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Abstract. The analysis of crowded scenes is one of the most challenging scenar-
ios in visual surveillance, and a variety of factors need to be taken into account,
such as the structure of the environments, and the presence of mutual occlusions
and obstacles. Traditional prediction methods (such as RNN, LSTM, VAE, etc.)
focus on anticipating individual’s future path based on the precise motion history
of a pedestrian. However, since tracking algorithms are generally not reliable in
highly dense scenes, these methods are not easily applicable in real environments.
Nevertheless, it is very common that people (friends, couples, family members,
etc.) tend to exhibit coherent motion patterns. Motivated by this phenomenon, we
propose a novel approach to predict future trajectories in crowded scenes, at the
group level. First, by exploiting the motion coherency, we cluster trajectories that
have similar motion trends. In this way, pedestrians within the same group can
be well segmented. Then, an improved social-LSTM is adopted for future path
prediction. We evaluate our approach on standard crowd benchmarks (the UCY
dataset and the ETH dataset), demonstrating its efficacy and applicability.

Keywords: group prediction; crowd analysis; trajectory clustering; social-LSTM

1 Introduction

Crowd analysis is a hot topic in computer vision, covering a wide range of applications
in visual surveillance. The main challenges in crowd analysis include: crowd dynamics
modeling [1, 2]; crowd segmentation [3]; crowd activity classification [4]; abnormal
behavior detection [5, 6]; density estimation [7]; and crowd behavior anticipation [8].

Among them, crowd behavior anticipation is an emerging task, which has drawn a
fair amount of attentions, due to the rapid development in machine learning, and par-
ticularly the deep learning techniques applied to time series analysis (such as RNN [9],
GRU [10], LSTM [11], and VAE [12]).

Different from crowd behavior recognition, the prediction task has its distinguished
characteristics, which is generally addressed by observing the motion histories of the
subjects moving in the scene. In some specific applications (i.e., early warning, abnor-
mal event detection, collision avoidance), prediction plays a more relevant role com-
paring to activity recognition, as dangerous behaviors should be warned in advance.
Traditional methods can merely make one-step forecasting (e.g., Kalman filter, parti-
cle filter, Markov chains); thanks to deep learning, long term prediction is becoming
applicable gradually.
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At the beginning, researchers merely focused on anticipating individual’s future
path. The corresponding models highly rely on the precise motion history of a pedes-
trian, thus being generally intractable in very dense environments, due to the instability
of object tracking algorithms in presence of frequent mutual occlusions.

However, continuous and precise frame-based tracking might not be essential. In
fact, in most cases, people pay more attention on the whole dynamics of the scene.
People gathering and behaving together will generate and exhibit macroscopic salient
features, which are instead worth being observed. Such coarse-level information usually
maps densely and sparsely populated areas, including direction and flow characteristics,
as well as the final destinations. Therefore, in such scenarios, it makes more sense to
focus on group activities instead of individuals. It is well known that people moving
in the crowds usually tend to follow a series of implicit social rules [13]. For instance,
individuals tend to speed up or slow down their paces in order to avoid collisions when
a vehicle or another group of people is approaching; people prefer to preserve personal
space, thus keeping a certain distance from their neighbors; pedestrians tend to follow
people in their front especially in presence of crowded situations, to prevent collisions.

Focusing on grouping, it is very common that friends/couples/families tend to move
in accordance with a coherent motion pattern. Based on this assumption, we propose a
novel approach to predict future trajectories at the group level, in order to further an-
alyze crowded scenes from a holistic point of view. Firstly, by exploiting the motion
coherency, we cluster trajectories that have similar motion trends. In this way, pedes-
trians within the same group can be highlighted and segmented. Finally, an improved
social-LSTM is proposed to estimate the future path prediction.

The main contributions of this work are summarized as follows:
– we propose a novel framework for group behavior prediction;
– we exploit an improved coherent filtering to enhance the trajectory clustering per-

formance;
– we propose a strategy for long term prediction of pedestrians, which leverages on

group dynamics.

