}x∈C be the covering constructed in
the previous paragraph. Recall that ϱ, η, γ, E > 0 are fixed constants. If γ > 0 and ϱ > 0 are
chosen small enough, there exists a constant CI = CI(m, ϱ) such that

(4.180)
∑
x∈C

rkx ≤ CI.

By Reifenberg Theorem 4.63, the estimate (4.180) is achieved if the condition

(4.181)
∫
B(w,τ)

∫ τ

0
βkµ(y, s)2 ds

s
dµ(y) < δRτ

k

holds for any ball B(w, τ) with w ∈ B(0, 1) and 0 < τ < 1 (or 0 < τ < τmax for some τmax, at
the only price of worsening the constants involved). Here µ .= ∑

x∈C r
k
xδx. For any 0 ≤ h ≤ ȷ̂,

we now consider the measure µh associated to the set of centers Ch defined in Definition 4.78:
µh

.= ∑
x∈Ch

rkxδx. Clearly µ = µȷ̂; first of all, we state a very elementary “induction property”
of the measures µh.

Subtheorem 4.80.1. Let h ∈ {0, . . . , ȷ̂− 1}. Let Cin > 0 be a constant. Assume without loss
of generality ϱ < 1

10 . Assume that, for all x ∈ B(0, 1) and all s ∈
[

1
5ϱ

ȷ̂, ϱȷ̂−h
]
, it holds

(4.182) µh(B(x, s)) ≤ Cins
k.
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Then there exists a constant Cf depending only on Cin, ϱ and m such that

(4.183) µh+1(B(x, s)) ≤ Cfs
k

whenever one of the following holds:

(i) B(x, s) ∩ (Ch+1 \ Ch) = ∅ and s ∈
[

1
5ϱ

ȷ̂, 2ϱȷ̂−(h+1)
]
.

(ii) B(x, s) contains points of Ch+1 \ Ch and s ∈
[
2ϱȷ̂−h, 2ϱȷ̂−(h+1)

]
.

Remark 4.81. We could obviously state the same property with more general constants in front
of the radii involved. This is however the form we will need: notice that the “upper bound” for
the radius gains a factor 2. ♢

Proof. Fix x ∈ B(0, 1) and s ∈
[

1
5ϱ

ȷ̂, 2ϱȷ̂−(h+1)
]
. We can split µh+1(B(x, s)) as

µh+1(B(x, s)) = µh(B(x, s)) +
∑

z∈Ch+1\Ch

z∈B(x,s)

ϱk(ȷ̂−h−1)

= µh(B(x, s)) + ϱk(ȷ̂−h−1) card(B(x, s) ∩ Ch+1 \ Ch).

(4.184)

Now:

• If B(x, s) ∩ (Ch+1 \ Ch) = ∅ and s ∈
[

1
5ϱ

ȷ̂, ϱȷ̂−h
]
, then the first term is smaller than or

equal to Cinsk by assumption; the second term is trivially zero.

• If s ∈
[
ϱȷ̂−h, 2ϱȷ̂−h−1

]
, then: we can cover B(x, s) ∩ spt(µh) with a controlled number

c1(ϱ,m) of balls centered in Ch with radius ϱȷ̂−h, so that we obtain:

(4.185) µh(B(x, s)) ≤ c1Cinϱ
k(ȷ̂−h) ≤ c1Cins

k;

moreover, the number card(B(x, s) ∩ (Ch+1 \ Ch)) is also bounded by a constant c2(ϱ,m),
because balls centered in (Ch+1 \ Ch) with radius 1

5ϱ
ȷ̂−h−1 do not contain points of C other

then their center. Thus

(4.186) ϱk(ȷ̂−h−1) card(B(x, s) ∩ Ch+1 \ Ch) ≤ c2
ϱk
sk.

By choosing Cf
.= max

{
Cin, c1Cin + c2

ϱk

}
we get the result.

The next step is to prove that the estimate Equation (4.182) actually holds when h = 0.

Subtheorem 4.80.2. There exists a constant C0(ϱ,m) such that: for any x ∈ B(0, 1) and
s ∈

[
1
5ϱ

ȷ̂, ϱȷ̂
]
,

(4.187) µ0(B(x, s)) ≤ C0s
k.
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Proof. An argument already used in Subtheorem 4.80.1: if x ̸= y ∈ C0, then B
(
x, 1

5ϱ
ȷ̂
)

and
B
(
y, 1

5ϱ
ȷ̂
)

are disjoint, thus the number of such centers contained in B(x, s) is bounded by a
constant (the same c2(ϱ,m) as in the previous proof). Thus

(4.188) µ0(B(x, s)) ≤ c2(ϱ,m)ϱȷ̂k ≤ 5kc2s
k,

which is what we needed.

It may seem that, having an inductive step and a base step, we could already get the
volume estimate we need. The problem is that we are applying Subtheorem 4.80.1 with an
initial constant Cin that keeps getting bigger at any step; instead, we would need in the end a
universal constant that only depends on ϱ and m, since the number of steps is not fixed a priori,
and we don’t want our constants to depend on it. Here is where Reifenberg Theorem comes into
play. The trick will be to prove that the estimate

(4.189)
∫
B(w,τ)

∫ τ

0
βkµh

(y, s)2 ds

s
dµh(y) < δRτ

k

holds for any µh.

