Open X-ranks with respect to Segre and Veronese varieties

Edoardo Ballico ${ }^{\text {i }}$
Department of Mathematics, University of Trento
edoardo.ballico@unitn.it

Received: 2.11.2020; accepted: 27.2.2021.

Abstract

Let $X \subset \mathbb{P}^{N}$ be an integral and non-degenerate variety. Recall (A. BiatynickiBirula, A. Schinzel, J. Jelisiejew and others) that for any $q \in \mathbb{P}^{N}$ the open rank or $r_{X}(q)$ is the minimal positive integer such that for each closed set $B \subsetneq X$ there is a set $S \subset X \backslash B$ with $\# S \leq \operatorname{or}_{X}(q)$ and $q \in\langle S\rangle$, where \rangle denotes the linear span. For an arbitrary X we give an upper bound for $\operatorname{or}_{X}(q)$ in terms of the upper bound for $o r_{X}\left(q^{\prime}\right)$ when q^{\prime} is a point in the maximal proper secant variety of X and a similar result using only points q^{\prime} with submaximal border rank. We study $\operatorname{or}_{X}(q)$ when X is a Segre variety (points with X-rank 1 and 2) and when X is a Veronese variety (points with X-rank ≤ 3 or with border rank 2).

Keywords: open rank, open X-rank, Segre variety, Veronese variety, secant variety;,border rank

MSC 2020 classification: primary 14N07, secondary 14N07,15A69

Introduction

Let $X \subset \mathbb{P}^{N}$ be an integral and non-degenerate projective variety. We recall the following definition ([5, 7, 8, 11]). The papers $[7,8,11]$ study Veronese varieties, i.e. homogeneous polynomials, but $[7,8]$ also consider the case of nonhomogeneous polynomials, which is harder.

Definition 1. For any $q \in \mathbb{P}^{N}$ the open rank or open X-rank or $X_{X}(q)$ of q is the minimal integer with the following property: for any closed set $B \subsetneq X$ there exists $S \subset X \backslash B$ such that $\# S \leq \operatorname{or}_{X}(q)$ and $q \in\langle S\rangle$, where \rangle denotes the linear span.

We recall that the X-rank $r_{X}(q)$ of q is the minimal integer such that there is $S \subset X$ with $\# S=r_{X}(q)$ and $q \in\langle S\rangle([13])$.

Since X is non-degenerate, for any closed set $B \subsetneq X, X \backslash B$ spans \mathbb{P}^{N}. Thus the integer $\operatorname{or}_{X}(q)$ is a well-defined positive integer $\leq N+1$. Obviously $o r_{X}(q) \geq r_{X}(q)$. In general it is not easy to compute $o r_{X}(q)$. For instance there is no $q \in \mathbb{P}^{N}$ such that or $r_{X}(q)=1$ (Remark 3).

[^0]We recall that for each integer $t>0$ the t-secant variety $\sigma_{t}(X) \subsetneq \mathbb{P}^{N}$ is the closure in \mathbb{P}^{N} of the union of all linear spaces $\langle S\rangle$ for some $S \subset X$ with $\# S=t$ $([1,13])$. Each $\sigma_{t}(X)$ is irreducible, $\sigma_{1}(X)=X$ and either $\sigma_{t}(X)=\mathbb{P}^{N}$ or $\sigma_{t}(X) \subsetneq \sigma_{t+1}(X)$ ([1, Observation 1.2]). The border rank $b_{X}(q)$ of $q \in \mathbb{P}^{N}$ is the first positive integer t such that $q \in \sigma_{t}(X)$. Let g be the generic X-rank, i.e. the minimal positive integer such that $\sigma_{g}(X)=\mathbb{P}^{N}$. For each integer $k \in\{1, \ldots, g\}$ let γ_{k} denote the maximal integer $\operatorname{or}_{X}(q)$ for some $q \in \sigma_{k}(X)$. Hence γ_{g} is the maximal open X-rank of some $q \in \mathbb{P}^{N}$. Let μ_{1} be the minimal integer or $_{X}(q)$ for some $q \in X$. In general the integer μ_{1} is not the minimal integer $\operatorname{or}_{X}(q)$ for some $q \in \mathbb{P}^{N}$ (Examples 1 and 2). Obviously $\mu_{1}=\gamma_{1}$ if $X \subset \mathbb{P}^{N}$ is a homogeneous embedding of a homogeneous variety. For $i=2, \ldots, g$ let $\tilde{\gamma}_{i}$ be the maximum integer $\operatorname{or}_{X}(q)$ with $q \in \sigma_{i}(X) \backslash \sigma_{i-1}(X)$. Note that all $q \in \sigma_{i}(X) \backslash \sigma_{i-1}(X)$ have $r_{X}(q)=i$, but that $\sigma_{i-1}(X)$ may contain points with X-rank i. Set $\tilde{\gamma}_{1}:=\gamma_{1}$. Obviously $\gamma_{i}=\max _{1 \leq j \leq i} \tilde{\gamma}_{j}$. In particular $\gamma_{i} \geq \gamma_{i-1}$ for all $i=2, \ldots, g$.

In section 1 we give a few remarks on the open X-rank and prove the following result.

Theorem 1. Set $e:=N-\operatorname{dim} \sigma_{g-1}(X)$. Then $\gamma_{g} \leq \gamma_{g-1}+e$ and $\tilde{\gamma}_{g} \leq$ $\tilde{\gamma}_{g-1}+e$.

We ask the following Question.
For the rational normal curve this sequence is strictly decreasing (Remark 6), but there are many examples of X and i such that $\tilde{\gamma}_{i}<\tilde{\gamma}_{i+1}$, e.g. the case $n \geq 2, d \geq 2$ and $i=1$ for the order d Veronese embedding of \mathbb{P}^{n} (Theorem 2).

In section $2 X$ is a Veronese variety, i.e. each $q \in \mathbb{P}^{N}$ is an equivalence class (up to a non-zero multiplicative constant) $[f]$ of a homogeneous polynomial f and $r_{X}(q)$ is the minimal number of addenda needed to write f as a sum of powers of linear forms. In section $3 X$ is a Segre variety, i.e., each $q \in \mathbb{P}^{N}$ is an equivalence class $q=[T]$ (up to a non-zero multiplicative constant) of a tensor $T \neq 0$ and $r_{X}(q)$ is the tensor rank of T. For Veronese varieties we study the case in which $r_{X}(q)=1$ (Example 1), $r_{X}(q)=2$ (Theorem 2) and $r_{X}(q)=3$ and the polynomial associated to q effectively depends on more than 2 variables (Theorem 3). We describe the open ranks of all $q \in \sigma_{2}(X)$ (Theorem 2). For the Segre variety we study the case $r_{X}(q)=1$ (Theorem 4) and the case $r_{X}(q)=2$ when the tensor depends on all factors of Y (Theorem 5).

