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Abstract
Mobility is a topic of great interest in research and engineering since critical aspects such as safety, traffic
efficiency, and environmental sustainability still represent wide open challenges for researchers and engineers.
In this thesis, at first, we address the cooperative driving safety problem both from a centralized and decentralized
perspective. Then we address the problem of optimal energy management of hybrid vehicles to improve
environmental sustainability, and finally, we develop an intersection management systems for Connected
Autonomous Vehicle to maximize the traffic efficiency at an intersection. To address the first two topics, we
define a common framework. Both the cooperative safety and the energy management for Hybrid Electric Vehicle
requires to model the driver behavior. In the first case, we are interested in evaluating the safety of the driver’s
intentions, while in the second case, we are interested in predicting the future velocity profile to optimize energy
management in a fixed time horizon. The framework is the Co-Driver, which is, in short, a bio-inspired agent able
both to model and to imitate a human driver. It is based on a layered control structure based on the generation
of atomic human-like longitudinal maneuvers that compete with each other like affordances. To address driving
safety, the Co-Driver behaves like a safe driver, and its behavior is compared to the actual driver to understand if
he/she is acting safely and providing warnings if not. In the energy management problem, the Co-Driver aims at
imitating the driver to predict the future velocity. The Co-Driver generates a set of possible maneuvers and selects
one of them, imitating the action selection process of the driver.
At first, we address the problem of safety by developing and investigating a framework for Advanced Driving
Assistance Systems (ADAS) built on the Co-Driver. We developed and investigated this framework in
an innovative context of new intelligent road infrastructure, where vehicles and roads communicate. The
infrastructure that allows the roads to interact with vehicles and the environment is the topic of a research project
called SAFESTRIP. This project is about deploying innovative sensors and communication devices on the road
that communicate with all vehicles. Including vehicles that are equipped with Vehicle-To-Everything (V2X)
technology and vehicles that are not, using an interface (HMI) on smart-phones.
Co-Driver-based ADAS systems exploit connections between vehicles and (smart) roads provided by SAFESTRIP
to cover several safety-critical use cases: pedestrian protection, wrong-way vehicles on-ramps, work-zones on
roads and intersections. The ADAS provide personalized warning messages that account for the adaptive driver
behavior to maximize the acceptance of the system.
The ability of the framework to predict human drivers’ intention is exploited in a second application to improve
environmental sustainability. We employ it to feed with the estimated speed profile a novel online Model
Predictive Control (MPC) approach for Hybrid Electric Vehicles, introducing a state-of-the-art electrochemical
model of the battery. Such control aims at preserving battery life and fuel consumption through equivalent costs.
We validated the approach with actual driving data used to simulate vehicles and the power-train dynamics.
At last, we address the traffic efficiency problem in the context of autonomous vehicles crossing an intersection. We
propose an intersection management system for Connected Autonomous Vehicles based on a bi-level optimization
framework. The motion planning of the vehicle is provided by a simplified optimal control problem, while we
formulate the intersection management problem (in terms of order and timing) as a Mixed Integer Non-Linear
Programming. The latter approximates a linear problem with a powerful piecewise linearization technique.
Therefore, thanks to this technique, we can bound the error and employ commercial solvers to solve the problem
(fast enough). Finally, this framework is validated in simulation and compared with the "Fist-Arrived First-Served"
approach to show the impact of the proposed algorithm.

0.1 Introduction and motivation
Road traffic accidents are still one of the leading causes of death and injuries worldwide. According to the most
recent World Health Organization report, [98], 1.3 million people die every year from a road accident, and between
20 and 50 million people suffer non-fatal injuries.
In the early years of this century, we can see a downward trend in the number of accidents and injuries severity.
Unfortunately, this encouraging trend has slowed down and reached a plateau [96][1][4]. For vulnerable road
users (acrshortvru), the trend is even in the opposite direction, with a rise in fatalities. Almost 40% of fatalities
regards pedestrians in urban areas. This portion adds up to 12% of cyclists’ fatalities and 18% of PTW’s, reaching
70% of total fatalities in urban areas for these categories of users. Outside of urban areas, this percentage is still
high (32%). In Europe, critical infrastructure situations are responsible for 35% of the road accidents [2] mainly

2



for low visibility and unexpected road surface conditions. At junctions, 20% of total accidents occur, weather
conditions or impaired visibility cause many of them.
The increase in road networks and related traffic is frequent temporary maintenance interventions with roadworks
that impact road safety and traffic efficiency. The beginning of work zones is the most critical point for such areas,
especially if one or more are close. Inattention mainly causes rear-end accidents [12][11]. Additionally, work
zones represent a danger for road-workers that may be hit by oncoming vehicles as reported in[2]. Furthermore,
roadworks strongly affect traffic efficiency. The layout of the work zones determines how the traffic is affected
[12].
The current status of the ADASs provides very effective safety systems within the limit of the onboard sensors.
For instance, the emergency braking system effectively avoids car to pedestrian crashes and rear-end crashes.
However, the still low penetration rate of such systems and the limits of their capabilities, together with those above
not encouraging numbers for accidents, motivates the development of new technologies that aim at overcoming
the current safety systems limits. Furthermore, there is no integration between the ADAS systems and the road;
the only interaction happens through sensors. These limits can be overcome by introducing connectivity between
vehicles. For this purpose, an innovative experimental infrastructure is developed within a European project called
SAFESTRIP [5]. The project provides the road with sensors and communication devices, with special care on cost
and environmental sustainability, to improve the road’s safety.
The project’s vision is to make roads an active player in the overall safety of mobility. The road must become "self-
explanatory" through personalized in-vehicle messages [54], and "forgiving," providing advanced cooperative
functions for all the vehicles and users (vehicles with communication equipment and vehicles without), as well
as autonomous vehicles (some use cases re not treated here, oe can refer to [5]), PTW as well as pedestrians.
Communication between vehicles and "smart" roads may use the so-called Vehicles to Everything (V2X) standard
[46] (European version). This technology provides fast and reliable communication between vehicles and between
vehicles and the road infrastructure of SAFESTRIP. On the other hand, the V2X requires specific hardware and,
therefore, it will eventually exclude certain road users. In SAFESTRIP we are interested in also covering vehicles
that are not equipped with such specific hardware. For this type of vehicles we develop a “copy” of the V2X using
the Message Queuing Telemetry Transport (MQTT) [91] protocol on LTE connection. We define these two types
of vehicles as equipped and non-equipped, respectively.
In this work, we propose a unifying framework for connectivity-based ADAS deployed in the context of the
SAFESTRIP project. The framework provides the necessary intelligence to interpret the intention of the road
users and provide (personalized and adaptive) warnings. As stated earlier, the agent we develop is built upon
the Co-Driver framework. This thesis addresses Co-Driver development and its specializations. The key idea
is to create an agent that can exploit both the in-vehicle information and those provided by the infrastructure to
predict the driver’s intention. It must consider other road users’ behavior and continuously monitor the scenario
to warn the driver and road users when necessary. The agent is integrated into a flexible framework and allows
both to be used in a decentralized and centralized approach improving safety and user acceptance; this framework
is the SAFESTRIP system. The first task of the SAFESTRIP system is to detect the vehicles (equipped or not).
Once it happens, the system assigns one artificial agent (the Co-Driver) to the vehicle. The Co-Driver follows the
vehicle during driving to accomplish specific driving assistance tasks. Moreover, it takes advantage of the scenario
information provided by the system. On equipped vehicles, the agent runs on board. If not, the corresponding
agent is instantiated on a remote server or "cloud".

In this context, the Co-Driver interacts with the driver through a warning system running on a specifically designed
HMI. All the safety applications of SAFESTIRIP project are built upon the Co-Driver agent. The role of the
agent is to receive real-time data from the SafeStrip infrastructure (and other vehicles if applicable) and generate
warnings for the drivers about the proper behavior w.r.t the danger around. The Co-Driver is based on a two-layer
artificial agent. The upper layer is responsible for interpreting the environment and specifically for understanding
which high-level behaviors are needed to avoid the danger (i.e., a pedestrian at the zebra crossing correspond
only to one safe high-level behavior: to stop before the crossing, or at least being ready to perform a safe stop
maneuver up to the pedestrian leaves). The lower layer is more like a low-level driving agent that translates the
goals provided by the upper layer into actual human-like maneuvers (longitudinal motion primitives, see 1.3). By
comparing such safe actions with the actual human behavior, the Co-Driver can evaluate which (and if to) warning
to issue to the driver. Several levels of warning are available, from informatory to high severity.

The safety application developed have been field-tested, and a variety of use cases are selected for their safety-
critical level. The use cases are listed below:
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Pedestrian protection and wrong-way driving At first, we have the pedestrian crossing use case, known as
"VRU" use case. The system can detect pedestrians using sensors (strips) on the zebra crossing. The second
use case is about vehicles entering a highway in the wrong way. The SAFESTRIP sensors on the ramp
detect such vehicles and send warnings to incoming vehicles. These two "sources of danger" are grouped
in the same use case because the logic is similar (A ramp occupied by a wrong-way vehicle is considered a
static obstacle).

Roadworks Roadworks, requiring lane level personalization, is another use case representing a good benchmark
for the SAFESTRIP system and the Co-Driver. In short, vehicles on open and closed lanes must receive
different warnings.

label The last use case concern the intersections. It is the most critical to manage because it involves pieces of
information from other vehicles. However, it is also one of the most interesting. The Co-Driver is here
employed with a higher level of complexity (we must consider the right of way and the crashes between
vehicles during the crossing).

These use cases share the same agent architecture with some differences that are mainly related to the type of
danger and the integration in the equipped roads. Field validation is performed for all the use cases, both for
equipped vehicles that are provided with V2X technology and for non-equipped vehicles that uses a smartphone
for the HMI and low-cost RFID tags for identification on the equipped road.

The Co-Driver framework that we just defined for this safety application, can accomplish other tasks imitating
drivers’ behavior. The ability of the Co-Driver framework to predict the driver intention can be used to estimate
the speed profile that drivers will follow in the next seconds. As already discussed, the Co-Driver is a bio-inspired
agent (See Section 1) that mainly aims at modeling and imitating a human driver so that it can be exploited for
future velocity profile prediction. Therefore we created a new Co-Driver instance which renders itself as a new,
flexible, and computationally lightweight algorithm for velocity prediction. The prediction outcomes are validated
with naturalistic driving data and compared with other prediction methods from the literature.

We combined the Co-Driver instance that estimates the driver’s intended velocity profile with a Model Predictive
based energy management system that optimizes the power split in a Hybrid Electric Vehicle.
We developed a novel Model Predictive Control approach, including a state-of-the-art electrochemical battery
model that is used in an online Model Predictive Control (MPC) for the first time. The validation is performed
with driving data while the power train and the vehicle dynamics are simulated using actual vehicle data and
efficiency maps. Thanks to the accurate battery model, the cost function of the OCP that is used in the approach
contains a term related to the battery lifespan (capacity loss), allow to have an optimal trade-off between the
battery degradation and the fuel consumption. The battery degradation is a significant aspect since severe battery
usage may result in an early replacement. Mitigating the ecological and the economic benefits introduced by the
Hybrid power-train.

The last topic that we address in this thesis concerns mobility efficiency. We bring back the concept of connected
vehicles that we exploited in the safety applications of the Co-Driver to extend it to autonomous vehicles. This
application was inspired by the management of the intersection of the third SAFESTRIP use case combined with a
novel approach used to optimize airport traffic [13]. The problem is formulated as a bi-level optimization problem.
In the lower level, the motion of the vehicles is calculated as the solution of an optimal control problem that
maximizes the final velocity when approaching the intersection in a given time window. Instead, the higher level
provides the time to arrive at the intersection to all the vehicles involved. This higher-level problem eventually
includes the optimization of the vehicle order. The latter case involves integer variables that cast the problem
into the family of mixed integer linear problems (MINLP). The formulation considers the vehicle’s velocity as
a function of the time they take to arrive at the intersection. Limits on the vehicle acceleration and limits on
the velocity due to curvature of the road are taken into account. To solve this problem, we introduce a powerful
linearization technique based on a piecewise linear approximation of the non-linear functions. This technique
allows to bound the error on the approximation and even to simplify the problem itself since it encloses the case-
defined function into its formulation. The framework is validated in simulation in a complex intersection. The
problem can be used in any geometry of the intersection as soon as the overlapping portion of the lanes is known.
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Structure of the thesis

This thesis is divided into 4 chapters.
The first introduces the Co-Driver concepts and the motion primitives, which will be the building blocks of the
application explained in Chapter 2 and 3. Chapter 2 introduces the SAFE STRIP project and describes the
safety applications developed and tested herein. The general application framework is described in detail. In the
Chapter 3 an instance of the Co-Driver to predict drivers’ intended velocity is explained and validated and then
combined with an online MPC approach we proposed for hybrid electric vehicles. In Chapter 4 we illustrates
the Intersection Management strategy for Connected Autonomous Vehicles. Every chapter presents one or more
sections to discuss the existing solutions. In the first chapter, the state-if-the-art is discussed for each use case,
since in literature, they are addressed as separate problems.

5



6



Chapter 1

The Co-Driver agent

"Every PhD thesis should start with a proper quote"

— This thesis

Predicting in advance the intentions of a driver is a critical task in the development of Advanced Driving
Assistance Systems (ADAS) up to the application level of automation L3 (according to SAE autonomous driving
nomenclature [70]). Correctly inferring the maneuver’s goal beforehand allows timely delivery of warning
messages and intervention to support the driver to safely and comfortably accomplish his/her desired maneuver.
Additionally, a highly accurate estimation minimizes false alarms or, even more critically, missed alarms or
interventions, improving the driving experience. The level of assistance has to be tailored to the driver’s behavior
and way of executing the maneuver.

In this thesis, the applications of driving prediction span from the safety ADAS systems to the optimization of the
power-train usage. It is possible because our prediction generates future longitudinal maneuvers, and we can use
them for different purposes (generative approach). The safety ADAS systems Are mainly related to the intentions
rather than the velocity profile. Understanding drivers’ intentions allows to assist the driver and improve his/her
maneuver whenever necessary (e.g. brake more if driver’s safety is at risk). We can define this type of capability
as interpretation of intentions, which in short is the capability to understand the final goal of a maneuver in
advance. Another task that we want to accomplish is to predict the velocity profile in a defined time horizon. Such
capability allows, for instance, to quantitatively optimize drive-line response or energy management of hybrid or
purely electric vehicles. The generative approach adopted by the Co-Driver can achieve both of these goals. We
can define the ability to understand the "high-level" intentions as "interpretation" and the ability to "copy" the
maneuver to predict the velocity profile, as imitation. We call "mirroring" the concurrent process of imitating and
interpreting an action, in our case, a driving maneuver.
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1.1 Mirroring, Co-Driver theoretical basis

The ability to interpret and to imitate may be seen as two separate abilities. However, This is not necessarily
true. In neuroscience, it was observed that "a supramodal representation of action closely links perception and
production of human action." In [86] Meltzoff defines the so-called "like me" framework. This framework defines
the simultaneous interpretation and imitation of another agent’s behavior introducing the following concept: if
someone performs the same action as you, he/she must have similar "internal states" as you. This concept
resembles the observers in control theory, where a parallel system imitates inputs and outputs to observe the
internal states of another system. Another concept of cognition based on a direct representation of actions is the
Simulation theory of cognition by Hesslow [64]. In this theory, thinking is conceived as a simulation of action and
perception cycles that are carried out as inhibited sensory-motor loops [63]. Motor cognition is then conceived as
the execution of covert sensory-motor loop activities. A particularly evident example to understand the concept
of simulating sensory-motor loops occurs when one is about to lift a heavy object. If the object is not heavy
as expected, one reacts by lifting it too much and getting surprised. In the simulation theory of cognition such
astonishment is due to the simulation one made in mind, which does not resemble the real sensory-motor loop.
This approach to cognition was also studied by Jannerod et al. in [74] and [73]. In this cognition framework,
the interpretation (and imitation) of others’ intentions are eventually a simulation process. An agent that wants
to interpret (and imitate) another agent’s physical action starts from observing its motion. After that, it tries to
reproduce the same motion simulating the sensory-motor loops internally. This process eventually involves both
interpretation and imitation. We call it a "mirroring" process [69] [37]. The Co-Driver is based on the concept
of mirroring applied to driving. In the next sections, we will start with a general concept of a mirroring agent
to explain the Co-Driver. To model a mirroring agent that can generate sensory-motor loops (we will detail such
loop for driving in Section 1.3) we use a framework model proposed by Hurley in [69] called Shared Circuit
Model (SCM). This model decomposes the sensory-motor loops into two components: the forward models and
the inverse models. The shared circuit model resembles what in engineering is called Model predictive control,
or predictive control in general. In fact, in [69], the forward models are internal models that imitate the outputs
expected from the environment. Such a model consists of an expected output mapping on the inputs, and in an
organism, such structure can be called "efference copy." In parallel to the MPC approaches in engineering, the
forward model can be seen as the dynamical model of the system. This analogy with the Model Predictive Control
is more evident in the previous works of Grush [55], and Miall [87]. The forward model represents how the
human imagines the feedback (and the effects in general) of the environment caused by the action. Likewise,
in the driving framework, the forward model is the ability of the driver to figure out the vehicle response on the
road. As the name suggests, the forward models map actions to the feedback from the environment, allowing
predicting motion strategies. The predictive strategy improves the response of the agent, and it is essential in
human motor control [69]. If the feedback does not match the expectation, one can also refine the forward model
or correct actions during executions (remember the lifting-a-weight example). Such adaptive behavior is possible
by comparing simulated feedback with the actual one. The step from mere executions to mirroring needs another
“layer” [69]. The forward model links simulated motor signals to simulated feedbacks, but this process can also
be reversed, using the feedback as an input signal that evokes motor signals. We call this link "inverse emulator."
Combining these two factors allows an agent to generate complete sensory-motor loops to accomplish a task or
imitate another agent. A graphical representation of the shared circuit model is shown in Figure 1.1.

For the purpose of the inference of intention, other remarkable contributions are provided by Demiris et al
[38][40][39][28] and Wolpert et al [126][62][128][127][14]. We borrow one methodology from their work to add
a missing ingredient to have a complete idea of a mirroring agent. They use the cognitive frameworks based on
simulated sensory-motor loops to formalize the mirroring process as a generation of self behaviors and comparison
of others’ behaviors. In other words, they generate a pool of agent behaviors that are compared with the observed
behaviors. This approach is called generative.
If we talked about sensory-motor loops in general, we could now link these sensory-motor loops to actual goals
that these sensory-motor loops have. The generation of sensory-motor loops is strongly related to the context
since they are hypotheses of feasible and optimal actions. To find how to define these sensory-motor loops the
concept of affordance help us [53]. The concept of affordance is exactly what completes the framework on
cognition conceived as actions and simulation of actions. In the theory of affordances [53], they are defined as
specific interactions (usually involving motion) between an agent and an object. An affordance is not a property
of the agent nor a property of the objects; it is defined in a specific possible interaction between the user and the
object. For example, opening a door is an affordance between the human and the door. Such affordance does not
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Figure 1.1: Shared circuit model for a mirroring agent. The mirroring agent tries to interpret and imitate the action
of the agent to observe by simulating the same actions basing on the feedback from the environment. In short,
inverse emulator models the agent behavior while forward model the physics in which the actions occurs.

exist if the door does not have a handle since it cannot "suggest" this affordance. In driving, an affordance may
be to follow another vehicle or stop before a give-way sign. Using the affordance concept, the possible actions
(sensory-motor loops) are suggested by the context and surrounding objects; we will see how this concept is used
in the Co-Driver in driving tasks. This restricts the possible sensory-motor loops that one may generate to imitate
another agent since the goal suggested by surroundings are not infinite, making the mirroring process possible as
soon as the agents surroundings are shared. Affordances can be instantiated as simulated sensory-motor loops; this
is important because more than one affordance at a time is instantiated in cognition. In [30] human action selection
is conceived as a competition between potential affordances. A pool of affordances is simultaneously considered,
and then only one is executed. Another essential theoretical foundation of the cognitive structure we are going
to build on the Co-Driver is the subsumption architecture introduced by Brooks [26]. This theory has a layer of
simple sensory-motor loops (or affordances) that compose increasing complexity behaviors. Therefore, the final
idea of a mirroring agent is an agent that behaves similarly to the other agents, generating a pool of affordances,
consisting of potential (and simulated) sensory-motor loops that mimic the exact interactions between the same
interactions agents and the surrounding. Moreover, it must select one that best matches one of the mirrored agents.
For implementations such as the Co-Driver, sometimes we do not need to mimic an affordance; we will see that
for some applications, we want only to check if a potential affordance of the driver is within a specific safe set.
We use this concept to build our Co-Driver agent in the next section.

1.2 The Co-Driver as a mirroring agent for driving
The concept of Co-Driver was born with the main scope to predict drivers’ intentions in both of these senses. The
theoretical background for the Co-Driver was mainly collected in [32] to design it as a bio-inspired architecture for
driving intention prediction used to design an advanced system to support the driver in various driving tasks (i.e.,
lane keeping, intersection support). An artificial Co-Driver in this context is defined as an agent able both to drive
like a human and to interpret his/her driving intentions [32][35][34][33]. The Co-Driver’s ability to drive does not
have to be complete. It can be restricted to the pool of affordances we are interested in a specific application. We
have already seen a mirroring agent in general, but to understand how we specialize this concept to a Co-Driver
is helpful to introduce one example of a "natural" Co-Driver [32]. For instance, we can think about a driving
license tutor: the tutor is not only able to drive like humans, but s/he also has to anticipate the trainee’s actions by
interpreting their intentions in order to intervene in emergencies to correct a mistake through the auxiliary vehicle
controls. In this analogy, the relation between the driver (trainee) and who plays the Co-Driver role (the tutor) is
made of a mutual and continuous feedback relation. It is worth noticing that, since the Co-Driver agent is aware of
the driver’s goals, it actively intervenes only when necessary. Note that the central role of the tutor is to interpret
what the trainee is doing. However, he/she has also to intervene if necessary, and to do this, affordances on safe
behavior are always latent in his pool of possible actions.
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Action priming

We decided to design a mirroring agent that uses a generative approach. The core of the mirroring process is then
based on the generation of a set of human-like actions. In this work, which is about driving, the affordances are
longitudinal maneuvers. The Co-Driver always generates a pool of longitudinal maneuvers of a specific type. In
this section, we define these maneuvers, called longitudinal motion primitives.

Affordances

To synthetize driving affordances, we must before understand how humans plan their motion. From 70s, many
researcher focused on the criterion that drives the human motion planning: Wolpert et al. [14][93], Harris
[60],[61], Viviani and Flash [121], Flash et al. [48]show evidence that biological motion planning occurs
according to optimal criteria. In particular, Harris and Wolpert indicate minimization of postmovement errors and
rejection of neural noise (the "minimum variance" principle). This underlying efficiency criterion can explain the
observed human time–accuracy tradeoff and the so-called "two-thirds power law" (see below). Optimal Control
is thus a convenient strategy that reproduces simple sensory-motor primitives. Moreover, the application of OC
within a receding-horizon scheme explains another observed fact, known as the "minimum intervention principle"
[118], [113], which states that task-irrelevant deviations are left uncorrected. Viviani and Flash [48], [49],
[24][23] and others also showed that lateral acceleration and speed in human movements are inversely correlated
with curvature (the "two-thirds power law"), which Harris explains as a consequence of the minimum variance
principle. Furthermore, ordinary drivers (not professionals for racing) use lateral acceleration and speed in inverse
correlation with road curvature far from the physical limits. This phenomenon originates from the minimum
variance principle. Drivers reduce speed in curves to keep sufficient accuracy in lateral position [23]. In [24]
the authors use this relation to develop an agent that can provide warnings using the mirroring process on curves
for motorcycles (similarly to our Co-Driver). In the next section, we introduce longitudinal motion primitives
considering the affordances in the Co-Driver context. Those are the building blocks for the synthesis of driving
behavior for the mirroring process and the Co-Driver.

1.3 Longitudinal Motion Primitves
The longitudinal motion primitives are the essential component of the Co-Driver. They represent atomic
maneuvers that a driver can plan and pursue. The objective of these maneuvers is to provide a human-like
link from the current vehicle state to a specific goal of driving (e.g., reaching the desired velocity), thus being
the affordances for the Co-Driver. The longitudinal motion primitives directly derive from the minimum jerk
principle applied to driving (See Section 1.2). Here, the longitudinal jerk is the control variable. We also assume
that human drivers plan the longitudinal motion of the vehicle following "simplified" dynamics [18]. In short, we
assume that a driver can control the vehicle tracking the desired jerk.

1.3.1 Primitives notation
We will use longitudinal motion primitives frequently. Therefore, we need a precise notation. Therefore, let us
now formalize the Generation of a primitive (or a set of them)

Primitive generation

We need to distinguish between a function that generates a motion primitive and an instance of a primitive itself (or
a set of primitives). The generation function is always indicated by Mtype(arg1, arg2, ...), where <type> has
to be replaced with the acronym of the primitive type (i.e. CSS). While the arguments arg1, arg2, ... are defined
in order. Arguments differs between different types of primitives. A function M<TYPE>(...) is an abstraction
that is used to generate a primitive instance by means of the arguments of the function.
The arguments are the initial conditions, the final conditions, and some parameters if needed. An instance is an
actual primitive that represents an evolution of the states from the initial conditions up to the final ones (in time).
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Note that the initial conditions (velocity and acceleration) are always required to generate a primitive. Let us now
take a general expression of a primitive instance generation.

m<instance name/index> = MFFCT (v0, a0, vf , T ) . (1.1)

The FFCT type of primitive is explained in Section 1.3.4. It requires the initial acceleration and velocity, final time
T and the final velocity vf as parameters in this order. In the example (1.1), mexample represents only one FFCT
primitive with v0 and a0 as initial conditions, vf as the required final condition, and T as a required parameter.
The argument T is a required parameter and it is the duration of the primitive. When we generate a single primitive
we are going to use lower letters (like m in (1.1)), for set of primitives we use capital letters.

Generation of sets of primitives

In some applications, we are interested in generating sets of primitives. To generate a set, it is enough to call
a primitive generation with one or more parameters defined as a set instead of a single value. To provide an
immediate example, we generate a set of the same type of primitive seen in Equation (1.1). Then, in Equation
(1.2) we generate a set of all the primitives of type FFCT that have the duration between T0 and T1. This set of
primitive is continuous. Therefore, we can evaluate only a single instance of it (or more than one), assigning a
value to T in the domain [T0 T1].

M<instance name/index> = MFFCT (v0, [T0 T1]) . (1.2)

In Chapter 2 we use sets of primitives, and we need to evaluate only the two primitives (or even only one) that are
at the boundary of the set.

1.3.2 Vehicle-driver simplified model

The primitives’ expression is always calculated as a closed-form solution of an optimal control problem. The first
thing to define is the model used, which is the same for all the types of primitives.
The idea behind this dynamical model is that a driver can impose the longitudinal motion of the vehicle by the
pedals (this is essentially the forward model seen in Section 1.1). The driver does not use a mathematical model
of the vehicle, but s/he can control the vehicle. The scope of the primitives is to provide the future longitudinal
motion planning of the driver. Therefore we are interested in modeling the closed-loop vehicle-driver, controlled
by the driver. Using the curvilinear coordinate s(t) as a state, the following equation describes the model:

 ṡ(t) = v(t)
v̇(t) = a(t)
ȧ(t) = j(t)

. (1.3)

The model is a triple integrator since the system’s input is the longitudinal jerk j(t). The states a(t) and v(t) are
the longitudinal acceleration and velocity, respectively, while s(t) is the curvilinear coordinate along the vehicle’s
trajectory. In Section 1.2 we discuss the choice of the jerk as the input variable. The primitives are characterized
by their final condition and if the final time is constrained or not. In this work, we define only primitive where
the duration is constrained because they were suitable for this application. In [116] the authors also use primitives
with unconstrained time for velocity prediction.
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Primitives representation

The primitives represent the evolutions of 3 states and 1 control indicated by s(t), v(t), a(t), j(t) respectively,
starting from the current state of the vehicle. All the longitudinal motion primitives are subject to the model (1.3)
and their initial conditions are known. It is enough to know the evolution of only one state (or control) to retrieve
the others. By convention, unless otherwise specified, we represent a primitive by the curvilinear position function
s(t). The coordinate s(t) is the curvilinear coordinate along the vehicle’s trajectory. One reference for curvilinear
coordinates can be found in [83].
As stated earlier, we assume a human driver controls the vehicle by its jerk j(t). Intuitively, one can imagine
the jerk as proportional to the rate of the gas pedal (or the brake pedal) position. The control defined at the very
beginning of the maneuver plays a unique role. It is called initial jerk j0. This quantity is the instantaneous control
required to start a maneuver. It is used as a metric for the effort required from the driver to start the maneuver [32],
in the text, sometimes is referred to it as "effort." Since this quantity is significant, we are interested in mapping
primitives to its initial jerks. The initial jerk of a maneuver can be defined with the following notation:

j0(m1) = jm1(0)

J0(M1) = jM1(0)
(1.4)

We are also interested in evaluating a set of initial jerks coming from a set of primitive. In such a case, the capital
letter is used. In Equation (1.4), the notation is depicted. While evaluating the initial jerk of a single primitive is
straightforward, evaluating a set of initial jerks is less immediate. We are interested in defining such sets only for
specific sets of primitives. The sets are detailed in their specific sections.

Primitives evaluation

The final scope of the primitives is to represent some motion of a vehicle. By their closed form expression, we
can retrieve the values of the states. Few aspects must be pointed out.

• The domain of a primitive is always D = [0, T ] therefore: t ∈ [0, T ].

• The initial curvilinear position is always 0. Therefore s(0) = 0.

• The states and controls are always indicated by the same symbols s, v, a, j. Pedixes and other identificators
are allowed: (i.e ṽ,ji)

The notation of a primitive’s evaluation is composed of the state’s (or control’s) name and a pedix indicating which
maneuver it belongs to. For instance, if we generate a maneuver m1, and we want to evaluate the velocity at time
t = t∗, we can write vm1

(t∗) or simply v1(t
∗) (if it does not generate ambiguities in its context).

1.3.3 Longitudinal Motion Primitives types
The primitives are the units of the Co-Driver longitudinal driving. We assume that the drivers plan the control input
for the entire duration of one motion primitive. However, the driver can plan for several primitives simultaneously
to open for several choices (affordance competition). The primitive is formulated as an optimal control problem
that makes use of the model in (1.3) and of a cost function that reflects the minimum jerk principle (and the
minimum variance principle for this specific model). The vehicle’s state gives the initial conditions of the
primitives, and the final conditions depend on the goal of the primitive. Such primitives can represent atomic
motion planning for driving intention, and the final goal is the thing that most characterize a primitive type.

1.3.4 Free Flow Constrained Time (FFCT)
The first type of primitive we illustrate is called Free Flow Constrained Time (FFCT). This primitive aims to model
the driver’s intention to reach a velocity vf in a predefined amount of time T . This primitives wants to model just
the simple action to reach a desired velocity, the duration of the maneuver T in this case, serves as parameter for
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the "urgency" of the primitive. The shorter the time, the more urgent the primitive and the higher the effort.
The velocity is indeed the target of the primitive, as well as the duration. The driver’s intention here is to
reach the desired velocity in a time T , in the literature other approaches is to use a weight on time in the cost
function [116][32]. We decide to use the duration as a parameter. The main advantages of constraining the time
are two. Firstly, The duration T is easier to tune since it has a plain meaning. Secondly, the solution is in a
completely closed form (see (1.7)), and do not require solving polynomials. On the other hand, this primitive has
the disadvantage of not representing a realistic maneuver if we choose an unreasonable T . For instance, selecting
a short time T for high-velocity differences (vf − v0) lead to high accelerations and high jerks, even unrealistic
values.
Let us now show the boundary condition of the optimal control problem:


s(0) = 0
v(0) = v(t0)
a(0) = a(t0)
v(T ) = vf
a(T ) = 0

. (1.5)

As we have seen for the other primitives, the initial position s(0) is always zero since the primitive always
represents a longitudinal motion starting from the current curvilinear position. The final velocity vf and the
duration T are the degrees of freedom of this primitive. We can now define the optimal control problem.

min
j(t)

∫ T

0

j2(t)

subject to (1.3), (1.5)
. (1.6)

The solution of (1.6) is hereby reported in term of s(t). The states and the controls can be easily retrieved through
its derivatives using Equation (1.3). The expression of s(t) is a fourth-order polynomial:

p(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4. (1.7)

The coefficients of the polynomial (1.7) depend on T , that is, the duration of the maneuver. The coefficients are:

c0 = 0
c1 = v0
c2 = a0
c3 = vf−v0

T 2 − 2a0

3T
c4 = v0−vf

2T 3 + a0

4T 2

. (1.8)

In Figure 1.2 some instances of primitives are illustrated. We have two plots. Both of them show the velocity, the
first versus time, and the second versus the curvilinear coordinates s(t). The primitives in the example belong to
the following set:

MFFCT,examples = MFFCT (7, 1, {2, 5, 8, ..., 29} , {4, 6, 8, 10}). (1.9)

We hereby recall the importance of the initial jerk j0 = j(0). It is proportional to the instantaneous effort required
to pursue a primitive. The initial jerk of a FFCT can be computed from the third derivative of the polynomial in
Equation (1.7). The third derivative is j(t) = 6c3 + 12c4t and replacing t = 0 we get j0 = 6c3 that results in:

j0 =
vf − v0
T 2

− 2a0
3T

. (1.10)
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Figure 1.2: Example of Free Flow Constrained Time primitives. On the left velocity versus time, on the right the
same primitives represented on a velocity-position. The ste of primitive in this example is provided in Equation
1.9

.

