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INTRODUCTION

Geometric Inequalities have always played a central role in mathematics. Their relevance
is known to go far beyond the realm of mere geometric applications. For example, they
have a clear influence on the study of shape optimisation problems. They are at the basis
of some of the most fundamental functional inequalities, which are in turn frequently
used in the analysis of partial differential equations. Geometric Inequalities also find a
considerable place in mathematical physics and notably in the study of geometric aspects
of General Relativity. To mention one, the Riemannian Penrose Inequality offers a most
relevant example. They boast a long tradition. Ancient Greeks knew, for instance, the
Isoperimetric Inequality, at least in its planar version, which reads as

|Sn−1|n

|Bn|n−1 ≤ |∂Ω|n

|Ω|n−1

for every Ω ⊆ Rn open bounded and convex. Despite this, we had to wait until the
XIXth century for the mathematically rigorous proof, when Weierstrass completed the
earlier argument by Steiner. In the first half of the XXth century, the problem received
many contributions among others by Hurwitz [Hur02; Hur32], Caratheodory and Study
[CS09] and Blaschke [Bla56]. Among the countless natural generalisations of this inequal-
ity produced in subsequent years, we emphasise the contributions of Minkowski [Min03],
Aleksandrov [Ale37; Ale38] and Fenchel [Fen29]. In his work, Minkowski computed the
volume expansion of the set {x ∈ Rn |d(x, Ω) ≤ t} as

|{x ∈ Rn |d(x, Ω) ≤ t}| =
n

∑
k=0

Vn−k(Ω)tk.

The coefficients Vn−k(Ω) of the above polynomial are also known in literature as quermass-
integrals. It is easy to see that Vn(Ω) corresponds to the volume of Ω, while Vn−1(Ω) is its
perimeter. In general, the quantity Vn−k(Ω) is related to the integral of a symmetric func-
tion of the principal curvatures of the boundary. Indeed, denoting by κ = (κ1, . . . , κn−1)
the principal curvatures of Ω, one has

Vn−k(Ω) =
1

n − k

ˆ

∂Ω

Sk(κ)dσ (1)
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for all k ≥ 0, where Sk is the k-th elementary symmetric function, namely

Sk(t1, . . . , tn−1) = ∑
1≤i1<i2<...<ik≤n

ti1 ti2 . . . tik .

A few years later, Aleksandrov and Fenchel proved that quermassintegrals are involved
in a family of inequalities. Known as Aleksandrov-Fenchel Inequalities, they read as

Vn−k(Ω)Vn−k−2(Ω) ≤ Vn−k−1(Ω)2.

A simple induction argument (see [CW11]) shows that this family of inequalities imply

(Vn−k−1(Ω))
1

n−k ≤ C1(n, k) (Vn−k(Ω))
1

n−k−1 . (2)

One can recognise the Isoperimetric Inequality among them, choosing k = 0. Further-
more, in view of (1), (2) can be rewritten as

 ˆ

∂Ω

Sk−1(κ)dσ

 1
n−k

≤ C2(n, k)

 ˆ

∂Ω

Sk(κ)dσ

 1
n−k−1

, (3)

for all k ≥ 1. In the second half of the XXth century, also the range of validity of the Isoperi-
metric Inequality has been improved to cover a more general class of subsets in various
settings. De Giorgi [DeG58] proved that it holds for any subset with finite perimeter in
the sense of Caccioppoli, giving a completely satisfying result in the Euclidean space. In
the Riemannian setting, results were not slow in coming. Among others, we mention
the version on compact Riemannian manifold with positive Ricci curvature obtained by
Gromov [Gro80] after the work of Lévy [Lév22], and on noncompact Cartan-Hadamard
manifolds by Kleiner [Kle92] and Croke [Cro84]. Recently, Agostiniani, Fogagnolo and
Mazzieri [AFM20] proved it on 3-dimensional Riemannian manifolds with nonnegative
Ricci curvature and Euclidean Volume Growth. Then, Brendle [Bre22] extended it with a
different approach to all dimensions, showing that

|Sn−1|n

|Bn|n−1 AVR(g) ≤ |∂Ω|n

|Ω|n−1 (4)

for all bounded subset Ω with finite perimeter in a Riemannian Manifold (M, g), where
AVR(g) is the Asymptotic Volume Ratio of (M, g) (see Notation and main settings below
for the definition). It is also worth mentioning that Balogh and Kristàly [BK22] proved the
validity of the Isoperimetric Inequality also in the nonsmooth setting. The stability of the
Isoperimetric Inequality has also been investigated and produced quantitative version of
this inequality, namely inequalities where a suitable distance of Ω from a ball of the same
volume is controlled by the difference of its perimeter from the perimeter of the same ball
(see [Fug89; HHW91; Hal92; FMP08; CL12]).

At this point, one may wonder whether the same program can be carried out for the
other Aleksandrov-Fenchel Inequalities. The first in order, and the leading goal of this
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work, is (2) for k = 1. In this case S1(κ) is the total mean curvature H of ∂Ω and S0(κ) =
1. Then, (3) reads as (

|∂Ω|
|Sn−1|

) n−2
n−1

≤ 1
|Sn−1|

ˆ

∂Ω

H
n − 1

dσ. (5)

Named after Minkowski, who firstly proved it in [Min03], it has attracted the attention
of the mathematical community only recently. Castillon [Cas10] and Chang and Wang
[CCW16; CW11] successfully employed Optimal Transport techniques to remove the con-
vexity assumption in favour of milder constraints. A different approach recently used in
this kind of problem is based on geometric flows. The Minkowski Inequality has a deep
relation with the Inverse Mean Curvature Flow, which is a geometric flow ruled by

∂Ψt

∂t
(q) =

νt(q)
Ht(q)

for every t ∈ [0, T) and q ∈ Σ, (6)

where Ψt : Σ → Rn is a family of diffeomorphisms, νt and Ht are the outward pointing
unit normal vector and the mean curvature of Σt = Ψt(Σ) respectively. Observe that (6)
makes sense as long as Ht > 0. By direct computations, the quantity

Q(t) = |Σt|−
n−2
n−1

ˆ

Σt

Ht dσ (7)

is monotone nonincreasing along this flow. If the flow is immortal and converges
smoothly enough to expanding spheres, one gets (5). Gerhardt [Ger90] and Urbas [Urb90]
asserted that all star-shaped subsets with strictly mean-convex smooth boundary meet
these requirements. A complete derivation of (5) for this larger class of subsets, together
with other Aleksandrov-Fenchel inequalities, is contained in [GL09]. This approach has
some topological obstructions. Indeed, the existence of an immortal flow obliges all the
evolved hypersurfaces to be diffeomorphic to each other and since they must converge
to spheres, the starting hypersurface must be topologically spherical. To avoid these
constraints one can appeal to the weak formulation of the IMCF introduced by Huisken
and Ilmanen in [HI01], which constituted the main step in their approach to prove the
celebrated Riemannian Penrose Inequality. We briefly recall that the weak IMCF is a
solution to the partial differential equation

div
(

Dw
|Dw|

)
= |Dw| (8)

in a precise nonstandard variational sense, obtained freezing the right-hand term (see
Definition 2.4.1 below). This tool allows extending (5) to a larger class of subsets, which
includes elements that are not topologically equivalent to spheres (see [FS14]). The IMCF
has been successfully employed to obtain results in curved Riemannian manifolds as well
in [LG16; Wei18; BHW16; McC17].

The new approach based on Nonlinear Potential Theory also falls in the category of
geometric flows. The origin of this techniques is contained in two works by Agostiniani,
Fogagnolo, Mazzieri and Pinamonti [AM20; FMP19; AFM22]. They considered for p ∈
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(1, n), the solution to the boundary value problem∆(p)
g u = 0 on Rn ∖ Ω,

u = 1 on ∂Ω,
u → 0 as |x| → +∞,

(9)

and proved that the function F : [1,+∞) → R defined as

Fp(t) = t
n−1
n−p

ˆ

{u=1/t}

|Du|p dσ,

satisfies two effective monotonicity inequalities, which are

lim
t→+∞

F(t) ≤ F(1) F′(1) ≤ 0. (10)

Coupling them with a well-known behaviour of the p-capacitary potential coming from
[Col+15; KV86], they obtained an Lp-version of (5), that is

Ĉap(∂Ω)
n−p−1

n−p ≤ 1
|Sn−1|

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣p dσ, (11)

where Ĉap(∂Ω) denotes a normalised (setting Ĉap(Sn−1) = 1) version of the p-capacity
of ∂Ω, that is denoted by Cap(∂Ω) (see Definition 1.3.1 below for the definition). Then the
Minkowski-type inequality(

|∂Ω∗|
|Sn−1|

) n−2
n−1

≤ 1
|Sn−1|

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣dσ (12)

follows from (11) letting p → 1+, taking into account that

lim
p→1+

Ĉap(∂Ω) =
|∂Ω∗|
|Sn−1| . (13)

Here Ω∗ denotes the strictly outward minimising hull of Ω, which is, briefly speaking,
the maximal volume solution of the perimeter minimisation problem among all sets con-
taining Ω (see Section 2.4.2 below for the precise definition).

This technique and the one using IMCF share the same idea of finding a monotone
quantity holding along the evolution of the set and compare its starting value with the
values assumed approaching infinity. However, the global monotonicity of the quantities
provided via the Nonlinear Potential approach is not known, but only the monotonicity
inequalities (10), anyway sufficient to prove (12), are ensured. On the contrary, here we
gain the long time existence, without assuming any geometric constrain on the starting
subset. Moreover, the flow is based on the level set of a more regular function then the
weak solution of the IMCF would dictate (which is only merely Lipschitz).

It does not seem a false hope to reproduce the approach based on Nonlinear Potential
Theory in the setting of complete noncompact Riemannian manifolds with nonnegative
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Ricci curvature. Evidence to support our claim lies in the successful history of Linear
Potential theoretic proof of the Willmore Inequality, firstly proved in [AM20] and then ex-
ported in [AFM20], to cover this class of manifolds. Moreover, the Minkowski Inequality

(
|∂Ω|
|Sn−1|

) n−2
n−1

AVR(g)
1

n−1 ≤
(
|Sn−1|
|Bn−1|

) 1
n−1 1

|Sn−1|

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣dσ (14)

holds on Riemannian manifolds with nonnegative sectional curvature, being a conse-
quence of the Michael-Simon Sobolev Inequality provided by Brendle in [Bre22]. This
inequality has the merit of depending only on the perimeter of Ω and not on its strictly
outward minimising hull. However, (14) is not sharp even in the flat Euclidean space
(where AVR(g) = 1), since |Sn−1|/|Bn−1| > 1.

One of the major difficulties in merely mimicking the lines pursued in the flat Eu-
clidean case is to describe the asymptotic behaviour of the p-capacitary potential. For
p = 2, the authors in [AFM20] carried it out in the great generality of complete Rieman-
nian manifold with nonnegative Ricci curvature. However, their proof is built on [LTW97]
or [CM97], who in turn used the representation formula and the Almgren frequency func-
tion respectively, neither of them being available for general p. There are two possibilities
to avoid this problem. The first one consists in imposing some further constraints on the
ambient manifold to ensure that the p-capacitary potential has a well-known behaviour
at infinity. As we will see, this program can be completed in the particular but natural
class of Asymptotically Conical Riemannian manifolds. On the other hand, one of the ob-
servations of our work is that the knowledge of the asymptotic behaviour can be avoided
if one replaces the effective monotonicity inequalities (10) with the whole monotonicity
of the function Fp.

The aim of this thesis is to give a well-rounded panoramic of problem (9) to better
understand the approach via Nonlinear Potential Theory to the Minkowski Inequality
and to export it to the Riemannian setting. In particular, we will show that(

|∂Ω∗|
|Sn−1|

) n−2
n−1

AVR(g)
1

n−1 ≤ 1
|Sn−1|

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣dσ

holds for every Ω open bounded subset with smooth boundary in a complete Rieman-
nian manifold with nonnegative Ricci curvature and Euclidean Volume Growth (that is
AVR(g) > 0). We will also characterise those sets that saturate the inequality proving the
splitting of the manifold outside Ω into a truncated Riemannian cone.

In the following sections, we illustrate the content of each chapter, highlighting the
difficulties and the main techniques used.

The p-capacitary potential and the weak IMCF

We take advantage of this work to collect some relevant facts from the classical Nonlinear
Potential Theory. The reason for this is twofold. Firstly we aim at making this work
as much as possible self-contained and make all the material consistent. Secondly, the
theory is fragmented and developed at its very generality. This makes it frustrating to
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always ensure the conditions to apply the theory in particular cases. It is well-known that
a solution to (9) exists if and only if the Riemannian manifold (M, g) is p-nonparabolic,
that is if there exists a compact set of positive p-capacity. It turns out that this condition
is ensured for all 1 < p < n if (M, g) is in either with nonnegative Ricci curvature and
Euclidean Volume Growth or Asymptotically Conical with the Ricci tensor satisfying

Ric(x) ≥ − (n − 1)κ2

(d(x, o) + 1)2

for some o ∈ M, κ ∈ R and every x ∈ M (see the Notation and main settings below for
more details). Moreover, in these frameworks, a double side Li-Yau-type estimate and
a Cheng-Yau-type estimate are provided, namely, there exists a positive constant C > 0
such that

C−1 d(x, o)−
n−p
p−1 ≤ up(x) ≤ C d(x, o)−

n−p
p−1 , |D log up|(x) ≤ C

d(x, o)
,

holds for every x ∈ M, for some fixed o ∈ M. Built on these inequalities, the main re-
sult obtained in this part concerns the asymptotic behaviour of the p-capacitary potential
on Asymptotically Conical Riemannian manifolds. Based on the proof by [KV86], then
exploited in [Col+15], we show that in a merely C 0-Asymptotically Conical Riemannian
manifold

up = C(p, Ω, M)ρ−
n−p
p−1 (1 + o(1)) (15)

as ρ → +∞ characterising the constant in terms of the p-capacity of ∂Ω and the Asymp-
totic Volume Ratio of g, where ρ represents the radial coordinate on the asymptotic cone.
This result extends the asymptotic analyses carried out in [AMO22; AMO21; HM20;
MMT20] to the nonlinear setting, although without so refined estimates of the error terms.
The identity (15) says that the level sets of the p-capacitary potential approximate the
cross-section of the asymptotic cone, far away from Ω. Building on Schauder estimates,
we also describe the behaviour of higher-order derivatives, requiring a faster rate of con-
vergence for the metric and its derivatives. As aforementioned, this result was one of the
two key ingredients in our first proof of the Lp-Minkowski Inequality. Indeed, coupled
with the effective monotonicity inequalities (10), it directly gives (11) and in turn, letting
p → 1+, (12) for Asymptotically Conical manifolds. This procedure has the disadvantage
of being valid on a restricted class of manifolds, but it does not rely on the Isoperimetric
Inequality, as the one based on the full monotonicity does (see the next section for further
details).

The force secretly driving this approach to Minkowski Inequality dwells in the rela-
tion between the p-capacitary potential and the (weak) IMCF. In fact, a well-known re-
sult proved in the flat Euclidean case by Moser [Mos07; Mos08], subsequently extended
to Riemannian manifolds by Kotschwar and Ni [KN09] and that inspire the results in
[MRS19], says that if up is the p-capacitary potential associated with Ω the family of func-
tions wp = −(p − 1) log up converges locally uniformly to a proper solution w1 of (8) as
p → 1+. This approach also provides a proof of the existence of the weak IMCF which is
alternative to that of Huisken and Ilmanen [HI01]. Exactly as we did for the p-capaciatary
potential, we spend some time rephrasing these results in our main settings. Indeed,
while the results in [MRS19] aim at establishing the existence of the weak IMCF in the



Full Monotonicity-Rigidity Theorems and their geometric consequences 13

greatest possible generality, assuming a very weak curvature bound, our purpose is to
derive more detailed information taking advantage of the specific features of our settings.
We then employ the same proof leading to (15) to obtain the asymptotic behaviour of the
IMCF, that is

w1 = C(Ω, M) + (n − 1) log(ρ)(1 + o(1)),

as ρ → +∞. This result actually extends the one in [HI01, Blowdown Lemma 7.1] from
Asymptotically Flat to Asymptotically Conical Riemannian manifolds. Differently from
Huisken and Ilmanen, here we are able to characterise the constant C(Ω, M) in terms of
|∂Ω∗| and AVR(g). This slight improvement is a further evidence of the deep connection
between the p-capacitary potential and the weak IMCF. Indeed, the constant C(Ω, M) is
the limit of −(p − 1) log C(p, Ω, M) as p → 1+, hence, even if a priori the convergence of
w1 to wp as p → 1+ is only locally uniform, this relation is preserved in the asymptotic
behaviours.

These results apply in particular to Asymptotically Locally Euclidean gravitational in-
stantons, that are noncompact hyperkhäler Ricci Flat 4-dimensional manifolds that have a
role in Euclidean Quantum Gravity Theory, Gauge Theory and String Theory (see [HE73;
EH79; Kro89a; Kro89b; Min09; Min10; Min11]). It is not difficult to see that these results
can be applied even if (M, g) is not complete. The method is indeed blind to whatever
happens inside Ω. It permits to include Asymptotically Flat Riemannian manifolds with
compact boundary, relevant in General Relativity.

Full Monotonicity-Rigidity Theorems and their geometric conse-
quences

The second result we propose aims to fully extend the monotonicity formulas discovered
in [AM20; AFM20; Col12; CM14a] to the nonlinear case in general Riemannian manifold.
Given for 1 < p < n a solution to the problem∆(p)

g u = 0 on M ∖ Ω,
u = 1 on ∂Ω,
u → 0 as d(o, x) → +∞,

(16)

we build the family of functions Fβ
p : [1,+∞) → R defined as

Fβ
p (t) = tβ

(n−1)(p−1)
(n−p)

ˆ

{u=1/t}

|Du|(β+1)(p−1) dσ. (17)

Differently from [FMP19; AFM20], we do not just prove the effective monotonicity in-
equalities but that each Fβ

p admits a monotone and convex C 1-representative for all β >

(n − p)/[(n − 1)(p − 1)]. If (Fβ
p )

′(t0) = 0 for some t0 ∈ [1,+∞) we show that {u ≤ 1/t0}
is isometric to a truncated cone. We remark that in principle formula (17) does not grant
a well-posed definition for free. Indeed, the mild C 1,β regularity of the solution to (16) is
not enough to apply Sard’s Theorem to control the critical set of u. In addition, nothing
ensures that the monotonicity survives after a jump that might be of full measure. How-
ever, we managed to solve these problems following the approach in [GV21], where the
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authors were forced to face several technical problems due to the lack of regularity which
is typical in the nonsmooth setting. We compute the first derivative of Fβ

p using the full
strength of the coarea formula. As it concerns the second derivative, we make a detour to
the route traced in [GV21] digging up the cut-off argument in [AM20; AFM20] to obtain
the higher regularity of our quantities.

Exploiting the full monotonicity, we obtain the main result of the thesis, that is the
Extended Minkowski Inequality(

|∂Ω∗|
|Sn−1|

) n−2
n−1

AVR(g)
1

n−1 ≤ 1
|Sn−1|

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣dσ, (18)

which holds for any open bounded subset Ω with smooth boundary in a complete
Riemannian manifold (M, g) with nonnegative Ricci curvature and Euclidean Volume
Growth (that is AVR(g) > 0). The above inequality is sharp and provides the optimal
Minkowski Inequality for outward minimising subsets, that is when |∂Ω| = |∂Ω∗|, re-
covering the results originally sketched in [Hui]. We want to mention that, in (12) we
characterise the constant in terms of the geometry of the ambient manifold.

Differently from [AFM20; FMP19], the proof is based on a contradiction argument.
This new idea allows extending its validity from the class of Asymptotically Conical man-
ifolds to the setting of Riemannian manifolds with nonnegative Ricci curvature and Eu-
clidean Volume Growth, where we cannot ensure the pointwise asymptotic behaviour of
the (derivative) of the p-capacitary potential. Indeed, the identity for the derivatives of
the two sides of (15) implies that large level sets of the solution up to (16) have the same
topology, which is in contrast with the existence of manifolds with nonnegative Ricci cur-
vature and infinite topology (see [Men00; Khu+22]).

Heuristically, the proof can be implemented for the smooth IMCF flow as follows.
By contradiction, assume that at some open subset Ω ⊆ Rn with smooth boundary, the
inequality

(n − 1)
∣∣Sn−1

∣∣ 1
n−1 θ

1
n−1 ≥ |∂Ω|−

n−2
n−1

ˆ

∂Ω

H dσ

holds for some θ < 1. Suppose that the solution to (6) starting at ∂Ω exists for all time
and denote by Ωt the set enclosed by Σt = Ψt(∂Ω). Since Q in (7) decreases, the above
inequality can only worsen along the flow. Thus, for every t > 0 it holds

(n − 1)
∣∣Sn−1

∣∣ 1
n−1 θ

1
n−1 ≥ |∂Ωt|−

n−2
n−1

ˆ

∂Ωt

Ht dσt.

Applying the Hölder’s Inequality to the right hand side, we obtain that

(n − 1)
∣∣Sn−1

∣∣ 1
n−1 θ

1
n−1

ˆ

∂Ωt

1
Ht

dσt ≥ |∂Ωt|
n

n−1 .

Integrating both sides for t ∈ [0, T], using the coarea formula and evolution equations in
[HP99], we end with

(n − 1)
∣∣Sn−1

∣∣ 1
n−1 θ

1
n−1 |ΩT| ≥

n − 1
n

(
|∂ΩT|

n
n−1 − |Ω|

n
n−1

)
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which contradicts the Isoperimetric Inequality for T very large. This argument strongly
relies on the long-time existence of IMCF, which is not ensured in general. One may
try to avoid this problem by proving the monotonicity of the function Q in (7) along
the flow of the level set of the weak IMCF. It is well-known that a solution to (8) can
jump discontinuously across a region of positive volume. Therefore, the main question is
under which conditions the monotonicity survives after these jumps. On the other hand,
the Lp-Minkowski Inequality can be obtained with a similar argument considering the
full monotonicity of the function Fp

β (for β = 1/(p − 1)) and replacing the Isoperimetric
Inequality with the sharp Iso-p-capacitary Inequality

Capp(S
n−1)n

|Bn|n−p AVR(g)p ≤
Capp(∂K)n

|K|n−p ,

which follows from (4) using a classical argument inspired by [Jau12]. In conclusion,
(18) follows as in [FMP19; AFM22] letting p → 1+ in the Lp-Minkowski Inequality and
exploiting (13).

It is easy to see that cross-sections of Riemannian cones saturate inequality (18).
Actually, the Extended Minkowski Inequality is explicitly seen to be sharp in C 0-
Asymptotically Conical Riemannian manifolds where

inf

|∂Ω∗|−
n−2
n−1

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣dσ

∣∣∣∣∣∣Ω ⊂ M, with ∂Ω smooth

 =
(∣∣Sn−1

∣∣AVR(g)
) 1

n−1
.

The main problem is characterising those sets that saturate inequality (18). The rigidity of
the Lp-Minkowski Inequalities is a consequence of the rigidity statement of the function
Fβ

p in (17) that in turn follows from the vanishing of the nonnegative divergence of a vec-
tor field. This quantity degenerates as p → 1+ and its limit behaviour is far from being
understood. This forces us to discuss the rigidity in a separate argument based on the
IMCF. Evolving a strictly outward minimising subset with strictly-mean convex smooth
boundary by IMCF, we obtain a foliation that remains totally umbilic and with vanish-
ing normal component of the Ricci tensor for a while. The Codazzi-Mainardi equation
implies that a totally umbilic surface with vanishing normal component of Ricci tensor
in a nonnegative Ricci curvature ambient space is constant mean curvature. Coupling
this with an extension of the Bishop-Gromov Theorem we are able to conclude that the
equality is achieved in (18) at Ω only if (M ∖ Ω, g) is isometric to a truncated cone on ∂Ω.

We also provide a pinching condition theorem for the mean curvature of ∂Ω or the
normal derivative of the function up at ∂Ω that forces Ω to be a Euclidean ball inside Rn

extending the result in [BMM19] to the nonlinear setting in Riemannian manifolds. Such
a program is carried on exploiting the Monotonicity-Rigidity theorem of the function

F∞
p (t) = t

n−1
n−p sup

{u=1/t}
|Du|.

The proof of this last result encounters the same critical issues as the proof of the Lp-
Minkowski Inequality, on its way to be exported from the Asymptotically Conical setting
to manifolds with nonnegative Ricci curvature. The contradiction argument above is quite
flexible to deal with this case as well.
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Further developments

The results collected here have given rise to collateral questions and suggested further
problems that we did not face, but we intend to approach in future works.

Concerning the first part, we proved the asymptotic behaviour of the p-capacitary
potential. In particular, we proved that given a solution u to (16) associated to an open
bounded subset Ω with smooth boundary of an Asymptotically Conical Manifold (M, g)
with asymptotically nonnegative Ricci curvature

up = C(p, Ω, M)ρ−
n−p
p−1 (1 + o(1))

as ρ → +∞. One may aim at studying the error committed replacing the function u with
C ρ−(n−p)/(p−1). For the harmonic potential, on Asymptotically Flat Riemannian mani-
folds with order τ, it is known that the error is of order ρ−(n−2)−τ approaching infinity
(we address the reader to [AMO22; AMO21; HM20; MMT20] for the definition and the
result). However, this improvement is based on the complete characterisation of the har-
monic functions on Rn (that are known since the Laplacian operator is linear) and the rep-
resentation formula. These refined asymptotics seems not available in literature for p 6= 2,
not even in the flat Euclidean Space. Some insight in this direction were given in [Chr90],
where the author proved that on Asymptotically Flat Riemannian manifolds with order
τ, if the error is of order ρ−(n−p)/(p−1)−ε for some ε < τ, then it is of order ρ−(n−p)/(p−1)−β

for all β < min{τ, 1}. However, this result requires knowing a priori some estimates on
the error which are not granted for free. These refined asymptotics would lead to a proof
of the Riemannian Penrose Inequality as sketched at the end of [AMO21]. Moreover, it
would give some ideas on how to define a mass-type invariant à la Biquard-Hein [BH19]
on Asymptotically Locally Euclidean Riemannian manifolds.

Regarding the Monotonicity-Rigidity theorem, we mentioned that our proof inherits
some techniques used in [GV21]. In this work, the authors proved the Monotonicity For-
mulas, holding along the level set flow of the harmonic potential, in the setting of RCD
spaces. Moreover, in [Vio21], the author obtains a Willmore-type estimate in RCD em-
ploying the knowledge gained in [GV21] and the techniques in [AFM20]. Hence, also our
results are likely to be exported to this framework. The main issue is to deal with the
regularity of p-harmonic functions that is still unknown in this context, except for p = 2.
This would lead to the Lp-Minkowski Inequalities thanks to the Iso-p-capacitary inequal-
ity, which can be obtained by coupling the recent Isoperimetric Inequality in [BK22] and
the Polya-Szego Inequality in [NV21]. The problem of sending p → 1+ to obtain the Ex-
tended Minkowski Inequality seems to hide further challenges as one has to define the
strictly outward minimising hull of a set and ensure all required properties to prove (13).

The Extended Minkowski Inequality also requires some additional work. Firstly, it
is still open the question whether the strictly outward minimising hull can be replaced
with the subset Ω in (18), at least when ∂Ω is strictly mean-convex. We recall that a
lower bound of the total mean curvature in terms of |∂Ω| actually holds in Riemannian
manifolds with nonnegative sectional curvature thanks to (14), if one accepts to lessen the
dimensional constant. However, the problem with the sharp constant is still open even in
the flat Euclidean space. An attempt in this direction was made by Trudinger [Tru94] but
the proof has been debunked in [Gua+10].
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To conclude, both the Isoperimetric Inequality and the Minkowski Inequality belong
to the family of Aleksandrov-Fenchel Inequalities. It is then reasonable that natural ques-
tions arising from the Isoperimetric Inequality can be redirected to the Minkowski In-
equality. The first one is the Isoperimetric problem, namely finding subsets that minimise
the perimeter among all those with the same volume. Although the literature on the
Isoperimetric problem is quite vast ([Ant+22; AFP21; APP22; Rit01; Rit17; Nar14] to men-
tion some of them), the analogue problem of minimising the total mean curvature among
sets of fixed perimeter looks like it has not been faced yet. A second important question is
the stability of the inequalities. As already said, quantitative versions of the Isoperimet-
ric Inequality were already provided in literature. At the moment, our rigidity statement
of the Extended Minkowski Inequality requires some further constraints on the subset Ω
saturating it. In view of this difference with the Isoperimetric Inequality, some snares may
be hidden along the way to obtain a quantitative Minkowski Inequality. In [AFM20], the
authors proved that the following Willmore-type inequality

∣∣Sn−1
∣∣AVR(g) ≤

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣n−1

dσ (19)

holds for any open bounded subset Ω with smooth boundary in a complete Riemannian
manifold with nonnegative Ricci curvature and Euclidean Volume Growth. Moreover,
the equality is achieved just on truncated cone over ∂Ω. The inequality (19) is deduced
from the monotonicity of the quantity U : (0, 1] → R which is defined as U(t) = Fβ

p (1/t),
where Fβ

p is given in (17) for p = 2 and β = (n − 2). Actually, the arguments contained in
[AFM20] appears to be more quantitative, since it yields

∣∣Sn−1
∣∣AVR(g)−

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣n−1

dσ ≤ −
1ˆ

0

U′(t)dt ≤ 0. (20)

The quantity U′(t) is related to the L2-norm of the trace-free hessian of a function, which
identically vanishes on cones. These integral quantities are surprisingly similar to the
ones considered in [CC96], where the authors showed that they control the Gromov-
Hausdorff distance of the manifold from a cone. In [GV21], the authors find that the
quantity U′(t) actually controls the pointed measured Gromov-Hausdorff distance from
a metric cone outside some compact set. Requiring some additional assumptions, one can
imagine that this distance can be intended in a stronger topology. We obtained a partial
result on Ricci-flat Asymptotically Conical Riemannian manifolds. In particular, if the
left-hand side of (20) is close enough to 0 then ∂Ω is actually metrically close to the link of
the asymptotic cone, provided some additional conditions on ∂Ω are fulfilled.

The achievement of this work were obtained in joint papers with L. Mazzieri and M. Fogagnolo.
In particular, the results in Chapter 2 are contained in the forthcoming paper [BFM22], while the
results in Chapters 3 and 4 are contained in [BFM21].
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NOTATION AND MAIN SETTINGS

Riemannian manifolds

We will denote Riemannian manifolds by (M, g) and by (V, (x1, . . . , xn)) a local chart of
M and by gij, i, j = 1, . . . , n, the components of the metric with respect to that chart.
The Levi-Civita connection will be denoted by D, the Riemannian curvature tensor by
Riem and the Ricci curvature tensor by Ric. The Christoffel symbols associated with the
Levi-Civita connection will be denoted by Γk

ij, i, j, k = 1, . . . , n, with respect to the chart
(V, (x1, . . . , xn)). The scalar product associated with the metric g on the tangent space will
be usually denoted by 〈 · | · 〉g and the subscript g will be dropped if it is clear the metric
we are referring to. Similarly, the norm associated with the scalar product will be denoted
by | · |g, with the same convention as above. dg( · , ·) will denote the distance induced on
(M, g) by the metric g. Given a smooth hypersurface N in M, we define g> the metric
induced by g on N. For a given function f : M → R, we denote

D⊥ f = 〈D f | ν〉ν and D> f = D f − D⊥ f ,

where ν is the unit normal vector field on N.
Bn and Sn−1 will always denote the n-dimensional ball and the (n − 1)-dimensional

sphere in the flat n-dimensional Euclidean space Rn respectively.
We will often indicate by µg the Lebesgue measure on M associated with the metric g.

If N is an hypersurface of M, we will denote by σg the Lebesgue measure associated with
g> on N or in some occasion the (n − 1)-dimensional Hausdorff measure on N. For ev-
ery measurable set E, |E|g will denote the measure of a measurable subset accordingly to
the most natural Hausdorff dimension, for example, if the general set in a family of mea-
surable sets (Ei)i∈I is a hypersurface |Ei|g will denote the (n − 1)-dimensional Hausdorff
measure.

We refer the reader to [Pet06] to any other geometric notations we employ.

Function spaces and norm

We will denote Lp, p ∈ [1,+∞] the Lebesgue spaces and Wk,p, p ∈ [1,+∞] and k ∈ N, the
Sobolev space with respect to the measure µ associated with the metric g. C k,α, k ∈ N and
α ∈ [0, 1] will denote the space of kth-continuously differentiable functions with α-Hölder
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kth-derivative. 0-Hölder functions are intended to be continuous and we will write C k in
place of C k,0. We will prefer to denote Lip the space of Lipschitz continuous functions
C 0,1. We will also use AC to denote the space of absolutely continuous functions and BV
for the space of functions with bounded variation. The subscript c will denote that the
space is restricted to compactly supported functions. The norm of some function space
will be indicated by ‖·‖ with the subscript space. The subscript loc will indicate that a
function belongs to the given space for every compact subset. The subscript 0 will indicate
the closure of compactly supported function with respect to the given norm.

Main settings

Throughout this work, we will mainly focus on two classes of Riemannian manifolds
(M, g) that are the following.

(i) Riemannian manifolds with nonnegative Ricci curvature. With AVR(g) we will denote
the Asymptotic Volume Ratio of g, defined as

AVR(g) = lim
r→+∞

|B(o, r)|
|Bn|rn

(
= lim

r→+∞

|∂B(o, r)|
|Sn−1|rn−1

)
,

where B(o, r) represents a geodesic ball of radius r centred at o ∈ M. The celebrated
Bishop-Gromov Theorem [Bis64; Gro81] gives that for every o ∈ M the ratio

[0,+∞) 3 r 7→ |B(o, r)|
|Bn|rn (21)

is nonincreasing and thus it admits a limit as r → +∞, that actually does not
depends on o. Moreover, AVR(g) belongs to [0, 1] and it is 1 only on the flat Eu-
clidean space. We will often require that (M, g) has Euclidean Volume Growth,
that is AVR(g) > 0.

(ii) C k,α-Asymptotically Conical Riemannian manifolds. According to [CEV17], a manifold
is said to be C k,α-Asymptotically Conical, for some k ∈ N and some α ∈ [0, 1), if
outside of a suitable compact set it is diffeomorphic to a truncated cone [1,+∞)× L,
where (L, gL) is a closed (n − 1)-dimensional closed Riemannian manifold called
the link of the cone, and the metric g is asymptotic to the cone metric ĝ = dρ2 + ρ2gL
in the C k,α-topology at infinity (see Definition 2.2.1). In some cases we will require
an additional condition on the Ricci tensor, which is

Ric(x) ≥ − (n − 1)κ2

(d(x, o) + 1)2

for some o ∈ M, κ ∈ R and every x ∈ M. We will see that the quantity (21) ad-
mits a limit as r → +∞, even if it is not monotone. This limit will be denoted
by AVR(g) as well and it coincides with |L|/|Sn−1|. Asymptotically Conical Rie-
mannian manifolds have Euclidean Volume Growth, but in general AVR(g) could
exceed 1. AVR(g) could also be 1 even if (M, g) is not the flat Euclidean Space. This
is for example the case of Asymptotically Flat spaces.
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PRELIMINARY RESULTS IN NONLINEAR
POTENTIAL THEORY

1.1 Structure of the chapter

In this chapter, we recall, for ease of the reader, the classical theory of p-Laplace equation
on Riemannian manifolds, which is one of the archetypal partial differential equations in
Nonlinear Potential Theory. Almost all results in the next sections are essentially well-
known but spread in different works, with different notations and with the aim of full
generality. Here we seek to recollect the ideas and build a guidebook that can be used for
the next chapters. In Section 1.2 we introduce the p-harmonic functions, the regularity
results and some estimates related to them. Section 1.3 is devoted to the theory of the
existence of positive p-Green’s function on Riemannian manifolds with a focus on their
asymptotic behaviour.

1.2 Main properties of p-harmonic functions

We start by rearranging the theory of p-harmonic functions on Riemannian manifolds,
applying results contained in [LU68; Tol83; Lie88; Hol90; Hol99; Val13; Maz70; HK88;
DiB83; Eva82; Ura68; Lew83; Lou08; Ser64; Tru67; FMP19]. We split the arguments into
two parts. The first part concerns the definition of (weak) p-harmonic functions and the
interior regularity estimates both at every point and where the gradient does not vanish.
It is well-known that in the latter case the equation becomes uniformly elliptic, thus the
classical theory for elliptic equations applies. For the sake of completeness, we also dis-
cuss the boundary regularity estimates. We conclude with the compactness of p-harmonic
functions under locally uniform convergence both of the function and the underlying
metric. The second part is focused on basic, though crucial, estimates. We recall here the
most famous Comparison Principles, the Harnack’s Inequality and the Harnack’s Prin-
ciple following from it. As concerns the first derivative, we recall the p-Cheng-Yau es-
timate proved in [WZ10]. The last part is reserved for the Kato-type Identity that will
constitute the core of the proof in the rigidity part of our Monotonicity-Rigidity Theorem
Theorems 3.2.1 and 3.2.2.
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1.2.1 p-harmonic functions and their regularity

Given an open subset U in a complete Riemannian manifold (M, g) and p > 1, we say
that v ∈ W1,p

loc (U) is p-harmonic if
ˆ

U

〈
|Dv|p−2Dv |Dψ

〉
dµ = 0 (1.1)

for any test function ψ ∈ C ∞
c (U). In this case we will write that

∆(p)
g v = div

(
|Dv|p−2Dv

)
= 0 on U. (1.2)

Given a subset U ⊂ M and a chart (V, (x1, . . . , xn)) the above equation can be written
in coordinates on V ∩ U as

1√
det g

∂

∂xi

√det g
(

gks ∂v
∂xk

∂v
∂xs

) p−2
2

gij ∂v
∂xj

 = 0. (1.3)

Problem (1.3) is a 2nd order elliptic equation in divergence form that degenerates as |Dv|
vanishes. The regularity of the solutions to this operator has been investigated by many
authors. We recollect here some results for ease of future reference.

Let U be an open subset of M. We can cover U with a countably family of bounded
charts (Vi, (x1

i , . . . , xn
i ))i∈N. Suppose that for some k ∈ N and α ∈ (0, 1), there exist two

constants 0 < λU ≤ ΛU
k,α < +∞ such that

gij(x)ξ iξ j > λUδijξ
iξ j∥∥gij

∥∥
C k,α(U∩Vs)

≤ ΛU
k,α

for every x ∈ U ∩ Vs and ξ ∈ Rn,
for every s = 1, . . . , N,

(1.4)

where gij are the components of the metric g with respect to the coordinates (x1
s , . . . , xn

s ).
If U ⊂ M is bounded the condition 0 < λU ≤ ΛU

k,α < +∞ is satisfied. Differently from the
flat Euclidean case, in a general noncompact complete Riemannian manifolds the metric
g can degenerate approaching infinity. The above conditions are satisfied for unbounded
subsets U when the metric g has some well-known behaviour at infinity, for example, if
the manifold is asymptotically close in the C 0,α-topology to some given model.

Suppose that U is an open subset of M such that 0 < λU ≤ ΛU
0,α < +∞, regularity

results for p-harmonic functions (see [Tol83; DiB83; Eva82; Ura68; Lew83]) yield v ∈
C

1,β
loc (U) for some β ≤ α that depends on n, p, α, ΛU

0,α and λU . Moreover, for any compact
subset K ⊂ U there exists a positive C1,β > 0 depending only on n, p, α, ΛU

0,α, λU and the
distance of K from the boundary of U such that

‖v‖
C

1,β
loc (K)

≤ C

for every p-harmonic function v with ‖v‖L∞(U) ≤ 1. The theorem below easily follows by
a scaling argument, being that v/‖v‖L∞(U) is p-harmonic as well.
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Theorem 1.2.1 (Schauder interior estimates). Let (M, g) be a complete n-dimensional Rieman-
nian manifold, U ⊂ M be an open subset such that 0 < λU ≤ Λ0,α < +∞ in (1.4), for some
α > 0. Let p > 1. Then, any bounded solution v ∈ W1,p

loc (U) of the problem ∆(p)
g v = 0 on U

belongs to C
1,β
loc (U) for some positive β = β(n, p, α, ΛU

0,α, λU) ≤ α. Moreover, for every compact
K ⊂ U the estimate

‖v‖C 1,β(K) ≤ C1,β ‖v‖L∞(U),

holds for a positive constant C1,β = C1,β(n, p, α, d(K, ∂U), ΛU
0,α, λU).