The rest of the paper is organized as follows: Section 2 briefly reviews the related
work in the field of crowd analysis. The proposed framework, called Group LSTM for
conciseness, is described in Section 3, including the steps of trajectory clustering and
group path prediction. The experimental results are provided in Section 4. Conclusions
and future work are summarized in Section 5.

2 Related work

A detailed literature on the recent works in crowd analysis, especially regarding the
topics of crowd dynamic modeling, social activity forecasting, and group segmenta-
tion, can be found in some recent surveys [14][15][16]. In the next paragraphs, we will
concentrate on two specific sub-topics, namely, group analysis and forecasting.

2.1 Group analysis in crowds
In the early approaches, trajectories were adopted to represent low level motion features
in the crowd. By clustering trajectories with similar motion trends, pedestrians can be
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gathered into different groups. In [17], the traditional k-means algorithm was exploited
to learn different motion modalities in the scene. In [18], support vector clustering was
exploited to group pedestrians. In [19], coherent filtering was presented to detect coher-
ent motion patterns in a crowded environment[20].

As far as the representation of collective activities is concerned, Ge et al. [21]
worked on the automatic detection of small individual groups who are traveling to-
gether. Ryoo et al. [22] introduced a probabilistic representation of group activities, for
the purpose of recognizing different types of high-level group behaviors.Yi et al. [23]
investigated the interactions between stationary crowd groups and pedestrians to ana-
lyze pedestrian’s behaviors, including walking path prediction, destination prediction,
personality classification, and abnormal event detection. Shao et al. [24] proposed a se-
ries of scene-independent descriptors to quantitatively describe group properties, such
as collectiveness, stability, uniformity, and conflict. Bagautdinov et al. [25] presented a
unified end-to-end framework for multi-person action localization and collective activ-
ity recognition using deep recurrent networks.

2.2 Social activity forecasting

Forecasting social activities has lately gained a relevant amount of attentions, especially
as far as crowd analysis is concerned. This research domain is rather diversified and it
involves trajectory prediction, interaction modeling, and contextual modeling. Among
the pioneering research in social activity analysis, Helbing et al. [26] introduced the
well known Social Force Model (SFM), which is able to describe social interactions
between humans [27, 28]. Other models, such as the continuum crowds model [29] and
the Reciprocal Collision Avoidance [30], are capable to reproduce human interactions
using priors. In [31], the Social Affinity Maps (SAM) features and the Origin and Desti-
nation (OD) priors were proposed to forecast pedestrians’ destinations using multi-view
surveillance cameras. Robicquet et al. [32] introduced a large scale dataset that contains
various types of targets (pedestrians, bikers, skateboarders, cars, buses, and golf carts)
using aerial cameras, in order to evaluate trajectory forecasting performance in real out-
door environments. In [33] [34], contextual information is taken into account as well,
to model the static configuration and the dynamic evolution of the scene.

More recently, neural networks have been employed to predict events in crowded
videos. In particular, with the emerging of deep generative models (such as RNN,
LSTM, VAE), the sequence-to-sequence generation problem can be solved properly,
making it possible to handle the long-term prediction task directly. Alahi et al. [8] pro-
posed the so-called social-LSTM to model the interactions among people in a neigh-
borhood by adding a new social pooling layer; In [12], Lee et al. presented a deep
stochastic IOC RNN encoder-decoder framework to predict the future paths of multiple
interacting agents in dynamic scenes. Ballan et al. [35] considered both the dynamics
of moving agents and the scene semantics to predict scene-specific motion patterns.

Social activities are often ruled not only by the motion dynamics, but are also driven
by human factors. Jain et al. [36] adopted a structural RNN that combines spatio-
temporal graphs and recurrent neural networks to model motion and interactions in the
scene. Fernando et al. [37] applied both the soft attention and the hard-wired attention
on the social LSTM, and significantly promote the trajectory prediction performance.
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Varshneya et al. [38] presented a soft attention mechanism to forecast individual’s path,
which exploits the spatially aware deep attention model. Vemula et al. [39] proposed
a novel social attention model that can capture the relative importance of each person
when navigating in the scene.