In some applications it is useful to retrieve the final velocity starting from an initial jerk. To get vf from j0
expression (1.10) can be inverted to get:

vf = v0 +
4aT + j0T

2

6
. (1.11)

The application of this primitive is mainly related to the prediction scheme of Chapter 3. Therefore, we are not
interested in finding any set of initial jerks, since the application does not require one.

1.3.5 Constrained Space Stop (CSS)

This is the maneuver used to model the driver intention to stop. This intention can be modeled with different levels
of accuracy [35]. However, we aim at modelling the “main phase” of the maneuver to perform the mirroring of
intention. In our application of this maneuver (See Chapter 2) we are interested in the effort necessary to start
a braking maneuer, not to model in detail the velocity profile in the braking phase. The initial conditions of the
maneuver are velocity and acceleration as usual, while this time the final distance sf is the final condition, and
the final velocity is always zero. being a maneuver to stop, also the final acceleration is zero. The time T is the
duration of the maneuver and it is not free, the expression is in (1.16) . Initial and final condition reads as:



s(0) = 0
v(0) = v(t0)
a(0) = a(t0)
s(0) = 0
s(T ) = sf,0
v(T ) = 0
a(T ) = 0

. (1.12)
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The Optimal control problem is analogous to the FFCT, except for the boundary conditions.

min
j(t)

∫ T

0

j2(t)

subject to (1.3), (1.12)
. (1.13)

The solution of (1.13) is hereby reported in term of s(t). From tis derivatives, we can easily retrieve the other
states and the control. The expression of s(t) is a fifth-order polynomial:

p(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 − c5t

5. (1.14)

The coefficients of the polynomial (1.14) depend again on T , that is, the duration of the primitive. The coefficients
read as:

c0 = 0
c1 = v0
c2 = a0
c3 = 10

sf
T 3 − 6 v0

T 2 − 3a0

2T

c4 = −15
sf
T 4 + 8 v0

T 3 + 3a0

2T 2

c5 = 6
sf
T 5 − 3 v0

T 4 − a0

2T 3

. (1.15)

For this primitive, the time T is a not an argument, but it depends on the final distance as well, it can be retrieved
with this expression:

T =
10sf

2v0 +
√
4v20 + 5a0sf

(1.16)

In Figure 1.3 some instances of primitives are illustrated. For this type we have no parameter but the distance.
In Figure 1.3 we show several examples of CSS primitives, varying initial and final conditions:

MCSS,example = M({6, 8, 10, 12} , {1} , {5, 7, .., 20}). (1.17)

This type of maneuver is threated also in [34], to apply a similar concept to intersections, and in [85] for smart

Figure 1.3: Example of Constrained Space Stop primitives. On the left velocity versus time, on the right the
same primitives represented on a velocity-position plan. Initial velocity and final position are varied, as shown in
Equation (1.17)
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Figure 1.4: Example of initial jerks sets generate from a Mstop primitives set. The primitives’ set comprehends
all the maneuvers that stops before sf,0. To compute the jerk set, we need only the jerk of the CSS maneuver with
sf = sf,0 since the set is J0 = ( −∞ , j0(Mcss(., sf = sf,0)) ]. The jerk set J0 is indicated in light blue.

traffic lights.

jerk set of Constrained Space Stop primitives

The jerk set is relevant for this type of primitives. We need to discuss how can we compute the jerk set given a
specific set of CSS primitives.
The goal to stop before a certain distance sf , is modeled with the following set of CSS primitives Mstop:

Mstop = MCSS (v0, a0, (0 , sf ]) . (1.18)

The set Mstop represent the possibility to stop at sf or before, up to the limit scenario in which the distance to stop
is 0. This set is used to retrieve all the possible safe maneuvers when one have to stop before a certain distance.
For this case, in Chapter 2 we are interested in finding the set of jerks associated to the set Mstop. To retrieve the
set, we must before define a property of the initial jerk of the CSS pimitives:

∀sf,1 < sff, 2 , j0(MCSS(v0, a0, sf,1) < j0(MCSS(v0, a0, sf,2)). (1.19)

The initial jerk j0 in monotone with the distance sf of the primitive. This means that now we can calculate the set
of initial jerks associated with Mstop.
The set pf the initial jerks is upperbounded by the initial jerk of the "slower" primitive (the one to stop exactly at
sf ), and it is not lower bounded, since we want to consider all the possible primitives that stops before sf .

J0((MCSS (v0, a0, (0 , sf ])) = (−∞ , j0(MCSS(v0, a0, sf )] (1.20)

In Figure 1.4 we show an example of a initial jerk set for the above case.

1.3.6 Constrained Space Time (CST)
This primitive links the initial conditions to a final position at a certain time T (that is a parameter). It is used to
model the intention to cross a point (at a sf distance) in a certain amount of time T .
The final velocity is a function of the final time. The relation between T and final velocity can be inverted if
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needed [34]. 

s(0) = 0
v(0) = v(t0)
a(0) = a(t0)
s(0) = 0
s(T ) = sf,0
v(T ) = 0
a(T ) = 0

. (1.21)

The final velocity as a function of time reads as:

vf =
15

8T
− a0T

8
− 7a0

8
(1.22)

The Optimal control problem is analogous to the CSS and FFCT, except for the boundary conditions.

min
j(t)

∫ T

0

j2(t)

subject to (1.3), (1.12)
. (1.23)

Once again, the solution of (1.23) is hereby reported in term of s(t). The states and the controls can be easily
retrieved through its derivatives using Equation (1.3). The expression of s(t) is a fifth-order polynomial:

p(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 − c5t

5. (1.24)

The coefficients of the polynomial (1.14) depend on the duration of the maneuver T . The coefficients are:

c0 = 0
c1 = v0
c2 = a0
c3 = 10

sf
T 3 − 6 v0

T 2 − 3a0

2T − 4
vf
T 2

c4 = −15
sf
T 4 + 8 v0

T 3 + 3a0

2T 2 + 7
vf
T 3

c5 = 6
sf
T 5 − 3 v0

T 4 − a0

2T 3 − 3
vf
T 4

. (1.25)

In Figure 1.5 some instances of primitives are illustrated. they are the following set, obtained varying the time and
the final position:

MCST,example = M(7, 1, 4, 6, 8, 10, 40, 60, ..., 100) (1.26)
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Figure 1.5: Example of Constrained Space Time primitives. On the left velocity versus time, on the right the same
primitives represented on a velocity-position plan. Final time and distances are varied. The primitives in the plots
are generated in Equation (1.26).

We are again interested in evaluating the jerk sets, to be used in 2. In this case we want to evaluate jerk sets for
the following sets of primitives:

Mpass = MCST (v0, a0, sf , [T1 , T2])). (1.27)

The set Mpass is used to represent a passage in a specific time slot given by the compact set [T1, T2]. Similarly to
what we have seen for CSS in Equation 1.19, we have a monotonic relation between j0 and T :

∀sf,1 < sf,2 , j0(MCST (v0, a0, sf , T1) < j0(MCST (v0, a0, sf , T2)). (1.28)

This relation allows us to easily compute the jerk set by using the jerks on the boundary corresponding to T1 and
T2.

J0 = [ j0(MCST (v0, a0, sf , T1)) , j0(MCST (v0, a0, sf , T2)) ] . (1.29)

In Figure 1.6 we provide an example of a set with two CST primitives that deliminate a set between two values of
the parameter T , the corresponding jerk is indicated as J0. The example is generated with the following values:
v0 = 6,a0 = 1,T = [ 7 , 14 ]. This type of sets is used in Chapter 2. The longitudinal motion primitives will be
used for the Co-Driver applications. Both sets and single primitives. Although other types of maneuvers can be
defined, we limited this chapter to those used in the thesis.
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Figure 1.6: Example of initial jerks sets generate from a Mpass primitives set. The primitives’ set
comprehends all the maneuvers between the two maneuvers at the bounds. To compute the jerk set, we
need only the two initial jerks of the CST primitives with T = 7 and T = 14 since the set is J0 =
[ j0(MCST (v0, a0, sf , T = 7)) , j0(MCST (v0, a0, sf , T = 14)) ] .. The jerk set J0 is indicated with the shaded
vertical segment.
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Chapter 2

ADAS systems based on Co-Driver and

SAFESTRIP

This chapter addresses the safety ADAS systems based on the Co-Driver paradigm and the SAFESTRIP road
infrastructure. The chapter is structured as follows: In Section 2.1 we detail the SAFESTRIP project for the topics
that concern this thesis, with a focus on the infrastructure used by the developed ADAS systems. For detailed
coverage of the project, the reader can refer to the public deliverables [5] and for a more condensed treatment to
[54]. In Section 2.2 the general structure of the Co-Driver for the safety ADAS systems is detailed. In Sections
2.3, 2.4 and 2.5 the ADAS systems are detailed, in each of this section there are in this order: an overview of
the existing solutions for the specific use case, the description and the Co-Driver implementation for the use case.
In Sections 2.4 and 2.5 some use-case specific aspect of the results are discussed. In Section 2.6.1 we report the
aggregated results, and we discuss them.

2.1 Intelligent roads: SAFESTRIP project
SAFESTRIP is a H2020 EU-funded project [5]. It proposes a revolutionary C-ITS technological solution to face
several vehicle safety challenges. The project proposes a system mainly based on custom on-road platforms,
called "strips." On these platforms, sensors are deployed to get information from the road. However, the strips do
not communicate directly with the vehicles. Some component in between is required, as discussed later on. Such
components are meant to use Infrastructure to Vehicle (I2V) and Vehicle and Infrastructure (V2I) communication
technologies (commonly referred to as V2X) Each road lane is provided with these strips covered by a road
marking paint to blend in visually. On the side of the lanes, there is equipment for communication with vehicles.
The vision behind the concept of these strips is to make the road "self-explanatory" in order for cooperative ADAS
systems to access information related to infrastructure and the scenario in general, comprehensive of other road
users. The strips transmit static and dynamic real-time information using a communication gateway (Road Side
Unit). Road conditions, kinematics of the vehicles passing (velocity and position), and environmental attributes
are exchanged with other vehicles and traffic operators. Such set of information can be intended as “enhanced
Dynamic Local Map” eDLM [16]. All vehicles are meant to be included to take benefit of the strips, vehicles that
are equipped with C-ITS features (onboard HMI and V2X connectivity) and vehicles that are not. The difference
between these types of vehicles is exploited in 2.1.2. The paradigm introduced by the project is an opportunity to
introduce safety C-ITS functions with reliable, accurate, and lane-specific information. These functions are based
on the CoDriver, and they are designed to deal with other safety-critical scenarios explained in the following
sections. The Co-Driver-based ADAS had a double role in the project: being innovative cooperative ADAS
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systems and validating the potentiality of the SAFESTRIP infrastructure. In this chapter, we cover the first aspect.
We look at the SAFESTRIP infrastructure as a platform to validate the proposed CoDriver-based ADAS. While
the infrastructural aspects (and innovations) of the project are only briefly discussed in this section to have an
overview of what is necessary to understand the ADAS applications.
Furthermore, we will discuss some aspects of the project that affected the design and the development of the
Co-Driver based ADAS systems. For instance, the vehicle classification within the project. This section must
be considered a description of a subset of the entire project since the project covered many more aspects
like environmental monitoring, pavement monitoring, personalized traffic-related messages. One reader that is
interested in the project is recommended to check the documents available from the European commission in [5].

2.1.1 The SAFESTRIP infrastructure
The integrated solution consists of the infrastructure-based platform and the sensing, communication, and energy
harvesting custom. Although the solution is explained in [54], in this thesis, we are interested in the parts of
the system that are related to safety functions. Therefore, the aspects regarding energy harvesting and added
value services (virtual toll gates and road maintenance) are not discussed in this text. To discuss the SAFESTRIP
infrastructure in detail, we can start from the system’s objective. That are briefly listed below:

• Embed, update, and transmit static information on the road: i.e., the geometry of the road, map data, speed
limit, curvature, asphalt characteristic.

• Receive, process and transmit dynamic information of the road (i.e., traffic info, roadworks, level crossing’s
state).

• Measure dynamic environmental parameters (i.e., temperature, humidity, ice, gas, ambient light) that can
affect the safety of the road itself.

• Sensing all the road actors, especially Vulnerable Road Users (pedestrians), in order to provide real-time
data for the ADAS systems.

The system’s architecture is composed of 4 different connected parts with a well-defined role.

On Board Unit The vehicle (and the driver) are the main actors for ADAS design and deployment. The Onboard
Unit (OBU) is the part of the system that is connected with the vehicle and the driver. For the latter, using
a Human Machine Interface (HMI). this unit differs from equipped and non-equipped vehicles (see Section
2.1.2). For equipped vehicles, the OBU can read values from the CANBus, and the HMI is embedded in
the vehicle dashboard. For the non-equipped vehicle, the ORU consists of a smartphone connected through
LTE to the system using the MQTT protocol and is mainly demanded only to receive information from the
system for the HMI.

On Road Unit and Strips The name "On-Road Unit" indicates all the installed components on the road. In this
context, the central On-Road Unit is the "Strip," which can detect the vehicles and measure their velocity
(not the acceleration). An additional on-road unit is placed on the side of the road to store part of the
electronics and humidity and temperature sensors. In this work, we refer to the ORU as the strips.

Road Side Unit The Road Side Unit plays the role of the system’s gateway. All the peripheral equipment refers
to this communication gateway. It is custom-made and provided with energy harvesting modules (even
if it is still connected to the power grid to be reliable). This module communicates with the Strips using
Bluetooth technology. The communication takes place only from strips to RSU since the Strips (the ORU
in general) are aimed to provide data from the road and the vehicles that pass. Such a unit is equipped with
V2X technology and an LTE connection. We will see that these two communication technologies coexists
to cover the so-called "equipped and "not-equipped" vehicles.

At the end of this section, to summarize, in Figure 2.2 the SAFESTRIP infrastructure is depicted, with the type
of vehicles and all the components. As stated earlier, we represented only the components directly involved in the
safety functions. We also discuss some sensors that are not involved in the safety applications for the strips, but
they are worth mentioning to understand the strips’ capabilities.
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Figure 2.1: Prototype of Strip without the special covering paint

The core novelty of SAFESTRIP lies in the ORU, in particular, the strips.
They are designed to fulfill some critical requirements. They need to have a low energy demand for
implementability reasons and sustainability of the solution. They need to be thin enough not to interfere with
the road surface. Moreover, they need to be robust mechanically to bear vehicles passing forces. They have to
encapsulate the following components:
The sensorial board: it gathers all the data from the various sensing enablers, creates and finally sends in the
appropriate format the corresponding message information to the RSU via Bluetooth Low Energy (BLE) wireless
communication technology. The implemented version integrates a humidity and temperature sensor and a gas
sensor, and a custom Vehicle Detection and Identification System (VDIS) described below, which is the one we
are interested in the most. A gas sensor has been developed in the project and is based on the Odorant Binding
Protein (OBP). The sensor is intended to infer the presence of gasoline or lubricants on the road in the strips’
vicinity. Benzene’s key target gas, but other aromatic hydrocarbons (VOCs) are involved. Benzene is found in
the emissions from coal, oil, and gasoline. Due to the C6H6 molecule’s volatile nature and the high relative
weight, this gas stands close to the soil for the ORU benefit. The sensing principle is the electrical impedance
change using Odorant-Binding Proteins as molecular recognition elements. The environmental data collection
(temperature, humidity, and gas) takes place every 60 seconds while an event-triggered message is produced
whenever the system interacts with a passing vehicle enabling the VDIS system. The Vehicle Detection and
Identification System (VDIS): it is also a custom system based on mechanical switches manufactured to detect
vehicles:

1. position in the lane

2. speed

3. direction

4. longitudinal angle of velocity

5. vehicle type (two-wheeled, four-wheeled) and identification through a Radio–Frequency (RFID) technology
implementation.

The energy management module: it is mainly responsible for powering all the individual modules in the
ORU by integrating energy harvesters and batteries. Harvesters and batteries (rechargeable and no-rechargeable
are supported simultaneously) are connected over an energy management board that incorporates the energy
management ICs that hierarchically use the available power sources. In particular, energy is consumed, if
available, in the following order: directly from the harvesters (any energy surplus is used to charge the batteries),
rechargeable batteries and, no-rechargeable batteries. The energy management module can potentially support
different configurations regarding the number and type of the energy harvesters (i.i solar, piezo, radiofrequency),
different numbers of batteries per type, external powering, and optional cabling in which two ORUs can share
a shared energy storage pool in cases that the operational load is not balanced (i.e., one out of two ORUs is
overloaded by a significative amount of more vehicles passing). Strain gauges: a strain gauges module is hosted
in the ORU to monitor the strain profile of the pavement through two strain gauges per lane, placed at a right angle
to each other. Strain gauges accommodate the road predictive maintenance application that has been developed.
The encapsulation layer: It is responsible for the mechanical resistance. The encapsulation layer on top of
the ORU aims to protect the ORU electronic components, batteries, sensors, and antennas from vehicle loads,
temperature extreme variations, corrosive agents (gas, oil), and water. The integrated encapsulated unit has outer
dimensions of 1000 x 500 mm and a maximum height of 8.5 mm, allowing the placement of hard plastic material
of 1.5 mm (that is finally applied for integration on the road infrastructure ), leading to a total maximum height
of 10 mm of the whole strip from the road surface. In addition, its cross-section has a curved shape to minimize
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passing vehicles’ discomfort. The strips consist of 4 discrete parts (Figure 2.1), hosting the elements described
above. Those are installed orthogonally concerning the road lanes’ direction, with each lane hosting one strip at
the end. A similar but simpler strip configuration has also been created and added to accommodate Vulnerable
Road Users (VRU) scenarios. A particular strip is designed and installed on the road pavement that precedes the
zebra crossing to detect pedestrians.

2.1.2 Equipped and non-equipped vehicles
The proposed solution aims to constitute a low-cost solution that will host the critical intelligence and source
of safety-critical information on the road infrastructure directly and not on peripheral to the road infrastructure
elements (e.g., cameras and other surveillance systems) exactly to fill in the gaps if not replace and increase the
reliability of the information that is provided already by the latest as well as the onboard solutions. The proposed
solution is operating in any environmental condition (rain, fog, snow), which is not the case for the alternative
systems in place, while it also provides accurate lane position, which has been one of the fundamental technical
objectives of the solution. Collected and processed data are finally communicated to the drivers/riders in the form
of ITS messages via ITS-G5 technology (Cohda Wireless MK5-RSU). For the vehicles that are not equipped
with the corresponding onboard ITS-G5 module, we developed an efficient message protocol based on MQTT
messaging system via LTE. This represents one of the novelties of the project as well since it involves vehicles not
necessarily equipped with V2X technology. In the project, therefore, we need to distinguish between two types of
vehicles (and users):
Equippend and non-equipped vehicles.

Equipped vehicles

The OBU in the equipped vehicles integrates all the necessary communication modules and software stack for the
realization of Vehicle to Everything (V2X) communications and the required interfaces for the interconnection
with the vehicles CAN bus system and sensors. The communication between the equipped vehicles and the RSU
is performed by means of the V2X technology following the ITS-G5 standard. On the vehicle, as well as the
OBU, and HMI is pre-installed on the vehicle standard dashboard. The role of the SAFESTRIP infrastructure for
these vehicles is to send messages about the road. The vehicles’ state is directly sent from vehicles CAN-bus to
the Co-Driver instance. In Figure 2.2 an overview of the communication for the equipped vehicle is shown.

Non-equipped vehicles

While the equipped vehicles receive information onboard, non-equipped vehicles rely on a mobile application
purposely developed. The end-user mobile application continuously uploads several important values (i.e., ID,
coordinates, speed). Then, the C-ITS-S platform stores the information (for historical purposes) and processes it
to finally publish the results by pushing back warnings/ notifications/ recommendations information to the end-
user application. This message pushing is made available only to entities that have been assigned to this specific
notification service (MQTT) of the C-ITS-S platform. Therefore, each entity (RSU, DSS, HMI, and the Co-
Driver explained below) is considered by the system as a software module that communicates with each other
via the MQTT protocol. For non-equipped vehicles, the decision-making runs on the C-ITS cloud. Figure 2.2 an
overview of the communication for the non-equipped vehicle is shown (together with equipped one).

2.1.3 Communication
For Intelligent Roads, the communication between the road and the vehicles represent the main feature. With
such interaction, vehicles drivers (and autonomous vehicle) may adjust their behavior when presented with new
information, bringing mobility to a new level of awareness that can be exploited to increase the safety of the roads.
The cooperative solution has been implemented to accommodate a series of C-ITS driver/rider applications as
well as an application for infrastructure operators that aimed to serve as a proof of concept of the solution and are
reflecting the project Use Cases [52]. The sensorial and communication architecture has been designed to provide
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Figure 2.2: Safestrip infrastructure with functional representation of all components.

personalized and accurate information about the vehicles’ state and road surface conditions. The information is
provided at the lane level with the scope to improve existing safety applications and services or to develop new
solutions that were not possible without SAFESTRIP technology. A main objective is to include all other vehicles
(the non-equipped) and all potential service providers in the communication and information exchange, and not
only the equipped vehicles.
In order to maximize interoperability and transparency to future application developers, The standard V2X is
used as reference and the cost to the user is minimized. To this end, the most critical messages defined by the
V2X communication (i.e., CAM, DENM, and MAP) is mapped into corresponding messages implemented with
the MQTT protocol. The MQTT protocol is selected to communicate with the non-equipped vehicles over LTE
4G channel. The MQTT messages (or topics) are named ’virtual’ and are a copy of the original messages of
the standard V2X communication as defined by ETSI ITS-G5 or SAE J2735 [104], except for the serialization
of the message that is different. With this solution, non-equipped vehicles can receive and send information to
connected vehicles and other cloud services using the RSU as a gateway, therefore including, finally, vehicles that
are nto connected in term of V2X. Therefore, the equipped vehicles could benefit from applications developed for
connected ones, but they can become ’visible’ road users to connected vehicles, implicitly improving the safety
level provided by the applications.
The application layer does not depend on the type of communication (V2X or "virtual" V2X). The only difference
is that for non-equipped vehicles, one instance of the Co-Driver for every vehicle is created in the cloud (or
in any server hosting the system) when the smartphone subscribes to the service. The MQTT broker manages
messages are a copy of one of the V2X. Therefore, the application does not change. The solution simplifies the
application design and maintenance from the developers’ perspective since a standard interface can be adopted
both for equipped and non-equipped vehicles and for cloud services. Moreover, the same safety application can be
hosted in the equipped vehicle or on the cloud to serve non-equipped vehicles, even if with some limitations due
to communication delay and lower information update rate. It is important to remark that the "application layer"
is not constrained by any communication standard. It can be adapted with the new emerging standard of C-V2X.
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2.2 Co-Driver in SAFESTRIP

In this section, we discuss the Co-Driver ADAS applications. Three different applications are addressed. Each of
them is related to one or more dangerous situations in mobility. The idea is to apply the concept of the Co-Driver
we have seen in Chapter 1 taking advantage of the potentiality of the SAFESTRIP infrastructure in order to give
birth to new ADAS systems, especially for the vehicles that are not equipped with efficient onboard sensors and
neither with the V2X technology.
At first, in Section 2.2 we discuss a general structure of the Co-Driver that is used among different applications
(or use cases), providing a general architecture that is used. The first is about the pedestrian protection at a zebra
crossing and it is described in Section 2.3 and indicated with the acronym VRU (Vulnerable Road User), the same
application covers another use case, the Wrong Way Driving (WWD). In Section 2.4 an ADAS application that
concerns the roadworks on the highway (or other roads) is addressed. The last application is about the intersection
in urban and suburban roads (the INT symbol indicates it). This application is the most complex one, and it was
conceived to work with more data than the one provided by SAFESTRIP infrastructure.
The safety functions in SAFE STRIP are based on the Co-Driver concept and the idea of the inference of drivers’
intentions. The Co-Driver used in this project was built as an extension of the one proposed in [85][34]. The
Co-Driver represents a virtual agent used to understand what the driver is doing and provide a warning based
on the availability of safe and feasible maneuvers to achieve the goal in the driving scenario (e.g., stopping at a
cross-walk). The decision depends on the context and how strong the driver has to react to comply with the safe
maneuver computed by the Co-Driver. The Co-Driver identifies the danger, the action required to avoid it, and
the driver’s effort to change the longitudinal dynamics (i.e., jerk) to enter a safe state. The role of the Co-Driver
is also to discriminate when danger is imminent or not. Additionally, the Co-Driver represents a unified approach
for all use cases, which allows comparing different hazards with the same metrics rating the most dangerous. This
is also the reason why the Co-Driver concept was chosen as background framework for the ADAS application of
Sections 2.3,2.4 and 2.5.
Each safety application is built on a receding horizon approach. It means that the maneuvers are continuously
generated at a fixed rate, calculated by the Co-Driver over a time horizon that moves in front of the vehicle
as it travels along the road. The receding horizon schemes give the flexibility to adapt to the driver’s change
of intention and constantly be updated with new vehicle data or hazards. Every Co-Driver based application
structure is composed of two hierarchical layers ("layered control architecture" ): the top layer aims at interpreting
the environment in terms of dangers (e.g., for instance, "wrong way vehicle" or "pedestrian" in the first use case),
and the second is dedicated to the generation of feasible, human-like longitudinal behaviors (or maneuvers) that
comply with the above-identified danger. Those longitudinal behaviors are minimum jerk maneuvers that represent
a specific action to avoid the danger (for example, the maneuver to stop in Section 1.3.5). These maneuvers are
the Longitudinal Motion primitives, and are explained in Section 1.3. The motion primitives are parameterized
solutions of optimal control problems that minimize a cost function related to jerk and time. Those solutions
resemble longitudinal maneuvers of human drivers, for instance, when they drive from the current state to a
complete stop at a pedestrian crossing. In this context, the process of maneuver generation is called "Action
priming." These maneuvers resemble the concept of affordances in neuroscience [53] (i.e., maneuvers to reach the
desired goals that are also feasible starting from the actual state of the vehicle). The layered control architecture is
used to model the human decision process that selects one maneuver among a large set of feasible ones generated
using the longitudinal motion primitives (Section 1.3). The block representation of the selected architecture is
shown in Figure 2.3. The driver chooses one maneuver, but in our mirroring approach, all the possible maneuvers
are taken into consideration to identify the one s/he may use. It is worth noticing that the system does not
detect the exact maneuver the driver is pursuing (imitation), but only the compliance with safety is evaluated
(interpretation). In Figure 2.3 the general hierarchical architecture is discussed. In general, we decided to use two
layers, resembling the layered architecture from Brooks [26]. The Co-Drivers in the SAFESTRIP applications
share this two layers architecture. Let us now discuss the single elements.
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Figure 2.3: general structure of the Co-Driver on which every safety application in SAFESTRIP. The high-level
environment elaboration identifies the dangers and provides safe goals to the action priming low-level layer. Such
goals can stop before a certain distance or a time slot to safely cross an intersection. The action priming layer is
demanded to generate longitudinal motion primitives to accomplish these goals. The mirroring (action selection)
block converts these maneuvers into possible efforts, and the warning logic decides if such effort is too severe.

Environment elaboration

This layer generates high-level goals to be executed by the action-priming layer. One goal generated from this layer
can be translated into more than one action from the action priming block. In other words, this layer generates
affordances’ goals like "stop before that distance," but it does not generate the affordances itself. The level of
abstraction is higher than the action-priming block. In the Co-Driver instance in SAFESTRIP, the possible outputs
of this layer are two:

• Stop before a given distance (usually indicated by sf,0).

• Pass within a given range (or multiple ranges) of time. Indicated by T , that is a union of compact sets,
usually no more than two.

The action priming layer elaborates these goals. Let us now make an example of a possible outcome. The first
outcome, which we indicate with the keyword "STOP," may occur before a zebra crossing. In figure 2.6, we can
see a graphical representation of the interaction between the layers. The environment elaboration layer sends to
the action priming block the goal to safely stop. It is worth mentioning that this outcome is not to stop exactly at
that distance. Instead, it gives just the indication that the driver must stop before the distance as a safe behavior.
The environment elaboration layer is also responsible for resolving logical conflicts between different goals.
However, this aspect is not discussed here since no experiment was done. Furthermore, such prioritization was
based on a very straightforward logic [5].

Action priming layer

The task of this layer is to translate the abstract goals provided by the environment elaboration layer into actual
pools of primitives that the driver could pursue. The building blocks of this process are the longitudinal motion
primitives (see Section 1.3). This block generates the primitives to plan the motion from the current state to the
goals provided by the upper layer. It generates a set of longitudinal motion primitives for each goal. As we have
seen in the previous Section 2.2, we have two types of high-level goals, called in short "Pass" and "Stop." The
action-priming block receives the necessary data to generate the maneuvers. Let us now discuss the input and the
output of this block. Note that more than one goal can arrive from the upper layer, The action priming generates
maneuvers for all the goals, assuming they are safe. Let us now discuss how the Action-Priming block elaborates
the two types of goals: the Stop and the Pass goal.
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The stop goal
This high-level goal comes up in a situation where the only chance to avoid danger is to stop. A typical scenario
where this goal is used is the pedestrian crossing, in which one has to stop before the crossing. Therefore, the
goal is to provide all the affordances that link the actual states to any distance before a certain distance sf < sf,0
with zero final velocity. The input from the action priming block is, therefore, the distance sf,0 (sf indicates the
primitive generation argument, see Section 1.3). The output is a set of primitives of type CSS (see Section 1.3.5),
indicated in Equation (2.1).

Mstop(sf,0) = MCSS (a0, v0, sf < sf,0) (2.1)

The set Mstop is a continuous set of maneuvers, covering all the stopping positions less than sf,0. This set was
addressed in Section 1.3.5, in the same Section, in Figure 1.4 left, we illustrated an example of the continuous set
of primitives.
The pass goal
The pass goal is more complex than the stop one. It represents the possibility for the vehicle to pass a point
within time slots. The point to pass is defined, similarly to the stop case, by a parameter of the distance called
sf . The time slots instead are expressed by a set T , usually consisting in the union of a few compact sets. This
set represents when it is safe to cross the point at sf,0. The time origin is the current instant since the Co-Driver
always operates in a receding horizon approach.
For instance, if the time slots’ set is T = [5, 7], it means it is safe to cross the point sf,0 after a time between 5
and 7 seconds.
To accomplish this goal, we need sets of maneuvers that link the current states of the vehicle to a final constrained
distance and constrained time, covering all the time slots. The final velocity is instead “free”, given by the
optimality of the maneuvers. The chosen type of the primitives is the CST, illustrated in Section 1.3.6, these
primitives perfectly fits this type of problem. The set of the maneuvers is given in Equation (2.2)

Mpass = MCST (a0, v0, sf,0, T ) (2.2)

In Section 1.3.6 we provide an example of a Mpass, with the associated initial jerk set.
To recap the generation of the maneuvers of the two types of goals, in Table 2.1 the input and the outputs of the
action-priming block are summarized.

Goal name Input Output
Stop sf,0 Set of maneuvers from Equation (2.1)
Pass sf,0, T Set of maneuvers from Equation (2.2)

Table 2.1: table of the input and the output of the Action-priming block.

Action selection, mirroring and warning strategy

The outcome of the action-priming block is a set of all the maneuvers. Then, it is passed to the action-selection
block (or called mirroring of intention). While the other blocks are demanded to generate goals and actions, the
action-selection block must collect the maneuvers and evaluate them on some metrics. It is inspired by the role of
the Basal Ganglia [20], in the motion planning of primates.
In this context we are interested in interpret the drive intentions. In order to do so, we use an approach similar to
[34].
From maneuvers to effort sets: The mirroring process is based on the instantaneous effort required from the
maneuvers. Therefore, the first ingredient is a map from the maneuvers’ sets to a set of efforts. We assume that
the driver controls the vehicle imposing the longitudinal jerk j(t) (see Section 1.3). The effort associated with a
maneuver is its initial jerk j0(m) or j0(M), where M is the set of the maneuvers as seen in Section 1.3. A set of
maneuvers generates a set of initial jerks. Note that, fixing other parameters conditions, this quantity is monotonic
with the decreasing of the distance sf for the stop maneuvers and with T for the pass maneuvers. We will use
"initial jerk set" and "effort set" interchangeably from now on.
Mirroring as comparison of effort sets: the key idea now is to evaluate if the set of efforts carried out by the
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T= 14s

J0,feasible
J0,safe

Figure 2.4: Comparison between a jerk set retrieved by the safe primitives from the action priming block (right)
and the generic feasible jerks sets used as a comparison (left). In the case described, the driver is behaving safely
since the set of the initial jerks of the allowed primitives overlaps the safe jerks set.

action-priming block (that are associated with safe behaviors) is feasible. The objective is to understand if the
driver’s intention diverges from the safe ones suggested by the previous two blocks. And in order to do so, we
want to measure the effort required to follow safe maneuvers from the current state. For example, if the effort is
too high for all the safe maneuvers, the driver is doing something different and, therefore, unsafe.
To evaluate this, we need to define some standard efforts set that are "feasible." Once these feasible efforts sets are
defined, a comparison is made by simply verifying that the driver safe effort sets and feasible efforts set overlap.
Figure 2.4 illustrates a simple example of efforts sets comparison: the green vertical segment indicates a range
(sets) of jerks that is considered feasible, the shaded vertical line on the right plot instead indicates the efforts set
from the safe primitives. In this case, the sets overlap, and therefore the driver is considered aligned with the safe
behaviors. warning strategy. We now define the warning strategy, which compares effort sets to generate warning
messages of different severity. We have three levels of warning:

Level 0 It is only informatory, the driver is not at risk, but the information on the danger is provided. It is usually
associated with the blue color.

