Note di Matematica Note Mat. **41** (2021) no. 1, 19–29.

Open X-ranks with respect to Segre and Veronese varieties

Edoardo Ballicoⁱ

Department of Mathematics, University of Trento edoardo.ballico@unitn.it

Received: 2.11.2020; accepted: 27.2.2021.

Abstract. Let $X \subset \mathbb{P}^N$ be an integral and non-degenerate variety. Recall (A. Białynicki-Birula, A. Schinzel, J. Jelisiejew and others) that for any $q \in \mathbb{P}^N$ the open rank $or_X(q)$ is the minimal positive integer such that for each closed set $B \subsetneq X$ there is a set $S \subset X \setminus B$ with $\#S \leq or_X(q)$ and $q \in \langle S \rangle$, where $\langle \rangle$ denotes the linear span. For an arbitrary X we give an upper bound for $or_X(q)$ in terms of the upper bound for $or_X(q')$ when q' is a point in the maximal proper secant variety of X and a similar result using only points q' with submaximal border rank. We study $or_X(q)$ when X is a Segre variety (points with X-rank 1 and 2) and when X is a Veronese variety (points with X-rank ≤ 3 or with border rank 2).

 ${\bf Keywords:}$ open rank, open X-rank, Segre variety, Veronese variety, secant variety;,
border rank

MSC 2020 classification: primary 14N07, secondary 14N07, 15A69

Introduction

Let $X \subset \mathbb{P}^N$ be an integral and non-degenerate projective variety. We recall the following definition ([5, 7, 8, 11]). The papers [7, 8, 11] study Veronese varieties, i.e. homogeneous polynomials, but [7, 8] also consider the case of nonhomogeneous polynomials, which is harder.

Definition 1. For any $q \in \mathbb{P}^N$ the open rank or open X-rank $or_X(q)$ of q is the minimal integer with the following property: for any closed set $B \subsetneq X$ there exists $S \subset X \setminus B$ such that $\#S \leq or_X(q)$ and $q \in \langle S \rangle$, where $\langle \rangle$ denotes the linear span.

We recall that the X-rank $r_X(q)$ of q is the minimal integer such that there is $S \subset X$ with $\#S = r_X(q)$ and $q \in \langle S \rangle$ ([13]).

Since X is non-degenerate, for any closed set $B \subsetneq X, X \setminus B$ spans \mathbb{P}^N . Thus the integer $or_X(q)$ is a well-defined positive integer $\leq N + 1$. Obviously $or_X(q) \geq r_X(q)$. In general it is not easy to compute $or_X(q)$. For instance there is no $q \in \mathbb{P}^N$ such that $or_X(q) = 1$ (Remark 3).

ⁱThis work is partially supported by MIUR and GNSAGA (INdAM) http://siba-ese.unisalento.it/ © 2021 Università del Salento

We recall that for each integer t > 0 the t-secant variety $\sigma_t(X) \subsetneq \mathbb{P}^N$ is the closure in \mathbb{P}^N of the union of all linear spaces $\langle S \rangle$ for some $S \subset X$ with #S = t ([1, 13]). Each $\sigma_t(X)$ is irreducible, $\sigma_1(X) = X$ and either $\sigma_t(X) = \mathbb{P}^N$ or $\sigma_t(X) \subsetneq \sigma_{t+1}(X)$ ([1, Observation 1.2]). The border rank $b_X(q)$ of $q \in \mathbb{P}^N$ is the first positive integer t such that $q \in \sigma_t(X)$. Let g be the generic X-rank, i.e. the minimal positive integer such that $\sigma_g(X) = \mathbb{P}^N$. For each integer $k \in \{1, \ldots, g\}$ let γ_k denote the maximal integer $\sigma_X(q)$ for some $q \in \sigma_k(X)$. Hence γ_g is the maximal open X-rank of some $q \in \mathbb{P}^N$. Let μ_1 be the minimal integer $\sigma_X(q)$ for some $q \in \mathbb{P}^N$ (Examples 1 and 2). Obviously $\mu_1 = \gamma_1$ if $X \subset \mathbb{P}^N$ is a homogeneous embedding of a homogeneous variety. For $i = 2, \ldots, g$ let $\tilde{\gamma}_i$ be the maximum integer $\sigma_X(q)$ with $q \in \sigma_i(X) \setminus \sigma_{i-1}(X)$. Note that all $q \in \sigma_i(X) \setminus \sigma_{i-1}(X)$ have $r_X(q) = i$, but that $\sigma_{i-1}(X)$ may contain points with X-rank i. Set $\tilde{\gamma}_1 := \gamma_1$. Obviously $\gamma_i = \max_{1 \le j \le \tilde{\gamma}_j}$.

In section 1 we give a few remarks on the open X-rank and prove the following result.

Theorem 1. Set $e := N - \dim \sigma_{g-1}(X)$. Then $\gamma_g \leq \gamma_{g-1} + e$ and $\tilde{\gamma}_g \leq \tilde{\gamma}_{g-1} + e$.

We ask the following Question.

For the rational normal curve this sequence is strictly decreasing (Remark 6), but there are many examples of X and i such that $\tilde{\gamma}_i < \tilde{\gamma}_{i+1}$, e.g. the case $n \ge 2, d \ge 2$ and i = 1 for the order d Veronese embedding of \mathbb{P}^n (Theorem 2).