Subtheorem 4.80.3. Let ϱ > 0 (small enough) and Cf > 0 be fixed constants; η,E,S as
before. There exists a constant γ = γ(ϱ, Cf ,m, p, η) such that the following holds. Assume
that F is the covering of S associated to the constant γ, and that µh verifies the conclusion of
Subtheorem 4.80.1, i.e.: the estimate

(4.190) µh(B(x, s)) ≤ Cfs
k

holds whenever one of the following holds:

(i) B(x, s) ∩ (Ch \ Ch−1) = ∅ and all s ∈
[

1
5ϱ

ȷ̂, 2ϱȷ̂−h
]
.

(ii) B(x, s) contains a point of Ch \ Ch−1 and s ∈
[
2ϱȷ̂−(h−1), 2ϱȷ̂−h

]
.

Then the following estimate is also true:

(4.191) µh(B(x, s)) ≤ CRs
k

for all x ∈ B(0, 1) and all s ∈
[

1
5ϱ

ȷ̂, ϱȷ̂−h
]
, where CR is the constant appearing in Reifenberg

Theorem 4.63.

Proof. We proceed in several steps. Let h ∈ {0, . . . , ȷ̂− 1} be fixed.
Step 1 (Application of Reifenberg Theorem). Clearly, if we are able to prove that

(4.192)
∫
B(w,τ)

∫ τ

0
βkµh

(y, s)2 ds

s
dµh(y) < δRτ

k

holds for all w ∈ B(0, 1) and all τ < ϱȷ̂−h, then we can exploit the rescaled version of Reifenberg
Theorem (Corollary 4.64), and we get exactly the thesis.

Step 2 (Application of the Estimates on βkµ). Notice that the integral with respect to µh
appearing in Equation (4.192) is actually a sum on y ∈ Ch ∩ B(w, τ). Let y ∈ Ch, and consider
βkµh

(y, s). Then:
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• If s ≤ 1
5ry, then βkµh

(y, s) = 0, because y is the only point of Ch contained in B(y, s) (and
thus any k-plane through y is a best approximating plane for µh);

• If s ≥ 1
5ry, by property 4 of the covering F (specifically Equation (4.169)), u is not(

1
2η, k + 1

)
-invariant in B(y, 5δ0s). Thus we can use Theorem 4.66 with r̄ = 5δ0 and

σ = 5 (for example!) and obtain:

(4.193) βkµh
(y, s)2 ≤ CJs

−k
∫
B(y,s)

(ϑ(z, 5s) − ϑ(z, s)) dµh(z).

where now CJ depends on m, p and η only.

More compactly, if we define the following function:

W (x, r) .= [ϑ(x, 5r) − ϑ(x, r)]χCh
(x)χ(rx/5,∞)(r) =

=

ϑ(x, 5r) − ϑ(x, r) if x ∈ Ch and r ≥ 1
5rx

0 otherwise
,

(4.194)

then for all s > 0 (smaller than a suitable constant) we have:

(4.195) βkµh
(y, s)2 ≤ CJs

−k
∫
B(y,s)

W (z, s) dµh(z).

Step 3. By Step 2 and by Tonelli’s Theorem, for a fixed h ∈ {0, . . . , ȷ̂− 1} we have:∫
B(w,τ)

∫ τ

0
βkµh

(y, s)2 ds

s
dµh(y) ≤

∫
B(w,τ)

∫ τ

0
CJs

−k
∫
B(y,s)

W (z, s) dµh(z) ds
s
dµh(y) ≤

≤
∫ τ

0
CJs

−k
∫
B(w,τ)

∫
B(y,s)

W (z, s) dµh(z) dµh(y) ds
s
.

(4.196)

Notice that by the triangle inequality

(4.197) |z − w| ≤ |z − y| + |y − w|,

so the set

(4.198) {(y, z) ∈ Rm × Rm | y ∈ B(w, τ), z ∈ B(y, s)}

is contained in

(4.199) {(y, z) ∈ Rm × Rm | z ∈ B(w, τ + s), y ∈ B(z, s)}.

Using again Tonelli Theorem, we also switch the two integrals in µh, thus getting:

∫
B(w,τ)

∫ τ

0
βkµh

(y, s)2 ds

s
dµh(y) ≤

∫ τ

0
CJs

−k
∫
B(w,τ+s)

W (z, s)
(∫

B(z,s)
dµh(y)

)
dµh(z) ds

s
≤

≤
∫ τ

0
CJs

−k
∫
B(w,2τ)

W (z, s)µh(B(z, s)) dµh(z) ds
s
.

(4.200)
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Now for all the relevant pairs (z, s) (for which W is not 0) the estimate (4.190) holds:

(4.201)
∫
B(w,τ)

∫ τ

0
βkµh

(y, s)2 ds

s
dµh(y) ≤ CJCf

∫
B(w,2τ)

∫ τ

0
W (z, s) ds

s
dµh(z).