Level 1 It is associated with the yellow color, the danger is a real risk, and the driver is demanded to perform
correcting maneuvers.

level 2 The red warning, at this level, the driver is demanded immediately to perform the corrective maneuver.
The HMI emits a loud sound signal to ensure driving the attention to the warning message.

To understand which warning message to throw, we associate every warning level to a set of feasible efforts set.
The wider the set, the higher the warning level associated.
Level 0 is not associated with any set since it is always present if the environment elaboration layer detects a
danger.
Level 1 and level 2 are associated with a set of safe initial jerks each. Let us call them Jw,1 and Jw,2 respectively.
As soon as there is an overlap between the initial jerk set of the agent safe primitives (J0) and the feasible jerks
set of the corresponding warning, the corresponding warning is not issued.
Warning of level i is issued if:

J0 ∪ Jw,i = ∅ (2.3)

Note that to ensure the warning levels to be progressive (red 2 implies yellow 1 that implies blue 0) the set must
include each other in sequence:

Jw,i ⊂ Jw,j ∀i < j (2.4)
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As already stated, the blue warning essentially is associated with an empty set being issued in any case.
In this work, the warnings jerk sets are symmetric to the origin and read as follows:

Jw,0 = ∅
Jw,1 = [ −1 , 1 ] (ms−3)

Jw,2 = [ −3 , 3 ] (ms−3).

(2.5)

In Figure 2.5 several examples are illustrated to clarify how the warning strategy works.

A B C D E

J0 from safe primitives

Jw,2

Jw,1

2 0 1 0 1
Warning
Level

Example

0

-1

-2

-3

1

2

3

Initial jerk

ms-3

Figure 2.5: Five examples of comparison between efforts sets (J0), and warning jerks sets (Jw,i). In the first case,
case A, the efforts set do not overlap with any of the warning sets. This leads to warning level 2, which is the
maximum. Case B instead presents efforts set that overlaps with Jw,1, only the blue warning is issued. In the third
case (C), J0 overlaps with the red set but not with the yellow set; this means a warning of level 1 is issued. The
other two cases (D and E) replicate cases with warning levels 0 and 1, but the effort sets J0 are discontinuous,
showing that what matters is if the set overlaps or not with the warnings feasible jerks sets.

For every application of Co-Driver in SAFESTRIP, these three blocks are defined. An example of how the Co-
Driver works, block by block, is illustrated in Figure 2.6.
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Figure 2.6: Example of how the Co-Driver works in the pedestrian use case (see Section 2.3). The SAFESTRIP
system detects the pedestrian. The environment elaboration layer receives this message and sends to the Action
priming layer the goal to stop before the pedestrian position (100 meters in the example). The action priming layer
uses the vehicle states to generate the set of safe primitives, like the one we have seen in Section 1.3.5, in Figure
1.4. An initial jerks (efforts) set is associated with the primitive’s sets by the action selection layer. That effort set
is then used by the warning logic to throw a warning if needed, as shown in Figure 2.5.

31



2.3 Vulnerable road users and wrong-way driving

Two use cases are condensed into one safety application. These use cases concern the presence of pedestrians
on a zebra crossing. This use case can be potentially extended for all the hot spots where vulnerable road users
and vehicles like cars interact. These two use cases are addressed together since the adopted solution is very
similar, and also, in the SAFESTRIP project, they were addressed together under the name of "cooperative safety
functions." Thus, the first scenario considers the collision between pedestrians and vehicles, which is known
to cause a high number of accidents with a high rate of fatalities (21% of all fatalities in EU in 2016 [7]) and
serious injuries. The second scenario involves vehicles traveling in the wrong direction from a highway ramp
(i.e., out of a service station). These situations, despite being relatively limited in number, have much more severe
consequences than those of other motorway injury accidents [6]. The applications are designed for vehicles
connected or equipped with sensors to improve the performance of existing similar functions exploiting the
cooperative capability of the V2X technology and the information provided by the intelligent strips introduced by
SAFE STRIP. On the other hand, the goal is also to have the same applications available for non-equipped vehicles
thanks to the particular communication protocol introduced by SAFE STRIP that maps CAM, DENM, and MAP
messages of V2X ETSI standard [46] in the LTE 4G channel. This parallel architecture of communication
allows non-connected vehicles (called Non-equipped in this project) to receive the warnings and information
for each specific scenario from the applications running in a cloud server just by simply installing the SAFE
STRIP application on the mobile phone or, potentially, on the on-board infotainment system as Android Auto and
Apple Play. The underlying idea is to augment the penetration rate of cooperative safety functions in the market,
improving the overall safety on roads. Additionally, SAFE STRIP applications aim to increase acceptability by
providing timely, consistent, and personalized warnings. The acceptability is improved on one side using the
CoDriver concept that evaluates the driver intention and generates a warning consistent with the danger and the
estimated intention and the drivers’ specific reaction time. Further personalization is obtained displaying messages
only when necessary and relevant to the specific vehicle, which is possible since SAFE STRIP also provides the
lane of the vehicle is driving in.

2.3.1 Overview of existing solutions

A large portion of the literature and the state-of-the-art applications in pedestrian protection rely on on-board
sensors to detect the VRU, as it is reported in one of the latest surveys on safety issues of vehicles of the future [15].
However, on-board sensors need a line of sight to detect the pedestrian, which is not always the case in a complex
urban environment (e.g., because of a parked car or a stopped bus). To overcome this problem, different solutions
have been proposed. A new trend in the field consists of cooperative sensing that shares information produced by
on-boards sensors of one vehicle to others connected to it. In this way, each vehicle extends the horizon covered
by its sensors (for instance, limited by the field of view of the cameras, radars, and lidars) in a cooperative manner
using the information perceived by other connected vehicles in the surroundings. Additionally, the position and
speed information gathered by the sensors embedded in the mobile phones carried by the pedestrians or cyclists
can be included in the same cooperative framework. For Example, in [71] the mobile phone is used to detect the
presence of a pedestrian close to the road and estimate his/her trajectory in order to understand whether he/she
has the intention to cross the road. The information is then delivered via 4G/LTE and DSRC (ITS-G5 standard)
communication channels to connected vehicles. There are also IoT solutions based on wearable devices as in
[120] where the system was used to detect a distracted pedestrian. However, the reader may note that the direct
communication between the car or the infrastructure and the pedestrians’ smartphones or wearable devices can
be jeopardized by the latency of the communication and the inaccuracy of the GPS positioning embedded in the
device. As a third family of methods, VRU can be identified by sensors (e.g., camera or lidars) integrated into the
infrastructure on high poles to cover as much as possible the area of interests [15][44][56]. The latest solution was
investigated at various levels, including European projects, and it is capable of spotting the presence of vehicles,
pedestrians, or cyclists (even non-equipped vehicles) via classification algorithms, also with some partial occlusion
if powered by Deep Learning [44]. Nevertheless, such a solution still needs a good line of sight and cannot work
with heavy rain, snow, and fog. In conclusion, we can say that the vulnerable road users’ biggest issue lies in
their detection. The proposed solutions strongly depend on on-board sensors, or sensors carried by the pedestrian
when they are not embedded in the infrastructure. This aspect reveals the need to have a robust solution that is not
dependent on driver’s car equipment or the pedestrian choice to use portable devices. The new solution should also
cover the limitations (mainly occlusions and weather conditions) of the detection systems based on video cameras,
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lidar, or radars installed in the infrastructure. On the other hand, wrong-way driving detection is treated separately
in the literature and has been less investigated than VRU protection. Nevertheless, it is a dangerous scenario
that, when it occurs, causes a high rate of casualties [131] [59]. Among the solution proposed, passive detection
through infrastructure sensors is by far the most widespread approach that employs sensors such as conduction
loops embedded in the road surface, microwave doppler radar, ultrasonic sensor, photoelectric sensor, and video
image processing technology [131][72]. Image processing and photoelectric sensors successfully prevent wrong-
way driving, but a careful installation to optimize the detection angle is required. It has also been proposed to use
the attenuation induced by a passing vehicle on the signal received by a cluster of radio modules placed on the
roadside [59]. The system can identify the position, speed, size, and direction of travel of the vehicle producing a
local warning to the driver and sharing the information to the other road users in the vicinity but with a delay time
of about 6s, which can be too long for motorway scenarios. SAFE STRIP comes in to fill this gap with a solution
that is entirely independent of on-board sensors or sensors carried by the VRU, and it can detect the wrong way
driving vehicles or the pedestrians where they are, in all weather conditions without the need of a line of sight and
at a lower cost.

2.3.2 Pedestrian (VRU) use case

The purpose of the system is to improve the safety of pedestrians when they are crossing the road. The system
is then conceived to protect them where they are allowed (and they have the right) to cross the road in complete
safety.
therefore, the system is conceived for the Zebra crossing. Since it requires infrastructure on the road, it must
be used in precise spots. The strips, in particular, must be placed in the vicinity of the zebra crossing, where
the pedestrians are supposed to pass while approaching the cross-road. If the surface of the strip is enough, the
detection of the pedestrian is reliable (according to the reliability of the pressure sensor used for this purpose).
If pedestrians use the zebra crossing, they do not need any equipment. The system relies on only on-road sensors.
The use cases involve any pedestrian that is about to cross the road. It is not even necessary that the pedestrian is
aware of the system. The system acts on the drivers driving their attention.
The driver’s attention to the road markings depends on several factors. Therefore, the pedestrian protection system
must compensate for these factors. They can be internal (the driver is distracted) or external. The external causes
are the biggest motivation to develop the system since they affect every driver. Such causes are related to visibility
since several factors can limit it. They can be environmental, like the fog or the poor illumination in the night, or
occlusions in the field of view: a parked vehicle or a vehicle that already stopped at the crossing. The system does
not care about what is causing the driver’s inattention. The Co-Driver can estimate the driver’s intention relying on
the vehicle state only and therefore does not need to know what is causing the possible lack of attention, covering
internal and external causes. Based on this assumption, we can imagine several situations in which the VRU
protection is suitable. For instance, a pedestrian is crossing the road, and the driver is distracted, or occlusion
is present, and the driver does not see either the zebra crossing or the pedestrian being tempted to overtake the
occlusion. This application will also cover low visibility conditions that cause the driver not to see the pedestrian
in time to stop. Such situations are depicted in Figure 2.7. The system can operate with more than one driver
simultaneously since the only interaction taken into account is the one between the driver and the pedestrian.

2.3.3 Wrong-way driving (WWD) use case

This use case regards the danger of crashing against a vehicle driving in the wrong way. The application uses the
SAFE STRIP infrastructure to detect a vehicle using a wrong motorway exit or a rest area, leading to a dangerous
situation. The vehicles following the normal traffic flow are warned similarly to the VRU use case and the wrong
way to drive a vehicle if equipped or with SAFE STRIP application. The only difference lies in the type of danger
indicated in the HMI. The point of interest about the danger is the point of a possible collision, which in the case
of the ramp is its starting point (the merging area with the traffic). When a car has passed the dangerous point, or
the danger has disappeared, the warning is switched off.
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Figure 2.7: Example of situations covered by the VRU use case: occlusions, low visibility, and distraction.

Figure 2.8: Wrong Way Driving (WWD) use case: vehicle approaching in the wrong way on a ramp is considered
as a "static" obstacle but positioned at the beginning of the ramp, considering the worst case in which the vehicle
reach the end of the ramp entering the road.
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Figure 2.9: Position of the danger projected in the vehicle reference frame. For non-equipped vehicles, the heading
is approximated by the orientation of the strip.

2.3.4 Co-Driver instance

As stated at the beginning of this Section, every application is based on a specific instance of the Co-Driver, based
on the general scheme of Section 2.2. In order to identify the Co-Driver instance, we need to define the three main
blocks: Environment elaboration, Action Priming, and Action selection (mirroring).

Environment elaboration

This block performs a straightforward task in terms of logic (w.r.t the other applications). First, it receives
a message from the SAFETSTRIP infrastructure containing the danger type and the position. Then, the first
operation performed by the loop is to project the DENM position in a reference frame attached to the vehicle
(Figure 2.9). This step is performed for every application. This block has to establish if the danger is incoming
or not. It is based on two simple criteria: the distance and the heading. If the distance is above a threshold or
the vehicle is not heading towards the danger position, the latter is considered "not incoming," and the warning
system is not triggered (the Co-Driver).
If the danger is in front of the vehicle, the goal that is returned to the action priming block is to stop before sf,0,
that is the distance between the vehicle and the danger.
We decided to use the euclidean distance to ease implementation and not a curvilinear distance following the road.
In other words, we neglect the curvature of the road between the vehicle and the danger. This approximation is
a conservative solution for safety since the euclidean distance is eventually lower than the curvilinear distance.
Furthermore, this choice simplifies the application significantly since we do not require road geometry knowledge,
facilitating a real-world application and the experiments without affecting the safety. Therefore, the goal carried
out by this block is to stop only. One may argue that when you wait for a pedestrian to cross the road, you do not
have to stop all the time. Sometimes it is enough to slow down, and it is indeed true. Our Co-Driver understands
this behavior since you are always ready to stop if needed when you slow down. The Co-Driver is designed to
evaluate the pool of potential intentions, and in the case above, you keep the possibility to stop in your pool of
feasible maneuvers, and the Co-Driver detects that.

Action priming

Given the goals provided by the higher layer, this block is ready to generate safe primitives. The set of safe
primitives is computed at this point: the vehicle’s state is used for the initial conditions of the maneuvers.
Before calculating the maneuvers, the reaction time is taken into account, propagating the initial conditions and
the distance with constant acceleration. New initial conditions are then defined according to the time reaction
compensation. For simplicity of notation we consider [a0, v0, sf,0] as already compensated with the reaction
times. The manoeuvres set Mstop is then calculated as a set of CSS maneuvers (See Section 1.3 for the notation):

Mstop = MCSS (a0, v0, sf < sf,0) (2.6)
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Figure 2.10: Example of action priming for stop maneuvers in VRU, the safe maneuvers are all the maneuvers to
stop before the position sf,0. The two cases differs only for the initial acceleration a0.

The set of maneuvers Mstop represents all the possible maneuvers that have initial conditions a0, v0 and stops
before sf,0. Note that the lower the distance, the higher the deceleration and the initial jerk.
The initial jerk is evaluated to measure the driver’s effort to change the speed profile and perform the stop
maneuver. As stated in Section 1.3.5 the higher the magnitude of this value, the higher the effort. Intuitively,
the jerk is proportional to the rate of change of the brake pedal position. The efforts set reads as:

J0 = [−∞, j0 (MCSS (a0, v0, sf = sf,0))] (2.7)

We consider the jerk of the slowest maneuver as the maximum (minimum in magnitude), and we can use it directly
to compare it to the thresholds. Two examples of the action priming results are illustrated in Figure 2.10, we vary
the acceleration since it’s effect is not immediate to visualize as for v0 and final distance sf,0. The filled area
reresents all the maneuvers in the set. We are not interested at this point in evaluating single maneuvers. Instead,
we are interested in the "efforts set," the set of the initial jerks J0. The maneuver with the higher distance is the
one with the higher jerk. A note that the j0 is taken with sign.

Mirroring of intention

As discussed in 2.2, the mirroring of intention is about the initial jerk set J0. We compare the set J0 with
sample sets of jerks for yellow and red warning levels. The general reasoning reduces in a comparison between
j0 (MCSS (a0, v0, sf = sf,0)) (j0 for brevity) and two thresholds, as discussed in Section 1.3. The maneuver
should be negative during braking to increase the deceleration (even positive for some maneuvers if the driver is
decelerating more than necessary). Therefore, lower jerks (i.e., more negative) require more effort to brake. For
this reason, to take into account the effort of the maneuvers, one must take into account the jerk with sign. In these
applications, we always consider symmetric thresholds, but one can potentially use a threshold for negative and
positive jerks.
The warning system is detailed in Section 2.2, as well the values used. The action selection here, in presence of
only stop primitives, reduces to the comparison between j0 of the slowest primitive and the negative threesholds
of our feasible efforts sets.
FInally, no warning is issued if j0 falls above the threshold corresponding to warning level 1 (yellow band in
Figure 2.11). If j0 is below the threshold of level 2, warning level 1 is issued otherwise, the warning of level
2 is issued. The purpose of this mirroring process is to issue the warning when it is essential and to deactivate
it (warning level 0) when the driver is aware of the danger, and s/he is reacting appropriately (i.e., changing the
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Figure 2.11: Action selection for stop maneuver in the VRU and WWD danger cases, in the shown situations,
the system issues warning level 0 and level 2, respectively. Note that when the set is composed only by stop
maneuvers, it is a lower unbounded set; therefore, we do not consider the positive thresholds. We only need to
compare j0 with jw,min,1 and jw,min,2.

deceleration according to the computed safe stop maneuver).

Results examples

While the general results are shown in Section 2.6.1, we hereby provide an example picked from the equipped
vehicles experiments (for the VRU use case). In this case, we choose to show the equipped case since there is
the possibility to visualize the velocity trend in time (for each step every 50 ms). Let us now recap the level of
warnings and the associated colors: Level 0 warning is blue, and it is only informative, Level 1 is the Medium
severity warning, and it is yellow, Level 2 is the highest severity warning, and if issued, means that the required
maneuvers are considered emergency maneuver, the color is red.
Figure 2.12 shows in the top part the speed profiles of three tests where the car was driven towards the crosswalk
(on the left) at different velocities. The speed profile lines are colored with four colors depending on the warning
issued. The blue, yellow, and red colors correspond to the warning level described above. The green color
corresponds to no-warnings. The green color is the dominant part of the maneuver’s initial phase since the vehicle
is far away from the crosswalk (danger is considered not incoming). When the vehicle passes over the first strip,
the system is activated, and the blue color associated with level 0 is issued if a feasible and comfortable stop
maneuver is still available. Then the three drivers receive a different sequence of warnings based on the evolution
of the vehicle state (i.e., speed and acceleration and distance to the crosswalk). In two cases, the drivers receive the
yellow warning, and he/she adjusts the velocity to stop safely. In one case, the driver action is faster (i.e., higher
initial deceleration phase), and the warning disappears earlier (e.g., the case with higher top speed). The critical
thing to notice is that the warning comes back to zero when the driver intends to stop and decelerate properly. The
blue color visualizes this following the yellow one when the driver slows down enough, and the corresponding
initial jerk falls below the threshold, which means there is no need to change the deceleration. The action taken
will guide the vehicle to the desired stopping point, the danger may also disappear before the maneuver is finished,
and therefore the driver is not demanded to stop if not needed. What is ensured is that the driver is ready to stop
safely if required. The result in 2.6.1 proves the capability of the Co-Driver to infer the intention of the driver/rider
and remove the warning when the human is doing the right action. In other words, the Co-Driver has understood
that the driver/rider has taken the correct action to stop safely. In the third example, the driver did not slow down
the vehicle enough, and the warning rapidly changed from level 1 to level 2. In this case, the driver is particularly
aggressive, and it does not stop. The initial lower velocity and a slight deceleration profile caused the warning to
trigger later than the other two cases because the driver’s intention at the beginning is correct.
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Figure 2.12: Example of VRU application in three different cases. The example are picked to show how the
different levels of warnings are issued.

2.4 Roadworks safety function

As stated earlier, this use case concerns the work zones on the highways (or even urban roads). We consider
the danger introduced by the closed lanes for the roadworks that often lead to rear-end collisions, dangerous
maneuvers in general due to the "too late" lane change, and even invasions of the work zones that may lead to
injuries to the workers.

2.4.1 Overview of existing solutions

Another critical point for road safety due to infrastructure is to anticipate to the driver temporary maintenance
interventions such as work zones (roadworks). Roadworks are a safety concern, particularly at the beginning of
work zones and carriageway changeover points where inattention mainly causes rear-end accidents [12]. In these
critical zones, drivers at risk and road workers find themselves in dangerous situations that could potentially be
struck by motor vehicles. For instance, according to the National Safety Council, over 100 road construction
workers are killed in construction zones on an annual basis, and nearly half of these are killed struck by motor
vehicles [31]. Similar figures can be found in [45]. Additionally, roadworks also have a substantial impact on
traffic flow, significantly affected by how physical layout changes, as well as the length of the roadwork site,
citebakaba2016rdw. A problem that may arise in work zones may be signalized differently depending on the
country and the type of roadworks, making it difficult for on-board sensors to detect the zone and the road layout
change. Furthermore, most running vehicles are non-equipped without any of these sensing capabilities. Another
common aspect is making decisions considerably in advance (like changing lanes for highway work zones). This
makes again the possibility to use long-range communication a desirable solution. It can even improve the effect
on traffic in that case, avoiding dangerous and delayed lane changes maneuvers by managing the traffic flow
in advance to reduce queue. In a recent review on work zones safety systems [31], the authors identify three
categories of work zone accident prevention systems. The first is called Speed reduction systems, that focus, as the
name suggests, on reducing the motorist’s travel speed with or without physical impact on the vehicle. According
to the review, these methods appear to be the most effective, as long as the speed reduction is consistent. To achieve
this speed reduction, enforcement measures are needed. The second one aims to directly avoid the collision with
the work zones equipment by warnings sent to the driver (and eventually to the workers), which was named
Intrusion prevention and warning systems. The third category is called Human-machine-interaction detection
systems, and it is focused on the accidents inside the work zones, which try to prevent accidents caused by the
improper use (or interaction) between construction vehicles and workers. In this context, an established cluster
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Figure 2.13: Roadworks use case, one or more lanes are closed, the Strips are placed on the road, for each lane.

of safety systems is one of the Intrusion Alert Technologies (IAT) [11]. The scope of these technologies is to
advise the workers of a vehicle that is going to collide or intrude into the work zones. The common characteristic
of these approaches is using a variety of sensors in the work zone. The sensors technologies are infrared beams,
microwaves, and pneumatic pressured tubes as triggering. More recently, IATs have also been equipped with
Intellicone, Sonoblaster, and advanced warning and risk evasion (AWARE). A unified study on these methods in
[11] provides the primary limits on their effectiveness. In particular, they do not provide sufficient reaction time to
the workers (most of these approaches focus on proving advice to the workers and not the drivers). A consistent
limitation is also related to false alarms; this will undoubtedly affect the system’s acceptance. In the review of [12]
it is discussed that a primary focus of the technology is to design blocking devices (like barriers, shadow vehicles,
guardrails). These methods are undoubtedly effective at the very end for the workers, but they may not be very
effective for the drivers whose vehicles are physically stopped, even minimizing the damage. DRIVE C2X project
proposed a solution that enables road operators to communicate information about road works and restrictions
to drivers [112]. This solution is implemented with "road-side units," mounted at road works locations, enabling
messages and instructions to be sent to approaching drivers directly via ITS-G5 communications or the cellular
network. This service applies to all road and vehicle types, but, as far as it is understood, the communication
is a static warning sent to all vehicles approaching the area. Furthermore, no personalization is considered, for
example, considering the lane the vehicle is driving and its actual speed. The SAFESTRIP solution is oriented to
inform the driver in advance of the road works and personalize the warnings, minimizing false-positive warnings
thanks to the Co-Driver framework and knowledge of the lane the vehicle is driving in (see section 3.2). On the
other hand, according to the review, C-ITS is not mainly exploited in work zones use cases. This makes the system
classified between the first and the second category because it implies detecting single vehicles (like the second
category, the IATs), but it also communicates to the drivers to change their behavior, like a speed reduction system
does. A similar approach is also applied to the unprotected railway level crossing in cooperation with the project
SAFER-LC [105] that communicates the approaching train position and speed. SAFE STRIP complements the
V2X safety application developed in the SAFER-LC project broadcasting the information about the train to non-
equipped vehicles via the LTE 4G communication channel provided by SAFE STRIP.

2.4.2 Roadworks use case
This use case significantly benefits the SAFE STRIP infrastructure since it extensively uses lane information.
When work zones are present, some lanes are closed while others let the traffic flow. Therefore, the lane level
information, and the knowledge of how the road layout has changed, is of paramount importance for the safety
application to decide which specific vehicle sends the warning. Figure 1 shows the work zone scenario layout with
one lane closed and the other used to let the traffic flow. Two vehicles, one per lane, are considered for illustrative
purposes, but it is not a limitation of the application that can scale to a more significant number of vehicles and
several lanes. (The layout presented in Figure 2.13 is also the layout of the experiments).
The danger associated with the work zones depends on whether the vehicle is traveling in the closed lane or not
or on the presence of a queue in its lane. Accurate lane identification cannot be achieved using standard GNSS or
GPS since the minimum uncertainty on the vehicle position obtained with GPS is still in the order of magnitude of
the lane width [7]. On the contrary, the SAFESTRIP system can locate the vehicle’s traveling lane. Additionally,
this use case can be extended for any roadworks type. The only requirement is to distinguish between closed and
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open lanes. The strips can also be placed on custom lanes introduced by the roadworks to create safe corridors for
the vehicles, rendering SAFESTRIP solution a flexible approach for temporary modification of road layout. They
would be identified as "open lanes" and all as closed.

2.4.3 Co-Driver instance
As stated earlier, the Co-Driver agent is a bio-inspired framework used to estimate the driver indented maneuver
about the potential danger ahead. This includes the roadworks, the low-level part of the agent that ultimately the
risk level is the same as we have seen in 2.3. At first, the action priming generates all the feasible maneuvers
compatible to avoid the potential danger, and we will see that we use only stop maneuvers. Secondly, action
selection rates the generated maneuvers based on the effort required and, if the best is not within the threesholds
generates the appropriate level of warning. Finally, the action priming block is fed by the information on the danger
from the environment elaboration block that interprets the scenario through the V2X (and MQTT equivalent)
messages, in which there are the differences w.r.t the application that we have seen in 2.3. The process is
continuously repeated to adapt to the changes performed by the driver, and a warning level (i.e., informative,
medium, and high severity) is displayed to the driver when he/she does not react appropriately. The Co-Driver
and the mirroring of intentions concepts are used to design applications aiming to maximize user acceptance. The
concepts and the basic working principles are described in more detail in 2.2.

Environment elaboration

Again we have a Co-Driver which is composed of two hierarchical layers. The outer layer aims at interpreting the
environment and extracting safe objectives to follow (e.g., stop before the closed lane). Essentially its role is to
interpret the information received about the road scenario and identify the type of maneuvers that the driver can
execute. Those high-level maneuvers for road works can be:

• Stopping before the danger

• Going along the lane

• Change lane

The inner layer generates a large set of primitives for these goals. The first intention is modeled as the classic
stop maneuver we have seen. The second is present only if the lane is open. The change lane intention cannot be
represented by a longitudinal primitive, but we use the stopping intention to measure the safety of the potential
lane change maneuvers.
The scheme in Figure 2.3 represents the general layered architecture. In a roadworks scenario, the danger occurs in
specific locations and can be immediately defined without the need to resolve conflicts, but in this case, the danger
also depends on the lane the ego vehicle is traveling. Therefore, the safe goals of the corresponding maneuver the
driver should follow can be defined based on the vehicle location, lane, state, and distance to the danger.
The danger state depends on the lane the vehicle is traveling in. If the lane is closed, the safe maneuvers correspond
to any maneuver (possible limits on velocity are not handled here for simplicity reason, but integrating some
messages for them would be straightforward, even in the Co-Driver paradigm). These lanes can keep on traveling
at the desired speed. There is also another possibility that corresponds to a vehicle that changes to the free
lane. We remark that the outer loop must know the same lane the vehicle is traveling in to compute the different
maneuvers, and the strips provide this information. This also represents an innovation for equipped vehicles, which
GPS cannot identify the lane with the same accuracy as the strips. Despite that the safe goals are immediately
defined, it is not straightforward how a human would pursue that goal. To understand if the driver’s goal (i.e.,
his/her intention) is safe, the Co-Driver must mimic how a human driver will execute the maneuver controlling
the longitudinal and lateral dynamics of the vehicle. It is worth noting that most of the maneuvers feasible in the
targeted scenarios are pure longitudinal maneuvers. Therefore, to mimic how a human would drive to comply
with the goal, the aim is to predict the speed profile’s future evolution based on the vehicle’s actual state and a
final safe state (i.e., the goal). Among all possible ways to execute the maneuvers, the one that minimizes the
effort is preferable and closer to the driver’s choice. Using a simple longitudinal dynamic model, the problem
can be formulated as finding the maneuver that connects the actual vehicle state and a desired final goal, or state,
minimizing the longitudinal jerk (i.e., derivative of acceleration). The resulting maneuver is called longitudinal
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motion primitive and, by definition, is a minimum effort and safe maneuver since it respects the imposed goal,
which derives from safety criteria (e.g., stopping before the danger). In Section 1.3 the longitudinal motion
primitives are detailed. The jerk minimization yields smooth speed profiles that resemble those produced by a
vehicle driven by humans. The optimal criterion finds its theoretical basis in the neuroscience field where the
minimization of post-movement errors and rejection of neural noise translates into the minimization of the control
variable, in this case, the jerk (See Chapter 1). The shorter the distance, the more the longitudinal acceleration
has to be changed to reduce the speed in the given space. Being the jerk, the rate of change of the acceleration, its
initial value measures how much the driver has to modify the maneuver to stop the vehicle. As we have already
seen. Therefore, the initial jerk measures the driver’s effort in pursuing the maneuver.
For a vehicle in a closed lane, there are only two ways of escaping the situation: the first is to stop before the
end of the lane, the second is to change lane sufficiently before the end of the lane. We cannot generate lateral
maneuvers, our Co-Driver is based only on longitudinal inputs by design, but we unify these two safe maneuvers
set into one. We do not directly evaluate lane-change maneuvers. Instead, we evaluate the timing a lane change
must be performed. In practice, we answer the question, "how safe is a time the driver starts to change lane is a
lane is closed?". The first answer to the question may be "far enough from the end of the closed lane" to quantify
this distance from the end of the lane; we use the same metric of the stop maneuvers. Long story short, safety
is evaluated as "the driver should change lane before stopping is too dangerous." Note that being the metric the
same, if the driver slows down properly to stop, he/she will get no warnings, as well as if he/she keeps going to
change lane the warnings take into account if the driver changes lane sufficiently in advance. One may look at
Figure 2.14, to get a graphical sight on change lane maneuvers that generated warnings based on the time they are
executed. Note that any warning is turned off as soon as you find the first strip in the open lane because the lane
is free. In this case, the higher layer can provide a set of stop maneuvers to the action priming layer or that all
maneuvers are safe (free lane).

Action priming

If the lane is open, this block just returns that all the initial jerks J0,set = R are associated, and therefore, the
warning is kept on level 0. If the ego vehicle is on a closed lane, the action priming block behaves analogously
to the one of the VRU and WWD protection application 2.3.4. The set of safe maneuvers is the one to stop in
the closed lane before the end (As we have seen, they also represent safe lane change in terms of starting points).
Such set is represented by all the stop maneuvers with sf < sf,0, leading (thanks to monotonicity) to an initial
jerk set as follows:

Mstop = MCSS (a0, v0, sf < sf,0) ⇒
J0,set = [− inf, j0(MCSS(a0, v0, sf ))

(2.8)

Examples of stop primitives sets are shown in Figure 1.4. We recall we use the stop maneuver to measure if the
lane change is performed sufficiently in advance. For this reason, the mirroring approach is focused on the stop
maneuver only.

2.4.4 Mirroring of intention
The mirroring is then focused on the safety distance from the endpoint of the closed lane, and the concept is: the
lane change maneuver must be performed at a distance such that it is possible to stop before the endpoint safely.
This metric allows for the maneuver to be made in time and to preserve the possibility to safely stop if the lane is
occupied and it is not possible to perform the lane change maneuver. In Figure 2.14 some lane change trajectories
are associated with the stop maneuvers used for mirroring. Three maneuvers are shown at the same velocity but
different distances from the endpoint. One maneuver is instead performed with a higher initial velocity.

