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Abstract— As more intermittent energy sources are inte-
grated into isolated power systems, maintaining nominal fre-
quency under the uncertain power fluctuations becomes even
more challenging. For that, properly controlled energy storage
systems are commonly used to provide frequency support.
However, the design of such controllers typically does not rely
on system operation data, leading to oversized storage systems
and in turn overpriced investments. This paper addresses this
problem and presents a methodology for deriving controllers
that optimally use a specified storage capability to achieve
a target compensation level, given past information of the
disturbances. To leverage between uncertainty and actuation
(storage) magnitude, the manuscript proposes a data-based
approach for deciding alternative combinations of storage size
and corresponding control laws that ensure risk constrained
robust frequency regulation. The proposed designs are capable
of providing additional virtual-inertia services to the isolated
system against a guaranteed level of security over all possible
uncertainty realizations. An application to an offshore oil and
gas platform with onsite gas turbines and locally produced wind
power is presented to highlight the numerical properties of the
proposed methodology.

I. INTRODUCTION

The operation of modern isolated power systems is becom-
ing less safe and resilient due to the constantly increasing
level of converter-interfaced renewable sources (RES) [1].
The problem arises from the combined effects of lower
system inertia available to face power fluctuations [2] and
uncertainties of the relevant signals [3]. Such effects, that
can result in excessive frequency variations, can be attenu-
ated with proper load frequency control (LFC) and storage
systems providing virtual-inertia [4].

In this context, to deal with different sources of uncer-
tainty in isolated systems the literature offers a series of
robust control strategies based on linearized dynamics. For
example, [5]–[7] propose two-degrees of freedom internal
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model control (IMC) - PID controllers for LFC of power
systems, and show that better performance can be achieved
compared to conventional PIDs. However, [5]–[7] arbitrar-
ily select the disturbance signals without considering any
information related to the system under study. Also model
order reduction had to be performed for the control design
purpose, leading to simplified estimates of the true dynamics.
[8] instead proposes a fractional order PID LFC design via an
opportune IMC tuning, leading to better results compared to
the aforementioned studies. The design in [8] is shown to be
robust enough to be resilient against parametric uncertainties
but, as in [5]–[7], no disturbance information was considered
in the control design. In addition, in all the above mentioned
methodologies, no control saturation limits were considered.

[9] proposes a fractional order fuzzy controller for LFC of
a power system that includes storage system. The approach
exhibits robust performance under both linear and non-linear
operation regimes, the last ones owing to rate limiters.
However, this design does not consider inherently those non-
linear regimes, and uses simplified probabilistic models for
the RES and the load uncertain power signals. [10], instead,
proposes a time-varying fuzzy based PI controller that shows
improved robustness under different operating conditions.
However, also this approach does not inherently consider
saturation limits of the specific storage system in the design
phase.

Other authors like [11], [12] propose instead H∞ con-
trollers with the purpose of improving frequency profiles
and the virtual-inertia capabilities of storage elements, but
omit providing statistical analyses for quantifying the dis-
turbances. Such design methodologies typically consider
the performance of a worst-case plant that may never be
realized and use over-conservative uncertainty assumptions
(norm - bounded descriptions) [13]. However, for power
system applications where at least one synchronous generator
ensures frequency stability, sizing the storage system for a
highly unlikely or even non-realizable worst case, would
make any investment economically infeasible. [14] instead
considers a simplified statistical model of the disturbances
to determine the capacity of a storage system and its effect
on frequency control. However, the paper employs simple
probability density models that do not capture the time-
dependency of the uncertain signals. Other authors then
investigate machine-learning oriented strategies: for exam-
ple [15] employs a deep-learning based control technique,
and shows that this approach may lead to marginally slightly
better results compared to worst-case based controllers. How-
ever, the power disturbance signals are here considered to



be random, without taking any information of the particular
system under study into account.

As it is evident from the aforementioned studies, the
existing literature on the LFC design problem usually ignores
the physical limits of the system (i.e., the capacity limits
of the storage), and this leads to either suboptimal use of
the storage or over-conservative control laws. We here aim
at developing a methodology for designing a LFC that is
as conservative as needed, and that uses the storage in an
efficient way, so that this is not over-sized. For this reason
we employ the scenario approach for control design [16]
for the concurrent sizing and control design for a storage
system. This is achieved through the use of realistic data of
the system under study together with the Variable Robustness
Control (VRC) methodology [17]. This enables to explore
different robustness levels and gain greater insights into the
system uncertainty and leveraging the controller decision
against the risk.