Actually, in [Tol83; LU68; DiB83] Sobolev regularity for first order derivative are im-
plicitly stated. In particular, Proposition 1 in [Tol83] (basing the proof on [LU68]) shows
that

v ∈ W2,2
loc (U) ∩ W1,∞

loc (U) if p ≥ 2,

v ∈ W2,p
loc (U) ∩ W1,p+2

loc (U) if p < 2

hold for a broader class of operators, but requiring a uniform ellipticity condition for
p ≥ 2. On the other hand [DiB83] stress out that |Dv|(p−2)/2D2v belongs to L2

loc, but
the author prefers to assume that solution can be approximated weakly W1,p by classical
solution of nondegenerate elliptic equations. We also want to highlight that the W2,2

loc
regularity is also in force for p < 3 as one can find in [Sci14, Theorem 1.1]. What we
really need in the following is the next theorem, proved in [Lou08] (see Appendix C for
the proof based on the p-Bochner formula in Appendix A)

Theorem 1.2.2 (Sobolev interior regularity). Let (M, g) be a complete n-dimensional Rieman-
nian manifold, U ⊂ M be an open subset and p > 1. If v ∈ W1,p

loc (U) is a bounded solution of the

problem ∆(p)
g v = 0 on U, then

|Dv|p−1 ∈ W1,2
loc (U).

Given a p-harmonic function v ∈ W1,p
loc (U), expanding the divergence in (1.3) we ob-

tain the following equation[
gij +

(p − 2)gimgjl

|Dv|2
∂v

∂xm
∂v
∂xl

]
∂2v

∂xm∂xl

+

[
1√

det g
∂(
√

det ggik)

∂xk −
(p − 2)gimgjlΓk

ij

|Dv|2
∂v

∂xm
∂v
∂xl

]
∂kv = 0.

(1.5)

If |Dv| > 0 at some point, problem (1.5) becomes a 2nd order nondegenerate elliptic equa-
tion with C 0,β coefficient thanks to Theorem 1.2.1. Hence, the classical regularity theory
for quasilinear nondegenerate elliptic equations ensures that Sobolev functions satisfy-
ing (1.1) are smooth around the points where the gradient does not vanish (see [LSU68,
Chapter 4 Section 6]). Moreover, by a bootstrap argument we can infer the following C k,β

estimate for p-harmonic functions around points where the gradient does not vanish (see
[GT15, Proposition 6.6]).
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Theorem 1.2.3 (Higher-order Schauder estimates). Let (M, g) be a n-dimensional Rieman-
nian manifold, U ⊂ M be an open subset of M such that 0 < λU ≤ ΛU

k,α < +∞ in (1.4), for some

k ≥ 1 and α > 0. Let p > 1. Then, any bounded solution v ∈ W1,p
loc (U) of the problem ∆(p)

g v = 0
on U such that |Dv| > 0 on U belongs to C ∞(U). Moreover, for any k ∈ N and α ∈ (0, 1) and
any compact K ⊂ U the estimate

‖v‖C k+1,α(K) ≤ Ck+1,α ‖v‖L∞(U)

holds for a positive constant Ck+1,α = Ck+1,α(n, p, k, α, d(K, ∂U), ΛU
k,α, λU , infK |Dv|).

We then discuss the boundary regularity. Given U ⊂ M open bounded, we say that
v ∈ W1,p(U) solves the Dirichlet problem with boundary datum ψ ∈ W1,p(U) if{

∆(p)
g v = 0 on U,

v − ψ ∈ W1,p
0 (U).

(1.6)

An open bounded subset U ⊂ M is said to be a p-regular domain (see [Hol90; Val13]) if the
Wiener criterion is satisfied at every point of the boundary, that is

1ˆ

0

1
t

(
Capp(B(x, t) ∩ (M ∖U), B(x, 2t))

Capp(B(x, t), B(x, 2t))

) 1
p−1

dt = +∞, (1.7)

for every x ∈ ∂U (see Definition 1.3.1 below for the definition of Capp( · , ·)). It is proved in
[Maz70] (see also [Hol90; Hol99; Val13]) that if U is p-regular domain and ψ ∈ W1,p(U) ∩
C 0(U) then the solution v to (1.6) attains continuously the datum at the boundary. A
major contribution of [Lie88] is that the Schauder estimates can be extended up to the
boundary if both the boundary and the boundary datum are regular enough. We report
here both the regularity theorems and the relative estimates for completeness.

Theorem 1.2.4 (Global Schauder estimates). Let (M, g) be a complete n-dimensional Rieman-
nian manifold and p > 1. Let U be an open subset of M such that 0 < λU ≤ Λ0,α < +∞ in
(1.4), for some α > 0. Suppose that U has C 1,α boundary and ψ ∈ C 1,α(U). Let p > 1. Then,
any solution v ∈ W1,p(U) be a solution of the problem (1.6) belongs to C 1,β(U) for some positive
β = β(n, p, α, ΛU

0,α, λU) ≤ α. Moreover, the estimate

‖v‖C 1,β(U) ≤ C1,β

(
‖v‖L∞(U) + ‖ψ‖C 1,α(∂U)

)
holds for a positive constant C1,β = C1,β(n, p, α, ΛU

0,α, λU , U).

When the gradient does not vanish and both the boundary and the boundary datum
are more regular, we can infer the higher-order regularity, appealing again to the classical
theory for elliptic equations.

Theorem 1.2.5 (Higher-order global Schauder estimates). Let (M, g) be a complete n-
dimensional Riemannian manifold and p > 1. Let U be an open subset of M such that
0 < λU ≤ Λk,α < +∞ in (1.4), for some k ≥ 1 and α > 0. Suppose that U has C k,α
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boundary and ψ ∈ C k,α(U). Let p > 1. Let v ∈ W1,p(U) be a solution of problem (1.6) such that
|Dv| > 0 in U. Then v ∈ C k+1,α(U). Moreover, the estimate

‖v‖C k+1,α(U) ≤ Ck+1,α

(
‖v‖L∞(U) + ‖ψ‖C k+1,α(∂U)

)
,

holds for a positive constant Ck+1,α = Ck+1,α(n, p, k, α, ΛU
k,α, λU , infU |Dv|, U).

To conclude, we want to recall a compactness theorem that holds for p-harmonic func-
tions. It is a natural question whether the limit of a sequence of p-harmonic functions is
still p-harmonic. The weak formulation in (1.1) suggests that C 1 convergence on com-
pact subsets is enough to ensure that also the limit function is p-harmonic. The following
theorem relaxes this hypothesis in favour of uniform convergence on compact subsets.

Theorem 1.2.6 (Compactness Theorem). Let (M, g) be complete n-dimensional Riemannian
manifold, U ⊂ M be an open and p > 1. Let U ⊂ M be an open subset Let (vn)n∈N be a sequence
of p-harmonic functions on U that converges uniformly to v on compact subsets of U as n → +∞.
Then v ∈ W1,p

loc (U) is p-harmonic on U.

Proof. See [HK88, Theorem 3.2].

Remark 1.2.7. Suppose that (Un)n∈N is a sequence of open subsets converging to U open subset
as n → +∞. Let gn be a metric on Un for every n ∈ N that locally uniformly converges to some
metric g on U as n → +∞. The above theorem still holds if vn is p-harmonic with respect to the
metric gn. As a consequence, the limit function v is p-harmonic with respect to the metric g.

1.2.2 Estimates for p-harmonic functions

We retrieve the Hopf’s Maximum Principle [Tol83, Proposition 3.2.1] and the Comparison
Principles [Val13, Proposition 2.1.4] by Valtorta and [Tol83, Lemma 3.1, Proposition 3.3.2]
by Tolksdorf, specialised for our purposes.

Theorem 1.2.8 (Hopf’s Maximum Principle). Let (M, g) be a complete n-dimensional Rieman-
nian manifold, U ⊂ M be an open bounded subset and p > 1. Let v ∈ C 1(U) be a p-harmonic
function. Let B a ball contained in U such that v > 0 in B and v(x) = 0 at some x ∈ ∂B. Then
Dv(x) 6= 0.

Theorem 1.2.9 (Comparison Principles). Let (M, g) be a complete n-dimensional Riemannian
manifold, U ⊂ M be an open bounded subset, v1, v2 ∈ W1,p(U) be two p-harmonic functions and
p > 1.

• (Weak) Comparison Principle. If min{v1 − v2, 0} ∈ W1,p
0 (U) then v1 ≥ v2 almost

everywhere on U.

• Strong Comparison Principle. Suppose in addition that U is connected, v1 ∈ C 1(U),
v2 ∈ C 2(U) and |∇v2| ≥ δ > 0 in U. If v1 ≤ v2 (resp. v1 ≥ v2) on U, then v1 = v2 or
v1 < v2 (resp. v1 > v2) on U.

In [Tol83], the Strong Comparison Principle is stated in a slightly different way,
namely, for a larger class of operators but only in one of the two cases expressed above.
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Our version can be deduced by applying the original theorem firstly to v1 and v2 and
secondly to −v1 and −v2, that are also solutions to (1.1).

By the important contributions of [Tru67] and [Ser64] (see also [HK88]), Harnack’s
Inequality holds. Given an open subset U ⊂ M and a compact connected K ⊂ U, there
exists a constant CH = CH(n, p, ΛK

0,0, λK, diam(K)) such that

sup
K

v ≤ CH inf
K

v, (1.8)

for any nonnegative p-harmonic function v on U, where λK and ΛK
0,0 are defined in (1.4).

The consequence of Harnack’s Inequality is the so celebrated Harnack’s principle, whose
proof can be found in [HK88, Theorem 3.3].

Theorem 1.2.10 (Harnack’s Principle). Let (M, g) be a complete n-dimensional Riemannian
manifold, let U be an open subset of M and p > 1. Suppose that (vi)i∈N is an increasing sequence
of p-harmonic functions on U. Then v = limi vi is either identically +∞ or a p-harmonic function
in U. In the latter case the convergence of vi → v is uniform on compact subsets of U.

A way to prove Harnack’s Inequality is by patching up a local Harnack’s Inequality
on geodesic balls inferred from the Cheng-Yau-type estimate provided in [WZ10].

Theorem 1.2.11 (Cheng-Yau-type estimate). Let (M, g) be a complete n-dimensional Rieman-
nian manifold and p > 1. Let v ∈ W1,p

loc B(o, 2R) be a positive p-harmonic function on a geodesic
ball B(o, 2R) for some R > 0 where Ric ≥ −(n− 1)κ2. Then there exists a constant C = C(p, n)
such that

sup
B(o,R)

|D log v| ≤ C
(

1
R
+ κ

)
. (1.9)

Harnack’s Inequality follows by integrating (1.9) on a path connecting two points
x, y ∈ B(o, R). Since the points are general, we end with

sup
B(o,R)

v ≤ eC(1+Rκ) inf
B(o,R)

v,

for every nonnegative p-harmonic function v on B(o, 2R).
To conclude, we recall a Kato-type Identity for p-harmonic function and consequently

a refined version of the Kato-type Inequality for p-harmonic functions.

Proposition 1.2.12 (Kato-type Identity). Let (M, g) be a complete n-dimensional Riemannian
manifold, U ⊂ M be an open subset of M and p > 1. Let v ∈ W1,p

loc (U) be a p-harmonic function
on U. Then, in an open neighbourhood of a point x ∈ U where |Dv|(x) > 0, the following identity
holds true

|DDv|2 −
(

1 +
(p − 1)2

n − 1

)
|D|Dv||2 =|Dv|2

∣∣∣∣h− H
n − 1

g>
∣∣∣∣2

+

(
1 − (p − 1)2

n − 1

) ∣∣D>|Dv|
∣∣2,

(1.10)

according to the orthogonal decomposition with respect to the level sets of v. Moreover, if |Dv| > 0
and the right hand side of (1.10) vanishes in {t0 ≤ v ≤ t1} for some t0, t1 ∈ R, t0 < t1 with t1
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possibly infinite, then the Riemannian manifold ({t0 ≤ v ≤ t1}, g) is isometric to the warped
product ([t0, t1] × {v = t0}, dt ⊗ dt + η2(t)g{v=t0}), where the relation between v, η and t is
given by

η(t) =
(

v′(t0)

v′(t)

) p−1
n−1

.

Proof. See [FMP19, Proposition 4.4].

Corollary 1.2.13 (Kato-type Inequalities for p-harmonic functions). Let (M, g) be a complete
n-dimensional Riemannian manifold, U ⊂ M be an open subset of M and p > 1. Let v ∈
W1,p

loc (U) be a p-harmonic function on U.

(i) If (p − 1)2 > n − 1, then, in a neighbourhood of any x ∈ U such that |Dv|(x) > 0

|DDv|2 ≥
(

1 +
(p − 1)2

n − 1

)
|D|Dv||2.

Moreover, if equality is achieved on {t0 ≤ v ≤ t1} and |Dv| > 0 in this region, then
({t0 ≤ v ≤ t1}, g) has the same warped product structure as in the rigidity case of Propo-
sition 1.2.12.

(ii) If (p − 1)2 > n − 1, then, in a neighbourhood of any x ∈ U such that |Dv|(x) > 0,

|DDv|2 ≥ 2|D|Dv||2. (1.11)

Moreover, if the equality is achieved on {t0 ≤ v ≤ t1} and |Dv| > 0 in this region, then
({t0 ≤ v ≤ t1}, g) splits as a Riemannian product ([t0, t1]×{v = t0}, dt2 + g{v=t0}) and
v is an affine function of t.

(iii) If (p − 1)2 = n − 1, then, in a neighbourhood of any x ∈ U such that |Dv|(x) > 0 it
holds (1.11). If the inequality holds in (1.11) at some point x with |Dv|(x) > 0, then x is
an umbilical point of {v = v(x)}, that is a smooth hypersurface in a neighbourhood of x.

Proof. See [Fog20, Corollary 2.6] and [FMP19, Corollary 4.6].

1.3 p-Green’s functions on Riemannian manifolds

In this section, we mainly focus on characterising those Riemannian manifolds (M, g) that
admit a positive p-Green’s function with some vanishing property at infinity. We recall
that a p-Green’s function G is a distributional solution to the problem ∆pG = δo, where
δo is the Dirac delta at o ∈ M. We are seeing that the existence of positive G is related
to the existence of a compact set of positive p-capacity. Mainly referring to [HKM18],
we recall the theory of p-capacity for bounded and non-bounded condensers and all ba-
sic properties we think will be useful in the following dissertation. We then define p-
nonparabolic (and consequently p-parabolic) Riemannian manifolds as those having a
positive p-capacity at infinity, and consequently a positive p-Green’s function. We con-
clude by studying the asymptotic behaviour of the p-Green’s function at infinity, which is
related to some geometric properties of the unbounded components of the manifold. This
last part is inspired by the work of Holopainen [Hol99], with some insights coming from
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the subsequent [MRS19]. We also refer the reader to [LT87; LT92; LT95] for the harmonic
analogue.

1.3.1 p-capacity on Riemannian manifolds

We find convenient to recall here the definition of p-capacity of a condenser (K, U) where U
is an open subset of M and K is a compact subset of U.

Definition 1.3.1 (p-capacity and normalised p-capacity). Let (M, g) be a complete n-
dimensional Riemannian manifold, (K, U) a condenser and p > 1. The p-capacity of (K, U) is
defined as

Capp(K, U) = inf


ˆ

U

|Dφ|p dµ

∣∣∣∣∣∣ φ ∈ C ∞
c (U), φ ≥ 1 on K

. (1.12)

If U = M we simply denote Capp(K) = Capp(K, M). We also define the normalised p-
capacity as

Ĉapp(K, U) =

(
p − 1
n − p

)p−1 1
|Sn−1| Capp(K, U). (1.13)

Consider a condenser (K, U) with U bounded in M and ψ ∈ C ∞
c (U) such that ψ = 1

in a neighbourhood of K. Then there exists a solution u ∈ W1,p(U ∖ K) to the problem{
∆(p)

g u = 0 on U ∖ K,
u − ψ ∈ W1,p

0 (U ∖ K).

One can observe that such a function realises the minimum in (1.12). Indeed, since u can
be approximated in W1,p(U ∖ K) by functions φ ∈ C ∞

c (U) with φ ≥ 1 on K, then

Capp(K, U) ≤
ˆ

U∖K

|Du|p dµ.

On the other hand, the weak formulation in (1.1) can be relaxed in duality with functions
in W1,p

0 (U ∖ K). Hence, taking any competitor φ ∈ C ∞
c (U) with φ ≥ 1 on K, we clearly

have that u − φ ∈ W1,p
0 (U ∖ K) and by (1.1) we obtain

ˆ

U∖K

|Du|p dµ =

ˆ

U∖K

〈
|Du|p−2Du

∣∣∣Du
〉

dµ =

ˆ

U∖K

〈
|Du|p−2Du

∣∣∣Dφ
〉

dµ.

Applying Hölder’s Inequality to the right hand side, we are left with
ˆ

U∖K

|Du|p dµ ≤
ˆ

U∖K

|Dφ|p dµ

for every competitor φ in (1.12), proving in fact that

Capp(K, U) =

ˆ

U∖K

|Du|p dµ.



1.3. p-Green’s functions on Riemannian manifolds 29

If U is not bounded M, we can consider and exhaustion (Ui)i∈N for U with K ⊆ U1.
Since Ui ⊂ U for every i ∈ N, (1.12) one can easily see that

Capp(K, Ui) ≥ Capp(K, U), (1.14)

for every i ∈ N. Conversely, for every ε > 0 let φε ∈ C ∞
c (U), φ ≥ 1 on K such that

ˆ

U

|Dφ|p dµ − ε ≤ Capp(K, U).

Since Ui is an exhaustion for U there exists I ∈ N such that supp φ ⊂ Ui for every i ≥ I.
Hence,

Capp(K, Ui)− ε ≤
ˆ

U

|Dφ|p dµ − ε ≤ Capp(K, U). (1.15)

Combining (1.14) and (1.15) we obtain that

Capp(K, U) = lim
i→+∞

Capp(K, Ui). (1.16)

For each condenser (K, Ui) let ui be its p-capacitary potential. The Comparison Princi-
ple in Theorem 1.2.9 gives that (ui)i∈N is increasing. By the Harnack’s Principle Theo-
rem 1.2.10, the limit function u = sup ui is p-harmonic in U ∖ K. The function u realises
the p-capacity of the condenser (K, U) that is

Capp(K, U) =

ˆ

U∖K

|Du|p dµ, (1.17)

and it will be called the p-capacitary potential associated with the condenser (K, U). In-
deed, (ui)i∈N converges locally uniformly |Dui| is bounded in Lp(U ∖K), hence by lower
semicontinuity ˆ

U

|Du|p dµ ≤ lim inf
i→+∞

ˆ

U

|Dui|p dµ = Capp(K, U).

Conversely, by [HKM18, Lemma 1.33], u ∈ Lp
loc(U ∖ K) and there exists a sequence

(φn)n∈N, φn ∈ C ∞
c (U) and φn ≥ 1 on K such that Dφn → Du in Lp as n → +∞. Hence,

we have that
Capp(K, U) ≤

ˆ

U∖K

|Du|p dµ,

concluding the proof of (1.17). Observe that the function u may not belong to W1,p(U ∖K)
in general. Indeed, if U is unbounded and Capp(K, U) = 0 the p-capacitary potential u is
identically 1, which is not in Lp(U ∖ K).

Observe that the very definition of p-capacity readily implies that

Capp(K, U) = Capp(∂K, U),

whenever K is a compact subset of U.
We recall here some well-known, though useful, properties of the p-capacity. We refer

the reader to [HKM18, Theorem 2.2] and [Hol90, Lemma 3.6, 3.7, 3.8] for the proofs.
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Proposition 1.3.2. Let (M, g) be a complete n-dimensional Riemannian manifold and p > 1.

(i) If (K, U1) and (K, U2) are two condensers such that U1 ⊂ U2, then

Capp(K, U1) ≥ Capp(K, U2). (1.18)

(ii) If (K1, U) and (K2, U) are two condensers such that K1 ⊂ K2, then

Capp(K1, U) ≤ Capp(K2, U). (1.19)

(iii) Given a condenser (K, U) and u ∈ W1,p
loc (U ∖ K) its p-capacitary potential, if the set

({u ≥ b}, {u > a}) is a condenser for some 0 ≤ a < b ≤ 1 , then

Capp({u ≥ b}, {u > a}) =
Capp(K, U)

(b − a)p−1 . (1.20)

Using the coarea formula (see Appendix B), we can characterise the p-capacity of a
condenser as a weighted surface integral. We prove this result in the following statement.

Proposition 1.3.3. Let (M, g) be a complete n-dimensional Riemannian manifold and p > 1.
Consider a condenser (K, U) in M and let u ∈ W1,p

loc (U ∖ K) its p-capacitary potential. Suppose
that {u ≥ c} is compact in U for every c ∈ (0, 1), then

Capp(K, U) =

ˆ

{u=t}

|Du|p−1 dσ, (1.21)

for almost every t ∈ (0, 1), including any t regular for u. Moreover, if K has C 2 boundary then

Capp(K, U) =

ˆ

∂K

|Du|p−1 dσ. (1.22)

Proof. Observe that Capp(K, U) < +∞. Hence, the p-capacitary potential u of (K, U) is
such that |Du| ∈ Lp(K∖U). Moreover, by Theorem 1.2.1 u is locally Lipschitz. The coarea
formula Proposition B.3 for f = |Du|p−1 yields

Capp(K, U) =

1ˆ

0

ˆ

{u=t}

|Du|p−1 dσ dt. (1.23)

Moreover, employing again the coarea formula Proposition B.3 with f = ψ′(u)|Du|p−1

and an integration by parts we have that
1ˆ

0

ψ′(t)
ˆ

{u=t}

|Du|p−1 dσ dt =
ˆ

M∖Ω

ψ′(u)|Du|p dµ

= −
ˆ

M∖Ω

|Du|p−2〈Du |D(ψ(u))〉dµ

=

ˆ

M∖Ω

ψ(u)div(|Du|p−2Du)dµ = 0,
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for every ψ ∈ C ∞
c (0, 1). The function

t 7→
ˆ

{u=t}

|Du|p−1 dσ ∈ L1(0, 1) (1.24)

admits a constant representative, that coupled with (1.23) gives (1.21). If t ∈ (0, 1) is
regular for u the function defined in (1.24) is smooth, concluding the proof of the first part
of the statement.

Suppose that K has C 2 boundary, then the p-capacitary potential is C 1,β up to ∂K.
Moreover, by Hopf’s Maximum Principle Theorem 1.2.8 the gradient does not vanishes
at the boundary. Hence, the function (1.24) is continuous around {t = 1} = ∂K, proving
also (1.22).

It is also worth mentioning that one can define p-capacity for a condenser (F, U) where
F is any subset of U by taking

Capp(F, U) = inf
E⊂A

A open

Cap∗
p(A, U),

where for any A ⊆ U

Cap∗
p(A, U) = sup

K⊂A
K compact

Capp(K, U).

Firstly, we observe that is not ambiguous having two definitions for compact subsets since
they coincide. Moreover, the set function Capp( · , U) is a Choquet capacity. Choquet’s
Theorem (see [Cho54]) asserts that all Borel (in fact, all analytic) subsets of U are capac-
itable, that is

Capp(A, U) = sup
K⊂A

K compact

Capp(K, U).

For a general F compactly contained in U it holds

Capp(F, U) ≤ Capp(F, U),

but the equality is achieved only for some F, for example, the ball (see [HKM18]). Indeed,
consider a compact subset K ⊂ Rn and a countable dense family of points (xn)n∈N in K.
For any point choose a ball Bn small enough such that

Capp(Bn) = Cap(Bn) ≤ 2−(n+2) Capp(K).

Let F be the union of such balls. Since F ⊃ K then Capp(F) = Capp(K), but the σ-
subadditivity gives Capp(F) ≤ Capp(K)/2. For a more detailed treatment of the theory
of capacities we refer the reader to [Maz70; Hol90; HKM18; Cho54].
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1.3.2 Existence of positive p-Green’s function

We focus on the existence of a positive p-Green’s function. Firstly, we define it for
bounded p-regular subsets, which, as said before, are the subsets U ⊂ M satisfying the
Wiener criterion (1.7) at every x ∈ ∂U. Then we extend it to p-nonparabolic Riemannian
manifolds.

Definition 1.3.4 (p-Green’s function). Let (M, g) be a complete n-dimensional Riemannian
manifold and p > 1. Let o be a point in a p-regular domain U ⊂ M. A p-Green’s function is a
positive G(o, ·) ∈ W1,p

loc (U ∖ {o}) ∩ C 0(U ∖ {o}) which satisfies limx→z G(o, x) = 0 for every

z ∈ ∂U and ∆(p)
g G(o, ·) = −δo where δo is the Dirac delta centred at o, that is

ˆ

U

〈
|DG(o, ·)|p−2DG(o, ·)

∣∣∣Dψ
〉

dµ = ψ(o), for any ψ ∈ C ∞
c (U).

By [Hol90, Theorem 3.19], to each p-regular domain one can associate a p-Green’s
function. Observe that we do not require G to be symmetric. Actually, this is not true for
p 6= 2.

Proposition 1.3.5. Let (M, g) be a complete n-dimensional Riemannian manifold and p > 1. Let
o be a point in a bounded open p-regular domain U ⊂ M. Then there exists a p-Green’s function
G(o, ·) in U. Moreover, G(o, x) → +∞ as d(x, o) → 0 and it satisfies

Capp({G(o, ·) ≥ b}, {G(o, ·) > a}) = (b − a)−(p−1) (1.25)

for every b > a ≥ 0.

According to [Hol90, Theorem 3.25], given en exhaustion {Ui}i∈N of p-regular do-
mains and o ∈ U1, one can choose a family {Gi(o, ·)}i∈N such that Gi(o, ·) is the p-Green’s
function on Ui and Gi(o, ·) ≤ Gi+1(o, ·) on Ui, for every i ∈ N. Then by the Harnack’s
Principle Theorem 1.2.10 the pointwise limit G of Gi as i → +∞ can be either identically
+∞ or p-harmonic in M ∖ {o}. In the latter case G is said to be the p-Green’s of M.

It is clear that not every Riemannian manifold admits a p-Green’s function. This is not
anecdotal, even if p = 2, since for example in R2 there is no positive harmonic Green’s
function. Suppose that a manifold (M, g) admits a p-Green’s function and let a > 0 be
large enough so that {G(o, ·) ≥ a} is compact, then by (1.16) and (1.25)

Capp({G(o, ·) ≥ a}) = lim
b→+∞

Capp({G(o, ·) ≥ a}, {G(o, ·) > b}) = a−(p−1) > 0

Hence, we can give the following definition.

Definition 1.3.6 (p-parabolic and p-nonparabolic manifolds). Let (M, g) be a complete non-
compact n-dimensional Riemannian manifold and p > 1. (M, g) is p-nonparabolic if there exists
a compact K ⊂ M such that Capp(K) > 0. (M, g) is p-parabolic if it is not p-nonparabolic.

We have already proved that if (M, g) admits a p-Green’s function, then it is p-
nonparabolic. Suppose now that (M, g) is p-nonparabolic, let K ⊂ M be a positive
p-capacity compact subset. Consider then a closed ball B containing K and y ∈ B. Let
{Ui}i∈N be an exhaustion for M of p-regular domains such that B ⊂ U1 and {Gi(o, ·)}i∈N
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the increasing sequence of p-Green’s function associated with each domain. Define
mi = min{Gi(o, x) | x ∈ ∂B}. By the Comparison Principle Theorem 1.2.9 it follows that

B ⊂ {Gi(o, ·) ≥ mi}.

Employing (1.25) and (1.18), we have that

mi ≤ Capp(B, Ui)
− 1

p−1 ≤ Capp(B)−
1

p−1 .

In particular, the p-Green’s function obtained taking the limit of {Gi(y, ·)}i∈N cannot be
identically +∞. We have proved (see [Hol90; Hol92]) the following statement.

Theorem 1.3.7. Let (M, g) be a complete noncompact n-dimensional Riemannian manifold and
p > 1. (M, g) admits a p-Green’s function if and only if it is p-nonparabolic.

Let (M, g) be a noncompact Riemannian manifold, and consider a compact K in M.
Let E be a connected component of M ∖ K. In [IPS17], the authors extend the potential
theory to Riemannian manifolds with smooth boundary also relying on the extension
theorem in [PV20]. However, it is not in our interest to develop such a theory. We define
a condenser in E as the triple (C, U; E) such that U ⊂ M is open, C is closed in U and
(C ∪ ∂E, U) is a condenser in E. We define the p-capacity of (C, U; E) the quantity

Capp(C, U; E) = inf


ˆ

U∩E

|Dv|p dµ

∣∣∣∣∣∣∣ v ∈ C ∞
c (U), v ≥ 1 on C ∪ ∂E

.

When U = M we will simply denote Capp(C; E) = Capp(C, M; E). Observe that the
C does not need to be bounded, only the C ∩ E has to be. One can define a p-capacitary
potential, exactly in the same way we did in the setting of complete Riemannian manifold.
In particular, given (C, U) with C containing K and u ∈ W1,p

loc (U ∖ C) its p-capacitary
potential, then the restriction of u to E is the p-capacitary potential of (C, U; E). Suppose
now that M ∖ K has a finite number of connected components. Denote them E1, . . . , EN .
It is clear that if one of them, namely Ei, is bounded then

Capp(∂Ei; Ei) = 0.

Hence, the capacity of the compact K is influenced only by the unbounded components
of M ∖ K.

Definition 1.3.8 (Ends of manifolds). Let (M, g) be a noncompact n-dimensional Riemannian
manifold. An end of a noncompact Riemannian manifold (M, g) with respect to a bounded subset
K ⊆ M is an unbounded connected component of M ∖K. We say that (M, g) has a finite number
of ends if the number of ends with respect to any bounded subset C ⊆ M is bounded by a number
m independent of C. In this case, we say that (M, g) has m ends and they will be denoted by
E1, . . . , EN .

Since now we are going to consider only Riemannian manifolds with at most a finite
number of ends. We are now introducing the definition of p-parabolicity for the ends.
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Definition 1.3.9. Let (M, g) be a complete noncompact n-dimensional Riemannian manifold and
p > 1. An end E is said to be p-nonparabolic if Capp(C; E) > 0 for some condenser (C; E) in E.
An end is said to be p-parabolic if it is not p-nonparabolic.

The previous definition readily distinguishes unbounded components of M ∖ K that
do not contribute to the p-capacity of K from one that does. Hence, p-nonparabolicity of
the manifold is deeply related to the p-nonparabolicity of its ends.

Proposition 1.3.10. Let (M, g) be a complete noncompact Riemannian manifold. (M, g) is p-
nonparabolic if and only if at least one of its ends is p-nonparabolic.

Proof. Suppose that M is p-nonparabolic. Then there exists a compact C ⊂ M of positive
p-capacity. Let E1, . . . , EN be the ends of M with respect to K. Let u be the p-capacitary
potential associated with the condenser (C ∪ K, M) then

Capp(C ∪ K, M) =

ˆ

M∖(C∪K)

|Du|p dµ =
m

∑
i=1

ˆ

Ei∖(C∪K)

|Du|p dµ

=
m

∑
i=1

Capp(C ∪ K; Ei)

where the last identity is given by the fact that the restriction of u to Ei ∖ (C ∪ K) is the
p-capacitary potential associated with the condenser (C; Ei). Since the p-capacity is non-
negative, and the p-capacity of (C ∪ K, M) is strictly positive we have the desired impli-
cation. Following the same procedure with C such that Capp(C; Ei) > 0, we get the other
way round.

1.3.3 Asymptotic behaviour of the p-Green’s function

Here we want to study the asymptotic behaviour of the p-Green’s function. The Harnack’s
Inequality (1.8) ensures that for a given nonnegative function the infimum cannot be to
much far from its supremum. In many cases, this implies the uniform convergence on
compact sets, as in the Harnack’s Principle Theorem 1.2.10. We are seeing that if the con-
stant in Harnack’s Inequality is stable for a sequence of compact sets escaping to infinity,
this is enough to grant that the p-Green’s function admits a limit at infinity.

Definition 1.3.11 (Harnack end). Let (M, g) be a complete Riemannian manifold and E an
end of M. The end E is said to be Harnack if there exists a sequence of compact subsets (Ki)i∈N

such that ∂E belongs to a bounded component of M ∖ Ki, for every compact K in M it holds that
Ki ⊆ E ∖ K for every i large enough and there exists a constant CH = Ch(n, p) such that

sup
Ki

v ≤ CH inf
Ki

v

holds for every nonnegative p-harmonic function v in E.

The following result is proved in [Hol99, Lemma 3.2] (see also [Hol94, Lemma 3.23]),
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Lemma 1.3.12. Let E be a Harnack end of (M, g) and o ∈ M. Then for any nonnegative p-
harmonic function v on E there exists a real a ∈ [0,+∞] such that

lim
d(o,x)→+∞

x∈E

v = a.

Let (M, g) be a complete Riemannian manifold and o ∈ M. Let E be an end of M with
respect to some bounded K ⊂ B(o, R). According to [Hol99], the end is said to be p-large
(resp. p-small) if

+∞ˆ

R

(
t

|B(o, t) ∩ E|

) 1
p−1

dt < +∞ (resp. = +∞). (1.26)

The definition is clearly independent of the choice of o and R. Moreover, this definition
is related to the notion of p-parabolic and p-nonparabolic manifold (see [Var81; Gri83;
Gri87; Hol90; KZ96; CHS01]).

Proposition 1.3.13. Let (M, g) be a complete n-dimensional Riemannian manifold and p > 1.
Every p-small end is p-parabolic. In particular, M is p-parabolic if

+∞ˆ

R

(
t

|B(o, t)|

) 1
p−1

dt = +∞.

The converse is not true in general. Inspired by [Var83], Holopainen [Hol99] presents
as a counterexample a conformal version of Rn that is p-large for every p > 1, but it is
n-parabolic. A class of ends for which being p-parabolic implies being p-small is the class
of partially homogeneous ends. We report here the definition for ease of future references.

Definition 1.3.14 (Homogeneous ends). Let (M, g) be a complete Riemannian manifold, o ∈
M and E an end of M. E is said to be homogeneous (resp. partially homogeneous) if

(i) A weak (1, p)-Poincaré Inequality is satisfied, namely, there exists a positive constant
CP such that for every R > 0 and x ∈ E ∖ B(o, 2R) with B(x, R) ⊂ E and for every
B(y, 2r) ⊂ B(x, R) we have that

 

B(y,r)

|v − v|dµ ≤ CP r

  

B(y,2r)

|Dv|p dµ


1
p

with v =

 

B(y,r)

v dµ,

holds whenever v ∈ W1,p(B(y, 2r)).

(ii) A volume-doubling property is satisfied, namely, there exists a constant CD such that for
every R > 0 and x ∈ E ∖ B(o, 2R) with B(x, R) ⊂ E and for every B(y, 2r) ⊂ B(x, R)

|B(y, 2r)| ≤ CD |B(y, r)|.



36 Chapter 1. Preliminary results in Nonlinear Potential Theory

(iii) A volume comparison (resp. partial volume comparison) condition is satisfied,
namely, there exists a constant CV and R > 0 such that

|B(o, r) ∩ E| ≤ CV |B(x, r/8)|

holds for every r ≥ R and x ∈ ∂B(o, r)∩ E (resp. x ∈ ∂E(r) where E(r) is the unbounded
component of E ∖ B(o, r)).

The following theorem is a consequence of [Hol99, Theorem 4.7].

Proposition 1.3.15. Let (M, g) be a n-dimensional Riemannian manifold, p > 1 and E an end
of M. If E is partially homogeneous and p-parabolic then E is p-small.

As a consequence, on a partially homogeneous end the integral in (1.26) is finite if and
only if the end is p-nonparabolic. Since this condition is equivalent to the existence of a
p-Green’s function, it is not surprising that this two quantities are somehow related. In
the following we analyse this relation.

Proposition 1.3.16. Let (M, g) be a n-dimensional Riemannian manifold with a homogeneous
p-large end E for some p > 1. Let o ∈ M ∖ E and G(o, ·) ∈ W1,p

loc (M ∖ {o}) ∩ C 0(M ∖ {o})
be the p-Green’s function of M. Then there exists a constant C = C(p, CD, CP, CV) and R > 0
such that

sup
x∈E(r)

G(o, x) ≤ C

+∞ˆ

2r

(
t

|B(o, t) ∩ E|

) 1
p−1

dt < +∞ (1.27)

holds for every r ≥ R, where E(r) is the unbounded component of E ∖ B(o, r). If the end E is
Harnack, then G(o, x) → 0 as d(o, x) → +∞ on E.

Proof. The proof of (1.27) is contained in [Hol99, Proposition 5.7]. It follows that there
exists a sequence of points (xn)n∈N in E such that G(o, xn) → 0 as n → +∞. Then
Lemma 1.3.12 concludes the proof.

We can also prove a lower bound for the p-Green’s function. The proof is inspired
to [Hol99, Proposition 5.9]. However, here we aim to a lower bound on each p-large
homogeneous end, rather than on all of them.

Proposition 1.3.17. Let (M, g) be a n-dimensional Riemannian manifold with a homogeneous
p-large end E for some p > 1. Let o ∈ M ∖ E and G(o, ·) ∈ W1,p

loc (M ∖ {o}) ∩ C 0(M ∖ {o})
be a p-Green’s function of M. Then, there exists a constant C depending on p and E and R > 0
such that

sup
x∈∂E(r)

G(o, x) ≥ C
1

p−1

+∞ˆ

2r

(
t

|B(o, t) ∩ E|

) 1
p−1

dt (1.28)

for every r ≥ R, where E(r) is the unbounded component of E ∖ B(o, r). Moreover, the constant
can be chosen as

C = a Capp(∂E; E), (1.29)

where a > 0 is such that
{

G(o, ·) ≥ a1/(p−1)
}

.
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Proof. Denote Capp({G(o, x) ≥ d}; E) = c−(p−1) > 0, where d > 0 is such that the set
{G(o, x) ≥ d} contains ∂E. Define G = cd−1G. Employing (1.25), we obtain that

Capp(
{

G(o, x) ≥ b
}

; E) = Capp(
{

G(o, x) ≥ dc−1b
}

; E)

=
( c

b

)p−1
Capp({G(o, x) ≥ d}; E) = b−(p−1)

holds for every b > 0. Define Mr = max
{

G(o, x)
∣∣ x ∈ ∂E(r)

}
. For r large enough we can

assume that both
{

G(o, · ) ≥ Mr
}

and B(o, r) are closed and contain ∂E. By the Compar-
ison Principle Theorem 1.2.9 yields

{
G(o, · ) ≥ Mr

}
∩ E ⊂ B(o, r) ∩ E. The monotonicity

of the p-capacity and (1.25) give

Capp(B(o, r); E) = Capp(E ∖ E(r); E) ≥ Capp(
{

G(o, · ) ≥ Mr
}

; E) = M−(p−1)
r .

Since for every s > t > 0 the function (d(o, ·) − s)/(t − s) is Lipschitz (in particular
belongs to W1,p

loc (M) for p > 1), approximating it with test functions in (1.12), one can
prove the following estimate

Capp(B(o, t), B(o, s); E) ≤ |B(o, s) ∩ E|
tp

whenever B(o, t) ⊃ ∂E. Using [HKM18, Theorem 5.32] we immediately get that for every
k > 0

Mr ≥
(

Capp(B(o, r), B(o, 2kr)
)− 1

p−1 ≥
k−1

∑
j=0

(
Capp(B(o, 2jr), B(o, 2j+1r))

)− 1
p−1

≥
k−1

∑
j=0

(
(2jr)p

|B(o, 2j+1r) ∩ E|

) 1
p−1

≥
k−1

∑
j=0

2j+2rˆ

2j+1r

(
t

|B(o, t) ∩ E|

) 1
p−1

dt

=

2k+1rˆ

2r

(
t

|B(o, t) ∩ E|

) 1
p−1

dt.

Taking the limit as k → +∞ and recalling the relation between G and G, we get (1.28)
with the constant C = dc−1. Choosing d = a1/(p−1) and using the monotonicity of the
p-capacity by inclusion we get the constant in (1.29).