We work over an algebraically closed field \mathbb{K}.

1 General remarks and proof of Theorem 1

Let $X \subset \mathbb{P}^{N}$ be an integral and non-degenerate projective variety. For any $q \in \mathbb{P}^{N}$ let $\mathcal{S}(X, q)$ denote the set of all $A \subset X$ such that $\# A=r_{X}(q)$ and $q \in\langle A\rangle$.

Remark 1. Fix $q \in \mathbb{P}^{N}$ with $\mathcal{S}(X, q)$ finite, say $\mathcal{S}(X, q)=\left\{S_{1}, \ldots, S_{c}\right\}$. Thus $B:=S_{1} \cup \cdots \cup S_{c}$ is a proper closed subset of X. Every set $A \subset X$ such that $\# A=r_{X}(q)$ and $q \in\langle A\rangle$ is contained in B. The definition of open X-rank gives $\operatorname{or}_{X}(q)>r_{X}(q)$. Since all $q \in \sigma_{1}(X)=X$ have $\# \mathcal{S}(X, q)=1$, it follows that $r_{X}(q)>1$ for all $q \in X$. Thus $\gamma_{1} \geq \mu_{1}>1$. The same proof shows that or $r_{X}(q)>r_{X}(q)$ for all $q \in \mathbb{P}^{N}$ such that $\cup_{A \in \mathcal{S}(X, q)} A$ is not Zariski dense in X.

Remark 2. Take any $q \in \mathbb{P}^{N}$, any closed $B \subsetneq X$ and any $A \subset X$ such that $\# A=r_{X}(q)$ and $q \in\langle A\rangle$. By the definition of open X-rank for each $a \in A$ there is $S_{a} \subset X \backslash B$ such that $\# S_{a}:=\operatorname{or}_{X}(a)$ and $q \in\left\langle S_{a}\right\rangle$. Set $S:=\cup_{a \in A} S_{a}$. Since $S \subset X \backslash B$ and $\# S \leq \gamma_{1} r_{X}(q)$, we get $o r_{X}(q) \leq \gamma_{1} r_{X}(q)$ for all $q \in \mathbb{P}^{N}$.

Remark 3. Since $o r_{X}(q) \geq r_{X}(q)$ and $r_{X}(q)=1$ if and only if $q \in X$, Remark 1 gives or $_{X}(q)>1$ for all $q \in \mathbb{P}^{N}$.

Remark 4. Let ρ be the maximal positive integer such that each $S \subset X$ with $\# S \leq \rho$ is linearly independent. For any $q \in \mathbb{P}^{N}$ with $r_{X}(q) \leq\lfloor\rho / 2\rfloor$, there is a unique set $A \subset X$ such that $\# A \leq\lfloor\rho / 2\rfloor, q \in\langle A\rangle$ and $q \notin\left\langle A^{\prime}\right\rangle$ for any $A^{\prime} \subsetneq A$. Thus or $_{X}(q)>\lfloor\rho / 2\rfloor$ for all $q \in \mathbb{P}^{N}$. Since each set with cardinality $\leq \rho$ is linearly independent and $\mathcal{S}(X, o)=\{o\}$ for all $o \in X, \mu_{1} \geq \rho$.

Example 1. Let $\nu_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}, N=\binom{n+d}{n}-1$, be the order d Veronese embedding of \mathbb{P}^{n}. Set $X:=\nu_{d}\left(\mathbb{P}^{n}\right)$. The last part of Remark 3 gives $\mu_{1} \geq d+1$. Fix a closed set $B \subsetneq X$ and set $B^{\prime}:=\nu_{d}^{-1}(B)$. Let $L \subseteq \mathbb{P}^{n}$ be a line containing o and containing at least one point of $\mathbb{P}^{n} \backslash B^{\prime}$. Thus $L \cap B^{\prime}$ is finite. Take any $A \subset L \backslash L \cap B^{\prime}$ such that $\# A=d+1$. Since $\nu_{d}(L)$ is a degree d rational normal curve in its linear span, we have $q \in\left\langle\nu_{d}(L)\right\rangle=\left\langle\nu_{d}(A)\right\rangle$. Hence $\operatorname{or}_{X}(q)=d+1$.

Example 2. Take $X=\mathbb{P}^{N}$. This is the case $d=1$ of Example 1. Thus or $r_{X}(q)=2$ for all $q \in \mathbb{P}^{N}$. In this case all $q \in \mathbb{P}^{N}$ have $o r_{X}(q)>r_{X}(q)$.