Based on the recent breakthroughs in floating offshore
wind and the need for cleaner offshore operations (see,
e.g., [18]), we consider an isolated offshore Oil and Gas
(O&G) platform with significant wind power penetration and
a dedicated storage system as a case study for the proposed
methodology.

II. METHODOLOGY

The analysed system, whose complete configuration is
presented in fig. 1, is composed of: a droop controlled Gas
Turbine, a wind farm of 3 identical wind turbines controlled
to their maximum power point, and an energy storage system.
As field data, we consider time series of aggregated load
data and wind speed measurements from a selected offshore
location.

A. System modelling

This section describes the linearized small-signal model
of the isolated power system. In more details, the power
system dynamics are modelled though the commonly used
swing equations (see [1]), i.e., as
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where H0 [s] is the rotating mass inertia, D0 [MW/Hz] the
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Fig. 1: Schematic configuration of the system analysed in
the paper.

motors on the platform, f [Hz] the actual frequency of the
AC grid, fn [Hz] the nominal one, Sb [MW ] is the base power
and Pimb [MW ] the imbalance power. Considering the Laplace
transform of eq. (1) and the variation of imbalance power
Pimb [MW ] as the input signal leads to

∆ f
∆Pimb

= G(s) =
1

2Hs+D
. (2)

Considering the system configuration presented in fig. 1 the
complete dynamics are then described by

∆Pimb =

(
∆P∗GT −

1
R ∆ f

)
(sTg +1)(sTt +1)

−∆Pd +∆PB (3)

∆Pd = ∆(PL−PWF) (4)

where PL is the load of the power system and PWF the power
coming from the wind farm. From eqs. (2) to (4) one can
then derive

∆ f = ∆P∗GT
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that eventually imply

∆ f = ∆P∗GT Sr(s)+
(

∆PB−∆Pd

)
Sd(s) ,

where Sd(s) =
G(s)

1+
G(s)

R(sTg +1)(sTt +1)

(6)

is a causal and stable system (invertible). Summarizing,
eq. (6) can be considered as the equivalent dynamics of the
system under consideration.

Our aim is then to find an outer control loop C(s) that
rejects the net load disturbance ∆Pd in eq. (6). For this
purpose, we propose to follow a discrete design strategy
for synthesizing this control law. Thus, we discretize the
continuous-time LTI representation Sd(s) through a Tustin
approach with a sampling period of ts = 0.01 s, deemed
sufficiently accurate for our purposes, and then design a
discrete controller directly on top of the obtained discrete-
time system Sd(z). In the following u(k)is the discrete control
signal at time step k, indicating the commanded storage
power deviation ∆PB(k) and y(k) is the output of the plant,
indicating the system frequency deviation ∆ f (k). The output
feedback controller C(z) shall cancel the dynamics caused
by the disturbance. To this aim we use an Internal Model
Controller approach (see, e.g., [19]) where an the internal
plant model is used and for which we require

u(k) = Q(z)∆Pd(k) (7)

where Q(z) is a strictly stable transfer function. Since the
internal model principle outputs proactive control actions
using the assumed internal model, [19], the output feedback
control action is equivalent to a disturbance feed-forward



action (eq. (7)) from the storage when this is revealed. As
for the strictly stable Q(z), we select a commonly used FIR
parametrization as in [16] and the control law in eq. (7) can
be re-written as

u(k) = ∆PB(k) = q0∆Pd(k)+q1∆Pd(k−1) = 〈φk,qqq〉 (8)

where qqq = [q0 q1]
T and φφφ k = [∆Pd(k) ∆Pd(k−1)]T .