Observe that, if a Harnack’s Inequality holds on ∂E(r) and the constant is independent
of r, it is possible to deduce a lower bound on the p-Green’s function from (1.28). In gen-
eral Propositions 1.3.16 and 1.3.17 cannot be extended to a bound on ∂B(o, r), since, even if
(M, g) has only one end, infinitely many bounded components may appear approaching
infinity.
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2
ASYMPTOTIC BEHAVIOUR OF THE
p-CAPACITARY POTENTIAL AND THE IMCF

2.1 Structure of the chapter

This chapter is devoted to describing the asymptotic behaviour of the p-capacitary po-
tential and the IMCF, which are the main results in [BFM22]. In Section 2.2, we report
the precise definition of Asymptotically Conical Riemannian manifolds and all proper-
ties that will be useful in the subsequent sections. In Section 2.3, we study the existence
and estimates of a p-capacitary potential associated to some open bounded subset Ω with
smooth boundary. We then specialise these results to the setting of Riemannian manifolds
with nonnegative Ricci curvature and Asymptotically Conical Riemannian manifolds.
This section also contains the asymptotic behaviour of the p-capacitary potential and its
derivatives on Asymptotically Conical Riemannian manifolds. The last section highlights
the relation between the Nonlinear Potential Theory and the Inverse Mean Curvature
Flow. For the sake of completeness, we re-prove here the existence of the (weak) IMCF
on Riemannian manifolds with nonnegative Ricci curvature. We conclude by specialising
and improving the results in [MRS19] in our Asymptotically Conical Riemannian setting,
inferring also the asymptotic behaviour of the (weak) IMCF, characterising the limit in
[HI01, Lemma 7.1].

2.2 Asymptotically Conical Riemannian manifolds

We give here the precise definition of Asymptotically Conical Riemannian manifolds ac-
cording to [CEV17]. For better comprehension, we recall the definition of the Hölder
seminorm of a tensor field. A tensor field T ∈ T q

s (M) is α-Hölder continuous at x for
some α ∈ [0, 1] if there exists a geodesically convex open neighbourhood Ux centred at x
such that

sup
y∈Ux∖{x}

|T(x)− T(y)|g
(d(x, y))α < +∞

is finite, where, to compute the difference between T(x) and T(y), we parallel transport
T(y) onto x. The tensor field T is said to be α-Hölder continuous on U ⊂ M if it is α-
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Hölder continuous at every x ∈ U. We sometimes omit the subscript g if it is clear the
metric we are referring to.

Consider a cone with link L, namely ((0,+∞) × L, ĝ) where ĝ = dρ2 + ρ2gL. In this
case, let s > 0 be such that Bs(x) is geodesically convex in ((0,+∞) × L, ĝ) for every
x ∈ {1} × L. Then, for every x ∈ (0,+∞) × L the ball of radius sρ(x) centred at x is
still geodesically convex, where ρ : (0,+∞) × L → (0,+∞) is the projection onto the
first coordinate. Given an α-Hölder continuous tensor field T, we define the α-Hölder
seminorm of T at x as

[T](s)α,ĝ(x) = sup
y∈Bsρ(x)(x)∖{x}

|T(x)− T(y)|ĝ
(d(x, y))α .

Observe that, if T is bounded (with respect to | · |ĝ) and s, t > 0 satisfy the above assump-

tions, [T](s)α,ĝ(x) = [T](t)α,ĝ(x) for any x ∈ (R,+∞)× L provided R is large enough. Then,
the following definition is well-posed and we can drop the superscript (s).

Definition 2.2.1 (C k,α-Asymptotically Conical Riemannian manifolds). Let (M, g) be a Rie-
mannian manifold, k ∈ N and α ∈ [0, 1]. M is said to be C k,α-Asymptotically Conical if there
exists an open bounded subset K ⊆ M, a closed smooth hypersurface L and a diffeomorphism
π̂ : M ∖ K → [1,+∞)× L such that

k

∑
i=0

ρi
∣∣∣D(i)

ĝ (π̂∗g − ĝ)
∣∣∣

ĝ
+ ρk+α

[
D(k)

ĝ (π̂∗g − ĝ)
]

α,ĝ
= o(1) as ρ → +∞, (2.1)

where ρ : [1,+∞) × L → [1,+∞) is the projection map onto the first component and ĝ =
dρ2 + ρ2gL is the cone metric. In the case α = 0, we use the notation C k-Asymptotically Conical
instead of C k,0-Asymptotically Conical.

The previous definition says that in a C k,α-Asymptotically Conical Manifold the metric
g approaches the metric ĝ of a truncated cone with link L with respect to a scale-invariant
C k,α-norm. The diffeomorphism π̂ : M ∖ K → L × [1,+∞) identifies the boundary of
K with the link L. With abuse of notation, π̂∗ρ : M ∖ K → [1,+∞) will be denoted
by ρ and π̂∗ ĝ = dρ2 + ρ2gL by ĝ. Moreover, by convention ρ < 1 on K and accord-
ingly {ρ ≤ r} = M ∖ {ρ > r} and {1 ≤ ρ ≤ r} = M ∖ ({ρ > r} ∪ K). Given any coor-
dinate system (ϑ1, . . . , ϑn−1) on an open subset U of L, (ρ, ϑ1, . . . , ϑn−1) are coordinates
on (1,+∞)× U ⊂ M ∖ K. The condition |g − ĝ|ĝ = o(1) as ρ → +∞ is equivalent to a
condition on the coordinates that can be read as

gρρ = 1 + o(1), gρj = o(ρ), gij = ρ2gL
ij + o(ρ2),

for every i, j = 1, . . . , n − 1 as ρ → +∞. By using Cramer’s rule to solve the system and
the Laplace expansion to compute determinants, we obtain

gρρ = 1 + o(1), gρj = o(ρ−1), gij = ρ−2gij
L + o(ρ−2).

The C 0,α-Asymptotically Conical condition for α > 0 gives, in addition, information on
the Hölder seminorm of the components. Indeed, arguing as before we get that

[gρρ − 1]α,ĝ = o(ρ−α), [gρj]α,ĝ = o(ρ1−α),
[

gij − ρ2gL
ij

]
α,ĝ

= o(ρ2−α),
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for every i, j = 1, . . . , n − 1 as ρ → +∞. Increasing k in the C k,α-Asymptotically Conical
assumption we gain knowledge about the k-th derivative of the components of g.

Consider for every s > 0 the family of diffeomorphism on (0,+∞)× L defined as

ωs : (0,+∞)× L −→ (0,+∞)× L

(ρ, ϑ1, . . . , ϑn−1) 7−→ (sρ, ϑ1, . . . , ϑn−1),
(2.2)

With abuse of language, we will also denote by ωs any restriction of it to some truncated
cone. Since ωs induces a family of diffeomorphisms from (1/s,+∞)× L onto {ρ ≥ 1} ⊂
M through the composition with π in Definition 2.2.1, we will also denote by ωs such
map. Condition (2.1) can be also interpreted as the convergence of the family of metrics
on the cone (0,+∞)× L, built for every s ≥ 1 by pulling the metric g back through the
diffeomorphism ωs and properly rescaling them. This is the content of the following
lemma.

Lemma 2.2.2. Let (M, g) be a complete n-dimensional Riemannian manifold. Then, (M, g) is
C k,α-Asymptotically Conical if and only if the metric g(s) = s−2ω∗

s g satisfies

k

∑
i=0

ρi
∣∣∣D(i)

ĝ (g(s) − ĝ)
∣∣∣

ĝ
+ ρk+α

[
D(k)

ĝ (g(s) − ĝ)
]

α,ĝ
= o(1) as s → +∞,

uniformly on [R,+∞)× L for every R > 0.

Proof. Since ω∗
s dρ = rdρ and ω∗

s dϑi = dϑi, is clear that s−2ω∗
s ĝ = ĝ. Thus the the case

of C 0-Asymptotically Conical manifold follows from algebra operations on tensors. The
result for k ∈ N and α ∈ [0, 1] follows in the same way from the fact that Dĝs−2ω∗

s g =
s−2ω∗

s (Dĝg) and dĝ(x, y) = dĝ(ωs(x), ωs(y))/s for every x, y ∈ (1/s,+∞)× L.

We highlight the relation between the coordinate ρ and the distance induced by g on
M.

Lemma 2.2.3. Let (M, g) be a n-dimensional C 0-Asymptotically Conical Riemannian manifold
and o ∈ M. Then

lim
d(o,x)→+∞

d(o, x)
ρ(x)

= 1. (2.3)

Since K is compact, there exists a R > 0 such that d(o, x) > R implies x ∈ M ∖ K,
hence (2.3) makes sense. Since π is a diffeomorphism, taking the limit for d(o, x) → +∞
is the same of taking it for ρ(x) → +∞.

Proof. Since |Dρ|g = 1 + o(1), for every ε > 0 we can find Rε > 1 such that 1 − ε ≤
|Dρ|g ≤ 1 + ε on {ρ ≥ Rε}. Pick x ∈ {ρ ≥ Rε} and a curve γ : [Rε, ρ(x)] → M which is
the solution to the problem {

γ̇(s) = Dρ

|Dρ|2
(γ(s)),

γ(ρ(x)) = x.
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Computing the length of γ we get

L(γ) =

Rεˆ

ρ(x)

|γ̇(s)|ds =

Rεˆ

ρ(x)

1
|Dρ|g

(γ(s))ds ≤ ρ(x)− Rε

1 − ε
,

which ensures that

lim sup
ρ(x)→+∞

d(o, x)
ρ(x)

≤ lim sup
ρ(x)→+∞

L(γ) + 2 diam({ρ ≤ Rε})
ρ(x)

≤ 1
1 − ε

.

Conversely, consider any geodesic σ : [0, L] → M, parametrised by arc length, joining
σ(0) ∈ {ρ = Rε} and σ(L) = x. Then we obtain

ρ(x)− Rε =

Lˆ

0

〈Dρ | σ̇(s)〉ds ≤
Lˆ

0

|Dρ|g(σ(s))ds ≤ (1 + ε)L,

which yields

lim inf
ρ(x)→+∞

d(x, o)
ρ(x)

≥ lim inf
ρ(x)→+∞

L − 2 diam({ρ ≤ Rε})
ρ(x)

≥ lim inf
ρ(x)→+∞

ρ(x)− Rε − 2 diam({ρ ≤ Rε})
(1 + ε)ρ(x)

=
1

1 + ε
.

By the arbitrariness of ε > 0 we can conclude.

In Riemannian manifolds with nonnegative Ricci curvature, in virtue of the Bishop-
Gromov Theorem, one can define an Asymptotic Volume Ratio since

AVR(g) = lim
r→+∞

|B(o, R)|
|Bn|Rn

exists and does not depend on o ∈ M. Here we relaxed the condition on Ricci curvature so
we cannot apply Bishop-Gromov Theorem, but on the other side we require an asymptotic
behaviour for the metric, hence we can hope in defining an Asymptotic Volume Ratio as
well.

Lemma 2.2.4. Let (M, g) be a complete n-dimensional C 0-Asymptotically Conical Riemannian
manifold. Then

|L|
|Sn−1| = lim

R→+∞

|{ρ ≤ R}|
|Bn|Rn = lim

R→+∞

|{ρ = R}|
|Sn−1|Rn−1 , (2.4)

where L is the link of the cone (M, g) is asymptotic to.

Proof. One can easily show that det(g) = det(ĝ)(1 + o(1)) = ρ2(n−1) det(gL)(1 + o(1)) as
ρ → +∞. Hence, for every ε > 0 there exists Rε ≥ 1 such that

|L|(1 − ε)
(Rn − Rn

ε )

n
≤ |{Rε ≤ ρ ≤ R}| ≤ |L|(1 + ε)

(Rn − Rn
ε )

n
.
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Dividing each term by |Bn|Rn one gets

|L|(1 − ε)
(Rn − Rn

ε )

n|Bn|Rn ≤ |{Rε ≤ ρ ≤ R}|
|Bn|Rn ≤ |L|(1 + ε)

(Rn − Rn
ε )

n|Bn|Rn .

Since |{1 ≤ ρ ≤ Rε}|/(|Bn|Rn) vanishes as R → +∞ we obtain

(1 − ε)
|L|

n|Bn| ≤ lim
R→+∞

|{1 ≤ ρ ≤ R}|
|Bn|Rn ≤ (1 + ε)

|L|
n|Bn| ,

which in turn gives the first identity in (2.4) by arbitrariness of ε. We now turn to prove
the second identity. Since De L’Hôpital rule gives

lim
R→+∞

d
dR |{1 ≤ ρ ≤ R}|

|Sn−1|Rn−1 = lim
R→+∞

|{1 ≤ ρ ≤ R}|
|Bn|Rn =

|L|
|Sn−1|

and

d
dR

|{1 ≤ ρ ≤ R}| = d
dR

Rˆ

1

ˆ

{ρ=s}

1
|Dρ| dσds = |{ρ = R}|(1 + o(1)),

we conclude the proof.

Coupling this result with Lemma 2.2.3 one gets that

lim
R→+∞

|B(o, R)|
Rn|Bn| = lim

R→+∞

|{ρ ≤ R}|
|Bn|Rn =

|L|
|Sn−1| ,

for every o ∈ M. Hence the left hand side limit exists and does not depend on the point
o ∈ M. We can lastly give the following definition.

Definition 2.2.5. Let (M, g) be a complete C 0-Asymptotically Conical Riemannian manifold.
The Asymptotic Volume Ratio of (M, g) is defined as

AVR(g) =
|L|

|Sn−1| ,

where L is the link of the cone (M, g) is asymptotic to.

In this case AVR(g) > 0, but in general AVR(g) could exceed 1 and AVR(g) = 1 does
not imply that (M, g) is isometric to the flat Euclidean space.

Given the conical metric ĝ = dρ2 + ρ2gL and the change of coordinates ρ = et, we
have ĝ = e2t dt2 + e2t gL = e2t(dt2 + gL). Hence, every conical metric ĝ is conformally
equivalent to the cylindrical metric g = dt2 + gL. It is reasonable to define the cylindrical
counterpart of Definition 2.2.1. To this purpose, we have to define the α-Hölder seminorm
onto cylinders. Consider a cylinder on L, namely (R × L, g). In this case, let s > 0 be such
that Bs(x) is geodesically convex in (R × L, g) for every x ∈ {0} × L. Then, for every
x ∈ R × L the ball of radius s centred at x is still geodesically convex. We define the
α-Hölder seminorm of T at x as

[T](s)α,g(x) = sup
y∈Bs(x)(x)∖{x}

|T(x)− T(y)|g
(d(x, y))α .
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Observe that, if T vanishes as t → +∞ and s, t > 0 satisfy the above assumptions,
[T](s)α,g(x) = [T](t)α,g(x) for any x ∈ (R,+∞) × L provided R is large enough. Then, the
following definition is well-posed and we can drop the superscript (s).

Definition 2.2.6 (C k,α-Asymptotically Cylindrical Riemannian manifolds). Let (M, g) be a
Riemannian manifold, k ∈ N and α ∈ [0, 1]. M is said to be C k,α-Asymptotically Cylindrical if
there exists an open bounded subset K ⊆ M, a closed smooth hypersurface L and a diffeomorphism
π : M ∖ K → [0,+∞)× L such that

k

∑
i=0

∣∣∣D(i)
g (π∗g − g)

∣∣∣
g
+
[
D(k)

g (π∗g − g)
]

α,g
= o(1) as t → +∞,

where t : [0,+∞) × L → [0,+∞) is the projection map onto the first component and g =
dt2 + gL is the cone metric. In the case α = 0, we use the notation C k-Asymptotically Cylindrical
instead of C k,0-Asymptotically Cylindrical.

As before, with an abuse of notation, π∗t : M ∖ K → [e,+∞) will be denoted by t and
π∗g = dt2 + gL by g. As before, the condition |g − g|g = o(1) is equivalent to a condition
on the coordinates that can be read as

gtt = 1 + o(1), gtj = o(1), gij = gL
ij + o(1).

Suppose (M, g) is a C k,α-Asymptotically Conical Riemannian maniofold. Composing
the change of coordinates ρ = et and the diffeomorphism π̂ of Definition 2.2.1 we obtain
the map π of Definition 2.2.6. Moreover,

e−2t gtt = 1 + o(1), e−2t gtj = o(1), e−2t gij = gL
ij + o(1),

and the same behaviour occurs for the derivatives. Hence, the following computational
lemma holds true.

Lemma 2.2.7. A complete Riemannian manifold (M, g) is C k,α-Asymptotically Conical if and
only if it is conformally equivalent to a C k,α-Asymptotically Cylindrical Riemannian manifold.

Lemma 2.2.2 can be rephrased in this context, where ωs in (2.2) is suitably replaced
with a family of translations and accordingly no rescaling is needed. Clearly Lemma 2.2.3
and Lemma 2.2.4 hold as well with et in the place of ρ.

As already mentioned, we will often require the following curvature constraint

Ric(x) ≥ − (n − 1)κ2

(d(x, o) + 1)2 (2.5)

for every x ∈ M, where we fixed o ∈ M. Since the right hand side of (2.5) converges to 0 as
d(x, o) → +∞, one may wonder whether the limit cone has nonnegative Ricci curvature.
Trivially if the link of the limit cone L satisfies RicL ≥ (n − 2)gL, then the limit con has
nonnegative Ricci curvature. If the geometry of the link is not known, one can assume a
better speed rate of convergence for the metric in order to pass to the limit (2.5). Since the
Ricci curvature depends on the second order derivatives of the metric, C 2-convergence is
enough. In the next proposition, we reduce this assumption in favour of C 0-convergence
(see Appendix A for a smooth approach when the convergence is in the C 1-topology).
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Lemma 2.2.8. Let (M, g) be a complete n-dimensional C 0-Asymptotically Conical Riemannian
manifold. Suppose that Ric ≥ − f (d(x, o)) for some nonnegative smooth function f (t) = o(1)
as t → +∞, for some o ∈ M. Then Ricĝ ≥ 0, where ĝ = dρ2 + ρ2gL is the asymptotic conic
metric of g and L is the link of the limit cone.

Proof. By Lemma 2.2.2 we can assume that f is a function of ρ. Let ωs be as in (2.2), we
denote by g(s) the metric s−2ω∗

s g on [1/s,+∞)× L. It is easy to prove that ([1/s,+∞)×
L, dg(s) , x) converges in the pointed-Gromov-Hausdorff topology to ([0,+∞) × L, dĝ, x)
for some x ∈ {ρ = 2}. Since

lim
s→+∞

|B(x, 1)|g(s) = |B(x, 1)|ĝ,

by [DG18, Theorem 1.2] ([1/s,+∞)× L, dg(s) , µg(s) , x) converges to ([0,+∞)× L, dĝ, µĝ, x)
in the pointed-measured-Gromov-Hausdorff topology. By [GMS15, Theorem 7.2] Ricĝ ≥
− f (s) for every s, hence Ricĝ ≥ 0.

A direct consequence of the previous lemma is that a Euclidean-like Isoperimetric
Inequality with positive constant holds on Asymptotically Conical manifolds such that
Ric ≥ − f (d(x, o)), namely there exists a positive constant CI > 0 such that

CI ≤
|∂K|n

|K|n−1

for every compact domain K. Indeed, we know that in manifolds with nonnegative Ricci
curvature and Euclidean volume growth this inequality is true, as observed by [Var85]
and proved very recently with a sharp constant by [Bre22] (see also [Car94] and [Heb99,
Theorem 8.4]). Being this inequality true on the asymptotic cone, it is plausible that it can
be transferred to our setting.

It is well-known that the existence of a positive Isoperimetric constant is equivalent
to the existence of a finite constant for a global L1-Sobolev Inequality, which is CS < +∞
depending only on the geometry of the manifold such that

 ˆ

M

|φ|
n

n−1 dµ

 n−1
n

≤ CS

ˆ

M

|Dφ|dµ (2.6)

for every φ ∈ Lipc(M) (see [FF60, Remark 6.6] or [SY94, pp. 89-90]). Applying the above

inequality to the function f p n−1
n−p and using Hölder’s Inequality one obtains the Lp-Sobolev

Inequality  ˆ

M

|φ|
np

n−p dµ


n−p
np

≤ CS,p

 ˆ

M

|Dφ|p dµ

 1
p

for every φ ∈ Lipc(M), where CS,p depends only CS, n and p. In the following proposition
we prove that all these inequalities are in force in the above considered setting.
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Proposition 2.2.9. Let (M, g) be a complete n-dimensional C 0-Asymptotically Conical Rie-
mannian manifold. Suppose that Ricg ≥ − f (d(x, o)) for some nonnegative smooth function
f (t) = o(1) as t → +∞ and some o ∈ M. Then (M, g) admits a global L1-Sobolev Inequality
(2.6) for some finite constant CS or equivalently it has a positive Isoperimetric constant CI > 0.

Proof. In virtue of [PST14, Theorem 3.2] it is enough to prove that a L1-Soboelv Inequality
is satisfied outside some compact set. By Lemma 2.3.11, (M, g) has only a finite number
of ends each of them corresponding to one connected component of the link L. Thus, we
can assume that (M, g) has a single Asymptotically Conical end E. By Lemma 2.2.8, E
asymptotically behaves as a cone with nonnegative Ricci curvature, that satisfies the L1-
Sobolev Inequality for some constant CS. Suppose by contradiction that for every compact
set K ⊂ E, the L1-Sobolev Inequality is not satisfied on E∖K. Since the metric g converges
to the metric ĝ = dρ2 + ρ2gL, for every ε > 0 there exists a compact set Kε such that∣∣∣∣∣

ˆ

M

|φ|
n

n−1 dµg −
ˆ

M

|φ|
n

n−1 dµĝ

∣∣∣∣∣ ≤ ε

ˆ

M

|φ|
n

n−1 dµĝ

and ∣∣∣∣∣
ˆ

M

|Dφ|g dµg −
ˆ

M

|Dφ|ĝ dµĝ

∣∣∣∣∣ ≤ ε

ˆ

M

|Dφ|ĝ dµĝ

for every φ ∈ Lipc(E∖Kε). Moreover, for every C there exists a function φ ∈ Lipc(E∖Kε)
such that  ˆ

M

|φ|
n

n−1
g dµg

 n−1
n

> C
ˆ

M

|Dφ|g dµg

Then for every ε < 1 and C we have φ ∈ Lipc(E ∖ Kε) that satisfies ˆ

M

|φ|
n

n−1
ĝ dµĝ

 n−1
n

≥ 1

(1 + ε)
n−1

n

 ˆ

M

|φ|
n

n−1
g dµg

 n−1
n

>
C

(1 + ε)
n−1

n

ˆ

M

|Dφ|g dµg

≥ C
(1 − ε)

(1 + ε)
n−1

n

ˆ

M

|Dφ|ĝ dµĝ.

It is enough to choose ε < 1 and C such that

C
(1 − ε)

(1 + ε)
n−1

n
> CS

to obtain a contradiction to the L1-Sobolev Inequality on the asymptotic cone.

2.3 The p-capacitary potential

This section is devoted to the study of the p-capacitary potential on complete noncompact
Riemannian manifolds (M, g). By the previous discussions, we know that given Ω an
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open bounded subset with smooth boundary there exists a function u ∈ W1,p
loc (M ∖ Ω)

that realises Capp(∂Ω). However, this function u can be identically 1. We now want
to furnish some conditions so that u is not constant. Therefore, from now on, with the
locution p-capacitary potential we intend a solution u ∈ W1,p

loc (M ∖ Ω) to the problem∆(p)
g u = 0 on M ∖ Ω,

u = 1 on ∂Ω,
u → 0 as d(o, x) → +∞.

(2.7)

The regularity results previously discussed ensure that u belongs to C
1,β
loc (M ∖ Ω) and it

is smooth near the points where the gradient does not vanish. In particular, by Hopf’s
Maximum Principle in Theorem 1.2.8 the datum on ∂Ω is attained smoothly. It turns out
that a solution to (2.7) exists and is unique for every Ω provided the manifold admits
a positive p-Green’s function vanishing at infinity. Moreover, since both the p-Green’s
function and u are solutions to the same partial differential equation, by the Comparison
Principle we can put forward all estimates in Section 1.3 for to the p-capacitary potential.
We spend the first part of the section restating all previous theorems in the special cases
of manifolds with nonnegative Ricci curvature, which will be useful in the subsequent
chapters, dedicated to the proof of our monotonicity formulas and geometric inequalities.

The remaining part contains one of the main results of this chapter. As already men-
tioned in the Introduction, we are proving that on Asymptotically Conical manifold the
p-capacitary potential is vanishing at infinity with a well-known asymptotic behaviour.
In particular, it can be compared with the fundamental radial solution on the asymptotic
cone, namely ρ−(n−p)/(p−1), where ρ is the radial coordinate on the cone.

2.3.1 Existence of the p-capacitary potential

We firstly prove that the existence of a vanishing p-Green’s function implies that a solution
to (2.7) exists for any Ω ⊂ M open bounded subset with smooth boundary.

Theorem 2.3.1 (Existence of p-capacitary potential). Let (M, g) be a complete p-nonparabolic
n-dimensional Riemannian manifold, for p > 1. Assume also that the p-Green’s function G
satisfies G(o, x) → 0 as d(o, x) → +∞ for some o ∈ M. Let Ω ⊂ M be an open bounded subset
with smooth boundary. Then there exists a unique solution u to (2.7) and it attains smoothly the
boundary value on ∂Ω.

Proof. Without loss of generality, we can suppose that o ∈ Ω. Consider an exhaustion of
p-regular domains (Ui)i∈N for M, such that Ω ⊆ Ui for every i ∈ N. Let (ui)i∈N be the
p-capacitary potential associated with the condenser (Ω, Ui). There exists a constant C
not depending on i ∈ N such that ui ≤ C G(o, ·) on ∂Ω. Since Ui is p-regular, ui = 0
on ∂Ui, then ui ≤ C G(o, ·) on Ui ∖ Ω by the Comparison Principle Theorem 1.2.9. Since
sup ui ≤ C G(o, ·), by the Harnack’s Principle Theorem 1.2.10 the function u = sup ui is a
solution to (2.7). As it may concern the uniqueness, let v be any other solution to (2.7) and
let k ∈ N. By the vanishing of u at infinity there exists an open subset Uk ⊂ M such that
u ≤ v + 1/k on ∂Uk. Applying the Boundary Comparison Principle Theorem 1.2.9 one
gets that u ≤ v + 1/k Uk ∖ Ω. Since we can always assume that (Uk)k∈N is an increasing
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sequence, we obtain u ≤ v on M ∖ Ω letting k → +∞. Exchanging u and v gives the
opposite inequality, showing the uniqueness.

As a byproduct of the previous theorem we also obtain an upper bound of the p-
capacitary potential in terms of the p-Green’s function. In the following proposition we
improve it to a double sides bound.

Proposition 2.3.2. Let (M, g) be a complete p-nonparabolic n-dimensional Riemannian mani-
fold, for p > 1. Assume also that the p-Green’s function G satisfies G(o, x) → 0 as d(o, x) →
+∞ for some o ∈ M. Let Ω ⊂ M be an open bounded subset with smooth boundary. Then the
solution u to (2.7) satisfies

G(o, ·)
sup∂Ω G

≤ u ≤ G(o, ·)
inf∂Ω G

on M ∖ Ω.

Proof. We only prove the lower bound, since the upper bound was provided in the previ-
ous theorem and the strategy is the same. Let C = 1/ sup∂Ω G, then C G(o, ·) ≤ u on ∂Ω.
Since both u and G vanishes at infinity, for any δ > 0 we have C−1 G(o, ·) ≤ u + δ on ∂Uδ

for any Uδ big enough. The Comparison Principle Theorem 1.2.9 gives that C G(o, ·) ≤
u + δ on Uδ ∖ Ω. Assuming that (Uδ)δ>0 is increasing as δ goes to 0+, one obtains that
C G(o, ·) ≤ u on M ∖ Ω letting δ → 0+.

To conclude, we apply the Cheng-Yau-type estimate Theorem 1.2.11 to obtain a gradi-
ent bound on u.

Proposition 2.3.3. Let (M, g) be a p-nonparabolic Riemannian manifold of dimensione n, for
p > 1. Let Ω ⊂ M be open bounded with smooth boundary. Assume that the Ricci tensor satisfies
the condition

Ric(x) ≥ − (n − 1)κ2

(1 + d(x, o))2

for some o ∈ Ω and κ ∈ R and that the p-Green’s function satisfies G(o, x) → 0 as d(o, x) →
+∞. Let u the p-capacitary potential associated with Ω. Then, there exists a positive constant
C > 0 such that

|D log u| ≤ C
d(x, o)

(2.8)

holds on the whole M ∖ Ω.

Proof. By the C 1-regularity of u, it clearly suffices to show that (2.8) holds true outside
some compact set containing Ω. Let then o ∈ Ω and R > 0 be such that Ω ⊂ B(o, R), and
let x ∈ M ∖ B(o, 2R). With this choice, we have B(x, d(o, x)− R) ⊂ M ∖ B(o, R). Thus,
applying inequality (1.9) to the function u in the ball B(x, d(o, x)− R) we get

|Du|
u

≤ 2 C
(

1
d(o, x)− R

+
κ

d(o, x) + 1

)
≤ 2 C

(2 + κ)

d(o, x)

concluding the proof.
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2.3.2 Properties of the p-capacitary potential in Riemannian manifolds with
nonnegative Ricci curvature

Here we specialise all results obtained in this chapter in the case of Riemannian manifold
(M, g) with nonnegative Ricci curvature. First of all, as a consequence of the Cheeger-
Gromoll Splitting Theorem [CG71] (see [AFM20, Proposition 2.10] for a detailed proof),
we have the following characterisation of the number of ends.

Proposition 2.3.4. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0. If
(M, g) is not a Riemannian cylinder, then it has just one end.

If (M, g) is a Riemannian manifold with nonnegative Ricci curvature. By [Hol99] (see
Examples 3.1 and 4.2) every end of M is Harnack (see also [AG90]) and homogeneous.
The following proposition is then a consequence of Proposition 1.3.15.

Proposition 2.3.5. Let (M, g) be a complete noncompact Riemannian manifold with nonnegative
Ricci curvature. Then, M is p-nonparabolic if and only if

+∞ˆ

R

(
t

|B(o, t)|

) 1
p−1

dt < +∞. (2.9)

for some o ∈ M and R > 0. In particular, if (M, g) has Euclidean Volume Growth, then it is
p-nonparabolic for every 1 < p < n.

Proof. Assume that (M, g) has Euclidean Volume Growth. Then,

+∞ˆ

R

(
t

|B(o, t)|

) 1
p−1

dt ≤ C

+∞ˆ

R

t−
n−1
p−1 dt = C

p − 1
n − p

R− n−p
p−1 < +∞,

concluding the proof.

Observe that the integral in (2.9) is not finite on cylinders, thus a p-nonparabolic Rie-
mannian manifold (M, g) with nonnegative Ricci has one end. As a consequence of
the previous proposition, the p-Green’s function of (M, g) satisfies the upper bound in
Proposition 1.3.16 and, since the end is Harnack, it vanishes at infinity. In virtue of The-
orem 2.3.1, this implies the existence of a solution to the problem (2.7) for every Ω ⊆ M
open bounded with smooth boundary.

Proposition 2.3.6. Let (M, g) be a complete p-nonparabolic Riemannian manifold with Ric ≥ 0,
for p > 1. Then, for every Ω ⊂ M open bounded subset with smooth boundary there exists a
unique solution u : M ∖ Ω → (0, 1] to∆(p)

g u = 0 on M ∖ Ω,
u = 1 on ∂Ω,
u → 0 as d(o, x) → +∞.

Moreover, it attains smoothly the datum at the boundary.

Moreover, the following sharp lower bound for the p-Green’s function holds.
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Proposition 2.3.7. Let (M, g) be a complete p-nonparabolic n-dimensional Riemannian manifold
with Ric ≥ 0 and o ∈ M. Then,

d(o, x)−
n−p
p−1 ≤ G(o, x) (2.10)

holds for every x ∈ M ∖ {o}.

Proof. Let r(x) = d(o, x). We first show that ∆pr−(n−p)/(p−1) ≥ 0 holds in the weak sense,
that is ˆ

M

〈∣∣∣Dr−
n−p
p−1

∣∣∣p−2
Dr−

n−p
p−1

∣∣∣∣∣Dψ

〉
dµ ≤ 0

for any ψ ∈ C ∞
c (M). In fact, we have

ˆ

M

〈∣∣∣Dr−
n−p
p−1

∣∣∣p−2
Dr−

n−p
p−1

∣∣∣∣∣Dψ

〉
dµ = −

(
n − p
p − 1

)p−1 ˆ

M

r1−n〈Dr |Dψ〉dµ

=
1

n − 2

(
n − p
p − 1

)p−1 ˆ

M

〈
Dr2−n ∣∣Dψ

〉
dµ ≤ 0,

where the last inequality is the Laplacian Comparison Theorem, that is ∆gr2−n ≥ 0 in the
sense of distributions. Fix δ > 0. Since both r−(n−p)/(p−1) and G vanish at infinity, we
have r−(n−p)/(p−1) ≤ G + δ on ∂B(o, R) for any R > 0 big enough. On the other hand, the
general result [Ser64, Theorem 12] ensures that Gp(o, x) is asymptotic to r(x)−(n−p)/(p−1)

as r(x) → 0+, and thus we also get r−(n−p)/(p−1) ≤ G + δ on ∂B(o, ε) for any ε > 0 small
enough. Thus, applying the Comparison Principle [HKM18, p. 3.7] (see also [GLM86,
Lemma 2.3]) to the subsolution r−(n−p)/(p−1) and to the solution G + δ (with respect to
the p-Laplacian), in the annulus B(o, R)∖ B(o, ε), we get r−(n−p)/(p−1) ≤ G + δ on such
annulus. Letting ε → 0+ and R → +∞, we deduce that the same holds on the whole
M ∖ {o}. Finally, letting δ → 0+, we are left with (2.10).

We point out that (2.10) is sharp, since the p-Green’s function of Rn is exactly given by
the formula G(x, y) = d(x, y)−(n−p)/(p−1) for any x 6= y.

For what it concerns the upper bound for the p-Green’s function, we observe that in
[MRS19, Theorem 3.8] it is shown, building on [Hol99, Proposition 5.10], that if (M, g) in
addition to the assumptions of Proposition 2.3.7 has Euclidean Volume Growth, then we
also have

G(o, x) ≤ C d(o, x)−
n−p
p−1 (2.11)

for some constant C with well understood dependencies. In virtue of Proposition 2.3.2,
this behaviour can be translated in terms of the p-capacitary potential.

Proposition 2.3.8 (Li-Yau-type estimates). Let (M, g) be a complete p-nonparabolic n-
dimensional Riemannian manifold with Ric ≥ 0, for p > 1. Let Ω ⊂ M be an open bounded
subset with smooth boundary, u : M ∖ Ω → (0, 1] be the solution to (2.7) and o ∈ Ω. Then,
there exists a constant C1(n, p, Ω, M) > 0 such that

C
− 1

p−1
1 d(o, x)−

n−p
p−1 ≤ u(x)
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holds true for every x ∈ M ∖ Ω. If in addition (M, g) has Euclidean Volume Growth, then there
also exists another positive constant C2(n, p, Ω, M) > 0 such that

u(x) ≤ C
1

p−1
2 d(o, x)−

n−p
p−1 ,

for every x ∈ M ∖ Ω. Moreover, in this last case C1 and C2 are bounded as p → 1+.

Proof. It only remains to prove that C1 and C2 are bounded as p → 1+. In virtue of
[MRS19, Theorem 3.6], the constant in (2.11) can be chosen so that C(p−1) is bounded as
p → 1+. Indeed, the condition of the theorem are satisfied since a Sobolev Inequality is in
force as a consequence of the Isoperimetric Inequality [Bre22] (see [FF60, Remark 6.6] or
[SY94, pp. 89-90]). By Propositions 2.3.2 and 2.3.7

u(x) ≥ G(o, x)
sup∂Ω G(o, x)

≥ 1
C

(
d(o, x)

d(o, ∂Ω)

)− n−p
p−1

,

then it is enough to choose C1 = C(p−1) /d(o, ∂Ω)n−p. Conversely, employing again
Propositions 2.3.2 and 2.3.7

u ≤ G(o, x)
inf∂Ω G(o, x)

≤ C
(

d(x, o)
diam(Ω)

)− n−p
p−1

then it is enough to choose C2 = C(p−1) diam(Ω)n−p.

Moreover, on p-nonparabolic Riemannian manifolds with nonnegative Ricci curva-
ture the statement of Proposition 2.3.3 can be simplified as follows.

Proposition 2.3.9 (Cheng-Yau-type estimate). Let (M, g) be a complete p-nonparabolic n-
dimensional Riemannian manifold with Ric ≥ 0, for p > 1. Let Ω ⊂ M open bounded with
smooth boundary and let u be its p-capacitary potential and o ∈ Ω. Then, there exits a positive
constant C such that

|D log u| ≤ C
d(x, o)

(2.12)

holds on the whole M ∖ Ω.

Proof. By Proposition 1.3.16, the assumptions of Proposition 2.3.3 are satisfied and (2.12)
is a consequence of (2.8).

To conclude, we provide the sharp Iso-p-capacitary Inequality in complete noncom-
pact Riemannian manifolds with nonnegative Ricci curvature and Euclidean volume
growth. As for the standard Iso-p-capacitary Inequality in Euclidean setting, the proof
fully relies on the Isoperimetric Inequality combined with a Pólya-Szegö Principle. In
particular, the sharpness of the inequality that follows is a direct consequence of the
sharp Isoperimetric constant in this setting, that has been found first in dimension 3 in
[AFM20] and later extended to all dimensions in [Bre22]. See also [FM20; BK22; Joh21]
for related results. The proof below is classical, and it is inspired by [Jau12], where it is
illustrated for the capacity in Rn.
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Theorem 2.3.10 (Iso-p-capacitary Inequality). Let (M, g) be a complete noncompact n-
dimensional Riemannian manifold with Ric ≥ 0 and Euclidean Volume Growth. Let K ⊂ M be a
compact domain with boundary ∂K. Then

Capp(S
n−1)n

|Bn|n−p AVR(g)p ≤
Capp(∂K)n

|K|n−p (2.13)

Moreover, if K has smooth boundary and satisfies the equality in (2.13) then (M, g) is isometric to
the Euclidean Space and K is a ball.

Proof. Let u ∈ W1,p
loc (M ∖ K) be the p-capacitary potential associated with K. By (1.22) and

the coarea formula in Proposition B.3 for f = |Du|p−1 we have that

Capp(K) =
ˆ

M∖K

|Du|p dµ =

1ˆ

0

ˆ

{u=τ}

|Du|p−1 dσdτ. (2.14)

The Hölder’s Inequality with exponents a = p and b = p/(p − 1) gives

|{u = τ}|p ≤

 ˆ

{u=τ}

|Du|p−1 dσ


 ˆ

{u=τ}

1
|Du| dσ


p−1

(2.15)

for almost every τ ∈ (0, 1]. Define V ′ : (0, 1] → R to be

V ′(τ) = −
ˆ

{u=τ}

1
|Du| dσ (2.16)

Moreover, let V : (0, 1] → R be the primitive of V ′(τ) chosen as

V(τ) = |K| −
1ˆ

τ

V ′(s)ds = |{u ≥ τ} ∪ K ∖ Crit u|,

where the second identity is obtained coupling (2.16) with the coarea formula Proposi-
tion B.2 applied with f = (1 − χCrit u)|Du|−1.

By the Isoperimetric Inequality in [Bre22, Corollary 1.3] we have that

|{u = τ}| ≥ |∂({u ≥ τ} ∪ K)| ≥ |{u ≥ τ} ∪ K|
n−1

n AVR(g)
1
n n|Bn|

1
n

≥ V(τ)
n−1

n AVR(g)
1
n n|Bn|

1
n .

(2.17)

Let R(τ) be the radius of the ball in Rn which has volume V(τ), then V(τ) = |Bn|R(τ)n

and V ′(τ) = |Sn−1|R(τ)n−1R′(τ). Coupling (2.17) with (2.14), (2.15) and (2.16) we obtain

Capp(K) ≥
1ˆ

0

|{u = τ}|p

[−V ′(τ)]p−1 dτ ≥ np (|Bn|AVR(g))
p
n

1ˆ

0

V(τ)
p(n−1)

n

[−V ′(τ)]p−1 dτ

=
∣∣Sn−1

∣∣AVR(g)
p
n

1ˆ

0

R(τ)n−1

[−R′(τ)]p−1 dτ.



2.3. The p-capacitary potential 53

Let now v : Rn ∖ B(0, R(1)) ⊂ Rn → (0, 1] be the function which is τ on ∂B(0, R(τ)). By
(2.17) and Propositions 2.3.8 and 2.3.9 there exists a positive constant C = C(p, n) such
that

− V ′(τ) =

ˆ

{u=τ}

1
|Du| dσ ≥ C |K|

n−1
n τ

n−p
p−1 .