2.4.5 Experiment result example
while detailed and aggregated results are provided in 2.6.1. We now show an example of an experiment with
non-equipped vehicles.
As shown in Figure 2.13, the layout is two parallel lanes, one closed and one open, each of them having 4 strips
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Corresponding Stop maneuvers

Possible lane change maneuvers
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Figure 2.14: Example of Stop maneuver-based mirroring in the work zones case. The colors represent the warning
levels (0,1, and 2), the trajectories are qualitative to show the concept. A maneuver is considered safe if performed
before that stopping would become too dangerous. The trajectories do not represent the stop maneuvers; there are
stop maneuvers on the plot if the vehicle could not change lanes.

up the final point of the closed lanes. Figure 2.15 shows an example of a road work scenario with two cars
traveling in parallel lanes and one of the two is closed ahead. Figure 2.15 also shows the trajectories and the speed
profiles obtained from GPS data only for performance evaluation purposes. In fact, for non-equipped vehicles.
The warning is evaluated and issued only when the vehicle passes over the strip, indicated by blue vertical dashed
lines in the speed plot. The warning is displayed on the HMI application installed on the mobile device with
some delay, indicated by the black vertical dashed lines. The warning remains unchanged until the vehicle crosses
the next strip in the lane for an update. The blue, yellow and red colors in the trajectory and speed profile plots
correspond to the warning level. It is worth noticing that the vehicle in lane 2 (the open one) does not receive
any warning. This is possible since the application is aware that the vehicle is in the right lane. On the contrary,
the other vehicle keeps going at the same speed in the closed lane up to the third strip, which triggers yellow and
then red warnings. If the vehicle in lane 1 had moved to lane 2 the Co-Driver would have computed the free flow
maneuver instead of the stop maneuver (as for vehicle in lane 1), and no warning would appear. In other words,
thanks to the lane level information provided by SAFE STRIP, the road works application evaluates the risk level
consistent with the danger ahead and location of the vehicle proving the warning only to specific vehicles that
need it. Further, some metrics are shown for some cases of non-equipped vehicles since it is pretty effective even
if the vehicle state (e.g., position, velocity) is not provided continuously but obtained by the application through
MQTT communication. Therefore, for the non-equipped vehicle, the Co-Driver generates the stops maneuvers
only when the vehicle passes over the strips distributed before the closed lane.
In the case of equipped vehicles, the application works similarly, but it runs on-board and can take advantage of
the continuously updated vehicle state. In this case, the Co-Driver runs at 50 ms, and the warning is updated at the
same rate.

2.4.6 Experimental results
Even If the aggregated results are shown in Section 2.6.1, we decided to provide detailed results in this section
since we need to differentiate over various cases. A reminder of the experiment structure is worth it to discuss the
roadworks scenario results. The scenario is made of two lanes on a straight stretch of road where one of the lanes
is closed by the presence of the roadworks, and the other is left open. The driver can decide to stop or to change
the lane if possible. The roadworks experiments are divided into three use case sub-categories:

• A. Closed lane - one vehicle: one vehicle is running in the closed lane, and it can change lane instead of
completely stop or slow down,
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Figure 2.15: Example of experiment with two vehicles, one in the free lane, and the second is forced to stop. On
the top of the figure the representation with velocity and distance, the color indicates the warning. In the bottom
left the position in time, on the bottom right another schematic representation of the scenario. The vehicle on the
free lane slows down for the warning level 0, while the vehicle in the closed lane is forced to stop since it cannot
change lane. The latter vehicle reaches the red warning since it does not slow down (despite the yellow alert) till
the final strip, when the red warning is triggered.
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Figure 2.16: Average acceleration (negative), in the three different work zone use cases. In the first, the lane is
closed but the vehicle is free to change lane since it is alone. In the second case the other lane is occupied by
another vehicle, forcing the Ego-vehicle to stop. The last case is about vehicles in the open lane, that essentially
do not slow down at all.

• B. Closed lane - two vehicles in the scenario, one is running in the closed lane and the other in the open
lane. The vehicle in the closed lane cannot change since it is already engaged by another vehicle.

• C. Open lane: - one vehicle is already running in the open lane.

The average acceleration is particularly significant in this use case. While the maneuver time suffers from some
variability, the average acceleration gives a better picture of the urgency of the maneuver. This is reflected in the
variability among the different use above cases. For example, in Figure 2.16, this quantity is shown divided by the
three cases.
In the SAFESTRIP project, the target value of deceleration for a smooth maneuver was 1.5 m/s2. The case of
the open lane is characterized by very low deceleration because essentially, the driver can keep going since he/she
is only informed of the roadworks presence ahead (no check is done on actual speed even if, in principle, the
Co-Driver can do it). In the case of a closed lane and one vehicle (blue bars), the expected threshold is fully
respected: the driver had enough time to take a smooth corrective action after the warning. On the contrary, it is
evident from the figure that in the case of an occupied lane, the average deceleration is most of the time above
the target value. In order to investigate the compliance with the threshold, a one-samples and one-tailed t-test is
performed between the values of these types of experiments and the target value required. The selected confidence
is 5%. The test rejects the hypothesis that the difference between the average acceleration values appears to be not
significant (p-value 0.35). The test results are summarized in Table 8.
Despite the test result, the orange bars in the plot suggest a significant amount of high values. To investigate
further the data, this set of experiments is isolated and divided based on the driver’s decision to stop or change the
lane. The orange bars represent, in the sub-set of the two-vehicle, closed-lane case, the maneuvers that ended with
the vehicle being stopped, the blue ones with a lane change manoeuver.
The plot shows that the stop maneuver requires a significant average deceleration, while the average deceleration
is relatively minor if the driver decides to change lanes. A two-samples one-tail t-test confirms the difference. This
test compares the mean values of the maneuvers with the "stop decision" versus the "lane change decision." The
result is that the hypothesis is not rejected, and the mean value is different. The p-value is about 0.00026. In the
tests in which the chosen option was to stop, the mean value of the acceleration is above the desired threshold by
a significant amount. The null hypothesis is that the mean does not change. Different types of tests are performed
to compare two sets of data and a set of data and a fixed value.
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Test type Data compared H0 p-value Conclusions
t-test single-
sample two- tails

Two-vehicles experiments
average accelerations VS
threshold (-1.5 m/s2)

0 0.35 The overall mean of the two-vehicles
experiment is not proven to be different
from the threshold

t-test double-
sample two- tails

Two-vehicles experiments
average accelerations with
change lane VS with stop

1 0.00025 There is a difference between the mean
of the two cases “change lane” and
“stop”

t-test single-
sample two- tails

Two-vehicles experiments
average accelerations with
stop VS threshold (-1.5 ms-
2)

1 < 10−7 The mean value for the “stop” cases
deviates indeed from the threshold

Table 2.2: Statistical test between different cases of the roadworks use case
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Figure 2.17: Average Acceleration indicator for vehicles that stopped in the closed lane and vehicles that changed
lanes. Blue bars indicates those vehicle that changed lane.
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2.5 Intersection support systems
We hereby describe the intersection support system based on the Co-Driver framework developed in
SAFESTRIP project. This application addresses a challenging use case, even for state-of-the-art intelligent
vehicles. The SAFE STRIP infrastructure is exploited to improve the performance of similar existing applications
for connected vehicles, providing more accurate and rich information at lane level without the need for expensive
on-board sensors. Most importantly, it enables the safety function on this use case for non-equipped vehicles.
In this Section, after an overview of the existing solutions, we focus on the Co-Driver instance and the specific
features of the intersection support systems, a more general explanation of the Co-Driver framework for road safety
applications is provided in Section 2.2. Some simulation results and some specific experiments are discussed here,
while the aggregated results for non-equipped vehicles are discussed in Section 2.6.1.

2.5.1 Overview of the existing solutions
The distraction of drivers is hazardous in the case of intersections and merging areas. A significant amount of
accidents involves intersections and merging related traffic conditions, and many of them are due to an erroneous
evaluation of the situation, and a consequent wrong action or behavior is executed. In several recent literature
reviews on ADAS systems for intersections [102][29] most of the applications presented are based on optimization
approaches where the safety has the higher priority, and other performance indices are hierarchically minimized
or maximized like energy consumption, traffic throughput, comfort, and delays. The propose approaches are
classified as centralized ( i.e. [138]) or decentralized (i.e. [80]). A central system manages the vehicle traveling
across the intersection to provide priorities and warnings in the first case. In the second case, each vehicle’s
intersection support system runs onboard, processing the information received from sensors and connected
vehicles. Nevertheless, in both cases, they share the common requirement of data exchange using V2X. Data
about the environment, road layout, and surface conditions can be collected by sensors onboard vehicles or by
fixed sensors on the infrastructure. Centralized approaches tend to focus on monitoring the whole intersection,
providing global optimum traffic management, and typically do not target the single driver. More driver-centered
approaches (and decentralized) are based on machine learning models (reviews are reported in [42] and [10]).
They are focused on understanding the driver’s behavior through various data types, such as monitoring the driver
using video cameras or inferring it from the vehicle’s state.

2.5.2 Introduction
As stated in 1.2, the Co-Driver framework can perform the mirroring of intention (i.e., estimate what is the drivers’
intended maneuver), and this idea has led to several applications, including the one presented in [34] and adopted
in this project to be further specialized for the intersections to take advantage of SAFE STRIP technology. The
objective of the application is to provide safety in general. This means reducing the number of accidents related to
multiple vehicles, such as intersections and merging roads. More specifically, we want to address the problem of
possible drivers’ lack of attention or visibility concerning the presence of other vehicles. Therefore, the danger is
related to other vehicles approaching the intersection, causing collisions. The scenario covered by this application
is then an intersection with other vehicles approaching. Also, a merging ramp case was covered in the project, but
we have not reported it here because the experiments were incomplete.
As for the other applications, the methodology is to warn the driver to make him/her aware of these dangers on
the road.
The Co-Driver is expected to improve the system’s acceptance, performing a similar intention estimation that
humans would perform. The idea of the intersection and support systems, herein developed, is born as an
extension of the work proposed on [34] the Co-Driver concept is introduced and used for intersection scenarios.
In SAFESTRIP project, the application is extended with a more flexible warning logic, and the integration for
the non-equipped vehicles. The latter is made possible by the SAFESTRIP infrastructure. For all the other
applications, the Co-Driver evaluated the intentions of the driver of the ego vehicle. Here instead, the Co-Driver
needs to evaluate also the intentions of other drivers. Thanks to the strips (or to the CAM message for equipped
vehicles), the Co-Driver knows the state of the other vehicles. This information is employed to generate sets
maneuvers for each actor in the intersection. Similarly to what it is done for the ego vehicle. After a more detailed
description of the use case, the Co-Driver instance of this application is explained.
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R

Figure 2.18: Example of intersection addresses by the application. The circle is the conflict zone, radius R can be
tuned for safety margins. More complex geometries can be used in this application.

2.5.3 Intersection use case
As already stated, the intersection use case is the most complex scenario developed in the SAFE STRIP project.
It involves multiple vehicles, and it is the only use case in which it is required to understand the intentions of
non-ego vehicles. The use case in this project has tested with a maximum of two vehicles for experimental limits,
but the application is designed for multiple vehicles, and tested in simulation.
The general layout of the use case is depicted in Figure 2.18. In general, we have a conflict zone that is indicated
by the dashed circle of radius R, the collisions are supposed to happen only in the conflict zone and a sufficient
condition to avoid collisions is that only one vehicle at a time can occupy the conflict zone. This conservative
approach is justified by the nature of the application, which aim at providing warnings, the experiments validates
this approach. The application is also designed to consider general topologies of the intersection under the
condition that the vehicle can pass near a center point of the intersection. Therefore this excludes the roundabouts.
Still, they could be treated only as separate intersections, one for each merging lane.

2.5.4 Intersection application design notes
This application is addressed in a slightly different way than in the others of Section 2.3 and 2.4. For the
others, we always started from the data available from SAFESTRIP infrastructure. In this case we decided to
start from a general application with mpre signals available. Then, we simplified the application in order to
use it in SAFESTRIP. This difference is entirely encapsulated in the environmental elaboration block of the Co-
Driver. Therefore, we introduce the general application, perform validation in simulation, and introduce the
approximations for the SAFESTRIP version of the application. The experimental results presented in 2.6.1 are
intended for the SAFESTRIP version of the application.

2.5.5 Co-Driver instance
The application structure, like the other applications, resembles the general one we have seen in 2.2 and is
composed of two hierarchical layers (and three blocks). In this case, the outer layer interprets the intersection’s
geometry from the map message and tries to estimate the behavior of other actors (i.e., vehicles). This is done using
the geometry of the intersection, the right of way priorities of vehicles crossing the intersection, and estimating
the intentions of the other vehicles in terms of possible time to cross the intersection.
The inner layers are dedicated to inferring the ego-vehicle maneuver and assessing the risk level of the maneuver
the driver is pursuing to provide a suitable warning. While the outer layer elaborates the environment and the
intentions of the other vehicles.
Again we follow the Co-Driver mirroring approach: Interpret environment and other vehicles - generate safe
maneuver - compare with the current state - send a warning.
The feasible maneuvers, which avoid collisions (i.e., are safe), are rated based on the effort necessary to execute
them. It is assumed that the human driver will more likely follow the one that is easier to be executed. The agent
estimates that the driver intends to select the minimum effort maneuver based on this assumption. And the task of
the Co-Driver is to understand if this minimum effort maneuver is included in the safe maneuvers.
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If the effort to pursue safe maneuvers is also proportional to the risk level, the higher this effort, the more the
behavior of the driver deviates from safe maneuvers. In equipped vehicles, the process is continuously repeated
to adapt to the changes performed by the driver, and a warning level (i.e., informative, advisory, and cautionary)
is displayed to the driver when he/she does not react appropriately in non-equipped vehicles, the warning level is
updated once any vehicle passes a strip. The maneuvers generated by this layer are compatible with the inferred
intentions of the other vehicles and are considered safe in this respect. Those maneuvers are built using atomic
longitudinal human-like maneuvers, the usual longitudinal motion primitives of Section 1.3. As for the other
application, the initial jerk of the maneuvers is the direct metric for the effort required by the driver to start that
maneuver.
Figure 2.19 shows the hierarchical structure of the Co-Driver instance. The environment elaboration layer
elaborates the states of the non-ego vehicles and returns a pass goal with the residual time slots available for
the ego vehicle. It also generates a stop goal, which is always a safe option. This block is described in Section 2.2.

CoDriver in SAFESTRIP
Environment elaboration  

(high level) 

Pass goal 
(Time slots) Stop goal

Safe 
ManeuversAction priming 

 (low level: Safe longitudinal motion primitives
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Selection)
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Generate simple pass goals
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Figure 2.19: Layered architecture of the Co-Driver instance of the intersection use case. The environment
elaboration contains other actions priming blocks associated to other vehicles in the intersection. The results
of these blocks are collected and elaborated to carry out time slots fro the action priming block of the ego vehicle.

The hierarchical structure is shown in Figure 2.19. More details on the general Co-Driver architecture are reported
in 2.2. Here we now discuss the specific roles of the blocks in the intersection application, with a particular
emphasis on the outer layer that manages the conflicts between vehicles. One that is interested in conflict
management as a separate application can refer to the work of the author in [117], which contains similar concepts
of this specific Section. From now on, we will use an example layout of an intersection to illustrate the approach.
It is depicted in Figure 2.18. The shape of a T-intersection is also the one selected for experiments.

2.5.6 Environment elaboration: conflict management

The environment elaboration layer plays a fundamental role in this application. Its task is to provide safe goals for
the ego vehicle starting from the intersection geometry and the state of other vehicles. This block returns both of
the goals seen in Section 2.2. They are stop before the conflict zone (sf,0 is the distance), and pass within the time
slots T . The first goal is analogous to the other stop goals we have seen in the other applications (see Sections 2.3
and 2.4). The only difference is the distance to stop, which is computed as follows:

sf,0 = dr,v −R, (2.9)
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where sf,0 is the final distance for the stop goal, R is the radius of the conflict zone and dr,v is the plain distance
between the vehicle and the center of the intersection.
To compute time slots instead, the same action priming procedure is applied for all the non-ego vehicles involved
in the intersection to estimate time slots at which the non-ego vehicle arrives at the intersection. In the following
subsections, more details on this steps are provided.
The time slots are time ranges when a vehicle can reach the conflict area. For Example, a time slot equal to the
set [1,3] means that the vehicle can reach the conflict area between 1 second and 3 seconds after the current time.
They can be the expression of permission to pass (the case of the time slots of the ego vehicle), or the estimation
of the time the vehicle may arrive (the case of the time slots of the non-ego vehicles). The time the intersection is
occupied is also considered, and it is explained later.
In this thesis, we also addressed the problem of autonomous vehicles intersection management in Chapter 4.
The initial ideas for such a method were inspired indeed from the approach developed in this Section for the
intersection merged with the optimization of the airplane landing in airports, (The reference for this topic is not
available since it is still in progress).

The conflict zone

The first thing that is performed is the definition of an area of the intersection that is the one in which all the
collisions may take place. The safety requirement is to free the area for a single vehicle to pass (i.e., it cannot be
occupied by two-vehicle simultaneously). This area is called “conflict zone” or “conflict area” and we define it as
a circle of radius R or Rcz, with the center in the geometrical center of the intersection (the position is provided by
map message as reference latitude and reference longitude). This choice, which makes the solution conservative,
is made because this project’s scope is safety through the warning. The radius Rcz can be tuned according to data
from the map message or tuned manually. The critical requirement of the conflict area must be the dimension,
which has to be enough to guarantee safety if different vehicles do not share the area simultaneously.
In Figure 2.18 a qualitative example of the conflict zone is shown.
In the case of the autonomous vehicle instead (See Chapter 4), the conflict zone is tailored on the intersection with
specific lengths defined for single conflicts, since the goal in such case is to improve efficiency (keeping safety
obviously).

Time slots

A Time Slot Ti in this context is a range of time in which a vehicle i can enter the Conflict Zone (CZ). This
approach is all about estimating and cutting time slots. Thus, the mirroring of other vehicles’ intentions consists
of estimating their "unconstrained safe maneuver," leading to estimating other vehicles’ time slots. The estimation
of the ego vehicles’ time slots (necessary for the action priming block) is performed considering the following
factors: all the possible feasible trajectories of the incoming vehicles, compelling conflicts between trajectories,
and the right of way order in the intersection. Finally, the computation applies an action priming block seen in
the previous Section on the other vehicles given the initial conditions and takes all the feasible maneuvers. At this
step, some assumptions are made:

• A maximum velocity vmax at which the intersection can be crossed is selected; it does not have to be
necessarily the speed limit of the road.

• The trajectories associated with the same vehicle can be considered coincident out of the conflict zone R
(see Figure 2.18).

For each vehicle approaching the intersection, all the feasible trajectories are instantiated; since the geometry of the
intersection is fixed, the feasible trajectories do not change over time during the crossing. The reference trajectory
is generated as a sequence of clothoid preserving continuity in curvature; this aspect will not be detailed in this
Section for space reasons. We assume that vehicles do not significantly deviate from these trajectories, but this is
not restrictive if we consider sufficient safety margins. Once the trajectories are defined, the action priming block
needs the available time slots, according to the other vehicles, the right of way order, and the conflict between
trajectories.
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Figure 2.20: T-Intersection with six paths and three vehicles. The symbol pk indicates the path k. Each vehicle
can be associated with several paths, since we do not know in advantage which paths is going to follow.

Safe condition

In order to avoid a collision, the constraint we impose is that no vehicle can share the conflict zone with another
vehicle simultaneously. And this condition will be used for the computation of the time slots.

Computation of time slots

The computation of the time slots is performed in several steps. This calculation requires the longitudinal states
(acceleration, velocity, and position w.r.t the intersection) of the vehicles involved. A scheme of the algorithm is
shown at the end of the Section. The first step is to instantiate one vehicle for each trajectory (from p1 to p6 in
Figure 2.20); those vehicles (called virtual vehicles) are needed because the trajectory choice of each vehicle is
unknown; for Example, the vehicle a in Figure 2.20 can choose to follow the path p1 or p2. Therefore, for instance,
vehicle a is associated with the two virtual vehicles corresponding to path p1 and p2. For those virtual vehicles,
we define the points of intersection between the conflict zone and the trajectory pi, and they are the entry points
and the exit points of the conflict zone. Concerning the entry point, we define a curvilinear abscissa s(t) on the
trajectory pi as the longitudinal position of the virtual vehicle, with velocity v and acceleration a. They compose
the longitudinal state of the virtual vehicle, just as we have already seen for all the other applications. This state
coincides with the one of the actual vehicle associated. The following steps are performed to resolve vehicle
conflicts and inhibit overlapping time slots. First, the possible intersections of all the trajectories are manually
detected (only once, before deploying the system). No conflict is considered between trajectories that share the
same starting lane (in our use case, the couples 1-2,3-4,5-6). After this step, the right of way order is taken into
account to establish the order of passing for each conflict. Our use case was chosen to use the “priority to the
right” rule and the yield road signal for the vehicle. To represent the conflicts, the right of way matrix is defined
(Mrw). The concept of the right of way matrix is often used in traffic simulators (e.g., SUMO [43]), (Mrw) is a
square matrix, where the columns and the rows represent the possible paths. The entry Mrw(i, j) of the matrix
represent the conflict state between the trajectory pj and the trajectory pi, the entry Mrw(i, j) is equal to one if
there is a conflict between paths pi and pj and path pi has the right of way. If it’s pj that has the right of way, the
value is −1. When there is no conflict, the entry is equal to 0. The matrix is anti-symmetric, since for each conflict
only one trajectory can have the right of way on the other. Note that the right of way matrix can be computed
using fixed rules from the geometry,roadmarks and signals. For our use case example (Figure 2.20) the following
Mrw matrix is defined: 

0 0 0 0 0 −1
0 0 1 1 0 −1
0 −1 0 0 −1 −1
0 −1 0 0 0 0
0 0 1 0 0 0
1 1 1 0 0 0


(2.10)

For instance, the path p2 intersects paths p3,p4 and p6. In the first two cases, the path has no priority. In the
last case, the trajectory has priority. In our application, the right of way order is meant to be provided by the
infrastructure.
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Vehicles and order to pass

The right of way matrix now is used to inhibit the time slots of each vehicle, cutting them with the ones of possible
vehicles with higher priority. In order to facilitate this operation, the inhibition of the time slots must be performed
in a compatible order of passage In this way for each trajectory the time slots with higher priority must be available
for the computation of the next one. This condition can be formalized as follows:
Given σ a vector which entries are an order that is compatible with the priority of the paths. Given i∗(j) the vector
of indexes of the entries with value −1 in the vector composed by the column j. The following condition must
hold:

σi∗(j) < σj ∀i, j|Mrw,i,j = 1. (2.11)

The condition above is equivalent to reordering the column of the matrix Mrw in the order σ in order to collect all
the −1 in the upper triangular.

If the time slots computation is executed according to the order σ, time slots of higher priority vehicles are available
for cutting time slots of lower priority vehicles. In our example the order is σ = [1, 3, 4, 2, 5, 6]. Different vectors
σ are possible if there are no pairs of paths with no conflicts. Moreover, those vectors do not necessarily represent
the passing of pass. The vehicles that have to yield to others can pass before respecting the time slots, and this
happens if the priority vehicles are far enough. The next step is to define the maximum and minimum velocity
to generate feasible initial time slots; this is performed using the same algorithms in [1] starting from one wide
time slot (0-1000s). Here the trajectories data are used to discriminate the vmax value: the maximum velocity is
computed according to human tolerance criteria called two-third law shown in [24] which depends on the curvature
(ρ). It is chosen (according to [24]) to represent the 99.9 percentile of the human drivers (according to [24]). The
maximum velocity is limited on a feasible one (can be higher than the legal limit of the road).

vmax = min (vmax, vρ) (2.12)

Time slots can be initialized and then cut for all the virtual vehicles in order σ. The first initialization considers
only the provided bounds on velocity, like the intersection was free. The inhibition consists of cutting the time
slots of the higher priority virtual vehicles. The time inhibited in this phase is only the set of the possible arriving
time of the higher priority vehicles, representing all the instants they can arrive at the intersection.

Crossing the intersection

Until this point, we only considered the time to arrive for the vehicles. However, the time to cross the conflict
zone is nonzero. We assume a constant velocity in the conflict zone (this velocity is updated at every step to avoid
collisions due to the slowing down of vehicles, but this aspect was not validated). The distance in the conflict zone
is computed for each path pi. We define the times to cross as follows:

T cross
k = vk,maxδs,k (2.13)

Where δs,k is of the portion of the path pk inside the conflict zone. This time to pass the intersection must be then
taken into account in the inhibition (T cross in Figure 2.21. For the ego vehicle to pass, the first time slots to inhibit
is that the ego vehicle itself needs to clear the intersection.

Final time slots

The time to cross must be concatenated before any time slot of the other vehicles to ensure the intersection is
clear if the ego vehicle passes before others with higher priority. The time to cross the other vehicles must be
instead concatenated immediately after the last arriving time of them because the ego vehicle has to wait for the
other vehicles to clear the intersection to pass. The time to cross is estimated using the current velocity of the
vehicle over the residual arc of the trajectory in the conflict area. This choice was made to be robust in case of an
unexpected sudden slowdown in the vehicle in the conflict area.
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Figure 2.21: Example of time slots inhibition for ego vehicle (green). The available time slot for the green vehicle
is cut by three quantities (for one opponent vehicle): the time to cross of the ego vehicle, if s/he wanted to passes
first, the time slots of the opponent vehicle, and the time to cross of the opponent vehicle, since the ego-vehicle
must wait the conflict zone to be free. The concatenation of this quantity always starts from the time slots of the
opponent vehicle in this case because of the priority. We provide more details in Algorithm 2, where one can
replace i as a generic ego vehicle and j as opponent in order to understand the procedure.

The time slots computed, are used for the computation of the maneuvers and the warnings. The algorithm allows
to compute time slots for each virtual vehicle involved and for the action priming block the time slots are the one
of the ego vehicle. The algorithm is summarized here:

Algorithm 2 Computation of time slots

Input: Vehicles states sj vj aj
1: Instantiate virtual vehicles and trajectories and assign states
2: Compute trajectories conflicts and generate/write Mc Matrix
3: while true do
4: for i ∈ σ do
5: Initialize time slots Ti using vmin and vmax

6: compute T cross
i

7: for j ∈ j|Mrw,i,j = 1 do
8: get T cross

j

9: Add T cross
j after Tj

10: Add T cross
i before Tj

11: Cut the resulted slot from Tj

12: end for
13: end for
Output: final time slots Tj = Tj

14: end while

In the end, this block generates two goals: the goal to pass in the time slots and the goal to stop before the
intersection. The latter is always a safe option since collisions are eventually avoided stopping before the
intersection.

Action priming

As in the other applications, the Co-Driver generates safe longitudinal maneuvers that the driver can pursue at this
stage.
As stated above, we have two goals to fulfill with maneuvers. The first is the stop goal. The point to stop is the
initial point of the conflict area, and its distance is again defined as sf,0. Using the notation in Section 1.3, we
generate the "usual" set of stop maneuvers, yielding to the set:

Mstop = MCSS(a0, v0, sf < sf,0). (2.14)
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The other goal is the pass goal. The other set of maneuvers then aims to reach the intersection (the conflict zone) at
a given time T , which has to be in the time slots T . The final velocity is not constrained, and the final acceleration
is zero. The final velocity depends directly on the maneuver’s duration and constraints space. The final velocity
is lower bounded to (3 m/s) because too slow maneuvers are too similar to stop maneuvers (The same velocity
bounds are used in [34]). For the pass goal, we use the primitive called CST in Section 1.3.

Mpass = MCST(a0, v0, sf,0, T ). (2.15)

maneuvers can be instead represented by all the primitives with final time in the time slots, condition expressed
by T ∈ T , where T is the set of the time slots and it is a union of compact subsets. For example, T = [T1, T2] ∪
[T3, T4] represents the possibility to pass in one of the two intervals. To summarize, the complete set of the
maneuvers is the union of the two sets, indicated by Mint.

Mint = Mstop ∪Mpass (2.16)

It is important to remark that a set of maneuvers (for our purposes) can be defined knowing only the maneuver
at the bounds of the set. Therefore, we do not need the expression for all the possible maneuvers (as stated in
Section 1.3.6). In this application, we are interested in the initial jerk. Thanks to the monotonicity of the initial
jerk with time (and space for the stop maneuvers), jerk sets are defined by their bounds maneuvers. An example
of maneuver generation (actually completed with mirroring of intention) is depicted in Figure 2.22.

Mirroring of intention (Action selection)

As we have already explored twice, we must now to generate a proper warning level for the driver when s/he is
not acting safely. Minimizing the effort is preferable and closer to the driver’s choice among all possible ways to
execute the maneuvers. The two sets of safe maneuver described in (2.16) generates a set of initial jerks. thanks
to the monotonicity of j(0)(T ) and j(0)(sf ) in the stop and pass maneuvers, the sets in (2.16) correspond to one
unbounded set for the jerk and to a union of compacts for the other (J0(Mpass)):

J0,set = [− inf, J0(Mstop(a0, v0, sf,0))] ∪ J0(Mpass) (2.17)

At this point, the mirroring is identical to the other approaches and to the general Co-Driver architecture we have
seen in Section 2.2. If the safe jerks (the set bounded by the thresholds for each warning level) overlaps, the
corresponding warning level is not issued. An example is provided in Figure 2.22.

2.5.7 Simulation validation

As stated earlier, we developed a general approach that can deal with several intersections, imposing a right-of-
way order and handling the time slots hierarchically. We implement simulations in which the vehicles follow the
time slots to cross the intersection to validate such logic. However, this is not possible (and out of scope) in the
SAFESTRIP context. Therefore, we provide a simulation framework and result to test the presented time slot
logic.

Simulation environment

The simulation environment was developed in Matlab (2020b). A single-track vehicle model was used to simulate
the vehicle dynamics. The algorithm is executed periodically every 100 ms. Two different cases are considered
for the scenario in Figure 2.20. The difference is in the driver’s behavior.
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Figure 2.22: On the left, a set of stop maneuvers and a set of pass maneuvers from the action priming block (from
actual values). The plot on the right only represents a vertical axis with the jerk in ms−3. It shows in blue and
green the two subset of the final J0, the colors indicates the maneuvers they come from. On the same plot, dashed
lines are the bounds of the warnings’ jerks sets for the mirroring process. In the selected case, the warning level is
0. A detailed explanation of the warning strategy is in Section 2.2, as well as an example in Figure 2.5.

1. Full autonomous case: in this case, the vehicles are driven by the Co-Driver, using maneuver one selected
the first available in the (pass) safe maneuver set. This case aims to validate the algorithm’s effectiveness in
terms of maneuvers generation and time slots calculation. In this case, the maneuver selected is the slowest
one of the first (pass) time slots available.

2. Warning-based case: Vehicles a and b are considered autonomous (or modeled by the Co-Driver), and
vehicle c is represented by a decision-making model of the driver. The model consists of two case switches.
Unaware behavior: the driver is unaware of the other incoming vehicles, and the initial velocity remains
the same until the behavior switches to “aware.” Aware behavior: when the Co-Driver issues warning, the
reaction time of the driver is taken into account (value based on [34]), waiting 1.5 seconds before switching
on the Co-Driver safe maneuver (which can be a stopping maneuver or a pass. This case is aimed to evaluate
the warning anticipation; the vehicle “c” was chosen because it is the one with most of the conflicts in which
it has to yield to other vehicles.

Simulation results

For case 1, 50 simulations were performed with random initial conditions and trajectory choice. Distance and
velocity from the intersection (the conflict area) were generated in the range 50-100 m and 8-16 m/s. Any vehicle
chooses randomly one of the two associated paths (for instance, vehicle 1 can choose between p1 and p2). No
collisions occurred between vehicles in the simulations. This result is shown in Figure 2.21. Every chart is
associated with two conflict paths (6 plots), in the y-axis, the number of the experiment is indicated, and for each
of them, the time at which the intersection is occupied is shown. Only the case when the associated paths were
selected is shown in each plot. The absence of contemporary occupancy of the conflict area is shown in Figure
2.21, between the crossing times is always present a safe gap, which is not explicitly imposed in the algorithm, but
it raises from the fact that the time slots are considered for all the possible approaches velocities, to be robust to the
practical maneuver choice. In the majority of the cases, the maneuver with the right of way (the blue one) passes
before the other. The opposite situation happens only with a significant time gap because the yielding vehicle
considers its own time to cross.
For case 2, the 50 simulations have the same random initial conditions, except for the distance which is generated
in the range 100-200 m. Figure 8 is shown the time to an intersection (TTI) at the instant the warning is issued.
TTI is defined as the time to reach the bound of the conflict zone keeping the same velocity TTI(t) = v(t)/s(t).
In Figure 2.24, blue triangles represent the case in which the driver is the last passing the intersection, the green
represents cases in which he/she passes before at least another vehicle. In most cases, the TTI is linear with the
velocity, which is the case of the theoretical warning time in [1]. Cases in which the driver can pass before occur
when the warning is generated, but there are available time slots to pass before. This can happen only if the driver
has high velocity and the others are slow. There are 2 cases of TTI < 2.5s, those are cases in which the others
rapidly clear the intersection, but the velocity is too high for the curvature of the trajectory, a consequence of the
implementation of the two-third law [24] for the accepted velocity.
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Figure 2.23: Crossing times for each case of conflict, in blue the time frames of vehicles with right of way on the
others, the segments represent the times frame the correponding vehicles passes in the conflict zone.