Example 3. Let $X \subset \mathbb{P}^{N}$ be a hypersurface of degree $d>1$. A point $o \in \mathbb{P}^{N}$ is said to be a strange point of X if for each smooth point a of X the tangent space $T_{a} X$ of X contains $o([10,12])$. Fix $q \in \mathbb{P}^{N} \backslash X$. Remark 3 gives $\operatorname{or}_{X}(q)>1$. Note that $\operatorname{or}_{X}(q)=2$ if and only if a general line $L \subset \mathbb{P}^{N}$ containing q contains at least 2 points of X, i.e. if and only if the separable degree of the morphism $X \rightarrow \mathbb{P}^{n-1}$ induced by the linear projection from q is at least 2 . Take an arbitrary $q^{\prime} \in \mathbb{P}^{N}$. If X is a cone with vertex q^{\prime} (and hence $\left.q^{\prime} \in X\right)$, then a general line through q^{\prime} contained in X shows that $\operatorname{or}_{X}\left(q^{\prime}\right) \leq 2$. Remark 3 gives $\operatorname{or}_{X}\left(q^{\prime}\right)=2$. Now assume that X is not a cone with vertex containing q^{\prime}. Fix a closed set $B \subsetneq X$. Fix a general $\left(p_{1}, p_{2}\right) \in X^{2}$. Since X is non-degenerate, $L:=\left\langle\left\{p_{1}, p_{2}\right\}\right\rangle$ is a line not contained in X and $q^{\prime} \notin L$. Thus $E:=\left\langle\left\{q^{\prime}, p_{1}, p_{2}\right\}\right\rangle$ is a plane. The scheme $X \cap E$ is a plane curve, possible with multiple components. Let $Y \subset E$ be the reduction of $X \cap E$. Since $L \nsubseteq X, Y$ is not a line. Thus $\langle Y\rangle=E$ (even if Y is reducible). Since p_{1}, p_{2} are general,
$p_{i} \notin B, i=1,2$. Thus Y has either at least two irreducible components or an irreducible component not contained in B. Thus there is $p_{3} \in Y \backslash Y \cap B$ such that $E=\left\langle\left\{p_{1}, p_{2}, p_{3}\right\}\right\rangle$. Thus or $X_{X}\left(q^{\prime}\right) \leq 3$. Now assume $q^{\prime} \in X$ with X not a cone with vertex containing q^{\prime}. Let a be the multiplicity of X at q^{\prime}. We see that $\operatorname{or}_{X}\left(q^{\prime}\right)=2$ if and only of if the general line containing q^{\prime} meets X in at least 2 other points, i.e. (since X is not a cone with vertex containing q^{\prime}) if and only the morphism $f: X \backslash\left\{q^{\prime}\right\} \rightarrow \mathbb{P}^{N-1}$ induced by the linear projection from q^{\prime} has separable degree at least 2 . This is never the case if $a=d-1$ and in particular this is never the case if $d=2$. Now assume $d \geq a+2$. Thus under the assumption $d \geq a+2$ or $_{X}\left(q^{\prime}\right)=2$ if either $\operatorname{char}(\mathbb{K})=0$ or $\operatorname{char}(\mathbb{K})>d-a$. In summary, $\operatorname{or}_{X}(q) \in\{2,3\}$ for all $q \in \mathbb{P}^{N}$ and we gave a geometric description of the points q with or $_{X}(q)=3$.

Remark 5. Set $n:=\operatorname{dim} X$ and assume $t:=(N+1) /(n+1) \in \mathbb{N}$ and $\sigma_{t}(X)=\mathbb{P}^{N}$. For a general $q \in \mathbb{P}^{N}$ we have $r_{X}(q)=t$ and $\mathcal{S}(X, q)$ is finite. Thus ${ }^{\circ} r_{X}(q)>t$ for a general $q \in \mathbb{P}^{N}$. Fix $q \in \mathbb{P}^{N}$ such that $r_{X}(q)=t$ and $\mathcal{S}(X, q)$ infinite. If there is at least one $o \in X$ such that no $A \in \mathcal{S}(X, q)$ contains o, then $\operatorname{or}_{X}(q)>t$. Now assume that N is odd and that X is a curve. In this case $\sigma_{t}(X)=\mathbb{P}^{N}([1$, Remark 1.6]).

The following lemma is a variation of the proof of [14, Proposition 5.1].
Lemma 1. Assume $\operatorname{char}(\mathbb{K})=0$. Set $n:=\operatorname{dim} X$. Then or $X_{X}(q) \leq N+1-n$ for all $q \in \mathbb{P}^{N} \backslash X$.

Proof. Fix $q \in \mathbb{P}^{N} \backslash X$ and a closed set $B \subsetneq X$. Let $V \subset \mathbb{P}^{N}$ be a general linear subspace of codimension n containing q. By the uniform position lemma, the set $V \cap X$ is formed by $\operatorname{deg}(X)$ points, any $N+1-n$ of them spanning V ($[9$, Lemma 3.4]). Since $V \cap B=\emptyset$ for a general $V, \operatorname{or}_{X}(q) \leq N+1-n$.

Let X be an projective variety, D an effective Cartier divisor of X and $Z \subset X$ a zero-dimensional scheme. The residual scheme $\operatorname{Res}_{D}(Z)$ of Z with respect to D is the closed subscheme of X with $\mathcal{I}_{Z}: \mathcal{I}_{D}$ as its ideal sheaf. We have $\operatorname{Res}_{D}(Z) \subseteq Z$ and $\operatorname{deg}(Z)=\operatorname{deg}(Z \cap D)+\operatorname{deg}\left(\operatorname{Res}_{D}(Z)\right)$. If Z_{1}, \ldots, Z_{a} are the connected components of Z, then $\operatorname{Res}_{D}(Z)=\operatorname{Res}_{D}\left(Z_{1}\right) \cup \cdots \cup \operatorname{Res}_{D}\left(Z_{a}\right)$. If Z is reduced, them $\operatorname{Res}_{D}(Z)=Z \backslash D$. For any line bundle $L l$ on X the following sequence, often called the residual sequence of D,

$$
0 \rightarrow \mathcal{I}_{\operatorname{Res}_{D}(Z)} \otimes \mathcal{L}(-D) \rightarrow \mathcal{I}_{Z} \otimes \mathcal{L} \rightarrow \mathcal{I}_{Z \cap D, D} \otimes \mathcal{L}_{\mid D} \rightarrow 0
$$

is exact.
The following lemma is just [3, Lemma 5.1] (see [4, Lemmas 2.4, 2.5] for similar statements).

Lemma 2. Let $X \subset \mathbb{P}^{N}$ be a linearly normal projective variety and D an effective Cartier divisor of X. Assume $h^{1}\left(\mathcal{O}_{X}(1)\right)=h^{1}\left(\mathcal{O}_{X}(1)(-D)\right)=0$. Fix $q \in \mathbb{P}^{N}$ zero-dimensional schemes $A, B \subset X$ such that $A \neq B, q \in\langle A\rangle \cap\langle B\rangle$, $q \notin\left\langle A^{\prime}\right\rangle$ for any $A^{\prime} \subseteq A$ and $q \notin\left\langle B^{\prime}\right\rangle$ for any $B^{\prime} \subset B$. Set $Z:=B \cup A$. Assume $h^{1}\left(X, \mathcal{I}_{\operatorname{Res}_{D}(Z)} \otimes \mathcal{O}_{X}(1)(-D)\right)=0$ and that one of the following conditions is satisfied:
(a) $\operatorname{Res}_{D}(A) \cap \operatorname{Res}_{D}(B)=\emptyset$.
(b) At least one among A and B is reduced.