Step 4. Let x ∈ Dℓ, so that rx = ϱℓ = 5−κℓ (see the Remark before the statement). The
following estimate holds:

∫ 1
5

1
5 rx

(ϑ(x, 5s) − ϑ(x, s)) ds
s

=
κℓ∑
j=1

∫ ( 1
5 )j

( 1
5 )j+1

ϑ(x, 5s) − ϑ(x, s)
s

ds ≤

≤
κℓ∑
j=1

ϑ
(
x, 51−j)− ϑ

(
x, 5−1−j)

5−1−j

(1
5

)j(
1 −

(1
5

))
≤

≤ C

[
ϑ(x, 1) − ϑ

(
x, 5−κℓ

)
+ ϑ

(
x,

1
5

)
− ϑ

(
x,

1
55−κℓ

)]
≤

≤ C12γ,

(4.202)

where the last inequality is a consequence of property 4 of the covering F (specifically Equa-
tion (4.168)) and C12 depends on ϱ and η. Plugging this information into Equation (4.201)
(provided that τ ≤ 1

5), we get

(4.203)
∫
B(w,τ)

∫ τ

0
βkµh

(y, s)2 ds

s
dµh(y) ≤ CJCfC12γ µh(B(w, 2τ)).

The left hand side is 0 whenever B(w, 2τ) contains a single point of Ch; in all the other cases,
the assumption (4.190) holds, thus

(4.204)
∫
B(w,τ)

∫ τ

0
βkµh

(y, s)2 ds

s
dµh(y) ≤ 2−kCJC2

fC12γτ
k.

Choosing γ(ϱ, Cf ,m, p, η) ≤ δR(m)
2−kCJC

2
f
C12

, we have the desired result.

We can finally prove Proposition 4.80.

Proof of Proposition 4.80. The proof is now a simple induction: by Subtheorem 4.80.2 we have
an estimate on µ0 depending on a constant C0; applying Subtheorem 4.80.1 the same estimate
holds for µ1 with Cf = Cf (C0,m, p, ϱ); but then we apply Subtheorem 4.80.3 to improve the
constant: the estimate now holds for µ1 with CR(m). So we can repeat the procedure: the final
constant for each µh will still be CR(m).

4.6.2 Second covering

The goal now is to refine the covering in order to find balls which satisfy a clean energy drop;
that is, we get rid in some sense of the sets of type H(x, r), where the uniform energy drop does
not happen, and which are already bound to lie in the fattening of (k − 1)-dimensional planes.
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Construction of the second covering Consider again the “first covering” F for S. It is split
in F = G ∪ E , where F , E and G have the following properties:

1. Balls in E .= E(0) .= Eȷ̂ have radius equal to r = ϱȷ̂;

2. Balls in G .= G0 ∪ · · · ∪ Gȷ̂−1 have radius ϱh with h < ȷ̂; if B = B(x, r) ∈ G, it satisfies the
condition

(4.205) HB =
{
y ∈ B ∩ S

∣∣∣∣ ϑ(y, 1
5ϱr

)
> E − δ

}
⊂ B

(
VB,

1
5ϱr

)
for some (k − 1)-affine subspace VB ∈ Hk−1(Rm).

3. The estimate ∑B∈F r
k
B ≤ CI(m) holds, where rB is the radius of B.

We now refine F inductively, applying at each step a rescaled version of the procedure from
Section 4.6.1.

Step 1. Consider B ∈ G and the associated (k − 1)-plane VB. We cover B ∩ S with balls of
radius ϱrB, divided in three subcoverings: EB (with radius equal to r), DB (satisfying an energy
drop condition), WB (wild balls on which we have no control).

• If rB = ϱȷ̂−1, simply cover B ∩ S with at most C13(m, ϱ) balls of radius ϱȷ̂. Call this
covering EB; set DB = WB = ∅. (Actually C13(m, ϱ) = C(m)ϱ−m, but it’s irrelevant.)

• If rB > ϱȷ̂−1, we cover B
(
HB,

1
5ϱrB

)
with at most C14(m)ϱ−(k−1) balls of radius ϱrB; call

this covering WB. This is possible since HB ⊂ B
(
VB,

1
5ϱrB

)
; notice that the case HB = ∅

is included. Cover (B ∩ S) \ B
(
HB,

1
5ϱrB

)
with at most C13(m, ϱ) balls of radius ϱrB; call

this covering DB. Set EB = ∅. Notice that if B̃ ∈ DB then it satisfies the uniform energy
drop condition.

At this point we have a covering of S of this type:

(4.206) F (1) = E(1) ∪ D(1) ∪ W(1),

where

(4.207) E(1) .= E(0) ∪
⋃
B∈G

EB, D(1) .=
⋃
B∈G

DB, W(1) .=
⋃
B∈G

WB,

and ∑
B∈E(0)

rkB ≤ CI(m),
∑

B∈E(1)\E(0)

rkB ≤ ϱkC13(m, ϱ)CI(m)(4.208)

∑
B∈D(1)

rkB ≤ ϱkC13(m, ϱ)CI(m),
∑

B∈W(1)

rkB ≤ C14(m)CI(m)ϱkϱ−k+1.(4.209)