Seeing as |Dv| = −1/R′(τ) = −|Sn−1|Rn−1(τ)/V ′(τ) the function v is locally Lipschitz.
Since |Sn−1|R(τ)n−1 = |∂B(0, R(τ))| = |{v = τ}| by the coarea formula Proposition B.2
applied with f = |Dv|p−1 we have

∣∣Sn−1
∣∣AVR(g)

p
n

1ˆ

0

R(τ)n−1

[−R′(τ)]p−1 dτ = AVR(g)
p
n

1ˆ

0

ˆ

{v=τ}

|Dv|p−1 dσ dτ

= AVR(g)
p
n

ˆ

{|x|≥R(1)}

|Dv|p dx ≥ AVR(g)
p
n Capp (∂B(0, R(1)), Rn) ,

where the last identity follows by the definition of the p-capacity (1.12) in flat Rn. Using
(1.23) and the fact that |{|x| ≤ R(1)}| = V(1) ≥ |K|, we finally obtain

AVR(g)
p
n Capp (∂B(0, R(1))) = AVR(g)

p
n Capp

(
Sn−1

)
R(1)n−p

≥ AVR(g)
p
n

Capp(S
n−1)

|Bn|
n−p

n
|K|

n−p
n ,

and consequently (2.13).
Clearly, if equality holds true in (2.13) and ∂K is smooth then also equality holds in the

use of the Isoperimetric Inequality and [Bre22, Theorem 1.2] forces the rigidity both of the
ambient manifold and K.

2.3.3 Properties of the p-capacitary potential in Asymptotically Conical Rie-
mannian manifolds

As we did in the setting of Riemannian manifolds with nonnegative Ricci curvature, we
specialise the results obtained in this chapter in the framework of Asymptotically Conical
Riemannian manifolds. Following this analogy, we proceed characterising the number of
ends.

Lemma 2.3.11. Let (M, g) be a complete n-dimensional C 0-Asymptotically Conical Riemannian
manifold. Then (M, g) has a finite number of C 0-Asymptotically Conical ends with connected
boundary each one diffeomorphic to one connected componnt of L.

Proof. Consider the compact set K given by Definition 2.2.1. Then ∂K is a compact embed-
ded smooth hypersurface, hence it has a finite number of connected components. Each
end with respect to K is therefore diffeomorphic to a cone on a connected component of
the link L and it is C 0-Asymptotically Conical by the very definition.
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We denote by E1, . . . , EN the ends of (M, g). Since they are C 0-Asymptotically Conical
by Lemma 2.2.4 we can define an Asymptotic Volume Ratio of Ei as

AVR(g; Ei) = lim
r→+∞

|B(o, r) ∩ Ei|
rn|Bn| =

|Li|
|Sn−1| , (2.18)

for i = 1, . . . , N. It follows that

AVR(g) =
m

∑
i=1

AVR(g; Ei).

Each end Ei ⊂ M also satisfies the volume comparison condition given in Defini-
tion 1.3.14 (3). Indeed, by (2.4) there exists Rε such that

|B(x, r) ∩ Ei|g ≤ |{ρ ≤ 2r} ∩ Ei|g ≤ 2n

n
(1 + ε)rn|Li|ĝ

holds for every r > Rε and x ∈ ∂B(o, r)∩ Ei. Conversely, by the convergence of the metric,
we can choose Rε so that

|B(x, r/8)|g ≥ (1 − ε)|B(x, r/8)|ĝ ≥ 17n − 15n

n16n (1 − ε)rn inf
y∈Li

{
|B(y, 1/16)|gL

}
,

which is positive since Li is compact and smooth. Hence if Rε is big enough to satisfy
ε < µ(Li)/2, Definition 1.3.14 (3) is ensured for every r ≥ Rε and x ∈ ∂B(o, r) ∩ Ei.

Assume now that (M, g) is an Asymptotically Conical Riemannian manifold the cur-
vature constraint

Ric(x) ≥ − (n − 1)κ2

(d(x, o) + 1)2 (2.19)

holds for every x ∈ M, where we fixed o ∈ M. By [Hol99] (see Examples 2.20, 3.1 and 4.2)
every end is Harnack and it is homogeneous.

Remark 2.3.12. In [Hol99, Example 2.20], the author actually derives from the Buser’s Isoperi-
metric Inequality [Bus82] a weak (1, 1)-Poincaré Inequality, namely,

 

B(y,r)

|φ − φ|dµ ≤ CP r
 

B(y,2r)

|Dφ|dµ with φ =

 

B(y,r)

φ dµ,

for every Lipschitz function φ ∈ Lipc(B(x, 4r)) with B(x, 4r) ⊂ {ρ ≥ R} for some R big enough.

Moreover, since AVR(g; Ei) > 0 we can find Rε such that

+∞ˆ

Rε

(
t

|B(o, t) ∩ Ei|

) 1
p−1

dt ≤
(

2
AVR(g; Ei)

) 1
p−1
(

p − 1
n − p

)
R
− n−p

p−1
ε < +∞.

Therefore, for every 1 < p < n every end is p-large and p-nonparabolic, in virtue of
Proposition 1.3.15. Since every end is also Harnack, G(o, x) vanishes at infinity by Propo-
sition 1.3.16. This condition coupled with Theorem 2.3.1 ensures the existence and unique-
ness of a solution to (2.7) for every Ω ⊂ M open, bounded with smooth boundary.
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Proposition 2.3.13. Let (M, g) be a complete C 0-Asymptotically Conical Riemannian manifold
with Ricci curvature satisfying (2.19). Let 1 < p < n. Then, for every Ω ⊂ M open bounded
subset with smooth boundary there exists a unique solution u : M ∖ Ω → (0, 1] to∆(p)

g u = 0 on M ∖ Ω,
u = 1 on ∂Ω,
u → 0 as d(o, x) → +∞.

Moreover, it attains smoothly the datum at the boundary.

Consider Ω ⊆ M some open subset with smooth boundary and u : M ∖ Ω → R the
p-capacitary potential associated with Ω. There exists a T ∈ [1,+∞) such that {u > 1/t}
contains K for every t ≥ T. We define the p-capacity of ∂Ω with respect to the end Ei the
quantity

Cap(i)
p (∂Ω) = tp−1

ˆ

{u=1/t}∩Ei

|Du|p−1 dσ (2.20)

for some t ≥ T, and accordingly the normalised p-capacity of Ω with respect to the end Ei the
quantity

Ĉap
(i)
p (∂Ω) =

(
p − 1
n − p

)p−1 1
|Sn−1| Cap(i)

p (∂Ω).

Observe that the two quantities are well defined by (1.20). Moreover, it is readily checked
that, the p-capacity of Ω splits as

Capp(∂Ω) =
m

∑
i=1

Cap(i)
p (∂Ω).

Cap(i)
p (∂Ω) represents the portion of ∂Ω that contributes to its p-capacity under the influ-

ence of the end Ei. Actually, if Ω already contains K we have Cap(i)
p (∂Ω) = Capp(∂Ω ∩

Ei; Ei).
On cones, the p-capacity of the cross section {ρ = r} can be easily computed since the

function u = (ρ/r)−(n−p)/(p−1) is the p-capacitary potential associated with these sets.
In Asymptotically Conical Riemannian manifolds one might expect that the p-capacity
of {ρ = r} approaches the model one for large r. Despite the definition of the p-capacity
involves the first order derivatives of the p-capacitary potential, the convergence is also
true even if the metric converges only in the C 0-topology.

Lemma 2.3.14. Let (M, g) be a complete n-dimensional C 0-Asymptotically Conical Riemannian
manifold. Let ρ be the radial coordinate on M. Let E1, . . . , EN be the ends of M with respect to the
bounded K in Definition 2.2.1. Then,

lim
r→+∞

Cap(i)
p ({ρ = r})

rn−p|Sn−1| =

(
n − p
p − 1

)p−1

AVR(g; Ei) (2.21)

holds for every i = 1, . . . , N.
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Proof. We prove the statement in the presence of one single end, being the general case
an easy consequence. We then drop the index i in the following lines. Since the metric g
converges to the metric ĝ, for every ε > 0 there exists a Rε > 0 such that for every r ≥ Rε∣∣∣∣∣

ˆ

M

|Dφ|pg dµg −
ˆ

M

|Dφ|pĝ dµĝ

∣∣∣∣∣ ≤ ε

ˆ

M

|Dφ|pĝ dµĝ

holds for every function φ ∈ C ∞
c ({ρ ≥ r}) such that φ = 1 on {ρ = r}. In particular, we

have that
(1 − ε)

ˆ

M

|Dφ|pĝ dµĝ ≤
ˆ

M

|Dφ|pg dµg ≤ (1 + ε)

ˆ

M

|Dφ|pĝ dµĝ.

The set {ρ ≥ r} is diffeomorphic to [r,+∞) × L where L is the cross section of the cone
(M, g) is asymptotic to. Hence, the family of φ’s considered above are in one-to-one cor-
respondence with the competitors for the p-capacity of {ρ = r} in the Riemannian cone
[r,+∞)× L. Dividing each side by |Sn−1|, recalling the characterisation of AVR(g) in Def-
inition 2.2.5 and taking the infimum on each side of the previous chain of inequalities we
are left with

(1 − ε)rn−pAVR(g)
(

n − p
p − 1

)p−1

≤
Capp({ρ = r})

|Sn−1| ≤ (1 + ε)rn−pAVR(g)
(

n − p
p − 1

)p−1

.

dividing each term by rn−p and letting r → +∞ we have that

(1 − ε)AVR(g)
(

n − p
p − 1

)p−1

≤ lim
r→+∞

Capp({ρ = r})
rn−p|Sn−1| ≤ (1 + ε)AVR(g)

(
n − p
p − 1

)p−1

,

which in turns gives (2.21) by arbitrariness of ε.

We next provide Li-Yau-type estimates. As we did in the framework of Riemannian
manifolds with nonnegative Ricci curvature, they are obtained combining the estimates
on the p-Green’s function with Proposition 2.3.2. Proposition 1.3.16 and Proposition 1.3.17
do not give the desired bound, since E ∖ B(o, rk) could have bounded components for a
divergent sequence {rk}k∈N. We use the Asymptotically Conical structure to foliate levels
of the distance by cross-sections of the asymptotic cone for witch the following uniform
Harnack’s Inequality holds.

Proposition 2.3.15 (Harnack’s Inequality). Let (M, g) be a complete n-dimensional C 0-
Asymptotically Conical Riemannian manifold with Ricci curvature satisfying (2.19). There exists
a constant C > 0 that depends only on the dimension, p and κ, but not on r, such that

sup
{ρ=r}∩E

u ≤ C
1

p−1
H inf

{ρ=r}∩E
u (2.22)

for every positive p-harmonic function u on E. Moreover, the constant CH is bounded as p → 1+.

Proof. We only provide here the existence of CH. As it may concerns its boundedness, the
constant obtained in the following lines is not sharp. The proof is based on the Cheng-
Yau-type estimate showed in [WZ10], hence the constant we are providing satisfies (p −
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1)C → +∞ as p → 1+. The result can be improved using [MRS19, Theorem 3.4], whose
assumptions are fulfilled thanks to Proposition 2.2.9 and Remark 2.3.12.

The main tool we are employing is the Cheng-Yau-type estimate Theorem 1.2.11. Fix-
ing o ∈ M, let R > 0 be such that {ρ = r} ⊂ E ∖ B(o, 3r/4) for every r ≥ R. Applying
(1.9) in B(y, r/4) for some y ∈ {ρ = r}, we get

sup
B(y,r/4)

|Du|
u

≤ C1

(
1
r
+

2κ

2 + r

)
≤ C2

r
(2.23)

where C2 does not depend on r but only on again depending only on n and p. Here, we
employed B(y, r/4) ⊂ E \ B(o, r/4) and the lower bound on the Ricci curvature given
by (2.19). As the diameter of {ρ = r}, which is connected, grows with r by the assumed
asymptotic conicality, we deduce from (2.23) that

log(u(x))− log(u(y)) ≤ sup
{ρ=r}∩E

|D log u|diam{ρ = r} ≤ C

for some new constant C1/(p−1)
H not depending on r.

Proposition 2.3.16. Let (M, g) be a complete n-dimensional C 0-Asymptotically Conical Rie-
mannian manifold with Ric satisfying (2.19). Let p > 1. Let E be given G the p-Green’s function
on M, then there exist two positive finite constants CL, CU > 0 such that

C
1

p−1
L d(o, x)−

n−p
p−1 ≤ G(o, x) ≤ C

1
p−1
U d(o, x)−

n−p
p−1 . (2.24)

for every x ∈ M ∖ {o}. Moreover, the constant CU is bounded as p → 1+ and there exists R > 0
not depending on p such that the lower bound in (2.24) holds with constant CL = C a Capp(K; E)
on M∖ B(o, R), where a > 0 is such that G(x, o) ≥ a1/(p−1) on M∖K, C is bounded as p → 1+

and K is the bounded set in Definition 2.2.1.

Proof. The upper bound in (2.24) with CU bounded as p → 1+ follows from [MRS19,
Theorem 3.6]. Indeed, the assumptions are satisfied since a weighted p-Sobolev Inequality
by Proposition 2.2.9 and the arguments therein.

For what it concerns the lower bound, we are in position to apply Proposition 1.3.17.
The main issue is that you do not have control on the bounded components of E∖ B(o, R).
Consider the function R : [1,+∞) → R defined as

R(t) = max{d(o, x) | x ∈ {ρ = t}}.

Observe that {ρ ≥ t} ⊃ E(2R(t)). Then applying the Harnack’s Inequality (2.22), Com-
parison Principle Theorem 1.2.9 and Proposition 1.3.17 one gets that

inf
{ρ=t}∩E

Gp(o, x) ≥ CH sup
{ρ=t}∩E

Gp(o, x) ≥ CH sup
∂E(2R(t))

Gp(o, x)

≥ C1

+∞ˆ

4R(t)

(
r

|B(o, r) ∩ E|

) 1
p−1

dr ≥ C2 R(t)−
n−p
p−1 ,
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for every t ≥ T, for some T large enough C1 is the constant given by (1.29) in Proposi-
tion 1.3.17 and C2 = C C1 where C1 is bounded as p → 1+. By Lemma 2.2.3 there exists
R1 ≥ R(T) such that ∂B(o, r) ⊂ {ρ ≤ 2r} and R(2r) ≤ 4r holds for every r ≥ R1. Then

inf
∂B(o,r)

G(o, x) ≥ inf
{ρ≤2r}

G(o, x) ≥ C2 R(2t)−
n−p
p−1 ≥

(
C2

4n−p

) 1
p−1

r−
n−p
p−1 ,

holds for every t ≥ R1, concluding the proof. The global lower bound, follows since itis
satisfied near the pole o and the two functions are continuous in the remaining annulus.
However, the new constant CL might go to 0 as p → 1+.

The lower bound observed in Proposition 2.3.16 improves the one given by a direct
application of [MRS19, Corollary 2.8]. In [MRS19] the authors take only into account the
behaviour of the Ricci tensor considering as the model a manifold for which the lower
bound (2.19) is actually achieved. In Proposition 1.3.17 we actually used as the model the
manifold itself. The comparison can be performed in virtue of the asymptotic behaviour
of the volume ensured by the asymptotically conical property.

Proposition 2.3.17 (Li-Yau-type estimates). Let (M, g) be a complete n-dimensional C 0-
Asymptotically Conical manifold with Ric satisfying (2.19). Let Ω ⊂ M be open bounded with
smooth boundary, u : M ∖ Ω → (0, 1] the solution to (2.7) and o ∈ Ω. Then, there exists a
constant C > 0 such that

C−1 d(o, x)−
n−p
p−1 ≤ u(x) ≤ C d(o, x)−

n−p
p−1

hold true for every x ∈ M ∖ Ω.

Proof. By Proposition 2.3.16, the assumptions of Proposition 2.3.2 are satisfied.

Proposition 2.3.18 (Cheng-yau-type estimate). Let (M, g) be a complete n-dimensional C 0-
Asymptotically Conical manifold with Ric satisfying (2.19). Let Ω ⊂ M open bounded with
smooth boundary and let u be its p-capacitary potential and o ∈ Ω. Then, there exists a constant
C > 0 such that

|Du| ≤ C
d(x, o)

(2.25)

holds on the whole M ∖ Ω.

Proof. By Proposition 2.3.16, the assumptions of Proposition 2.3.3 are satisfied and (2.25)
is a consequence of (2.8).

Remark 2.3.19. A direct consequence of Proposition 2.2.9 is a Iso-p-capacitary Inequality in
Asymptotically Conical Riemannian manifolds as in (2.13), where AVR(g) is replaced with the
Isoperimetric constant.
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2.3.4 Asymptotic behaviour of the p-capacitary potential

We conclude this section proving the asymptotic behaviour of the p-capacitary poten-
tial associated u with an open bounded subset with smooth boundary by the problem
(2.7). We prove that in Asymptotically Conical Riemannian manifolds u is equivalent to
γρ−(n−p)/(p−1) at a large distance, for some constant γ that is well characterised in terms
of Ω and the geometric of the ambient manifold.

Theorem 2.3.20 (Asymptotic behaviour of the p-capacitary potential). Let (M, g) be a com-
plete n-dimensional C 0-Asymptotically Conical Riemannian manifold with Ric satisfying

Ric(x) ≥ − (n − 1)κ2

(1 + d(x, o))2 ,

for some fixed o ∈ M, κ ∈ R and for every x ∈ M. Let E1, . . . , EN be the (finitely many) ends of
M with respect to the bounded K in Definition 2.2.1. Consider Ω ⊂ M be an open bounded subset
with smooth boundary and u : M ∖ Ω → R the solution to the problem (2.7). Then

u(x) =

 Ĉap
(i)
p (∂Ω)

AVR(g; Ei)


1

p−1

ρ(x)−
n−p
p−1 + o

(
ρ(x)−

n−p
p−1

)
(2.26)

on Ei as d(o, x) → +∞ for every i = 1, . . . , N, where Ĉap
(i)
p (∂Ω) and AVR(g; Ei) are defined

respectively in (2.20) and (2.18).

In fact, we prove a more general statement that provides information also about the
asymptotic behaviour of the derivatives of u, if the asymptotic structure of the under-
lying metric is suitably reinforced. Indeed, taking advantage of the Schauder estimates
Theorem 1.2.5, we can deduce the following result.

Theorem 2.3.21 (Asymptotic behaviour of the p-capacitary potential). Let (M, g) be a com-
plete C k,α-Asymptotically Conical Riemannian manifold for some α > 0 and k ∈ N with Ric
satisfying

Ric(x) ≥ − (n − 1)κ2

(1 + d(x, o))2 ,

for every x ∈ M and for some fixed o ∈ M. Let E1, . . . , EN be the (finitely many) ends of M with
respect to the compact K in Definition 2.2.1. Consider Ω ⊂ M be an open bounded subset with
smooth boundary and u : M ∖ Ω → R a solution of the problem (2.7). Then∣∣∣∣∣∣∣Dℓu −

 Ĉap
(i)
p (∂Ω)

AVR(g; Ei)


1

p−1

Dℓρ
− n−p

p−1

∣∣∣∣∣∣∣
ĝ

= o
(

ρ
− n−p

p−1 −ℓ
)

(2.27)

on Ei as d(o, x) → +∞ for every i = 1, . . . , N and ℓ ≤ k+ 1, where Ĉap
(i)
p (∂Ω) and AVR(g; Ei)

are defined respectively in (2.20) and (2.18).
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In the case Ric ≥ 0 and p = 2 this result is carried out in the greater generality of
Euclidean Volume Growth in the two works [LTW97] and [CM97] (see also [Din02] and
[AFM20]), where the asymptotic C 0-expansion of the harmonic Green’s function is re-
spectively deduced using the existence of a representation formula and the monotonic-
ity of Almgren’s frequency function. This result also extend to the nonlinear setting the
asymptotic analyses carried out in [AMO22, Theorem 2.2], [AMO21, Lemma 2.2], [HM20,
Lemma 4.1] and [MMT20, Lemma A.2], although without so refined estimates of the error
terms. Up to our knowledge, these tools are not known in the general case of p-harmonic
functions, and appreciable results for the p-capacitary potential have indeed been estab-
lished only in Rn in [KV86; Col+15]. The key property of Euclidean spaces employed in
these contributions is the dilation invariant structure of Rn. A careful reading of these
works suggest that such a strategy could be successful also on Riemannian cones.

Along with the proof, we extend Lemma 2.3.14 showing the the p-capacity that p-
capacitary potential behaves like the p-capacity of the cross sections approaching infinity.

Proposition 2.3.22 (Asymptotic behaviour of the p-capacity of level sets). In the same as-
sumptions and notations of Theorem 2.3.20, set, for i = 1, . . . , N,

vi =

 Ĉap
(i)
p (∂Ω)

AVR(g; Ei)


1

n−p

u− p−1
n−p .

Then, we have

lim
s→+∞

Capp({vi = s} ∩ Ei; Ei)

sn−p|Sn−p| =

(
n − p
p − 1

)p−1

AVR(g; Ei).

Moreover, as a byproduct, we obtain the following uniqueness result.

Proposition 2.3.23. Let ((0,+∞)× L, ĝ) be a n-dimensional Riemannian cone with Ric ≥ 0,
where L is a closed connected smooth hypersurface. Let u be nonnegative p-harmonic function on
(0,+∞)× L satisfying u(x) ≤ C ρ(x)−(n−p)/(p−1) for every x ∈ (0,+∞)× L for some constant
C ≥ 0. Then, there exists a nonnegative γ ∈ R such that

u(x) = γρ(x)−
n−p
p−1

holds on (0,+∞)× L.

In [KV86], a stronger result is proved in Rn ∖ {0}, where the upper bound and ac-
cordingly the function u are shifted by a constant. The analogue can be obtained in the
same way in our setting. The proof of this proposition is inspired to the one of [HI01,
Proposition 7.2]. The techniques used underline the relation between the p-capacitary po-
tential and (weak) IMCF we will see in the next section, where the following proof will be
rephrased in this latter geometric flavour.

Proof of Theorems 2.3.20 and 2.3.21 and Propositions 2.3.22 and 2.3.23. It is enough to prove
the theorems in the case M has only one end. The proof of the general case then follows
applying the result to each end. We will denote by g(s) the metric s−2ω∗

s g on [1/s,+∞)×
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L, being ωs the family of diffeomorphisms defined in (2.2). We find it convenient to or-
ganise the proof in four steps. The first three steps are devoted to prove Theorem 2.3.20.
In particular, the second and the third ones contain the proofs of Propositions 2.3.22
and 2.3.23 respectively. In the last, we complete the proof of the asymptotic behaviour
of higher-order derivatives, mainly using Schauder estimates for p-harmonic functions.

Step 1. Suppose that (M, g) is C 0-Asymptotically Conical. Define the family of functions
us : [1/s,+∞)× L → R as

us(x) = s
n−p
p−1 u ◦ ωs(x),

where ωs is the map defined in (2.2). The aim of this step is to prove compactness of
(us)s≥1 with respect to local uniform convergence on (0,+∞)× L. In particular, by Theo-
rem 1.2.6 (see Remark 1.2.7) any limit point w of the sequence (us)s≥1 is p-harmonic with
respect to the metric ĝ on (0,+∞)× L. Moreover, there exists a positive constant C such
that

C−1 ρ(x)−
n−p
p−1 ≤ w(x) ≤ C ρ(x)−

n−p
p−1 (2.28)

is satisfied for every x ∈ (0,+∞)× L.
By Proposition 2.3.17 we have that

C−1
1
(
d(o, x)

)− n−p
p−1 ≤ u(x) ≤ C1

(
d(o, x)

)− n−p
p−1

holds on M∖Ω. In particular, since by Lemma 2.2.3 the distance function from o behaves
asymptotically as the coordinate ρ, we deduce that there exist S2, C2 > 0 such that

C−1
2 ρ(x)−

n−p
p−1 ≤ us(x) ≤ C2 ρ(x)−

n−p
p−1 (2.29)

holds on [1/s,+∞)× L for every s ≥ S2. Then, (us)s≥1 is equibounded. By the gradient
estimate Propositions 2.3.17 and 2.3.18

|Du|(x) ≤ C3 u(x)
n−1
n−p ≤ C4

(
d(o, x)

)− n−1
p−1 ,

for some positive constants C3, C4. Hence, employing again Lemma 2.2.3 there exist
S5, C5 > 0 such that

|Dus|g(s)(x) ≤ C5 ρ(x)−
n−1
p−1 (2.30)

holds on [1/s,+∞)× L for every s ≥ S5. By Lemma 2.2.2 we have that for some ε > 0
there is S6 > 0 such that

|Dus|ĝ ≤ (1 + ε)|Dus|g(s)
holds for every s ≥ S6. Combining it with (2.30) we obtain that the family (us)s≥1 is
equicontinuous. By the Arzelà-Ascoli Theorem we conclude that (us)s≥1 is precompact
with respect to the local uniform convergence. (2.28) follows from (2.29).

Step 2. Here we prove that any limit point v of the family (us)s≥1 has the form

v(x) = γρ(x)−
n−p
p−1 , (2.31)
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for some nonnegative γ ∈ R, proving also Proposition 2.3.23. Let v : (0,+∞)× L → R be

a nonnegative p-harmonic function satisfying the bound v(x) ≤ C ρ(x)−
n−p
p−1 on (0,+∞)×

L.
Define the function ev : (0,+∞) → R as

ev(t) =
R(t)
r(t)

,

where [r(t), R(t)]× L is the smallest annulus containing {v = 1/t} for every t ∈ (0,+∞).
Observe that, ev(t) ≥ 1 and ev(t) = 1 if and only if {v = 1/t} is a cross-section of the
cone. By the Comparison Principle Theorem 1.2.9, using the potentials of {ρ = r(t)} and
{ρ = R(t)} as barriers, we have that

r(t)
(

t
T

) n−p
p−1

≤ ρ(x) ≤ R(t)
(

t
T

) n−p
p−1

(2.32)

holds for every x ∈ {v = 1/T} for every T ≥ t. Hence, ev is nonincreasing. More-

over, since (0,+∞) × L is connected, ρ(x)−
n−p
p−1 is p-harmonic and C 2((0,+∞) × L) and

|Dρ
− n−p

p−1 | ≥ n−p
p−1 R− n−1

p−1 holds on (0, R) × L for every R > 0, by the Strong Comparison
Principle Theorem 1.2.9 the inequalities in (2.32) are strict unless {v = t} is a cross-section.
It is not hard to see that ev is scale invariant

Consider for s ≤ 1 the family vs : [1,+∞)× L → R defined as

vs(x) = s
n−p
p−1 v ◦ ωs(x)

where ωs is defined in (2.2). Using the same argument of Step 1 we have that

vs(x) ≤ C ρ(x)−
n−p
p−1 and |Dvs|(x) ≤ C ρ(x)−

n−1
p−1

holds on (0,+∞) × L for some constant C > 0. Hence, appealing to the Arzelà-Ascoli
Theorem, (vs)s≤1 is precompact with respect to the local uniform convergence. Let w be a
limit point for (vs)s≤1. Since e is scale invariant, evs(t) = ev(t/s). Then, ew(t) is constant
equal to some ew ∈ [1,+∞) that by monotonicity satisfies ew = supt ev(t) ∈ [1,+∞).
Suppose by contradiction that ew > 1. Then the level {w = 1} ⊂ [r(1), ewr(1)] × L and
{w = 1} touches both the cross-sections {ρ = r(1)} and {ρ = ewr(1)} without being equal
to either one. By (2.32) and the Strong Comparison Principl Theorem 1.2.9

r(1)t
p−1
n−p < ρ(x) < ewr(1)t

p−1
n−p

holds for every x ∈ {w = 1/t} for every t > 1. We therefore have that ew(t) < ew which is
a contradiction. In conclusion ew must be 1 and since 1 ≤ ev(t) ≤ ew = 1, v is as in (2.31).

Step 3. By Step 2, any limit point w of the family (us)s≥1 given by Step 1 has the form

γρ
− n−p

p−1 , where γ > 0 by (2.28). We are now going to prove that

γ = Ĉapp(∂Ω)
1

p−1 AVR(g)−
1

p−1 . (2.33)
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The characterisation (2.33) ensures that any converging subsequence admits the same

limit, proving that the whole family (us)s≥1 locally uniformly converges to γρ
− n−p

p−1 as
s → +∞. In particular, for every ε > 0 there exists a S ≥ 1 such that

sup
{ρ=s}

s
n−p
p−1

∣∣∣∣∣∣u −
(

Ĉapp(Ω)

AVR(g)

) 1
p−1

ρ
− n−p

p−1

∣∣∣∣∣∣ = sup
{ρ=1}

∣∣∣∣∣∣us −
(

Ĉapp(Ω)

AVR(g)

) 1
p−1

ρ
− n−p

p−1

∣∣∣∣∣∣ ≤ ε

for every s ≥ S proving Theorem 2.3.20 and Proposition 2.3.22.
Observe that γ > 0 by Proposition 2.3.17. In order to prove (2.33), we find convenient

to work with the auxiliary function

v =

(
u
γ

)− p−1
n−p

.

Since w is a limit point for the family (us)s≥1, there is a subsequence (usk)k∈N, sk increasing

and divergent as k → +∞, such that usk → w = γρ
− n−p

p−1 locally uniformly on (0,+∞)× L
as k → +∞. Then for any ε > 0 there exists kε ∈ N such that{

ρ ≤ sk

1 + ε

}
⊂ {v ≤ sk} ⊂

{
ρ ≤ sk

1 − ε

}
holds for every k ≥ kε. The monotonicity of the p-capacity with respect to the inclusion
(1.19) yields

Capp

({
ρ ≤ sk

1 + ε

})
≤ Capp ({v ≤ sk}) ≤ Capp

({
ρ ≤ sk

1 − ε

})
By (1.20) we can compute the p-capacity of level sets of v in terms of the capacity of ∂Ω,
that is

Capp

({
ρ ≤ sk

1 + ε

})
≤ γ−(p−1)sn−p

k Capp (∂Ω) ≤ Capp

({
ρ ≤ sk

1 − ε

})
Dividing each side by |Sn−1|sn−p

k , letting k → +∞ and using Lemma 2.3.14 we infer that(
n − p
p − 1

)p−1 AVR(g)
(1 + ε)n−p ≤ γ−(p−1)

Capp(∂Ω)

|Sn−1| ≤
(

n − p
p − 1

)p−1 AVR(g)
(1 − ε)n−p

Then (2.33) follows by arbitrariness of ε > 0, keeping in mind the characterisation of
AVR(g) in Definition 2.2.5 and the relation between the p-capacity and the normalised
p-capacity (1.13).

Step 4. Suppose now (M, g) is C 0,α-Asymptotically Conical for α > 0. By Theorem 1.2.1
us ∈ C

1,β
loc ((1/s,+∞) × L) for some β ∈ (0, α) and for every K ⊂ (1/s,+∞) × L there

exists constant C > 0 such that

‖us‖C 1,β(K) ≤ C ‖us‖C 0((1/s,+∞)×L). (2.34)
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Since the metric g(s) locally C 0,α -converges to ĝ on (0,+∞) × L by Lemma 2.2.2, the
constant in (2.34) can be chosen not depending on s. Hence, by Arzelà-Ascoli Theorem,
the family (us)s≥1 C 1-locally converges on (0,+∞)× L to the function

(
Ĉapp(∂Ω)

AVR(g)

) 1
p−1

ρ
− n−p

p−1 (2.35)

as s → +∞. This proves Theorem 2.3.21 for k = 0 and ℓ ≤ 1.
If (M, g) is C k,α-Asymptotically Conical for k ≥ 1 and α > 0, we already proved that

(2.27) holds for ℓ ≤ 1. In particular, for every R there exists S > 0 such that |Dus| > 0
holds on every compact K ⊂ (R,+∞) × L for every s ≥ S. Applying Theorem 1.2.3,
us ∈ C ∞((R,+∞) × L) for every s ≥ S. Moreover, for every K ⊂ (R,+∞) × L) there
exists a constant C > 0 such that

‖us‖C k+1,α(K) ≤ C ‖us‖C 0((1/s,+∞)×L). (2.36)

Since g(s) locally C k+1,α-converges to ĝ on (0,+∞)× L , the constant in (2.36) can be cho-
sen not depending on s. Since R is arbitrary, (us)s≥1 is precompact with respect to the
local C k+1-topology. Hence, (us)s≥1 converges on compact subsets of (0,+∞)× L to the
function defined in (2.35) as s → +∞ up to its (k + 1)-th derivative, concluding the proof
of Theorem 2.3.21.

As a consequence of Theorem 2.3.20, we extend Lemma 2.2.4 showing that the volume
of level sets of a suitable function of the p-capacitary potential behaves like the volume of
geodesic spheres approaching infinity.

Proposition 2.3.24 (Asymptotic behaviour of the area of level sets). Under the same assump-
tions and notations of Theorem 2.3.20, set, for i = 1, . . . , N,

vi =

 Ĉap
(i)
p (∂Ω)

AVR(g; Ei)


1

n−p

u− p−1
n−p .

Then, we have

AVR(g; Ei) = lim
s→+∞

|{vi ≤ s} ∩ Ei|
sn|Bn| . (2.37)

Moreover, if the assumptions of Theorem 2.3.21 are satisfied, then

AVR(g; Ei) = lim
s→+∞

|{vi = s} ∩ Ei|
sn−1|Sn−1| . (2.38)

Proof. We prove the statement in the case M has only one end, being the general case a
direct consequence. We drop the index i in the following lines. By Theorem 2.3.20, for any
ε > 0 there exists Rε > 0 such that

(1 − ε)ρ ≤ v ≤ (1 + ε)ρ
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holds on {ρ ≥ Rε}. Thus we have that{
ρ ≤ s

1 + ε

}
⊂ {v ≤ s} ⊂

{
ρ ≤ s

1 − ε

}
.

By the monotonicty of the volume we have that∣∣∣∣{ρ ≤ s
1 + ε

}∣∣∣∣ ≤ |{v ≤ s}| ≤
∣∣∣∣{ρ ≤ s

1 − ε

}∣∣∣∣.
Dividing each side by sn|Bn| and passing to the limit as s → +∞ we can conclude that

AVR(g)
(1 + ε)n ≤ lim

s→+∞

|{v ≤ s}|
sn|Bn| ≤ AVR(g)

(1 − ε)n .

Since ε > 0 is arbitrary, we conclude the proof of the first identity in (2.37). A straightfor-
ward computation relying on the identity

|Dv| =
(

Ĉapp(∂Ω)

AVR(g)

) 1
n−p (

p − 1
n − p

)
u− n−1

p−1 |Du|

permits to write

AVR(g) =
1

|Sn−1|sn−1

ˆ

{v=s}

|Dv|p−1 dσ.

If the assumptions of Theorem 2.3.21 are satisfied, then |Dv| approaches 1 at infinity, hence
we have

AVR(g) = lim
s→+∞

1
|Sn−1|sn−1

ˆ

{v=s}

|Dv|p−1 dσ = lim
s→+∞

|{v = s}|
sn−1|Sn−1| ,

which concludes the proof of (2.38).

2.4 The (weak) Inverse Mean Curvature Flow

We conclude the chapter highlighting the relation between the p-capacitary potential and
the (weak) Inverse Mean Curvature Flow, introduced by Huisken and Ilmanen in [HI01]
to resolve the Riemannian Penrose Conjecture. Such relation was pointed out by Moser
in [Mos07; Mos08] who showed that, after a suitable transformation, the p-capacitary
potential converges to the weak IMCF as p → 1+. This result has been extended to cover
a larger class of Riemannian manifolds in [KN09; MRS19].

We firstly recall here the definition of the weak IMCF, which is a solution to the equa-
tion

div
(

Dw
|Dw|

)
= |Dw|

in a weak sense. Without any attempt to be as general as in [MRS19], we prove the ex-
istence of the weak IMCF on Riemannian manifolds with nonnegative Ricci curvature.
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We follow here the original argument by Moser, specifying those passages that were un-
clear in the original paper [Mos07]. In the Asymptotically Conical setting, we instead
prefer to assume the existence provided in [MRS19, Theorem 1.7], but we leverage all
the work done in this section to improve the Li-Yau-type estimates on the solution to the
weak IMCF problem, obtaining an upper bound with a sharp coefficient. We conclude
by showing the asymptotic behaviour at infinity on Asymptotically Conical Riemannian
manifolds, which is the analogue of Theorem 2.3.20 for the (weak) IMCF.

2.4.1 The level set formulation of the IMCF

Let (M, g) be a complete Riemannian manifold and Σ be a closed complete smooth strictly
mean-convex hypersurface in (M, g). A classical (smooth) solution of the Inverse Mean
Curvature Flow starting at Σ is a family of a diffeomorphisms Ψt : Σ → M with t ∈ [0, T),
T > 0, such that Ψ0(Σ) = Σ and

∂Ψt

∂t
(q) =

νt(q)
Ht(q)

for every t ∈ [0, T) and q ∈ Σ, (2.39)

where νt(q) and Ht(q) are the unit normal vector and the mean curvature of Σt = Ψt(Σ)
at q. The mean curvature of Σt may tend to zero at some point as t approaches T. In this
case the flow develops singularities a time T, which is called an extinguish time for the
smooth IMCF. In the case T = +∞ the flow is said immortal.

On the other hand, one can introduce a level-set formulation of the IMCF, where the
evolved hypersurfaces are the level sets of a smooth function w : M → R such that
|Dw| > 0. One can see that (2.39) is equivalent to

∆(1)
g w1 = div

(
Dw1

|Dw1|

)
= |Dw|, (2.40)

since the left hand side represents the mean curvature of the level set {w = t} and the
right hand side is the inverse of the speed of the level set flow. This is a second order
degenerate elliptic partial differential equation. One can temporarily abandon the strict
constraint of dealing with diffeomorphisms as in (2.39) in favour of a lower regularity but
a more flexible tool, looking for weak solutions of (2.40). We give the following definition
of weak solutions to (2.40).

Definition 2.4.1 (Weak IMCF). Let (M, g) be a complete n-dimensional Rieamannian manifold
and U ⊆ M an open subset. A locally Lipschitz function w1 ∈ Liploc(U) is a weak solution of
(2.40) in U if for every ψ ∈ Liploc(U) and any compact K ⊂ U with {w1 6= ψ} ⊂ K,

JK
w1
(w1) ≤ JK

w1
(ψ) (2.41)

where

JK
w1
(ψ) =

ˆ

K

|Dψ|+ ψ|Dw1|dµ. (2.42)
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Given an open bounded subset Ω ⊂ M with smooth boundary, the weak IMCF starting at Ω is a
weak solution w1 ∈ Liploc(M ∖ Ω) to∆(1)

g w1 = |Dw1| on M ∖ Ω,
w1 = 0 on ∂Ω,
w1 → +∞ as d(x, o) → +∞,

(2.43)

for some o ∈ Ω.

The reason to introduce the functional (2.42) is that (2.40) is neither a gradient flow nor
the Eulero-Lagrange equation of some energy functional. JK

w1
( ·) is then obtained freezing

the right-hand side.
In [HI01, Theorem 3.1] the authors proved that a solution to (2.43) exists provided the

manifold satisfies some additional assumptions that are in force, for example, on asymp-
totically flat manifolds. This result has been achieved with a classical technique for elliptic
partial differential equations, using the approximation by the regularised problem

div

 Dwε
1√

|Dwε
1|

2 + ε

 =

√
|Dwε

1|
2 + ε.

Moreover, in [HI01, Thoerem 2.2 (iii)] the authors show that the properness of the solution
guarantees its uniqueness without further requirements on the ambient manifold. We
recall that a function w : M → R is proper if its sublevel sets {w ≤ t} are compact for
each t ∈ R.

A different idea was thereafter proposed by Moser in [Mos07; Mos08] in the flat Eu-
clidean case, then extended by Kotschwar and Ni [KN09] and Mari, Rigoli and Setti
[MRS19] in the Riemannian framework. He adopted the p-capacitary potential (2.7) up
associated with Ω to approximate the solution of (2.40). Indeed, it is simple to realise that
the family of functions function wp = −(p − 1) log up solves the initial value problem∆(p)

g wp = |Dwp|p on M ∖ Ω,
wp = 0 on ∂Ω,
wp → +∞ as d(x, o) → +∞,

(2.44)

for some o ∈ Ω. Moreover, (2.44) formally approximate (2.43) as p → 1+. This conver-
gence is not only formal, but wp converges to a proper Liploc(M ∖ Ω) weak solution of
(2.40) locally uniformly.