3 Group LSTM

The motion of pedestrians in crowded scenes is highly influenced by the behavior of
other people in the surroundings and their mutual relationships. Stationary groups,
groups of pedestrians walking together, people coming from opposite directions, will
exert different effects on the action that one pedestrian takes. Thus, it becomes neces-
sary to take people in the neighborhood into account when forecasting the behavior of
an individual in the crowd.

To achieve this goal, we propose a framework, which is able to consider whether
the subject of interest is walking coherently with the pedestrians in his surroundings or
not. By exploiting the coherent filtering approach [19], we first detect people moving
coherently in a crowd, and then adopt the Social LSTM to predict future trajectories.
In this way, we are able to improve the prediction performance, accounting for the
interactions between socially related and unrelated pedestrians in the scene.

3.1 Pedestrian trajectory clustering

Coherent motion describes the collective movements of particles in a crowd. The coher-
ent filtering studies a prior meant to describe the coherent neighbor invariance, which is
the local spatio-temporal relation between particles moving coherently. The algorithm
is based on two steps. First, it detects the coherent motion of pedestrians in the scene.
Then, points moving coherently are associated to the same cluster. Point clusters will
continue to evolve, and new clusters will emerge over time. Finally, each pedestrian i
is assigned to a cluster si. The outputs of the coherent filtering are consist of the sets si
(i = 1, 2, · · · , n) of people moving in a coherent manner. If a pedestrian is not moving
or it does not belong to any coherent group, it is considered as belonging to its own set.

The coherent filtering originally relies on the KLT tracker [40], aiming at detecting
candidate points for tracking and generating trajectories, which will then be used as the
input of the algorithm. The KLT tracker may detect many key points for each pedestrian,
thus there is no clear correspondence between the number of key points and the number
of pedestrians. Our objective is to cluster pedestrians into groups, where each individual
in a group is represented using a single point, as shown in Fig. 1. For this purpose, and
without loss of generality, we apply the coherent filtering algorithm directly on the
ground truth of pedestrian trajectories.

3.2 Group trajectory prediction

We extend the work of Alahi et al. [8], which models the relationships of pedestrians in
the neighborhood by introducing a so-called social pooling layer. In the Social LSTM
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Fig. 1. Each pedestrian is represented by a single keypoint. Pedestrians walking in the same di-
rection are clustered into one group si. In this example, two sets of pedestrians going in opposite
directions are identified.

model, the pedestrian is modeled using an LSTM network as displayed in Fig. 2. Fur-
thermore, each pedestrian is associated with other people in his neighborhood via a
social pooling layer. The social pooling layer allows pedestrians to share their hidden
states, thus enabling each network to predict the future positions of an individual based
on his own hidden state and the hidden states in the neighborhood.

The ith pedestrian at time instance t in the scene is represented by the hidden state
hit in an LSTM network. We set the hidden-state dimension to D and the neighborhood
size to N0, respectively. The neighborhood of the ith agent pedi is described using a
tensor Hi

t as in Eq. 1, with dimensions of N0 ×N0 ×D:

Hi
t(m,n, :) =

∑
j∈N

1mn[x
j
t − xit, y

j
t − yit]1ij [si 6= sj ]h

j
t−1 (1)

where 1mn[x, y] is an indicator function to select active [WHAT DOES ACTIVE
MEAN?] pedestrians in the neighborhood. It is defined as in Eq. 2:

1mn[x, y] =

{
[CHECK THIS!!]0 if [x, y] /∈ cell mn
1 if [x, y] ∈ cell mn

(2)

If two pedestrians i and j belong to the same coherent set si, they will not be taken
into account when computing the social pooling layer for each of them. The function
1ij [i ∈ si, j ∈ si] is an indicator function defined as in Eq. 3:
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Fig. 2. The figure represents the chain structure of the LSTM network between two consecutive
time steps, t and t + 1. At each time step, the inputs of the LSTM cell are the previous posi-
tion (xi

t−1, y
i
t−1) and the Social pooling tensor Hi

t . The output of the LSTM cell is the current
position (xi

t, y
i
t).