Then $\operatorname{Res}_{D}(A)=\operatorname{Res}_{D}(B)$.
Proof of Theorem 1: We first prove the inequality $\gamma_{g} \leq \gamma_{g-1}+e$. Fix $q \in \mathbb{P}^{N}$. If $q \in \sigma_{g-1}(X)$, then $o r_{X}(q) \leq \gamma_{g-1}$ by the definition of γ_{g-1}. Thus we may assume $q \in \mathbb{P}^{N} \backslash \sigma_{g-1}(X)$. Fix a closed set $B \subsetneq X$ and take a general $\left(p_{1}, \ldots, p_{e}\right) \in$ $(X \backslash B)^{e}$. Set $V:=\left\langle\left\{q, p_{1}, \ldots, p_{e}\right\}\right\rangle$. Since X is non-degenerate and $e \leq N$, $\operatorname{dim} V=e$. Hence $V \cap \sigma_{g-1}(X) \neq \emptyset$. Fix $q^{\prime} \in \sigma_{g-1}(X) \cap V$. Since $q \notin \sigma_{g-1}(X)$ and $\left\{p_{1}, \ldots, p_{e}\right\}$ is general, $\langle\{q\} \cup E\rangle \cap \sigma_{g-1}(X)=\emptyset$ for all $E \subsetneq\left\{p_{1}, \ldots, p_{e}\right\}$ and $\left\langle\left\{p_{1}, \ldots, p_{e}\right\}\right\rangle \cap \sigma_{g-1}(X)=\emptyset$. Thus $q \in\left\langle\left\{q^{\prime}, p_{1}, \ldots, p_{e}\right\}\right\rangle$. By the definition of open X-rank and the inequality $\operatorname{or}_{X}(q) \leq \gamma_{g-1}$ there is $A \subset X \backslash B$ such that $\# A \leq \gamma_{g-1}$ and $q^{\prime} \in\langle A\rangle$. Set $S:=A \cup\left\{p_{1}, \ldots, p_{e}\right\}$. Since $S \subset X \backslash B$ and $q \in\left\langle\left\{q^{\prime}, p_{1}, \ldots, p_{e}\right\}\right\rangle \subseteq\langle S\rangle$, or $_{X}(q) \leq \# S \leq \gamma_{g-1}+e$.

Now we modify the proof just given to prove that $\tilde{\gamma}_{g} \leq \tilde{\gamma}_{g-1}+e$. Since $\tilde{\gamma}_{g} \leq \gamma_{g}$ and $\tilde{\gamma}_{1}=\gamma_{1}$, we may assume $g \geq 3$. By the definition of $\tilde{\gamma}_{g}$ we start with $q \notin \sigma_{g-1}(X)$. Note that $\sigma_{g-2}(X)$ has codimension $>e([1$, Observation 1.2]). By the generality of $\left\{p_{1}, \ldots, p_{e}\right\}$ we have $V \cap \sigma_{g-2}(X)=\emptyset$. Thus $q^{\prime} \in$ $\sigma_{g-1}(X) \backslash \sigma_{g-2}(X)$ and we may repeat the proof of the first inequality. QED

2 Veronese varieties

Let $\nu_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}, N=\binom{n+d}{n}-1$, be the order d Veronese embedding of \mathbb{P}^{n}. Set $X=X_{n, d}=\nu_{d}\left(\mathbb{P}^{n}\right)$.

Remark 6. Let $X \subset \mathbb{P}^{d}$ be a rational normal curve, i.e. take $X=X_{1, d}$. By [5, Proposition 3.1] $o r_{X}(q)=d+2-b_{X}(q)$ for all q.

Remark 7. Take X as in Remark 6. All $q \notin X$ have $o r_{X}(q)<\mu_{1}$.
The following result is (in a weak form) the opposite of concision for the open rank of symmetric tensors.

Proposition 1. Let $M \subsetneq \mathbb{P}^{n}, n \geq 2$, be a positive dimensional linear space. Take any $q \in\left\langle\nu_{d}(M)\right\rangle$. Then or $X_{n, d}(q) \geq \operatorname{or}_{\nu_{d}(M)}(q)$.

Proof. Using induction on the codimension of M we reduce to the case $\operatorname{dim} M=$ $n-1$. Set $a:=\operatorname{or}_{X_{n, d}}(q)$. Fix a closed subset $B^{\prime} \subsetneq M$. Take any $S \subset \mathbb{P}^{n} \backslash M$
such that $b:=\# S \leq a$ and $q \in\left\langle\nu_{d}(S)\right\rangle$. It is easy to check that for a general $o \in \mathbb{P}^{n}$ we have $o \notin S$ and $\ell(S) \cap B^{\prime}=\emptyset$, where $\ell: \mathbb{P}^{n} \backslash\{o\} \rightarrow M$ denotes the linear projection from o. Since $\# \ell(S) \leq a$ and $\ell(S) \cap B^{\prime}=\emptyset$, to prove that $\operatorname{or}_{X}(q) \leq a$ it is sufficient to prove that $q \in\left\langle\nu_{d}(\ell(S))\right\rangle$. Fix homogeneous coordinates x_{0}, \ldots, x_{n} such that $M=\left\{x_{0}=0\right\}$. Take homogeneous polynomials $f\left(x_{0}, \ldots, x_{n}\right)$ representing q and $f_{i}\left(x_{0}, \ldots, x_{n}\right), 1 \leq i \leq b$, representing the points of S. By assumptions there are constants c_{1}, \ldots, c_{b} such that $f=c_{1} f_{1}+$ $\cdots+c_{b} f_{b}$. For any $\left[f_{i}\right] \in S,\left[f_{i}\left(0, x_{1}, \ldots, x_{n}\right)\right]$ represents $\ell\left(\left[f_{i}\right]\right)$. Since $q \in$ $\left\langle\nu_{d}(M)\right\rangle, f$ does not depend on x_{0}. Thus $f=\sum_{i=1}^{b} c_{i} f_{i}\left(0, x_{1}, \ldots, x_{n}\right)$. QQED

Theorem 2. Take $X_{n, d}$. Fix $q \in \mathbb{P}^{N}$ such that $b_{X}(q)=2$.
(1) If $n=1$, then or ${ }_{X}(q)=d$.
(2) If $n \geq 2$, then or $_{X}(q)=2 d$.

