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Abstract. Let X ⊂ PN be an integral and non-degenerate variety. Recall (A. Bia lynicki-
Birula, A. Schinzel, J. Jelisiejew and others) that for any q ∈ PN the open rank orX(q) is the
minimal positive integer such that for each closed set B ( X there is a set S ⊂ X \ B with
#S ≤ orX(q) and q ∈ 〈S〉, where 〈 〉 denotes the linear span. For an arbitrary X we give
an upper bound for orX(q) in terms of the upper bound for orX(q′) when q′ is a point in the
maximal proper secant variety of X and a similar result using only points q′ with submaximal
border rank. We study orX(q) when X is a Segre variety (points with X-rank 1 and 2) and
when X is a Veronese variety (points with X-rank ≤ 3 or with border rank 2).
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Introduction

Let X ⊂ PN be an integral and non-degenerate projective variety. We recall
the following definition ([5, 7, 8, 11]). The papers [7, 8, 11] study Veronese
varieties, i.e. homogeneous polynomials, but [7, 8] also consider the case of non-
homogeneous polynomials, which is harder.

Definition 1. For any q ∈ PN the open rank or open X-rank orX(q) of q
is the minimal integer with the following property: for any closed set B ( X
there exists S ⊂ X \B such that #S ≤ orX(q) and q ∈ 〈S〉, where 〈 〉 denotes
the linear span.

We recall that the X-rank rX(q) of q is the minimal integer such that there
is S ⊂ X with #S = rX(q) and q ∈ 〈S〉 ([13]).

Since X is non-degenerate, for any closed set B ( X, X \ B spans PN .
Thus the integer orX(q) is a well-defined positive integer ≤ N + 1. Obviously
orX(q) ≥ rX(q). In general it is not easy to compute orX(q). For instance there
is no q ∈ PN such that orX(q) = 1 (Remark 3).
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We recall that for each integer t > 0 the t-secant variety σt(X) ( PN is the
closure in PN of the union of all linear spaces 〈S〉 for some S ⊂ X with #S = t
([1, 13]). Each σt(X) is irreducible, σ1(X) = X and either σt(X) = PN or
σt(X) ( σt+1(X) ([1, Observation 1.2]). The border rank bX(q) of q ∈ PN is the
first positive integer t such that q ∈ σt(X). Let g be the generic X-rank, i.e. the
minimal positive integer such that σg(X) = PN . For each integer k ∈ {1, . . . , g}
let γk denote the maximal integer orX(q) for some q ∈ σk(X). Hence γg is the
maximal open X-rank of some q ∈ PN . Let µ1 be the minimal integer orX(q) for
some q ∈ X. In general the integer µ1 is not the minimal integer orX(q) for some
q ∈ PN (Examples 1 and 2). Obviously µ1 = γ1 if X ⊂ PN is a homogeneous
embedding of a homogeneous variety. For i = 2, . . . , g let γ̃i be the maximum
integer orX(q) with q ∈ σi(X)\σi−1(X). Note that all q ∈ σi(X)\σi−1(X) have
rX(q) = i, but that σi−1(X) may contain points with X-rank i. Set γ̃1 := γ1.
Obviously γi = max1≤j≤i γ̃j . In particular γi ≥ γi−1 for all i = 2, . . . , g.

In section 1 we give a few remarks on the open X-rank and prove the fol-
lowing result.

Theorem 1. Set e := N − dimσg−1(X). Then γg ≤ γg−1 + e and γ̃g ≤
γ̃g−1 + e.

We ask the following Question.
For the rational normal curve this sequence is strictly decreasing (Remark

6), but there are many examples of X and i such that γ̃i < γ̃i+1, e.g. the case
n ≥ 2, d ≥ 2 and i = 1 for the order d Veronese embedding of Pn (Theorem 2).

In section 2 X is a Veronese variety, i.e. each q ∈ PN is an equivalence class
(up to a non-zero multiplicative constant) [f ] of a homogeneous polynomial f
and rX(q) is the minimal number of addenda needed to write f as a sum of
powers of linear forms. In section 3 X is a Segre variety, i.e., each q ∈ PN is an
equivalence class q = [T ] (up to a non-zero multiplicative constant) of a tensor
T 6= 0 and rX(q) is the tensor rank of T . For Veronese varieties we study the
case in which rX(q) = 1 (Example 1), rX(q) = 2 (Theorem 2) and rX(q) = 3
and the polynomial associated to q effectively depends on more than 2 variables
(Theorem 3). We describe the open ranks of all q ∈ σ2(X) (Theorem 2). For the
Segre variety we study the case rX(q) = 1 (Theorem 4) and the case rX(q) = 2
when the tensor depends on all factors of Y (Theorem 5).