In section 2 X is a Veronese variety, i.e. each $q \in \mathbb{P}^N$ is an equivalence class (up to a non-zero multiplicative constant) [f] of a homogeneous polynomial fand $r_X(q)$ is the minimal number of addenda needed to write f as a sum of powers of linear forms. In section 3 X is a Segre variety, i.e., each $q \in \mathbb{P}^N$ is an equivalence class q = [T] (up to a non-zero multiplicative constant) of a tensor $T \neq 0$ and $r_X(q)$ is the tensor rank of T. For Veronese varieties we study the case in which $r_X(q) = 1$ (Example 1), $r_X(q) = 2$ (Theorem 2) and $r_X(q) = 3$ and the polynomial associated to q effectively depends on more than 2 variables (Theorem 3). We describe the open ranks of all $q \in \sigma_2(X)$ (Theorem 2). For the Segre variety we study the case $r_X(q) = 1$ (Theorem 4) and the case $r_X(q) = 2$ when the tensor depends on all factors of Y (Theorem 5).

We work over an algebraically closed field \mathbb{K} .

1 General remarks and proof of Theorem 1

Let $X \subset \mathbb{P}^N$ be an integral and non-degenerate projective variety. For any $q \in \mathbb{P}^N$ let $\mathcal{S}(X,q)$ denote the set of all $A \subset X$ such that $\#A = r_X(q)$ and $q \in \langle A \rangle$.

Remark 1. Fix $q \in \mathbb{P}^N$ with $\mathcal{S}(X,q)$ finite, say $\mathcal{S}(X,q) = \{S_1,\ldots,S_c\}$. Thus $B := S_1 \cup \cdots \cup S_c$ is a proper closed subset of X. Every set $A \subset X$ such that $\#A = r_X(q)$ and $q \in \langle A \rangle$ is contained in B. The definition of open X-rank gives $or_X(q) > r_X(q)$. Since all $q \in \sigma_1(X) = X$ have $\#\mathcal{S}(X,q) = 1$, it follows that $r_X(q) > 1$ for all $q \in X$. Thus $\gamma_1 \ge \mu_1 > 1$. The same proof shows that $or_X(q) > r_X(q)$ for all $q \in \mathbb{P}^N$ such that $\cup_{A \in \mathcal{S}(X,q)} A$ is not Zariski dense in X.

Remark 2. Take any $q \in \mathbb{P}^N$, any closed $B \subsetneq X$ and any $A \subset X$ such that $\#A = r_X(q)$ and $q \in \langle A \rangle$. By the definition of open X-rank for each $a \in A$ there is $S_a \subset X \setminus B$ such that $\#S_a := or_X(a)$ and $q \in \langle S_a \rangle$. Set $S := \bigcup_{a \in A} S_a$. Since $S \subset X \setminus B$ and $\#S \leq \gamma_1 r_X(q)$, we get $or_X(q) \leq \gamma_1 r_X(q)$ for all $q \in \mathbb{P}^N$.

Remark 3. Since $or_X(q) \ge r_X(q)$ and $r_X(q) = 1$ if and only if $q \in X$, Remark 1 gives $or_X(q) > 1$ for all $q \in \mathbb{P}^N$.

Remark 4. Let ρ be the maximal positive integer such that each $S \subset X$ with $\#S \leq \rho$ is linearly independent. For any $q \in \mathbb{P}^N$ with $r_X(q) \leq \lfloor \rho/2 \rfloor$, there is a unique set $A \subset X$ such that $\#A \leq \lfloor \rho/2 \rfloor$, $q \in \langle A \rangle$ and $q \notin \langle A' \rangle$ for any $A' \subseteq A$. Thus $or_X(q) > \lfloor \rho/2 \rfloor$ for all $q \in \mathbb{P}^N$. Since each set with cardinality $\leq \rho$ is linearly independent and $S(X, o) = \{o\}$ for all $o \in X$, $\mu_1 \geq \rho$.

Example 1. Let $\nu_d : \mathbb{P}^n \to \mathbb{P}^N$, $N = \binom{n+d}{n} - 1$, be the order d Veronese embedding of \mathbb{P}^n . Set $X := \nu_d(\mathbb{P}^n)$. The last part of Remark 3 gives $\mu_1 \ge d+1$. Fix a closed set $B \subsetneq X$ and set $B' := \nu_d^{-1}(B)$. Let $L \subseteq \mathbb{P}^n$ be a line containing o and containing at least one point of $\mathbb{P}^n \setminus B'$. Thus $L \cap B'$ is finite. Take any $A \subset L \setminus L \cap B'$ such that #A = d+1. Since $\nu_d(L)$ is a degree d rational normal curve in its linear span, we have $q \in \langle \nu_d(L) \rangle = \langle \nu_d(A) \rangle$. Hence $or_X(q) = d+1$.

Example 2. Take $X = \mathbb{P}^N$. This is the case d = 1 of Example 1. Thus $or_X(q) = 2$ for all $q \in \mathbb{P}^N$. In this case all $q \in \mathbb{P}^N$ have $or_X(q) > r_X(q)$.

Example 3. Let $X \subset \mathbb{P}^N$ be a hypersurface of degree d > 1. A point $o \in \mathbb{P}^N$ is said to be a *strange point* of X if for each smooth point a of X the tangent space T_aX of X contains o ([10, 12]). Fix $q \in \mathbb{P}^N \setminus X$. Remark 3 gives $or_X(q) > 1$. Note that $or_X(q) = 2$ if and only if a general line $L \subset \mathbb{P}^N$ containing q contains at least 2 points of X, i.e. if and only if the separable degree of the morphism $X \to \mathbb{P}^{n-1}$ induced by the linear projection from q is at least 2. Take an arbitrary $q' \in \mathbb{P}^N$. If X is a cone with vertex q' (and hence $q' \in X$), then a general line through q' contained in X shows that $or_X(q') \leq 2$. Remark 3 gives $or_X(q') = 2$. Now assume that X is not a cone with vertex containing q'. Fix a closed set $B \subsetneq X$. Fix a general $(p_1, p_2) \in X^2$. Since X is non-degenerate, $L := \langle \{p_1, p_2\}\rangle$ is a line not contained in X and $q' \notin L$. Thus $E := \langle \{q', p_1, p_2\}\rangle$ is a plane. The scheme $X \cap E$ is a plane curve, possible with multiple components. Let $Y \subset E$ be the reduction of $X \cap E$. Since $L \nsubseteq X$, Y is not a line. Thus $\langle Y \rangle = E$ (even if Y is reducible). Since p_1, p_2 are general,