Proof. Until step (e) we assume $r_{X}(q)=2$. By Remark 6 we may assume $n \geq 2$. Fix $A \subset \mathbb{P}^{n}$ such that $\nu(A) \in \mathcal{S}(X, q)$. Let $L \subset \mathbb{P}^{n}$ be the line spanned by A. Fix any closed $B \subsetneq X$ containing $\nu_{d}(L)$ and set $B^{\prime}:=\nu_{d}^{-1}(B)$. Take a general $u \in \mathbb{P}^{n} \backslash B^{\prime}$ and call M the plane spanned by L and u. Let $D \subset M$ be a smooth conic containing $\{u\} \cup A$. Since $u \notin B, D \cap B$ is a finite set. Since D is a projectively normal curve, $\operatorname{dim}\left\langle\nu_{d}(D)\right\rangle=2 d$. Since $o r_{\nu_{d}(D)}(q)=2 d$ (Remark $2)$, $\operatorname{or}_{X}(q) \leq 2 d$. Assume $\operatorname{or}_{X}(q) \leq 2 d-1$ and take $S \subset \mathbb{P}^{n} \backslash B^{\prime}$ such that $\# S \leq 2 d-1$ and $q \in\left\langle\nu_{d}(S)\right\rangle$. Note that $h^{1}\left(\mathcal{I}_{S \cup A}(d)\right)>0$. Since $B^{\prime} \supset L$, $S \cap \bar{A}=\emptyset$. Applying case (b) of Lemma 2 with as Cartier divisor a general hyperplane $H \supseteq L$, we obtain $h^{1}\left(\mathcal{I}_{S}(d-1)\right)>0$. Since $\# S \leq 2(d-1)+1$, $[6$, Lemma 34] gives the existence of a line $R \subset \mathbb{P}^{n}$ such that $\#(R \cap S) \geq d+1$. Since $S \cap L=\emptyset, R \neq L$.
(a) Assume $n=2$. Applying case (b) of Lemma 2 taking as the Cartier divisor the conic $L \cup R$ we get that either $h^{1}\left(\mathcal{I}_{S \backslash S \cap R}(d-2)\right)>0$ or $S \subset R$. Since $\#(S \backslash S \cap R) \leq d-2, h^{1}\left(\mathcal{I}_{S \backslash S \cap R}(d-2)\right)=0$. Thus $S \subset R$. Since $q \in\left\langle\nu_{d}(S)\right\rangle$, we get $q \in\left\langle\nu_{d}(R)\right\rangle$. Concision gives $A \subset R$ ([13, Ex. 3.2.2.2]). Thus $R=L$, a contradiction.
(b) Assume $n=3$ and $L \cap R \neq \emptyset$. Set $H:=\langle L \cup R\rangle$. Applying any of the two cases of Lemma 2 with respect to the Cartier divisor H we get that either $h^{1}\left(\mathcal{I}_{S \backslash S \cap H}(d-1)\right)>0$ or $S \subset H$. Since $\#(S \backslash S \cap H) \leq \#(S \backslash S \cap R) \leq d-2$, we get $S \subset H$. Since $q \in\left\langle\nu_{d}(H)\right\rangle$ and $S \subset H$, step (a) gives a contradiction.
(c) Assume $n=3$ and $L \cap R=\emptyset$. Since $\mathcal{I}_{L \cup R}(2)$ is globally generated and S is a finite set, there is $Q \in\left|\mathcal{I}_{L \cup R}(2)\right|$ such that $S \cap Q=S \cap R$. Applying part (b) of Lemma 2 to the Cartier divisor Q we get $S \subset R$.
(d) Assume $n \geq 4$. There is a hyperplane $H \subset \mathbb{P}^{n}$ containing $R \cup L$. As in step (b) we get a contradiction using induction on n.
(e) Assume $r_{X}(q)>2$. There is a degree 2 connected zero-dimensional scheme $v \subset \mathbb{P}^{n}$ such that $q \in\left\langle\nu_{d}(v)\right\rangle$. We repeat the proof of the previous steps using v instead of A. In all cases we take B^{\prime} containing the reduction of v and hence $v \cap S=\emptyset$ in all steps. Thus we may apply any of the two cases of Lemma 2.

QED
Remark 8. Let $X \subsetneq \mathbb{P}^{N}$ be a Veronese variety. Since X is homogeneous and the embedding is homogeneous, $\mu_{1}=\gamma_{1}$. Example 1 and Theorem 2 show that when $n=1$ there are points q with $\operatorname{or}_{X}(q)<\mu_{1}$.

Theorem 3. Take $X=X_{n, d}, n \geq 2, d \geq 4$ and $N=\binom{n+d}{n}$. Take $q \in \mathbb{P}^{N}$ such that $r_{X}(q)=3$ and there is no line $L \subset \mathbb{P}^{n}$ such that $q \in\left\langle\nu_{d}(L)\right\rangle$.
(1) If $n=2$, then $\operatorname{or}_{X}(q)=2 d-1$.
(2) If $n>2$, then $\operatorname{or}_{X}(q)=3 d-1$.

Proof. Fix $A \subset \mathbb{P}^{n}$ such that $\nu_{d}(A) \in \mathcal{S}(X, q)$. Since there is no line $L \subset \mathbb{P}^{n}$ such that $q \in\left\langle\nu_{d}(L)\right\rangle$, concision gives $\operatorname{dim}\langle A\rangle=2$ ([13, Ex. 3.2.2.2]). Take a closed set $B^{\prime} \subsetneq \mathbb{P}^{n}$. If $n=2$ we assume that B^{\prime} contains the 3 lines spanned by 2 of the points of A. If $n>2$ we assume $B^{\prime} \supseteq\langle A\rangle$.
(a) Assume $n=2$. Fix a general $u \in \mathbb{P}^{2} \backslash B^{\prime}$. Since $A \cup\{u\}$ is contained in a smooth conic, the case $n \geq 2$ of the proof of Theorem 2 gives $\operatorname{or}_{X}(q)=2 d-1$. Assume $\operatorname{or}_{X}(q) \leq 2 d-2$ and take $E \subset \mathbb{P}^{2} \backslash B^{\prime}$ such that $\# E \leq 2 d-2$ and $q \in\left\langle\nu_{d}(E)\right\rangle$. Since or $r_{X}(q) \geq r_{X}(q), \# E \geq 3$. Since $E \cap B^{\prime}=\emptyset$, we have $E \cap A=\emptyset$. Since $q \in\left\langle\nu_{d}(E)\right\rangle \cap\left\langle\nu_{d}(A)\right\rangle, h^{1}\left(\mathcal{I}_{E \cup A}(d)\right)>0$. Take a line $L \subset \mathbb{P}^{2}$ spanned by 2 of the points of A, say $A=(A \cap L) \cup\{o\}$. By the choice of B^{\prime}, $L \cap E=\emptyset$. Since $E \neq\{o\}$, part (b) of Lemma 2 gives $h^{1}\left(\mathcal{I}_{E \cup\{o\}}(d-1)\right)>0$. Since $\#(E \cup\{o\}) \leq 2 d-1=2(d-1)+1$, [6, Lemma 34] gives the existence of a line R such that $\#(R \cap(E \cup\{o\}) \geq d+1$. Note that $\#(R \cap A) \leq 1$. Part (b) of Lemma 2 gives $h^{1}\left(\mathcal{I}_{(E \cup A) \backslash(E \cup A) \cap R}(d-1)\right)>0$. The inequality $\#((E \cup A) \backslash(E \cup A) \cap R) \leq d$ contradicts [6, Lemma 34].
(b) Assume $n \geq 3$. Take a general $u \in \mathbb{P}^{n} \backslash B^{\prime}$ and set $M:=\langle A \cup\{u\}\rangle$. We have $\operatorname{dim} M=3$ and there is a degree 3 rational normal curve $G \subset M$ containing $A \cup\{u\}$. Thus $G \cap B^{\prime}$ is a finite set containing A. Since G is projectively normal, the restriction map $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right) \rightarrow H^{0}\left(\mathcal{O}_{G}(d)\right)$ is surjective. Thus $\operatorname{dim}\left\langle\nu_{d}(G)\right\rangle=$ $3 d$ and $\nu_{d}(G)$ is a rational normal curve of $\left\langle\nu_{d}(G)\right\rangle$. Remark 6 gives the existence of $S \subset G \backslash G \cap B^{\prime}$ such that $\# S=3 d-1$ and $q \in\left\langle\nu_{d}(S)\right\rangle$. Thus $\operatorname{or}_{X}(q) \leq 3 d-1$.