We work over an algebraically closed field K.

1 General remarks and proof of Theorem 1

Let X ⊂ PN be an integral and non-degenerate projective variety. For any
q ∈ PN let S(X, q) denote the set of all A ⊂ X such that #A = rX(q) and
q ∈ 〈A〉.
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Remark 1. Fix q ∈ PN with S(X, q) finite, say S(X, q) = {S1, . . . , Sc}.
Thus B := S1 ∪ · · · ∪ Sc is a proper closed subset of X. Every set A ⊂ X such
that #A = rX(q) and q ∈ 〈A〉 is contained in B. The definition of open X-rank
gives orX(q) > rX(q). Since all q ∈ σ1(X) = X have #S(X, q) = 1, it follows
that rX(q) > 1 for all q ∈ X. Thus γ1 ≥ µ1 > 1. The same proof shows that
orX(q) > rX(q) for all q ∈ PN such that ∪A∈S(X,q)A is not Zariski dense in X.

Remark 2. Take any q ∈ PN , any closed B ( X and any A ⊂ X such that
#A = rX(q) and q ∈ 〈A〉. By the definition of open X-rank for each a ∈ A there
is Sa ⊂ X \ B such that #Sa := orX(a) and q ∈ 〈Sa〉. Set S := ∪a∈ASa. Since
S ⊂ X \B and #S ≤ γ1rX(q), we get orX(q) ≤ γ1rX(q) for all q ∈ PN .

Remark 3. Since orX(q) ≥ rX(q) and rX(q) = 1 if and only if q ∈ X,
Remark 1 gives orX(q) > 1 for all q ∈ PN .

Remark 4. Let ρ be the maximal positive integer such that each S ⊂ X
with #S ≤ ρ is linearly independent. For any q ∈ PN with rX(q) ≤ bρ/2c, there
is a unique set A ⊂ X such that #A ≤ bρ/2c, q ∈ 〈A〉 and q /∈ 〈A′〉 for any
A′ ( A. Thus orX(q) > bρ/2c for all q ∈ PN . Since each set with cardinality
≤ ρ is linearly independent and S(X, o) = {o} for all o ∈ X, µ1 ≥ ρ.

Example 1. Let νd : Pn → PN , N =
(
n+d
n

)
− 1, be the order d Veronese

embedding of Pn. Set X := νd(Pn). The last part of Remark 3 gives µ1 ≥ d+ 1.
Fix a closed set B ( X and set B′ := ν−1

d (B). Let L ⊆ Pn be a line containing
o and containing at least one point of Pn \ B′. Thus L ∩ B′ is finite. Take any
A ⊂ L \L∩B′ such that #A = d+ 1. Since νd(L) is a degree d rational normal
curve in its linear span, we have q ∈ 〈νd(L)〉 = 〈νd(A)〉. Hence orX(q) = d+ 1.

Example 2. Take X = PN . This is the case d = 1 of Example 1. Thus
orX(q) = 2 for all q ∈ PN . In this case all q ∈ PN have orX(q) > rX(q).