Introduce the constants

K1(ϱ,m) = CI(m)(1 + 2ϱkC13)(4.210)
K2(m) = CI(m)C14(m).(4.211)

so that

(4.212)
∑

E(1)∪D(1)

rkB ≤ K1,
∑
W(1)

rkB ≤ K2ϱ.
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Step h + 1. Assume that, for some h ≤ ȷ̂ − 1, we have a covering of S of the form F (h) =
E(h) ∪ D(h) ∪ W(h) with the following properties:

1. If B ∈ E(h), then rB = r = ϱȷ̂;

2. If B ∈ D(h), then the energy drop condition holds in B;

3. If B ∈ W(h), then ϱȷ̂ < rB ≤ ϱh;

4. The estimates

(4.213)
∑

B∈E(h)∪D(h)

rkB ≤ K1

h−1∑
j=0

(K2ϱ)j ,
∑

B∈W(h)

rkB ≤ (K2ϱ)h

hold true.

Consider a ball B⋆ ∈ W(h). Applying a rescaled version of the first construction (and of Propo-
sition 4.80) we first find a covering FB⋆ for S ∩B⋆ of the type

(4.214) FB⋆ = GB⋆;h ∪ · · · ∪ GB⋆;ȷ̂−1 ∪ EB⋆;ȷ̂ = GB⋆ ∪ EB⋆ ,

where GB⋆ are balls on which the energy drop condition is verified up to a neighborhood of a
(k − 1)-plane, EB⋆ are balls of radius r = ϱȷ̂, and ∑B∈FB⋆ r

k
B ≤ CI(m)rkB⋆ . Secondly, re-cover

each ball of GB⋆ with a rescaled version of Step 1, thus obtaining

(4.215) F (h+1)
B⋆ = E(h+1)

B⋆ ∪ D(h+1)
B⋆ ∪ W(h+1)

B⋆ ,

where balls of E(h+1)
B⋆ have radius r, balls of D(h+1)

B⋆ satisfy the energy drop condition, balls of
W(h+1)
B⋆ have radius r < rB ≤ ϱh+1, and

(4.216)
∑

B∈E(h+1)
B⋆ ∪D(h+1)

B⋆

rkB ≤ K1r
k
B⋆ ,

∑
B∈W(h+1)

B⋆

rkB ≤ K2ϱr
k
B⋆ .

Then define

E(h+1) .= E(h) ∪
⋃

B⋆∈W(h)

E(h+1)
B⋆ , D(h+1) .= D(h) ∪

⋃
B⋆∈W(h)

D(h+1)
B⋆ ,(4.217)

W(h+1) .=
⋃

B⋆∈W(h)

W(h+1)
B⋆ ,(4.218)

F (h+1) = E(h+1) ∪ D(h+1) ∪ W(h+1).(4.219)

All the conditions 1 to 3 are satisfied with h + 1 instead of h; as for the estimates (4.213), we
have ∑

B∈E(h+1)∪D(h+1)

rkB =
∑

B∈E(h)∪D(h)

rkB +
∑

B⋆∈W(h)

∑
B∈E(h+1)

B⋆ ∪D(h+1)
B⋆

rkB ≤

≤ K1

h−1∑
j=0

(K2ϱ)j +K1
∑

B⋆∈W(h)

rkB⋆ ≤ K1

h∑
j=0

(K2ϱ)j
(4.220)
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and ∑
B∈W(h+1)

rkB =
∑

B⋆∈W(h)

∑
B∈W(h+1)

B⋆

rkB ≤

≤ K2ϱ
∑

B⋆∈W(h)

rkB⋆ ≤ (K2ϱ)h+1.
(4.221)

Thus, as a consequence of this procedure, we have the following.

Proposition 4.82. Let u ∈ W 1,p(Ω,N ) be a map with energy bounded by Λ that satisfies the p-
minimality or p-stationariety conditions of (4.70 | SC). Let η > 0 be a constant and 1 ≤ k ≤ m.
Assume that E ≤ Λ is such that ϑ(y, 1) ≤ E for all y ∈ B(0, 1) ∩ S. Let S ⊂ S[k; η; δ0r](u) for
some r > 0. There exists a finite covering F⋆ of S with the following properties:

(i) All the radii satisfy rB ≥ ϱ̄r, where ϱ̄ ∈ (0, 1) is a constant only depending on m;

(ii) The kth powers of the radii are controlled by
∑
B∈F⋆ rkB ≤ CII, where CII depends only on

m.

(iii) F⋆ = L⋆ ∪ D⋆, where:

(A) For all B ∈ L⋆, rB ≤ r (that is, rB is lower than or equal to the needed radius);

(B) Every ball B ∈ D⋆ satisfies a uniform energy drop condition:

(4.222) ϑ

(
y,

1
5rB

)
< E − δ for all y ∈ S ∩B.

Here both δ0 and δ are constants that depend on m, p,N ,Λ, η (and nothing else).