2.4.2 Properties of the IMCF on Riemannian manifolds

We recall here some results that follow from the analysis of the IMCF in this section and
that will be useful both to prove its asymptotic behaviour and in the derivation of the
Minkowski Inequality. We mainly refer to [FM20] and [HI01]. We are denoting with ∂∗E
the reduced boundary of a finite perimeter set E.

Definition 2.4.2 (Outward minimising and strictly outward minimising sets). Let (M, g)
be a complete n-dimensional Riemannian manifold. Let E ⊂ M be a bounded measurable set with
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finite perimeter. E is outward minimising if for any F ⊇ E we have |∂∗E| ≤ |∂∗F|, where by
∂∗F we denote the reduced boundary of a set F. E is strictly outward minimising if it is outward
minimising and whenever |∂∗E| = |∂∗F| for some F ⊇ E we have that |F ∖ E| = 0.

We can define the strictly outward minimising hull Ω∗ of an open bounded subset Ω
with smooth boundary as

Ω∗ = Int E
for some bounded E containing Ω
such that |E| = inf

F∈SOMBE(Ω)
|F|, (2.45)

where by SOMBE(Ω) we denote the family of all bounded strictly outward minimising
sets containing Ω and Int E is the measure theoretic interior of E. As a consequence of
[FM20, Theorem 1.1], [Bre22] and Proposition 2.2.9 we have the following result.

Theorem 2.4.3. Let (M, g) a complete n-dimensional Riemannian manifold satisfying one of the
following two conditions:

(i) (M, g) has nonnegative Ricci curvature and Euclidean Volume Growth;

(ii) (M, g) is C 0-Asympotically Conical and the link L of the asymptotic cone satisfies Ric ≥
− f (d(o, x)) for some nonnegative smooth function f (t) = o(1) as t → +∞ and some
o ∈ M.

Then, every bounded open set Ω ⊂ M with finite perimeter admits a strictly outward minimising
hull Ω∗ ⊂ M in the sense of (2.45). Moreover, the set Ω∗ is an open bounded maximal volume
solution to the least area problem with obstacle Ω, that is |Ω∗| = max |E|, where E solves the
problem

|∂∗E| = inf{|∂∗F| | F is bounded with finite perimeter and Ω ⊆ F}.

Outward minimising sets can be characterised as those satisfying

|∂Ω| = |∂Ω∗|.

A set Ω is strictly outward minimising if and only if it coincides with Ω∗.
Moreover, we recall the following regularity result for the strictly outward minimis-

ing hull (see [HI01, Regularity Theorem 1.3], [FM20, Theorem 2.18] and in the references
therein).

Theorem 2.4.4. Let (M, g) be a complete n-dimensional Riemannian manifold satisfying one
of the two conditions in Theorem 2.4.3. Let Ω ⊂ M be an open bounded subset with smooth
boundary. Then there exists a (possibily empty) subset Sing ⊂ ∂Ω∗ ∖ ∂Ω of Hausdorff dimension
n − 8, Sing = ∅ if n ≤ 7, such that

(i) ∂Ω∗ is smooth around each point in the interior of ∂Ω ∩ ∂Ω∗ with respect to the induced
topology on ∂Ω∗;

(ii) ∂Ω∗ is smooth around each point of ∂Ω∗ ∖ (∂Ω ∪ Sing);

(iii) ∂Ω∗ is a C 1,1-hypersurface around each point of ∂Ω∗ ∖ Sing.

The C 1,1-regularity is essentially optimal (see [SZW91; SWZ93]). A direct consequence
is that Ω∗ is the unique open bounded maximal volume solution to the least area problem
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with obstacle Ω, in the sense that any other solution E satisfies Int E = Ω∗ (see [FM20,
Theorem 2.19].

A simple variational argument shows that outward minimising subsets has nonnega-
tive mean curvature. It is possible to give a notion of weak mean curvature for a subset
which is a C 1,1-hypersurface outside a singular set as the one naturally defined in the
natural almost everywhere sense (we refer the reader to [HI01, Section 1] for a precise
definition). The same variational argument implies that ∂Ω∗ is weakly mean-convex.

As highlighted in [HI01], the notions of strictly outward minimising sets and weak
IMCF are deeply related. Let Ω ⊂ M be an open bounded with smooth boundary and w
the solution to (2.43). The following facts hold along the weak IMCF (see [HI01, Minimiz-
ing Hull Property 1.4] or [FM20, Section 3.2]):

(i) for every t > 0, the set {w < t} is outward minimising;

(ii) for every t ≥ 0, the set Int{w ≤ t} is strictly outward minimising;

(iii) for every t ≥ 0, the strictly outward minimising hull of {w < t} coincides with
Int{w ≤ t};

(iv) for every t ≥ 0 the set {w ≤ t} satisfies

JK
w({w ≤ t}) ≤ JK

w(F)

for every F ⊂ M with locally finite perimeter such that Int{w ≤ t}4F is compactly
contained in M ∖ Ω and every compact K containing Int{w ≤ t}4F, where

JK
w(F) = |∂∗F ∩ K| −

ˆ

F∩K

|Dw|dµ. (2.46)

In particular, the weak IMCF starting at Ω suddenly jumps to its strictly outward minimis-
ing hull and it remains strictly outward minimising until {w < t} is only outward min-
imising. At that moment, it jumps to its strictly outward minimising hull and continues as
before. Differently from the first jump, at which the area can drop to a strictly less value,
{w < t} is still outward minimising for every t > 0, then |∂{w < t}| = |∂{w ≤ t}|. More-
over, the area grows exponentially as provided in [HI01, Exponential Growth Lemma
1.6].

Lemma 2.4.5. Let (M, g) be a complete n-dimensional Riemannian manifold satisfying one of the
two conditions in Theorem 2.4.3. Let Ω be an open bounded subset with smooth boundary and w
the solution to (2.43) starting at Ω. Then

|∂{w ≤ t}| = |∂{w < t}| = et |∂Ω∗|

holds for every t > 0.

Beyond this, minimising properties are at the basis of the overlapping of the two no-
tions of IMCF. It is actually easy to see that the classical definition of the IMCF may not
coincide with its weak version, even if both exist. For example, the classical IMCF starting
at some open bounded subset with strictly mean-convex boundary Ω foliate the manifold
in the tubular neighbourhood of ∂Ω where it is defined. While, if Ω is not strictly outward
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minimising, the weak IMCF suddenly jumps to Ω∗. The reason is that the hypersurfaces
obtained through the smooth IMCF only minimises the functional (2.42) only in the neigh-
bourhood they foliate. This is the content of [HI01, Smooth Flow Lemma 2.3], we recall
here (see also [HI01, Lemma 1.1]).

Lemma 2.4.6 (Smooth Flow Lemma). Let (M, g) be a complete n-dimensional Riemannian
manifold. Let Σ ⊂ M be a closed complete smooth strictly mean-convex hypersurfce. For every
t ∈ [0, T), let Ψt : Σ → M be a classical solution to (2.39) starting at Σ and Σt = Ψt(Σ). Let
w a function such that {w = t} = Σt and {w < t} is the region bounded by Σt. Then {w < t}
minimises the functional JK

w( ·) in (2.46) for every K compactly contained in {0 ≤ w < T} and
for every t ∈ [0, T). In particular, w is a solution to the weak IMCF in {0 ≤ w < T}, according
to Definition 2.4.1.

Observe that the solution provided in the previous lemma is only local. If it exists, the
global weak solution in M∖Ω may not coincide with it. In the particular case the smooth
flow is immortal, the function w is the global weak IMCF starting at the set enclosed by
Σ and in particular each Σt is strictly outward minimising. Another case when the two
definitions agrees is when the weak IMCF starts at some Ω which is both strictly outward
minimising and has strictly mean-convex boundary, as proved in [HI01, Smooth Start
Lemma 2.4].

Lemma 2.4.7 (Smooth Start Lemma). Let (M, g) be a complete n-dimensional Riemannian
manifold and let Ω ⊂ M be an open bounded strictly outward minimising subset with smooth
strictly mean-convex boundary. Suppose there exists a solution w of (2.43) with initial condition
Ω. Then {w = t} coincides with the smooth classical solution for a short time.

The (weak) IMCF problem shares the same compactness property of p-harmonic func-
tions with respect to the local uniform convergence, thanks to [HI01, Compactness Theo-
rem 2.1].

Theorem 2.4.8 (Compactness Theorem). Let (wn)n∈N be a sequence of solutions to (2.41) on U
that converges locally uniformly to some function w with locally uniformly equibounded gradient.
Then, w ∈ Liploc(U) solves (2.41).

Remark 2.4.9. Suppose that (Un)n∈N is a sequence of open subsets converging to U open subset
as n → +∞. Let gn be a metric on Un for every n ∈ N that locally uniformly converges to some
metric g on U as n → +∞. The above theorem still holds if wn is p-harmonic with respect to the
metric gn and w is p-harmonic on U with respect to g.

To conclude, we stress another relation between the weak IMCF and the p-capacitary
potential. Such a result is contained in the far more general [FM20, Theorem 1.2], hav-
ing in mind the relation between the p-capacity and the normalised p-capacity given in
Definition 1.3.1.

Theorem 2.4.10. Let (M, g) be a complete n-dimensional Riemannian manifold satisfying one
of the two properties in Theorem 2.4.3. Let Ω be an open bounded subset with smooth boundary.
Then

lim
p→1+

Capp(∂Ω) = |∂Ω∗|.
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2.4.3 Existence of the weak IMCF

Here we prove the existence of the (weak) Inverse Mean Curvature Flow starting at
Ω ⊂ M open bounded with smooth boundary in some natural classes of Riemannian
manifolds.

First of all, we observe that a weak solution of

∆(p)
g wp = |Dwp|p (2.47)

is also a minimiser of the functional

Jp,K
wp (ψ) =

ˆ

K

1
p
|Dψ|p + ψ|Dwp|p dµ, (2.48)

which means that for every compact K ⊂ M∖Ω and all functions ψ ∈ W1,p
loc (M∖Ω) such

that supp(wp − ψ) ⊂ K it holds

Jp,K
wp (wp) ≤ Jp,K

wp (ψ). (2.49)

Indeed, consider ψ ∈ W1,p
loc (M ∖ Ω) that satisfies supp(wp − ψ) ⊂ K ⊂ M ∖ Ω, by (2.47)

we obtain ˆ

M∖Ω

(wp − ψ)|Dwp|p dµ =

ˆ

M∖Ω

|Dwp|p−2〈Dwp
∣∣Dψ − Dwp

〉
dµ.

Using Young’s Inequality and since wp = ψ almost everywhere outside K it holdsˆ

K

1
p
|Dwp|p + wp|Dwp|p dµ =

ˆ

K

1 − p
p

|Dwp|p + ψ|Dwp|p + |Dwp|p−1|Dψ|dµ

≤
ˆ

K

1
p
|Dψ|p + ψ|Dwp|p dµ,

proving the validity of (2.49).
We now want to pass to the limit as p → 1+ in the functional (2.48). The main issue is

that the functional depends on p also through the solution wp to (2.47). For this reason we
first need to control the sequence (wp)p>1. We recall that by Proposition 2.3.8 there exist a
constant C > 0

(n − p) log
(
d(x, o)

)
− C ≤ wp(x) ≤ (n − p) log

(
d(x, o)

)
+ C . (2.50)

and the constant C is bounded as p → 1+. Moreover, by [MRS19, Theorem 2.24] we also
have the following uniform gradient bound, which triggers the Arzelà-Ascoli Theorem
and grants the local uniform convergence of (wp)p≥1.

Proposition 2.4.11. Let (M, g) a complete p-nonparabolic n-dimensional Riemannian manifold
with Ric ≥ 0, for p > 1. Let Ω ⊂ M be an open bounded subset with smooth boundary. The
solution wp to (2.44) satisfies

|Dwp| ≤
n − p

R
, (2.51)

where R is the supremum of all r > 0 such that for each x ∈ ∂Ω there exists a geodesic ball
Br ⊂ Ω such that x ∈ ∂Br.
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We now have all the tools required to prove the following theorem.

Theorem 2.4.12. Let (M, g) be a Riemannian Manifold with Ric ≥ 0 and Euclidean Volume
Growth. Let Ω ⊂ M be an open bounded subset with smooth boundary. For every 1 < p < n, let
wp be the solution to (2.44), then wp → w1 locally uniformly as p → 1+ and w1 ∈ Lip(M ∖ Ω)
solves the weak IMCF (2.43) starting at Ω. Moreover, given o ∈ M, the function w1 satisfies

(n − 1) log
(
d(x, o)

)
− C ≤ w1 ≤ (n − 1) log

(
d(x, o)

)
+ C (2.52)

where C = C(Ω, M, n) > 0, and

|Dw1| ≤ max
∂Ω

{H, 0}, (2.53)

where H is the mean curvature of ∂Ω.

Proof. By (2.50) and (2.51) there exists a subsequence (pk)k∈N, pk → 1+ as k → +∞ and
w1 ∈ Liploc(M ∖ Ω) satisfying (2.52) and (2.53), such that wpk → w1 locally uniformly
as k → +∞. In particular, w1 is proper. If we prove that w1 satisfies the minimisation
problem (2.41) we conclude that w1 does not depend on the chosen subsequence and
consequently the theorem.

Consider K ⊂ M ∖ Ω compact and ψ ∈ Liploc(M ∖ Ω) with supp(w1 − ψ) ⊂ K.
Choose η ∈ C ∞

c (M∖Ω) with 0 ≤ η ≤ 1 and η = 1 on K. Replacing ψ with ηψ+(1− η)wp
and K with supp η in (2.49), we obtain

ˆ

supp η

1
p
|Dwp|p + wp|Dwp|p dµ ≤

ˆ

supp η

1
p
|ηDψ + (1 − η)Dwp + (ψ − wp)Dη|p

+ (ηψ + (1 − η)wp)|Dwp|p dµ.

Using Hölder’s Inequality and reorganising the terms, we get

ˆ

supp η

1
p
|Dwp|p + η(wp − ψ)|Dwp|p dµ ≤ 3p−1

p

ˆ

supp η

ηp|Dψ|p + (1 − η)p|Dwp|p

+ |ψ − wp|p|Dη|p dµ.
(2.54)

Choose p = pk and replace ψ with w1. Since |Dwpk |
pk is uniformly bounded by (2.51) and

wpk → w1 locally uniformly as k → +∞ we have that

lim sup
k→+∞

1
pk

ˆ

M∖Ω

|Dwpk |
pk(1 − 3pk−1(1 − η)pk)dµ = lim sup

k→+∞

ˆ

M∖Ω

η|Dwpk |
pk dµ,

while clearly

lim sup
k→+∞

ˆ

M∖Ω

ηpk |Dw1|pk − η(wpk − w1)|Dwpk |
pk + |ψ − wpk |

pk |Dη|pk dµ =

ˆ

M∖Ω

η|Dw1|dµ,
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since |ψ − w1||Dη| = 0 almost everywhere by construction. Plugging the two above limits
into (2.54) we finally obtain

lim sup
k→+∞

ˆ

M∖Ω

η|Dwpk |
pk dµ ≤

ˆ

M∖Ω

η|Dw1|dµ. (2.55)

Moreover, since for every compact K ⊆ M ∖ Ω we have that

sup
k∈N

ˆ

K

|wpk |+ |Dwpk |dµ < +∞,

up to a not relabeled further subsequence, Dwpk locally weakly∗ converges to Dw1. Hence,
employing Jensen’s Inequality, we have

lim inf
k→+∞

 

supp η

η|Dwpk |
pk dµ ≥ lim inf

k→+∞

 

supp η

ηpk |Dwpk |
pk dµ

≥ lim inf
k→+∞

  

supp η

η|Dwpk |dµ


pk

≥
 

supp η

η|Dw1|dµ.

(2.56)

for every η ∈ C ∞
c (M ∖ Ω) with 0 ≤ η ≤ 1. Combining it with (2.55), we get

lim
k→+∞

ˆ

M∖Ω

η|Dwpk |
pk dµ =

ˆ

M∖Ω

η|Dw1|dµ.

To conclude, replace p with pk in (2.54). By the lower semicontinuity (2.56), we obtain

lim inf
k→+∞

ˆ

supp η

(
1
pk

− 3pk−1

pk
(1 − η)pk

)
|Dwpk |

pk dµ ≥
ˆ

supp η

η|Dw1|dµ.

Coupled with the uniform gradient bound, the local uniform convergence of (wpk)k∈N

gives

lim
k→+∞

ˆ

supp η

η(wpk − ψ)|Dwpk |
pk dµ =

ˆ

supp η

η(w1 − ψ)|Dw1|dµ,

lim
k→+∞

ˆ

supp η

ηpk |Dψ|pk + (1 − η)pk |Dwpk |
pk dµ =

ˆ

supp η

η|Dψ|+ (1 − η)|Dw1|dµ

and

lim
k→+∞

ˆ

supp η

|wpk − ψ|pk |Dη|pk dµ =

ˆ

supp η

|w1 − ψ||Dη|dµ = 0,
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since w1 = ψ outside K and Dη = 0 on K. Passing to the limit as k → +∞, we conclude
that ˆ

M∖Ω

η(|Dw1|+ w1|Dw1|)dµ ≤
ˆ

M∖Ω

η(|Dψ|+ ψ|Dw1|)dµ

holds for every η ∈ C ∞
c (M ∖ Ω) with 0 ≤ η ≤ 1. Since supp(w1 − ψ) ⊂ {η = 1}, w1

minimises (2.41).

Actually, a more precise gradient bound can be obtained in this case

Proposition 2.4.13 (Cheng-Yau-type estimate for the IMCF). Under the same assumptions of
Theorem 2.4.12 there exists a positive constant C = C(n, M, Ω) > 0 such that

|Dw1|(x) ≤ C
d(x, o)

holds for almost every x ∈ M ∖ Ω.

Proof. It follows from Remark 4.9 and Theorem 1.7 in [MRS19].

In [MRS19, Theorem 1.7] the authors prove that existence of the (weak) IMCF is guar-
anteed whenever the Ricci curvature satisfies a negative and nondecreasing lower bound
and a global L1-Sobolev Inequality. A direct consequence of Proposition 2.2.9 is that we
can apply [MRS19, Theorem 1.7] in the class of C 0-Asymptotically Conical Riemannian
manifold satisfying

Ric(x) ≥ − (n − 1)κ2

(d(x, o) + 1)2 (2.57)

for some o ∈ M, κ ∈ R and every x ∈ M.

Theorem 2.4.14. Let (M, g) be a complete n-dimensional C 0-Asymptotically Conical Rieman-
nian manifold satisfying the Ricci curvature bound (2.57). Let Ω ⊂ M be an open bounded subset
with smooth boundary. Let wp be the solution to (2.44), then wp → w1 locally uniformly as
p → 1+ and w1 ∈ Lip(M ∖ Ω) solves the weak IMCF (2.43) starting at Ω. Moreover, given
o ∈ Ω, the function w1 satisfies

(n − 1) log
(
d(x, o)

)
− C ≤ w1 ≤ (n − 1) log

(
d(x, o)

)
+ C (2.58)

and |Dw1| ≤ C, where C = C(Ω, M, n).

Proof. The existence is guaranteed by [MRS19, Theorem 1.7], whose assumptions are sat-
isfied in virtue of Proposition 2.2.9 and (2.57). The lower bound is the consequence of
[MRS19, Theorem 1.7 and 1.3]. Let R be such that

− (p − 1) log Gp(x, o) ≤ (n − p) log d(x, o)− log CL (2.59)

on M ∖ B(o, R) with the constant CL = C a Capp(K; E) described in the statement of
Proposition 2.3.17. By [MRS19], −(p − 1) log Gp(x, o) locally uniformly converges as p →
1+. Then we can choose a in the constant CL independent of p so that Gp(o, x) ≥ a1/(p−1)
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holds on M ∖ K where K is the bounded set in Definition 2.2.1. Moreover, by Theo-
rem 2.4.10, since ∂K is smooth, Capp(K; E) is bounded as p → 1+. Hence the constant
CL in (2.59) does not depends on p. Passing to the limit as p → 1+, in virtue of the upper
bound in [MRS19, Theorem 1.7], we obtain

w ≤ (n − 1) log d(x, o) + C

outside some B(o, R). Since both the left and side and the right hand side are continuous,
the bound can be extended to M ∖ Ω.

We refer the reader to [MRS19, Theorem 1.7] for the precise gradient bound in the
previous theorem. For what follows, we need to improve it to include a decay term de-
pending on the distance. In [MRS19, Remark 4.9] the authors obtained a gradient bound
that reads as

|Dw1| ≤
C

d(x, o)1/κ′
, where κ′ =

1 +
√

1 + 4κ2

2
≥ 1,

for some constant C > 0 depending only on Ω, the dimension n and the geometry of
the ambient manifold. By [GW79] (see also [MRS19, Remark 4.5]) The exponent κ′ can be
chosen equal to 1 if the lower bound on the Ricci curvature is of the kind Ric ≥ −(n −
1) f (d(x, o)) for some smooth nonnegative function f (t), such that

+∞ˆ

0

t f (t)dt < +∞. (2.60)

The [HI01, Weak Existence Theorem 3.1] the function w1 satisfies

|Dw1|(x) ≤ sup
∂Ω∩B(x,r)

H+ +
C
r

(2.61)

for almost every x ∈ M ∖ Ω and for every r for which there exists a function ψ ∈
C 2(B(x, r)) such that ψ ≥ d(x, ·)2, ψ(x) = 0, |Dψ| ≤ 3d(x, ·), D2ψ ≤ 3g and Ric ≥
−C /r2 in B(x, r). The existence of ψ is guaranteed if a sectional curvature lower bound
is ensured. Otherwise, one can require an higher rate of convergence of the metric.

Proposition 2.4.15. Let (M, g) be a complete n-dimensional C 1-Asymptotically Conical Rie-
mannian manifold satisfying the Ricci curvature bound (2.57). Let Ω ⊂ M be an open bounded
subset with smooth boundary, o ∈ M. There exists a positive constant C = C(n, M, Ω) > 0, such
that the solution w1 ∈ Lip(M ∖ Ω) of the weak IMCF starting at Ω, given by Theorem 2.4.14
satisfies

|Dw1|(x) ≤ C
d(x, o)

(2.62)

for almost every x ∈ M ∖ Ω.

Proof. By [HI01, Weak Existence Theorem 3.1] the function w1 satisfies (2.61) for almost
every x ∈ M ∖ Ω. In virtue of the discussion in [HI01, Definition 3.3] (see also the proof
of [HI01, Blowdown Lemma 7.1]) there exists a constant C > 0 and R > 0 such that
r ≥ C d(x, o) in (2.61) for every x ∈ M ∖ B(o, R). Then (2.62) follows taking r so that
∂Ω ∩ B(x, r) = ∅.
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Let (M, g) be a C 0-Asymptotically Conical Riemannian manifold defined in Defini-
tion 2.2.1 and denote by E1, . . . , EN the (finitely many) ends. Consider Ω ⊂ M open
bounded subset with smooth boundary and w : M ∖ Ω → [0,+∞) the weak IMCF w
starting at Ω. As we did for the p-capacity we can define the area of the strictly outward
minimising hull of Ω with respect to one end Ei. Indeed, there exists a time T such that
{w ≤ t} contains the compact K defined in Definition 2.2.1 for every t ≥ T. We then
define the area of ∂Ω∗ with respect to Ei as

|∂Ω∗|(i) = |∂{w ≤ t} ∩ Ei|
et (2.63)

for some t ≥ T. Observe that such a definition is well posed by Lemma 2.4.5. Moreover,
it is readily checked that |∂Ω∗| splits as

|∂Ω∗| =
m

∑
i=1

|∂Ω∗|(i).

Actually, if K ⊂ Ω then |∂Ω∗|(i) = |∂Ω∗ ∩ Ei|. The relation between Cap(i)
p (∂Ω) and

|∂Ω∗|(i) is the same as the one in Theorem 2.4.10, as we are showing in the next lemma.

Lemma 2.4.16. Let (M, g) be a complete n-dimensional C 0-Asymptotically Conical Rieman-
nian manifold with Ricci curvature satisfying (2.57) and E1, . . . , EN its ends with respect to the
bounded K in Definition 2.2.1. Let Ω ⊆ M be an open bounded subset with smooth boundary.
Then,

lim
p→1+

Cap(i)
p (∂Ω) = |∂Ω∗|(i)

holds for every i = 1, . . . , N

Proof. Let w1 be the solution to the weak IMCF starting at Ω and T large enough so that
{w1 ≤ T} contains K in Definition 2.2.1. By Theorem 2.4.14 we have that wp converges
locally uniformly to w as p → 1+. In particular, for every t ≥ T there exists pt ∈ (1, n)
such that {w1 ≤ T} ⊆

{
wp ≤ t

}
holds for every p < pt. Arguing as in [FM20, Theorem

1.2], since an Isoperimetric Inequality is in force by Proposition 2.2.9, we can prove that
|∂{w ≤ T} ∩ Ei| ≤ Cn,p Capp(∂{w ≤ T}; Ei), for some constant Cn,p such that Cn,p → 1
as p → 1+. In particular, by the monotonicity of the p-capacity (1.19) and (1.20) we have
that

|∂Ω∗|(i) ≤ Cn,p e−T Capp ({w1 ≤ T} ∩ Ei; Ei) ≤ Cn,p e−T Capp
({

wp ≤ t
}
∩ Ei; Ei

)
= Cn,p et−2T Capp

({
wp ≤ T

}
∩ Ei; Ei

)
≤ Cn,p et−T Cap(i)

p (∂Ω)

letting p → 1+ and then t → T+, we have that

|∂Ω∗|(i) ≤ lim
p→1+

Cap(i)
p (∂Ω).

If for some i = 1, . . . , N the inequality is strict, then

|∂Ω∗| =
N

∑
i=1

|∂Ω∗|(i) <
N

∑
i=1

lim
p→1+

Cap(i)
p (∂Ω) = lim

p→1+
Capp(∂Ω) = |∂Ω∗|

which is a contradiction.
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On Riemannian cones, it is easy to see that cross-sections are strictly outward min-
imising since the function

w(x) = (n − 1) log(ρ(x)) with x ∈ (0,+∞)× L (2.64)

is a solution to (2.41), where L is a closed (n − 1)-dimensional manifold. The most nat-
ural question arising is whether cross-sections are still strictly outward minimising on
Asymptotically Conical Riemannian manifolds. In the following lemma, we show that it
is true for all cross-sections large enough, using a calibration argument that is somewhat
inspired by Huisken-Ilmanen’s weak formulation of the IMCF [HI01] and by arguments
employed in [Rit17].

Lemma 2.4.17. Let (M, g) be a complete n-dimensional C 0-Asymptotically Conical Riemannian
manifold. Then {ρ ≤ r} is strictly outward minimising for r large enough, where ρ is the radial
coordinate on the cone.

Proof. Consider any φ ∈ C ∞
c ({ρ ≥ r}), then

ˆ

{ρ≥r}

div
(

Dρ

|Dρ|

)
φ dµ = −

ˆ

{ρ≥r}

〈
Dρ

|Dρ|

∣∣∣∣Dφ

〉
dµ −

ˆ

{ρ=r}

φ dσg.

Observe that the right hand side of the previous identity depends only on the coefficient
of the metric and not on their derivatives. Since the metric g converges to the metric ĝ, for
every ε > 0 there exists Rε such that for every r ≥ Rε∣∣∣∣∣

ˆ

M

div
(

Dρ

|Dρ|

)
φ dµg −

ˆ

M

n − 1
ρ

φ dµĝ

∣∣∣∣∣ ≤ ε

ˆ

M

n − 1
ρ

φ dµĝ (2.65)

holds for every φ ∈ C ∞
c ({ρ ≥ r}) and∣∣|E|g − |E|ĝ

∣∣ ≤ ε|E|ĝ

for every measurable E ⊂ {ρ ≥ r}. By (2.65) and the density of compactly supported
smooth functions, for every E ⊂ {ρ ≥ r} we have that

ˆ

E

div
(

Dρ

|Dρ|

)
dµg ≥ (1 − ε)

n − 1
supE ρ

|E|ĝ.

Let F be a subset of finite perimeter containing {ρ < r}, then(
1 − ε

1 + ε

)(
n − 1

supF ρ

)
|F ∖ {ρ < r}|g ≤ (1 − ε)

n − 1
supF ρ

|F ∖ {ρ ≤ r}|ĝ ≤
ˆ

M

div
(

Dρ

|Dρ|

)
dµg

≤
ˆ

∂∗F

〈
Dρ

|Dρ|

∣∣∣∣ ν∂∗F

〉
dσg −

ˆ

{ρ=r}

〈
Dρ

|Dρ|

∣∣∣∣ ν{ρ=r}

〉
dσg

≤ |∂∗F|g − |{ρ = r}|g.

This proves that |{ρ = r}|g ≤ |∂∗F|g. Moreover, |{ρ = r}|g = |∂∗F|g if and only if
|F ∖ {ρ < r}|g = 0, which gives that {ρ < r} is strictly outward minimising.
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2.4.4 Asymptotic behaviour of the IMCF

We are now ready to prove the analogue of Theorem 2.3.20 for the IMCF. To our knowl-
edge, the following result with the explicit constant was known only in the flat case of
Rn. In this setting, the level sets of the weak IMCF become starshaped (and thus smooth)
after a sufficiently long time as a consequence of [HI08, Theorem 2.7]. At this point, the
constant could be easily deduced by classical results [Ger90; Urb90] for the smooth IMCF.
It is worth pointing out that the arguments we employ got an important inspiration also
from those in the proof of [HI01, Blowdown Lemma 7.1], that actually helped also in
establishing Theorem 2.3.20. The following result actually simplifies [HI01, Blowdown
Lemma 7.1] extending it from Asymptotically Flat to Asymptotically Conical Riemannian
manifold and giving an explicit constant which depends on the geometry of the ambient
manifold and the geometry of ∂Ω.

Theorem 2.4.18 (Asymptotic behaviour of the Inverse Mean Curvature Flow). Let (M, g)
be a complete n-dimensional C 1-Asymptotically Conical Riemannian manifold with Ric satisfying

Ric(x) ≥ − (n − 1)κ2

(1 + d(x, o))2 ,

for some fixed o ∈ M, κ ∈ R and for every x ∈ M. Let E1, . . . , EN be the (finitely many) ends of
M with respect to the bounded K in Definition 2.2.1. Consider Ω ⊂ M be an open bounded subset
with smooth boundary and w : M ∖ Ω → R the solution to the problem (2.43). Then

w(x) = (n − 1) log(ρ(x))− log

(
|∂Ω∗|(i)

|Sn−1|AVR(g; Ei)

)
+ o (1) (2.66)

on Ei as d(o, x) → +∞ for every i = 1, . . . , N, where |∂Ω∗|(i) and AVR(g; Ei) are defined
respectively in (2.63) and (2.18).

Clearly, we also obtain the analogue of Proposition 2.3.22.

Proposition 2.4.19 (Asymptotic behaviour of the area of level sets). Under the same assump-
tions and notations of Theorem 2.4.18, set, for i = 1, . . . , N,

vi =

( |∂Ω∗
i |

|Sn−1|AVR(g; Ei)

) 1
n−1

e
w

n−1 .

Then, we have

lim
s→+∞

|{vi = s} ∩ Ei|
sn−1|Sn−1| = AVR(g).

Observe that a similar result for the p-capacitary potential was obtained in (2.38). In
that case a first order asymptotic behaviour for the p-capacitary potential was required.
The reason is that the area is linked to the level sets of IMCF in the same way the p-
capacity is linked to the level set of p-capacitary potential. A simple C 0-convergence of
the function is therefore enough.

As a byproduct we also obtain the counterpart of Proposition 2.3.23 proving that (2.64)
is the unique solution on (0,+∞) × L up to a constant. A refined result on the flat Eu-
clidean space is the content of [HI01, Proposition 7.2].
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Proposition 2.4.20. Let ((0,+∞)× L, ĝ) be a n-dimensional Riemannian cone with Ric ≥ 0,
where L is a closed connected smooth hypersurface. Let w be a solution to (2.41) on (0,+∞)× L
satisfying w(x) ≥ (n − 1) log ρ(x) + C for every x ∈ (0,+∞)× L for some constant C ≥ 0.
Then, there exists a γ ∈ R such that

w(x) = (n − 1) log(ρ(x)) + γ with x ∈ (0,+∞)× L,

holds on (0,+∞)× L.

Proof of Theorem 2.4.18 and Propositions 2.4.19 and 2.4.20. The proof follows the same lines
of Theorem 2.3.20. We prove the theorem in the case M has only one end, since the gen-
eral case follows applying the result to each end. We denote by g(s) the metric s−2ω∗

s g
on [1/s,+∞) × L, being ωs the family of diffeomorphism defined in (2.2). We divide
the proof in three steps. The second and the third ones contain the proofs of Proposi-
tions 2.4.19 and 2.4.20 respectively.

Step 1. Define for every s ≥ 1 the family of functions ws : [1/s,+∞)× L → R as

ws = w ◦ ωs − (n − 1) log(s),

where ωs is the differmorphism in (2.2). Employing Li-Yau-type estimates (2.58) in The-
orem 2.4.14 and Proposition 2.4.15 as in the proof of Theorem 2.3.20, it is easy to show
that (ws)s≥1 is equibounded and equi-Lipschitz. By the Arzelà-Ascoli Theorem, (ws)s≥1
is precompact with respect to the local uniform convergence on (0,+∞)× L. Moreover,
by Theorem 2.4.8 every limit point u is a solution to the (weak) IMCF on (0,+∞)× L and
by (2.58) there exists a positive constant C > 0 such that

(n − 1) log(ρ(x))− C ≤ u(x) ≤ (n − 1) log(ρ(x)) + C

is satisfied on (0,+∞)× L.

Step 2. Here we prove Proposition 2.4.20, inferring in particular that any limit point v of
(ws)s≥1 satisfies

v(x) = (n − 1) log ρ(x) + γ

on (0,+∞)× L for some γ ∈ R. Let ev : R → R be defined as

ev(t) =
R(t)
r(t)

,

where, for every t ∈ R, [r(t), R(t)] × L is the smallest annulus containing {v = t}. Ar-
guing as in Step 2 of Theorem 2.3.20, starting from any weak IMCF v on (0,+∞) × L
we can produce a function u : (0,+∞) × L → R such that eu(t) is constant and is
equal to eu = supt ev(t) ∈ [1,+∞). Suppose by contradiction that eu > 1. Then the
level {u = 0} ⊂ [r(0), eur(0)] × L and touches both the cross-sections {ρ = r(0)} and
{ρ = eur(0)} without being equal to neither. To compare the weak solution with the
strong solution we have to place something in between of them. Perturb {ρ ≤ r(0)}
outward and {ρ ≤ eur(0)} inward to obtain D− and D+ respectively with the following
properties:
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• {ρ ≤ r(0)} ⊂ D− ⊂ {u ≤ 0} and {u ≤ 0} ⊂ D+ ⊂ {ρ ≤ eur(0)};

• D− and D+ are starshaped with smooth strictly mean-convex boundary.

Then, the smooth IMCF starting at D+ and D− exists for all time by [Zho18, Theorem 3.1]
and by Lemma 2.4.6 it coincides with the weak notion of the IMCF. Denote by (D−

t )t≥0
and (D+

t )t≥0 the sublevel sets of the two weak (and smooth) IMCF starting at D− and D+

respectively. By the Strong Comparison Principle for smooth flows we have that

ρ(x) > r(0) e
t

n−1 for x ∈ ∂D−
t and ρ(x) < eur(0) e

t
n−1 for x ∈ ∂D+

t . (2.67)

On the other hand, by the Weak Comparison Theorem [HI01, Theorem 2.2(ii)], we get

D−
t ⊂ {u ≤ t} ⊂ D+

t . (2.68)

Coupling (2.67) and (2.68), we conclude that eu(t) < eu, which is the desired contradiction.
Then eu = 1 that completes the proof of Proposition 2.4.20, as in Step 2 of Theorem 2.3.20.

Step 3. Let u = (n − 1) log ρ + γ be a limit point of the family (ws)s≥1. We are now going
to prove that

γ = log
(

AVR(g)|Sn−1|
|∂Ω∗|

)
. (2.69)

The characterisation proves Proposition 2.4.19 and implies that the limit point is unique,
concluding the proof. We work with the auxiliary function

v = e
w−γ
n−1 .

Since u is a limit point for the family (ws)s≥1, there exists a subsequence (wsk)k∈N, sk
increasing and divergent as k → +∞, such that wsk → u = (n − 1) log ρ + γ locally
uniformly on (0,+∞)× L as k → +∞. Then, for any ε > 0 there exists kε ∈ N such that{

ρ ≤ sk

1 + ε

}
⊂ {v ≤ sk} ⊂

{
ρ ≤ sk

1 − ε

}
holds for every k ≥ kε. By Lemma 2.4.17 we can assume kε large enough so that both the
left most and the right most sets are strictly outward minimising for any k ≥ kε. Then the
perimeter is monotone by inclusion and by Lemma 2.4.5 we have∣∣∣∣{ρ =

sk

1 + ε

}∣∣∣∣ ≤ eγ sn−1
k |∂Ω∗| ≤

∣∣∣∣{ρ =
sk

1 − ε

}∣∣∣∣
Dividing both sides by |Sn−1|sn−1

k , letting k → +∞ and using Lemma 2.2.4 we infer that

AVR(g)
(1 + ε)n−1 ≤ eγ |∂Ω∗|

|Sn−1| ≤
AVR(g)
(1 − ε)n−1

Then, (2.69) follows by arbitrariness of ε > 0.
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Firstly, observe that we do not have the analogue of Theorem 2.3.21 for the IMCF. The
asymptotic behaviour of higher-order derivatives of the p-capacitary potential is indeed
a consequence of the higher regularity of the functions ruling the flow, given by Schauder
estimates. The solution to the weak IMCF is only locally Lipschitz, so we cannot infer that
the gradient stops vanishing approaching infinity, that would be the starting point to use
the classic regularity theory for elliptic partial differential equations.

The result above is to be compared with [HI01, Lemma 7.1]. We obtain here an explicit
characterisation of the constants cλ that is

cλ = −(n − 1) log
(
|Sn−1|
|∂Ω∗| λ

)
.

The constants appearing in (2.66) satisfy

log

(
AVR(g; Ei)|Sn−1|

|∂Ω∗|(i)

)
= lim

p→1+
−(p − 1) log

(Cap(i)
p (∂Ω)

AVR(g; Ei)

) 1
p−1


thanks to Lemma 2.4.16, where the quantities in the limit are the ones in (2.26), trans-
formed in accordance with wp = −(p − 1) log up. Hence, even if by Theorem 2.4.14
wp → w1 only locally uniformly as p → 1+, the asymptotic behaviour of w1 is anyway
effected by this procedure.

To conclude, we need C 1-convergence of the metric in order to apply Proposi-
tion 2.4.15. This requirement can be weakened in favour of a mild C 0-convergence if,
for example the Ricci curvature satisfies a bound Ric ≥ −(n − 1) f (d(x, o)) for some
nonnegative function f (t) that satisfies (2.60). A Cheng-Yau-type estimate as in Theo-
rem 1.2.11 with a constant C > 0 such that (p − 1)C remains bounded as p → 1+ would
be a sufficient way to avoid the requirement and also an interesting tool on its own, with
important consequences in the study of the weak IMCF.
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3
MONOTONICITY FORMULAS ON
p-NONPARABOLIC RIEMANNIAN
MANIFOLDS

3.1 Strucutre of the chapter

In this chapter, we are going to prove our Monotonicity Formulas in the p-nonparabolic
setting. The results we present here are the natural extensions of the ones shown in
[AM20; AFM20] as well as of the ones obtained in [FMP19; AFM22]. In the first two
mentioned papers the authors established the monotonicity along the level set of the har-
monic capacitary potential, respectively in Rn and in a general nonparabolic manifold
with nonnegative Ricci curvature, whereas in the second two papers an analogous theory
has been developed in the case of the p-capacitary potential in the Euclidean setting. More
precisely, in [FMP19], the authors worked out the smooth computations and took advan-
tage of the fact that the p-capacitary potential associated with a convex domain is smooth
and has no critical points (see [Col+15; Lew77]), whereas the main technical achievement
in [AFM22] is the treatment of the general case when the critical points are present and
even possibly arranged in sets of full measure. On the other hand, the approach presented
in [AFM22] only produces effective monotonicity inequalities (10), which are anyway suffi-
cient to prove the Extended Minkowski Inequality in the flat setting, as mentioned in the
Introduction. In Section 3.2 we are introducing the quantities Fβ

p and F∞
p , built on the level

sets of a solution u to (2.7) for 1 < p < n and β ∈ [0,+∞), and the precise statement of
their Monotonicity-Rigidity in the range β ≥ −(n − p)/[(n − 1)(p − 1)]. Section 3.3 is
devoted to reformulating the results in a conformally related Riemannian manifold. Even
if one can perform all computations in the original Riemannian manifold, the structure of
the conformal change simplifies a lot the calculation and produces Monotonicity results
for the related problem. We conclude the section by showing the relation between the
Monotonicity-Rigidity theorems in the two different settings. The last section contains
the proof of the results in the conformal setting. The main difficulty amounts to ensur-
ing that the monotonicity survives the singular values of u, which, as far as we know,
could even form a set of positive measure. Inspired by the analysis in [GV21], where the
authors were forced to face severe technical problems caused by the typical low regular-
ity of the nonsmooth setting, we compute the derivative of our integral quantities (3.1)
in the distributional sense, appealing to the full strength of the coarea formula (see Ap-
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pendix B) and exploiting the Sobolev regularity of the gradient of a p-harmonic function
(see Appendix C for a self-contained proof of this result).