Assume $\operatorname{or}_{X}(q) \leq 3 d-2$ and take $E \subset \mathbb{P}^{n} \backslash B^{\prime}$ such that $\# E \leq 3 d-2$. Recall that $B^{\prime} \supseteq\langle A\rangle$ and hence $E \cap A=\emptyset$. Set $S:=E \cup A$. Since $q \in\left\langle\nu_{d}(E)\right\rangle \cap\left\langle\nu_{d}(A)\right\rangle$, $h^{1}\left(\mathcal{I}_{S}(d)\right)>0$. Since $\# S \leq 3 d+1$, by [2, Theorem 1] one of the following cases occurs:
(1) there is a line $L \subset \mathbb{P}^{n}$ such that $\#(L \cap S) \geq d+2$;
(2) there is a reduced conic D such that $\#(D \cap S) \geq 2 d+2$;
(3) there is a reduced plane cubic T and $S^{\prime} \subseteq S$ such that $\# S^{\prime}=3 d$ and $S^{\prime} \in\left|\mathcal{O}_{T}(d-1)\right| ;$
(4) $\# S=3 d+1$ and there is a reduced plane cubic $F \subset \mathbb{P}^{n}$ such that $S \subset F$.
(b1) Case (4) is excluded, because it would force $E \subset\langle A\rangle$, contradicting our choice of B^{\prime}.
(b2) For the same reason in case (3) we have $\# S=3 d+1$ and $S \backslash S^{\prime}$ is a point, o, of A. Consider the plane $\langle T\rangle$ and call $H \subset \mathbb{P}^{n}$ a general hyperplane containing $\langle T\rangle$ (hence $H=\langle T\rangle$ if $n=3$). Since $S \backslash S \cap H=\{o\}$ and $h^{1}\left(\mathcal{I}_{o}(d-\right.$ $1))=0$, case (a) of Lemma 2 gives a contradiction.
(b3) Assume the existence of a reduced conic D such that $\#(D \cap S) \geq$ $2 d+2$. Since $E \cap\langle A\rangle=\emptyset$, we have $\#(\langle D\rangle \cap A) \leq 2$. Let H be a general hyperplane containing $\langle D\rangle$. Thus $H \cap S=\langle D\rangle \cap S$ and $1 \leq \#(S \backslash S \cap H) \leq d-1$. Thus $h^{1}\left(\mathcal{I}_{S \backslash S \cap H}(d-1)\right)=0$, contradicting part (a) of Lemma 2.
(b4) Assume the existence of a line $L \subset \mathbb{P}^{n}$ such that $\#(L \cap S) \geq d+2$. Since $E \cap\langle A\rangle=\emptyset$, we have $\#(L \cap A) \leq 1$. Take a hyperplane $H \subset \mathbb{P}^{n}$ such that $H \supset L$ and $A \nsubseteq H$. Part (b) of Lemma 2 gives $h^{1}\left(\mathcal{I}_{S \backslash S \cap H}(d-1)\right)>0$. Since $\#(S \backslash S \cap H) \leq 2 d-1=2(d-1)+1$, there is a line $R \subset \mathbb{P}^{n}$ such that $\#(R \cap(S \backslash S \cap H)) \geq d+1([6$, Lemma 34$])$. Note that $R \neq L$ and hence $\#(L \cap R) \leq 1$.
(b4.1) Assume either $n>3$ or $R \cap L \neq \emptyset$. These assumptions are equivalent to the existence of a hyperplane $U \supset L \cup R$. Since $\#(S \backslash S \cap U) \leq 3 d+1-$ $d-2-d-1+1, h^{1}\left(\mathcal{I}_{S \backslash S \cap U}(d-1)\right)=0$ and hence $S \subset U$ (part (b) of Lemma 2). Since S is a finite set, taking a general U containing $W:=\langle R \cup L\rangle \supset S$. Since $\langle A\rangle \cap E=\emptyset, \operatorname{dim}\left\langle W=3\right.$, i.e. $R \cap L=\emptyset$. Since $\mathcal{I}_{L \cup R, W}(2)$ is globally generated and S is a finite set, there is a quadric surface $Q \subset W$ such that $S \cap Q=S \cap(L \cup R)$. Let $Q^{\prime} \subset \mathbb{P}^{n}$ be any quadric hypersurface such that $Q^{\prime} \cap W=Q$. Since $\#(S \backslash S \cap(L \cup R)) \leq 3 d+1-d-2-d-1$, we have $h^{1}\left(\mathcal{I}_{S \backslash S \cap Q^{\prime}}(d-2)\right)=0$ and hence $S \subset R \cup L$. Thus at least one of the lines R or L contains 2 points of A and hence they contain no point of E by the choice of B^{\prime}, a contradiction.
(b4.2) Assume $n=3$ and $R \cap L=\emptyset$. We use the quadric Q as in step (b4.1).