 $p_i \notin B, i = 1, 2$. Thus Y has either at least two irreducible components or an irreducible component not contained in B. Thus there is $p_3 \in Y \setminus Y \cap B$ such that $E = \langle \{p_1, p_2, p_3\} \rangle$. Thus $or_X(q') \leq 3$. Now assume $q' \in X$ with X not a cone with vertex containing q'. Let a be the multiplicity of X at q'. We see that $or_X(q') = 2$ if and only of if the general line containing q' meets X in at least 2 other points, i.e. (since X is not a cone with vertex containing q') if and only the morphism $f: X \setminus \{q'\} \to \mathbb{P}^{N-1}$ induced by the linear projection from q' has separable degree at least 2. This is never the case if a = d - 1 and in particular this is never the case if d = 2. Now assume $d \geq a + 2$. Thus under the assumption $d \geq a + 2$ $or_X(q') = 2$ if either $char(\mathbb{K}) = 0$ or $char(\mathbb{K}) > d - a$. In summary, $or_X(q) \in \{2,3\}$ for all $q \in \mathbb{P}^N$ and we gave a geometric description of the points q with $or_X(q) = 3$.

Remark 5. Set $n := \dim X$ and assume $t := (N+1)/(n+1) \in \mathbb{N}$ and $\sigma_t(X) = \mathbb{P}^N$. For a general $q \in \mathbb{P}^N$ we have $r_X(q) = t$ and $\mathcal{S}(X,q)$ is finite. Thus $or_X(q) > t$ for a general $q \in \mathbb{P}^N$. Fix $q \in \mathbb{P}^N$ such that $r_X(q) = t$ and $\mathcal{S}(X,q)$ infinite. If there is at least one $o \in X$ such that no $A \in \mathcal{S}(X,q)$ contains o, then $or_X(q) > t$. Now assume that N is odd and that X is a curve. In this case $\sigma_t(X) = \mathbb{P}^N$ ([1, Remark 1.6]).

The following lemma is a variation of the proof of [14, Proposition 5.1].

Lemma 1. Assume char(\mathbb{K}) = 0. Set $n := \dim X$. Then $or_X(q) \le N+1-n$ for all $q \in \mathbb{P}^N \setminus X$.

Proof. Fix $q \in \mathbb{P}^N \setminus X$ and a closed set $B \subsetneq X$. Let $V \subset \mathbb{P}^N$ be a general linear subspace of codimension n containing q. By the uniform position lemma, the set $V \cap X$ is formed by deg(X) points, any N + 1 - n of them spanning V ([9, Lemma 3.4]). Since $V \cap B = \emptyset$ for a general V, $or_X(q) \le N + 1 - n$. QED

Let X be an projective variety, D an effective Cartier divisor of X and $Z \subset X$ a zero-dimensional scheme. The residual scheme $\operatorname{Res}_D(Z)$ of Z with respect to D is the closed subscheme of X with $\mathcal{I}_Z : \mathcal{I}_D$ as its ideal sheaf. We have $\operatorname{Res}_D(Z) \subseteq Z$ and $\deg(Z) = \deg(Z \cap D) + \deg(\operatorname{Res}_D(Z))$. If Z_1, \ldots, Z_a are the connected components of Z, then $\operatorname{Res}_D(Z) = \operatorname{Res}_D(Z_1) \cup \cdots \cup \operatorname{Res}_D(Z_a)$. If Z is reduced, them $\operatorname{Res}_D(Z) = Z \setminus D$. For any line bundle Ll on X the following sequence, often called the residual sequence of D,

$$0 \to \mathcal{I}_{\operatorname{Res}_D(Z)} \otimes \mathcal{L}(-D) \to \mathcal{I}_Z \otimes \mathcal{L} \to \mathcal{I}_{Z \cap D, D} \otimes \mathcal{L}_{|D} \to 0$$

is exact.

The following lemma is just [3, Lemma 5.1] (see [4, Lemmas 2.4, 2.5] for similar statements).

Lemma 2. Let $X \subset \mathbb{P}^N$ be a linearly normal projective variety and D an effective Cartier divisor of X. Assume $h^1(\mathcal{O}_X(1)) = h^1(\mathcal{O}_X(1)(-D)) = 0$. Fix $q \in \mathbb{P}^N$ zero-dimensional schemes $A, B \subset X$ such that $A \neq B, q \in \langle A \rangle \cap \langle B \rangle$, $q \notin \langle A' \rangle$ for any $A' \subseteq A$ and $q \notin \langle B' \rangle$ for any $B' \subset B$. Set $Z := B \cup A$. Assume $h^1(X, \mathcal{I}_{\text{Res}_D(Z)} \otimes \mathcal{O}_X(1)(-D)) = 0$ and that one of the following conditions is satisfied:

- (a) $\operatorname{Res}_D(A) \cap \operatorname{Res}_D(B) = \emptyset$.
- (b) At least one among A and B is reduced. Then $\operatorname{Res}_D(A) = \operatorname{Res}_D(B)$.