From now on we assume that (M, g) is a complete Riemannian manifold of dimension n ≥ 3
and 1 < p < n.

3.2 Statement of the Monotonicity-Rigidity Theorems

As just said we now introduce the Monotone quantities we are going to study. Consider
a complete Riemannian manifold (M, g) of dimension n ≥ 3. Let u : M ∖ Ω → R be a
solution of (2.7). For β ∈ [0,+∞) we consider the function

Fβ
p (t) = tβ

(n−1)(p−1)
(n−p)

ˆ

{u=1/t}

|Du|(β+1)(p−1) dσ (3.1)

defined for every t ≥ 1 such that |{u = 1/t} ∩ Crit(u)| = 0, which is fulfilled for almost
every t ∈ [1,+∞) by Lemma B.1. We also set

F∞
p (t) = t

n−1
n−p sup

{u=1/t}
|Du|, (3.2)

that is defined on the whole [1,+∞). If 1/t is a regular value for u, then Fβ
p is differentiable

at t for every β ∈ [0,+∞) and its derivative is

(Fβ
p )

′(t) = −βtβ
(n−1)(p−1)

(n−p) −2
ˆ

{u=1/t}

|Du|(β+1)(p−1)−1
(

H− (n−1)(p−1)
(n−p) |D log u|

)
dσ. (3.3)

As said before, the aim of this section is to prove Monotonicity-Rigidity Theorems for
t 7→ Fβ

p (t) and t 7→ F∞
p (t). We start with the statement for (n − p)/[(p − 1)(n − 1)] < β <

+∞.

Theorem 3.2.1 (Monotonicity-Rigidity Theorem for Fβ
p ). Let (M, g) be a p-nonparabolic Rie-

mannian manifold with Ric ≥ 0. Let Ω ⊂ M be a bounded open subset with smooth boundary.
Let Fβ

p be the function defined in (3.1) with (n − p)/[(n − 1)(p − 1)] < β < +∞. Then
Fβ

p ∈ W2,1(1,+∞) and

(Fβ
p )

′(t) = −β

(
(n − 2)(p − 1)

(n − p)

)(β+1)(p−1)̂

{u≤1/t}∖Crit u

u2−β
(p−1)(n−1)

(n−p) |Du|(β+1)(p−1)−1

{[
β − (n − p)

(n − 1)(p − 1)

] [
H−

[
(n − 1)(p − 1)

(n − p)

]
|D log u|

]2

+ (p − 1)
[

β +
p − 2
p − 1

]
|D>|Du||2

|Du|2

+

∣∣∣∣h− H
n − 1

g>
∣∣∣∣2 + Ric

(
Du
|Du| ,

Du
|Du|

)}
dµ

(3.4)
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and

(Fβ
p )

′′(t) = β

(
(n − 2)(p − 1)

(n − p)

)(β+1)(p−1)

tβ
(n−1)(p−1)

(n−p) −4
ˆ

{u=1/t}

|Du|(β+1)(p−1)−2

{[
β − (n − p)

(n − 1)(p − 1)

] [
H−

[
(n − 1)(p − 1)

(n − p)

]
|D log u|

]2

+ (p − 1)
[

β +
p − 2
p − 1

]
|D>|Du||2

|Du|2

+

∣∣∣∣h− H
n − 1

g>
∣∣∣∣2 + Ric

(
Du
|Du| ,

Du
|Du|

)}
dµ

(3.5)

hold for almost every t ∈ [1,+∞). In particular, Fβ
p admits a convex and monotone nonincreasing

C 1-representative. Moreover, (Fβ
p )

′(t0) = 0 at some t0 ≥ 1 such that 1/t0 regular value for u if
and only if ({u ≤ 1/t0}, g) is isometric to(

[τ0,+∞)× {u = 1/t0}, dτ ⊗ dτ +

(
τ

τ0

)2

g{u=1/t0}

)
,

with τ0 =

(
|{u = 1/t0}|

AVR(g)|Sn−1|

) 1
n−1

.

In this case {u = 1/t0} is a connected totally umbilical hypersurface with constant mean curva-
ture in (M ∖ Ω, g) .

The threshold case β = (n − p)/[(n − 1)(p − 1)] is a little more delicate since we
cannot easily pass to the limit as in [AM20]. The first term (3.5) cannot be handled via
Monotone Convergence Theorem or Dominated Convergence Theorem. What we can
actually prove is a weaker version of Theorem 3.2.1.

Theorem 3.2.2 (Monotonicity-Rigidity Theorem for the threshold case). Let (M, g) be a p-
nonparabolic Riemannian manifold with Ric ≥ 0. Let Ω ⊂ M be an open bounded subset with
smooth boundary. Let Fβ

p be the function defined in (3.1) with β = (n − p)/[(n − 1)(p − 1)].
Then, Fβ

p ∈ W1,1(1,+∞), (Fβ
p )

′ ∈ BV(1,+∞) and

(Fβ
p )

′(t) ≤ −β

(
(n − 2)(p − 1)

(n − p)

)(β+1)(p−1)̂

{u≤1/t}∖Crit u

u2−β
(p−1)(n−1)

(n−p) |Du|(β+1)(p−1)−1

{
(p − 1)

[
β +

p − 2
p − 1

]
|D>|Du||2

|Du|2

+

∣∣∣∣h− H
n − 1

g>
∣∣∣∣2 + Ric

(
Du
|Du| ,

Du
|Du|

)}
dµ

(3.6)
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hold for almost every t ∈ [1,+∞). In particular, Fβ
p admits a monotone nonincreasing

AC(1,+∞)-representative. Moreover, (Fβ
p )

′(t0) = 0 at some t0 ≥ 1 such that 1/t0 regular
value for u if and only if ({u ≤ 1/t0}, g) is isometric to(

[τ0,+∞)× {u = 1/t0}, dτ ⊗ dτ +

(
τ

τ0

)2

g{u=1/t0}

)
,

with τ0 =

(
|{u = 1/t0}|

AVR(g)|Sn−1|

) 1
n−1

.

In this case {u = 1/t0} is a connected totally umbilical hypersurface with constant mean curva-
ture in (M ∖ Ω, g) .

We observe that the rigidity statement is expressed in terms of the derivative. How-
ever, if Fβ

p (t) = Fβ
p (T) for 1 ≤ t < T < +∞ such that 1/t and 1/T are regular values for u,

the rigidity statement still triggers. Indeed, since the set of regular values is open, mono-
tonicity ensures the existence of a decreasing sequence (tj)j∈N such that tj → t as j → +∞,

1/tj is regular for u and (Fβ
p )

′(tj) = 0. Since t 7→ Fβ
p (t) is smooth in a neighbourhood of t,

this implies that (Fβ
p )

′(t) = 0 hence the splitting of {u ≤ 1/t} follows.
We conclude dealing with the limit case β = +∞.

Theorem 3.2.3 (Monotonicity-Rigidity theorem for F∞
p ). Let (M, g) be a p-nonparabolic Rie-

mannian manifold with Ric ≥ 0. Let Ω ⊆ M be an open bounded subset with smooth boundary.
Let F∞

p be the function defined in (3.2). Then, F∞
p is a continuous monotone nonincreasing func-

tion. Furthermore, we have[
Hg −

(n − 1)(p − 1)
(n − p)

|D log u|g
]
(xt) = −(p − 1)

∂

∂νt
log

|Du|g
u

n−1
n−p

(xt) ≥ 0 (3.7)

where xt ∈ {u = 1/t} is the point that realises sup{u=1/t} |Du|g/u(n−1)/(n−p) and νt =

−Du/|Du|g is the unit normal to {u = 1/t}. Moreover, F∞
p (t0) = F∞

p (T) for some t0 < T or
the equality holds in (3.7) for some t0 such that 1/t0 is regular for u if and only if ({u ≤ 1/t0}, g)
is isometric to(

[τ0,+∞)× {u = 1/t0}, dτ ⊗ dτ +

(
τ

τ0

)2

g{u=1/t0}

)
,

with τ0 =

(
|{u = 1/t0}|

AVR(g)|Sn−1|

) 1
n−1

.

In this case {u = 1/t0} is a connected totally umbilical hypersurface with constant mean curva-
ture in (M ∖ Ω, g).

A direct consequence of the monotonicity of F∞
p is the following regularity theorem

for the p-capacitary potential.

Corollary 3.2.4. The function F∞
p is strictly positive and continuous. In particular, every level of

u has at least one regular point.
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We want also to emphasise that these theorems can be applied in particular in Rn

for every Ω open bounded with smooth boundary, where they naturally extend the
Monotonicity-Rigidity Theorems in [FMP19; AFM22].

3.3 Conformal formulation of the Monotonicity-Rigidity Theo-
rems

This section is essentially divided into two parts. The first one contains the preparatory
material rewriting the geometric quantities involved in the theorem of the previous sec-
tion. We essentially take the computations from [AFM22; FMP19] and extend them to
the Riemannian case, where the Ricci tensor is allowed to be non zero. We then prove a
splitting principle that will be the core of the Rigidity statement of the Monotonicity theo-
rems. The second part contains the statements of the conformal versions of Theorems 3.2.1
to 3.2.3. We conclude by showing that the two formulations are equivalent.

3.3.1 The conformal setting

Let u : M ∖ Ω → R be the solution of the problem (2.7). As shown first in [AM20], it
is easier to work in the conformally related Riemannian manifold (M ∖ Ω, g̃), where g̃ is
given by

g̃ = u2
(

p−1
n−p

)
g. (3.8)

It is also convenient to consider the new variable

φ = − (p − 1)(n − 2)
(n − p)

log u, (3.9)

so that the metric g̃ can be equivalently rewritten as

g̃ = e−
2φ

n−2 g.

Observe that, in light of the optimal C 1,α-regularity of u, the metric g̃ is not a smooth
Riemannian metric, at least at points where the gradient of u vanishes. The following
computations make sense on the whole M ∖ Ω if they involve only the first derivative,
while if higher derivatives are required they have to be intended as carried out outside
the critical set of u.

Fix local coordinates (x1, . . . , xn) in M. Using standard formulas (see [Bes08; HE73]
and [FMP19; Fog20] for the same computations in the Euclidean case) we obtain

Γ̃γ
αβ = Γγ

αβ −
1

n − 2

(
δ

γ
α ∂β φ + δ

γ
β ∂α φ − gαβgγη∂η φ

)
,

where Γ̃γ
αβ and Γγ

αβ are the Christoffel symbols associated with the metric g̃ and g respec-
tively. We denote by ∇ the covariant derivative with respect to the metric g̃. For any
function f ∈ C 2, the Hessian and the Laplacian of f are respectively

∇∇ f = DD f +
1

n − 2

(
d f ⊗ dφ + dφ ⊗ d f − 〈D f |Dφ〉gg

)
, (3.10)

∆g̃ f = e
2φ

n−2

(
∆g f − 〈D f |Dφ〉g

)
. (3.11)
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Applying this relations to u, recalling that ∆(p)
g u = 0, we can compute its p-Laplacian with

respect to the conformally related Riemannian metric

∆(p)
g̃ u = divg̃

(
|∇u|p−2

g̃ ∇u
)
= |∇u|p−2

g̃ ∆g̃u + (p − 2)|∇u|p−4
g̃ ∇2u(∇u,∇u)

= (p − 1)
|∇u|pg̃

u
,

where we used the fact that by definition of g̃ we have

|Du|g = u
p−1
n−p |∇u|g̃. (3.12)

As a consequence we have that φ is p-harmonic with the respect the conformal p-
Laplacian.

Lemma 3.3.1. Let u be a solution to (2.7), let φ defined in (3.9) and g̃ the metric obtained through
(3.8). Then,

∆(p)
g̃ φ = 0

on M ∖ (Ω ∪ Crit u).

Proof. The above computations can be performed on M ∖ (Ω ∪ Crit u). By definition (3.9)
it is enough to prove that log u is p-harmonic with respect to the metric g̃. Thus,

∆(p)
g̃ log u = divg̃

(
u−(p−1)|∇u|p−2

g̃ ∇u
)

= −(p − 1)u−p|∇u|pg̃ + u−(p−1)∆(p)
g̃ u,

that vanishes by (3.12).

We now want to describe the Ricci curvature of g̃ in order to have a complete refor-
mulation of problem (2.7).

Lemma 3.3.2. Let u be a solution to (2.7), let φ defined in (3.9) and g̃ the metric obtained through
(3.8). Then,

Ricg̃ −∇∇φ +
dφ ⊗ dφ

n − 2
= Ricg +

(
|∇φ|2g̃
n − 2

−
(

p − 2
n − 2

)
∇∇φ(∇φ,∇φ)

|∇φ|2g̃

)
g̃

on M ∖ (Ω ∪ Crit u).

Proof. Recall that the Ricci curvature tensor can be computed as

Ricg̃ = Ricg +DDφ +
dφ ⊗ dφ

n − 2
+

(
∆g φ − |Dφ|2g

n − 2

)
g.

By (3.10), (3.11) and the definition of g̃ we get that

Ricg̃ = Ricg +∇∇φ − dφ ⊗ dφ

n − 2
+

(
∆g̃ φ + |∇φ|2g̃

n − 2

)
g̃. (3.13)
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Using Lemma 3.3.1 we have that

∆g̃ φ = −(p − 2)
∇∇φ(∇φ,∇φ)

|∇φ|2g̃
,

that coupled with (3.13) concludes the proof.

Problem (2.7) can be translated in terms of g̃ and φ as

∆(p)
g̃ φ = 0 in M ∖ (Ω ∖ Crit φ),

Ricg̃ −∇∇φ +
dφ ⊗ dφ

n − 2
= Ricg

+

(
|∇φ|2g̃
n − 2

−
(

p − 2
n − 2

)
∇∇φ(∇φ,∇φ)

|∇φ|2g̃

)
g̃

in M ∖ (Ω ∖ Crit φ),

φ = 0 on ∂Ω,

φ(x) → +∞ as d(x, o) → +∞.

(3.14)

Problem (3.14) coincides with the one studied in [AM20] for p = 2, whereas for general
p and for M the flat Euclidean space one can recognise the problem in [FMP19; AFM22].

We now recall the relations between the geometric quantities on level sets of u and
φ. The following identities are exactly the same as in [FMP19], since the curvature of the
ambient space does not play any role in it. First of all, observe that

|∇φ|g̃ =
(n − 2)(p − 1)

(n − p)

|Du|g
u

n−1
n−p

. (3.15)

In particular, {φ = s} is a regular level set if and only if
{

u = e−(n−p)s/[(p−1)(n−2)]
}

is a
regular level set. Moreover, we recognise from the above expression and the estimate
(2.12) the fundamental property of |∇φ| to be uniformly bounded.

Lemma 3.3.3. Let (M, g) be a p-nonparabolic Riemannian manifolds with Ric ≥ 0. Let Ω ⊂ M
be an open bounded subset with smooth boundary and u be the solution to (2.7). Let φ and g̃
associated with u and g through (3.9) and (3.8). Then, there exists a constant C such that

|∇φ|g̃ ≤ C (3.16)

on the whole M ∖ Ω.

Consider the g-unit vector field defined as

νg = − Du
|Du|g

=
Dφ

|Dφ|g

and the g̃-unit vector field defined as

νg̃ = − ∇u
|∇u|g̃

=
∇φ

|∇φ|g̃
.
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We can now compute the second fundamental form hg and hg̃ of the level sets of u and φ
with respect the metric g and the conformally related metric g̃ obtaining

hg = − DDu
|Du|g

=
DDφ

|Dφ|g
and hg̃ = −∇∇u

|∇u|g̃
=

∇∇φ

|∇φ|g̃

respectively. Tracing the above expressions with respect to the induced metric on the level
sets we obtain the mean curvature in the two settings

Hg = −
∆gu
|Du|g

+
DDu(Du, Du)

|Du|g
and Hg̃ =

∆g̃ φ

|∇φ|g̃
− ∇∇φ(∇φ,∇φ)

|∇φ|3g̃
.

Recalling that ∆(p)
g u = 0 and ∆(p)

g̃ φ = 0 we can rewrite the above quantities as

Hg =
p − 1

p

〈D|Du|pg |Du〉
g

|Du|p+1 = (p − 1)
DDu(Du, Du)

|Du|3g

and

Hg̃ = − p − 1
p

〈∇|∇φ|pg̃ | ∇φ〉
g̃

|∇φ|p+1
g̃

= (p − 1)
∇∇φ(∇φ,∇φ)

|∇φ|3g̃
. (3.17)

The second fundamental forms hg and hg̃ are then related by the following formula

hg̃ = u
p−1
n−p

(
hg −

p − 1
n − p

|Du|g
u

g>
)

,

where g> is the metric induced on the level set of u. Tracing the above identity with
respect to g̃> we obtain the relation between the mean curvatures Hg and Hg̃

Hg̃ = u− p−1
n−p

(
Hg −

(n − 1)(p − 1)
(n − p)

|Du|g
u

)
. (3.18)

Finally, we recall the relation between the Lebesgue measures dµg and dµg̃ on M

dµg̃ = u
n(p−1)
(n−p) dµg (3.19)

and the relation between the induced measure on the level sets

dσg̃ = u
(n−1)(p−1)

(n−p) dσg.

To conclude we rewrite the p-Bochner formula for the function φ. The following
proposition is obtained replacing the Ricci tensor with respect to the metric g̃ in the sec-
ond equation of (3.14) with the expression coming from p-Bochner formula and plugging
in ∆(p)

g̃ φ = 0. Since the details are straightforward, we do not report them.



3.3. Conformal formulation of the Monotonicity-Rigidity Theorems 91

Proposition 3.3.4. Let (M, g) be a p-nonparabolic manifold with Ric ≥ 0 and Ω ⊆ M be an open
bounded subset with smooth boundary. Let φ be a solution to (3.14). Then, in a neighbourhood of
each point where |∇φ| > 0 we have

∆g̃|∇φ|pg̃ + (p − 2)
∇∇|∇φ|pg̃(∇φ,∇φ)

|∇φ|2g̃
− n − p

n − 2

〈
∇|∇φ|pg̃

∣∣∣∇φ
〉

g̃

= p|∇φ|p−2
g̃

|∇∇φ|2g̃ + p(p − 2)

〈
∇|∇φ|g̃

∣∣∣∣∣ ∇φ

|∇φ|g̃

〉2

g̃

+ Ric(∇φ,∇φ)

 .

(3.20)

Formula (3.20) is at the base of the proof of Monotonicity Theorems. For F∞
p it permits

to show that |∇φ|p satisfies a maximum principle, while for Fβ
p leads to the proof of its

convexity. As a consequence, we have the following lemma that is the key of the rigidity
part of the Montonicity theorems.

Lemma 3.3.5 (Splitting principle). Let Ω ⊆ M be an open bounded subset with smooth bound-
ary. Let φ be a solution to (3.14). Assume that |∇φ|g̃ > 0 on {s0 ≤ φ ≤ s1} for some s0, s1 ∈
[0,+∞), s0 < s1 with s1 possibly infinite, and that |∇|∇φ|g̃|g̃ = 0 on this region. Then,

the Riemannian manifold ({s0 ≤ φ ≤ s1}, g̃) is isometric to the Riemannian product ([s0, s1]×
{φ = s0}, ds2 + g̃{φ=s0}) and φ is an affine function of s. In this case {φ = s0} is connected and
totally geodesic in (M ∖ Ω, g̃).

Proof. If |∇|∇φ|g̃|g̃ = 0, by (3.20) we have that |∇∇φ|g̃ = 0 on {s0 ≤ φ ≤ s1}. In particu-

lar φ is harmonic with respect to the metric g̃ and by Kato-type Identity Proposition 1.2.12
for p = 2 we obtain∣∣∣∣h− H

n − 1
g̃>
∣∣∣∣2

g̃>
= 0 and

∣∣∣∇>|∇φ|g̃
∣∣∣

g̃
= 0

on {s0 ≤ φ ≤ s1}. Hence the rigidity part of Proposition 1.2.12 applies giving that
{s0 ≤ φ ≤ s1} splits into the warped product ([s0, s1] × {φ = s0}, ds2 + η2(s)g̃{φ=s0})
where

η(s) =
(

φ′(s0)

φ′(s)

) 1
n−1

.

Deriving it one more time and taking into account that φ′′(s) = 0, we have that η′(s) = 0
and since η(s0) = 1, we have that η is constantly one. Moreover, φ′(s) = φ′(s0) which, by
integrating it, gives that φ is an affine function of s.

3.3.2 Conformal formulation of the Monotonicity-Rigidity Theorems

The remaining part of this section is devoted to rephrasing the Monotonicity-Rigidity
Theorems 3.2.1 and 3.2.3 in the conformally related setting and proving their equivalence.

From now on, given a p-nonparabolic manifold (M, g) with Ric ≥ 0 and u a solution to (2.7),
φ and g̃ will indicate the solutions of (3.14) obtained from u and g trough (3.8) and (3.9).
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Using the previous relations, the family of functions Fβ
p for β ∈ [0,+∞) and F∞

p

defined in (3.1) and (3.2) can be rewritten in terms of g̃ and φ. Then, we define Φβ
p :

[0,+∞) → R by

Φβ
p(s) =

ˆ

{φ=s}

|∇φ|(β+1)(p−1)
g̃ dσg̃, (3.21)

for every 0 ≤ β < +∞ and Φ∞
p : [0,+∞) → R by

Φ∞
p (s) = sup

{φ=s}
|∇φ|g̃.

The function Φβ
p can be obtained from Fβ

p through a change of variable that is

Φβ
p(s) = Fβ

p

(
e

(n−p)
(p−1)(n−2) s

)
.

For β < +∞ it holds that

(Φβ
p)

′(s) =
(n − p)

(p − 1)(n − 2)
e

n−p
(p−1)(n−2) s

(Fβ
p )

′
(

e
(n−p)

(p−1)(n−2) s
)

, (3.22)

whenever one side of the identity makes sense.
We are now ready to reformulate Theorems 3.2.1, 3.2.2 and 3.2.3 in the conformal

setting.

Theorem 3.3.6 (Monotonicity-Rigidity theorem for Φβ
p). Let (M, g) be a p-nonparabolic Rie-

mannian manifold with Ric ≥ 0. Let Ω ⊆ M be an open bounded subset with smooth boundary.
Let Φβ

p be the function defined in (3.1) with (n − p)/[(n − 1)(p − 1)] < β < +∞. Then,
Φβ

p ∈ W2,1
loc (0,+∞) and

(Φβ
p)

′(s) = −β e
(n−p)

(p−1)(n−2) s
ˆ

{φ≥s}∖Crit φ

e−
(n−p)

(n−2)(p−1) φ |∇φ|(β+1)(p−1)−1
g̃


∣∣∣∣hg̃ −

Hg̃

n − 1
g̃>
∣∣∣∣2

g̃>
+ (p − 1)2

[
β − (n − p)

(p − 1)(n − 1)

] |∇⊥|∇φ|g̃|
2

g̃

|∇φ|2g̃

+ (p − 1)
[

β +
p − 2
p − 1

] |∇>|∇φ|g̃|
2

g̃

|∇φ|2g̃
+ Ric

(
∇φ

|∇φ|g̃
,

∇φ

|∇φ|g̃

) dµg̃,

(3.23)

holds for almost every s ∈ [0,+∞). In particular, Φβ
p admits a monotone nonincreasing C 1-

representative. Moreover, (Φβ
p)

′(s0) = 0 at some s0 ≥ 0 regular for φ if and only if ({φ ≥ s0}, g̃)
is isometric to (

[s0,+∞)× {φ = s0}, ds ⊗ ds + g̃{φ=s0}

)
.

In this case {φ = s0} is a connected totally geodesic hypersurface in (M ∖ Ω, g̃).
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Theorem 3.3.7 (Monotonicity-Rigidity theorem for the threshold case). Let (M, g) be a p-
nonparabolic Riemannian manifold with Ric ≥ 0. Let Ω ⊆ M be an open bounded subset with
smooth boundary. Let Φβ

p be the function defined in (3.1) with β = (n − p)/[(n − 1)(p − 1)].
Then, Φβ

p ∈ W1,1
loc (0,+∞), (Φβ

p)
′ ∈ BVloc(0,+∞) and

(Φβ
p)

′(s) ≤ −β e
(n−p)

(p−1)(n−2) s
ˆ

{φ≥s}∖Crit φ

e−
(n−p)

(n−2)(p−1) φ |∇φ|(β+1)(p−1)−2
g̃

{∣∣∣∣hg̃ −
Hg̃

n − 1
g̃>
∣∣∣∣2

g̃>

+ (p − 1)
[

β +
p − 2
p − 1

] |∇>|∇φ|g̃|
2

g̃

|∇φ|2g̃
+ Ric

(
∇φ

|∇φ|g̃
,

∇φ

|∇φ|g̃

) dµg̃,

(3.24)

holds for almost every s ∈ [0,+∞). In particular, Φβ
p admits a monotone nonincreasing ACloc-

representative. Moreover, (Φβ
p)

′(s0) = 0 at some s0 ≥ 0 regular for φ if and only if ({φ ≥ s0}, g̃)
is isometric to (

[s0,+∞)× {φ = s0}, ds ⊗ ds + g̃{φ=s0}

)
.

In this case {φ = s0} is a connected totally geodesic hypersurface in (M ∖ Ω, g̃).

Theorem 3.3.8 (Monotonicity-Rigidity theorem for Φ∞
p ). Let (M, g) be a p-nonparabolic Rie-

mannian manifold with Ric ≥ 0. Let Ω ⊆ M be an open bounded subset with smooth boundary.
Let Φ∞

p be the function defined in (3.21). Then, Φβ
p is a continuous monotone nonincreasing

function. Furthermore, we have

Hg̃(xs) = −(p − 1)
∂

∂νs
log |∇φ|g̃(xs) ≥ 0 (3.25)

where xs ∈ {φ = s} is the point where sup{φ=s} |∇φ|g̃ is achieved and νs is the unit normal to
the level set of φ. Moreover, Φ∞

p (s0) = Φ∞
p (S) for some s0 < S with s0 regular value for φ or the

equality holds in (3.25) for some s0 regular value for φ if and only if ({φ ≥ s0}, g̃) is isometric to(
[s0,+∞)× {φ = s0}, ds ⊗ ds + g̃{φ=s0}

)
.

In this case {φ = s0} is a connected totally geodesic hypersurface in (M ∖ Ω, g̃).

The proof of these theorems is postponed to the next section. We are now going to
deduce the Monotonicity Formulas (3.7) and (3.4), as well as the rigidity statements for Fβ

p
and F∞

p , from their conformal versions. Differently from Theorem 3.2.1, in Theorem 3.3.6

we do not prove any identity for the second derivative of Φβ
p because it does not seem to

show interesting convexity properties of such a function. On the other hand, (3.5) follows
from (3.4) simply by the coarea formula.

Proof of Theorems 3.2.1 to 3.2.3 after Theorems 3.3.6 to 3.3.8. To obtain both the identity (3.4)
and the estimate (3.6) for Fp

β , we are only left to rewrite (3.23) in terms of u and apply
(3.22).
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In (3.9), (3.15) and (3.19) we have already highlighted the relation between u and φ,
|Du|g and |∇φ|g̃ and dµg and dµg̃ respectively. The other quantities are related as follows

∣∣∣∣hg̃ −
Hg̃

n − 1
g̃>
∣∣∣∣2

g̃>
= u−2 p−1

n−p

∣∣∣∣hg −
Hg

n − 1
g>
∣∣∣∣2

g>
,

|∇>|∇φ|g̃|
2

g̃

|∇φ|2g̃
= u−2 p−1

n−p

|D>|Du|g|
2

g

|Du|2g
,

|∇⊥|∇φ|g̃|
2

g̃

|∇φ|2g̃
=

u−2 p−1
n−p

(p − 1)2

[
Hg −

(n − 1)(p − 1)
(n − p)

|Du|g
u

]2

and

Ric

(
∇φ

|∇φ|g̃
,

∇φ

|∇φ|g̃

)
= u−2 p−1

n−p Ric

(
Du

|Du|g
,

Du
|Du|g

)
.

As already mentioned (3.5) follows from (3.4) by the coarea formula.
We are thus left to show that the cylindrical splitting of g̃ implies the conical splitting

for the metric g. We know that φ is an affine function of the coordinate s. Hence, we can
write φ = as + b, with a 6= 0, since φ is not constant. By (3.8) we have

g = e
2(as+b)

n−2

(
ds ⊗ ds + g̃{φ=s0}

)
.

Defining the new coordinate ρ as

dρ = e
as+b
n−2 ds,

we get

g = dρ ⊗ dρ +
e2 as+b

n−2

e2 s0
n−2

g{u=1/t0} = dρ ⊗ dρ +

(
ρ

ρ0

)2

g{u=1/t0},

where ρ0 is such that {u ≤ 1/t0} = {ρ ≥ ρ0}. Observe that, by the conical splitting, the
measure of the level sets of ρ satisfy

|{ρ = R}| =
(

R
ρ0

)n−1

|{u = 1/t0}|.

We can then easily compute the claimed value of ρ0 by using Lemma 2.2.4 we have

AVR(g) = lim
R→+∞

|{ρ = R}|
Rn−1|Sn−1| =

|{u = t0}|
ρn−1

0 |Sn−1|
.

The proof of (3.7) as well as its rigidity statement, follows in the same way from (3.25),
(3.15) and (3.18).
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3.4 Proof of the Monotonicity-Rigidity Theorems

In this section we are proving Theorems 3.3.6 to 3.3.8. The first part of the section is
devoted to proving the Monotonicity-Rigidity Theorem for Φβ

p. It turns out that the weak
derivative of Φβ

p is related to a vector field X (see (3.26)) with nonnegative divergence.
Taking advantage of the higher regularity of the function φ outside the critical set, we
will prove that the integral of div(X) is related to the second derivative of Φβ

p, showing
at the same time the regularity and the monotonicity of the function. As it may concern
Φ∞

p , its monotonicity follows from a Maximum Principle applied to an elliptic operator
which has |Dφ|p as a subsolution. The last part of the section contains the proof of this
limit case.

From now on, we will drop the subscript g̃ whenever it is clear which metric we are referring
to.

3.4.1 Monotonicity-Rigidity Theorems for Φβ
p

In this section we prove Theorems 3.3.6 and 3.3.7. A basic property we will need is the
essential uniform boundedness of Φβ

p defined in (3.21).

Lemma 3.4.1. Let (M, g) be a p-nonparabolic Riemannian manifold. Let Ω ⊂ M be an open
bounded subset with smooth boundary. For every β ∈ [0,+∞), Φβ

p is essentially uniformly
bounded, namely, Φβ

p(s) ≤ C for almost every s ∈ [0,+∞), including any s that is regular for φ.

Proof. It suffices to write Φβ
p as

Φβ
p(s) =

ˆ

{φ=s}

|∇φ|(β+1)(p−1) dσ ≤ Cβ(p−1)
ˆ

{φ=s}

|∇φ|p−1 dσ

= Cβ(p−1)
[
(n − 2)(p − 1)

(n − p)

]p−1 ˆ

{u=1/t}

|Du|p−1
g dσg,

where C is the constant appearing in Lemma 3.3.3, the last identity is due to (3.15) and
(3.9) taking s = −[(p − 1)(n − 2)/(n − p)] log t. By Proposition 1.3.3 we have that the
integral on the rightmost hand side coincides with Capp(∂Ω) for almost any t, including

any of those such that 1/t is a regular value for u. This settles the boundedness of Φβ
p for

β ∈ [0,+∞).

Consider now the vector field

X = e−
(n−p)

(n−2)(p−1) φ |∇φ|p−2
(
∇|∇φ|β(p−1) + (p − 2)∇⊥|∇φ|β(p−1)

)
, (3.26)

defined in a neighbourhood of each point such that |∇φ| 6= 0. Observe a first crucial
property of the vector field X.
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Lemma 3.4.2 (Integrability of X). Let (M, g) be a p-nonparabolic manifold and X be the vector
field defined in (3.26). Then

|〈X | ∇φ〉| ≤ β(p − 1) e−
(n−p)

(n−2)(p−1) φ |∇φ|β(p−1)
∣∣∇|∇φ|p−1

∣∣ ∈ L2
loc(M ∖ Ω).

Proof. 〈X | ∇φ〉 makes sense also on the critical set of φ, since ∇|∇φ|p−1 = 0 almost
everywhere on Crit φ by Theorem 1.2.2. By easy computations we have

〈X | ∇φ〉 = (p − 1) e−
(n−p)

(n−2)(p−1) φ |∇φ|p−2
〈
∇|∇φ|β(p−1)

∣∣∣∇φ
〉

= β(p − 1) e−
(n−p)

(n−2)(p−1) φ |∇φ|β(p−1)−1
〈
∇|∇φ|p−1

∣∣∣∇φ
〉

thus, we conclude in virtue of (3.16) and Theorem 1.2.2.

The vector field X is related to derivative of Φβ
p, due to the following identity.

Proposition 3.4.3. Let (M, g) be a p-nonparabolic Riemannian manifold with Ric ≥ 0. For
every β ∈ [0,+∞), the function s 7→ Φβ

p(s) defined in (3.21) belongs to W1,1
loc (0,+∞) and its

derivative is given by

e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s) =

1
p − 1

ˆ

{φ=s}

〈
X
∣∣∣∣ ∇φ

|∇φ|

〉
dσ. (3.27)

for almost every s ∈ [0,+∞), where X is the vector field defined in (3.26).

Proof. By the definition of X, it is easy to check that

e−
(n−p)

(n−2)(p−1) φ
〈
|∇φ|p−2∇|∇φ|β(p−1)

∣∣∣∣ ∇φ

|∇φ|

〉
=

1
p − 1

〈
X
∣∣∣∣ ∇φ

|∇φ|

〉
holds around each point such that |∇φ| 6= 0. Hence, it remains only to prove that Φβ

p(s) ∈
W1,1

loc (0 + ∞) and that

(Φβ
p)

′(s) =
ˆ

{φ=s}

〈
|∇φ|p−2∇|∇φ|β(p−1)

∣∣∣∣ ∇φ

|∇φ|

〉
dσ

holds for almost any s ∈ (0, ∞). Let η ∈ C ∞
c (0,+∞). Since |∇φ| is bounded by

Lemma 3.3.3, applying the coarea formula Proposition B.2 with f = |∇φ|(β+1)(p−1)

and the chain rule we obtain that
+∞ˆ

0

η′(s)Φβ
p(s)ds =

+∞ˆ

0

η′(s)
ˆ

{φ=s}

|∇φ|(β+1)(p−1) dσ ds

=

ˆ

M∖Ω

η′(s)〈∇φ | ∇φ〉|∇φ|(β+1)(p−1)−1 dµ

=

ˆ

M∖Ω

〈∇(η(φ)) | ∇φ〉|∇φ|(β+1)(p−1)−1 dµ.
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Integrating by parts the right hand side, ∆(p)φ = 0 yields

+∞ˆ

0

η′(s)Φβ
p(s)ds = −

ˆ

M∖Ω

η(φ)
〈
|∇φ|p−2∇|∇φ|β(p−1)

∣∣∣∇φ
〉

dµ.

Thanks to Lemma 3.4.2, we are in position to apply the coarea formula in Proposition B.3
with f = η(φ)〈|∇φ|p−2∇|∇φ|β(p−1) | ∇φ〉/|∇φ|, to get

+∞ˆ

0

η′(s)Φβ
p(s)ds = −

1ˆ

0

η(s)
ˆ

{φ=s}

〈
|∇φ|p−2∇|∇φ|β(p−1)

∣∣∣∣ ∇φ

|∇φ|

〉
dσ ds,

which ensures both that (Φβ
p)

′ ∈ W1,1
loc (0,+∞) and (3.27).

Combining (3.27) and (3.17), one can actually show that

(Φβ
p)

′(s) = −β

ˆ

{φ=s}

H |∇φ|(β+1)(p−1)−1 dσ (3.28)

for almost every s ∈ [0,+∞).
The nonnegative divergence of X is what substantially rules the monotonicity of Φβ

p,
and this is true when β ranges in a suitable set of parameters.

Lemma 3.4.4 (Divergence of X). Let (M, g) be a p-nonparabolic manifold and X be the vector
field defined in (3.26). Then

div X = e−
(n−p)

(n−2)(p−1) φ Q, (3.29)

holds at any point such that |∇φ| > 0, with

Q = β(p − 1)|∇φ|(β+1)(p−1)−1

{∣∣∣∣h− H
n − 1

g̃>
∣∣∣∣2

+ (p − 1)2
[

β − (n − p)
(p − 1)(n − 1)

]
|∇⊥|∇φ||2

|∇φ|2

+ (p − 1)
[

β +
p − 2
p − 1

]
|∇>|∇φ||2

|∇φ|2
+ Ricg

(
∇φ

|∇φ| ,
∇φ

|∇φ|

)}
,

(3.30)

according to the orthogonal decomposition with respect to the level sets of φ, where h and H
are respectively the second fundamental form and the mean curvature of the level sets of φ with
respect to the unit normal ∇φ/|∇φ| and Ricg denotes the Ricci tensor of the background metric.
In particular, div(X) ≥ 0 for (n − p)/[(n − 1)(p − 1)] ≤ β < +∞.

Proof. The proof follows the same lines of [AFM22, Lemma 4.1] and we report all com-
putations here for the sake of completeness. We can write X as the sum of two vector
fields

X = e−
(n−p)

(n−2)(p−1) φ
(W + Z),
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where
W = |∇φ|p−2∇|∇φ|β(p−1)

and
Z = (p − 2)|∇φ|p−2∇⊥|∇φ|β(p−1).

We proceed computing the divergence of the two vector fields separately.

Step 1. Divergence of W. By the chain rule we have that

W =
β(p − 1)

p
|∇φ|β(p−1)−2∇|∇φ|p, (3.31)

hence its divergence is

div W =
β(p − 1)

p
|∇φ|β(p−1)−2∆|∇φ|p + β(p− 1)(β(p− 1)− 2)|∇φ|β(p−1)+p−4|∇|∇φ||2.

Plugging the p-Bochner formula for φ in Proposition 3.3.4 into the previous identity tak-
ing into account the definition (3.31) we have that

div W − n − p
n − 2

〈W | ∇φ〉 = β(p − 1)|∇φ|β(p−1)+p−4
[
|∇∇φ|2

+ p(p − 2)
∣∣∇⊥|∇φ|

∣∣2 − p − 2
p

∇∇|∇φ|p(∇φ,∇φ)

|∇φ|p

+ (β(p − 1)− 2)|∇|∇φ||2 + Ricg(∇φ,∇φ)

]
and computing the Hessian of |∇φ|p one has

div W − n − p
n − 2

〈W | ∇φ〉 = β(p − 1)|∇φ|β(p−1)+p−4
[
|∇∇φ|2

+ (p − 2)
(∣∣∇⊥|∇φ|

∣∣2 − ∇∇|∇φ|(∇φ,∇φ)

|∇φ|

)
+ (β(p − 1)− 2)|∇|∇φ||2 + Ricg(∇φ,∇φ)

]
.

Using the orthogonal decomposition

|∇|∇φ||2 =
∣∣∇⊥|∇φ|

∣∣2 + ∣∣∇>|∇φ|
∣∣2,

on level sets of φ and using the Kato-type Identity (1.10), we conclude obtaining

div W − n − p
n − 2

〈W | ∇φ〉 = β(p − 1)|∇φ|β(p−1)+p−4
[

β(p − 1)
∣∣∇>|∇φ|

∣∣2
+ |∇φ|2

∣∣∣∣h− H
n − 1

g̃>
∣∣∣∣2 − (p − 2)

∇∇|∇φ|(∇φ,∇φ)

|∇φ|

+

(
(β(p − 1) +

(p − 1)2

n − 1
+ p − 3

) ∣∣∇⊥|∇φ|
∣∣2

+ Ric(∇φ,∇φ)

]
.
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Step 2. The divergence of Z. Since φ is p-harmonic, we get

div Z = (p − 2)|∇φ|p−2

〈
∇
(
|∇⊥|∇φ|β(p−1)|

|∇φ|

) ∣∣∣∣∣∇φ

〉
.