3 Segre varieties

Let $Y=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}, k \geq 1, n_{i}>0$ for all i, be a multiprojective space. Set $N:=\prod_{i=1}^{k}\left(n_{i}+1\right)$. Let $\nu: Y \rightarrow \mathbb{P}^{N}$ be the Segre embedding of Y. Set $X:=\nu(Y)$. Thus X is a Segre variety. For any $i \in\{1, \ldots, k\}$ let $\pi_{i}: Y \rightarrow \mathbb{P}^{n_{i}}$ denote the projection onto the i-th factor of Y and let $\epsilon_{i} \in \mathbb{N}^{k}$ be the multiindex $\left(a_{1}, \ldots, a_{k}\right)$ with $a_{i}=1$ and $a_{h}=0$ for all $h \neq i$.

Remark 9. If $k=1$ Example 2 gives or $_{X}(q)=2$ for all $q \in \mathbb{P}^{N}$.
By Remark 9 it would be sufficient to study the case $k>1$.
Remark 10. Take $q \in \mathbb{P}^{N}$, which is not concise, i.e. assume the existence of a multiprojective subspace $Y^{\prime} \subsetneq Y$ such that $q \in\left\langle\nu\left(Y^{\prime}\right)\right\rangle$ (we allow the case $q \in X$ in which we may take $\left.Y^{\prime}=\{q\}\right)$. Set $X^{\prime}:=\nu\left(Y^{\prime}\right)$. By concision $r_{X}(q)=$ $r_{X^{\prime}}(q)$ and $\mathcal{S}\left(X^{\prime}, q^{\prime}\right)=\mathcal{S}(X, q)$ ([13, Proposition 3.1.3.1]). Taking $B=Y^{\prime}$ we get $o r_{X}(q)>r_{X}(q)$.

The following result is (in a weak form) the opposite of concision for the open rank of symmetric tensors.

Proposition 2. Let $M \subsetneq Y$ be a positive dimensional multiprojective space. Take any $q \in\langle\nu(M)\rangle$. Then or $X_{X}(q) \geq o r_{\nu(M)}(q)$.

Proof. Set $a:=o r_{X}(q)$. Using induction of the integer $\operatorname{dim} Y-\operatorname{dim} M$ we see that it is sufficient to do the case $\operatorname{dim} M=\operatorname{dim} Y-1$. Fix a closed subset $B^{\prime} \subsetneq M$. Write $M=\prod_{i=1}^{m} \mathbb{P}^{m_{i}}$ with $0 \leq m_{i} \leq n_{i}$ for all i and $\sum_{i} m_{i}=\sum_{i} n_{i}-1$. Permuting the factors of Y we may assume $m_{1}=n_{1}-1$, thus $M=M_{1} \times W$, where $W:=\prod_{i=2}^{k} \mathbb{P}^{n_{i}}$ and M_{1} is a hyperplane of $\mathbb{P}^{n_{1}}$. Fix a closed set $B^{\prime \prime} \subsetneq Y$. Take any $S \subset Y \backslash B^{\prime \prime}$ with $\# S \leq a$ and $q \in\langle\nu(S)\rangle$. Fix a general $o \in \mathbb{P}^{n-1}$ and let $\ell: \mathbb{P}^{n_{1}} \backslash\{o\} \rightarrow M_{1}$ denote the linear projection from o. The submersion ℓ induces a submersion $\mu: Y \backslash\{o\} \times W \rightarrow M$. For a general o we have $\{o\} \times W \cap S=\emptyset$. Thus μ is defined at each point of S. Since $\langle\nu(S)\rangle \cap\langle\nu(M)\rangle \subseteq\langle\nu(\mu(S))\rangle$, we have $q \in\langle\nu(\mu(S))\rangle$. Since $\# \mu(S) \leq a$, to conclude the proof it is sufficient to find $B^{\prime \prime}$ such that $\mu(S) \cap B^{\prime}=\emptyset$. Take $B^{\prime \prime}:=\mu^{-1}\left(B^{\prime}\right)$.

Theorem 4. We have or $X_{X}(q)=k+1$ for all $q \in X$.
Proof. By Remark 9 we may assume $k \geq 2$. Fix $q \in X$, say $q=\nu(o)$ with $o=\left(o_{1}, \ldots, o_{k}\right)$. Let $B \subsetneq X$ be a closed subset. Set $B^{\prime}:=\nu^{-1}(B)$. Fix $u=$ $\left(u_{1}, \ldots, u_{k}\right) \in Y \backslash B^{\prime}$ such that $u_{i} \neq o_{i}$ for al i. Take $a, b \in \mathbb{P}^{1}$ such that $a \neq b$. Let $f_{i}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n_{i}}$ be any degree 1 embedding such that $f_{i}(a)=u_{i}$ and $f_{i}(b)=o_{i}$. Let $f=\left(f_{1}, \ldots, f_{k}\right): \mathbb{P}^{1} \rightarrow Y$ be the embedding such that $\pi_{i} \circ f=f_{i}$ for all i. Set $D:=\nu\left(f\left(\mathbb{P}^{1}\right)\right)$. Note that D is a degree k rational normal curve in its linear span. Since $f(a)=u$ and $f(b)=o,\{u, o\} \subset D$. Since $f(a) \notin B, D \cap B$ is a finite
set. Fix $S \subset D \backslash D \cap B$ such that $\# S=k+1$. Since D is a degree k rational normal curve of $\langle D\rangle,\langle S\rangle=\langle D\rangle$. Thus or $_{X}(q) \leq k+1$.

Assume $\operatorname{or}_{X}(q) \leq k$. Set $B^{\prime}:=\cup_{i=1}^{k} \pi_{i}^{-1}\left(o_{i}\right) \subset Y$ and $B:=\nu\left(B^{\prime}\right)$. Take $A \subset Y \backslash B^{\prime}$ such that $\# A \leq k, q \in\langle\nu(A)\rangle$ and $q \notin\left\langle\nu\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$. Write $A=\{a(1), \ldots, a(e)\}$ for some $e \leq k$ and $a(i) \neq a(j)$ for all $i \neq j$. Let H_{i}, $i=1, \ldots, e$, be a general element of $\left|\mathcal{O}_{Y}\left(\epsilon_{i}\right)\right|$ containing $a(i)$. By the definition of the set B^{\prime} we have $o_{i} \notin \pi_{i}(A)$ for $i=1, \ldots, k$. By the generality of each H_{i} we have $o \notin H_{i}$. Thus $o \notin A$ and $q \in\langle\nu(A)\rangle, h^{1}\left(\mathcal{I}_{A \cup\{o\}}(1, \ldots, 1)\right)>0$. If $e<k$ take as $H_{i}, e+1, \ldots, k$, any element of $\left|\mathcal{O}_{Y}\left(\epsilon_{i}\right)\right|$ not containing o. Set $D:=H_{1}+\cdots+H_{k}$. Note that $D \cap(\{o\} \cup A)=A$. Since $o \notin A$ and $h^{1}\left(\mathcal{I}_{o}\right)=0$, part (b) of Lemma 2 gives a contradiction.