Proof of Theorem 1: We first prove the inequality $\gamma_g \leq \gamma_{g-1} + e$. Fix $q \in \mathbb{P}^N$. If $q \in \sigma_{g-1}(X)$, then $or_X(q) \leq \gamma_{g-1}$ by the definition of γ_{g-1} . Thus we may assume $q \in \mathbb{P}^N \setminus \sigma_{g-1}(X)$. Fix a closed set $B \subsetneq X$ and take a general $(p_1, \ldots, p_e) \in (X \setminus B)^e$. Set $V := \langle \{q, p_1, \ldots, p_e\} \rangle$. Since X is non-degenerate and $e \leq N$, dim V = e. Hence $V \cap \sigma_{g-1}(X) \neq \emptyset$. Fix $q' \in \sigma_{g-1}(X) \cap V$. Since $q \notin \sigma_{g-1}(X)$ and $\{p_1, \ldots, p_e\}$ is general, $\langle \{q\} \cup E \rangle \cap \sigma_{g-1}(X) = \emptyset$ for all $E \subsetneq \{p_1, \ldots, p_e\}$ and $\langle \{p_1, \ldots, p_e\} \rangle \cap \sigma_{g-1}(X) = \emptyset$. Thus $q \in \langle \{q', p_1, \ldots, p_e\} \rangle$. By the definition of open X-rank and the inequality $or_X(q) \leq \gamma_{g-1}$ there is $A \subset X \setminus B$ such that $\#A \leq \gamma_{g-1}$ and $q' \in \langle A \rangle$. Set $S := A \cup \{p_1, \ldots, p_e\}$. Since $S \subset X \setminus B$ and $q \in \langle \{q', p_1, \ldots, p_e\} \rangle \subseteq \langle S \rangle$, $or_X(q) \leq \#S \leq \gamma_{g-1} + e$.

Now we modify the proof just given to prove that $\tilde{\gamma}_g \leq \tilde{\gamma}_{g-1} + e$. Since $\tilde{\gamma}_g \leq \gamma_g$ and $\tilde{\gamma}_1 = \gamma_1$, we may assume $g \geq 3$. By the definition of $\tilde{\gamma}_g$ we start with $q \notin \sigma_{g-1}(X)$. Note that $\sigma_{g-2}(X)$ has codimension > e ([1, Observation 1.2]). By the generality of $\{p_1, \ldots, p_e\}$ we have $V \cap \sigma_{g-2}(X) = \emptyset$. Thus $q' \in \sigma_{g-1}(X) \setminus \sigma_{g-2}(X)$ and we may repeat the proof of the first inequality. QED

2 Veronese varieties

Let $\nu_d : \mathbb{P}^n \to \mathbb{P}^N$, $N = \binom{n+d}{n} - 1$, be the order *d* Veronese embedding of \mathbb{P}^n . Set $X = X_{n,d} = \nu_d(\mathbb{P}^n)$.

Remark 6. Let $X \subset \mathbb{P}^d$ be a rational normal curve, i.e. take $X = X_{1,d}$. By [5, Proposition 3.1] $or_X(q) = d + 2 - b_X(q)$ for all q.

Remark 7. Take X as in Remark 6. All $q \notin X$ have $or_X(q) < \mu_1$.

The following result is (in a weak form) the opposite of concision for the open rank of symmetric tensors.

Proposition 1. Let $M \subseteq \mathbb{P}^n$, $n \geq 2$, be a positive dimensional linear space. Take any $q \in \langle \nu_d(M) \rangle$. Then $or_{X_{n,d}}(q) \geq or_{\nu_d(M)}(q)$.

Proof. Using induction on the codimension of M we reduce to the case dim M = n-1. Set $a := or_{X_{n,d}}(q)$. Fix a closed subset $B' \subsetneq M$. Take any $S \subset \mathbb{P}^n \setminus M$

such that $b := \#S \leq a$ and $q \in \langle \nu_d(S) \rangle$. It is easy to check that for a general $o \in \mathbb{P}^n$ we have $o \notin S$ and $\ell(S) \cap B' = \emptyset$, where $\ell : \mathbb{P}^n \setminus \{o\} \to M$ denotes the linear projection from o. Since $\#\ell(S) \leq a$ and $\ell(S) \cap B' = \emptyset$, to prove that $or_X(q) \leq a$ it is sufficient to prove that $q \in \langle \nu_d(\ell(S)) \rangle$. Fix homogeneous coordinates x_0, \ldots, x_n such that $M = \{x_0 = 0\}$. Take homogeneous polynomials $f(x_0, \ldots, x_n)$ representing q and $f_i(x_0, \ldots, x_n)$, $1 \leq i \leq b$, representing the points of S. By assumptions there are constants c_1, \ldots, c_b such that $f = c_1f_1 + \cdots + c_bf_b$. For any $[f_i] \in S$, $[f_i(0, x_1, \ldots, x_n)]$ represents $\ell([f_i])$. Since $q \in \langle \nu_d(M) \rangle$, f does not depend on x_0 . Thus $f = \sum_{i=1}^b c_i f_i(0, x_1, \ldots, x_n)$.

Theorem 2. Take $X_{n,d}$. Fix $q \in \mathbb{P}^N$ such that $b_X(q) = 2$.

- (1) If n = 1, then $or_X(q) = d$.
- (2) If $n \ge 2$, then $or_X(q) = 2d$.