We then reformulate the robust optimization problem as
minimizing the worst-case disturbance effect to our output
signal. For this purpose we build our cost function on top of
the upper bound h of the commonly used integral square
error (ISE) of the frequency deviations. Since real-word
disturbance dynamics are hard to model, in the proposed
approach historical data are used as the best available repre-
sentation. For that we define the uncertainty set ∆ as

δi : {∆PPPddd}i, i ∈ {1, . . . ,Nd} . (9)

as the set of all possible disturbance realizations δi (net
load deviations profiles ∆PPPddd , sequences of ∆Pd(k) values
for specified time horizon th = 10 s). Realistic wind speed
timeseries v(t,δi) were generated from local measurements
and a Kaimal filter [20] that models the smaller time scale
turbulence related phenomena, after the Normal Turbulence
Model [21]. The wind power profiles were calculated through
the commonly used cubic power curve transformation, con-
sidering the wind turbine dynamics as

PWF(v(δi)) =
PW (v(δi))

sTw +1
∀ δi ∈ ∆ . (10)

B. Optimization problem formulation

The control design for compensation of frequency fluc-
tuations under uncertain disturbances is cast as the robust
optimization problem

minimize
h,qqq∈R3

h

subject to
M=

th
ts

∑
k=1

∆ f 2(k)≤ h, ∀ ∆PPPddd ∈ ∆∣∣∆PB(k)
∣∣≤ u, ∀ k = 0, . . . , th.

(11)

where u is the saturation level of the storage system (i.e.,
its maximum charge/discharge power rate). Now consider
∆P∗GT = 0, i.e., assume the gas turbine to be scheduled to
produce a fixed reference value. Given this assumption we
can derive the constraints leveraging on eq. (3), eq. (7) and
eq. (8), and obtain

M

∑
t=1

y2(k) =
M

∑
k=1

[Sd(z)(u(k)−∆Pd(k))]2 =

M

∑
k=1

[Sd(z)φ T
k qqq−Sd(z)∆Pd(k)]2

(12)

Where we call φk = [∆Pd(k) ∆Pd(k−1)]T , ψk = Sd(z)φk. In
this way eq. (12) becomes

M

∑
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T
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2
)
.

(13)
Note then that if we choose the decision variables vector as
xxx = [qqq h]T = [q0 q1 h]T the constraints of eq. (13) can
be rewritten as

xxxT Axxx+Bxxx+C ≤ 0 (14)

where the coefficients A, B and C can be calculated as

A =
M

∑
k=1

[ψk 0] [ψk 0]T

B = 2
M

∑
k=1
−∆Pd(k)Sd(z) [ψk 0]T − [0 0 1]

C =
M

∑
k=1

(−∆Pd(k)Sd(z))2 .

(15)

This means that a quadratic constraint that is formulated from
eq. (14) and eq. (15) corresponds to each instance of the
uncertain disturbance δi. Note though that to calculate the
coefficients A, B and C of each of these constraints we first
need to simulate the system Sd with the appropriate inputs,
a process that we graphically illustrate in fig. 2. Then, based
on the scenario approach [22], we can select to disregard a
portion of the set of disturbances ∆ that from a probabilistic
standpoint accounts in total for a probability ε out of the
whole probability metric over ∆. This is done by selecting
an appropriate number of scenarios Ns so that the optimality
of the solution of eq. (11) is 1−β level guaranteed against all
other unseen instances of uncertainty from ∆. In other words,
the designer can select a risk level ε from which she/he can
compute a number of scenarios (i.e., constraints) Ns such that
the confidence of not violating the unseen constraints is at
least 1−β . The commonly used values ε = 0.01 and β =
10−7 were selected for this study. Finally, the optimization
problem is set as

minimize
xxx∈R3

cT xxx

subject to

{xxxT Axxx+Bxxx+C}i ≤ 0, ∀ δi ∈Ω,{∣∣∣∣∣
[

φk
0

]T

xxx

∣∣∣∣∣≤ u

}
i

, ∀ δi ∈Ω, k = 0, . . . , th.

(16)

where xxx= [qqq h]T = [q0 q1 h]T and c= [0 0 1]T . Note
that the quadratically constrained problem (QCP) eq. (16)
can be numerically solved using standard numerical solvers.
More specifically, to derive the constraints in eq. (14) we
used the Matlab-Simulink parallel computing toolbox [23]
and solved eq. (16) with the commercial mathematical opti-
mization solver Gurobi 9.0.3 [24].
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Fig. 2: Graphical summary of the proposed methodology.