Figure 2.24: Time To Intersection for warnings of “non-aware” driver
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2.5.8 SAFESTRIP specific features and approximations
The application illustrated and validated in simulation is now adapted to the two use cases that we have seen
(intersection and merging). However, to do so, we need to make some further assumptions and introduce a feature
for the reaction time compensation.

Time slots in the SAFESTRIP case

In the SAFESTRIP case, we decided to consider all the opponent vehicles intended to pass. This is because the
application is focused on safety, and we are interested in the effectiveness of the warning in case of danger. It is
also worth noticing that if the conflict zone is not too conservative, the mirroring of intention should also model
an opponent vehicle that slows down to stop. This action may leave a wide enough time slot for the ego vehicle
to pass, even if the opponent has the right to pass. The other approximation regards the trajectories, we consider
the trajectories as rectilinear, and the segment inside the conflict zone is taken conservative as the diameter of the
conflict zone. (For time to cross computation mainly.) Apart from these two aspects, the application does not
change from what we have explained in previous sections.

2.5.9 Experimental validation
This Section now addressed the experimental results of the application. As for the other applications, we start
with a minor experiment set using "equipped vehicles, provided with V2X and a precise positioning system. This
is to validate the application in an ideal case. After that, we move on to a more extensive experiment set on the
non-equipped vehicles. That validates the application in the scenario where the only information comes from the
STRIPS on the road, and the communication is performed using a smartphone and the MQTT framework.

2.5.10 Equipped vehicles results example
For the equipped vehicles, The plot in Figure 2.25 shows the drawing of the actual layout and the trajectories of
the vehicles colored with the warning levels that were issued in the experiments. Different colors correspond to
different levels of warnings. For Example, it is possible at first glance to see that the red is closer to the center of
the intersection than the yellow, which means it was issued just before the intersection for a critical case after a
progression from green to yellow. In Figure 2.25 the trajectories obtained in the equipped experiments are shown.
The colors on the trajectories indicate the warning level. This plot is possible only for the equipped vehicles
experiments since the position was provided with enough precision and rate. The variability of colors among
trajectories is due to the vehicles’ actual velocity and acceleration value being the Co-Driver designed to take
them into account. In the intersection case, the warning also depends on the opponent vehicle. For Example, some
curves are completely blue since the opponent vehicle had cleared the intersection before the go vehicle was close
to it. Some blue colors after the intersection are due to the vehicle heading back to the intersection and triggering
the system in new intersection management.
Experimental results are detailed in 2.6.1, aggregated with the ones of the other applications.

2.6 Experimental results
In this section, we collect all the results in terms of Time To Collision and Average Acceleration of the experiments.
Results on the telecommunication performance and the electronics are not reported here, since they are out of the
scope of this thesis.

Metrics

The metrics used in this section are the one used in the project to evaluate the timing of the warnings and the driver
behaviours (average acceleration after warning).
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Figure 2.25: Experimental trajectories with warnings in different colours, blue means level 0, yellow level 1 and
the higher value is represented by the colour red.

Time To Collision (TTC) It is computed as:

TTC =
v(t0)

s(t0)
(2.18)

Where t0 is the time the first warning was issued and v and s are velocity and distance respectively.

Average acceleration (aa) is the average acceleration during the maneuver time, it is computed as:

aa =
v(t0)− v(t1)

t0 − t1
(2.19)

where t1 is the time the danger is not incoming anymore (warning level deactivated, not even 0)

The results are divided by performance index (Time To Collision and Average Acceleration) and by kind of
vehicle, equipped and not-equipped. Finally, the result is divided by use case. We hereby formalize some acronyms
to indicate the use case:

VRU This acronym means Vulnerable Road User. This use case is discussed in Section 2.3, and consists in
pedestrian protection at the zebra crossing.

WWD Wrong Way Driving as the name suggests, it concerns the protection from a vehicle arriving in the wrong
way from a ramp. The wrong-way vehicle is actually detected at the ramp’s beginning (end).

RDW The roadwork use case is the only one tested with a len personalization. It concerns safe behavior in the
presence of one or more lanes closed for roadworks. Note that in these results, all the cases in which the
vehicles started in a free lane are not included since the system did not provide any warning.

INT It is the intersection use case. It is the most complex one, and it does take into account the behavior of the
other vehicles in a detailed and dynamic fashion. In this case, warnings do not depend on static obstacles.

In Figure 2.26 we can find the boxplot of the metrics. Discussions are provided in the next sections.
Additional experiments were made to cover two aspects: the Powered Two-Wheeled vehicles, and on-board GPS
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Figure 2.26: Aggregated results: BoxPlot of the metrics for each use case, divided by equipped and not equipped
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Figure 2.27: Aggregated results for Power Two-Wheeled vehicles. Again divided by use case.

and IMU sensors communicationg with LTE. Main purposes of these experiment were to validate the usage of
the MQTT via LTE communication paradigm (Not affected by the asyncronous communication from the strips).
And to test the system with PTWs. Availability limits do not allow us to test with PTW in other than this way.
Summarizing, PTW experiments provides the state of the vehicle (as well as the STRIPS) with on-board sensors
through the LTE connection. Results are provided in figure 2.27 and discussed in the next Section.

2.6.1 Results discussion

Time to collision of the equipped vehicles

In Figure 2.26, the TTC are shown int he form of box plots. To meet the requirements of the SAFESTRIP
project [5] we expect a time to collision behind 3 seconds. This reflects the reliability of the communication for
the equipped vehciles, the V2X standard is indeed designed for low-delay communication, accomplishing safety
critical tasks. The few outliers correspond to a more conservative TTC. The TTC indicator does not include the
acceleration in the computation, while the Co-Driver does. The Co-Driver issues the warnings as soon as is able
to detect the intentions according to the algorithm seen in 2.2. The Co-Driver takes into account that the initial
high acceleration increases the effort of the driver to pursue a safe maneuver slowing down, thus, those outliers
correspond to particularly critical behavior that required an earlier warning. Let us now look at the intersection
use case. The TTC is higher in general and we can recognize a higher variability. The higher mean (or median) is
due due to the whole area that is accounted as a source of danger, while the collision for the TTC is the center of
the intersection. This means that the actual distance for the maneuver of the Co-Driver is shorter than the distance
to the center of the intersection, leading to anticipated warnings. The variability of the TTC concern the behavior
of other vehicles. Changes of intention of other vehicles (there was only one other vehicle in the experiments) lead
to change in the set of safe maneuvers, for instance if the opponent vehicle accelerate (even slightly) towards the
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intersection. The time slots we have seen in Section 2.5 are dynamically updated and therefore the warnings may
happen in different time frames w.r.t. static obstacles.In general, the TTC is used to evaluate to the performance of
the system: we expect it to be similar or larger than the expected value of 3 seconds, shorter values would indicate
warnings that started too late, even if they made sense in terms of driver intention, but the idea was to change the
intention of the driver in time.

Average acceleration of the Equipped Vehicles

The average acceleration metric (in absolute value) is more about the behavior of the driver. It helps to understand
how the driver reacts to the warnings and how sudden he/she changes intention to a safe one. If the driver is
warned ineffectively or too late, this metric will exceed the proposed threshold (1.2 m/s). The average acceleration
exceed the threshold for a significant number of case, the median and the mean do not exceed it instead. The
outliers represent some cases of over-reactions for WWD and RDW applications, while in intersection and VRU
applications we have a higher amount of higher deceleration (in absolute value). We attribute this behavior to
the fact that zebra crossing and intersections are everyday situations and the drivers may be more confident in
decelerate later. The system is considered particularly effective in these scenarios where the source of danger
is not visible and in more extraordinary situations. Especially the WWD represents (fortunately) a very rare
event in regular driving, the systems seems to allow the drivers to respond calmly even if it is a quite unexpected
situation. Very drivers suddenly brake. In the roadworks the obstacle is not visible (as it is supposed to be in the
experiments), the warning allow he driver to slow down and change lane in time, the average deceleration is the
lowest along the use cases.

Non-Equipped vehicles results

The equipped vehicles represents the best case for the system infrastructure in terms of communication and
sensing, the positio was indeed provided by the vehicles and the strips did not play an active role in the warning
system. The non-equipped are a hardest challenge for the project since they are connected through LTE and
they rely on the strips to update their state in the Co-Driver instance. The state is not continously updated as it
was for the equipped vehicles. The smartphone sensors are used only for logging purposes and to evaluate the
performance. In principle, they could be employed by the Co-Driver, but here, the application for non-equipped
vehicles are tested using only the minimal set of informations (in aurban environment the smartphone’s GPS is
less reliable than in a field experiment). The variability in general is higher than the one in the equipped vehicles.
Figure 2.26 shows such variability in the width of the boxes. Non-equipped vehicles update the vehicle position
to the Co-Driver only when they pass over a strip. Futhermore, a larger delay is introduced when it comes to
communication. This two factors lie to the variability of the TTC. The warning evaluation cannot be updated
continuously. Nevertheless, two third quantiles of TTC are well above the threshold for all applications, except
VRU. Results are promising since the upcoming 5G technology may resolve the issue of the delays and for the
positioning we can increase the number of the strips.

Time to collision for non-equipped vehicles

As discussed above, the TTC values are more variable and in general lower than those of the equipped vehicles.
This is due to asynchronous update of the state fo the vehicle (velocity and position) and to the delay of
communication. For readers that are interested in the communication-related results the reference is [5]. With
non-equipped vehicles, the Co-Driver cannot rely on a continuous update of the vehicle state and furthermore the
acceleration value is not provided by the strips. The position and the velocity are known to the system only for
stips passages. Therefore, the warning, instead to be issued as soon as the Co-Driver would detect a dangerous
intention form the state of the vehicle, in the non-equipped case, we need to wait for the next strip. One can
notice that the threshold of 3 seconds is overcome in some experiments for the pedestrian use case (VRU in the
figure), while in the other three applications it is not. This happens for a significant number of experiments: only
the 60% percentile of the experiments is above the threshold. the VRU is the first experiment we make, after
that we changed the layout of the strips (We had only few strip prototypes, in a real applications the strips would
be more). In general we moved behind the strips, In the case of the intersection (INT), it was not necessary to
modify the layout, since it was already more conservative than the other use cases for the reason we discussed for
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the equipped cases. Also with the compensation, some experiments has TTC below 3 seconds, a precise case is
identified at which this happens: the first strip is passed at a safe velocity, but the second is not, the warning is
therefore issued only at the second strip. This problem in real applications must be faced with a higher density of
strips. In these experiments the number of strips (3 per lane) was limited by the availability of prototypes.

Average Acceleration for Non-equipped vehicles

The average acceleration for non-equipped vehicles is comparable with the equipped vehicles cases. The
variability is still higher, but the average acceleration in general lies above the expected threshold. More outliers
with high deceleration are present These cases correspond to the very lower values of the TTC (one by one is
verified) the reason why the deceleration is high is the late warning.

Power two wheeled vehicles results

The PTW vehicles shows that the system is suitable for the PTW and for this hbrid configuration. Since both the
TTC and the average acceleration are similar to the equipped cases. These results drives the attention to the layout
of the strips, since they show that with LTE connection one can get similar performance to the equipped case if
the state is continuously updated.

Conclusions

We developed Co-Driver based safety applications based on the SAFESTRIP “self-explaining” road technology.
The four use cases are successfully covered for equipped and non-quipped vehicles even if some of them presented
more promising results (wrong way driving and roadworks), the pedestrian protection was validated but it was
the less performing use case for non equipped vehicles due to the layout that was not yet optimized for the
experiments. Equipped vehicles and PTW “semi-equipped” vehicles behaves as expected, in particular the PTWs
shows that the continous update of the state of the vehicle (and the acceleration) is important to reach high
performance. The system performed well also for Non-equipped vehicles but some limits mainly due to strip
prototypes shortness came out. A higher density of the strip is required to reach comparable performances w.r.t.
the equipped vehicles. The Co-Driver was able to detect the in intention when fed with vehicle states since the
overall average accelerations matched the expectancies for aware drivers.
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Chapter 3

Model predictive control for hybrid

electric vehicles

In this chapter, we deal with the problem of optimal online control to split the torques in the powertrains of
hybrid electric vehicles, having as objective to minimize fuel consumption and battery capacity degradation (thus
maximizing the battery’s lifespan).
The overall problem is divided into two subproblems. The driver intention estimation for the prediction of the
future velocity profile. The optimal torque distribution of the hybrid powertrain following a Model Predictive
Control (MPC) scheme.
For the velocity prediction, the selected method is the Co-Driver presented in Section 3.2. Where it is explained,
validated, and compared with other methods.
The optimal control problem addresses both fuel consumption and battery life preservation using an equivalent
cost. In addition, the velocity profile is given. Therefore the performance of the vehicle is not affected. The
battery aging (also called “battery degradation”) is modeled through a state-of-the-art electrochemical model
that returns the loss of capacity. The Energy Management System (EMS) is evaluated (comprehensive of the
Co-Driver predictor) using actual driving data divided into 30 driving records from 10 drivers characterized by
different driving styles. The dataset is presented in 3.2.1, the same dataset is used for the validation of the Co-
Driver predictor. The simulations show that the proposed EMS can significantly reduce the capacity loss of the
battery while preserving the fuel-saving performances, and the Co-Driver-based predictor is suitable to feed such
EMS. A comparison of the EMS performances is carried out on different benchmarks. Firstly, we compare our
proposed framework with an offline optimization performed on the entire dataset length. Secondly, we apply the
optimal control technique proposed in an analogous receding horizon approach but using an ideal (non-causal)
prediction using “future” data of the velocity. Finally, to investigate the contribution of the battery aging, all the
benchmarks and the proposed framework are repeated, minimizing only the fuel consumption leaving the battery-
free to degrade. This benchmark is repeated with two different horizon lengths. The couple Co-Driver and MPC
approach show similar performances with the aforementioned ideal benchmarks.

3.1 Introduction
Hybrid Electric Vehicle (HEVs) gained popularity in the last decade because the impact of mobility on the
emissions of greenhouse gases is still considerable, and such vehicles represent a step forward in reducing mobility
impact on the environment. Electric motors can recover kinetic energy during the braking phase of driving that
would be otherwise dispersed in heat.
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One of the characteristics of the HEVs that can be exploited is the redundancy of the power output. The power can
come from the electric part of the powertrain or the internal combustion engine (ICE) according to the necessities.
The motor and the ICE present different characteristics in terms of efficiency that vary on the exerted torque
and shafts’ speed. Thus the torque request can be distributed between the two sources to optimize quantities (i.g.
efficiency). The family of control strategies that address this type of problem is called Energy Management Sistem
(EMS). The EMS optimizes some merit quantity making sure that the torque that the driver requests is provided
instant by instant. EMS can use the current power request with a classic reactive control scheme. However,
the most sophisticated systems take advantage of the knowledge of the future torque request, and have higher
capabilities to improve the performance of the powertrain [50]. Thus, control strategies for EMS that are based
on future knowledge and driver’s intention estimation have gained research interest. In this chapter„ we address
the on-linee optimization of the torque distribution for hybrid electric vehicles with two concurrent objectives:
minimizing fuel consumption and minimizing battery aging.
The literature on the control strategies for HEV is wide and varied; In [132, 19, 115, 114] recent exhaustive surveys
can be found.
A first broad classification can be made on the main logic they are based on. Firstly, we can consider the strategies
that rely on a predefined logic to minimize some target quantities instant by instant. We can call them Rule-
Based (RB) strategies. Secondly, we can consider the methods that exploit the possibility to directly minimize
some target quantity (e.g., fuel consumption) using optimization techniques (i.g. optimal control). Our proposed
approach falls under this category.
Between these two categories, the RB strategies still represent the most straightforward solutions for the
commercial hybrid vehicles to equip them with real-time controls [114]. Such type of logic, ,usually requires little
computational power, and it can benefit from the experience of the designers [137], making their implementation
and testing easier concerning the optimization-based strategies.
Despite these pros of the RB, they present some cons. Their design process requires a long phase of tuning the
parameters and, most importantly, when it comes to performance, optimization strategies outperform the RB,
[78],[137].
Sophisticated rule-based strategies are often used in couple with optimization strategies. For example, in [65] the
author’s combined rules with an ECMS framework. They compared the results of their approach with the solution
of an off-line dynamic-programming optimal control problem.
The common characteristic of all the Optimization-based approaches is the direct minimization of some cost
functions. These objective functions usually comprehend the fuel consumption, and it may include some other
quantities like the battery degradation. Despite this common goal, current literature presents different techniques.
The most popular techniques are: the model predictive control (MPC) technique, the so-called Equivalent
Consumption Minimization Strategie (ECMS), and offline optimizations. The ECMS method is widely spread
in the literature usually, it concerns specifically the minimization of fuel consumption. It makes use of the
Pontryagin Minimum Principle (PMP) to satisfy the first-order optimality condition and find the minimum of
the fuel consumption.
The canonical ECMS cost function is composed of a term with the fuel consumption and a term with the power
flow of the battery, both inflow and outflow depending on the sign. The name “equivalent consumption” is due to
converting the power flow of the battery into equivalent fuel consumption. The weight that multiplies the battery
power in the cost function has this scope, and it is called “equivalence factor” [92].
Recent realizations of this strategies can be found in [137] and [97]. In [137] the authors extended the classic
ECMS strategy by considering the degradation of the battery, adding an empirical model of such degradation
that depends on the current throughput. In [106] the battery degradation is considered using a look-up table
that associates the instantaneous state of the battery and the current flow to various rates of battery degradation.
Another recent instance is [82], in which the classic ECMS a map of the equivalence factors that depend on the
driving cycle, such map is tuned using machine learning techniques.
The ECMS strategies can be employed as an fast optimization algorithms. Thus, they do not require knowledge
of the future power demand unless they incorporate some method to change the equivalence factor on-lined on
estimations of future power demand.
In [135] the authors propose an energy management strategy based on the ECMS framework that is adaptive. The
framework is designed to optimize both flexible torque requests, and the gear shift commands.
Even if they cannot be used for real-time applications, several off-line optimal control techniques can be found in
literature[101][123] since they can provide a benchmark to design and tune the rules for the RB methods.
When it comes to apply optimal control (or optimization in general) online , we can talk about Model Predictive
Control (MPC) or Receding Horizon strategies. These methods require knowledge of future power demand (as
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the word “predictive” suggests). Model Predictive Control, in short, is composed of a model of the system, a cost
function to minimize, and knowledge (or an estimation) of a finite horizon of the future desired outputs. At every
execution step, optimal control techniques are used with a system model, trying to minimize the cost function
without affecting the desired outputs. Some general treatment of the MPC paradigm can be found in [51],[9] and
[27].
The main MPC limitation concerns the real-time computational feasibility. The optimal control techniques used
in such approaches usually have a high computational load.
Recent work is [130], where the authors use an MPC technique to minimize simultaneously fuel consumption,
battery degradation, and electric energy consumption in an equivalent cost function. The overall model
comprehends a simple equivalent-circuit battery model and a semi-empirical capacity degradation model. The low
complexity of the models favors the usage of on-line dynamic programming a the expense of modeling accuracy.
The future power demand is retrieved from an estimation of the future desired speed profile.
An on-line dynamic programming approach is similarly used in [136] to minimize fuel consumption. The authors
propose a hierarchical velocity prediction strategy to estimate the future velocity profile. In [129] dynamic
programming is combined with reinforcement learning. Another approach that features the multi-objective
minimization of fuel consumption and battery degradation is presented in [79]. The speed profile is tracked as
well as a target State-Of-Charge (SOC). The on-line optimal control problem is formulated with a direct multiple
shooting method, and the resulting optimization problem is solved with sequential quadratic programming.
Even if we picked the most recent instances of sophisticated EMS that consider fuel consumption and
battery aging, most of the approaches (and those implemented in commercial vehicles) still consideronly fuel
consumption. However, it is well known that a severe battery usage leads to a degradation of its capacity and other
performances. This eventually affects the vehicle maintenance costs and the environmental impact. The exhausted
batteries may need to be replaced, and severe usage leads to a more frequent replacement. The frameworks above
that account for the battery degradation model the batteries with equivalent circuits, which cannotodel the battery
dynamics through all the range of the working conditions.
Sometimes more accurate models are taken into account, in [90] a state-of-the-art electrochemical model is used
in an optimal control framework. But it is employed only to to update the control constraints considering the
aging, but in the resolution of the optimal control problem„ the authors model the battery dynamics by using a
more approximated model based on an equivalent circuit.
A motivation to use an accurate electrochemical model for the battery lies in the importance of its internal states.
they are crucial to represent the degradation dynamics [108] accurately, [109]. In our EMS, we consider such a
model in the resolution of the OCP. An off-line version of this idea was first introduced in [36]. In that work, the
authors propose an off-line OCP with a state-of-the-art battery model. They validate the approach in simulation
on some standard driving cycles.

In this chapter we extend the results of [36] from the off-line approach to the on-line. Here a similar OCP and the
battery model validated in [36] are cast in a Non-linear Model Predictive Control (N-MPC) framework.
A detailed electrochemical battery model that is employed in an on-line optimization-based EMS is not present in
the literature to the best of our knowledge.
This work presents an architecture for an energy management system of a hybrid electric vehicle. It is coupled
with the Co-Driver prediction scheme seen in Section 3.2, making it a complete EMS.
The prediction is made using the vehicle’s velocity and acceleration only. To summarize, we present an on-line
optimization strategy that considers the the battery degradation model while being executable in real-time. The
model used for the optimal control problem (OCP) is a state-of-the-art electrochemical battery model that includes
the aging dynamics and the consequent capacity loss. The OCP minimizes the total cost: the price of the battery
and the fuel price are used as weights to convert the cost function into an equivalent economic cost. The approach
is validated on naturalistic driving telemetries (a dataset of 30 driving cycles performed by 10 drivers). The off-line
approach proposed by some of the authors in [36] is reproduced on the real dataset, and it is used as a benchmark
for the on-line approach.
The proposed EMS is first tested in pair with an exact velocity prediction (employing two different prediction
time-horizon lengths) to validate the choice of the prediction horizon length. Then, the EMS is tested in pair
with the novel prediction scheme to assess the prediction’s effectiveness in feeding the driver’s future intention
to the EMS. This chapter presents a complete architecture for an energy management system of a hybrid electric
vehicle. It combines two elements: Firstly, the bio-inspired the Co-Driver prediction algorithm explained in 3.2,
which uses the vehicle’s velocity and acceleration only. Secondly, an on-line optimization strategy that considers
battery aging issues while being executable in real-time. The model used for the optimal control problem (OCP) is
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a state-of-the-art electrochemical battery model that includes the aging dynamics and the consequent capacity loss.
The OCP minimizes the total cost: the price of the battery and the price of the fuel are used as weights in order
to convert the cost function into an equivalent economic cost. The approach is validated on naturalistic driving
telemetries (a dataset of 30 driving cycles performed by 10 drivers). The off-line approach proposed by some
of the authors in [36] is reproduced on the real dataset, and it is used as a benchmark for the on-line approach.
The proposed EMS is firstly tested in pair with an exact velocity prediction (employing two different prediction
time-horizon lengths) in order to validate the choice of the prediction horizon length. Then, the EMS is tested in
pair with the novel prediction scheme to assess the effectiveness of the prediction in feeding the future intention
of the driver to the EMS.
To prediction that feeds the future velocity of the EMS presented in this chapter is based on the Co-Driver concept
in chapter 1. The Co-Driver instance used for the predictor is detailed in 3.2 and the dataset is detailed in Section
3.2.1. This chapter contains a Section 3.3 in which the powertrain and battery model used in the EMS are reported.
The EMS is described in Section 3.4 in terms of the optimal control problems formulation and summarized in 3.5.
In Section 3.5.3 the validation methodology is discussed and finally the results are discussed in 3.6, as well as the
drawn conclusions.

3.2 Co-Driver based speed prediction
Obtaining an accurate estimation on a long time horizon is a challenging task since the speed profile is affected
by many factors, including the driver’s possibility to change his/her short-term goals, maneuver, or the urgency to
adapt to unexpected situations. In this work, the time horizon of the speed profile prediction is the short-term one
(up to 10 seconds), aiming to reach relatively high accuracy. Behind this objective, there is the hypothesis of the
driver to be following one intention only and predicting simultaneously the intention and the velocity profile that
will generate from it. The first thing to present now is the dataset.

3.2.1 Dataset
In this section, we introduce the experimental data used to validate the prediction scheme and the energy
management system proposed in this chapter. The dataset comes from the user tests of the EU FP7 “interactIVe”
project [3]. In the user tests, the rate of the logging is 10Hz. We are interested in longitudinal velocity and
acceleration. Other sensors outputs were logged, some of them at a higher sampling rate, but we do not use them
in this work. The user tests took place around the city of Turin in Italy; the route consisted mainly of extra-urban
roads, but it included intersections, roundabouts, and some motorways segments. The map of the entire route
is shown in Figure 3.1. A total of 10 different drivers drove the route. In order to get a proper dataset for our
purposes, we must cut the time series, and we need to remove some parts.

Data preprocessing

The 10 datasets of driving are about 45 minutes long. As one can notice in Figure 3.1, a significant portion of the
circuit consists of a motorway, the A55. We decided to discard such portion of the dataset for two reasons:

• The constant velocity would improve the prediction results since constant velocity is a trivial case for the
predictor.

• The potential fuel saving decrease drastically when the velocity is constant since the vehicle is not a plug-in
hybrid. It is common knowledge that most of the fuel-saving in an HEV vehicle occurs only in the presence
of accelerations (positive and negative), since the battery can save the vehicle’s kinetic energy in the form
of chemical energy.

Another processing that we made concerns a division of the dataset. In order to tune the parameters of the
predictor, we must have a dataset for tuning and one for validation. Both of these datasets must cover all the
drivers. Furthermore, to make the comparison between results easier, it is desirable to have driving records of the
same length. To meet these requirements, we take advantage of the similarity between the datasets. Looking at
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Figure 3.1: Map of the route of the user tests of the EU FP7 “interactIVe” project [3].

Figure 3.2, one can easily recognize a familiar pattern: one initial phase with varying velocity, one-second phase
with high and constant velocity, and finally another but shorter phase with varying velocity. In Figure 3.2 the
velocity ranges between the ten different datasets is shown. For every value of time, the maximum, the minimum,
and the velocity are depicted. As shown in Figure 3.2, for each driving dataset, we cut three different records,
namely A,B, and C. Dataset A starts 50 seconds after the beginning of the dataset and stops after 360 seconds.
Dataset B and C are adjacent in time, covering tC = [1840, 2200] and tB = [1480, 1840].
Once we have 3 driving records for each driver, we have a total of 30 records. These data serve for tuning and
validation of the prediction parameters.
We hereby define two different datasets that serve for the prediction algorithm validation. The predictor presents
a two-parameter to be tuned; to validate the tuning of such parameters, we need two datasets: one for tuning and
one for validation. In order to span all the drivers, the two datasets are composed as follows:

Tuning dataset For each driver, we pick 2 out of 3 A,B,C record randomly.

Validation dataset For each driver, The only record left that is not used in the tuning dataset is used for the
validation dataset.

3.2.2 Prediction scheme

In this chapter, we propose an architecture for the prediction that is based on the Co-Driver introduced in 1. To
infer the driver behavior, we use a generative “mirroring” approach discussed in the same chapter. Different
instances of motion primitives are generated, and only one of them is selected through a Bio-inspired action-
selection process: the Multi Hypothesis Sequential Ratio Test (MSPRT) [100][13]. This time we have in mind
a precise scope for the predictor: it must have the same performance among different types of drivers without
the necessity of tuning parameters. Therefore the maneuvers should be unavoidably a trade-off between accuracy
and generality. In Figure 3.3, a high-level scheme of the predictor is shown. The predictor is based on a simple
Co-Driver factoring two elements. Firstly, one action-priming block generates the motion primitives, which are
the competing affordances. Secondly, one action-selection block that selects one primitive among the competing
primitives generates by the previous block.
All the operations are executed with a receding horizon method, meaning that the action-priming block generates
the three maneuvers at every time step, and the action selection block selects one of them according to new and
previous evidence. We observed that the computational load of the prediction is negligible compared to the optimal
control one. The data were available every 100ms, this time interval is not enough for the optimization step to
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Figure 3.2: dataset cut for each driver, one record is cut into three sub-records, and the motorway driving is
discarded. In orange, the average velocity among the datasets at each time, the range between the minimum and
the maximum in grey.
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Figure 3.3: Predictor scheme, the affordances are indicated with their associated maneuvers.

finish, but the predictor can be executed. Thanks to this low computational load, we execute the predictor at 10
Hz, 5 times faster than the optimization. This higher rate allows the MSPRT to collect more samples per second
and to cumulate more evidence, speeding up the update of the action selection. More details will be provided in
the MSPRT Section 3.2.4. The following sections explain the predictor’s single elements (blocks) in detail.

3.2.3 Action-Priming
At every time step, the action-priming block generates a new set of competing primitives. It gets the current
“longitudinal” state of the vehicle [v(ti) , a(ti)]

′ as input at time t and it carries out three types of possible future
action (primitives):

• Accelerate

• Decelerate

• Maintain

Every action type corresponds to one primitive with different final conditions. They are explained in the following
sections. However, we need to define some quantities before moving to the description of the actions. The first
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thing to point out is that the duration of the maneuver Tman does not necessarily coincide with the prediction
horizon time T , which can be shorter. Thus, we define T is the time horizon of the prediction and Tman for the
actual motion primitive duration. The horizon time T in this predictor is equal to 5s.

Accelerate

This type of action models when a driver is going to increase his/her velocity. For instance, changing to a higher
velocity lane or driving a highway ramp. The FFCT primitive Free Flow Constrained Time is chosen, and it
consists in a free flow with a target velocity and constrained time (See Section 1.3.4) We estimate the final target
velocity vT using the current acceleration value. We use a constant acceleration assumption only to compute a
guess of vT. Once the final velocity is established, the more realistic motion primitive is used to pursue that
velocity target vT. The current acceleration is preferred to the current jerk. Indeed the jerk is very difficult to
retrieve, as stated in [17]. The primitive instantiated for the acceleration is the following:

Macc = MFFCT (Tman, 0, v0 + a0Tman) . (3.1)

For accelerate the duration of the primitive Tman is chosen equal to 10s. The choice of this parameter is the result
of manual tuning.

Decelerate

This second action is the dual of the accelerated action. It models a driver who wants to stop or significantly
reduce vehicle velocity. For the action to stop, following the minimum jerk concept, the literature provides more
sophisticated models based on motion primitives. The work in [35] provides a pretty accurate model that divides
the maneuver into phases. However, this accurate modeling requires more parameters that may change among
drivers, and therefore, they do not fit our generality requirements. Therefore, we model the “so-called” main phase
of the stop maneuvers (see [35]), which covers most of the duration of a stop procedure. The chosen maneuver
is the same as in the acceleration action. The only difference lies in an additional constraint: the velocity must
obviously be non-negative.

Mdec = MFFCT (Tman, 0,max (v0 + a0Tman, 0)) . (3.2)

If one generates a decelerate primitive, it cannot accelerate one and vice versa. The final velocity depends indeed
on the acceleration sign. Even if only one is generated, both are taken into account in the action-selection process
(the missing one gets null evidence in the MSPRT selection mechanism) since the action selection process also
depends on the past.

Maintain

This action models the small velocity fluctuations during a "cruise" state. One may be tempted to use a flat
maneuver with a constant velocity profile in such a case. However, this solution would not account for minor
(but not negligible) speed adjustments that frequently occur in driving. Therefore, we use a motion primitive that
drives the vehicle smoothly from the current state to an estimated velocity adjustment. The final target velocity is
again vT, but it is expected to be very close to the current state v0. This velocity is estimated again by selecting
the FFCT motion primitive with the least instantaneous effort. The instantaneous effort is the initial jerk, therefore
we select the maneuver that has j0 = 0. The procedure to compute the final velocity vf from the initial jerk j(0)
is provided in the FFCT dedicated Section 1.3.4 (Equation (1.11)). Note that the jerk is zero only for t = 0, thus
it is not a constant acceleration maneuver. Once this velocity is known, the maneuver is defined and Tman = T .

Mmnt = MFFCT (T, 0, vT) . (3.3)
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Figure 3.4: Example of three predictions. In blue the actual velocity, in red the prediction and the complete
primitive in yellow.

Instances of prediction for each action type are provided in Figure (3.4). The selected actions are maintenance,
acceleration, and deceleration from left to right. For each plot, the yellow line shows all the primitive; the red line
represents the portion of the primitive in the prediction time horizon, which is the one used for prediction. At the
same time, the blue line is the true velocity (from data).