Proof. Until step (e) we assume $r_X(q) = 2$. By Remark 6 we may assume $n \ge 2$. Fix $A \subset \mathbb{P}^n$ such that $\nu(A) \in \mathcal{S}(X,q)$. Let $L \subset \mathbb{P}^n$ be the line spanned by A. Fix any closed $B \subsetneq X$ containing $\nu_d(L)$ and set $B' := \nu_d^{-1}(B)$. Take a general $u \in \mathbb{P}^n \setminus B'$ and call M the plane spanned by L and u. Let $D \subset M$ be a smooth conic containing $\{u\} \cup A$. Since $u \notin B$, $D \cap B$ is a finite set. Since D is a projectively normal curve, $\dim \langle \nu_d(D) \rangle = 2d$. Since $or_{\nu_d(D)}(q) = 2d$ (Remark 2), $or_X(q) \le 2d$. Assume $or_X(q) \le 2d - 1$ and take $S \subset \mathbb{P}^n \setminus B'$ such that $\#S \le 2d - 1$ and $q \in \langle \nu_d(S) \rangle$. Note that $h^1(\mathcal{I}_{S \cup A}(d)) > 0$. Since $B' \supset L$, $S \cap A = \emptyset$. Applying case (b) of Lemma 2 with as Cartier divisor a general hyperplane $H \supseteq L$, we obtain $h^1(\mathcal{I}_S(d-1)) > 0$. Since $\#S \le 2(d-1) + 1$, [6, Lemma 34] gives the existence of a line $R \subset \mathbb{P}^n$ such that $\#(R \cap S) \ge d + 1$.

(a) Assume n = 2. Applying case (b) of Lemma 2 taking as the Cartier divisor the conic $L \cup R$ we get that either $h^1(\mathcal{I}_{S \setminus S \cap R}(d-2)) > 0$ or $S \subset R$. Since $\#(S \setminus S \cap R) \leq d-2, h^1(\mathcal{I}_{S \setminus S \cap R}(d-2)) = 0$. Thus $S \subset R$. Since $q \in \langle \nu_d(S) \rangle$, we get $q \in \langle \nu_d(R) \rangle$. Concision gives $A \subset R$ ([13, Ex. 3.2.2.2]). Thus R = L, a contradiction.

(b) Assume n = 3 and $L \cap R \neq \emptyset$. Set $H := \langle L \cup R \rangle$. Applying any of the two cases of Lemma 2 with respect to the Cartier divisor H we get that either $h^1(\mathcal{I}_{S \setminus S \cap H}(d-1)) > 0$ or $S \subset H$. Since $\#(S \setminus S \cap H) \leq \#(S \setminus S \cap R) \leq d-2$, we get $S \subset H$. Since $q \in \langle \nu_d(H) \rangle$ and $S \subset H$, step (a) gives a contradiction.

(c) Assume n = 3 and $L \cap R = \emptyset$. Since $\mathcal{I}_{L \cup R}(2)$ is globally generated and S is a finite set, there is $Q \in |\mathcal{I}_{L \cup R}(2)|$ such that $S \cap Q = S \cap R$. Applying part (b) of Lemma 2 to the Cartier divisor Q we get $S \subset R$.

(d) Assume $n \ge 4$. There is a hyperplane $H \subset \mathbb{P}^n$ containing $R \cup L$. As in step (b) we get a contradiction using induction on n.

(e) Assume $r_X(q) > 2$. There is a degree 2 connected zero-dimensional scheme $v \subset \mathbb{P}^n$ such that $q \in \langle \nu_d(v) \rangle$. We repeat the proof of the previous steps using v instead of A. In all cases we take B' containing the reduction of v and hence $v \cap S = \emptyset$ in all steps. Thus we may apply any of the two cases of Lemma 2.

Remark 8. Let $X \subseteq \mathbb{P}^N$ be a Veronese variety. Since X is homogeneous and the embedding is homogeneous, $\mu_1 = \gamma_1$. Example 1 and Theorem 2 show that when n = 1 there are points q with $or_X(q) < \mu_1$.

Theorem 3. Take $X = X_{n,d}$, $n \ge 2$, $d \ge 4$ and $N = \binom{n+d}{n}$. Take $q \in \mathbb{P}^N$ such that $r_X(q) = 3$ and there is no line $L \subset \mathbb{P}^n$ such that $q \in \langle \nu_d(L) \rangle$.

- (1) If n = 2, then $or_X(q) = 2d 1$.
- (2) If n > 2, then $or_X(q) = 3d 1$.

Proof. Fix $A \subset \mathbb{P}^n$ such that $\nu_d(A) \in \mathcal{S}(X,q)$. Since there is no line $L \subset \mathbb{P}^n$ such that $q \in \langle \nu_d(L) \rangle$, concision gives $\dim \langle A \rangle = 2$ ([13, Ex. 3.2.2.2]). Take a closed set $B' \subsetneq \mathbb{P}^n$. If n = 2 we assume that B' contains the 3 lines spanned by 2 of the points of A. If n > 2 we assume $B' \supseteq \langle A \rangle$.

(a) Assume n = 2. Fix a general $u \in \mathbb{P}^2 \setminus B'$. Since $A \cup \{u\}$ is contained in a smooth conic, the case $n \geq 2$ of the proof of Theorem 2 gives $or_X(q) = 2d - 1$. Assume $or_X(q) \leq 2d - 2$ and take $E \subset \mathbb{P}^2 \setminus B'$ such that $\#E \leq 2d - 2$ and $q \in \langle \nu_d(E) \rangle$. Since $or_X(q) \geq r_X(q)$, $\#E \geq 3$. Since $E \cap B' = \emptyset$, we have $E \cap A = \emptyset$. Since $q \in \langle \nu_d(E) \rangle \cap \langle \nu_d(A) \rangle$, $h^1(\mathcal{I}_{E \cup A}(d)) > 0$. Take a line $L \subset \mathbb{P}^2$ spanned by 2 of the points of A, say $A = (A \cap L) \cup \{o\}$. By the choice of B', $L \cap E = \emptyset$. Since $E \neq \{o\}$, part (b) of Lemma 2 gives $h^1(\mathcal{I}_{E \cup \{o\}}(d-1)) > 0$. Since $\#(E \cup \{o\}) \leq 2d - 1 = 2(d - 1) + 1$, [6, Lemma 34] gives the existence of a line R such that $\#(R \cap (E \cup \{o\}) \geq d + 1$. Note that $\#(R \cap A) \leq 1$. Part (b) of Lemma 2 gives $h^1(\mathcal{I}_{(E \cup A) \setminus (E \cup A) \cap R}(d-1)) > 0$. The inequality $\#((E \cup A) \setminus (E \cup A) \cap R) \leq d$ contradicts [6, Lemma 34].