1ij [si 6= sj ] =

{
0 if i ∈ si, j ∈ si
1 if i ∈ si, j /∈ si

(3)

Doing so, the social pooling layer of each pedestrian contains information only
about pedestrians, which are not moving coherently with him.

Once computed, the social hidden-state tensor is embedded into a vector ait. The
output coordinates are embedded in the vector eit. Following the recurrence defined in
[8], we can predict our trajectories gradually.

4 Results

4.1 Implementation details

In the first place, we need to configure the coherent filtering to cluster pedestrians. To
this aim, we use K = 10, d = 1 and λ = 0.2 according to the original implementation.

For our LSTM network, we adopt the following configuration. The embedding di-
mension for the spatial coordinates is set to 64. The spatial pooling size, which corre-
sponds to an area of 4×4 m2, is set to 32. The pooling operation is performed using
a sum pooling window of size 8 × 8 with no overlaps. The hidden state dimension is
128. The learning rate is set to 0.003, and RMS-prop [41] is used as the optimizer. The
model is trained on a single GPU using a PyTorch1 implementation.

1 http://pytorch.org
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Fig. 3. Representation of the Social hidden-state tensor Hi
t . The black dot represents the pedes-

trian of interest pedi. Other pedestrians pedj (∀j 6= i) are shown in different color codes, namely
green for pedestrians belonging to the same set, and red for pedestrians belonging to a different
set. The neighborhood of pedi is described by N0 × N0 cells, which preserves the spatial in-
formation by pooling spatially adjacent neighbors. Pedestrians belonging to the same set are not
used for the final computation of the pooling layer Hi

t .

4.2 Quantitative results

Our experiments are carried out on two publicly available datasets, commonly used as
the standard benchmarks for crowded scenarios, namely, the UCY dataset [27] and the
ETH dataset [28].

The two datasets present a rather large set of real-world trajectories covering a va-
riety of complex crowd behaviors that are particularly interesting for our research.

In the same way as other works [28, 8], we evaluate our results with the following
two metrics:

– Average Displacement Error (ADE), namely the average displacement error (in me-
ters) between each point of the predicted path with respect to the ground truth path.

– Final Displacement Error (FDE), namely the distance (in meters) between the final
point of the predicted trajectory and the final point of the ground truth trajectory.

In our experiments, we follow the same evaluation procedure as adopted in [8]. The
model is trained and validated using the leave-one-out strategy. We train on 4 videos
and test on the remaining one to obtain the prediction results. For both training and
validation, we observe and predict trajectories using a time interval of 0.4 seconds. We
observe trajectories for 8 time steps and predict for the next 12 time steps, meaning that
we observe trajectories for tobs = 3.2 seconds and predict for the next tpred = 4.8
seconds. In the training phase, only trajectories that remain in the scene for at least 8
seconds are considered.

We compare our method with the Social LSTM model [8] and its most recent variant
[42]. We also compare our model with a linear model, which uses the Kalman filter to
predict future trajectories under the assumption of linear acceleration, as also reported
in [8]. The numerical results are shown in Table 1.

Our method performs on average better or equal than other methods, especially on
the UCY dataset. This is due to the characteristics of crowd flows in the scene, which
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usually consist of easily identifiable groups walking in opposite directions. However,
for the ETH dataset, the motion patterns are more varied and chaotic.

Our results show that the prediction performance can be improved when considering
pedestrians that are not moving coherently. We argue that the change of motion and the
evolution of trajectories are mainly influenced by pedestrians which move in different
directions with respect to the pedestrian of interest. People walking together, instead,
loosely influence each other, as they behave as in a group.

Table 1. Quantitative results using our Group-LSTM and the mentioned baseline approaches on
the UCY and ETH datasets, respectively. Two error metrics, namely, the Average Displacement
Error (ADE) and the Final Displacement Error (FDE) are reported (in meters) for an observation
interval tobs = 3.2 seconds and a prediction of subsequent tpred = 4.8 seconds. Our model
outperforms other approaches, especially in terms of average error.