3.2.4 Action-selection: MSPRT
The selection among the pool of actions provided by the action-priming block is made in the action-selection
block using the MSPRT algorithm [13].One example of application in the automotive field can be found in [100].
This algorithm resembles the action-selection process that occurs in the basal ganglia of the vertebrates brain [57].
In this context, the Multi Hyphothesis Sequential Ratio Test is based on collecting evidence on which of the three
potential actions the driver is pursuing (the action is also called channel). The key idea is to accumulate evidence at
every time step for each channel (the accumulated evidence is called salience). One channel is then selected after
the accumulated evidence is considered enough. Here the evidence metric eak is the reciprocal of the mean square
error of the acceleration in a time window of the previous 0.5 seconds. The error, in this case, is the difference
between the actual acceleration and the values given by the candidate maneuvers of a passed prediction step (the
step occurred 0.5 seconds before the current time ti). Given the index of the different channels k = 1, 2, 3, The
evidence is expressed by:

eak,i = √
5√∑4

p=0 ((a(ti − 0.5 + p ts)− ãk(ti − 0.5, p ts))
2

. (3.4)

where ti is the current time, ts is the sampling time of the prediction (0.1 seconds). The values of the true
acceleration are a(ti − 0.5 + p ts), which are known since are in the past up to the current value. The acceleration
values ãk(ti−0.5, pts) are instead drawn from the three action candidates of 0.5 seconds before ti. Past candidates
are used instead of current candidates, since the motion primitives cannot be evaluated in t < 0, because such
values are out of the maneuvers time domain t ∈ [0, Tm]. For the computation of eak,i we therefore require a set
of past maneuvers that can be obtained in two ways indifferently. Past maneuvers can be stored in memory, or
they can be computed again by means of stored past vehicle states. The evidence eak,i is accumulated into the
salience, appending and summing past values of the evidence. The number of past evidence values used for the
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Salience is defined as w. This buffer length w is limited to 10 in order to avoid using outdated data. The salience
is then defined as the mean of the evidence along a past window containing a number of samples equal to w:

Yk,i =
1

w

w−1∑
j=0

eak,(i−j). (3.5)

The length of the window w along which Yk is initialized to 1, and it is incremented by one at every step, up to
10. If one action is selected, w is reset to one. Finally, the quantity used to select a channel is the likelihood Lk

of each channel. It takes into account the salience of each channel in relation to the salience of the others. The
likelihood assumes values from 0 to 1, Lk ∈ [0, 1] and the sum of the likelihoods of the channels is always equal
to 1,

∑3
k=1 Lk = 1. It reads as:

Lk = exp

(
Yk,i − log

3∑
k=1

exp (Yk,i)

)
(3.6)

One channel is selected if its likelihood reaches a predefined threshold Lth. If more than one channel reaches the
threshold, the one with the higher likelihood is selected. Thus, the channel is selected according to:

k⋆i = argmaxk {Lk,i | Lk,i > Lth } (3.7)

where k⋆i is the selected channel at time ti. The complete procedure for the MSPRT is illustrated in Algorithm 4.
Finally, the threshold Lth must be tuned: if the value is too low, the channel changes continuously, and more than
one channel may reach the threshold simultaneously. Conversely, if the value is too high, the MSPRT algorithm
may be stuck without choosing a channel since the channels’ likelihoods never reach the threshold. Note that if the
chosen threshold Lth is more than 0.5, then only one channel at a time can exceed the threshold, and the argmax
operator in Equation (3.7) is not required.

Algorithm 4 MSPRT algorithm at time ti

Input: Past candidiate maneuvers at ti − 0.5,
Past evidence eak,(i−j) with k = 1..3 and j = 0..(w − 1).

Output: Index of the selected maneuver k⋆i
1: Initialize w = 1
2: while true do
3: for k in 1..3 do
4: compute eak,i according to Equation (3.4)
5: compute Yk,i using j = 1..w ( using a number of w past values of eak )( according to Equation (3.5))
6: compute log-likelihood Lk,i (Equation (3.6))
7: end for
8: if max(Lk) > Lth then
9: select action k⋆ (Equation (3.7)

10: reset w = 1
11: else
12: k⋆i = k⋆i−1, (follow previous action)
13: w = max(w + 1, 10)
14: end if
15: return output k⋆i
16: end while
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Tman Lth

10 s 0.5

Table 3.1: Parameters for the prediction algorithm.

3.2.5 Validation
The goal of the prediction scheme is to provide a suitable velocity profile for the Energy Management Sistem that
do not depend on the driver. The selected metric for the performance of the prediction is the root mean square
of the error on the velocity sampled along the time horizon is computed. It is computed comparing the predicted
speed profile (v̂(ti, τ)) with the actual speed sample by sample every the prediction. Such error is expressed by:

RMSEv(ti) =

√√√√ L∑
k=1

(v(ti + kts)− v̂(ti, kts)). (3.8)

Where v(·) is the actual velocity and ti is the current time at which the error is computed. Note that τ is the time
distance from the current time ti of the prediction. Note that ṽ(ti, 0) = v(ti) and L is the number of the samples
of the predicted primitive, which is always L = 50 in this chapter.

Parameters tuning

To meet this requirement we can tune the two parameters of the algorithm: Tman and Lth. The first parameter
is the acceleration/deceleration primitive duration (the time horizon is always the same instead). The second
parameter is the threshold of the MSPRT algorithm 3.2.4. The selected parameters are reported in Table 3.1.
To tune these parameters, we employed a trial and error approach on the tuning dataset (See Section 3.2.1), until
the RMSE errors (See Equation (3.8)) lay under 3 m/s (excluding the outliers) for all drivers. Once the errors
lie under this threshold on the validation dataset datasets, we verify the same condition on the validation dataset.
In Figure 3.5 all the boxplots of the errors are shown, in the upper chart the errors on the validation dataset,
in the middle chart the validation dataset and in the bottom chart, all the errors for each driver are merged.
Some considerations can be draw looking at Figure 3.5Most of the predictions present minor errors; as required
in the tuning phase, the errors lie under 3m/s (excluding the outliers). Concerning the outliers, there is a strong
presence of them. They correspond to predictions with higher errors. These errors correspond to moments when
the intentions of the driver change suddenly, and the MSPRT takes some samples to collect enough evidence of the
new current action. This is especially true when there is a switch between acceleration/deceleration, maintaining
actions, and vice-versa.
Instances of predictions on two driving records are shown in Figure 3.6 (called “hairy plots”), which help us to
understand the outliers. The two driving records are picked from driver 8, which presents low errors, and driver
6, which presents the highest errors (See Section 3.5). In both velocities plots, we can recognize some peaks and
some sharp valleys. At that point, the predictor struggles to fit the future velocity. Such cases, with predictions
that diverge from the actual velocity profiles, are the outliers in the boxplots of Figure 3.5. One way to improve
the performance of the prediction may be to introduce more specific affordances (as new actions) related to the
environment. For instance, the presence of a stop has to generate a “stop” affordances at the stop point. Another
possible affordance can be the presence of other vehicles on the same lane that may generate the affordance to
follow the vehicle and the affordance to overtake it. Note that an affordance related to another vehicle may play
two roles: to generate the affordance above with the corresponding primitive and to inhibit the affordances that
collide with the leading vehicle. This would allow exploiting the concept of affordance better.

3.2.6 Comparison with other methods
We compare the proposed Bio-Inspired velocity prediction with the following two approaches:

• Exponential decreasing torque demand
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Figure 3.5: Box plot of the errors for each driver, tuning dataset, validation dataset and the total.

Figure 3.6: example of prediction: Hairy plots
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• Markov chains

Such approaches are widely used in literature. All the methods are compared on a prediction horizon length equal
to 5 seconds. The choice of this horizon length is motivated in Section 3.2.5. We hereby describe the methods and
its usage in our work.

Exponential Decreasing Torque Demand

This method assumes that the driver torque request decreases exponentially, as described in [22][21]. The equation
for the torque demand reads as follows:

Tw(ti + kts) = Tw(ti) exp

(
−kts
αd

)
, k = 0, 1, · · · , L− 1, (3.9)

Where ti is the starting time of the prediction horizon, L is the number of time samples in the prediction horizon,
Tw(ti) is the current torque request and αd is the decaying rate of the torque request. We tune the αd by solving
an optimization problem, selecting the αd that minimizes the RMS error between the predicted velocity and the
dataset velocity. Once we estimated the torque request, the velocity is retrieved by the longitudinal dynamics in
Equation (3.14).

Markov-Chain based Velocity Prediction

The use of discrete-time stochastic models in the form of Markov chains to predict velocity profiles of the
driver (or related quantities) is widely present in the literature ([110, 134, 103, 107, 76, 89, 81]). We use a
multivariate Markov chain to predict the future velocity and acceleration profiles. ([107, 110]). At first velocity
and acceleration are discretized in M,N states:

v ∈ {v̂1, v̂2, · · · , v̂M}
a ∈ {â1, â2, · · · , âN}

(3.10)

The transition probability matrix defines the Markov chain: in the case of the 1-Stage Markov chain the elements
of the multi-dimensional transition probability matrix T1S ∈ RM×N×M×N are:

t1S(m,n),(p,q) =

P [v(ti + ts) = v̂p, a(ti + ts) = âq | v(ti) = v̂m, a(ti) = ân] ,

m, p = 1, · · · ,M, n, q = 1, · · · , N ,

(3.11)

where P [x] is the probability of the event x to happen, ti is the current time instant and (ti + ts) is the next
time instant. In the case of the 3-Stage Markov chain, two past velocity values are also considered as additional
variables. ([134, 110]). the transition probability matrix T3S ∈ RM3×N×M×N is defined as:

t3S(m1,m1,m3,n),(p,q)
=

P [v(ti + ts) = v̂p, a(ti + ts) = âq |
v(ti − 2ts) = v̂m1

, v(ti − ts) = v̂m2
, v(ti) = v̂m3

,

a(ti) = ân],

m1,m2,m3, p = 1, · · · ,M, n, q = 1, · · · , N ,

(3.12)

Both the transition probability matrix is estimated from the actual driving dataset described in Section 3.2.1.

74



Figure 3.7: Example of outcomes of each velocity prediction method on a driving record from the naturalistic
driving dataset.

Table 3.2: Average RMS error for Bio-inspired and Decreasing torque prediction methods for three validation
dataset.

Validation Bio-Inpsired M. 1-S M. 3-S E.Var.Torque
[m/s] [m/s] [m/s] [m/s]

RMSEv 0.74 0.77 0.81 0.89

Results of comparison on naturalistic driving dataset

The proposed benchmark methods are compared on our real driving dataset. Figure 3.7 shows the velocity
prediction methods outcomes for one sample driving record of our dataset, as stated earlier, the horizon is 5
seconds. The root mean square of the velocity error (RMSE) is used as a metric of comparison. The metric
(Equation (3.8)) is computed for each time step validation sets. The average RMSE is then calculated for the
validation set. It is important to notice that for the Markov chains based methods the validation and the training
set coincide, to avoid empty values in the transition matrices. The results are reported in Table The proposed
Bio-inspired method performs better than the Exponential method, and even better than the Markov chains results
on naturalistic driving set, which validation and the training sets are the same.
As a general result, we can conclude that our Bio-Inspired framework for the velocity prediction is more accurate,
according to the RMSEv metric, than the other frameworks. The Exponential Decreasing torque method presents
good performances when the accelerations (positive and negative) are small, but the proposed Bio-inspired
approach can provide a better prediction in the presence of high and continuous acceleration values. Exponential
Decreasing torque method strongly depend on the choice of its parameter α. The Markov chain-based methods
can provide better performances regardless of the acceleration values, even in the presence of intention changes
(for example switching from braking to accelerating) but only on the dataset, they are trained in. Additionally,
the Markov chains require a large amount of memory and data. Our Bio-inspired framework provides maneuvers
that are closer to real ones. Since it is based on a model of a human driver. Therefore, the Bio-inspired method
represents an improvement in the literature, and it is computationally light. Furthermore, it does not require a
large amount of data to be tuned since the two parameters involved (Lth and Tm) have a phisical meaning and can
be tuned manually.

3.3 Powertrain and battery model
In this Section we briefly describe the models used for the implementation of the on-line EMS, in [36]: a parallel
mild HEV. A scheme of the powertrain is shown in Figure 3.8. It includes an electric motor that is always
connected to an internal combustion engine (ICE) shaft through a geared coupling. A clutch connects the ICE
shaft an automatic transmission featuring eight speeds. The two exerted torques are Teng(t) and Tmot(t), they are
generated by the ICE and by the electric motor respectively. They sum up at the ICE shaft and are transmitted
to the driving wheels undergoing the transmission ratio of the transmission and the differential. The total torque
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Figure 3.8: Parallel hybrid powertrain considered

Tw(t) the following expression gives at the driving wheels:

Tw(t) =
(
Teng(t)− Jeng ω̇eng(t) + Tmot(t)γmot

)
η
sign[ax(t)]
trn γtrn(t) γaxle + Tbrk(t) (3.13)

3.3.1 Longitudinal Dynamics Model
The following longitudinal dynamics equation rules longitudinal velocity and acceleration and the total torque:

Tw(t) =
(
cf vs(t)

2 +mv as(t)
)
rw + (gmv ( sin (σ(t)) + crr0 cos[σ(t)] )) rw, (3.14)

where vx is the longitudinal speed of the vehicle, and σroad is the road slope, which in this work is set to zero for
data availability reasons. Table 3.3 shows the related parameters.
We are interested in modeling the ICE fuel consumption as a function of the speed and torque of the shaft. Willan’s
lines approach [99] consists in an affine function that approximates the fuel consumption rate ṁf . The function
has as arguments the engine mechanical power at the shaft, and it is expressed as follows:

ṁf(ωeng(t), Teng(t)) = α(ωeng(t))Peng + β(ωeng(t))

α(ωeng(·)) =
3∑

i=0

αi ω
i−1
eng (·)

β(ωeng(·)) =
3∑

i=0

βi ω
i−1
eng (·)

. (3.15)

The Willan’s parameter values selected in this study are taken from [36]. The list of them is in Table 3.4.

3.3.2 Electric motor Model
The electric motor is alimented by the 48V battery and can act both as a motor and a generator depending on
the sign of the torque. In this case, negative torque corresponds to the generator, therefore an inflow of power.
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Description Symbol Value Unit
Transmission efficiency ηtrn 0.95 -

Axle ratio γaxle 3.73 -
First Gear γtrn,1 5.00 -

Second Gear γtrn,2 3.20 -
Third Gear γtrn,3 2.14 -

Fourth Gear γtrn,4 1.72 -
Fifth Gear γtrn,5 1.31 -
Sixth Gear γtrn,6 1.00 -

Seventh Gear γtrn,7 0.82 -
Eighth Gear γtrn,8 0.64 -
Motor ratio γmot 2.00 -

Vehicle mass mv 1750 kg
Dyn. wheel radius rw 0.31 m

Aerodyn. drag coeff. cf 0.28 kg m−1

Rolling resistance coeff crr0 0.02 -
Engine inertia Jeng 2.26 · 10−2 kg m2

Up-shift engine speed ωeng,up 4.77 · 103 rpm
Down-shift engine speed ωeng,down 2.87 · 103 rpm

Table 3.3: Vehicle and powertrain parameters.

i = 1 i = 2 i = 3

αi 6.15 · 10−8 −5.24 · 10−11 7.47 · 10−14

βi 7.04 · 10−6 8.33 · 10−7 6.30 · 10−10

Table 3.4: Willan’s coefficients [36].

The power flowing through the motor (in both directions) is a function of torque, speed, and motor efficiency
ηmot(ωmot(·), Tmot(·)). The efficiency is usually provided by the manufacturer (as a chart), and it depends on
torque and speed. The expression of the power Pmot is:

Pmot(ωmot(t), Tmot(t)) ={
ωmot(t)Tmot(t) ηmot(t) Tmot(t) < 0, gener. mode
ωmot(t)Tmot(t)

ηmot(t)
Tmot(t) ≥ 0, motor mode

. (3.16)

The characteristic of the instantaneous power versus velocity and torque (including, therefore, the efficiency) is a
smooth surface. It is convenient to map the power directly since the corresponding surface is smoother w.r.t the
efficiency. A third-order polynomial fits this power characteristic:

Pmot(ωmot(t), Tmot(t)) =

3∑
j=0

3∑
i=0

pi,j ωmot(t)
j Tmot(t)

i. (3.17)

3.3.3 Battery System

The model of the battery employed in this work is a state-of-the-art electrochemical model, detailed in [108] and
[109]. The battery is composed of 180 gr/NMC lithium-ion 18650 cylindrical cells. A number of np = 16 parallel
modules are present with ns = 13 cell series for a total of 180 units. This is the same configuration of [36]. The
nominal voltage of a cell is 3.6V and the nominal capacity is 2.0Ah. The total (nominal) voltage of the battery
pack is then 48V, The energy stored is approximately 1.5 kWh. Maximum discharge and charge powers are
between the values of 17.11 kW and 11.5 kW respectively; these values are derived from the maximum currents,
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30A and 20A respectively. Therefore, the Equation of the total battery power is:

Pbatt(t) = V (t)nsI(t)np, (3.18)

where I(t) is the current flowing through one cell and I(t) is the voltage applied. We hereby make an assumption:
the cooling system is able to maintain the temperature constant among the cells (it is indicated by T ). In general,
this does necessarily not hold for batteries, because high currents may lead to temperature gradients.

Charge/discharge dynamics

What makes the difference in battery usage is the charge and discharge dynamics. We hereby briefly recap the
equations of such dynamics, presented in the electrochemical model in [36, 108, 109]. The Equation returns the
voltage on a cell, and it is expressed as:

V (t) = (Up(t)− Un(t)) + (ηp(t)− ηn(t)) + (ϕp
e (L, t)− ϕn

e (0, t))−RΩI(t), (3.19)

The input of the model is the current I(t) applied to a single cell (galvanostatic mode). The terminal voltage V (t)
is the output and it is measured between the positive and the negative current collectors. It is composed of a sum
of the potential and overpotential terms. The values of the model parameters are taken from [36].

We have the equilibrium potentials U i(t) that depend on the concentration fn the lithium ion on the surface of
the electrode particle (namely the solid-electrolyte interface). The concentration is indicated by cis,e(t). Given
θi(t) = cis,e(t)/c

i
s,max ∈ [0; 1] as the stoichiometry ratio the functional form of the equilibrium potential at the

cathode side (see [133]) is given by:

Up(θp(t)) = −10.72(θp(t))4 + 23.88(θp(t))3 − 16.77(θp(t))2 + 2.595 θp(t) + 4.563 (3.20)

while at the anode side (see [111]) is

Un(θn(t)) = 0.1493 + 0.8493 exp(−61.79 θn(t))

+0.3824 exp(−665.8 θn(t))

− exp(39.42 θn(t)− 41.92)

−0.03131tan−1(25.59 θn(t)− 4.099)

−0.009434tan−1(32.49 θn(t)− 15.74).

(3.21)

The relation between the kinetic overpotential terms ηi(t) and the current density ji(t) = ∓ I(t)
AiLi is ruled by the

Butler-Volmer equation. The solution is expressed as:

ηi(t) =
RgT

αF
sinh−1

(
ji(t)

aisi
i
0(t)

)
, i = p,n. (3.22)

The exchange current density ii0(t), in turn, is related as well to the concentration at the electrode surface cis,e(t)
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and to the concentration in the electrolyte cie(t); The equation reads as:

ii0(t) = ki
√
cie(t)(c

i
s,max − cis,e(t))c

i
s,e(t), i = p,n. (3.23)

We can compute the electrolyte overpotential ∆ϕe(t) = ϕp
e (L, t) − ϕn

e (0, t) by integrating the equation of

the conservation of charge in the liquid phase. Making the assumption constant current density throughout the

electrodes, we can write the solution:

∆ϕe(t) = κd(log(c
p
e (t))− log(cne (t)))− I(t)Re, (3.24)

where κd =
2RgT (1−t+0 )

F (1 + β). The electrolyte resistance is expressed by Re = 1
κεe

(
Lp

Ap + Ln

An

)
, where κ is

the electrolyte conductivity, which depends on temperature (constant among cells but variable in time). In [119]
equations are detailed, presenting an experimental analysis of the electrochemical properties of a LiPF6-based
electrolyte. The transfer function between the SOC and the surface concentration at the electrodes was presented
in [36]. This model includes battery temperature variations; The state space expression is:

ẋ(t) = Ax(t) +B(t)I(t), with x ∈ R7,

y(t) = Cx(t), with y(t) =



c̃ps,e(t)

c̃ns,e(t)

S̃OC(t)

c̃pe (t)

c̃ne (t)


∈ R5,

(3.25)

where the tilde indicates a variation from the equilibrium. The formulation of the state-space matrices is reported
in Section 3.3.4. The vector x(t) = [x1, ..., x7]

T contains the state variables, while y(t) is the output vector.
The Arrhenius-like equation (3.26) provides the dependencies on temperature: The kinetic constants ki, the solid
phase diffusion coefficients Di

s and the activity coefficient β increase with temperature, while RΩ decreases with
the it.

Γ(T ) = Γref exp

(
−Eact,Γ

Rg

(
1

T
− 1

Tref,Γ

))
. (3.26)

3.3.4 Battery dynamics, State Space
We hereby report the matrices of the state-space realization. In Equations (3.25) In (3.27a), (3.27b), and (3.27c).
We show only the nonzero elements.
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A1,1 = −189Dp
s

[Rp
s ]2

A1,2 = −3465[Dp
s ]

2

[Rp
s ]4

A1,5 =
189Dp

s (θ
p
100% − θp0%)c

p
s,max

[Rp
s ]2

A2,1 = 1

A2,5 = −(θp100% − θp0%)c
p
s,max

A3,3 = −189Dn
n

[Rn
s ]

2

A3,4 = −3465[Dn
s ]

2

[Rn
s ]

4

A3,5 = −
189Dn

s (θ
n
100% − θn0%)c

n
s,max

[Rn
s ]

2

A4,3 = 1

A4,5 = (θn100% − θn0%)c
n
s,max

A6,6 = −9.8710Deff
e

L2

A7,7 = −9.5842Deff
e

L2

(3.27a)

B1,1 =
7

εpFApLp

B2,1 = − [Rp
s ]

2

15Dp
s εpFApLp

B3,1 =
7

εnFAnLn

B4,1 = − [Rn
s ]

2

15Dn
s ε

nFAnLn

B5,1 = − 1

QN

B6,1 =
3.1463(t+0 − 1)

εeLFAp

B7,1 = −2.9351(t+0 − 1)

εeLFAn

(3.27b)

C1,1 = 1

C2,3 = −1

C3,5 = 1

C4,6 = 1

C5,7 = 1

(3.27c)

Battery degradation

The degradation (or aging) of the battery plays a fundamental role in the proposed EMS. It is not directly expressed
in the State Space model of Section 3.3.4. Instead, it is included directly in the cost function of the optimal control
problem. This is possible because the aging effect depends on the state only as an integrator. Therefore it is
suitable to be used. To model the aging of the cylindrical 2.0Ah cell, we adopt the model of the aging effect
proposed in [75]. The equation for the solvent reduction kinetics (Butler-Volmer) is simplified as described in
[36], it reads as:

js(t) = − kSEI(T )

2An(1 + λθ(t))
√
t
, (3.28)

where θ(t) = exp
[

F
RT (ηn(t) + Un(t)− Usei)

]
. The Arrhenius dependency in (3.26) depicts the behaviour of the

kinetic coefficient for the side reaction kSEI(T ). The effect of the anode potential on the SEI growth is accounted
by the fitting parameter λ (see [36]). The integral of the side-reaction rate over time is equal to the capacity loss
associated to the SEI formation:

QSEI(t) =

∫ t

0

js(t)Andt . (3.29)

Another aging factor is treated in [75]. The authors describe the increased capacity loss observed after discharging
and charging cycles as due to the structural damages that constantly isolate the active material. The phenomenon
can be described by the variation of the active material (Assuming a uniform utilization). It is expressed by:

dεAM(t)

dt
= −κε(T )|jn(t)|. (3.30)
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where κε(T ) is related to the temperature again according to (3.26). The SOC-dependent rate of capacity loss
induced by the reduction of the volume fraction is expressed by:

dQAM(t)

dt
=

dεAM(t)

dt
SOC(t)V n cns,max. (3.31)

The two capacity loss mechanisms are now combined, assuming the superposition of effects, providing the total
capacity t. The final expression is then:

Qloss(t) = QSEI(t) +QAM(t)

=−
∫ t

0

kSEI(T )

2(1 + λθ(t))
√
t
dt

−
∫ t

0

κAM(T )SOC(t) |I(t)|dt,

. (3.32)

The constants in (3.31) are condensed in the equivalent parameter κAM(T ). From the last term in (3.32) we
caneasily see that high currents at high SOC states will lead to higher aging rate of the battery.

3.4 Energy Management System
The scope of the EMS is to compute instant by instant the torque split between the electric motor and the ICE that
minimizes the total cost of the fuel and the battery capacity loss. The term “cost“ in this case is referred to the
so-called cost function and the quantity that we choose to minimize: the sum of the economic cost of both fuel
and battery capacity degradation. As stated earlier, this choice would allow us to compare the two-loss even if
they are different practices. From (3.14) we have that the total torque required by the vehicle driving wheels at
each time instant is a function of the velocity and acceleration profiles. Thus, following from (3.13), the engine
and motor torque Teng and Tmot, the mechanical braking torque Tbrk and the cell current I(t) must be optimally
chosen to obtain the required total torque Tw. These quantities are chosen as the controls for the problem. This
choice is reflected in the chosen control vector (Equation (3.35)) that we will be in the OCP specific formulations.

3.4.1 General Optimal Control Problem
The optimal torque split strategy is obtained through the resolution of a nonlinear OCP. Before to dive into the
specific OCP problems formulation, we recap the formulation of a general OCP, expressed by:



min
u∈U

J(x(t), u(t)) cost function

subject to :

ẋ(t) = f(x(t), u(t), t) system dynamics
b(x(0), x(T )) = 0 boundary conditions
c(x(t), u(t)) ≥ 0 path constraints

, (3.33)

Where t ∈ [0, T ] is the time, and T is the length of the optimization time horizon. The cost function is the
function we want to minimize solving the problem. The vector x contains the states that have to respect the system
dynamics. Boundary conditions are the initial and final values of the various states on the horizon. Some of the
final states may be free. The path constraints instead represents limits on the states that must hold for all the
duration of the horizon. They also comprehend limits on the controls. Once each of these four ingredients is
defined, the optimal control is formulated.
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This section defines the common elements between the online and the offline optimal control. Since they
eventually differ in some of the elements above, especially online frameworks, we need to enrich the cost function
with elements that consider the receding horizon approach.
For both offline and online optimal control problems, we also set some path constraints [36]. The battery
power (3.18) is equal to the electric power required by the motor (3.16). The lower and upper limits on the
State-Of-Charge (SOC) of the battery are SOCmin = 15% and SOCmax = 95% respectively. The cell
voltage is constrained between 2.4V and 4.2V , the electrode surface concentrations must remain between
cis,min ≤ cis ≤ cis,max, i = p,n. Finally, the sum of all the torques (from ICE and motor), according to (3.13), is
always equal to the required torque from the inverse longitudinal dynamics (3.14).
Concerning the boundary conditions, we must define them differently between offline framework and on-line
framework, since one of the main differences is about their horizon: the offline case optimizes along the whole
dataset, while the on-line must optimize on a sliding time window, with updating its initial (and final) conditions.
The boundary conditions are addressed in the next section since they are specific to each problem. Moving to the
cost function, it includes two main terms: the final total fuel consumption and the final battery capacity loss. In
order to transform this problem into a single-objective problem, we would like to uniform their units: we chose to
minimize the final monetary expense due to fuel consumption and battery degradation, expressed in euros [36]. In
order to do so, the final fuel consumption (expressed in kg) and battery capacity loss (expressed in percentage of
battery loss capacity) are multiplied by the two scaling terms Γfuel and Γage, respectively. The choice to minimize
the monetary expense is also based on the intuition that an economic motivation would effectively implement such
a system by car manufacturers. Therefore, economic benefits can be directly reflected the customers. Therefore,
the basic cost function, with the two main terms, can be expressed as:

J =

∫ tf

0

Γfuel ṁf(x(t), u(t)) + γ ΓageQloss (x(tf), u(tf)). (3.34)

we have defined a binary variable γ ∈ {1, 0} that multiplies the battery aging term. It is defined to switch
between frameworks that considers the battery degradation (γ = 1) and frameworks that account only for the fuel
consumption (γ = 0). A comparison between these two cases will be carried out in Section 3.5.1.

3.4.2 Off-line optimal control problem

When we move from a general off-line optimization to an on-line applicable optimization, the horizon eventually
shortens the amount of information with it. To validate the proposed on-line solution, we need to quantify the
maximum performance we can achieve. Thus, we formulate and solve a similar optimal control problem over
entire driving cycles using the same speed profile instead of an estimation. We will refer to the solution of this
problem as the offline solution. The first thing to define are the controls, the vector of the controls includes the
torques and the current:

u(t) = [Teng(t), Tmot(t), Tbrk(t), I(t)]
⊤. (3.35)

This vector remains the same also for the on-line OCP. For the offline problems the initial conditions on the
battery SOC is always SOC(0) = 50%. But in this case the boundary conditions regards also the final values.
Since we span all the driving dataset, final SOC must be constrained within the range 50% − tol ≤ SOC(T ) ≤
50% + tol, with tol = 2%. This choice is due to the type of hybrid vehicles we consider: mild-hybrid electric
vehicles. This type of HEV can charge its battery only through regenerative braking. Therefore to guarantee
the possibility to use the battery for fuel-saving during multiple road trips maintaining repeatable performances,
the battery must not discharge completely. Therefore, it is a common practice that mild HEV features a charge
sustaining strategy in order to maintain the battery state of charge around an average value of 50%. In the next
section, we will see that our framework is no exception in this aspect. The cost function, the path constraints
and the system dynamics no not need any additional change w.r.t. the general problem addressed in the previous
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Section 3.4.1. The OCP for the off-line framework is formulated as follows.



min
u∈U

J(x(t), u(t))

subject to :

battery dynamics (3.25)

x(0) = x0

48% ≤ SOC(T ) ≤ 52%

torque split (3.13)
15% ≤ SOC(t) ≤ 95%

cis,min ≤ cis ≤ cis,max i = p,n

. (3.36)

3.4.3 Online Optimal Control Problem

The framework proposed in this chapter is based on the OCP applied in a receding horizon fashion. The OCP is
therefore solved over a finite future horizon t ∈ [t0, t0 + T ], note that T << tf where tf is the entire length of the
dataset. To be implemented in real-time, the speed profile used in the horizon must be estimated. In the proposed
EMS the estimaton of the velocity in the future time window t ∈ [t0, t0 + T ] is performed by the Co-Driver
velocity prediction algorithm (described in 3.2).

As stated earlier, in a mild HEV the battery can be charge only by regenerative braking. Since the horizon is short,
(5 seconds in our case), imposing the final SOC as we have done in the off-line optimization case is not possible.
Instead we introduce a SOC-dependent term to the cost function (3.34).