(b) Assume $n \geq 3$. Take a general $u \in \mathbb{P}^n \setminus B'$ and set $M := \langle A \cup \{u\} \rangle$. We have dim M = 3 and there is a degree 3 rational normal curve $G \subset M$ containing $A \cup \{u\}$. Thus $G \cap B'$ is a finite set containing A. Since G is projectively normal, the restriction map $H^0(\mathcal{O}_{\mathbb{P}^n}(d)) \to H^0(\mathcal{O}_G(d))$ is surjective. Thus dim $\langle \nu_d(G) \rangle = 3d$ and $\nu_d(G)$ is a rational normal curve of $\langle \nu_d(G) \rangle$. Remark 6 gives the existence of $S \subset G \setminus G \cap B'$ such that #S = 3d - 1 and $q \in \langle \nu_d(S) \rangle$. Thus $or_X(q) \leq 3d - 1$.

Assume $or_X(q) \leq 3d-2$ and take $E \subset \mathbb{P}^n \setminus B'$ such that $\#E \leq 3d-2$. Recall that $B' \supseteq \langle A \rangle$ and hence $E \cap A = \emptyset$. Set $S := E \cup A$. Since $q \in \langle \nu_d(E) \rangle \cap \langle \nu_d(A) \rangle$, $h^1(\mathcal{I}_S(d)) > 0$. Since $\#S \leq 3d+1$, by [2, Theorem 1] one of the following cases occurs:

E. Ballico

- (1) there is a line $L \subset \mathbb{P}^n$ such that $\#(L \cap S) \ge d+2$;
- (2) there is a reduced conic D such that $\#(D \cap S) \ge 2d + 2;$
- (3) there is a reduced plane cubic T and $S' \subseteq S$ such that #S' = 3d and $S' \in |\mathcal{O}_T(d-1)|;$
- (4) #S = 3d + 1 and there is a reduced plane cubic $F \subset \mathbb{P}^n$ such that $S \subset F$.

(b1) Case (4) is excluded, because it would force $E \subset \langle A \rangle$, contradicting our choice of B'.

(b2) For the same reason in case (3) we have #S = 3d + 1 and $S \setminus S'$ is a point, o, of A. Consider the plane $\langle T \rangle$ and call $H \subset \mathbb{P}^n$ a general hyperplane containing $\langle T \rangle$ (hence $H = \langle T \rangle$ if n = 3). Since $S \setminus S \cap H = \{o\}$ and $h^1(\mathcal{I}_o(d - 1)) = 0$, case (a) of Lemma 2 gives a contradiction.

(b3) Assume the existence of a reduced conic D such that $\#(D \cap S) \geq 2d+2$. Since $E \cap \langle A \rangle = \emptyset$, we have $\#(\langle D \rangle \cap A) \leq 2$. Let H be a general hyperplane containing $\langle D \rangle$. Thus $H \cap S = \langle D \rangle \cap S$ and $1 \leq \#(S \setminus S \cap H) \leq d-1$. Thus $h^1(\mathcal{I}_{S \setminus S \cap H}(d-1)) = 0$, contradicting part (a) of Lemma 2.

(b4) Assume the existence of a line $L \subset \mathbb{P}^n$ such that $\#(L \cap S) \geq d + 2$. Since $E \cap \langle A \rangle = \emptyset$, we have $\#(L \cap A) \leq 1$. Take a hyperplane $H \subset \mathbb{P}^n$ such that $H \supset L$ and $A \notin H$. Part (b) of Lemma 2 gives $h^1(\mathcal{I}_{S \setminus S \cap H}(d-1)) > 0$. Since $\#(S \setminus S \cap H) \leq 2d - 1 = 2(d-1) + 1$, there is a line $R \subset \mathbb{P}^n$ such that $\#(R \cap (S \setminus S \cap H)) \geq d + 1$ ([6, Lemma 34]). Note that $R \neq L$ and hence $\#(L \cap R) \leq 1$.

(b4.1) Assume either n > 3 or $R \cap L \neq \emptyset$. These assumptions are equivalent to the existence of a hyperplane $U \supset L \cup R$. Since $\#(S \setminus S \cap U) \leq 3d + 1 - d - 2 - d - 1 + 1$, $h^1(\mathcal{I}_{S \setminus S \cap U}(d - 1)) = 0$ and hence $S \subset U$ (part (b) of Lemma 2). Since S is a finite set, taking a general U containing $W := \langle R \cup L \rangle \supset S$. Since $\langle A \rangle \cap E = \emptyset$, dim $\langle W = 3$, i.e. $R \cap L = \emptyset$. Since $\mathcal{I}_{L \cup R, W}(2)$ is globally generated and S is a finite set, there is a quadric surface $Q \subset W$ such that $S \cap Q = S \cap (L \cup R)$. Let $Q' \subset \mathbb{P}^n$ be any quadric hypersurface such that $Q' \cap W = Q$. Since $\#(S \setminus S \cap (L \cup R)) \leq 3d + 1 - d - 2 - d - 1$, we have $h^1(\mathcal{I}_{S \setminus S \cap Q'}(d - 2)) = 0$ and hence $S \subset R \cup L$. Thus at least one of the lines R or L contains 2 points of A and hence they contain no point of E by the choice of B', a contradiction.

(b4.2) Assume n = 3 and $R \cap L = \emptyset$. We use the quadric Q as in step (b4.1).