Example 3. Let X ⊂ PN be a hypersurface of degree d > 1. A point
o ∈ PN is said to be a strange point of X if for each smooth point a of X
the tangent space TaX of X contains o ([10, 12]). Fix q ∈ PN \ X. Remark 3
gives orX(q) > 1. Note that orX(q) = 2 if and only if a general line L ⊂ PN
containing q contains at least 2 points of X, i.e. if and only if the separable
degree of the morphism X → Pn−1 induced by the linear projection from q is
at least 2. Take an arbitrary q′ ∈ PN . If X is a cone with vertex q′ (and hence
q′ ∈ X), then a general line through q′ contained in X shows that orX(q′) ≤ 2.
Remark 3 gives orX(q′) = 2. Now assume that X is not a cone with vertex
containing q′. Fix a closed set B ( X. Fix a general (p1, p2) ∈ X2. Since X is
non-degenerate, L := 〈{p1, p2}〉 is a line not contained in X and q′ /∈ L. Thus
E := 〈{q′, p1, p2}〉 is a plane. The scheme X ∩E is a plane curve, possible with
multiple components. Let Y ⊂ E be the reduction of X ∩ E. Since L * X, Y
is not a line. Thus 〈Y 〉 = E (even if Y is reducible). Since p1, p2 are general,
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pi /∈ B, i = 1, 2. Thus Y has either at least two irreducible components or an
irreducible component not contained in B. Thus there is p3 ∈ Y \ Y ∩ B such
that E = 〈{p1, p2, p3}〉. Thus orX(q′) ≤ 3. Now assume q′ ∈ X with X not
a cone with vertex containing q′. Let a be the multiplicity of X at q′. We see
that orX(q′) = 2 if and only of if the general line containing q′ meets X in at
least 2 other points, i.e. (since X is not a cone with vertex containing q′) if and
only the morphism f : X \ {q′} → PN−1 induced by the linear projection from
q′ has separable degree at least 2. This is never the case if a = d − 1 and in
particular this is never the case if d = 2. Now assume d ≥ a+ 2. Thus under the
assumption d ≥ a+ 2 orX(q′) = 2 if either char(K) = 0 or char(K) > d− a. In
summary, orX(q) ∈ {2, 3} for all q ∈ PN and we gave a geometric description of
the points q with orX(q) = 3.

Remark 5. Set n := dimX and assume t := (N + 1)/(n + 1) ∈ N and
σt(X) = PN . For a general q ∈ PN we have rX(q) = t and S(X, q) is finite.
Thus orX(q) > t for a general q ∈ PN . Fix q ∈ PN such that rX(q) = t and
S(X, q) infinite. If there is at least one o ∈ X such that no A ∈ S(X, q) contains
o, then orX(q) > t. Now assume that N is odd and that X is a curve. In this
case σt(X) = PN ([1, Remark 1.6]).

The following lemma is a variation of the proof of [14, Proposition 5.1].

Lemma 1. Assume char(K) = 0. Set n := dimX. Then orX(q) ≤ N+1−n
for all q ∈ PN \X.

Proof. Fix q ∈ PN \X and a closed set B ( X. Let V ⊂ PN be a general linear
subspace of codimension n containing q. By the uniform position lemma, the
set V ∩X is formed by deg(X) points, any N + 1− n of them spanning V ([9,
Lemma 3.4]). Since V ∩B = ∅ for a general V , orX(q) ≤ N + 1− n. QED

Let X be an projective variety, D an effective Cartier divisor of X and
Z ⊂ X a zero-dimensional scheme. The residual scheme ResD(Z) of Z with
respect to D is the closed subscheme of X with IZ : ID as its ideal sheaf. We
have ResD(Z) ⊆ Z and deg(Z) = deg(Z ∩D) + deg(ResD(Z)). If Z1, . . . , Za are
the connected components of Z, then ResD(Z) = ResD(Z1)∪ · · · ∪ResD(Za). If
Z is reduced, them ResD(Z) = Z \D. For any line bundle Ll on X the following
sequence, often called the residual sequence of D,

0→ IResD(Z) ⊗ L(−D)→ IZ ⊗ L → IZ∩D,D ⊗ L|D → 0

is exact.

The following lemma is just [3, Lemma 5.1] (see [4, Lemmas 2.4, 2.5] for
similar statements).
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Lemma 2. Let X ⊂ PN be a linearly normal projective variety and D an
effective Cartier divisor of X. Assume h1(OX(1)) = h1(OX(1)(−D)) = 0. Fix
q ∈ PN zero-dimensional schemes A,B ⊂ X such that A 6= B, q ∈ 〈A〉 ∩ 〈B〉,
q /∈ 〈A′〉 for any A′ ⊆ A and q /∈ 〈B′〉 for any B′ ⊂ B. Set Z := B ∪A. Assume
h1(X, IResD(Z) ⊗ OX(1)(−D)) = 0 and that one of the following conditions is
satisfied:

(a) ResD(A) ∩ ResD(B) = ∅.
(b) At least one among A and B is reduced.