Since

|∇⊥|∇φ|β(p−1)|
|∇φ| = β(p − 1)|∇φ|β(p−1)−2

∣∣∇⊥|∇φ|
∣∣,

using the decomposition on the level sets of φ and the general fact that

∇∇φ(∇|∇φ|,∇φ)

|∇φ| = |∇|∇φ||2,

the divergence of Z reads as

div Z = β(p − 2)(p − 1)|∇φ|β(p−1)+p−4
[
∇∇|∇φ|(∇φ,∇φ)

|∇φ|

+ (β(p − 1)2 − β(p − 1)− 2(p − 2))
∣∣∇⊥|∇φ|

∣∣2 + (p − 2)
∣∣∇>|∇φ|

∣∣2] .

Step 3. Conclusions. Observe that (p − 1)〈W | ∇φ〉 = 〈W + Z | ∇φ〉. Hence by straightfor-
ward computations

div(W + Z)− (n − p)
(n − 2)(p − 1)

〈W + Z | ∇φ〉 = div W − n − p
n − 2

〈W | ∇φ〉+ div Z = Q

which is equivalent to (3.29).

Suppose that |∇φ| 6= 0 everywhere. We can apply the Divergence Theorem in the
domain {s < φ < S} to obtain

ˆ

{φ=S}

〈
X
∣∣∣∣ ∇φ

|∇φ|

〉
dσ −

ˆ

{φ=s}

〈
X
∣∣∣∣ ∇φ

|∇φ|

〉
dσ =

ˆ

{s<φ<S}

div X dµ ≥ 0. (3.32)

Using (3.27) we deduce that

e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s) ≤ e−

(n−p)
(n−2)(p−1) S

(Φβ
p)

′(S).

This almost concludes the prove of the Monotonicity Theorem for Φβ
p with (n − p)/[(n −

1)(p − 1)] ≤ β < +∞ assuming the absence of critical points. Indeed, by integrating
it, monotonicity will follow as in [FMP19, Theorem 3.4]. This case lies in the same trail
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blazed in [AM20] since if |∇φ| 6= 0 the p-Laplace operator is elliptic non degenerate, and
thus the techniques used for harmonic functions fit perfectly.

If we want to pursue the previous path, even when the critical set of φ is not empty,
we are first committed to provide a version of (3.32) that holds even in presence of critical
values. The main issue is that div(X) does not belong to L1

loc a priori. Following the

same lines of [GV21, Proposition 4.6], testing s 7→ e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s) against nonnegative

functions η ∈ C ∞
c (0,+∞) and using the coarea formula Proposition B.3 for f = 〈X | ∇φ〉

one gets

(p − 1)

+∞ˆ

0

η′(s) e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s)ds =

ˆ

M∖Crit(φ)

〈X | ∇[η(φ)]〉dµ.

We now would like to integrate by parts and use the nonnegativitiy of div(X) outside the
critical set of φ. In doing this, we are hampered by the fact that div(χM∖Crit φX) is actually
a measure that is possibly not absolutely continuous. Hence we can aim at proving that

s 7→ e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s) belongs to BVloc(0,+∞), but not the absolute continuity. Differ-

ently from the nonsmooth case, we can here employ the higher regularity of φ outside its
critical set to refine the result.

Proposition 3.4.5. Let (M, g) be a p-nonparabolic Riemannian manifold with Ric ≥ 0. Let
Ω ⊆ M be an open bounded subset with smooth boundary. For every (n− p)/[(n− 1)(p− 1)] <

β < +∞, the function s 7→ e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s) defined in (3.27) belongs to W1,1

loc (0,+∞) and
its derivative is given by(

e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s)
)′

=
1

p − 1

ˆ

{φ=s}∖Crit(φ)

div X
|∇φ| dσ, (3.33)

for almost every s ∈ [0,+∞), where X is the vector field defined in (3.26).

Proof. Proposition 3.4.5 follows if we prove that div(X)(1 − χ
Crit(φ)) belongs to L1

loc(M ∖
Ω) and

(p − 1)

+∞ˆ

0

η′(s) e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s)ds = −

ˆ

M∖Crit φ

η(φ)div X dµ (3.34)

holds for every η ∈ C ∞
c (0,+∞). Indeed, by the coarea formula Proposition B.3 with

f = div(X)(1 − χCrit φ) we would get

(p − 1)

+∞ˆ

0

η′(s) e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s)ds = −

+∞ˆ

0

η(s)
ˆ

{φ=s}∖Crit φ

div X
|∇φ| dσ ds,

which implies both that e−(n−p)s/(n−2)(p−1)(Φβ
p)

′ ∈ W1,1
loc (0,+∞) and (3.33).
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Step 1. Proof for nonnegative η. Let η ∈ C ∞
c (0,+∞) be nonnegative. For every ε > 0, con-

sider a smooth nonnegative cut-off function χ
ε : [0,+∞) → R such that

χ
ε(t) = 0 in t < 1

2 ε,

0 < χ′
ε(t) ≤ 2

ε in 1
2 ε ≤ t ≤ 3

2 ε,

χ
ε(t) = 1 in t > 3

2 ε.

Define accordingly the vector field Xε = χ
ε(|∇φ|β(p−1))X, where X is the vector field

given in (3.26). Notice that |〈Xε | ∇φ〉| ≤ |〈X | ∇φ〉|. Hence Proposition 3.4.3, the coarea
formula Proposition B.3 with f = η′(φ)〈X | ∇φ/|∇φ|〉 and the Dominated Convergence
Theorem, whose assumptions are fulfilled in virtue of Lemma 3.4.2, imply

+∞ˆ

0

η′(s) e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s)ds =

1
p − 1

ˆ

M

η′(φ)〈X | ∇φ〉dµ

= lim
ε→0+

1
p − 1

ˆ

M

η′(φ)〈Xε | ∇φ〉dµ.

Integrating by parts we obtain that
ˆ

M∖Ω

η′(φ)〈Xε | ∇φ〉dµ = −
ˆ

M∖Ω

div(Xε)η(φ)dµ

= −
ˆ

M∖Nε/2

η(φ)χε(|∇φ|β(p−1))div X dµ

−
ˆ

N3ε/2∖Nε/2

η(φ)χ′
ε(|∇φ|β(p−1))

〈
X
∣∣∣∇|∇φ|β(p−1)

〉
dµ,

where Nδ =
{
|∇φ|β(p−1) < δ

}
for every δ > 0. By the Monotone Convergence Theorem,

the first integral gives

lim
ε→0+

ˆ

M∖Nε/2

η(φ)χε(|∇φ|β(p−1))div X dµ =

ˆ

M∖Crit φ

η(φ)div X dµ ≥ 0.

We now aim at proving that the second integral vanishes as ε → 0+. Observe that
|∇φ|β(p−1) ≥ ε/2 on N3ε/2 ∖ Nε/2, then φ is smooth in that domain. By the definition of
X in (3.26), we obtain that〈

X
∣∣∣∇|∇φ|β(p−1)

〉
= e−

(n−p)
(n−2)(p−1) φ |∇φ|p−2

(∣∣∇|∇φ|β(p−1)
∣∣2 + (p − 2)

∣∣∇⊥|∇φ|β(p−1)
∣∣2)

= e−
(n−p)

(n−2)(p−1) φ |∇φ|p−2
(∣∣∇>|∇φ|β(p−1)

∣∣2 + (p − 1)
∣∣∇⊥|∇φ|β(p−1)

∣∣2)
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which is nonnegative. By the coarea formula we obtain that

∣∣∣∣∣
ˆ

N3ε/2∖Nε/2

η(φ)χ′
ε(|∇φ|β(p−1))

〈
X
∣∣∣∇|∇φ|β(p−1)

〉
dµ
∣∣∣∣∣

≤ 2
ε
‖η‖L∞

3ε/2ˆ

ε/2

ˆ

∂Ns

〈
X
∣∣∣∇|∇φ|β(p−1)

〉
|∇|∇φ|β(p−1)|

dσ ds.

Let R > 0 and H be defined as

H(r) =
ˆ

∂Nr

〈
X
∣∣∣∇|∇φ|β(p−1)

〉
|∇|∇φ|β(p−1)|

dσ,

for every regular value r ∈ (0, R) of |∇φ|, hence for almost every r ∈ (0, R) thanks to
Sard’s Theorem. By the Mean Value Theorem, showing that H(r) vanishes as r → 0+ is
enough to conclude the proof.

Let 0 < t < r < R be two regular values for |∇φ|, applying the Divergence Theorem
to the smooth vector field X on Nr ∖ Nt we get

H(r)−H(t) =
ˆ

∂Nr

〈
X
∣∣∣∇|∇φ|β(p−1)

〉
|∇|∇φ|β(p−1)|

dσ −
ˆ

∂Nt

〈
X
∣∣∣∇|∇φ|β(p−1)

〉
|∇|∇φ|β(p−1)|

dσ

=

ˆ

Nr∖Nt

div(X)dµ =

rˆ

t

ˆ

∂Ns

div(X)

|∇|∇φ|β(p−1)|
dσ ds.

(3.35)

where the last identity is an application of the coarea formula. Since the integrand in the
rightmost side is nonnegative and H is almost everywhere finite, H is locally absolutely
continuous.

Since Ric ≥ 0 and |∇φ|2|h− H
n−1 g>|2 ≥ 0, by (3.30) we have that

div X ≥ e−
(n−p)

(p−1)(n−2) S
β(p − 1)|∇φ|β(p−1)+p−4

(
(p − 1)

[
β +

p − 2
p − 1

] ∣∣∇>|∇φ|
∣∣2

+(p − 1)2
[

β − (n − p)
(p − 1)(n − 1)

] ∣∣∇⊥|∇φ|
∣∣2)

≥ β2(p − 1)2 C |∇φ|β(p−1)+p−4
(∣∣∇⊥|∇φ|

∣∣2 + ∣∣∇>|∇φ|
∣∣2)

≥ C |∇φ|−β(p−1)+p−2
∣∣∇|∇φ|β(p−1)

∣∣2,

where

C =
1
β

e−
(n−p)

(p−1)(n−2) S min
{[

β +
p − 2
p − 1

]
, (p − 1)

[
β − (n − p)

(p − 1)(n − 1)

]}
> 0.
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Taking derivatives in (3.35) it holds that

H′(r) =
ˆ

∂Ns

div(X)

|∇|∇φ|β(p−1)|
dσ ≥ C

ˆ

∂Nr

|∇φ|−β(p−1)+p−2
∣∣∇|∇φ|β(p−1)

∣∣dσ = C
H(r)

r
,

for almost any r > 0. Integrating for R > r, we obtain that

H(r)
rC ≤ H(R)

RC .

We thus deduce that H(r) → 0 as r → 0+.

Step 2. Conclusion. Consider K ⊂ M ∖ Ω, there exists a ηK ∈ C ∞
c (0,+∞), ηK ≥ 0, such

that ηK(φ) ≥ 1 on K. Lemma 3.4.4 yields
ˆ

K

div(X)(1 − χCrit φ)dµ ≤
ˆ

M∖Crit φ

ηK(φ)div(X)dµ

= −(p − 1)

+∞ˆ

0

η′
K(s) e−

(n−p)
(n−2)(p−1) s

(Φβ
p)

′(s)ds,

which is finite by Proposition 3.4.3. This ensures that div(X)(1 − χCrit φ) belongs to
L1

loc(M ∖ Ω). In particular, (3.34) holds for every η ∈ C ∞
c (0,+∞). Employing the coarea

formula in Proposition B.3 for f = η(φ)div(X)(1 − χCrit φ)/|∇φ|, we get that

(p − 1)

+∞ˆ

0

η′(s) e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s)ds = −

ˆ

M∖Crit φ

η(φ)div(X)dµ

= −
+∞ˆ

0

η(s)
ˆ

{φ=s}

div(X)

|∇φ| dσ dt.

This ensures both that e−
(n−p)

(n−2)(p−1) sΦβ
p ∈ W1,1

loc and (3.33).

Corollary 3.4.6. Let (M, g) be a p-nonparabolic Riemannian manifold with Ric ≥ 0. Let Ω ⊆ M

be an open bounded subset with smooth boundary. Then, the function s 7→ e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s)

defined in (3.27) for β = (n − p)/[(n − 1)(p − 1)] belongs to BVloc(0,+∞) and its derivative
satisfies (

e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s)
)′

≥ 1
p − 1

 ˆ

{φ=s}∖Crit(φ)

div X
|∇φ| dσ

L1, (3.36)

for almost every s ∈ [0,+∞), where X is the vector field defined in (3.26) and L1 is the Lebesgue
measure on [0,+∞).
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Proof. Denote

div+ X =β(p − 1) e−
(n−p)

(n−2)(p−1) φ |∇φ|(β+1)(p−1)−1
g̃

{∣∣∣∣hg̃ −
Hg̃

n − 1
g̃>
∣∣∣∣2

g̃>

+ (p − 1)
[

β +
p − 2
p − 1

] |∇>|∇φ|g̃|
2

g̃

|∇φ|2g̃
+ Ric

(
∇φ

|∇φ|g̃
,

∇φ

|∇φ|g̃

) .

Since we have neglected a nonnegative term, div+ X ≤ div X holds for every β > (n −
p)/[(n − 1)(p − 1)] = β and div+ X = div X for β = β. In particular, by Proposition 3.4.5
and the coarea formula Proposition B.3 for f = η(φ)div+(X)(1 − χCrit φ)/|∇φ|

+∞ˆ

0

η(s)
(

e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s)
)′

ds ≥ 1
p − 1

ˆ

M∖Crit φ

η(φ)div+ X dµ (3.37)

holds for every β > β and every nonnegative η ∈ C ∞
c (0,+∞). We want to pass the limit

as β → β
+

. The right hand side can be split into two parts, the one where |∇φ| ≤ 1
and |∇φ| > 1. On {|∇φ| ≤ 1} the term |∇φ|β(p−1) is increasing, we can thus employ the
Monotone Convergence Theorem. Conversely, on {|∇φ| > 1} we are far away from the
critical set of φ. Hence, we can control second derivatives and use Dominated Conver-
gence Theorem. As it concerns the left hand side, Proposition 3.4.3 and the coarea formula
for f = η(φ)〈X | ∇φ/|∇φ|〉 give that

+∞ˆ

0

η′(s) e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s)ds =

1
p − 1

ˆ

M

η′(φ)〈X | ∇φ〉dµ.

By Lemma 3.4.2 we can use the Dominated Convergence Theorem.

Then (3.37) holds also for β = β. The derivative of s 7→ e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s) is a

nonnegative distribution and by Riesz Representation Theorem, is a nonnegative Radon

measure. This shows both that s 7→ e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s) belongs to BVloc(0,+∞) and

(3.36).

Finally, all the tools required for the proof of Monotonicity are at our disposal.

Proof of Theorems 3.3.6 and 3.3.7. We use an argument due to Colding and Minicozzi in
[CM14b]. If β > (n − p)/[(p − 1)(n − 1)], by Propositions 3.4.3 and 3.4.5 Φβ

p is of class

W2,1
loc (0,+∞). By (3.33) s 7→ e−

(n−p)
(n−2)(p−1) s

(Φβ
p)

′(s) is nondecreasing. For every 0 ≤ s < S <
+∞ we have

e−
(n−p)

(n−2)(p−1) (S−s)
(Φβ

p)
′(s) ≤ (Φβ

p)
′(S).

Integrating the above inequality, we get

(n − 1)(p − 1)
(n − p)

(
e

(n−p)
(n−2)(p−1) (S−s) −1

)
(Φβ

p)
′(s) ≤ Φβ

p(S)− Φβ
p(s) (3.38)
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for every 0 ≤ s < S < +∞. Suppose, by contradiction, that (Φβ
p)

′(s) > 0 for some
s ∈ [0,+∞). Passing to the limit as S → +∞ in (3.38) we would get that Φβ

p(S) → +∞
against the boundedness property ensured by Lemma 3.4.1. Hence, (Φβ

p)
′(s) ≤ 0 and

in particular s 7→ Φβ
p(s) is nonincreasing. Notice that Φβ

p is a bounded, nonincreasing
C 1(0,+∞) function, then (Φβ

p)
′(s) → 0 as s → +∞. Coupling Proposition 3.4.5 with the

coarea formula in Proposition B.3 for f = div(X)(1 − χCrit φ)/|∇φ| one gets that

e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s) = lim

S→+∞
e−

(n−p)
(n−2)(p−1) s

(Φβ
p)

′(s)− e−
(n−p)

(n−2)(p−1) S
(Φβ

p)
′(S)

= lim
S→+∞

−
ˆ

{s≤φ≤S}∖Crit φ

div X dµ = −
ˆ

{φ≥s}∖Crit φ

div X dµ,

which also ensures that div X ∈ L1(M ∖ (Ω ∪ Crit(φ))).
Conversely, if β = (n − p)/[(p − 1)(n − 1)], by Proposition 3.4.3 and Corollary 3.4.6

s 7→ e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s) admits a nondecreasing right-continuous representative. Hence,

(3.38) holds also in this case for every 0 ≤ s < S < +∞. Arguing as above, (Φβ
p)

′(s) ≤
0, s 7→ Φβ

p(s) and (the right-continuous representative of) (Φβ
p)

′(s) → 0 as s → +∞.
Coupling Corollary 3.4.6 with the coarea formula in (B.1) for f = div(X)(1−χCrit φ)/|∇φ|
one gets that

e−
(n−p)

(n−2)(p−1) s
(Φβ

p)
′(s) = lim

S→+∞
e−

(n−p)
(n−2)(p−1) s

(Φβ
p)

′(s)− e−
(n−p)

(n−2)(p−1) S
(Φβ

p)
′(S)

≥ lim
S→+∞

−
ˆ

{s≤φ≤S}∖Crit φ

div X dµ = −
ˆ

{φ≥s}∖Crit φ

div X dµ,

which ensures that div X ∈ L1(M ∖ (Ω ∪ Crit(φ))) also in the case β = (n − p)/[(p −
1)(n − 1)] and (3.24).

For the rigidity statement, suppose that (Φβ
p)

′(s0) = 0 for some s0 ∈ [0,+∞) regular
for φ. Then (3.23) or (3.24) yields div X = 0 on the region {φ ≥ s0} ∖ Crit φ. We can
consider two cases. If β > (n − p)/[(n − 1)(p − 1)], then by (3.30) both |∇>|∇φ|| and
|∇⊥|∇φ|| vanish and in turn |∇|∇φ|| = 0 near {φ = s0}. In particular, |∇φ| is positively
constant on a small tubular neighbourhood of {φ = s0} and, since φ is at least C 1, it
remains positively constant on {φ ≥ s0}. Therefore, this implies that there are no critical
values s ≥ s0 and ({φ ≥ s0}, g̃) is isometric to the cylinder ([s0,+∞) × {φ = s0}, ds2 +
g̃{φ=s0}) by Lemma 3.3.5.

The case β = (n − p)/[(n − 1)(p − 1)] is a little more delicate. By (3.30) we have that
|∇>|∇φ|| = 0 and |h− H

n−1 g̃>| = 0. The rigidity part of Proposition 1.2.12 implies that
({φ ≥ s0}, g̃) splits to a warped product at least near the level set {φ = s0}. In particular,
the mean curvature of {φ = s} depends only on s, for s > s0 sufficiently close to s0,
and consequently (3.28) implies it is zero. Finally, (3.17) yields |∇⊥|∇φ|| = 0. Since we
have already observed that |∇>|∇φ|| = 0, we get that |∇φ| is positively constant on a
small tubular neighbourhood of {φ = s0}. Arguing as above we get the same cylindrical
splitting.
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3.4.2 Monotonicity-Rigidity Theorem for Φ∞
p

As said before, the Monotonicity of Φ∞
p almost corresponds to a Maximum Principle for

the function |∇φ|. To show this we adapt an argument used by Colding in [Col12, Theo-
rem 3.1] to prove the sharp estimate on the harmonic Green’s function on manifolds with
nonnegative Ricci curvature. Differently from [FMP19], a small observation in applying
the maximum principle is the key to infer the full Monotonicity of Φ∞

p .
We firstly observe the crucial property of Φ∞

p to be uniformly bounded, which is the
direct consequence of Lemma 3.3.3.

Lemma 3.4.7. Let (M, g) be a p-nonparabolic Riemannian manifold. Let Ω ⊂ M be an open
bounded subset with smooth boundary. For every β ∈ [0,+∞), Φ∞

p is uniformly bounded

Consider the operator L , acting on smooth functions f , defined as

L ( f ) = ∆ f + (p − 2)∇∇ f
(

∇φ

|∇φ| ,
∇φ

|∇φ|

)
− n − p

n − 2
〈∇ f | ∇φ〉, (3.39)

at each point where |∇φ| > 0. The function |∇φ|p is a subsolution of the equation L f =
0. The proof follows the same line of [FMP19, Lemma 5.1], where the only difference is
that the curvature term that appear when Bochner formula for p-harmonic functions is
applied can be controlled by Ric ≥ 0.

Lemma 3.4.8. Let (M, g) be a p-nonparabolic manifold with nonnegative Ricci curvature. Let
L be the operator defined in (3.39). Then,

L (|∇φ|p) ≥ 0

at each point where |∇φ| > 0.

Proof. By Bochner’s Formula (A.2) for p-harmonic function we have that

L (|∇φ|p) = p|∇φ|p−2

(
|∇∇φ|2 + p(p − 2)

〈
∇|∇φ|

∣∣∣∣ ∇φ

|∇φ|

〉2

+ Ric(∇φ,∇φ)

)
.

Since Ric ≥ 0 and the standard Kato inequality, we obtain

L (|∇φ|p) ≥ p|∇φ|p−2

(
|∇|∇φ||2 + p(p − 2)

〈
∇|∇φ|

∣∣∣∣ ∇φ

|∇φ|

〉2
)

≥ p|∇φ|p−2
(∣∣∇>|∇φ|

∣∣2 + (p − 1)2
∣∣∇⊥|∇φ|

∣∣2) ≥ 0,

concluding the proof.

The following lemma provides a function lying in the kernel of L in (3.39).

Lemma 3.4.9. Let (M, g) be a p-nonparabolic manifold with nonnegative Ricci curvature. Let
L be the operator defined in (3.39) then

L

(
e

(n−p)
(n−2)(p−1) φ

)
= 0 (3.40)

at each point where |∇φ| > 0.
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Proof. We just compute each addendum of L . First of all we have that

∆
(

e
(n−p)

(n−2)(p−1) φ
)
=

(n − p)
(n − 2)(p − 1)

e
(n−p)

(n−2)(p−1) φ
[

(n − p
(n − 2)(p − 1)

|∇φ|2 + ∆φ

]
=

(n − p)
(n − 2)(p − 1)

e
(n−p)

(n−2)(p−1) φ
[

(n − p
(n − 2)(p − 1)

|∇φ|2

−(p − 2)∇∇φ

(
∇φ

|∇φ| ,
∇φ

|∇φ|

))
,

where in the last identity we used the p-harmonicity of φ. The second term is equal to

∇∇
(

e
(n−p)

(n−2)(p−1) φ
)
=

(n − p)
(n − 2)(p − 1)

e
(n−p)

(n−2)(p−1) φ
[

(n − p
(n − 2)(p − 1)

|∇φ|2

+∇∇φ

(
∇φ

|∇φ| ,
∇φ

|∇φ|

)]
.

The last one is 〈
∇ e

(n−p)
(n−2)(p−1) φ

∣∣∣∣∇φ

〉
=

(n − p)
(n − 2)(p − 1)

e
(n−p)

(n−2)(p−1) φ |∇φ|2.

Combining the three expression above we finally get (3.40).

We now have at our disposal all tools required for the proof of the Monotonicity-
Rigidity theorem for Φ∞

p .

Proof of Theorem 3.3.8. We firstly claim that

|∇φ|(x) ≤ sup
{φ=s}

|∇φ| (3.41)

for every s ∈ [0,+∞) and x ∈ {φ ≥ s}, which trivially implies the monotonicity of Φ∞
p (s).

Firstly suppose that Φ∞
p (s) > 0 and let 0 < δ < Φ∞

p (s). By Lemma 3.4.7 |∇φ| ≤ C
uniformly in M ∖ Ω. Fix S > s and consider the function

w = |∇φ|p − sup
{φ=s}

|∇φ|p − Cp e
n−p

(n−2)(p−1) (φ−S)

defined on {s ≤ φ ≤ S}∖ Nδ where Nδ = {|∇φ| < δ}. Since w ≤ 0 on the boundary of
{s ≤ φ ≤ S}∖ Nδ and L (w) ≥ 0 in its interior, by the Maximum Principle (see [GT15,
Theorem 3.3]) we have that

|∇φ|p ≤ sup
{φ=s}

|∇φ|p + Cp e
n−p

(n−2)(p−1) (φ−S) (3.42)

on {s ≤ φ ≤ S} ∖ Nδ. Moreover, since |∇φ| < δ on Nδ, (3.42) is thus satisfied on the
whole {s ≤ φ ≤ S}. Passing to the limit as S → +∞, (3.41) is proved for s ∈ [0,+∞) such
that Φ∞

p (s) > 0.
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To conclude the proof (3.41) it remains to show that Φβ
p(s) > 0 for every s ∈ [0,+∞),

which is in particular the content of Corollary 3.2.4 in virtue of (3.15). Suppose by con-
tradiction that Φ∞

p (s) = 0 for some s ∈ [0,+∞). By Lemma B.1 there exists a sequence
of (sj)j∈N, sj → s as j → +∞ and Φ∞

p (sj) > 0. If, up to a subsequence, we can assume
that Φ∞

p (sj) → 0 as j → +∞, then we can conclude. Indeed, Φ∞
p (sj) ≥ |∇φ|(x) for every

x ∈ {φ ≥ s} and Φ∞
p (sj) → 0 as j → +∞. Hence, by (3.41), |∇φ| = 0 on {φ ≥ s}, contra-

dicting the unboundedness of φ. Suppose now by contradiction that every subsequence
of Φ∞

p (sj) does not vanish, then there would be δ > 0 and J ∈ N such that Φ∞
p (sj) > δ

for every j ≥ J. Since level sets of φ are compact, Φβ
p(sj) = |∇φ|(xsj) at some point

xsj ∈
{

φ = sj
}

. Moreover, (xsj)j∈N is bounded, since it is contained in {φ ≤ s}. Hence,
we can assume that there exists x ∈ {φ ≤ s} such that xsj → x as j → +∞. Since φ is C 1,
we obtain that φ(x) = s and |∇φ|(x) ≥ δ, contradicting the fact that Φ∞

p (s) = 0.

Using a similar argument we can infer that s 7→ Φβ
p(s) is left continuous. Indeed, by

contradiction there would be δ > 0 such that Φ∞
p (s) ≥ Φ∞

p (s0) + δ for any s < s0. Let
xs ∈ {φ = s} such that Φ∞

p (s) = |∇φ|(xs). By the compactness of {φ ≤ s0}, there exists a
sequence (sj)j∈N and a point x ∈ {φ ≤ s0} such that sj < s0, sj → s0 and xsj → x. Since
φ ∈ C 1, φ(x) = s0 and |∇φ|(x) ≥ Φ∞

p (s0) + δ, contradicting the definition of Φ∞
p . To

prove the right continuity it is enough to prove that s 7→ Φ∞
p (s) is lower semicontinuous.

Since Φ∞
p > 0, the maximum of |∇φ| on {φ = s} is achieved at a regular point x. Let

(sj)j∈N be a sequence such that sj → s as j → +∞. Since |∇φ| is continuous, there exists
a sequence of points (xsj)j∈N such that xsj ∈

{
φ = sj

}
and xsj → x as j → +∞. Since

|∇φ|(xsj) ≤ Φ∞
p (sj) for every j ∈ N, yielding the lower semicontinuity.

Let xs ∈ {φ = s} be the point where the maximum of |∇φ| in {φ = s} is achieved. By
the monotonicity it is also the maximum in {φ ≥ s} and in particular

∂

∂ν
|∇φ|p(xs) ≤ 0 (3.43)

by the Hopf’s Maximum Principle, since xs is a regular point for φ. (3.25) follows then
from (3.17).

It remains only to show the rigidity part of the theorem. Assume that Φ∞
p (s0) = Φ∞

p (S)
for some S > s0 with s0 regular. By the monotonicity of Φ∞

p , we can assume that S is so
close to s0 that |∇φ| never vanishes on {s0 ≤ φ ≤ S}. Consider xS ∈ {φ = S} such that
Φ∞

p (s) = |∇φ|(xS). Let δ > 0 be small enough so that |∇φ| > 0 on {s0 ≤ φ ≤ S + δ},
then

sup
{φ=S}

|∇φ| = sup
{φ=s0}

|∇φ| = sup
{φ=s0}∪{φ=S+δ}

|∇φ|.

Since xS is an interior point of {s0 ≤ φ ≤ S + δ}, by the Maximum Principle we have
that |∇φ| is positively constant on {s0 ≤ φ ≤ S + δ}. The continuity of |∇φ| implies that
no singular values bigger then s0 can occur. In particular, δ can be taken arbitrarily big,
showing that |∇φ| is constant on {φ ≥ s0} and thus that ({φ ≥ s0}, g̃) is isometric to the
Riemannian product ([s0,+∞)× {φ = s0}, ds2 + g{φ=s0}) by Lemma 3.3.5.

Finally, suppose that equality holds in (3.25). In this case the normal derivative in
(3.43) vanishes. Since xs is a global maximum for |∇φ| on {s0 ≤ φ ≤ S} for every S > s0
and |∇φ|p is a subsolution of L ( f ) = 0 provided it never vanishes on {s0 ≤ φ ≤ S},
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Hopf’s Maximum principle implies that |∇φ|p is positively constant on this region. Ar-
guing as above, we infer that no singular value can be bigger than s0, |∇φ| is constant on
{φ ≥ s0} and the same cylindrical splitting in virtue of Lemma 3.3.5.
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4
GEOMETRIC CONSEQUENCES OF THE
MONOTONICITY FORMULAS

4.1 Structure of the chapter

In this chapter, we prove the geometric implications of the Monotonicity-Rigidity theo-
rems, which are the Minkowski Inequalities, a rigidity result under pinching conditions
and a sphere theorem. In Section 4.2 we show the family of Lp

(β)
-Minkowski Inequal-

ities. Among them, choosing particular β’s, we can find the Lp-Minkowski Inequality
holding on Riemannian manifolds with nonnegative Ricci curvature and Euclidean Vol-
ume Growth and also the Willmore-type Inequality that was already proved in [AFM20]
with a different technique. Coupling these results with the Isoperimetric Inequality in
[Bre22] we obtain their volumetric versions. All the inequalities presented are sharp and
the equality is satisfied only on Riemannian cones. Letting p → 1+, we finally obtain the
Extended Minkowski Inequality (18) which extends the result in [AFM22; FMP19]. This
inequality turns out to be sharp on Asymptotically Conical Riemannian manifolds with
nonnegative Ricci curvature and we characterise the equality case for strictly outward
minimising subsets with smooth strictly mean-convex boundary using the Inverse Mean
Curvature flow. Section 4.3 extends to the nonlinear setting the results in [BMM19; Fog20]
which are two rigidity results under a pinching condition on the mean curvature and the
normal derivative of the p-capacitary potential associated with the set Ω.

4.2 Minkowski-type Inequalities

The first geometric consequence we present is the sharp Minkowski Inequality on Rie-
mannian manifolds with nonnegative Ricci curvature and Euclidean Volume Growth. As
already said, the inequality is obtained by approximation, letting p → 1+ in the Lp-
Minkowski Inequality. This family of inequalities follows by a contradiction argument
that involves the Iso-p-capacitary Inequality Theorem 2.3.10 and the monotonicity of Fβ

p

for β = 1/(p − 1). For this choice of β, the function Fβ
p is can be rewritten (up to a con-

stant) as

t 7→
(

Ĉapp(∂Ωt)
)− n−p−1

n−p
ˆ

∂Ωt

|D log u|p dσ (4.1)
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for t ∈ [1,+∞), where ∂Ωt is the level set of the p-capacitary potential u associated with
Ω through (2.7). One can recognise that the quantity in (4.1) formally converges to the
monotone quantity that is classically used to prove the Minkowski Inequality using the
IMCF (see (7)). Even using Theorem 2.4.12 and Theorem 2.4.10, we cannot pass directly
to the limit.

4.2.1 Lp-Minkowski Inequality

We are now ready to prove the Lp
(β)

-Minkowski Inequality.

Theorem 4.2.1 (Lp
(β)

-Minkowski Inequality). Let (M, g) be a complete Riemannian manifold
with Ric ≥ 0 and Euclidean Volume Growth. Let Ω ⊆ M be an open bounded subset with
smooth boundary. Then, for every 1 < p < n and β ≥ (n − p)/[(p − 1)(n − 1)], the following
inequality holds

Ĉapp(∂Ω)
1−β

(p−1)
(n−p) AVR(g)β

p−1
n−p ≤ 1

|Sn−1|

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣(β+1)(p−1)

dσ (4.2)

Moreover, equality holds in (4.2) if and only if (M ∖ Ω, g) is isometric to(
[ρ0,+∞)× ∂Ω, dρ ⊗ dρ +

(
ρ

ρ0

)2

g∂Ω

)
, with ρ0 =

(
|∂Ω|

AVR(g)|Sn−1|

) 1
n−1

.

Proof. We prove it for β = 1/(p − 1), the general case being obtained similarly. We first
show that

Ĉapp(∂Ω)
n−p−1

n−p AVR(g)
1

n−p ≤ 1
|Sn−1|

(
p − 1
n − p

)p ˆ

∂Ω

|D log u|p dσ (4.3)

holds true for any open bounded subset Ω ⊆ M with smooth boundary. Let then θ <
AVR(g) and suppose by contradiction that there exists an open bounded subset Ω ⊆ M
with smooth boundary, such that

Ĉapp(∂Ω)
n−p−1

n−p θ
1

n−p ≥ 1
|Sn−1|

(
p − 1
n − p

)p ˆ

∂Ω

|D log u|p dσ.

Define τ = 1/t ∈ (0, 1] and Ωτ = {u > τ} ∪Ω. By Theorem 3.2.1, the function τ 7→ Fβ
p (τ)

is nondecreasing for τ ∈ (0, 1]. Exploiting this monotonicity we have(
n − p
p − 1

)p ∣∣Sn−1
∣∣θ 1

n−p ≥ Ĉapp(∂Ω)−
n−p−1

n−p

ˆ

∂Ω

|D log u|p dσ

≥ Ĉapp(∂Ωτ)
− n−p−1

n−p

ˆ

{u=τ}

|D log u|p dσ.
(4.4)
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The Hölder’s Inequality with conjugate exponents a = (p + 1)/p and b = p + 1, yields

Capp(∂Ωτ)
p+1

p ≤

 ˆ

{u=τ}

|D log u|p dσ


 ˆ

{u=τ}

1
|D log u| dσ


1
p

.

Therefore, plugging it into (4.4), we get∣∣Sn−1
∣∣ Ĉapp(∂Ωτ)

n
n−p ≤

(
n − p
p − 1

)
θ

p
n−p

ˆ

{u=τ}

1
|D log u| dσ.

Using (1.20) and integrating both sides we obtain

∣∣Sn−1
∣∣ Ĉapp(∂Ω)

n
n−p

1ˆ

τ

s−
n(p−1)

n−p −1 ds ≤
(

n − p
p − 1

)
θ

p
n−p

ˆ 1

τ

ˆ

{u=s}

1
|Du| dσ ds,

that, together with the coarea formula Proposition B.3 with f = (1− χCrit u)|Du|−1, leaves
us with

|Sn−1|
n

(
Ĉapp(∂Ωτ)

n
n−p − Ĉapp(∂Ω)

n
n−p
)
≤ θ

p
n−p |Ωτ ∖ (Ω ∪ Crit u)|,

for every τ ∈ [0, 1). Applying the sharp Iso-p-capacitary inequality (2.13) to the left hand
side we obtain

AVR(g)
p

n−p
(
|Ωτ| − Ĉapp(∂Ω)

n
n−p
)
≤ θ

p
n−p |Ωτ|.

Dividing both sides by |Ωτ| and passing to the limit as τ → 0, we get a contradiction with
θ < AVR(g), proving that for any θ < AVR(g)

Ĉapp(∂Ω)
n−p−1

n−p θ
1

n−p <
1

|Sn−1|

(
p − 1
n − p

)p ˆ

∂Ω

|D log u|p dσ

holds true for every any bounded open Ω ⊂ M with smooth boundary. Letting θ →
AVR(g)− yields (4.3).

To conclude observe that Theorem 3.2.1 implies (Fp)′(1) ≤ 0 and thus, thanks to (3.3),
we have ˆ

∂Ω

(
p − 1
n − p

)
|Du|p dσ ≤

ˆ

∂Ω

|Du|p−1 H
n − 1

dσ.

By Hölder’s Inequality with conjugate exponents a = p/(p − 1) and b = p, we get
ˆ

∂Ω

|D log u|p dσ ≤
(

n − p
p − 1

)p ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣p dσ, (4.5)

that coupled with (4.3) concludes the proof of (4.2).
If we now assume that equality holds in (4.2), then the two sides of (4.5) are identical

too. In particular, by (3.3), F′
p(1) = 0 and the rigidity statement in Theorem 3.2.1 applies.
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Two direct corollaries of this results are the Lp-Minkowski Inequalities [BFM21, The-
orem 4.3] and the Willmore-type Inequality [AFM20, Theorem 1.1], respectively obtained
from (4.2) for β = 1/(p − 1) and β = (n − p)/(p − 1).

Corollary 4.2.2 (Lp-Minkowski Inequalities). Let (M, g) be a complete Riemannian manifold
with Ric ≥ 0 and Euclidean Volume Growth. Let Ω ⊆ M be an open bounded subset with smooth
boundary. Then, for every 1 < p < n, the following inequality holds

Ĉapp(∂Ω)
n−p−1

n−p AVR(g)
1

n−p ≤ 1
|Sn−1|

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣p dσ. (4.6)

Moreover, equality holds in (4.6) if and only if (M ∖ Ω, g) is isometric to(
[ρ0,+∞)× ∂Ω, dρ ⊗ dρ +

(
ρ

ρ0

)2

g∂Ω

)
, with ρ0 =

(
|∂Ω|

AVR(g)|Sn−1|

) 1
n−1

.

Corollary 4.2.3 (Willmore-type Inequality). Let (M, g) be a complete Riemannian manifold
with Ric ≥ 0 and Euclidean Volume Growth. Let Ω ⊆ M be an open bounded subset with smooth
boundary. Then, the following inequality holds

∣∣Sn−1
∣∣AVR(g) ≤

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣n−1

dσ. (4.7)

Moreover, equality holds in (4.7) if and only if (M ∖ Ω, g) is isometric to(
[ρ0,+∞)× ∂Ω, dρ ⊗ dρ +

(
ρ

ρ0

)2

g∂Ω

)
, with ρ0 =

(
|∂Ω|

AVR(g)|Sn−1|

) 1
n−1

.

Combining Theorem 4.2.1 with the sharp Iso-p-capacitary Inequality Theorem 2.3.10
we obtain a Volumetric Lp

(β)
-Minkowski Inequality. The rigidity statement follows in this

case from the rigidity of the Iso-p-capacitary Inequality.

Theorem 4.2.4 (Volumetric Lp
(β)

-Minkowski Inequality). Let (M, g) be complete Riemannian
manifold with Ric ≥ 0 and Euclidean Volume Growth. Let Ω ⊆ M be an open bounded subset
with smooth boundary. Then for every 1 < p < n, the following inequality holds

(
|Ω|
|Bn|

) n−p
n −β

p−1
n

AVR(g)β
p−1

n + p
n ≤ 1

|Sn−1|

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣(β+1)(p−1)

dσ.

Moreover, equality holds in (4.2) if and only if M is the Euclidean Space and Ω is a ball.