3 Segre varieties

Let $Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k}$, $k \ge 1$, $n_i > 0$ for all i, be a multiprojective space. Set $N := \prod_{i=1}^k (n_i + 1)$. Let $\nu : Y \to \mathbb{P}^N$ be the Segre embedding of Y. Set $X := \nu(Y)$. Thus X is a Segre variety. For any $i \in \{1, \ldots, k\}$ let $\pi_i : Y \to \mathbb{P}^{n_i}$ denote the projection onto the *i*-th factor of Y and let $\epsilon_i \in \mathbb{N}^k$ be the multiindex (a_1, \ldots, a_k) with $a_i = 1$ and $a_h = 0$ for all $h \neq i$.

Remark 9. If k = 1 Example 2 gives $or_X(q) = 2$ for all $q \in \mathbb{P}^N$.

By Remark 9 it would be sufficient to study the case k > 1.

Remark 10. Take $q \in \mathbb{P}^N$, which is not concise, i.e. assume the existence of a multiprojective subspace $Y' \subsetneq Y$ such that $q \in \langle \nu(Y') \rangle$ (we allow the case $q \in X$ in which we may take $Y' = \{q\}$). Set $X' := \nu(Y')$. By concision $r_X(q) =$ $r_{X'}(q)$ and $\mathcal{S}(X',q') = \mathcal{S}(X,q)$ ([13, Proposition 3.1.3.1]). Taking B = Y' we get $or_X(q) > r_X(q)$.

The following result is (in a weak form) the opposite of concision for the open rank of symmetric tensors.

Proposition 2. Let $M \subsetneq Y$ be a positive dimensional multiprojective space. Take any $q \in \langle \nu(M) \rangle$. Then $or_X(q) \ge or_{\nu(M)}(q)$.

Proof. Set $a := or_X(q)$. Using induction of the integer dim Y-dim M we see that it is sufficient to do the case dim $M = \dim Y - 1$. Fix a closed subset $B' \subsetneq M$. Write $M = \prod_{i=1}^{m} \mathbb{P}^{m_i}$ with $0 \le m_i \le n_i$ for all i and $\sum_i m_i = \sum_i n_i - 1$. Permuting the factors of Y we may assume $m_1 = n_1 - 1$, thus $M = M_1 \times W$, where $W := \prod_{i=2}^{k} \mathbb{P}^{n_i}$ and M_1 is a hyperplane of \mathbb{P}^{n_1} . Fix a closed set $B'' \subsetneq Y$. Take any $S \subset Y \setminus B''$ with $\#S \le a$ and $q \in \langle \nu(S) \rangle$. Fix a general $o \in \mathbb{P}^{n-1}$ and let $\ell : \mathbb{P}^{n_1} \setminus \{o\} \to M_1$ denote the linear projection from o. The submersion ℓ induces a submersion $\mu : Y \setminus \{o\} \times W \to M$. For a general o we have $\{o\} \times W \cap S = \emptyset$. Thus μ is defined at each point of S. Since $\langle \nu(S) \rangle \cap \langle \nu(M) \rangle \subseteq \langle \nu(\mu(S)) \rangle$, we have $q \in \langle \nu(\mu(S)) \rangle$. Since $\#\mu(S) \le a$, to conclude the proof it is sufficient to find B'' such that $\mu(S) \cap B' = \emptyset$. Take $B'' := \mu^{-1}(B')$.

Theorem 4. We have $or_X(q) = k + 1$ for all $q \in X$.

Proof. By Remark 9 we may assume $k \ge 2$. Fix $q \in X$, say $q = \nu(o)$ with $o = (o_1, \ldots, o_k)$. Let $B \subsetneq X$ be a closed subset. Set $B' := \nu^{-1}(B)$. Fix $u = (u_1, \ldots, u_k) \in Y \setminus B'$ such that $u_i \ne o_i$ for al *i*. Take $a, b \in \mathbb{P}^1$ such that $a \ne b$. Let $f_i : \mathbb{P}^1 \to \mathbb{P}^{n_i}$ be any degree 1 embedding such that $f_i(a) = u_i$ and $f_i(b) = o_i$. Let $f = (f_1, \ldots, f_k) : \mathbb{P}^1 \to Y$ be the embedding such that $\pi_i \circ f = f_i$ for all *i*. Set $D := \nu(f(\mathbb{P}^1))$. Note that D is a degree k rational normal curve in its linear span. Since f(a) = u and f(b) = o, $\{u, o\} \subset D$. Since $f(a) \notin B$, $D \cap B$ is a finite

set. Fix $S \subset D \setminus D \cap B$ such that #S = k + 1. Since D is a degree k rational normal curve of $\langle D \rangle$, $\langle S \rangle = \langle D \rangle$. Thus $or_X(q) \leq k + 1$.

Assume $or_X(q) \leq k$. Set $B' := \bigcup_{i=1}^k \pi_i^{-1}(o_i) \subset Y$ and $B := \nu(B')$. Take $A \subset Y \setminus B'$ such that $\#A \leq k, q \in \langle \nu(A) \rangle$ and $q \notin \langle \nu(A') \rangle$ for any $A' \subsetneq A$. Write $A = \{a(1), \ldots, a(e)\}$ for some $e \leq k$ and $a(i) \neq a(j)$ for all $i \neq j$. Let H_i , $i = 1, \ldots, e$, be a general element of $|\mathcal{O}_Y(\epsilon_i)|$ containing a(i). By the definition of the set B' we have $o_i \notin \pi_i(A)$ for $i = 1, \ldots, k$. By the generality of each H_i we have $o \notin H_i$. Thus $o \notin A$ and $q \in \langle \nu(A) \rangle$, $h^1(\mathcal{I}_{A \cup \{o\}}(1, \ldots, 1)) > 0$. If e < k take as $H_i, e + 1, \ldots, k$, any element of $|\mathcal{O}_Y(\epsilon_i)|$ not containing o. Set $D := H_1 + \cdots + H_k$. Note that $D \cap (\{o\} \cup A) = A$. Since $o \notin A$ and $h^1(\mathcal{I}_o) = 0$, part (b) of Lemma 2 gives a contradiction.