Proof. Let ϱ̄ = ϱ̄(m) ≤ 1
2K2(m)−1, where K2 is the constant introduced in (4.211). Once ϱ̄(m)

is chosen, also a constant γ̄(m, p, η) is fixed by Subtheorem 4.80.3; as a consequence, δ0(m, p, η)
gets determined by Lemma 4.71 and the constant δ(m, p, η) is fixed as well by Lemma 4.71 and
Lemma 4.72. Assume that ϱ̄ȷ̂ ≤ r < ϱ̄ȷ̂−1 for some ȷ̂ ∈ N. Perform the construction (of the first
covering and then) of the second covering until Step ȷ̂. Then:

• W(ȷ̂) = ∅ (by the bounds on the radii), so F (ȷ̂) = E(ȷ̂) ∪ D(ȷ̂);

• The balls in E(ȷ̂) have radius ϱ̄ȷ̂ ≤ r;

• The balls in D(ȷ̂) satisfy the energy drop condition;

• Each ball in F (ȷ̂) has radius greater than or equal to ϱ̄ȷ̂ ≥ ϱ̄r.

Moreover, by Equation (4.213),

(4.223)
∑

B∈F(ȷ̂)

rkB ≤ K1(m, ϱ̄(m))
ȷ̂−1∑
j=0

(K2ϱ)j ≤ K3(m)
∞∑
h=0

(1
2

)h
≤ 2K3(m).

This proves the proposition, by setting CII(m) = 2K3(m), L⋆ = E(ȷ̂), D⋆ = D(ȷ̂).
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4.7 Proof of the main theorems

Finally, we can prove the result stated in Theorem 4.56. We split the proof in the following two
paragraphs.

4.7.1 Volume estimate

Theorem 4.83. Let u ∈ W 1,p(Ω,N ) be a map with energy bounded by Λ. Let η > 0 and
1 ≤ k ≤ m. Assume that N and u satisfy the condition (4.70 | SC) for the strong compactness
theorem. There exists a constant C15 = C15(m,N , p,Λ, η) such that for any r > 0

(4.224) Lm
(
B
(
Skη,δ0r(u), r

)
∩B(0, 1)

)
≤ C15r

m−k.

The proof is a straightforward consequence of the following lemma:

Lemma 4.84. Let m, p,Λ, η, k be constants, u a map and r > 0 as in Theorem 4.83. For any
number i ∈ N there exists a covering F⋆

i of the set S .= S[k; η; δ0r](u) consisting of open balls,
satisfying the following properties:

(i) The radii rB satisfy

(4.225)
∑
B∈F⋆

i

rkB ≤ (c3(m)CII(m))i

for some new dimensional constant c3(m) and the old constant CII(m) coming from Propo-
sition 4.82;

(ii) F⋆
i = L⋆i ∪ D⋆

i , where:

(A) For all B ∈ L⋆i , ϱ̄r ≤ rB ≤ r, where ϱ̄ = ϱ̄(m) ∈ (0, 1) is the constant introduced in
Proposition 4.82;

(B) For all B ∈ D⋆
i and all y ∈ S ∩B, we have

ϑ

(
y,

1
5rB

)
≤ Λ − iδ,

where δ = δ(m, p,Λ,N , η) is the constant determined by Proposition 4.82.

Proof. We proceed by induction on i ∈ N. For i = 0, we can simply take F⋆
0 = D⋆

0 = {B(0, 1)}.
Assume then the lemma is true for some i ≥ 0. Consider a ball B0 ∈ D⋆

i , and cover it with
c3(m) balls of radius 1

5rB0 (call Di,B0 this covering); for each of these balls B consider the
rescaling of B (and u) through the transformation that maps it into the unit ball. Applying
Proposition 4.82 with E = Λ − iδ and S \

⋃i
j=1 Lj , and scaling back to the original B, we find

a covering F⋆
B = L⋆B ∪ D⋆

B satisfying:

1. If B̃ ∈ L⋆B, then ϱ̄r ≤ rB̃ ≤ r;

2. If B̃ ∈ D⋆
B, then ϑ

(
y, 1

5rB̃

)
≤ Λ − iδ − δ for all y ∈ B̃ ∩ S;

3. ∑B̃∈F⋆
B
rk
B̃

≤ CIIr
k
B.
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Thus, by defining

D⋆
i+1

.=
⋃

B0∈D⋆
i

⋃
B∈DB0,i

D⋆
B(4.226)

L⋆i+1
.= L⋆i ∪

⋃
B0∈D⋆

i

⋃
B∈DB0,i

L⋆B,(4.227)

we get the needed result.

Proof of Theorem 4.83. We apply Lemma 4.84 assuming the integer i to be ı̂(m, p,Λ,N , η) .=⌊
Λ
δ

⌋
+1, where δ = δ(m, p,Λ,N , η) is the constant determined by Proposition 4.82. Consider the

covering F† .= F⋆
ı̂ of S[k; η; δ0r](u) ∩B(0, 1): the energy drop condition ϑ

(
y, 1

5rB
)

≤ Λ − ı̂δ < 0
can never hold, since by definition the normalized energy ϑ is non-negative. Thus F† consists
of a collection of balls satisfying∑

B∈F†

rkB ≤ (c3(m)CII(m))ı̂ .= CIII(m, p,Λ,N , η),(4.228)

ϱ̄r ≤ rB ≤ r for any B ∈ F†.(4.229)

By elementary geometric properties, the collection of balls
{
B(x, 2r)

∣∣∣ B(x, rB) ∈ F†
}

covers
the tubular neighborhood B(S[k; η; δ0r](u), r) ∩ B(0, 1). In particular, by Equations (4.228)
and (4.229):

Lm(B(S[k; η; δ0r](u), r) ∩B(0, 1)) ≤
∑
B∈F†

ωm(2r)m ≤ ωm2mrm−k
∑
B∈F†

(
rB
ϱ̄

)k
≤

≤ ωm2mCIII
ϱ̄k

rm−k,

(4.230)

where ϱ̄ = ϱ̄(m) and CIII = CIII(m, p,Λ,N , η). By defining

(4.231) C15(m,N , p,Λ, η) .= ωm2mCIII
ϱ̄k

,

the result is proved.