4.2.2 Extended Minkowski Inequality

Letting p → 1+ in the Lp-Minkowski Inequality (4.2) and employing the Dominated Con-
vergence Theorem complete the proof of the Extended Minkowski Inequality.
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Theorem 4.2.5 (Extended Minkowski Inequality). Let (M, g) be a complete Riemannian man-
ifold with Ric ≥ 0 and Euclidean Volume Growth. Let Ω ⊆ M be an open bounded set with
smooth boundary. Then

(
|∂Ω∗|
|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 ≤ 1
|Sn−1|

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣dσ. (4.8)

Combining Theorem 4.2.5 with the sharp Isoperimetric Inequality for manifolds with
nonnegative Ricci curvature [Bre22, Corollary 1.3], reading

|Sn−1|n

|Bn|n−1 AVR(g) ≤ |∂Ω∗|n

|Ω∗|n−1 ,

we get the following sharp volumetric version of the Minkowski Inequality.

Theorem 4.2.6 (Volumetric Minkowski inequality). Let (M, g) be a complete Riemannian
manifold with Ric ≥ 0 and Euclidean Volume Growth. Then,

(
|Ω|
|Bn|

)n−2
n

AVR(g)
2
n ≤ 1

|Sn−1|

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣dσ.

As a corollary, the Minkowski Inequality can be simplified in class of outward min-
imising sets for which |∂Ω| = |∂Ω∗| and H ≥ 0 (see Section 2.4.2).

Corollary 4.2.7 (Minkowski Inequality for outward minimising sets). Let (M, g) be a com-
plete Riemannian manifold with Ric ≥ 0 and Euclidean Volume Growth. Let Ω ⊆ M be a
bounded outward minimising subset with smooth boundary, then

(
|∂Ω|
|Sn−1|

) n−2
n−1

AVR(g)
1

n−1 ≤ 1
|Sn−1|

ˆ

∂Ω

H
n − 1

dσ.

To conclude, we remark that the Extended Minkowski Inequality (4.8) can be also de-
duced from its version for outward minimising subsets up to dimension n ≤ 7, using
an approximation argument via Mean Curvature Flow (see [HI01; HI08]). In higher di-
mension this argument fails due to lower regularity of minimal surfaces involved in the
definition of the strictly outward minimising hull.

4.2.3 Sharpness of the Minkowski Inequality

We show that on a C 0-Asymptotically Conical Riemannian manifold with nonnegative
Ricci curvature there is a sequence of strictly outward minimising sets that are arbitrarily
close to saturate the Minkowski Inequality, inferring its sharpness. The sets {ρ = R} are
the natural candidates, since they satisfy the equality in (4.8) on cones. We show that, in
fact, they are uniformly close to the model one for large enough R.
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Proposition 4.2.8. Let (M, g) be a C 0-Asymptotically Conical Riemannian manifold with non-
negative Ricci curvature. Then,

lim
r→+∞

|{ρ = r}|−
n−2
n−1

ˆ

{ρ=r}

H
n − 1

dσ =
(

AVR(g)
∣∣Sn−1

∣∣) 1
n−1
. (4.9)

In particular,

inf

|∂Ω∗|−
n−2
n−1

ˆ

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣dσ

∣∣∣∣∣∣Ω ⊂ M, with ∂Ω smooth

 =
(∣∣Sn−1

∣∣AVR(g)
) 1

n−1
.

Proof. {ρ ≤ r} is strictly outward minimising for large r by Lemma 2.4.17. Suppose by
contradiction that (4.9) does not hold. Then, there is a constant θ > (AVR(g)|Sn−1|)1/(n−1)

such that ˆ

{ρ=s}

H
n − 1

dσ ≥ θ|{ρ = s}|
n−2
n−1

on {ρ ≥ s} for s large enough. Let φ ∈ C ∞
c (1,+∞) be nonnegative. The function ψr(s) =

φ(s/r) is nonnegative and ψr ∈ C ∞
c (r,+∞). Taking s large enough, we can assume that

|Dρ| ≥ δ holds on {ρ ≥ s} for some δ > 0. Multiplying by ψr, dividing by |Dρ| and
integrating both sides we get

+∞ˆ

r

ψr(s)
ˆ

{ρ=s}

H
n − 1

|Dρ|−1 dσ ds ≥ θ

+∞ˆ

r

ψr(s)|{ρ = s}|
n−2
n−1 |Dρ|−1 ds.

By the coarea formula in Proposition B.3 with f = φ(ρ)|Dρ|−1 H /(n − 1) we obtain

ˆ

{ρ≥r}

ψr(s)
n − 1

div
(

Dρ

|Dρ|

)
dµ ≥ θ

+∞ˆ

r

ψr(s)|{ρ = s}|
n−2
n−1 |Dρ|−1 ds.

Integrating by parts the right hand side we have

−
ˆ

{ρ≥r}

ψ′
r(s)

(n − 1)
|Dρ|dµ ≥ θ

+∞ˆ

r

ψr(s)|{ρ = s}|
n−2
n−1 |Dρ|−1 ds. (4.10)

Observe that each side depends only on the coefficients of the metric and not on their
derivatives. Hence for every ε > 0 there exists Rε > 0 such that

ˆ

{ρ≥r}

ψ′
r(s)|Dρ|dµ ≥ (1 + ε)

ˆ

{ρ≥r}

ψ′
r(s)dµĝ (4.11)

and
+∞ˆ

r

ψr(s)|{ρ = s}|
n−2
n−1 |Dρ|−1 ds ≥ (1 − ε)

+∞ˆ

r

ψr(s)sn−2|L|
n−2
n−1 ds. (4.12)
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Putting (4.11) and (4.12) into (4.10) we obtain

− (1 + ε)

(1 − ε)

ˆ

{ρ≥r}

ψ′
r(s)

(n − 1)
dµĝ ≥ θ

+∞ˆ

r

ψr(s)sn−2|L|
n−2
n−1 ds.

Appealing again to the coarea formula on the left hand side, it leaves us with

− (1 + ε)

(1 − ε)

+∞ˆ

r

ψ′
r(s)

(n − 1)
|L|sn−1 ds ≥ θ

+∞ˆ

r

ψr(s)sn−2|L|
n−2
n−1 ds.

Integrating by parts the left hand side we conclude that

(1 + ε)

(1 − ε)
|L|

+∞ˆ

r

ψr(s)sn−2 ds ≥ θ|L|
n−2
n−1

+∞ˆ

r

ψr(s)sn−2 ds

>
(

AVR(g)
∣∣Sn−1

∣∣) 1
n−1 |L|

n−2
n−1

+∞ˆ

r

ψr(s)sn−2 ds

= |L|
+∞ˆ

r

ψr(s)sn−2 ds,

which yields the desired contradiction by the arbitrariness of ε > 0.

4.2.4 Rigidity of the Minkowski Inequality

We now prove the Rigidity statement of the Minkowski Inequality. Observe once again
that the rigidity statement does not follow from the rigidity of the Lp-Minkowski Inequali-
ties. Indeed, in that case, it was a consequence of the Monotonicity-Rigidity Theorem 3.2.1
that in turn follows by the vanishing of a nonnegative quantity. This quantity degen-
erates as p → 1+ and the correct understanding of limit behaviour seems to require a
more delicate analysis. This forces us to discuss the rigidity statement in a separate ar-
gument, involving the study of the IMCF starting at boundaries of domains that saturate
the Minkowski Inequality Theorem 4.2.5. Going into more detail, consider a Riemam-
nian manifold (M, g) with nonnegative Ricci curvature and Euclidean Volume Growth.
Let Ω ⊂ M be an open bounded subset with smooth strictly mean-convex boundary.
We evolve ∂Ω by smooth IMCF (see (2.39)). We prove that the evolved hypersurfaces,
in an outer neighbourhood of ∂Ω, constitute the cross-sections of a truncated cone with
the same volume ratio of (M, g). The conclusion then follows from a generalisation of
the Bishop-Gromov Theorem. The conical splitting we aim to is inspired by an argument
contained in [HI01, Section 8]. A first step consists in the following fundamental Lemma.

Lemma 4.2.9. Let (M, g) be a complete Riemannian manifold with Ric ≥ 0 and Σ ⊆ M a totally
umbilical closed hypersuface such that Ric(ν, ν) = 0 where ν is the normal unit vector field to Σ.
Then Σ has constant mean curvature.



118 Chapter 4. Geometric consequences of the Monotonicity Formulas

Proof. The (traced) Codazzi-Mainardi equations and the totally umbilicity yields

Ricjν = Di hij −Dj H = −n − 2
n − 1

Dj H

for any j = 1, . . . , n − 1. Consider, at a fixed point on Σ, the vector ηλ = λ D> H+ν, with
λ ∈ R. Since Ric(ν, ν) = 0, we have

0 ≤ Ric(η, η) = 2 Ricjν η jην + Ricij ηiη j = −2λ
n − 2
n − 1

∣∣D> H
∣∣2 + λ2 Ricij Di H D j H

for every λ ∈ R. This can happen only if |D> H| = 0, hence H is constant on Σ.

The following straightforward but very important consequence of the Bishop-Gromov
monotonicity ensures in particular that if an outer neighbourhood of a bounded open set
with smooth boundary K ⊂ M is isometric to a truncated cone, then the whole comple-
ment of K is isometric to a truncated cone based at ∂K.

Lemma 4.2.10. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0. Let
K ⊂ M be a bounded open set. Suppose there exists a outer neighbourhood A ⊂ M ∖ K of K such
that (A, g) is isometric to (

[ρ0, ρ1]× ∂K, dρ ⊗ dρ +

(
ρ

ρ0

)2

g∂K

)
for 0 < ρ0 < ρ1. Then

|∂K| ≥ ρn−1
0

∣∣Sn−1
∣∣AVR(g), (4.13)

and equality holds if and only (M ∖ K, g) is isometric to(
[ρ0,+∞)× ∂K, dρ ⊗ dρ +

(
ρ

ρ0

)2

g∂K

)
.

Proof. Consider the cone (C, ĝ) given by(
(0, ρ1)× ∂K, dρ ⊗ dρ +

(
ρ

ρ0

)2

g∂K

)
,

and the Riemannian manifold, with a conical singularity, obtained by gluing (C, ĝ) with
(M \ (K ∪ A), g) along {ρ = ρ1}. By our assumptions, such manifold is well-defined with
nonnegative Ricci curvature outside of the tip o of C, and coincides with (M, g) in the
complement of K. In C, the geodesic distance from o is given by ρ, and in particular, by
Bishop-Gromov’s monotonicity,

|{ρ = r}|
rn−1|Sn−1| ≥ AVR(g),

for any r ∈ (0, ρ1). Since |{ρ = ρ0}| = |∂K|, setting r = ρ0 proves (4.13). If equality holds,
then, by the rigidity statement in Bishop-Gromov’s Theorem for manifolds with a conical
singularity, the whole manifold we constructed is isometric to a cone, and in particular
(M \ K, g) splits as claimed. This well-known, slightly enhanced version of the Bishop-
Gromov rigidity statement can be readily deduced from its classic proof, or seen as a very
special case of its version for nonsmooth metric spaces [DG16].
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Theorem 4.2.11 (Rigidity statement). Let (M, g) be a Riemannian manifold with nonnegative
Ricci curvature. Let Ω ⊂ M be a bounded open strictly outward minimising subset with smooth
strictly mean-convex boundary, such that(

|∂Ω|
|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 =
1

|Sn−1|

ˆ

∂Ω

H
n − 1

dσ. (4.14)

Then (M ∖ Ω, g) is isometric to(
[ρ0,+∞)× ∂Ω, dρ ⊗ dρ +

(
ρ

ρ0

)2

g∂Ω

)
, with ρ0 =

(
|∂Ω|

AVR(g)|Sn−1|

) 1
n−1

. (4.15)

In the Ricci-flat case a stronger rigidity result is in force. Indeed, the equation Ric = 0
implies that g is analytic [DK81, Theorem 5.2] (see also [Bes08, Theorem 5.26]), and thus
the conical structure (4.15) can be extended also inside Ω. Since the only smooth cone is
the flat Euclidean space and Ω is totally umibilical we have the following corollary.

Corollary 4.2.12. Let (M, g) be a Ricci-flat Riemannian manifold. Let Ω ⊂ M be a bounded
open strictly outward minimising subset with smooth strictly mean-convex boundary that satisfies
(4.14). Then (M, g) is isometric to the flat Euclidean space and Ω is a ball.

Proof of Theorem 4.2.11. Since ∂Ω is by assumption strictly mean-convex, we can evolve it
by (smooth) IMCF ∂Ωt defined in (2.39) for t ∈ [0, T). By the Smooth Start Lemma 2.4.7,
up to shortening the time interval, we can assume that Ωt is strictly outward minimising
for any t ∈ [0, T). Indeed, since Ω is strictly outward minimising, the flow coincides for
a short time with the weak notion of IMCF, that exists in our setting by Theorem 2.4.12.
The sublevel sets of the weak IMCF being strictly outward minimising is a basic and
fundamental property illustrated in [HI01, Minimizing Hull Property 1.4] (see otherwise
Section 2.4.2). Consider then the function Q : [0, T) → R defined by

Q(t) = |∂Ωt|−
n−2
n−1

ˆ

∂Ωt

Ht dσ .

A straightforward computation, direct consequence of the evolution equations for curva-
ture flows derived for example in [HP99, Theorem 3.2] shows that

Q′(t) = −|∂Ωt|−
n−2
n−1

ˆ

∂Ωt

|h̊t|
2
+ Ric(νt, νt)

Ht
dσ ≤ 0 ,

where by h̊t we denote the trace-free part of the second fundamental form ht of ∂Ωt. On
the other hand, the strict inequality for some t ∈ [0, T) would result in a contradiction to
the Minkowski Inequality. Thus Q′(t) vanishes for any t ∈ [0, T) and, in particular ∂Ωt
satisfies (4.14) for any t ∈ [0, T). Hence, ∂Ωt is totally umbilical and satisfies Ric(νt, νt) =
0 in for every t ∈ [0, T). By Lemma 4.2.9 ∂Ωt has constant mean curvature for every
t ∈ [0, T).
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Define the function w such that {w = t} = ∂Ωt. Since {w = t} evolves by smooth
IMCF for t ∈ [0, T) it satisfies the relation

Ht = div
(

Dw
|Dw|

)
(x) = |Dw|(x)

at any point x ∈ {w = t}, where Ht is the mean curvature of {w = t}. Hence, since
Ht > 0, a well-known extension of Gauss’ Lemma yields

g =
dw ⊗dw

|Dw|2
+ g∂Ωt

=
dt ⊗dt
H(t, x)2 + g∂Ωt

. (4.16)

The evolution equation (see [HP99, Theorem 3.2 (i)]) satisfied by g∂Ωt
is

∂

∂t
g∂Ωt

= 2
ht

Ht
=

2
n − 1

g∂Ωt
,

where the last identity is due to the total umbilicity of ∂Ωt. Integrating such an equation
we deduce

g∂Ωt
= e

2t
(n−1) g∂Ω, (4.17)

On the other hand, the evolution equation for the mean curvature along the IMCF (see
[HP99, Theorem 3.2 (v)]) declaims

∂

∂t
Ht = −∆∂Ωt

(
1

Ht

)
− 1

Ht

[
|ht|2 + Ric(νt, νt)

]
= − Ht

n − 1
,

where the last identity is due to the fact that ∂Ωt is totally umbilical, Ric(νt, νt) = 0 and
the mean curvature Ht of ∂Ωt depends only on t. Integrating it we obtain that

Ht = e−
t

n−1 H0, (4.18)

where H0 is the mean curvature of ∂Ω.
Plugging (4.17) and (4.18) into (4.16), we deduce that ({0 ≤ w < T}, g) is isometric to(

[0, T)× ∂Ω, e
2t

n−1
dt ⊗ dt

H2
0

+ e
2t

n−1 g∂Ω

)
.

Performing the change of variables

ρ =
(n − 1)

H0
e

t
(n−1) ,

the metric can be written as(
[ρ0, ρ(T))× ∂Ω, dρ ⊗ dρ +

(
ρ

ρ0

)2

g∂Ω

)
where ρ0 =

(n − 1)
H0

.

On the other hand, since by assumption ∂Ω saturates the Minkowski Inequality, that is
(4.14) holds true, we immediately get

ρ0 =

(
|∂Ω|

AVR(g)|Sn−1|

) 1
n−1

.

We conclude by the rigidity statement in Lemma 4.2.10, that the whole M \ Ω is isometric
to a truncated cone.
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In dimension 3 ≤ n ≤ 7, an open bounded subset Ω with smooth strictly mean-convex
boundary satisfying

(
|∂Ω∗|
|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 =
1

|Sn−1|

ˆ

∂Ω

H
n − 1

dσ.

is a priori strictly outward minimising, and thus, in this case, such assumption can be
dropped from Theorem 4.2.11. Indeed, by approximating Ω via Mean Curvature Flow
with smooth strictly outward minimising domains, as described in [HI01, Lemma 5.6],
we deduce that (4.8) holds also for C 1,1-hypersurfaces. In particular, the Minkowski In-
equality holds also for the strictly outward minimising hull of Ω (see Theorem 2.4.4) for
every Ω with smooth boundary, provided the dimensional bound holds true. We can then
argue by contradiction. Suppose that Ω∗ does not coincide with Ω, then

(
|∂Ω∗|
|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 =
1

|Sn−1|

ˆ

∂Ω

H
n − 1

dσ >
1

|Sn−1|

ˆ

∂Ω∗

H
n − 1

dσ

where the last inequality is due to the fact that H = 0 on ∂Ω∗ ∖ ∂Ω. But this contradicts
the Minkowski Inequality for Ω∗, hence Ω = Ω∗.

4.3 A pinching condition and a sphere theorem

In this section, we exploit the monotonicity of the function t 7→ F∞
p (t) defined in (3.2) to

prove a couple of rigidity statements involving a pinching condition on the mean curva-
ture of ∂Ω and an a priori bound on the gradient of the p-capacitary potential associated
with Ω. These results without any convexity assumption are new also in Rn, and they
constitute the complete nonlinear generalisation of [BMM19, Corollary 1.4 and 1.9]. For
convex subsets of the Euclidean space, they are the content of [FMP19, Corollary 2.16 and
2.17].

Theorem 4.3.1. Let (M, g) be a complete Riemannian manifold with Ric ≥ 0 and Euclidean
Volume Growth. If there exists an open bounded subset Ω ⊆ M with smooth boundary satisfying

−
[

AVR(g)
Ĉapp(∂Ω)

] 1
n−p

≤ H
n − 1

≤
[

AVR(g)
Ĉapp(∂Ω)

] 1
n−p

(4.19)

at every point of ∂Ω, then (M ∖ Ω, g) is isometric to(
[ρ0,+∞)× ∂Ω, dρ ⊗ dρ +

(
ρ

ρ0

)2

g∂Ω

)
, with ρ0 =

(
|∂Ω|

AVR(g)|Sn−1|

) 1
n−1

.

In this case ∂Ω is a connected totally umbilical hypersurface with constant mean curvature in
(M ∖ Ω, g).
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Proof. We can argue by contradiction as in Theorem 4.2.1 to prove that

(
n − p
p − 1

)[
AVR(g)

Ĉapp(∂Ω)

] 1
n−p

≤ sup
∂Ω

|Du|.

Indeed, we can follow the same lines replacing the consequence of the monotonicity of Fβ
p

with the corresponding of F∞
p , that thanks to (1.20) can be rewritten as

F∞
p (t) = t

n−1
n−p sup

{u=1/t}
|Du| =

(
Ĉapp(∂Ωτ)

Ĉapp(∂Ω)

) 1
n−p

sup
{u=τ}

|D log u|

where τ = 1/t ∈ (0, 1] and Ωτ = {u > τ} ∪ Ω. Accordingly, we employ the Hölder’s
Inequality with conjugate exponents a = +∞ and b = 1, that is

Capp(∂Ωτ)
1
p ≤ sup

{u=τ}
|D log u|

 ˆ

{u=τ}

1
|D log u| dσ


1
p

.

In the end, by Theorem 3.2.3 we get

sup
∂Ω

|Du| ≤ (n − p)
(p − 1)(n − 1)

sup
∂Ω

|H|,

and the equality holds if and only if (M∖Ω, g) splits as in the statement. Condition (4.19)
easily implies the equality.

The above result is a rigidity theorem under a pinching condition on the mean curva-
ture of ∂Ω with respect to its p-capacity. From the proof above we can also get that

(
n − p
p − 1

)[
AVR(g)

Ĉapp(∂Ω)

] 1
n−p

≤ sup
∂Ω

|Du| (4.20)

and the equality is satisfied only on metric cones, by Theorem 3.2.3. Letting p → 1+ in
(4.20), we get the following completely geometric consequence.

Proposition 4.3.2. Let (M, g) be a complete Riemannian manifold with Ric ≥ 0 and Euclidean
Volume Growth. Let Ω ⊆ M be an open bounded subset with smooth boundary. Then, the
following inequality holds

[
AVR(g)|Sn−1|

|∂Ω∗|

] 1
n−1

≤ sup
∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣. (4.21)

In particular, it holds [
AVR(g)|Sn−1|

|∂Ω|

] 1
n−1

≤ sup
∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣. (4.22)
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If the equality in (4.21) is achieved on a strictly outward minimising set with strictly mean-convex
boundary, then (M ∖ Ω, g) is isometric to(

[ρ0,+∞)× ∂Ω, dρ ⊗ dρ +

(
ρ

ρ0

)2

g∂Ω

)
where ρ0 =

(
|∂Ω|

AVR(g)|Sn−1|

) 1
n−1

.

Proof. By (4.20) and Theorem 3.2.3 we have[
AVR(g)

Ĉapp(∂Ω)

] 1
n−p

≤ sup
∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣.
Letting p → 1+ and using Theorem 2.4.10 we get, coupling it with |∂Ω∗| ≤ |∂Ω| we
get both (4.21) and (4.22). In the case of outward minimising sets, (4.21) follows from
the Minkowski Inequality Corollary 4.2.7. The rigidity follows from the rigidity of the
Minkowski Inequality Theorem 4.2.11.

The inequality (4.20) also gives a lower bound on the gradient of u on ∂Ω in terms
of the p-capacity of Ω that, when attained, forces (M, g) to be (isometric to) Rn with Ω a
Euclidean ball.

Theorem 4.3.3. Let (M, g) be a complete Riemannian manifold with Ric ≥ 0 curvature and
Euclidean Volume Growth. Let Ω ⊆ M be an open bounded subset with smooth boundary and u
the p-capacitary potential associated with Ω and assume that

sup
∂Ω

|Du| ≤
(

n − p
p − 1

)
AVR(g)

1
p−1

(
|Sn−1|
|∂Ω|

) 1
n−1

. (4.23)

Then (M, g) is isometric to Rn with the Euclidean metric and Ω is ball.

Proof. Under assumption (4.23), we get

Ĉapp(∂Ω) =

(
p − 1
n − p

)p−1 1
|Sn−1|

ˆ

∂Ω

|Du|p−1 dσ ≤ AVR(g)
(
|Sn−1|
|∂Ω|

)− n−p
n−1

,

that yields (
|Sn−1|
|∂Ω|

) n−p
n−1

≤ AVR(g)
Ĉapp(∂Ω)

≤ (p − 1)n−p sup
∂Ω

∣∣∣∣ Du
n − p

∣∣∣∣n−p

≤ AVR(g)
n−p
p−1

(
|Sn−1|
|∂Ω|

) n−p
n−1

,

(4.24)

where we used (4.20) together with condition (4.23). Thus, we obtain that AVR(g) = 1,
and hence, by Bishop-Gromov’s Theorem, that (M, g) is isometric to Rn with the Eu-
clidean metric. Since all inequalities in (4.24) become equalities, by the second we have
the equality in (4.20). Hence, one we can apply the rigidity statement in Theorem 3.2.3
which ensures that ∂Ω is a compact connected and totally umbilical hypersurface of Rn,
that is, Ω is a ball.
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A
THE p-BOCHNER FORMULA

One of the most powerful tools in Riemannian geometry is the classical Bochner formula,
which reads as

1
2

∆|D f |2 = 〈D∆ f |D f 〉+ |DD f |2 + Ric(D f , D f )

for every function f ∈ C ∞(M). This formula embodies the property of a Riemannian
manifold to have Ricci curvature bounded from below, thanks to the following lemma.

Lemma A.1. Let (M, g) a complete Riemannian manifold. Ric ≥ κ for some κ ∈ R if and only
if for every f ∈ C ∞(M) it holds that

1
2

∆|D f |2 ≥ 〈D∆ f |D f 〉+ κ|D f |2 (A.1)

Proof. If Ric ≥ κ then (A.1) follows directly from the Bochner formula. Conversely, sup-
pose (A.1) holds for every f ∈ C ∞(M) and there exists a point p ∈ M and a vector
v ∈ Tp M such that Ric(v, v) < κ|v|2. We can build a function f ∈ C ∞(M) such that
D f = v and DD f = 0 at p. Then, by the Bochner formula

1
2

∆|D f |2 < 〈D∆ f |D f 〉+ κ|D f |2

holds at p, contradicting (A.1).

The Bochner formula can be generalised to agree with the p-Laplacian also for p 6= 2,
as in [Val13, Proposition 3..1.2] and [KN09, Lemma 2.1]. We recall that the p-Laplacian is
the operator defined in (1.2) as

∆(p)
g f = div

(
|D f |p−2D f

)
.

One can see that, even for a smooth function f ∈ C ∞(M) the p-Laplacian of f is not
defined at points where |D f | = 0. To overcome it, one can proceed in two different ways.
The first one is to state the identity outside the critical set of f . The second one is to
consider the ε-regularised version of the p-Laplacian, that is

∆(p,ε)
g f = div

(
(|D f |2 + ε)

p−2
2 D f

)
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for every f ∈ C ∞(M). This operator is no more degenerate, hence it is well defined at
every point. In this spirit, we propose a version of the p-Bochner formula (ε-regularised)
where the four terms involved are the exact generalisation of the four terms in the Bochner
formula.

Proposition A.2 (p-Bochner formula). Let (M, g) a complete Riemannian manifold and f ∈
C ∞(M), ε ≥ 0 and p > 1. Then,

1
p

div
(
|D f |p−2

ε A(D|D f |pε )
)
=
〈

D∆(p,ε)
g f

∣∣∣ |D f |p−2
ε D f

〉
+ |D f |2p−4

ε |DD f |2A + |D f |2p−4
ε Ric(D f , D f )

(A.2)

holds at any point such that |D f |ε > 0, where

A = g + (p − 2)
d f ⊗ d f

|D f |2ε
, | · |ε = (| · |2 + ε)

1
2

and ∆(p,ε)
g is the ε-regularised p-Laplacian.

Proof. We prove it for ε = 0 only, the general case being obtained similarly. For ε = 0, the
condition |D f |ε > 0 reads as |D f | > 0. Coupling〈

D∆p f
∣∣∣ |D f |p−2D f

〉
=
〈

D
〈

D|D f |p−2
∣∣∣D f

〉
+ D

(
|D f |p−2∆ f

) ∣∣∣ |D f |p−2D f
〉

and

div
(
|D f |p−2

〈
D|D f |p−2

∣∣∣D f
〉

D f
)
=
〈

D
〈

D|D f |p−2
∣∣∣D f

〉 ∣∣∣ |D f |p−2D f
〉

+
〈

D|D f |p−2∆ f
∣∣∣ |∇ f |p−2D f

〉
+
〈

D|D f |p−2
∣∣∣D f

〉2
,

one obtains〈
D∆p f

∣∣∣ |D f |p−2D f
〉
= div

(
|D f |p−2

〈
D|D f |p−2

∣∣∣D f
〉

D f
)
−
〈

D|D f |p−2
∣∣∣D f

〉2

+ |D f |2p−4〈D∆ f |D f 〉.

By applying the classical Bochner formula to the last term we get〈
D∆p f

∣∣∣ |D f |p−2D f
〉
= |D f |2p−4

(
1
2

∆|D f |2 − |DD f |2 − Ric(D f , D f )
)

+ div
(
|D f |p−2

〈
D|D f |p−2

∣∣∣D f
〉

D f
)

−
〈

D|D f |p−2
∣∣∣D f

〉2
.

(A.3)

Plugging

1
2
|D f |2p−4∆|D f |2 =

1
p

div
(
|D f |p−2D|D f |p

)
− 2(p − 2)|D f |2p−4|D|D f ||2
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and

div
(
|D f |p−2

〈
D|D f |p−2

∣∣∣D f
〉

D f
)
=

1
p

div
(
(p − 2)|D f |p−2

〈
D|D f |p

∣∣∣∣ D f
|D f |

〉
D f
|D f |

)
into (A.3) we have〈

D∆p f
∣∣∣ |D f |p−2D f

〉
=

1
p

div
(
|D f |p−2A(D|D f |p)

)
− (p − 2)2|D f |2p−6〈D|D f | |D f 〉2 − |D f |2p−4|DD f |2

− 2(p − 2)|D f |2p−4|D|D f ||2 − |D f |2p−4 Ric(D f , D f ).

That is equivalent to (A.2), since

|DD f |2A = (p − 2)2
〈

D|D f |
∣∣∣∣ D f
|D f |

〉2

+ 2(p − 2)|D|D f ||2 + |DD f |2.

Observe that the operator A is exactly the metric g for p = 2. One can see that the
metric induced by A is compatible with the metric induced by g, since

min(1, p − 1)g ≤ A ≤ max(1, p − 1)g. (A.4)
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B
COAREA FORMULA

We recall here some classical results from [Mag12; Eva18] (see also [Mir03]) about the
coarea formula. In its standard version, the coarea formula says that for every Lipschitz
function v : M → R and E ⊂ M measurable it holds

ˆ

E

|Dv|dµ =

+∞ˆ

−∞

|{v = t} ∩ E|dt.

Clearly the formula can be extended also for functions v that are only locally Lipschitz.
A direct consequence of the formula is the following lemma that can be seen as a weak
version of the Morse-Sard Lemma. We refer the reader to [Mag12, Lemma 18.5] for the
proof.

Lemma B.1. Let (M, g) be a complete Riemannian manifold. Let v : U → R be a locally Lipschitz
function defined on an open subset U ⊂ M. Then,

|{v = t} ∩ Crit(v)| = 0

for almost every t ∈ R.

By a classical approximation argument involving simple functions, one can prove the
following generalisation of the coarea formula.

Proposition B.2 (Coarea formula - measurable functions). Let (M, g) be a complete Rieman-
nian manifold. Let v : U → R be a locally Lipschitz function defined on an open subset U ⊂ M.
Let f ∈ L0(U) be a nonnegative function. Then,

ˆ

E

f |Dv|dµ =

+∞ˆ

−∞

ˆ

{v=t}∩E

f dσ dt

holds for evey measurable subset E ⊂ U.

Splitting the positive and negative parts of an integrable function we can prove the
following proposition.
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Proposition B.3 (Coarea formula - integrable functions). Let (M, g) be a complete Rieman-
nian manifold. Let v : U → R be a locally Lipschitz function defined on an open subset U ⊂ M.
For every measurable function f such that f |Dv| ∈ L1(U)

ˆ

E

f |Dv|dµ =

+∞ˆ

−∞

ˆ

{v=t}∩E

f dσ dt (B.1)

holds for every measurable subset E ⊂ U. Moreover, the function

t 7→
ˆ

{v=t}

f dσ

belongs to L1(R) and its equivalence class does not depends on the representative of f .

Some remarks are mandatory here. Consider a locally Lipschitz function v : U ⊂
M → R and let f ∈ L1(U) be such that f = 0 almost everywhere on Crit v. Then, the
function g : U → R defined as

g =

{
f |Dv|−1 on U ∖ Crit v,

0 on Crit v,

satisfies the hypothesis of Proposition B.3. Hence, employing also Lemma B.1, we have

ˆ

E

f dµ =

ˆ

E

g|Dv|dµ =

+∞ˆ

−∞

ˆ

E∩{v=t}

g dσ dt =

+∞ˆ

−∞

ˆ

E∩{v=t}

f
|Dv| dσ dt.

We also highlight that given a function ψ ∈ L∞(R), ψ(v) belongs to L∞(U). If f is
such that f |Dv| ∈ L1(U), then f ψ(v)|Dv| belongs to L1(U) as well. It follows that

ˆ

U

ψ(v) f |Dv|dµ =

+∞ˆ

−∞

ψ(t)
ˆ

{v=t}

f dσ dt.

To conclude, it is clear that we can relax the hypotheses on f , taking it in L1
loc(U). In

this case, the coarea formula (B.1) holds for every E measurable an compactly contained
in U. If we denote by I the image of U through v and we suppose that {a ≤ v ≤ b} is
compact in U for every [a, b] ⊂ I, then the function

t 7→
ˆ

{v=t}

f dσ

belongs to L1
loc(I) and its equivalence class does not depend on the representative of f .

Moreover, if ψ ∈ L∞(I) has compact support in I, we have thatˆ

U

ψ(v) f |Dv|dµ =

ˆ

I

ψ(t)
ˆ

{v=t}

f dσ dt

holds as well.



C
SOBOLEV REGULARITY OF THE GRADIENT
OF p-HARMONIC FUNCTIONS

We give here a proof of Theorem 1.2.2 that is based on the p-Bochner formula (A.2). The
reason leading this choice is that recently Monotonicity Formulas for harmonic functions
have been made available in the nonsmooth setting by Gigli and Violo in [GV21] and
[Vio21]. What we actually need in the proof of Theorem 3.3.6 is that

|Du|p−1 ∈ W1,2
loc (M). (C.1)

and the Cheng-Yau-type estimate Theorem 1.2.11 for the p-capacitary potential u asso-
ciated with Ω ⊂ M open, bounded with smooth boundary. Since the Cheng-Yau-type
estimate has been proved by Wang and Zhang [WZ10] exploiting the Sobolev regularity
of the gradient of p-harmoinc functions, proving (C.1) in the nonsmooth setting would be
a crucial step to obtain the generalisation of results in [GV21; Vio21] for p 6= 2 as well as a
regularity result for p-harmonic functions, that are far away to be comprehended.

We recall some notations here for the ease of the reader. We define the ε-regularised
p-Laplace operator ∆(p,ε)

g as

∆(p,ε)
g f = div

(
|D f |p−2

ε D f
)

for a given function f , where
| · |ε = (| · |2 + ε)

1
2 .

Moreover, for a given function f ∈ C ∞(M) we define the tensor A given

A = g + (p − 2)
d f ⊗ d f

|D f |2ε
.

As said in Appendix A, for ε = 0, ∆(p,ε)
g = ∆(p)

g is the p-Laplacian. For p = 2, we have
that A = g while in general C−1 g ≤ A ≤ C g for some finite positive constant C.

Proof of Theorem 1.2.2. Let v be a bounded p-harmonic function for p > 1 on some open
bounded subset U. We aim at proving that |Dv|p−1 ∈ W1,2

loc (B), for every ball B ⊂ U. For
every ε > 0 there exists a unique function vε ∈ W1,p

loc (B) solving{
∆(p,ε)

g vε = 0 on B,
vε − v ∈ W1,p

0 (B).
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It is well-known (see [CCW16, Appendix]) that vε → v strongly in W1,p(B) andˆ

B

|Dvε|pε dµ ≤ C1, (C.2)

where the constant C1 does not depend on ε > 0. By De Giorgi estimate the family (vε)ε>0
is bounded in L∞(B) (see [Ser64, Theorem 1]).

Fix ε > 0 and η ∈ C ∞
c (B) with 0 ≤ η ≤ 1. Integrating the p-Bochner inequality (A.2)

for f = vε against η2 one obtains thatˆ

B

η2|Dvε|2p−4
ε |DDvε|2A dµ = − 1

p

ˆ

B

|Dvε|p−2
ε

〈
A(D|Dvε|pε )

∣∣Dη2〉dµ

−
ˆ

B

η2|Dvε|2p−4
ε Ric(Dvε, Dvε)dµ.

Recalling that A is equivalent to g (see (A.4)), there exists a constant C2 independent of ε
such that

|DDvε|2A ≥ C2 |DDvε|2.

The second integral can be controlled using the same approach. Using the Young’s In-
equality, the Kato Inequality and D|Dvε|2ε = D|Dvε|2, we obtain∣∣∣∣∣ 1p

ˆ

B

|Dvε|p−2
ε

〈
A(D|Dvε|pε )

∣∣Dη2〉dµ

∣∣∣∣∣, ≤ δ2 C3

ˆ

B

η2|Dvε|2p−4
ε |DDvε|2 dµ

+
1
δ2

ˆ

B

|Dη|2|Dvε|2p−4
ε |Dvε|2 dµ

for some C3 independent of ε. For the last integral, observe that on the ball the Ricci tensor
is bounded from below by −κ2, where κ depends on the ball. We thus get

−
ˆ

B

|Dvε|2p−4
ε Ric(Dvε, Dvε)η

2 dµ ≤ κ2
ˆ

B

η2|Dvε|2p−4
ε |Dvε|2 dµ.

Choosing δ so that δ2 C3 ≤ C2, taking into account (C.2) and |Dvε| ≤ |Dvε|ε, we obtain a
further constants C4 such thatˆ

B

η2|Dvε|2p−4
ε |DDvε|2 dµ ≤ C4

ˆ

B

|Dη|2|Dvε|2p−4
ε |Dvε|2 dµ + C4 (C.3)

(C.3) is the same Caccioppoli-type estimate used by Lou in [Lou08, Lemma 2.1]. The proof
follows now the same lines.

We claim that for any K ⊂ B compactly containedˆ

K

|Dvε|2p−4
ε |DDvε|2 dµ ≤ C(K), (C.4)

ˆ

K

|Dvε|2p−2
ε dµ ≤ C(K) (C.5)
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hold for some constant C(K) > 0. Suppose that η ≥ 1 on K.
If p ≤ 2, since p − 1 ≤ p/2, Jensen’s Inequality yields

ˆ

B

|Dvε|2p−2
ε dµ ≤ |B|

2−p
p

 ˆ

B

|Dvε|pε dµ


2p−2

p

,

thus (C.5) follows from (C.2). (C.3), |Dvε| ≤ |Dvε|ε and (C.5) then imply (C.4).
If 2 ≤ p ≤ 4, replacing η by η2 in (C.3) we have

ˆ

B

η4|Dvε|2p−4
ε |DDvε|2 dµ ≤ C5

ˆ

B

η2|Dvε|2p−4
ε |Dvε|2 dµ + C5, (C.6)

where we used the upper bound on |Dη| to remove the gradient term in the right hand
side. Integrating by part, since vε solves the equation ∆(p,ε)vε = 0, we obtain that
ˆ

B

η2|Dvε|2p−4
ε |Dvε|2 dµ ≤ −

ˆ

B

(p − 2)η2vε|Dvε|2p−5〈D|Dvε|ε |Dvε〉dµ

−
ˆ

B

2ηvε〈Dη |Dvε〉|Dvε|2p−4
ε dµ.

Using the Kato Inequality, the uniform upper bound on ‖vε‖L∞(B) and Young’s Inequality
on both integrals we get

ˆ

B

η2|Dvε|2p−4
ε |Dvε|2 dµ ≤ δ2

ˆ

B

η4|Dvε|2p−4
ε |DDvε|2 dµ +

C6

δ2

ˆ

B

|Dvε|2p−4
ε dµ

+ δ2
ˆ

B

η2|Dvε|2p−4
ε |Dvε|2 dµ.

Since 0 < p − 2 ≤ p/2 using (C.2) and choosing δ2 < 1/2 we are left with
ˆ

B

η2|Dvε|2p−4
ε |Dvε|2 dµ ≤ 2δ2

ˆ

B

η4|Dvε|2p−4
ε |DDvε|2 dµ +

C7

δ2 . (C.7)

Coupling it with (C.6) for sufficiently small δ we obtain
ˆ

B

η4|Dvε|2p−4
ε |DDvε|2 dµ ≤ C8

proving (C.4). Plugging this inequality into (C.7) and using

ˆ

B

|Dvε|2p−4
ε dµ ≤ |B|

4−p
p

 ˆ

B

|Dvε|pε dµ


2p−4

p

,
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we get (C.5) also in this case. A similar discussion triggers the proof for all p ∈ (1,+∞).
By Kato’s Inequality, (C.5) and (C.4) we have∥∥∥|Dvε|p−1

ε

∥∥∥
W1,2(K)

≤ C(K)

uniformly in ε. Since vε converges strongly in W1,p(B) to v we obtain the desired regularity
of (C.1).

We mention that in [Lou08, Lemma 2.1] the result is proved for the equation

∆(p)
g v = f ∈ Lq(U)

with q > n/p, q ≥ 2. A stronger result has been made available recently by [ACF21]. In
this paper the authors obtain a better regularity, relaxing assumptions on the source term
and using a technique that treats all p’s in the same way.
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