III. SIMULATION RESULTS

A. Effects of choosing different storage sizes

To investigate the dependency between the control action
and the storage capability, we find appropriate controllers
Q(z) for different values of the saturation level of the storage
system u. More precisely, we initially set the upper bound
to the relatively high value of u = 0.4, so that basically
the storage saturation constraint is not active in eq. (16).
The worst case disturbance and the associated control action
required û are then presented in fig. 3. Here we can identify
the unsaturated peak value of the control action as u =
0.3222 < 0.4, with the control parameters leading to such
design being q0 = 1.0023, q1 = −0.0023 (see also table I)
meaning that the full range of the disturbance signals can
be counteracted from the proposed storage controller (see
also eq. (8)). As can be noticed from fig. 3 such a design
is basically able to almost perfectly compensate the worst
case disturbance. This means that this controller will also
compensate all the other measured disturbances, given the
chosen confidence level and risk. Changing the saturation
level u parameter it is then possible to get different designs
that compensate the worst case frequency fluctuations in
different ways. The cumulative results, summarized in table I,
show that decreasing the saturation level (i.e., choosing a
smaller and thus less expensive storage system) increases the
optimal value of the ISE performance index h∗. Intuitively,

Fig. 3: System response and control action for the worst case
scenario - unsaturated design case.

TABLE I: Summary of the control design results

u [pu] q0 q1 h∗

0.4 1.0023 -0.0023 78.0604
0.3 0.9310 0 78.0642
0.2 0.6206 0 78.1738
0.1 0.3104 0 78.4354

0.09 0.2793 0 78.4699

as u diminishes the worst case disturbance first and then,
one by one, all the consequent next-worst cases cannot be
effectively compensated any more. To this point we note
that we observe a distinct pattern: while the q0 parameter is
decreasing as u decreases, q1 = 0 most of the times, leading
to a controller purely proportional to the disturbance. This
indicates that the optimal compensator (QCP optimization
eq. (16)), for the particular parametrization (eq. (7)), de-
pends mostly on the present value of the disturbance, and
little on the previous one. Despite such a simple controller
structure, this is in agreement with the basic loop-shaping
recommendations for rejecting disturbances entering directly
at the plant input [13]. Then, in order to respect the physical
saturation limits of the storage, the optimizer selects an
appropriate (lower) gain value, meaning that the proportion
of the worst disturbance that the specific control design
can effectively compensate, is decreased. This effect can be
noticed in fig. 4, where we present the results for u = 0.3.
Note that this design is smaller compared to the non-saturated
case u = 0.4; we expect thus that some disturbances will
saturate the control output, so that the disturbance will not
be perfectly compensated. From fig. 4b we can observe this
event, where the controller is saturated just for one case û,
the one that dominated the initial design. The impact of
this effect is presented in fig. 4a, where we compare the
corresponding open loop and closed loop outputs yol and
ycl . We can see that even though the worst-case open loop
response ŷol (depicted in blue) cannot be compensated as
effectively as in the other scenarios, the proposed optimal
control design leads to a much improved worst-case closed
loop response ŷcl (depicted in red).

B. Effects of choosing different levels of robustness

Based on the results of section III-A, it is evident that
for any meaningful storage sizing u the control design is
dominated by a few specific realizations of the disturbances
δi. To quantify the effect of these specific δi’s, and eventually
characterize their impact of the data-based uncertainty struc-
ture of our problem, we apply the VRC algorithm. For this
we employ the Forward Selection Algorithm (FSA) [25] as a
means to identify the support scenarios (which are intuitively
thought as the ones that are more “different” compared the
rest of the sampled dataset) and remove them in turns.

At every iteration k the FSA algorithm preserves the most
“equidistant” scenarios, and discards the most “different”
ones. The number of the scenarios N

′
s to be considered for the

VRC algorithm is decided as in [17]. Then, at each iteration
k, we can calculate the upper bound εk on the probability of
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Fig. 4: System response and control action for u = 0.3.

violating the unseen δi instances (i.e., the risk-level) for k
removed scenarios out of Ns

′ as(
d + k

k

)d+k

∑
i=0

(
N
′
s

i

)
ε

i
k (1− εk)

N
′
s−i =

β

k+1
∀ k = 0, . . . ,k

(17)
where d = 2 is the number of the design variables.