Jol =

∫ th

t0

Γfuel ṁf(x(t), u(t)) + γ ΓageQloss (x(th), u(th)) dt

− ρ
(
SOC(th)− SOCtrg

f

)2 (3.37)

The additional term is a quadratic penalty pushing the final state of charge SOC(T ) close to the target final state
of charge SOCtrg. The weight ρ > 0 determines how much the charge sustaining term pushes back the SOC to
the value of SOCtrg. The SOCtrg must be tuned to a value that is larger than the desired average value of 50%.
The weight ρ > 0 determines how much the charge sustaining term pushes back the SOC to the average value of
50%. The values of these two parameters are tuned later on. The MPC is executed every 0.5 seconds, in this case
the refresh rate correspond to the step of discretization ts. The boundary conditions are constantly updated at
each time step, in particular the initial conditions: x(0) = x(t0). The path constraints are the same as we have
seen in the general problem.
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The final on-line OCP is formulated as follows:



min
u∈U

Jol(x(t), u(t))

subject to :

battery dynamics (3.25)

x(0) = x(t0)

torque split (3.13)
15% ≤ SOC(t) ≤ 95%

cis,min ≤ cis ≤ cis,max i = p,n

. (3.38)

3.4.4 OCP collocation and solution

All the formulated OCPs are solved using the direct approach, in particular the direct collocation method is
employed [41]. The first necessary step of this method is the discretization of the problem. Once states and
controls are discretized through the time, the direct approach consists in formulating the discretized OCP as a
Non-Linear optimization Problem (NLP). We then solve the resulting NLP with Ipopt, a state-of-the-art solver
based on the interior-point algorithm [122].
The time domain is discretized with a constant time sampling ts =

tN−t0
N = 0.5 . The time grid is defined as:

GN = {t0 < t1 < . . . < tj < . . . < tN = tf}
tj = t0 + j ts, j = 0, . . . , N

. (3.39)

Where N is the number of grid points. Since ts is constant, it is a function of the horizon initial and final time
instants, t0 and tN respectively. We choose N = 20 which leads to ts = 0.5 and 21 values if we consider the
initial conditions.
The states and the controls are now defined only on the discretization grid and we need to define their discrete
version as following:

xj = x(tj) j = 0, . . . , N
uj = u(tj) j = 0, . . . , N

(3.40)

To perform the discretization of the dynamics, we use the Tustin method, that preserves stability and it is
immediate to apply. The difference equation system of the battery dynamics (3.25) now become:

xj+1 =

(
Inx

− ts
2
A

)−1(
Inx

+
ts
2
A

)
xj +

[(
Inx

− ts
2
A

)−1

B ts

]
uj+ 1

2
,

j = 0, . . . , N − 1

(3.41)

where Inx is the nx × nx identity matrix. The matrices A and B are the continous state-space system matrices
introduced in (3.25). The controls are uj+ 1

2
=

uj+uj+1

2 represents the controls evaluated in the grid midpoints.
The controls are expressed as piecewise costant functions, this means the value is constant between two grid points
on the grid GN. The cost function (that can be )(3.37) or (3.34) are evaluated on each point of GN.
Concerning the discretization of the constraint, we choose the multiple shooting method, that consists of a
discretization of the dynamics constraints. Thus, Equation (3.41) is directly applied as constraint in the NLP. Tha
final NLP problem is then:
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minx,u
∑N−1

j=0

Jol

(
xj+1, uj+ 1

2

)
− Jol

(
xj , uj+ 1

2

)
2

 ts

subject to:

x0 = x(t0)

discretized dynamics : (3.41)

Torque split:
(u1,j − Jeng ω̇eng(tj) + u2,jγmot) η

sign[ax(t)]
trn γtrn(t) γaxle + u3,j − Tw(tj) = 0

j = 0, . . . , N

15% ≤ SOCj ≤ 95% j = 0, . . . , N

cis,min ≤ cis,j ≤ cis,max i = p,n

(3.42)

The Jacobian of the constraints and the gradient of the objective function have to be provided to Ipopt, since
interior-point is a gradient based method. The exact Hessian of the Lagrangian can be supplied but it is not
mandatory. if not provided, ipopt will approximate them with finite differences. The required analytical derivatives
are computed using an algorithmic differentiator called ADiGator [124]. We solved both off-line and on-line OCP
on Matlab 2020b on a MacBook Pro with a 2,7 GHz Intel i7 processor and 16 Gb of RAM. In the case of online
optimal control, the average computation time of all the MPC steps was 0.157 seconds with a standard deviation of
0.11 seconds. As stated earlier, the MPC algorithm is executed every 0.5 seconds. Thus, the obtained computation
time makes the algorithm suitable for real-time implementation and less powerful CPUs. It is important to notice
that we did not optimize the code execution, we used a matlab script and the computation time can be improved
up to a factor 10 with a compiled language like C++. This would be necessary if one wants to implement the
algorithms in a less powerful system (like an ARM architecture).

3.5 Final EMS scheme
In a canonical MPC formulation, the cost function is minimized w.r.t. the controls a finite time-horizon and only
the first value of the optimal solutions are implemented, and then after a time step, the process is repeated. The
structure of our EMS follow this pattern, with the additional step of the estimation of the desired outputs in the
horizon. In fact, in a generic MPC, the desired trajectory of the outputs is known, but in the EMS case, this is
not true. The Co-Driver velocity prediction algorithm (see Section 3.2) is required to estimate the velocity profile
that the driver wants to pursue. At each time step (executed every 0.5 seconds), only the first element of the
optimal control solution vector (i.e., u⋆) is applied to the vehicle powertrain. At the next step, the vehicle state
is updated (x0 = x(t0)), a new speed profile prediction is generated, and the optimization is re-computed for the
new window. This MPC scheme allows having a continuously updated knowledge of the system’s state thanks to
the measurement feedback.
To summarize the overall system structure, in Figure 3.9 a scheme of the EMS is provided.
In Figure 3.9 we can see the overall scheme with the flow of the variables within the algorithm. Given a time
step i, at time ti the ems performs one iteration. At first, the Co-Driver predictor generates the maneuver. They
are continuous functions (polynomials) that represents 5 seconds of the estimated future velocity profile ṽ(ti, τ)
with τ ∈ [0, T ]. This velocity profile is then translated into a Torque request profile T̃w(ti, τ) using inverse
longitudinal dynamics given in (3.14). The torque requested at the wheels is fully given once the velocity and
the automatic gear shift policy are static. The OCP problem can now be solved. The torque request profile is
sampled at ts = 0.5s in order to formulate the NLP problem in Equation (3.42). The problem is solved in Matlab
using ipopt solver. The solution of the problem is expressed as u⋆ and it is defined in all the time grid GN , with
j = 0, . . . , N . The final phase of the iteration is to apply the solution to the powertrain. Since it is a MPC scheme,
only the first element of the solution vector j = 0 is applied.
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It is essential to notice that, in our scheme, the velocity of the vehicle does not depend on the OCP outputs because
the inverse longitudinal dynamics give the total torque and the torque split constraints impose such total torque
Tw.

3.5.1 Validation methodology
In this section, we hereby discuss the validation methodology and performance evaluation metrics. The EMS
scheme is now validated by simulating the longitudinal vehicle dynamics, the powertrain, and the battery model
with the dataset of Section 3.2.1. To evaluate the performances, we decide to compare our EMS with three other
frameworks further divided into two sub-framework. The frameworks, including the proposed EMS are associated
with a symbol in order to recognize them through the chapter:

• Co-Driver CD-MPC This framework is the novel proposed. It uses the Co-Driver predictor 3.2 to estimate
the future velocity profile, and it solves the on-line OCP described in Equation (3.38) and discretized in
(3.42). Firstly, this framework is simulated using the full cost function in (3.37) γ = 1. Secondly, the
framework is simulated without the aging term, i.e. by setting γ = 0 in (3.37).

• Co-Driver 2 seconds CD-MPC-2s This framework is the same as above, but the horizon length is shortened
to 2 seconds in order to investigate how such a difference affects the performances.

• Exact Prediction MPC 5 seconds (EP-MPC-5s) This framework shares the same OCP, the same receding
horizon scheme, and the same time horizon length with the CD-MPC. The difference is in the knowledge
future velocity profile. In EP-MPC, as the name suggests, the desired output of the driver is not predicted,
but it is known in advance from the data. The purpose is to evaluate the loss of performances in the EMS
due to errors in the velocity prediction. This framework is simulated using both the battery degradation in
the cost function included γ = 1 and not included γ = 0 in Equation (3.37).

• Exact Prediction (EP-MPC-10s) This framework is again based on the exact prediction given by the data,
but the horizon is now 10 seconds. This framework is introduced to investigate the importance of horizon
length. Also in this case both the options on battery aging term are simulated: γ = 1 and γ = 0 in Equation
(3.37).

• Exact Prediction MPC 2 seconds (EP-MPC-2s) Same as above but shortening the horizon length up to 2
seconds. Again we want to investigate how such a short horizon affects the system’s performance.

• off-line OCP OF-OCP this framework consists in the off-line problem formalized in Equation (3.36). The
offline OCP problem formulated in Section 3.4.2 is solved on the entire driving dataset horizon (6 minutes
for each driving record) twice. The framework is simulated with and without the battery degradation cost,
i.e., setting γ = 1 and γ = 0 in (3.34), respectively. This framework serves as a benchmark of the best
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Figure 3.9: Scheme of the EMS, continuous profiles
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possible performances achievable, represented by the solution of this framework. Note that the discretization
of the (3.36).

The driving datasets used in the simulations were presented in Section 3.2.1.

Charge sustain parameter tuning

Before the validation, we need to tune the necessary parameters in the online frameworks. The parameters to tune
the parameters ρ and SOCtrg

f that are in the on-line cost function in (3.37). In the literature, the term “charge
sustainability” refers to strategies that aim to keep SOC at a value that allows always to have some energy of the
battery available, thus avoiding the battery from continuously or completely discharged during driving. Charge
sustaining strategies are not necessarily present in plug-in hybrid vehicles. Such vehicles can be recharged when
not used, and therefore the battery capacity can be fully exploited every time the vehicle is used. We want to keep
the State Of Charge (SOC) around the initial value of 50%. The charge sustaining strategy is also employed for
another reason: to keep the comparison between simulation results consistent. Let us take an example. If one
simulation ends with 50% of SOC and another one with 20%, the second simulation would have saved much more
fuel since it used some of the battery stored energy without restoring it, such amount of energy would be restored
next time the vehicle is used. Therefore, a comparison of the fuel-saving results of the two simulations would
not be fair. As stated earlier, we cannot apply the same final state constraints used in the offline framework, and
therefore to keep the final SOC close to the initial, we need a charge sustaining strategy.
In all the online frameworks, the parameter SOCtrg

f is set to 60%. The term ρ instead depends on the presence of
the battery degradation cost: {

ρ = 0.3 if γ = 1
ρ = 0.8 if γ = 0

. (3.43)

The value of ρ is higher when the degradation is not considered; intuitively, The degradation term partially inhibits
the usage of the battery in favor of its lifespan, helping the sustaining strategy itself.

3.5.2 Simulation methodology
We hereby detail how the driving datasets and the vehicle model are employed to simulate the various frameworks.
The objective of the simulations is to employ the driving data presented in Section 3.2.1 to drive a vehicle modeled
by our model of the dynamics (and powertrain).
We start from the OF-OCP framework, which requires a dedicated discussion. It is closely related to the work
in [36], in which the validation phase is based only on standard driving cycles. In this chapter, using the OF-
OCP framework, As stated earlier, the results of the OF frameworks are a benchmark for the online frameworks,
especially for the proposed one (CD-MPC). Finally, conversely to the MPC-based frameworks, the input of the OF
frameworks are the entire velocity and acceleration profiles of each dataset. It returns the solution of the offline
OCP (see Section 3.4.2) on the entire driving record (for all the records).
The online (or MPC-based) frameworks perform optimization at every time step. They require the current velocity
and acceleration and the velocity prediction (estimated by the predictor or given by the dataset) for the time
horizon.
Figure 3.10 represents the overall data flow. This data-flow is valid for all the frameworks. To represent the
specific case of OF-OCP, we need to take the horizon length taking ti = 0 and ṽ(0, τ) = v(τ) with τ = [0, Tall],
covering all the dataset in one shot of OCP.

In the proposed framework CD-MPC, for each simulation step i at the time instant ti, current speed v(ti) and
acceleration a(ti) are sent to the Co-Driver to estimate the future velocity profile ṽ(ti, τ). For the on-line
frameworks, EP-MPC-5S and EP-MPC-10s, the prediction is exact, and it is taken from the dataset ṽ(ti, τ) =
v(ti + τ), which is the exact prediction. The exact prediction is not continuous, but to keep the notation uniform
we keep τ as the variable that spans the time horizon of the predictions.
As stated earlier, we use Equation (3.14) (inverse longitudinal dynamics) to compute the total torque request profile
T̃w(ti, τ) from the velocity and acceleration profiles (exact or estimated). For the receding horizon frameworks
xx-MPC, for each instant ti, one optimization is performed to obtain the optimal controls values. One may notice
that the vehicle dynamics is used only to retrieve the required torque. We do not simulate the vehicle motion

87



Driving data 
Velocity 

 Acceleration
Future 
Speed 
Profile

Predictor
Future 
Torque 
profile

EMS
Inverse

Longitudinal
dynamics

Hybrid 
Powertrain 

model Instant 
Engine 
Torque

Store
results

Instantaneous scalar values at Array of future values in

Real vehicle 
 parameters

Figure 3.10: Data flow of the simulation

integrating the obtained wheel torque Tw(ti). Such (instantaneous) obtained torque does not change among the
presented frameworks, thanks to the torque split constraints, given by Equation (3.13). The longitudinal kinematics
of the vehicle is preserved since the current speed and velocity are equal to the first values provided to the EMS
for the torque optimization: {

ṽ(ti, 0) = v(ti)
ã(ti, 0) = a(ti).

(3.44)

It is implicit the assumption that the internal dynamics of the powertrain do not affect the vehicle motion (except,
obviously, for the wheel torque Tw). Conversely to the longitudinal kinematics, the inputs of the power-train
depend on the results of the MPC.
The MPC optimally splits the total torque between the ICE, the electric motor and the mechanical brakes along
the receding horizon τ ∈ [0, T ] at each step ti. The refresh time of the MPC is 0.5s.

3.5.3 Metrics

To evaluate the simulation results, we define some performance metrics. we define some metrics. The first reason
to couple an electric motor and a battery with a ICE in a vehicle is to save some fuel. It is possible in two ways:
recovering energy from braking and forcing the ICE to work at better conditions, helped by the torque exerted by
the electric motor. Therefore, the first metric is the fuel saving percentage, expressed by

FSP = 100 ·
(
1− mf,HYB

mf,ICE

)
, (3.45)

where mf,HYB is the fuel mass in Kg consumed by the hybrid vehicle. The quantity mf,ICE is the fuel consumption
that the same vehicle would need in the case only the internal combustion engine was used. The latter quantity
is computed by simulating the longitudinal dynamics of the powertrain on the driving dataset while imposing
Tmot(t) = 0 in Equation (3.13). The equivalent ICE-only scheme is depicted in Figure 3.11.

The second purpose of the system represents one of the novelties we introduced: the possibility to improve
the battery lifespan by minimizing capacity degradation. This is performed featuring a state-of-the-art battery
electrochemical model (see Section 3.3.3), which was never used for online optimization. The second metric we
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consider is the relative capacity loss percentage of the battery, which is defined as

RCLP = 100 ·

(
1−

Qγ=1
f,loss

Qγ=0
f,loss

)
, (3.46)

where Qγ=0
f,loss is the final capacity loss in the framework cases where capacity loss is not minimized, and Qγ=1

f,loss

where capacity loss is minimized. The RCLP metric can be seen as the percentage of the battery’s capacity that is
saved on a driving set by introducing the aging term in the cost function, i.e., minimizing the battery capacity loss.
The metrics are collected for all the frameworks: CD-MPC, EP-MPC-5s, EP-MPC-10s and OF. Every framework
is simulated with and without the capacity loss minimization (γ = 1 and γ = 0 respectively) for a total of 8
frameworks. This metric will be particularly effective in investigating the importance of the battery degradation
term in the cost function and its dependency on the horizon knowledge. The two metrics just discussed are
dimensionless quantities based on the actual fuel consumption and the actual capacity loss in various cases. These
quantities with their units are also reported in the next section to reference the simulation results’ actual values.
The fuel consumption is reported in Km/l to be immediately readable.
The last metric is the monetary savings per km Ckm, which is very close to what we used as a cost function. In
practice the weight of each term of the cost function is weighted by their price in euro, and this is also evaluated
for the ICE to compute the difference:

Ckm = (Γfuel Mf,km + ΓageQloss,km)− Γfuel mf,ICE,km (3.47)

Where Γfuel and Γage are the cost in euro per unit of fuel and capacity loss respectively. We decide to express the
fuel consumption Mf,km, and the capacity loss, Qloss,km per kilometer (on average).

3.6 Results

In this section, we present the results applying the simulation methodology that we introduced in Section 3.5.2
and the metrics discussed in Section 3.5.3.
In Figure 3.12 the fuel efficiency is reported for each driving record and each framework divided by the color.
Firstly, we consider the presence of the battery degradation term (setting γ = 1). The fuel efficiency is reported
again for each frameworks removing the aging term shown in Figure 3.13 (setting γ = 0). These two figures
allow us to draw some qualitative considerations. We can notice in both plots that the knowledge of the entire
future velocity profile improves fuel efficiency (see OF framework). This relation is emphasized by adding the
battery degradation term, i.e., when the optimization minimizes battery degradation. In fact, in Figure 3.12
the MPC frameworks fuel efficiencies (CD-MPC, EP-MPC5s/10s) tend to be farther of the corresponding OF
fuel efficiencies with respect to the results without battery degradation term, shown in Figure 3.13. We can
barely distinguish between different horizons’ results within the same frameworks (all EP-xx-x and all CD-xx-x),
showing that the accuracy of the maneuver is more effective than its length for short-horizons. At least for fuel
consumption.
Beyond the qualitative considerations made from the fuel consumption values, we can now draw quantitative
conclusions looking at more aggregated results. The average Fuel Saving Percentage (FSP) among all the 30
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Figure 3.12: Fuel efficiency in km/l for each framework and for each driving record. case γ = 1 (presence of the
degradation term). ICE-only case consumption is reported
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Figure 3.13: Fuel efficiency in km/l for each framework and for each driving segment considering γ = 0 (without
the aging term in the optimization). The ICE-only framework is included as reference.
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Battery degradation term CD-MPC-2s CD-MPC EP-MPC-2s -5s -10s OF-OCP
Yes(γ = 1) 8.26% 8.16% 8.57% 8.50% 8.51% 10.01%
No(γ = 0) 8.53% 8.43% 8.90% 8.92% 8.98% 10.19%

Table 3.5: Average fuel savings with respect to the ICE-only case.

CD-MPC vs: EP-MPC-5s EP-MPC-10s OF-OCP
null hyphosesis rejected yes yes yes

p value 2.19 · 10−6 4.08 · 10−6 1.41 · 10−7

Table 3.6: Results of paired t-test between CD-MPC and the other frameworks Fuel Saving Percentage.

driving records is computed for each of the presented frameworks and the results are shown in Table 3.5, the FSP
expression is in Equation (3.45).
The results in terms of fuel-saving are reported in 3.5. As expected, the fuel efficiency decreases as we get farther
away from the ideal case provided by the OF-OCP framework.

3.6.1 FSP Statistical tests
We need now to test the difference between the mean values of the obtained FSP. We decide first to evaluate the
proposed framework CD-MPC. So the first question to answer is: is the difference between the FSP obtained
framework CD-MPC and the one obtained in the other frameworks significant? (these tests do not include the
2 seconds frameworks). This question is answered using the paired student t-test. results are reported in Table
3.6. According to the test results, the means are considered different, Allowing us to discuss the values of Table
3.5. Now we are interested in testing the dfferences between frameworks freaturing different horizons, results are
reported in Table 3.7. This test is repeated for both values of γ, p values are not reported for brevity.
The paired t-test between EP-MPC-5S and EP-MPC-10S provides that we cannot reject the null hypothesis that
the mean is their distribution present the same mean (p value = 0.56). We are confident in using this result to
validate the choice of 5 seconds as the proposed horizon. We still propose 5 seconds as a time horizon since the
mean is different from 5 to 2 seconds. We can conclude from Table 3.7 that shortening the horizon up to 2 seconds
does make a difference. Such differences are discussed in Section 3.6.2. We are also engaging in a comparison
between the frameworks with and without the aging term to see if preservation of the battery affects the fuel
efficiency. Before to make the comparison, we need to test the difference between the means. The results are
shown in Table 3.8, the test rejects the null hypothesis for all the couples of frameworks, the means are therefore
different.

3.6.2 FSP considerations
The results are reported in Table 3.5. The highest gap lies between the OF and the EP-MPC-10S, where about
15% of the potential fuel saving is lost. Most of the fuel-saving loss occurs when passing from the knowledge of
the velocity profile on the entire horizon (as in OF) to the receding horizon MPC frameworks. Conversely, the
fuel-saving performances of EP-MPC-10S and EP-MPC-5S are very similar. We use the latter result to validate
the choice of setting the horizon length of the velocity prediction in the CD-MPC to 5 seconds. Indeed, increasing
the prediction horizon up to 10 seconds in the CD-MPC framework would not improve the fuel savings since no
improvement happens even with the exact predictions of EP-MPC-10S and EP-MPC-5S. The average fuel saving
of the CD-MPC framework is slightly lower than the EP-MPC-5S framework (which uses the same horizon length
but perfect prediction), showing that the bio-inspired velocity prediction is suitable to feed the online EMS. Finally,

t-test CD-MPC vs: CD-MPC-2s EP-MPC-5s vs -2s EP-MPC-5s vs 10s
γ = 1 yes yes no
γ = 0 yes yes no

Table 3.7: Results of paired t-test between CD-MPC and the other frameworks Fuel Saving Percentage.
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γ = 1 vs γ = 0 CD-MPC -2s EP-MPC-2s -5s -10s OF-OCP
null hyphosesis rejected yes yes yes yes yes yes

Table 3.8: Paired t-test between FSP of the frameworks with aging term and frameworks without

CD-MPC vs: EP-MPC-5s EP-MPC-10s OF-OCP
null hyphosesis rejected yes yes yes

Table 3.9: Results of paired t-test between CD-MPC and the other frameworks for capacity loss.

on average, the proposed CD-MPC framework can achieve 81% of the potential fuel saving of the benchmark OF
framework. Moving to the second line of Table 3.5, we can see the average fuel savings obtained when in the
frameworks the battery aging is not minimized in the cost function. As expected, the fuel-saving is higher in
all four frameworks, but the difference is slight concerning their respective battery-aging-aware cases. We can
conclude that minimizing the battery aging does not significantly affect the fuel savings performances. This
conclusion was also drawn in [36] for the offline case only (OF), on standard driving cycles: here, we extend such
conclusion on naturalistic driving data and also on online MPC frameworks. In other words, we prove that the
results of [36] are equally valid in the real-time application.
We did not yet discuss the two frameworks with a short horizon. Looking again at Table 3.5, we can notice that
in both Co-Driver and Exact prediction frameworks and γ = 1 the FSP improves. This behavior is not intuitive
since usually, we expect that a shortened horizon would worsen the performance of a MPC algorithm. To dive into
this result, we need to recall that the overall cost function also includes the battery degradation term, and therefore
an improvement of fuel efficiency may raise the overall cost. The second row of the same frameworks indeed
presents a decay in the Fuel Saving Percentage from 5 seconds to 2 seconds horizons. This means that if we do
not consider the battery degradation shortening, the horizon worsens the FSP, suggesting the above improvement
came at the cost of more battery degradation. Now we can move to the battery degradation performances.

3.6.3 The battery capacity loss
The second metric regards the Relative Capacity Loss Percentage (RCLP), defined in Equation (3.46). Before
to show and dicuss the main metric RCLP, we hereby define the absolute capacity loss as the percentage of the
battery capacity loss w.r.t. the total capacity of the battery (100 ·Qγ=1

f,loss). In Figure 3.14 the absolute capacity loss
is shown for each driving record and for each framework when the battery-aging minimisation is active (setting
γ = 1). In the same Figure, we show the difference between the corresponding framework but with no battery-
aging minimisation (100 ·Qγ=0

f,loss − 100 ·Qγ=1
f,loss).

3.6.4 Capacity loss Statistical tests
As we have done for the FSP, we repeat the exact same tests for the battery capacity loss. The first test is
the CD-MPC frameworks versus the others, in Table 3.9. All the null hyphotesis are rejected. The second test
again is about the horizon length. Same frameworks and different horizons lenghts are tested for both aging
minimization active and not. Results are in Table 3.10. This time we reject all the null hypotheses. This means
that for the battery degradation minimization, even the difference between 5 and 10 seconds (at least assuming
perfect prediction) matters. If we remove the battery minimization strategy, intuitively, we cannot reject the null
hypothesis in the differences between 2,5 and 10 seconds in the perfect prediction. We cannot assert that capacity
loss changes among these frameworks. This may be intuitive since we have no capacity loss-related term in the
cost function. What is interesting is the fact that we have a difference between the CD-MPC frameworks at 5

t-test CD-MPC vs: CD-MPC-2s EP-MPC-5s vs -2s EP-MPC-5s vs 10s
γ = 1 yes yes yes
γ = 0 yes no no

Table 3.10: Results of paired t-test between CD-MPC and the other frameworks capacity loss.
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EP-MPC-10s
EP-MPC-5s
EP-MPC-2s
CD-MPC-2s
CD-MPC

Figure 3.14: Capacity losses for each framework and for each driving record considering (γ = 1).
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RCLP CD-MPC-2s CD-MPC EP-MPC-2s -5s -10s OF-OCP
(γ = 1) 1.16% 1.18% 1.70% 2.38% 2.65% 3.71%

Table 3.11: Reduction of capacity loss introducing the aging term in the cost function in each framework. (Relative
Capacity Loss Percentage)

RCLP CD-MPC-2s CD-MPC EP-MPC-2s -5s -10s OF-OCP
(·10−2 /km) 0.032 0.035 0.059 0.063 0.065 0.14

Table 3.12: Cost reduction per km for each case (with the aging term), in euro cents.

and 2 seconds. This means that if the prediction is not perfect, shortening the horizon length may affect the bad
capacity loss. One may compare Table 3.10 with Table 3.7 and notice the difference in the last column.

3.6.5 Relative Capacity Loss Percentage

It is difficult to retrieve qualitative considerations from the absolute capacity loss plots. More objective conclusions
can be retrieved from the aggregated results of the RCLP metric (see Section 3.5.3). Table 3.11 shows the average
RCLP, i.e. the average percentage of the capacity of the battery that is saved introducing the battery degradation
term in the cost function (For a more detailed definition of RCLP see Section 3.5.3).
At first, we need to point out that the introduction of the battery degradation term introduces a significant
improvement in the battery capacity loss.
As expected, the best results are obtained when all the velocity profile is known, i.e., the case of the OF-OCP
framework. From the benchmark framework (OF) to the OF-OCP, only about 30% of the potential capacity saving
is achieved. Comparing CD-MPC with its perfect velocity prediction version (EP-MPC-5s), the performance
decreases of the 50%. This performance loss is due only to the errors in the velocity prediction since the horizon
length is the same.
we can conclude that an accurate speed profile prediction is critical for battery aging minimization and the horizon
length.

3.6.6 Monetary savings

The final metric is the actual monetary cost (in euro) kilometer saved with respect to the ICE-only case. In Table
3.12 the average monetary savings per kilometer are shown. The final cost that is saved is positive but small, both
in terms of money and benchmark comparison. The total saved cost is low due to the high cost of the battery,
which, even at the optimum, compensates for the fuel-saving. It is worth mentioning that an extension of the
battery life may even eliminate the cost of a new battery if its lifespan reaches one of the vehicles. The high
difference with the benchmark enhances the considerations made on the capacity loss. On the cost, the offline
benchmark benefits of the high capacity recovered with its perfect knowledge of the complete velocity profile.

3.6.7 Engine and motor usage

In Figure 3.15 we show the fuel consumption map of the engine, while the motor efficiency map is drawn in Figure
3.16. On these figures, plots of the engine and motor usage are shown with a color map for the CD-MPC and OF
frameworks. The plots of each framework represent the overall usage on all 30 naturalistic driving datasets. Notice
that the difference between online (MPC) and offline cases is barely visible. The engine model in this work is
quite powerful. Thus it is under-utilized during normal driving. On the other hand, the much less powerful electric
motor is fully exploited, especially in high-efficiency regions.
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(a) (b)

Figure 3.15: Utilization maps: usage increases from from blue to red. In (a) engine usage in the CD-MPC
framework, in (b) the engine usage in the OF framework. All the datasets are considered.

(a) (b)

Figure 3.16: Utilization maps: usage increases from from blue to red. In (a) motor usage in the CD-MPC
framework, in (b) motor usage in the OF framework. All the datasets are considered.
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Figure 3.17: Final SOC histograms of the MPC-based frameworks.

3.6.8 SOC related considerations

The SOC evolution in time gives us some information about the difference between the performances of the
different frameworks. The first aspect we want to validate is the charge sustain strategy, necessary for the
frameworks featuring a receding horizon optimization. Figure 3.17 shows the distribution of the final SOC of
the CD-MPC and the other frameworks (considering all the 30 driving records). The final SOC is confined within
the window 47%-52%. The charge sustaining strategy is effective since the minimum SOC is bounded above 47%.
In Figure 3.18, for all the datasets, the maximum, the minimum, and the median of the SOC at every time instant
are plotted for CD-MPC (in blu) and OF-OCP (in orange) frameworks. The two plots in Figure 3.18 presents two
differences: the general trend of the median and the difference between the minimum and the maximum evolving
in time. Thanks to the knowledge of the entire driving record, the OF-OCP framework can exploit a wider range
of the SOC without affecting the final SOC. The right area (orange) in Figure 3.18 ranges down to 40% while
the one on the left (blue) does not cross under the value of 47% by the necessary charge sustaining strategy. The
impossibility for the CD-MPC framework to exploit lower values of the SOC has a double effect on the battery.
Firstly, higher SOC values correspond to higher battery aging (see Equation (3.32)), resulting in a loss of capacity-
saving performance between offline and online frameworks. Secondly, the CD-MPC framework frequently cannot
fully recover energy from deceleration, resulting in a loss of performance in terms of fuel-saving.

3.7 Conclusions

This paper presented a complete energy management system for hybrid electric vehicles. Firstly, we designed
a prediction scheme to estimate 5 seconds of the future velocity profile the driver intends to pursue. Then, we
presented an online energy management system to optimally split the requested driving torque between the electric
motor and the internal combustion engine. The EMS is based on a state-of-the-art battery model. It considers
the battery aging in the form of capacity loss, and it is implemented using optimal control solved through the
direct approach. We validated the prediction scheme and then the entire online EMS framework (BP-MPC) on
30 naturalistic driving segments of 6 minutes each from 10 different drivers. In addition, the prediction scheme
was also validated on standard driving cycles and compared against two benchmark prediction methods widely
employed in the literature. The proposed EMS system was then compared with three ideal benchmarks (one
"global" solution (OF) and two MPC-scheme fed by exact velocity predictions (EP-MPC-5S, EP-MPC-10S).
Comparison against the benchmarks led to desirable results in reducing fuel consumption. For example, the
proposed BP-MPC framework could save 80% of the fuel saved by the ideal offline OF framework. The battery
capacity savings resulted in being more sensitive to the accuracy of the velocity prediction. Our novel BP-MPC
framework was able to save only the 31% of the potential battery capacity saved by the ideal OF framework and
the 50% of the one obtained with the exact prediction EP-MPC-5S framework. Thus, as one of the significant
outcomes of this work, it turned out that accurate speed prediction is more relevant for battery aging than for fuel
consumption. Moreover, it was shown that the proposed EMS system is real-time feasible, which means it can be
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Figure 3.18: SOC evolution in time, the blue left curve is CD-MPC framework, the right orange is OF-OCP
framework.
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embedded on a vehicle for a practical application.
Despite the latter result, the real-time system extended the battery life, making it suitable for implementation. It is
worth noticing that the small amount of money saved is mainly due to the high cost of the battery that has a double
effect on the final cost: increasing the overall cost per kilometer and moving the optimal solutions to higher usage
of the fuel. Increasing the battery life up to the life of the vehicle itself may significantly reduce the cost for the
final user and reduce the battery’s environmental impact.
The approach can also be modified by introducing different costs in the objective function, such as an equivalent
environmental impact of fuel and battery capacity loss. Although we did not address the problem in this thesis,
it is worth mentioning that future development can be the introduction of new inputs to the velocity prediction
algorithm, like information from the ADAS of the vehicle. The latter includes the velocity of the preceding
vehicle, the presence of intersection and roundabouts, and the readings of the speed limits. To include these
features, the predictor would need an ahead road scenario that is correctly perceived with sensors. We can also
conclude that increasing the horizon length makes a difference only with a reasonable accuracy since, in the
CD-MPC framework, the difference of performance between 2 and 5 seconds was smaller than expected.
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Chapter 4

Intersection Management for Connected

Autonomous Vehicles

In this chapter, we move from driving assistance systems to automated vehicles. The connected vehicles
paradigm is maintained, We hereby exploit the connection between vehicles to address the problem of intersection
management for Connected Autonomous Vehicles (CAVs). We propose a framework that maximizes the traffic
throughput of a broad category of possible intersections, including multiple lanes and multiple turns options. The
objective of the framework is to optimize the time that vehicles require to clear a given arbitrary intersection, taking
into account all the vehicles’ states and conflicts. The overall problem is formulated as a bi-level optimization
problem. In the low level we solve a simple Optimal Control Problem (OCP) for each vehicle, in the high level
we formulate a Mixed Integer Non-Linear Programming Problem (MINLP) to retrieve the optimal scheduling and
the arrival time of each vehicle. The MINLP problem is then approximated and solved by means of a piecewise
linearization technique. The final proposed problem to solve is then a Mixed Integer Linear Programming problem
(MINLP). The algorithm is tested on a benchmark scenario, and compared with a typical heuristic strategy.