Then ResD(A) = ResD(B).

Proof of Theorem 1: We first prove the inequality γg ≤ γg−1 + e. Fix q ∈ PN . If
q ∈ σg−1(X), then orX(q) ≤ γg−1 by the definition of γg−1. Thus we may assume
q ∈ PN \ σg−1(X). Fix a closed set B ( X and take a general (p1, . . . , pe) ∈
(X \ B)e. Set V := 〈{q, p1, . . . , pe}〉. Since X is non-degenerate and e ≤ N ,
dimV = e. Hence V ∩ σg−1(X) 6= ∅. Fix q′ ∈ σg−1(X) ∩ V . Since q /∈ σg−1(X)
and {p1, . . . , pe} is general, 〈{q} ∪ E〉 ∩ σg−1(X) = ∅ for all E ( {p1, . . . , pe}
and 〈{p1, . . . , pe}〉 ∩ σg−1(X) = ∅. Thus q ∈ 〈{q′, p1, . . . , pe}〉. By the definition
of open X-rank and the inequality orX(q) ≤ γg−1 there is A ⊂ X \B such that
#A ≤ γg−1 and q′ ∈ 〈A〉. Set S := A ∪ {p1, . . . , pe}. Since S ⊂ X \ B and
q ∈ 〈{q′, p1, . . . , pe}〉 ⊆ 〈S〉, orX(q) ≤ #S ≤ γg−1 + e.

Now we modify the proof just given to prove that γ̃g ≤ γ̃g−1 + e. Since
γ̃g ≤ γg and γ̃1 = γ1, we may assume g ≥ 3. By the definition of γ̃g we start
with q /∈ σg−1(X). Note that σg−2(X) has codimension > e ([1, Observation
1.2]). By the generality of {p1, . . . , pe} we have V ∩ σg−2(X) = ∅. Thus q′ ∈
σg−1(X) \ σg−2(X) and we may repeat the proof of the first inequality. QED

2 Veronese varieties

Let νd : Pn → PN , N =
(
n+d
n

)
− 1, be the order d Veronese embedding of

Pn. Set X = Xn,d = νd(Pn).

Remark 6. Let X ⊂ Pd be a rational normal curve, i.e. take X = X1,d. By
[5, Proposition 3.1] orX(q) = d+ 2− bX(q) for all q.

Remark 7. Take X as in Remark 6. All q /∈ X have orX(q) < µ1.

The following result is (in a weak form) the opposite of concision for the
open rank of symmetric tensors.

Proposition 1. Let M ( Pn, n ≥ 2, be a positive dimensional linear space.
Take any q ∈ 〈νd(M)〉. Then orXn,d(q) ≥ orνd(M)(q).

Proof. Using induction on the codimension of M we reduce to the case dimM =
n − 1. Set a := orXn,d(q). Fix a closed subset B′ ( M . Take any S ⊂ Pn \M
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such that b := #S ≤ a and q ∈ 〈νd(S)〉. It is easy to check that for a general
o ∈ Pn we have o /∈ S and `(S) ∩ B′ = ∅, where ` : Pn \ {o} → M denotes
the linear projection from o. Since #`(S) ≤ a and `(S) ∩ B′ = ∅, to prove
that orX(q) ≤ a it is sufficient to prove that q ∈ 〈νd(`(S))〉. Fix homogeneous
coordinates x0, . . . , xn such that M = {x0 = 0}. Take homogeneous polynomials
f(x0, . . . , xn) representing q and fi(x0, . . . , xn), 1 ≤ i ≤ b, representing the
points of S. By assumptions there are constants c1, . . . , cb such that f = c1f1 +
· · · + cbfb. For any [fi] ∈ S, [fi(0, x1, . . . , xn)] represents `([fi]) . Since q ∈
〈νd(M)〉, f does not depend on x0. Thus f =

∑b
i=1 cifi(0, x1, . . . , xn). QED

Theorem 2. Take Xn,d. Fix q ∈ PN such that bX(q) = 2.

(1) If n = 1, then orX(q) = d.

(2) If n ≥ 2, then orX(q) = 2d.