Applying the FSA procedure to the specific case u = 0.09
leads to the results shown in fig. 5 and table II. From
fig. 5 we can observe that as we keep removing scenarios
the optimal value h∗k decreases, while the risk increases
from its initial value ε = 0.01. We also note that every
time removing a scenario leads to a better solution, this
is because a different control design is decided (see also
table II). In most cases we get once again q1 = 0, while we
find also that the gain q0 increases for increasing k. This
has the following interpretation: as the support scenarios
are identified and removed, the storage (whose size is now
fixed) can be operated in a way that does not need to

Fig. 5: Dependency of the optimal value h∗k and of the risk
parameter εk on the number of scenarios removed through
the FSA procedure.

account for (and thus reject) these “bad” realizations of the
disturbances. In addition, from table II we can observe that
the removal of particular scenarios may have a great effect
on the improvement of h∗k , with the best improvement found
at k = 29. For our particular system, we see that after that k it
is not worth to keep removing scenarios, because the relative
improvement is small, at the cost though of increasing risks.
Last but not least, it is of high importance to notice from
fig. 5 that in general removing a scenario does not necessarily
mean improving h∗k . For example, after k = 38 the results did
not change. That means that in general there are just a few
disturbance scenarios that are dictating the optimal design
process; just by increasing our risk we may even neglect
them on the initial sizing of the storage system. However, if
the storage system is decided (fixed u), a meaningful risk-
averse decision for the controller Q(z) would be q0 = 0.7959
and q1 =−0.2131 with risk level 3.23 times bigger than the
initial one.

IV. CONCLUSIONS

This study presents a data-based methodology for the
concurrent design of the size and control law of a storage
system to be operated in isolated power systems with low
inertia and intermittent non-dispatchable energy sources. The
results showed that the proposed method can effectively
improve the dynamic characteristics of an isolated offshore
O&G power system which integrates significant amount of
wind power. The proposed design methodology can be con-
sidered as a guideline for risk-dependent decision support,

TABLE II: Results about the effects of choosing different
levels of robustness

k q0 q1 εk [%] h∗k ∆h∗k [%]

0-20 0.3542 0 1.00 51.6588 -
21-28 0.5111 0 2.71 24.1094 -53.33
29-37 0.7959 -0.2131 3.23 8.2075 -65.96
38-79 1.0000 0 3.23 8.1931 -0.18



and for the selection of storage system and its optimal
controller, given information specific to the system under
study. The case study presented in this paper demonstrates
the contribution of appropriately sizing storage to provide
frequency support. It is also shown that smaller storage sizes
may still effectively compensate uncertain disturbances, at
the cost of relatively small risk increment. As future possible
work, parametric uncertainty could also be integrated to
construct the uncertainty set, while the method could be even
used in a rolling horizon way, deciding a control law, given
recent past observations and parameters values.

APPENDIX

TABLE III: Summary of the main parameters defining the
power system considered in our numerical analyses

Parameter Value Units
Base power value Sb = 60 [MW / puMW]

Nominal system frequency fn = 60 [Hz]
Droop constant R = 2.4 [Hz / puMW]

Power system inertia constant H = 0.083 [puMW s / Hz]
Power system damping constant D = 0.0083 [puMW / Hz]

Governor time constant Tg = 0.08 [s]
Gas turbine time constant Tt = 0.3 [s]

Wind turbine time constant Tw = 1.5 [s]
Nominal wind turbine power Pn

wt = 15 [MW]
Number of scenarios in ∆ Nd = 52560 [-]

Number of scenarios Ns = 2158 [-]
Number of scenarios for VRC N

′
s = 2631 [-]

TABLE IV: Summary of the quantities involved in the
models

Variable Symbol
Platform load PL
Wind farm power PWF
Frequency deviation ∆ f
Storage power deviation ∆PB
Gas Turbine power deviation ∆PGT
Net load power deviation ∆Pd
Imbalance power deviation ∆Pimb
Control action u = ∆PB
System output y = ∆ f
Open loop (Sd(z)) output yol
Closed loop (Sd(z), C(z)) output ycl
Control saturation level u
Worst case control action û
Worst case system output ŷ
Number of removed scenarios k
Bound of violation probability εk
Optimal ISE upper bound h∗k
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[25] J. Dupačová, N. Gröwe-Kuska, and W. Römisch, “Scenario Reduction
in Stochastic Programming: An Approach Using Probability Metrics,”
2003.

http://dlbargh.ir/mbayat/46.pdf
http://www.gurobi.com

	Introduction
	Methodology
	System modelling
	Optimization problem formulation

	Simulation results
	Effects of choosing different storage sizes
	Effects of choosing different levels of robustness

	Conclusions
	References