Remark 4.85 (Bound on the Hausdorff measure). Notice that, thanks to the properties (4.228)
and (4.229) of the covering F† one already obtains an explicit estimate on the k-dimensional
Hausdorff measure of the stratum S[k; η; δ0r](u), without going through Lemma 4.24 and the
(yet to prove) rectifiability. In particular, at this stage we already know that any stratum
Skη,δ0r

(u) (and Skη , as a consequence) has a finite k-dimensional Hausdorff measure. ♢

4.7.2 Rectifiability

We now tackle the problem of the rectifiability of the strata of type Skη . It is clear that we will
need to use the second part of Theorem 4.63; the technique is basically the same we used for
the volume estimates, even with some simplifications.

Theorem 4.86. Let u ∈ W 1,p(Ω,N ), and assume that N and u satisfy the condition (4.70 | SC)
for the strong compactness theorem. For any η > 0 and any 0 ≤ k ≤ m, the stratum Skη (u) is
k-rectifiable.
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As we will see shortly, the result follows easily from this lemma.

Lemma 4.87. Let m, p,Λ, η be fixed. There exist a universal constant κ(m, p,Λ,N , η) with
0 < κ < 1 such that the following holds. Let u satisfy the condition (4.70 | SC), and let S ⊂ Skη (u)
be a H k-measurable subset. There exists a H k-measurable subset R ⊂ S with the following
properties:

1. H k(R) ≤ κH k(S);

2. The set S \ R is k-rectifiable.

Before proving this lemma, which requires some effort, we show how it is applied to prove
Theorem 4.86.

Proof of Theorem 4.86. Notice that by Theorem 4.83 and Remark 4.85 we already know that
H k

(
Skη (u)

)
is finite. By induction, for any j ∈ N there exists a H k-measurable set Rj ⊂ Skη (u)

such that:

• H k(Rj) ≤ κjH k
(
Skη (u)

)
< ∞;

• The set (Skη (u)) \ Rj is k-rectifiable.

This is easily proved: the step j = 1 comes from the application of Lemma 4.87 to the stratum
Skη (u), while the (j + 1)th step descends from the application of the same lemma to Rj . Now
we can define

R̃ .=
⋂
j∈N

Rj(4.232)

S̃ .= Skη (u) \ R̃ =
⋃
j∈N

(
Skη (u) \ Rj

)
.(4.233)

Here R̃ has H k-measure zero; and S̃ is the countable union of sets, each of which is countable
union of Lipschitz k-graphs; therefore S̃ itself is a countable union of Lipschitz k-graphs. This
means precisely that Skη (u) is k-rectifiable.

Now we turn to prove Lemma 4.87.

Proof. We can assume that H k(S) > 0, otherwise the statement is trivial.
Step 1. Consider the following map: for x ∈ B(0, 1) and r > 0 (small enough),

(4.234) fr(x) .= ϑ(x, r) − ϑ(x, 0),

where ϑ(x, 0) .= lims→0 ϑ(x, s). As r tends to 0, the map fr converges pointwise and decreasingly
to the constant function f0 ≡ 0; moreover, all the maps fr are bounded by the constant map Λ,
which is integrable with respect to the measure H k⌞S by Theorem 4.83. Now fix a δ > 0. By
the Dominated Convergence Theorem, there exists a r̄ > 0 depending on δ such that

(4.235)
∫
S
f5r̄(x) dH k(x) ≤ δ2H k(S).
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Consider the following sets:

Fδ
.=
{
x ∈ S

∣∣∣ f5r̄(δ)(x) > δ
}

(4.236)

Gδ
.=
{
x ∈ S

∣∣∣ f5r̄(δ)(x) ≤ δ
}

= S \ Fδ;(4.237)

observe that, since f5r̄ is nonnegative, we have:

(4.238)
∫
S
f5r̄(x) dH k(x) ≥

∫
Fδ

f5r̄(x) dH k(x) ≥ δH k(Fδ);

this, combined with Equation (4.235), gives

(4.239) H k(Fδ) ≤ δH k(S).

We claim that, for δ sufficiently small, the set Gδ is k-rectifiable; if we manage to show this, then
the lemma is proved. In order to prove this claim, we consider a finite covering {B(xi, r̄)}Li=1 ofGδ
made with balls of the fixed radius r̄(δ). It is sufficient to show that for δ small Gδ∩B(xi, r̄(δ)) is
rectifiable for any i: our main aim will be now to check the applicability of the second Reifenberg
Theorem (Theorem 4.63, part (ii)), that gives exactly that result.