Proof. Until step (e) we assume rX(q) = 2. By Remark 6 we may assume n ≥ 2.
Fix A ⊂ Pn such that ν(A) ∈ S(X, q). Let L ⊂ Pn be the line spanned by A.
Fix any closed B ( X containing νd(L) and set B′ := ν−1

d (B). Take a general
u ∈ Pn \ B′ and call M the plane spanned by L and u. Let D ⊂ M be a
smooth conic containing {u} ∪A. Since u /∈ B, D ∩B is a finite set. Since D is
a projectively normal curve, dim〈νd(D)〉 = 2d. Since orνd(D)(q) = 2d (Remark
2), orX(q) ≤ 2d. Assume orX(q) ≤ 2d − 1 and take S ⊂ Pn \ B′ such that
#S ≤ 2d − 1 and q ∈ 〈νd(S)〉. Note that h1(IS∪A(d)) > 0. Since B′ ⊃ L,
S ∩ A = ∅. Applying case (b) of Lemma 2 with as Cartier divisor a general
hyperplane H ⊇ L, we obtain h1(IS(d − 1)) > 0. Since #S ≤ 2(d − 1) + 1, [6,
Lemma 34] gives the existence of a line R ⊂ Pn such that #(R ∩ S) ≥ d + 1.
Since S ∩ L = ∅, R 6= L.

(a) Assume n = 2. Applying case (b) of Lemma 2 taking as the Cartier
divisor the conic L∪R we get that either h1(IS\S∩R(d−2)) > 0 or S ⊂ R. Since
#(S \ S ∩ R) ≤ d − 2, h1(IS\S∩R(d − 2)) = 0. Thus S ⊂ R. Since q ∈ 〈νd(S)〉,
we get q ∈ 〈νd(R)〉. Concision gives A ⊂ R ([13, Ex. 3.2.2.2]). Thus R = L, a
contradiction.

(b) Assume n = 3 and L ∩R 6= ∅. Set H := 〈L ∪R〉. Applying any of the
two cases of Lemma 2 with respect to the Cartier divisor H we get that either
h1(IS\S∩H(d− 1)) > 0 or S ⊂ H. Since #(S \ S ∩H) ≤ #(S \ S ∩R) ≤ d− 2,
we get S ⊂ H. Since q ∈ 〈νd(H)〉 and S ⊂ H, step (a) gives a contradiction.

(c) Assume n = 3 and L∩R = ∅. Since IL∪R(2) is globally generated and
S is a finite set, there is Q ∈ |IL∪R(2)| such that S ∩Q = S ∩R. Applying part
(b) of Lemma 2 to the Cartier divisor Q we get S ⊂ R.

(d) Assume n ≥ 4. There is a hyperplane H ⊂ Pn containing R ∪ L. As
in step (b) we get a contradiction using induction on n.
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(e) Assume rX(q) > 2. There is a degree 2 connected zero-dimensional
scheme v ⊂ Pn such that q ∈ 〈νd(v)〉. We repeat the proof of the previous steps
using v instead of A. In all cases we take B′ containing the reduction of v and
hence v∩S = ∅ in all steps. Thus we may apply any of the two cases of Lemma
2. QED

Remark 8. Let X ( PN be a Veronese variety. Since X is homogeneous
and the embedding is homogeneous, µ1 = γ1. Example 1 and Theorem 2 show
that when n = 1 there are points q with orX(q) < µ1.

Theorem 3. Take X = Xn,d, n ≥ 2, d ≥ 4 and N =
(
n+d
n

)
. Take q ∈ PN

such that rX(q) = 3 and there is no line L ⊂ Pn such that q ∈ 〈νd(L)〉.

(1) If n = 2, then orX(q) = 2d− 1.

(2) If n > 2, then orX(q) = 3d− 1.

Proof. Fix A ⊂ Pn such that νd(A) ∈ S(X, q). Since there is no line L ⊂ Pn
such that q ∈ 〈νd(L)〉, concision gives dim〈A〉 = 2 ([13, Ex. 3.2.2.2]). Take a
closed set B′ ( Pn. If n = 2 we assume that B′ contains the 3 lines spanned by
2 of the points of A. If n > 2 we assume B′ ⊇ 〈A〉.