Theorem 5. Take $q \in \mathbb{P}^N$ such that $r_X(q) = 2$ and q depends on all k factors of Y. Then:

(i) $or_X(q) \ge k;$

(ii) $or_X(q) = k$ if and only if q is concise, i.e. if $n_i = 1$ for all i.

Proof. Fix $A \subset Y$ such that $\nu(A) \in \mathcal{S}(X,q)$. By concision the assumption that q depends on all factors of X is equivalent to $\#\pi_i(A) = 2$ for all $i \in \{1, \ldots, k\}$. Since $r_X(q) = 2$ and q depends on all factors, q is concise if and only if $n_i = 1$ for all i. We fix 3 distinct points of \mathbb{P}^1 and call it 0, 1 and ∞ . Fix $A = \{a, b\}$ such that $\nu(A) \in \mathcal{S}(X,q)$. Fix a general $u \in Y \setminus B'$. Since u is general $\pi_i(u) \notin \pi_i(A)$ for any i.

(a) First assume $n_i = 1$ for all *i*. Fix a closed $B \subsetneq X$ and set $B' := \nu^{-1}(B')$. Let $f_i : \mathbb{P}^1 \to \mathbb{P}^1$ be the only isomorphism such that $f_i(0) = a_i, f_i(1) = b_i$ and $f_i(\infty) = u_i$. Thus $f = (f_1, \ldots, f_k)$ induces an embedding $f : \mathbb{P}^1 \to Y'$ such that f(0) = a, f(1) = b and $f(\infty) = u$. Set $D := f(\mathbb{P}^1)$. Note that $\dim \langle \nu(D) \rangle = k$ and that $\nu(D)$ is a degree k rational normal curve of $\langle \nu(D) \rangle$. Since $u \notin B', D \cap S$ is finite. By Remark 6 there is $S \subset D$ such that $\#S \leq k$ and $q \in \langle \nu(S) \rangle$. Thus $or_X(q) \leq k$. Assume $or_X(q) \leq k - 1$ and take $E \subset Y \setminus B'$ such that $\#E \leq k - 1$ and $q \in \langle \nu(E)$. We assume $B' \supset A$. With this assumption $h^1(\mathcal{I}_{E \cup A}(1, \ldots, 1)) > 0$. Since $\#(E \cup A) = k + 1$, mimicking the proof of Theorem 10 we get a contradiction.

(b) Now assume $n_i \geq 2$ for some *i*. Let $Y \subsetneq Y$ be the concise Segre of q. By concision ([13, Proposition 3.13.1]) every $S \subset Y$ such that $q \in \langle \nu(S) \rangle$ and $S \not\subseteq Y'$ has cardinality > k. Taking as closed set B the set Y' we get $or_X(q) > k$.

References

[1] B. ÅDLANDSVIK: Joins and higher secant varieties, Math. Scan. 61 (1987), 213–222.

- [2] E. BALLICO: Finite subsets of projective spaces with bad postulation in a fixed degree, Beitrage zur Algebra und Geometrie 54 (2013), no. 1, 81–103.
- [3] E. BALLICO, A. BERNARDI: Stratification of the fourth secant variety of Veronese variety via the symmetric rank, Adv. Pure Appl. Math., 4 (2013), 215–250.
- [4] E. BALLICO, A. BERNARDI, M. CHRISTANDL, F. GESMUNDO: On the partially symmetric rank of tensor product of W-states and other symmetric tensors, Rend. Lincei Math. Appl., **30** (2019), 93–124.
- [5] E. BALLICO, A. DE PARIS: Generic power sum decompositions and bounds for the Waring rank, Discrete Comput. Geom., 57 (2017), n. 4, 896–914.
- [6] A. BERNARDI, A. GIMIGLIANO, M. IDÀ: Computing symmetric rank for symmetric tensors, J. Symbolic Comput., 46 (2011), n. 1, 34–53.
- [7] A. BIAŁYNICKI-BIRULA, A. SCHINZEL: Representations of multivariate polynomials by sums of univariate polynomials in linear forms, Colloq. Math., 112 (2002), 2201–233.
- [8] A. BIALYNICKI-BIRULA, A. SCHINZEL: Corrigendum to "Representations of multivariate polynomials by sums of univariate polynomials in linear forms" (Colloq. Math. 112 (2008), 201–233), Colloq. Math., 125 (2011), n. 1, 139.
- [9] J. HARRIS: Curves in projective space, Séminaire de Mathématiques Supérieures, vol. 85, Presses de l'Université de Montréal, Montreal, Que., 1982, With the collaboration of D. Eisenbud.
- [10] A. HEFEZ, S. L. KLEIMAN: Notes on the duality of projective varieties, Geometry today (Rome, 1984), 143–183, Progr. Math., 60, Birkhäuser Boston, Boston, MA, 1985.
- [11] J. JELISIEJEW: An upper bound for the Waring rank of a form, Arch. Math., 102 (2014), n. 4, 329–336.
- [12] S. L. KLEIMAN: Tangency and duality, Proceedings of the 1984 Vancouver conference in algebraic geometry, 163–225, CMS Conf. Proc., 6, Amer. Math. Soc., Providence, RI, 1986.
- [13] J. M. LANDSBERG: Tensors: Geometry and Applications. Graduate Studies in Mathematics, Vol. 128, Amer. Math. Soc. Providence, 2012.
- [14] J. M. LANDSBERG, Z. TEITLER: On the ranks and border ranks of symmetric tensors. Found. Comput. Math. 10 (2010) n. 3, 339–366.