Step 2. Fix a ball B(xi, r̄(δ)), with i ∈ {1, . . . , L}, and apply the usual transformation λ−1
xi,r̄.

We set

(4.240) ũ = Txi,r̄u, G̃δ = λ←xi,r̄(Gδ) ∩B(0, 1).

Also, we define µδ to be the measure H k⌞G̃δ on the unit ball B(0, 1). Notice that for any
x ∈ G̃δ we have:

(4.241) ϑũ(x, 5) − ϑũ(x, 0) ≤ δ,

by the definition of Gδ and the usual scale invariance properties of ϑ. Now the original Gδ was
a subset of Skη (u), hence u was not (η, k + 1)-invariant in B(x, r̄s) for any point x ∈ Gδ and for
any s > 0; consequently, for any point x in the transformed set G̃δ and for any s > 0, ũ is not
(η, k+ 1)-invariant in B(x, s). This is what we need to apply Theorem 4.66 on any ball B(x, s);
and we apply it to the finite measure µδ = H k⌞G̃δ. We obtain that, for any x ∈ G̃δ and any
0 < s ≤ 1,

(4.242) βk
G̃δ

(x, s)2 ≤ C16(m, p, η)s−k
∫
B(x,s)

ϑ(y, 5s) − ϑ(y, s) dµδ(y).

This goes in the direction we need, since we are trying to check if the Reifenberg condition
(4.122 | k-Reif) is satisfied. Following what we did in the proof of Proposition 4.80, we first fix
w ∈ B(0, 1) and r ≤ 1; for all 0 < s ≤ r we compute:

(4.243)
∫
B(w,r)

βk
G̃δ

(x, s)2 dµδ(x) ≤ C16s
−k
∫
B(w,r)

(∫
B(x,s)

[
ϑũ(y, 5s) − ϑũ(y, s)

]
dµδ(y)

)
dµδ(x)

Observe that we are allowed to do this since µδ is supported in G̃δ. As we have already noticed
in Proposition 4.80, if |x− w| < r and |y − x| < s, then |y − w| < r + s: thus we can estimate

∫
B(w,r)

βk
G̃δ

(x, s)2 dµδ(x) ≤ C16s
−k
∫
B(w,r+s)

∫
B(y,s)

[
ϑũ(y, 5s) − ϑũ(y, s)

]
dµδ(x) dµδ(y) ≤

≤ C16s
−k
∫
B(w,r+s)

[
ϑũ(y, 5s) − ϑũ(y, s)

]
H k

(
G̃δ ∩B(y, s)

)
dµδ(y).

(4.244)
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But now we can exploit the uniform volume estimates given by Theorem 4.83 (appropriately
rescaled); we get the following uniform a priori upper bound:

(4.245) H k
(
λ←xi,r̄

(
Skη (u)

)
∩B(y, s)

)
≤ C15(m, p,N ,Λ, η)sk;

notice that thanks to this a priori estimate it is not necessary to reproduce the induction
argument of Proposition 4.80. Plugging this information in the previous inequality we get:

(4.246)
∫
B(w,r)

βk
G̃δ

(x, s)2 dµδ(x) ≤ C16C15

∫
B(w,r+s)

[
ϑũ(y, 5s) − ϑũ(y, s)

]
dµδ(y).

In order to check the validity of Equation (4.122 | k-Reif), we now consider the left hand side of
that inequality: applying Tonelli Theorem (twice), we find:∫

B(w,r)

(∫ r

0
βk
G̃δ

(x, s)2 ds

s

)
dµδ(x) =

∫ r

0

(∫
B(w,r)

βk
G̃δ

(x, s)2 dµδ(x)
)
ds

s
≤

≤ C16C15

∫ r

0

(∫
B(w,2r)

[
ϑũ(y, 5s) − ϑũ(y, s)

]
dµδ(y)

)
ds

s
=

= C16C15

∫
B(w,2r)

(∫ r

0

[
ϑũ(y, 5s) − ϑũ(y, s)

] ds
s

)
dµδ(y).

(4.247)

Consider for a moment the inner integral; r can simply be bounded by 1. We use basically the
same trick we exploited in Proposition 4.80:∫ 1

0

[
ϑũ(y, 5s) − ϑũ(y, s)

] ds
s

=
∞∑
j=0

∫ 5−j

5−(j+1)

ϑũ(y, 5s) − ϑũ(y, s)
s

ds ≤

≤
∞∑
j=0

∫ 5−j

5−(j+1)

ϑũ(y, 5−j+1) − ϑũ(y, 5−j−1)
5−j−1 ds ≤

≤ C17

∞∑
j=0

[
ϑũ(y, 5−j+1) − ϑũ(y, 5−j−1)

]
≤

≤ C17
[(
ϑũ(y, 5) − ϑũ(y, 0)

)
+
(
ϑũ(y, 1) − ϑũ(y, 0)

)]
≤

≤ 2C17δ.

(4.248)

Therefore we can insert this piece of information in the previous integral; using again the
upper bound (4.245) on the measure of the singular stratum, we find, for a new constant
C19(m, p,N ,Λ, η): ∫

B(w,r)

(∫ r

0
βk
G̃δ

(x, s)2 ds

s

)
dµδ(x) ≤ C18µδ(B(w, 2r))δ ≤

≤ C19δr
k.