(a) Assume n = 2. Fix a general u ∈ P2 \B′. Since A∪{u} is contained in
a smooth conic, the case n ≥ 2 of the proof of Theorem 2 gives orX(q) = 2d−1.
Assume orX(q) ≤ 2d − 2 and take E ⊂ P2 \ B′ such that #E ≤ 2d − 2 and
q ∈ 〈νd(E)〉. Since orX(q) ≥ rX(q), #E ≥ 3. Since E ∩ B′ = ∅, we have
E ∩ A = ∅. Since q ∈ 〈νd(E)〉 ∩ 〈νd(A)〉, h1(IE∪A(d)) > 0. Take a line L ⊂ P2

spanned by 2 of the points of A, say A = (A ∩ L) ∪ {o}. By the choice of B′,
L∩E = ∅. Since E 6= {o}, part (b) of Lemma 2 gives h1(IE∪{o}(d−1)) > 0. Since
#(E∪{o}) ≤ 2d−1 = 2(d−1)+1, [6, Lemma 34] gives the existence of a line R
such that #(R∩(E∪{o}) ≥ d+1. Note that #(R∩A) ≤ 1. Part (b) of Lemma 2
gives h1(I(E∪A)\(E∪A)∩R(d−1)) > 0. The inequality #((E∪A)\(E∪A)∩R) ≤ d
contradicts [6, Lemma 34].

(b) Assume n ≥ 3. Take a general u ∈ Pn \B′ and set M := 〈A∪{u}〉. We
have dimM = 3 and there is a degree 3 rational normal curve G ⊂M containing
A∪{u}. Thus G∩B′ is a finite set containing A. Since G is projectively normal,
the restriction map H0(OPn(d))→ H0(OG(d)) is surjective. Thus dim〈νd(G)〉 =
3d and νd(G) is a rational normal curve of 〈νd(G)〉. Remark 6 gives the existence
of S ⊂ G\G∩B′ such that #S = 3d−1 and q ∈ 〈νd(S)〉. Thus orX(q) ≤ 3d−1.

Assume orX(q) ≤ 3d−2 and take E ⊂ Pn\B′ such that #E ≤ 3d−2. Recall
that B′ ⊇ 〈A〉 and hence E∩A = ∅. Set S := E∪A. Since q ∈ 〈νd(E)〉∩〈νd(A)〉,
h1(IS(d)) > 0. Since #S ≤ 3d+ 1, by [2, Theorem 1] one of the following cases
occurs:
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(1) there is a line L ⊂ Pn such that #(L ∩ S) ≥ d+ 2;

(2) there is a reduced conic D such that #(D ∩ S) ≥ 2d+ 2;

(3) there is a reduced plane cubic T and S′ ⊆ S such that #S′ = 3d and
S′ ∈ |OT (d− 1)|;

(4) #S = 3d+ 1 and there is a reduced plane cubic F ⊂ Pn such that S ⊂ F .

(b1) Case (4) is excluded, because it would force E ⊂ 〈A〉, contradicting
our choice of B′.

(b2) For the same reason in case (3) we have #S = 3d + 1 and S \ S′ is
a point, o, of A. Consider the plane 〈T 〉 and call H ⊂ Pn a general hyperplane
containing 〈T 〉 (hence H = 〈T 〉 if n = 3). Since S \ S ∩H = {o} and h1(Io(d−
1)) = 0, case (a) of Lemma 2 gives a contradiction.

(b3) Assume the existence of a reduced conic D such that #(D ∩ S) ≥
2d+2. Since E∩〈A〉 = ∅, we have #(〈D〉∩A) ≤ 2. Let H be a general hyperplane
containing 〈D〉. Thus H ∩ S = 〈D〉 ∩ S and 1 ≤ #(S \ S ∩ H) ≤ d − 1. Thus
h1(IS\S∩H(d− 1)) = 0, contradicting part (a) of Lemma 2.

(b4) Assume the existence of a line L ⊂ Pn such that #(L ∩ S) ≥ d + 2.
Since E ∩ 〈A〉 = ∅, we have #(L ∩ A) ≤ 1. Take a hyperplane H ⊂ Pn such
that H ⊃ L and A * H. Part (b) of Lemma 2 gives h1(IS\S∩H(d − 1)) > 0.
Since #(S \ S ∩H) ≤ 2d − 1 = 2(d − 1) + 1, there is a line R ⊂ Pn such that
#(R ∩ (S \ S ∩ H)) ≥ d + 1 ([6, Lemma 34]). Note that R 6= L and hence
#(L ∩R) ≤ 1.