Metric Dataset Lin.[8] Social-LSTM[42] Social-GAN[42] Group-LSTM

ADE

ETH [28] 1.33 1.09 0.81 0.28
HOTEL [28] 0.39 0.86 0.72 0.28
ZARA1 [27] 0.62 0.41 0.34 0.23
ZARA2 [27] 0.77 0.52 0.42 0.34

UCY [27] 0.82 0.61 0.60 0.56
AVERAGE 0.79 0.70 0.58 0.34

FDE

ETH [28] 2.94 2.41 1.52 1.12
HOTEL [28] 0.72 1.91 1.61 0.89
ZARA1 [27] 1.21 1.11 0.84 0.91
ZARA2 [27] 1.48 1.31 1.26 1.49

UCY [27] 1.59 0.88 0.69 1.48
AVERAGE 1.59 1.52 1.18 1.18

4.3 Qualitative results

In Section 4.2 we have shown that considering only pedestrians not moving coherently
can improve the prediction precision. In this section we will further evaluate the consis-
tency of the predicted trajectories.

As a general rule, the LSTM-based approaches for trajectory prediction follow a
data-driven approach. Furthermore, the future planning of pedestrians in a crowd are
highly influenced by their goals, their surroundings, and their past motion histories.
Pooling the correct data in the social layer can promote the prediction performance in a
significant way.

In order to guarantee a reliable prediction, we not only need to account for spatio-
temporal relationships, but also need to preserve the social nature of behaviors. Accord-
ing to the studies in interpersonal distances [43, 44], socially correlated people tend
to stay closer in their personal space and walk together in crowded environments as
compared to pacing with unknown pedestrians. Pooling only unrelated pedestrians will
focus more on macroscopic inter-group interactions rather than intra-group dynamics,
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thus allowing the LSTM network to improve the trajectory prediction performance.
Collision avoidance influences the future motion of pedestrians in a similar manner if
two pedestrians are walking together as in a group.

In Tables 2, 3 and Fig. 4, we display some demos of predicted trajectories which
highlight how our Group-LSTM is able to predict pedestrian trajectories with better
precision, showing how the prediction is improved when we pool in the social tensor of
each pedestrian only pedestrians not belonging to his group.

In Table 2, we show how the prediction of two pedestrians walking together in the
crowd improves when they are not pooled in each other’s pooling layer. When the two
pedestrians are pooled together, the network applies on them the typical repulsion force
to avoid colliding with each other. Since they are in the same group, they allow the other
pedestrian to stay closer in they personal space.

In Fig. 4 we display the sequences of two groups walking toward each other. In
Table 3, we show how the prediction for the two groups is improved with respect to the
Social LSTM. While both prediction are not very accurate, our Group LSTM perform
better because it is able to forecast how pedestrian belonging to the same group will
stay together when navigating the environment.

Name Scene Our Group-LSTM Social-LSTM

ETH
Univ

Frame
2425

Table 2. ETH dataset: the prediction is improved when pooling in the social tensor of each pedes-
trian only pedestrians not belonging to his group. The green dots represent the ground truth tra-
jectories; the blue crosses represent the predicted paths.

(a) (b) (c) (d)

Fig. 4. Sequences taken from the UCY dataset. It displays an interaction example between two
groups, which will be further analyzed in Table 3.



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV
#31

ECCV
#31

10 ECCV-18 submission ID 31

Name Scene Our Group-LSTM Social-LSTM

UCY
Univ

Frame
1025

Table 3. We display how the prediction is improved for two groups walking in opposite direc-
tions. The green dots represent the ground truth trajectories, while the blue crosses represent the
predicted paths.

5 Conclusion

In this work, we tackle the problem of pedestrian trajectory prediction in crowded
scenes. We propose a novel approach, which combines the coherent filtering algorithm
with the LSTM networks. The coherent filtering is used to identify pedestrians walking
together in a crowd, while the LSTM network is used to predict the future trajectories
by exploiting inter and intra group dynamics. Experimental results show that the pro-
posed Group LSTM outperforms the Social LSTM in the prediction task on two public
benchmarks (the UCY and ETH datasets). For the future work, we plan to further inves-
tigate social relationships and how fixed obstacles will influence the behaviors of other
pedestrians.
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