(4.249)

Taking

(4.250) δ <
δR(m)

C19(m, p,N ,Λ, η) ,

we get exactly the hypothesis needed for the second part of Reifenberg Theorem: thus G̃δ is
k-rectifiable, and tracing back the steps of the proof this proves the k-rectifiability of Gδ.



Notations

Br(x) ball centered at x with radius r
B(x, r) ball centered at x with radius r – used when cumbersome

notations are involved
Br(S) set of points that dist less than r from the set S
B(x, r) set of points that dist less than r from the set S – used

when cumbersome notations are involved
B(X) Borel σ-algebra on (X, d)
βkµ k-dimensional Jones’ number of the measure µ (Defini-

tion 4.57)
C1

H space of horizontally C1 functions from subdomains of Hn

(Definition 1.95)
C1

W space of intrinsically C1 functions (Definition 3.10)
Cdb doubling constant of a metric measure space (Defini-

tion 1.25)
Chp Cheeger energy (Definition 1.12)
CPI (local) Poincaré constant of a metric measure space (Def-

inition 1.28)
|∇(·)| slope of a function (Definition 1.3)
|∇(·)|w minimal weak upper gradient of a function (Defini-

tion 1.10 and Remark 1.15)
|D(·)|∗ total variation of a function (def:bv-tv)
∇H horizontal gradient in Hn (Definition 1.95)
∇f intrinsic gradient associated to f (Definition 3.7)
dcc Carnot-Carathéodory distance (Equation (1.99))
deu Euclidean distance
dH, dGH, dmGH Hausdorff, Gromov-Hausdorff, measured Gromov-

Hausdorff distance respectively (Section 1.1.4)
Geo(X) space of geodesics on the metric space (X, d) (Defini-

tion 1.5)
Gk(Rm) family of k-dimensional linear subspaces of Rm Nota-

tion 4.36
Hn Heisenberg group (Section 1.4.1)
H k k-dimensional Hausdorff measure
Hk(Rm) family of k-dimensional affine subspaces of Rm Nota-

tion 4.36
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H1,p(X, d,m) Sobolev space through approximation by Lipschitz func-
tions (Definition 1.7, see also N1,p(X, d,m))

H1,p(Ω, d,m) local Sobolev space (Definition 1.19)
H1,p

0 (Ω, d,m) Sobolev functions with zero boundary values, defined as
closure of Lipc in H1,p (Definition 1.18)

I(X,d,m) isoperimetric profile of (X, d,m) (Definition 1.36)
(JK,N , deu,mK,N ) model space with curvature K > 0 and dimension N > 1
Kob(Ω, d,m) family of (a.e.) non-negative maps in H1,2

0 (Ω, d,m) (Equa-
tion (2.66))

L n n-dimensional Lebesgue measure
Lip(X, d) Lipschitz functions from (X, d) to R
Lipc(X, d) Lipschitz functions from (X, d) to R with compact support
Lipb(X, d) bounded Lipschitz functions from (X, d) to R
Liploc(X, d) functions from (X, d) to R such that for any point x there

exists Br(x) on which the function is Lipschitz
M k k-dimensional Minkowski content (Definition 4.18)
N1,p(X, d,m) Newtonian space (Remark 1.15, see also H1,p(X, d,m))
P(Y) probability measures on Y (Notation 1.21)
P2(Y) probability measures on Y with finite second moment (No-

tation 1.21)
PerH intrinsic perimeter in the Heisenberg group (Defini-

tion 1.86 and Notation 1.92)
RS(f) relaxed slope of the function f (Definition 1.7)
S(u) singular set of the function u (Definition 4.2)
Skη,r(u) singular kth stratum of u, with scale parameter r and

closeness parameter η (Definition 4.46)
u♯ one-dimensional decreasing rearrangement of u (Defini-

tion 1.40)
usg♯ signed one-dimensional decreasing rearrangement of u

(Definition 2.16)
u⋆ equimeasurable decreasing rearrangement of u (Defini-

tion 1.55 and Definition 1.75)
usg⋆ signed equimeasurable decreasing rearrangement of u

(Definition 2.17)
W2 Wasserstein distance (Definition 1.22)
W 1,p(Ω) classical Sobolev spaces through integration by parts (No-

tation 1.20, see also H1,p and N1,p)
W 1,p

X (Ω) sub-Riemannian Sobolev space (Equation (1.101))
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[AGS13] L. Ambrosio, N. Gigli, and G. Savaré. “Density of Lipschitz functions and equiv-
alence of weak gradients in metric measure spaces”. In: Rev. Mat. Iberoam. 29.3
(2013), pp. 969–996.

[AGS14a] L. Ambrosio, N. Gigli, and G. Savaré. “Calculus and heat flow in metric measure
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[Hél90] F. Hélein. “Régularité des applications faiblement harmoniques entre une surface et
une sphère”. In: C. R. Acad. Sci. Paris Sér. I Math. 311.9 (1990), pp. 519–524.

[HK00] P. Haj lasz and P. Koskela. “Sobolev met Poincaré”. In: Mem. Amer. Math. Soc.
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