(b4.1) Assume either n > 3 or R∩L 6= ∅. These assumptions are equivalent
to the existence of a hyperplane U ⊃ L ∪ R. Since #(S \ S ∩ U) ≤ 3d + 1 −
d− 2− d− 1 + 1, h1(IS\S∩U (d− 1)) = 0 and hence S ⊂ U (part (b) of Lemma
2). Since S is a finite set, taking a general U containing W := 〈R ∪ L〉 ⊃ S.
Since 〈A〉 ∩ E = ∅, dim〈W = 3, i.e. R ∩ L = ∅. Since IL∪R,W (2) is globally
generated and S is a finite set, there is a quadric surface Q ⊂ W such that
S ∩ Q = S ∩ (L ∪ R). Let Q′ ⊂ Pn be any quadric hypersurface such that
Q′ ∩ W = Q. Since #(S \ S ∩ (L ∪ R)) ≤ 3d + 1 − d − 2 − d − 1, we have
h1(IS\S∩Q′(d − 2)) = 0 and hence S ⊂ R ∪ L. Thus at least one of the lines R
or L contains 2 points of A and hence they contain no point of E by the choice
of B′, a contradiction.

(b4.2) Assume n = 3 and R ∩ L = ∅. We use the quadric Q as in step
(b4.1). QED
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3 Segre varieties

Let Y = Pn1 × · · · × Pnk , k ≥ 1, ni > 0 for all i, be a multiprojective space.
Set N :=

∏k
i=1(ni + 1). Let ν : Y → PN be the Segre embedding of Y . Set

X := ν(Y ). Thus X is a Segre variety. For any i ∈ {1, . . . , k} let πi : Y → Pni
denote the projection onto the i-th factor of Y and let εi ∈ Nk be the multiindex
(a1, . . . , ak) with ai = 1 and ah = 0 for all h 6= i.

Remark 9. If k = 1 Example 2 gives orX(q) = 2 for all q ∈ PN .

By Remark 9 it would be sufficient to study the case k > 1.

Remark 10. Take q ∈ PN , which is not concise, i.e. assume the existence
of a multiprojective subspace Y ′ ( Y such that q ∈ 〈ν(Y ′)〉 (we allow the case
q ∈ X in which we may take Y ′ = {q}). Set X ′ := ν(Y ′). By concision rX(q) =
rX′(q) and S(X ′, q′) = S(X, q) ([13, Proposition 3.1.3.1]). Taking B = Y ′ we
get orX(q) > rX(q).

The following result is (in a weak form) the opposite of concision for the
open rank of symmetric tensors.

Proposition 2. Let M ( Y be a positive dimensional multiprojective space.
Take any q ∈ 〈ν(M)〉. Then orX(q) ≥ orν(M)(q).

Proof. Set a := orX(q). Using induction of the integer dimY−dimM we see that
it is sufficient to do the case dimM = dimY − 1. Fix a closed subset B′ ( M .
Write M =

∏m
i=1 Pmi with 0 ≤ mi ≤ ni for all i and

∑
imi =

∑
i ni − 1.

Permuting the factors of Y we may assume m1 = n1 − 1, thus M = M1 ×W ,
where W :=

∏k
i=2 Pni and M1 is a hyperplane of Pn1 . Fix a closed set B′′ ( Y .

Take any S ⊂ Y \B′′ with #S ≤ a and q ∈ 〈ν(S)〉. Fix a general o ∈ Pn−1 and let
` : Pn1\{o} →M1 denote the linear projection from o. The submersion ` induces
a submersion µ : Y \ {o} ×W →M . For a general o we have {o} ×W ∩ S = ∅.
Thus µ is defined at each point of S. Since 〈ν(S)〉 ∩ 〈ν(M)〉 ⊆ 〈ν(µ(S))〉, we
have q ∈ 〈ν(µ(S))〉. Since #µ(S) ≤ a, to conclude the proof it is sufficient to
find B′′ such that µ(S) ∩B′ = ∅. Take B′′ := µ−1(B′). QED

Theorem 4. We have orX(q) = k + 1 for all q ∈ X.