Theorem 5. Take $q \in \mathbb{P}^{N}$ such that $r_{X}(q)=2$ and q depends on all k factors of Y. Then:
(i) $o r_{X}(q) \geq k$;
(ii) $\operatorname{or}_{X}(q)=k$ if and only if q is concise, i.e. if $n_{i}=1$ for all i.

Proof. Fix $A \subset Y$ such that $\nu(A) \in \mathcal{S}(X, q)$. By concision the assumption that q depends on all factors of X is equivalent to $\# \pi_{i}(A)=2$ for all $i \in\{1, \ldots, k\}$. Since $r_{X}(q)=2$ and q depends on all factors, q is concise if and only if $n_{i}=1$ for all i. We fix 3 distinct points of \mathbb{P}^{1} and call it 0,1 and ∞. Fix $A=\{a, b\}$ such that $\nu(A) \in \mathcal{S}(X, q)$. Fix a general $u \in Y \backslash B^{\prime}$. Since u is general $\pi_{i}(u) \notin \pi_{i}(A)$ for any i.
(a) First assume $n_{i}=1$ for all i. Fix a closed $B \subsetneq X$ and set $B^{\prime}:=\nu^{-1}\left(B^{\prime}\right)$. Let $f_{i}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be the only isomorphism such that $f_{i}(0)=a_{i}, f_{i}(1)=b_{i}$ and $f_{i}(\infty)=u_{i}$. Thus $f=\left(f_{1}, \ldots, f_{k}\right)$ induces an embedding $f: \mathbb{P}^{1} \rightarrow Y^{\prime}$ such that $f(0)=a, f(1)=b$ and $f(\infty)=u$. Set $D:=f\left(\mathbb{P}^{1}\right)$. Note that $\operatorname{dim}\langle\nu(D)\rangle=k$ and that $\nu(D)$ is a degree k rational normal curve of $\langle\nu(D)\rangle$. Since $u \notin B^{\prime}, D \cap S$ is finite. By Remark 6 there is $S \subset D$ such that $\# S \leq k$ and $q \in\langle\nu(S)\rangle$. Thus $o r_{X}(q) \leq k$. Assume $\operatorname{or}_{X}(q) \leq k-1$ and take $E \subset Y \backslash B^{\prime}$ such that $\# E \leq k-1$ and $q \in\left\langle\nu(E)\right.$. We assume $B^{\prime} \supset A$. With this assumption $h^{1}\left(\mathcal{I}_{E \cup A}(1, \ldots, 1)\right)>0$. Since $\#(E \cup A)=k+1$, mimicking the proof of Theorem 10 we get a contradiction.
(b) Now assume $n_{i} \geq 2$ for some i. Let $Y \subsetneq Y$ be the concise Segre of q. By concision ([13, Proposition 3.13.1]) every $S \subset Y$ such that $q \in\langle\nu(S)\rangle$ and $S \nsubseteq Y^{\prime}$ has cardinality $>k$. Taking as closed set B the set Y^{\prime} we get or $X_{X}(q)>k$.

References

[1] B. Ådlandsvik: Joins and higher secant varieties, Math. Scan. 61 (1987), 213-222.
[2] E. Ballico: Finite subsets of projective spaces with bad postulation in a fixed degree, Beitrage zur Algebra und Geometrie 54 (2013), no. 1, 81-103.
[3] E. Ballico, A. Bernardi: Stratification of the fourth secant variety of Veronese variety via the symmetric rank, Adv. Pure Appl. Math., 4 (2013), 215-250.
[4] E. Ballico, A. Bernardi, M. Christandl, F. Gesmundo: On the partially symmetric rank of tensor product of W-states and other symmetric tensors, Rend. Lincei Math. Appl., 30 (2019), 93-124.
[5] E. Ballico, A. De Paris: Generic power sum decompositions and bounds for the Waring rank, Discrete Comput. Geom., 57 (2017), n. 4, 896-914.
[6] A. Bernardi, A. Gimigliano, M. IdÀ: Computing symmetric rank for symmetric tensors, J. Symbolic Comput,. 46 (2011), n. 1, 34-53.
[7] A. Biafynicki-Birula, A. Schinzel: Representations of multivariate polynomials by sums of univariate polynomials in linear forms, Colloq. Math., 112 (2002), 2201-233.
[8] A. Biatynicki-Birula, A. Schinzel: Corrigendum to "Representatons of multivariate polynomials by sums of univariate polynomials in linear forms" (Colloq. Math. 112 (2008), 201-233), Colloq. Math., 125 (2011), n. 1, 139.
[9] J. Harris: Curves in projective space, Séminaire de Mathématiques Supérieures, vol. 85, Presses de l'Université de Montréal, Montreal, Que., 1982, With the collaboration of D. Eisenbud.
[10] A. Hefez, S. L. Kleiman: Notes on the duality of projective varieties, Geometry today (Rome, 1984), 143-183, Progr. Math., 60, Birkhäuser Boston, Boston, MA, 1985.
[11] J. Jelisiejew: An upper bound for the Waring rank of a form, Arch. Math., 102 (2014), n. 4, 329-336.
[12] S. L. Kleiman: Tangency and duality, Proceedings of the 1984 Vancouver conference in algebraic geometry, 163-225, CMS Conf. Proc., 6, Amer. Math. Soc., Providence, RI, 1986.
[13] J. M. Landsberg: Tensors: Geometry and Applications. Graduate Studies in Mathematics, Vol. 128, Amer. Math. Soc. Providence, 2012.
[14] J. M. Landsberg, Z. Teitler: On the ranks and border ranks of symmetric tensors. Found. Comput. Math. 10 (2010) n. 3, 339-366.

[^0]: ${ }^{i}$ This work is partially supported by MIUR and GNSAGA (INdAM)
 http://siba-ese.unisalento.it/ © 2021 Università del Salento