Proof. By Remark 9 we may assume k ≥ 2. Fix q ∈ X, say q = ν(o) with
o = (o1, . . . , ok). Let B ( X be a closed subset. Set B′ := ν−1(B). Fix u =
(u1, . . . , uk) ∈ Y \ B′ such that ui 6= oi for al i. Take a, b ∈ P1 such that a 6= b.
Let fi : P1 → Pni be any degree 1 embedding such that fi(a) = ui and fi(b) = oi.
Let f = (f1, . . . , fk) : P1 → Y be the embedding such that πi ◦ f = fi for all i.
Set D := ν(f(P1)). Note that D is a degree k rational normal curve in its linear
span. Since f(a) = u and f(b) = o, {u, o} ⊂ D. Since f(a) /∈ B, D∩B is a finite
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set. Fix S ⊂ D \D ∩ B such that #S = k + 1. Since D is a degree k rational
normal curve of 〈D〉, 〈S〉 = 〈D〉. Thus orX(q) ≤ k + 1.

Assume orX(q) ≤ k. Set B′ := ∪ki=1π
−1
i (oi) ⊂ Y and B := ν(B′). Take

A ⊂ Y \ B′ such that #A ≤ k, q ∈ 〈ν(A)〉 and q /∈ 〈ν(A′)〉 for any A′ ( A.
Write A = {a(1), . . . , a(e)} for some e ≤ k and a(i) 6= a(j) for all i 6= j. Let Hi,
i = 1, . . . , e, be a general element of |OY (εi)| containing a(i). By the definition
of the set B′ we have oi /∈ πi(A) for i = 1, . . . , k. By the generality of each
Hi we have o /∈ Hi. Thus o /∈ A and q ∈ 〈ν(A)〉, h1(IA∪{o}(1, . . . , 1)) > 0. If
e < k take as Hi, e + 1, . . . , k, any element of |OY (εi)| not containing o. Set
D := H1 + · · ·+Hk. Note that D ∩ ({o} ∪A) = A. Since o /∈ A and h1(Io) = 0,
part (b) of Lemma 2 gives a contradiction. QED

Theorem 5. Take q ∈ PN such that rX(q) = 2 and q depends on all k
factors of Y . Then:

(i) orX(q) ≥ k;

(ii) orX(q) = k if and only if q is concise, i.e. if ni = 1 for all i.

Proof. Fix A ⊂ Y such that ν(A) ∈ S(X, q). By concision the assumption that
q depends on all factors of X is equivalent to #πi(A) = 2 for all i ∈ {1, . . . , k}.
Since rX(q) = 2 and q depends on all factors, q is concise if and only if ni = 1
for all i. We fix 3 distinct points of P1 and call it 0, 1 and∞. Fix A = {a, b} such
that ν(A) ∈ S(X, q). Fix a general u ∈ Y \B′. Since u is general πi(u) /∈ πi(A)
for any i.

(a) First assume ni = 1 for all i. Fix a closedB ( X and setB′ := ν−1(B′).
Let fi : P1 → P1 be the only isomorphism such that fi(0) = ai, fi(1) = bi
and fi(∞) = ui. Thus f = (f1, . . . , fk) induces an embedding f : P1 → Y ′

such that f(0) = a, f(1) = b and f(∞) = u. Set D := f(P1). Note that
dim〈ν(D)〉 = k and that ν(D) is a degree k rational normal curve of 〈ν(D)〉.
Since u /∈ B′, D ∩ S is finite. By Remark 6 there is S ⊂ D such that #S ≤ k
and q ∈ 〈ν(S)〉. Thus orX(q) ≤ k. Assume orX(q) ≤ k− 1 and take E ⊂ Y \B′
such that #E ≤ k−1 and q ∈ 〈ν(E). We assume B′ ⊃ A. With this assumption
h1(IE∪A(1, . . . , 1)) > 0. Since #(E∪A) = k+1, mimicking the proof of Theorem
10 we get a contradiction.

(b) Now assume ni ≥ 2 for some i. Let Y ( Y be the concise Segre of
q. By concision ([13, Proposition 3.13.1]) every S ⊂ Y such that q ∈ 〈ν(S)〉
and S * Y ′ has cardinality > k. Taking as closed set B the set Y ′ we get
orX(q) > k. QED
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