4.1 Introduction
In the last decade, the concept of automation in the automotive field gained importance. Alongside,
communication paradigms such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) are rapidly
evolving. The confluence of vehicle automation and vehicle communication gave birth to the concept of Connected
Autonomous Vehicles (CAV), which can improve the capabilities of self-driving vehicles substantially.
Road intersections play a crucial role in mobility networks, especially in urban areas they affect the safety and
efficiency of transportation. The introduction of CAVs opens new ways to address the problem of intersection
management. Optimal coordination of CAVs at intersections can improve safety and traffic efficiency. In the last
decade, research about intersection optimization gained much interest, with a significant boost in the last three
years. Two recent surveys are [95] or [77]. They both present a detailed review of the literature on intersection
management systems for autonomous vehicles. Many algorithms address such problems. They differ in several
aspects. For instance, the approaches can be divided by the goal of their optimizations. In the literature safety,
efficiency, ecology and passenger comfort are the most widespread goals. Another interesting difference that
divides the algorithms into two categories is the communication paradigm. We can find distributed approaches
and centralized approaches. In the centralized case, the management of the intersection must be demanded to some
managing unit located in the vicinity of the intersection, where the computations took place. In the distributed
case, instead, CAVs try to optimize their goal only by communicating with each other and performing their own
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computations without a central unit knowing all the states. A examples of distributed approaches can be found in
[25], [84] and [8]. In the first reference, the problem is represented as a generalized Nash equilibrium problem that
results from a coupled optimal control problem. Moreover, to the best of our knowledge, this is the first work on
intersection scheduling with proof of convergence. In the underlying work, we consider a centralized approach.
If no traffic priorities are given, the intersection management problem, in this case, can be addressed as a bi-level
optimization problem. On the lower level, the motion of each individual vehicle has to be found in accordance
with some optimization goal, whereas on the higher level, one tries to find an optimal crossing order such that
no collisions occur, and some global cost is optimized. Often, this global cost is simply the total time elapsed
to clear an intersection for all vehicles in consideration. Let us first mention some existing works with similar
modeling/solution techniques and then discuss the contribution of our work. The approaches given in [47], [88]
exploit the same vehicle model and the same modeling techniques for scheduling constraint. The geometry of the
intersection is instead restricted to a specific use case with no turns, and due to some simplifications, the higher
level problem is modeled as a MILP. In [67], [68] a more sophisticated car model is considered which results
in a MINLP on the higher level. The emerging MINLP is then solved using an SQP-type algorithm. See also
[66] for a real-world experiment. In this paper we consider a simple car model as in [47], [88], however, on the
higher level we end up with a MINLP as in [67], [68], and in contrast to Hult et al., we solve the MINLP with
some linearization technique inspired by [125]. Such a choice is explained by the existence of high-performance
software packages for solving MILP. We show that our technique can be used for real-time applications. The rest
of the chapter is organized as follows. In Section 4.2 we define the details on the problem we address, discussing
restrictions and assumptions we make regarding vehicles and intersection geometry as well as the vehicle model.
Sections 4.4 and 4.5 are devoted to the actual problem formulation divided in two levels, low and high respectively.
We introduce the vehicle model, define scheduling constraints, and state the MINLP. In Section 4.6 the piecewise
linearization technique is introduced, and a final MILP is stated. Finally, in Sections 4.7 and 4.8.1 we present
some numerical experiments and state conclusions.

4.2 Problem modeling

4.2.1 Intersection geometry
The approach used in this work is conceived to be flexible and can be easily adapted to different types of
intersections. We define some necessary quantities. If these objects can be identified for an intersection, such
an intersection is suitable with the proposed approach. In Figure 4.2 the objects are illustrated in a visual example.

Lanes

The lanes that enter the intersections are called entering lanes. The others are exit lanes. In a single lane a vehicle
is not allowed to overtake, since we are in the vicinity of the intersection, and the vehicles cannot change lane. We
assume they are already on the desired lane.

Paths

Every entering lane is connected to all the exit lanes with predefined paths (see Section 4.2.2). Every vehicle
i travels on the path P (i). Their geometry is known. These paths resemble the concept of paths we have seen
Section 2.5.

Conflict zone

The Conflict Zone (CZ) is an intersection area that contains all the overlapping points of the paths. All the possible
collisions (except rear collisions on the lanes before the intersection) can only occur in this area. This area is the
part of the intersection shared between vehicles at different times. The time at which vehicle i reaches this area is
defined as ti.
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Conflict matrix

The geometry of the intersections contains paths that can overlap with other paths. The management of these
conflicts is the core of the intersection management problem. If there are no conflicts, the global minimum time
solutions would be only the sum of the single minimum time trajectories of the vehicles.
The conflict between the paths is of four different types, depending on the entering and exit lanes. This
characteristic of pairs of paths is encoded in an MxM matrix called conflict matrix Mc. The entries of the
conflict matrix can assume five values (4 for conflicts plus one for no conflict). Given a path k and a path l, the
entry k, l of the matrix can assume the following values:

Mc(k, l) =


0 paths do not overlap
1 paths conflicts different entering lane different exit lane
2 paths conflicts different entering lane same exit lane
3 paths conflicts same entering lane different exit lane
4 same path same entering lane same exit lane

(4.1)

This matrix encodes the necessary information on which paths are in conflicts. Note that the distinction between
the conflict types is necessary to exploit the entire conflict zone to host more than one vehicle simultaneously. A
similar example is provided in [117] using a scheme with only one type of constraint, in such case the conflict
zone can be occupied only by one vehicle at a time.

Lengths

The geometry of the intersection is closely related to the formulation of the constraints. We hereby define some
crucial quantities required to model the conflicts between paths inside the conflict zone. The various length that
we are going to define are shown in Figure 4.1. The first length to define is Lk (or Lp) which is simply the length
of the path k inside the conflict zone CZ. This length does not depend on the size of the vehicles. More specific
lengths need to be defined to model specific conflicts between two paths and two vehicles.
The quantity La,i,j is defined as the length of the path (inside the conflict zone) that the vehicle i can travel without
being overlapped with the path of the vehicle j. Note that this length depends only on the size and path of vehicle
i (the vehicle that passes first) and the path chosen by the vehicle j. Instead the length Lb,i,j is the length of the
path i before the overlapping region of j. It means the path such that vehicle i reaches the overlapping region
between path p(i) and p(j) after Lb,i,jTi (assuming constant velocity, Assumption 4.3). In Figure 4.1 examples
of these quantity are shown.
Note that these lengths depend on the size of the footprint of vehicles, especially on the length of the vehicles
(the width is actually under a certain standard threshold). For the sake of simplicity, we decided to introduce the
assumption on the same footprint 4.5. Extension on variable size can be a matter of further work extensions.

4.2.2 Assumptions

Assumption 4.1. CAVs states known In the problem addressed, N connected autonomous vehicles are

considered. They are indicated by the index i = 1..N . The states of those vehicles are assumed known without

uncertain (The model, with its states, is detailed in Section 4.3).

Assumption 4.2. Predefined paths We assume that the vehicles travel on predefined paths. Every entering lane

is connected to an exiting lane by a predefined path. Vehicles are allowed only to move along the assigned paths.

Paths are enumerated one by one in the intersection, and they are indicated by the letter P and the index k = 1..M .

The vehicle’s path is then known in advance, and it is indicated by the map P (i) : i → k, which relates the index

of the vehicle i to its chosen path k. No lane change is allowed (the vehicle is already in the correct lane) in the

portion of the intersection considered by the problem. This assumption is widely used for this problem [95], in

103



3

5

6

La;i;j

6

3

6

La;i;j

Lb;i;j

5

6

L6

L5

Lk

La;i;j

La;i;j

Lb;i;j
(Same lane)

L4

Figure 4.1: Lengths involved in the geometry: the two representations of the CZ on the left contains La,i,j , the
length the vehicle i travels before clearing the span of the vehicle j (the latter in red). In the upper right CZ, Lb,i,j

is the length the vehicle i can travel before the overlapping. General length Lk are provided in the last square for
three paths.
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Conflict Zone

Lane

Path

Possible paths for each lane

Figure 4.2: Sample of an intersection geometry: in the top of the figure a 4 roads intersection is shown, there are
4 entering lanes and 4 exiting lanes and 12 possible paths. The paths are shown in a detail of the conflict zone in
the bottom of the figure. The path of the sample vehicle 1 is the number 12, then P (1) = 12
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some countries (like Germany) these paths are even painted on the roads as they were lanes. These paths resemble

the concept of paths we have used in Section 2.5.

Assumption 4.3. Constant velocity in the conflict zone Once the conflict zone is defined. The longitudinal motion

of the vehicle is divided into three phases. The approaching phase is fully described in 4.3 and regards the motion

from the initial position of the vehicle to the conflict zone. The second phase starts in the conflict zone, and

the vehicle velocity is assumed to be constant inside this zone. This choice is motivated by the simplicity of the

timings inside the conflict zone and the fact that the turning paths limit the velocity. Constant velocity simplifies

its limitations of it based on the curvature. This assumption is also widely used in literature [95]. The third phase,

after the conflict zone, is not discussed here. The velocity in the conflict zone of the vehicle i is vf,i = 1/Ti, being

Ti the reciprocal of that velocity (its meaning is detailed in Section 4.4).

Assumption 4.4. Feasible initial conditions This assumption is straightforward. The formulated MILP problem

cannot be solved for any initial conditions. We exclude initial conditions that lie to an infeasible problem

(impossibility to respect all the constraints). This assumption does not imply any loss of generality since these

initial conditions eventually lie to an accident, and they must be discarded a priori.

Assumption 4.5. Same footprint of vehicles The footprint of each vehicle is different, but we consider a footprint

that can fit most of the vehicles. This assumption does not affect the flexibility of the approach, a relatively large

footprint can indeed be used in a real application introducing a safety margin.

4.3 Vehicle model and motion

In this section, we describe the simplified model used for the vehicle. We also explain motion planning, which is
divided into three phases.

4.3.1 Vehicle model

For simplicity, the selected vehicle model is a double integrator. The states are the curvilinear position along the
predefined path s(t) and its derivative (the longitudinal velocity) v(t). The input of the model is the longitudinal
acceleration a(t). The latter is bounded by am and aM as shown in equation (4.2). The zero of the curvilinear
coordinate s(t) is the point of the path in which the conflict zone begins. We will see that placing the origin at
such a point simplifies the motion planning. In Equation (4.2) the vehicle model is illustrated:

ṡ(t) = v(t)
v̇(t) = a(t)

am ≤ a(t) ≤ aM
0 ≤ v(t) ≤ vM

. (4.2)

The velocity is nonnegative and bounded in the model, other limits in velocity, depending on the curvature of the
path and on the legal limit, are introduced in the problem formulation. Initial conditions are given (see Equation
(4.3)), they are simply the state of the vehicle when the optimization starts (t = 0). Note that in (4.3) s0 needs a
change of sign since it is the distance from the conflict zone, and therefore positive.

s(0) = −s0
v(0) = v0

(4.3)

106



There are N vehicles in the intersection, and the state (and initial condition) of each of them is indicated by a pedix
i or j. In terms of geometrical characteristics, a vehicle’s footprint is represented as a rectangle. The rectangle is
conceived to contain the actual dimensions of the vehicle projected on the ground. The position s(t) is the position
of the geometrical center of the rectangle. The quantity s0,i is the curvilinear distance (positive) to the conflict
zone of the vehicle i at t = 0. It needs a minus sign to be a coherent initial condition (The condition s(t) = 0
means the vehicle reached the starting point of the conflict zone, and it happens at t = ti).

4.3.2 Motion planning and problem formulation

The problem formulation proposed and solved in this work aims to find the optimal times and the optimal order
for the vehicles to arrive at the intersection (ti) minimizing the overall time elapsed (that is equivalent to maximize
the traffic throughput). The longitudinal motion of the vehicle along the curvilinear coordinate s(t) is divided into
3 phases:

• Approaching phase, t ∈ [0, ti]

• Crossing phase, t ∈
(
ti, ti + L(p(i))Ti

)
• Leave intersection t > Ti

The optimization concerns the first two phases. In the approaching phase, the vehicle’s motion is computed by a
low level optimal control problem in a parametric fashion. The duration of this phase is ti, which the high level
planner gives.
In the CZ instead, we have the crossing phase, where the vehicles maintain constant velocity (vf,i = 1/Ti), such
velocity is also the “arrival” velocity vf,i = v(ti). The third phase is not considered since the vehicle can continue
its travel without affecting the intersection. What we are going to use is the reciprocal of the velocity:

Ti =
1

vf,i
. (4.4)

The parameter Ti is defined as the reciprocal of the arrival velocity of the vehicle i. It can be seen as the time
required to travel 1 meter inside the conflict zone (the velocity in the conflict zone is constant see 4.3). The time
ti + L(p(i))Ti is the sum of the approaching and crossing phases times and it is how long the vehicle i takes to
clear the intersection. The approaching and the crossing phase durations sum up to the total time required by the
vehicle i to clear the intersection:

ti + Lk/vi(ti) = ti + LP (i)Ti. (4.5)

Where Lk is the length of the path k = P (i) in the Conflict Zone. Since ti is given from the scheduling, the low
level problem provides the final velocity vi(ti).
The selected longitudinal motion is the solution of an optimal control problem (OCP) that maximizes the final
velocity (and therefore minimizes the overall time given by (4.5)). The OCP is solved analytically using the
Pontryagin Minimum Principle.
Equation (4.6) is parametric in ti, and it can be used directly in the scheduling problem through the reciprocal of
the final velocity Ti(ti).
In short, the motion planning of the low level gives the non-linear function Ti(ti) for the scheduling problem of
the high level. Since Ti is the reciprocal of the final velocity of the planned motion.
This function Ti(ti) plays a central role in linking the optimal control level to the scheduling level, delegating the
global optimization to the high level. In Figure 4.3 this bi-level scheme is depicted.
Additional limits on velocity The function Ti(ti) can be further modified by the constraints on velocity. This is
possible because the motion planning can be modified for final velocities lower than the maximum possible. In
particular, additional limits can be used to avoid unfeasible velocities. In Section 4.4.3
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Figure 4.3: Scheme of the approach, the high level optimization variables are ti and the order of the vehicles
(see Section 4.5), while the low level consists in parametric solutions of OCP problems that provides Ti(ti) (See
Section 4.4). The cost function of the high level’s optimization problem contains Ti(ti).

Symbol Description Section
i, j ∈ V Vehicle and index set 4.3
N Number of vehicles 4.3
k, l ∈ P Path indices and index set 4.2
M Number of paths 4.2
P (i) Path chosen by to vehicle i 4.2
MC k,l k, l conflict matrix entry 4.2
si(t) Position of vehicle i along its path 4.3
vi(t) Velocity of vehicle i 4.3
ai(t) Acceleration (control variable) of vehicle i 4.3
am,i; aM,i Acceleration bounds of vehicle i 4.3
ti Arrival time of vehicle i 4.3
ti,min Lower bound of ti
ti,max Lower and upper bounds of ti 4.3
vi(·) Arrival velocity of vehicle i 4.3
vP (i) Maximum allowed velocity on path P (i) 4.3
Itnta Time interval [ta, tb] 4.3
Ti(·) Inverse of the arrival velocity of vehicle i 4.3
ti,⋆ Velocity saturation starting time of vehicle i 4.3
Clarge Some very large constant 4.5.1
wij Binary decision variable (equals to 1 if vehicle i goes first) 4.5.1
Lb
ij Length to travel before overlapping zone of P (i) and P (j) 4.5.1

La
ij Length to travel to clear overlapping zone of P (i) and P (j) 4.5.1

Lk Length of path k in CZ 4.5.1
Theadway
i (·) Time to reach maximum velocity in exit lane for vehicle i 4.5.1

T gap(·) general time gap to avoid real collision in the approaching phase i 4.5.1
vexit Maximum allowed velocity in exit lanes 4.5.1
T switch
i (·) Switching time point from deceleration to acceleration 4.5.1

Ti Time interval discretization corresponding to vehicle i 4.6
Ki Number of discretization points of i-th interval 4.6
zi,k Pointer variable corresponding to i-th interval 4.6
λi,k Lambda variable corresponding to i-th interval 4.6
Ti,pw, vi,pw Linear approximations of Ti(·) and vi(·) 4.6

Table 4.1: Quantities and variables introduced in this chapter
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4.4 low level problem

The intersection management problem is hereby treated as a bi-level optimization problem. The lower level of this
problem regards the motion of the single vehicle. In the formulation of the high level problem, we decided to put
as variables the time to arrive at the intersection of the vehicle i, (ti). The velocity in the intersection is constant
and it is equal to vf,i = 1/Ti, note that Ti represents the time for the vehicle i to travel one meter in the conflict
zone.
The constraints on the value of ti are defined in Section 4.5, and they do not depend on the type of motion, since
the minimum ti, defined as tstart, is given by a constant maximum acceleration motion.
Instead, the approaching phase can be traveled by any type of motion (according to the limit of the vehicle). In
our problem, we decided to pursue the minimum time to clear the intersection as a first approach to the problem,
and we did not take into account the comfort of the passengers. It is important to recall that the proposed approach
can be applied with motion laws other than the one proposed in this work.

4.4.1 Maximize final velocity OCP

The first thing to take into account is that the time to arrive ti is an argument of the high level problem (ref).
Therefore we cannot actually minimize it in the approaching phase.
The only quantity that can be minimized taking into account the overall cost function is Ti. Thus, we want to find
a motion law that minimize such quantity. Note that summing up the times the approaching phase and crossing
phase requires, we get ttot = ti + LiTi, maximize the final velocity of the approaching phase means minimize
Ti and since ti is demanded to the high level problem, we can minimize the time at this stage only maximizing
the final velocity vf,i = v(ti). The simplified model of the vehicle is provided in Equation (4.2). In our problem,
every vehicle is distant sf meters from the conflict zone. The time to arrive ti is “given” by the MINLP problem.
having in mind that minimizing Ti(ti) is equivalent to maximise its reciprocal v(ti), we can formulate the optimal
control problem:

maxa J = v(ti)
s.t.

(4.2)
am ≤ a ≤ aM
v(0) = v0
s(0) = 0 s(ti) = sf

(4.6)

4.4.2 OCP solution

To solve the problem illustrated in Equation (4.6), we employed a indirect approach using the Pontryagin
Minimum Principle (PMP). A summary of the procedure of the Pontriagyn minimum principle is illustrated in
[94], at page 69, the overall steps to find the maximum/minimum using the PMP approach are summarized.
We calculate the Pontriagyn Hamiltonian function, since ∂J/∂a = 0, the Hamiltonian contains only the
constraints and it is formulated as follows:

H = λ1v + λ2a. (4.7)

The optimal control a⋆ must be a stationary point for the Hamiltonian, To find a⋆, we need more informations
from the co-state equations and the boundary conditions, that are formulated as:

{
λ̇1

⋆
= 0

λ̇2
⋆
= λ⋆

1

(4.8)

While the boundary conditions are: {
s(0) = 0 s(ti) = sf
v(0) = v0

(4.9)

Even if we already have initial and final conditions, it is not enought, we must apply this equation taking into
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Figure 4.4: Final piece of OCP solution

account possible variation of final time and final state.

(
H⋆(ti) +

∂S

∂ti

)
δti +

(
∂S

∂x
− λ⋆(ti)

)
δx(ti) = 0 (4.10)

The variation δti is 0, therefore the first part of the equation does not play any role. regarding the final states
variations, the variation of the final state is not null: δx(ti). Thus, the derived equations are:

{
0 = λ⋆

1(ti)
1 = λ⋆

2(ti)
(4.11)

Remind that S is the part of the cost function that contains the final states. Now we have all the elements, from
(4.8) and (4.11) we can conclude that λ⋆

1 = 0 ∀t and λ̇2
⋆
= 0 ∀t. Taking in consideration this trends of λ⋆

into the Hamiltonian, we see that to maximize it we need to maximize λ2a. The control a is limited by (4.6). To
maximize the product, the sign of the terms must be the same, therefore:

{
a = aM (if) λ⋆

2 > 0
a = am (if) λ⋆

2 < 0
(4.12)

Note that am < 0.
Furthermore we know that the final λ(ti) si equal to 1, so the final control is necessarily aM . The rest of the
control is constant or piecewise constant.

a(ti) = aM (4.13)

At this point we can only conclude that the control present the form in (4.12). In order to understand which is its
actual expression in time, we need to rely on some graphical considerations illustrated below.
We know that the final control is maximum acceleration, therefore we expect a shape similar to Figure 4.4.
In order to respect the constraint on the final position s(ti) = sf , the motion cannot be only an acceleration. At

first we must take into account that the position is the area under the curve and that according to (4.12), the control
can be only am or aM . Then there exists a time tswc before which we have a = am and after this is a = aM .
As shown in Figure 4.5, we can have a full acceleration if possible, otherwise we have a switch from min to max
acceleration, the third option is to have a stop in between, it will be detailed later. Figure 4.5 shows the three
possible options (In the Figure are 4 sice also the case t = tbreak is shown). Indeed, there is only one value of
time ti such that the motion is only a continous acceleration. Such time is indeed ti,min and it is the time required
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to cover the sf distance with maximum acceleration aM only. The time ti,min is the lower bound of ti:

ti,min =
vf − v0
aM

. (4.14)

This value is shown in Figure 4.5, where the vf (ti) begins.
Vehicles can decelerate up to stop, for obvious reason we cannot plan longitudinal motion where velocity is
negative. There exists a value of ti = tbreak such that the optimal switching motion decelerate up to negative
velocities. After such value all the motions consists in a deceleration up to stop, a time in which vehicle does not
move, and then an acceleration up to the final velocity. Figure 4.5 help to understand how the vf (ti) function is
built, and the corresponding motion for each vf (ti).

4.4.3 Velocity limits

In this section we have already introduced the acceleration limits, but we did not discuss the velocity limits. In
the approaching phase, for the motion characteristic, the maximum velocity can be only v0 or vf . No constraint
is introduced on v0 because of assumption 4.4. The final velocity vf instead, must be limited taking into account
two factors:

The legal speed limit of the road.
vf,i ≤ vlim (4.15)

The curvature of the trajectories. The curvature of the trajectories inside the intersection are used to impose a
limit on velocity. Such limit is chosen using 0.3 of the maximum grip in the curve.

vk,curv =

(
µg

|γ|

) 1
2

(4.16)

For both the listed cases, we impose a limit on vf . Such a limit is not imposed as a constraint. It is directly imposed
in the function vf (ti). Since we already have a case-defined function, it is easy to introduce such a limit directly.
Furthermore, we take advantage of the piecewise linear approximation to introduce this limit. In particular, we
introduce such limits changing the value of ti,⋆, introduce in Section 4.6.

4.4.4 Final velocity function

The low level problem carries out two outcomes: the motion of the vehicle and the final velocity vf,i(ti) = vi(ti)
to be used by the high level problem. To get such expression, we must solve a constant bang bang motion for
velocity and position at time ti.

{
sf,i = ti(amti,swc + a0)−

amt2i,swc

2 + 1
2aM (ti − ti,swc)

2

vf,i = v0 + amtswc +
1
2aM (ti − tswc)

2 (4.17)

Where v0 is the initial velocity, am and aM are the acceleration limits, while tswc is the time to switch from
deceleration to acceleration. Solving equation (4.17) for vf and tswc we get two pairs of solutions which only one
have tswc positive. Once the motion is established, the function of the velocity reads as:

vf,i(ti) = amti + v0 +
√
(am − aM ) (2amsf + v20) (4.18)
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Figure 4.5: Example of vf (ti) function construction. In the same plot examples of vi(t) bang bang motion
trajectories are shown. The envelope of the final velocities of the motion is the function vf (ti). In Blue and in
Red the special cases ti = ti,min, ti = ti,brk

Note that expression (4.20) is valid only for ti ∈ [ti,min, ti,⋆]. The time ti,⋆ is a time such that the deceleration
phase of the vehicle bring it to stop. This means that ti,swc reaches its maximum to stay into positive velocities.
The expression for ti,⋆ reads as:

ti,⋆ =
−amaMv0 +

√
a3maM (2amsf + v20)

a2maM
(4.19)

For ti > ti,⋆ the final velocity is always equal and the function becomes flat. The final function of vf (ti), from
which Ti(ti) is derived, read as:

vf,i(ti) =

{
amti + v0 +

√
(am − aM ) 2amsf + v20 t ∈ [ti,min, ti,⋆]

vi,sat t > ti,⋆
(4.20)

An example of the function is shown in Figure 4.5.

4.5 high level problem
The core of this chapter is the intersection management problem, which is the high level problem subject to the
low level problem. The high level problem concerns the global optimization of the intersection, addressing the
minimization of the time required to clear the intersection for all the vehicles, subject to individual vehicle motions
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Figure 4.6: Examples of the conflicts between the paths. from left to right one example is provided for each
conflict type illustrated in Section (4.1)

from the inner problem. It means it is demanded to find the optimal order and arrival times of all the vehicles
involved. The initial states of the vehicles (initial conditions) are given. The problem is to find scheduling of the
arrival times ti that minimizes the overall time elapsed for each vehicle. The degrees of freedom is the order of
passage and the time to arrive. The time to cross is a function of the ti. This function is one of the outcomes of
the low level problem.
The scheduling variable determines the crossing order, a scheduling variable concerns the sequence of two vehicles
i and j, and it is a binary variable called wij . If wij = 1 the vehicle i passes first. These variables are needed
only when the paths of vehicle i and j present conflicts. Therefore if two vehicles can pass simultaneously, no
corresponding scheduling variable is defined.
As stated in Section 4.5.1 the arrival time ti of the vehicle i is defined as the time at which the vehicle arrives at
the conflict zone following its lane. This is the most crucial quantity since it also determines the velocity at which
the vehicle i arrives, and therefore the crossing time (see 4.3).

4.5.1 Scheduling Constraints

In an intersection management system, the first concern of the algorithm is definitively the avoidance of collisions.
The scheduling constraints (or collision constraints) are aimed at excluding the possibility to have collisions
within the CZ. The Scheduling Constraints any pair of vehicles which moving footprints can eventually overlap
simultaneously. To understand these constraints, it is important to keep in mind that the velocity is constant inside
the Conflict Zone, as stated in Assumption 4.3.
The possible conflicts between various paths are of four types, as stated in the Conflict Matrix definition (see
Equation (4.1)) in the cases from 1 to 4. In Figure 4.6 an example of each of them is shown.

Each of this type of conflict is associated with a specific set of constraints that may include the scheduling variables
and the lengths (See Section 4.2).
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The first type of conflicts leads to the following set of scheduling constraints:

ti + La
ijTi(ti)− tj − Lb

jiTj(tj) ≤ Clarge(1− wij), (4.21a)

tj + La
jiTj(tj)− ti − Lb

ijTi(ti) ≤ Clargewij , (4.21b)

wij ∈ {0, 1} ,
∀i, j ∈ V with cP (i)P (j) = 1,

where Ti(ti) = 1/v(t = ti) is the inverse of the constant velocity of the vehicle i in the conflict zone. This
quantity is very important and it will appear in most of the constraints. The symbol Clarge denotes some large
positive constant, at least as large as maxi

(
ti + Lp(i)Ti

)
. Selecting is constant is not a problem, one can choose

a very large constant. The scope of this constant is to deactivate the constraint when it is multiplied by one (and
not by zero). Let us explain how Equation (4.21) works. Given a couple of vehicles i, j ∈ V in mc,P (i),P (j) = 1,
the binary variable wij indicates the priority, if wij = 1 the vehicle i passes first, on the other hand if wij = 0 the
vehicle j passes first. The constraints (4.21) are referred as "either-or" constraints [125] since they are mutually
exclusive based on the value of wij . We can take into account the first constraint (4.21a) assuming wi,j = 1.

ti + La
ijTi(ti) ≤ tj + Lb

jiTj(tj),

The left hand side of the inequality represents the total time the priority vehicle i needs to clear the overlapping
region. The time ti it’s the time required to reach the CZ, and La

ijTi(ti) is the time to leave the overlapping region
of the conflict zone interested in the conflict. The length La

ij indeed is the length to travel for vehicle i in the CZ to
leave the vehicle j free to pass along the path p(j). Vehicle j cannot occupy the ij overlapping region before the
time above. To model this, the right hand side is the sum of tj and Lb

jiTj(tj) the latter is the additional available
time for vehicle j before reaching the overlapping region.

(See Figure 4.6 and Figure 4.1 for visual references of conflicts and lengths respectively). The other inequality
(4.21b) represents a constraint that is not active if wij = 1, since the Clarge makes the inequality always verified.
At first glance, this case may seem comprehensive of all the possible conflicts, since one can easily set La

ij as 0 to
model when two vehicles come from the same lane and Lb

ij when they travel to the same exit lane. However, in
the following cases, we will illustrate that it is not enough.

The next type of conflict models two paths with the exit lane in common but a different entering lane (number 2
in conflict matrix). Such conflicts generate another set of scheduling constraints. The first thing one can notice
is than Lb

ij and Lb
ji by definition are equal to Lp(i) and Lp(j) respectively. This consideration is not enough to

avoid collision since the vehicle may collide in the exit phase. In the exit lanes, the vehicles i and j follow each
other. Inside the CZ there will be no collision, but the velocities may end the distances between the vehicles
cause a condition at which rear-end collision cannot be avoided. This problem is addressed by introducing a time
headway (Thdw

ij ) between the vehicles that must hold at the exit of the intersection. This time headway can be
used as a fixed parameter (but enough to ensure no rear collisions occur), or it can be calculated to keep certain
exit conditions in terms of velocity and distance. The scheduling constraints set is then formulated as:

ti + LP (i)Ti(ti) + Thdw
ij − tj − Lb

jiTj(tj) ≤ Clarge(1− wij), (4.22a)

tj + LP (j)Tj(tj) + Thdw
ji − ti − Lb

ijTi(ti) ≤ Clargewij , (4.22b)

wij ∈ {0, 1} ,
∀i, j ∈ V with cP (i)P (j) = 2,

. An example of a value for Thdw may be required time to reach a maximum velocity vmax after exit: s

Theadway
i (ti) =

vexit − vi(ti)

aM,i
+ Tgap, ti ∈ I

ti,max

ti,min
, i ∈ V (4.23)
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The velocity vmax must be the same for each vehicle per same exit lane, Tgap is the time gap (at the velocity
of vehicle i) when such vehicle reach the exit of the intersection. This gap is required because if vexit = vi(ti)
vehicles will overlap in the conflict zone having a rear collision. Note that Ti(ti) = 1/vf,i is the time to travel one
meter in the conflict zone, where the velocity is constant. The third type of conflicts consists of different exit lane
but common entering lane. In this case, conversely to the previous, Lb

ij is equal to zero since in the conflict zone
the paths starts in the same point. In this case the order of the vehicle is known in advance. Since they are in the
same lane, the leading vehicle always pass before the other. Which of the two is the leading vehicle can be easily
retrieved from the curvilinear coordinates si(t). The corresponding set of constraints reads as:

ti + La
i,jTi(ti) + Thdw

ij − tj ≤ 0, (4.24a)

∀i, j ∈ V with mc,p(i),p(j) = 3 ∧ si > sj , (4.24b)

Also, in this case, a Thdw
ij can avoid rear collisions in the vicinity of the CZ, but it is not enough to ensure no rear

collisions occurs before the intersection. We did not find an expression of Thdw
ij that ensures such condition. Rear

collisions in the same lane are detailed later on (See (4.26)).
The last type of collision occurs when the paths coincide. This case essentially corresponds to having two vehicles
that are traveling on the same lane even in the CZ. Between these two vehicles, only rear collisions may occur.
Note that type 4 is always the diagonal of the conflict matrix. This conflict may be modelled in a “follow leading
vehicle” fashion. But since the motion is heterogeneous from out ot in the CZ, we must take into account that the
velocity amy be different and we must use the following condition:

ti + LP (i) (Ti(ti)− Tj(tj)) + Thdw
i (ti)− tj ≤ 0, (4.25a)

∀i, j ∈ V with mc,p(i),p(j) = 4 ∧ si > sj ,

This condition contains the already discussed time headway Thdw, that is ensured to be respected at the moment
the first vehicles leaves the intersection. Indeed if we remove Thdw and we expand the expression in Equation
(4.25) we get:

ti + Lp(i)Ti(ti) ≥ tj + Lp(j)Tj(tj)

that essentially constraint the following vehicle to arrive at the end of the intersection at most at the same time
ofashe first, we therefore add the time headway to avoid arriving at the same time. Note that Ti(ti) = 1/vf,i is
the inverse of the constant velocity of the vehicle i in the conflict zone thus it is the time to travel one meter in the
conflict zone. During the approaching phase, the motion provided by the OCP does not ensure that there will be
no rear collisions. The outer scheduling problem and the inner problem interface to each other only through the
Ti(ti) function and the tstart constraints. To avoid this type of constraints during the approaching phase, we must
introduce another constraint.
The approaching phase motion presents a time tswc,i ∈ [0, ti) in which the vehicle starts to accelerate, if this
time is 0 the vehicle accelerates only, while the tswc = ti is not considered since it is a limit case for the initial
conditions, and it will contradict Assumption 4.4.

tswc,i(ti) :=
v0,i − vi(ti) + aM,iti

aM,i − am,i
, ti ∈ I

ti,max

ti,min
, i ∈ V. (4.26)

Complementary to the time headway introduced in Equation (4.25), a new constraint is added to avoid rear
collisions:

T switch
i (ti)− T switch

j (tj) ≤ 0,

∀i ∈ V with cP (i)P (j) = 4.
(4.27)

The constraints are now defined. However, a last aspect must be pointed out before formulating the final MINLP
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problem. The total time elapsed for all the vehicles to clear the intersection is not the sum of the time to leave
the intersection. Instead, it is the maximum. However, in the optimization problem, we cannot use the maximum
since some of the vehicles involved do not affect the time to clear the last vehicle therefore we must use the sum
to minimize the time to clear each vehicle involved in the intersection. The final MINLP is the following:

min
ti,wij

N∑
i=1

[
ti + LP (i)Ti(ti)

]
,

s.t. (4.21)(4.22)(4.24a)(4.25)(4.27)(4.14)

(4.28)

The approach we decided to use to solve this problem is to first approximate the problem into a linear one
(bounding the error) and then to solve with commercial linear solvers that are reliable and fast. We will see
that state-of-the-art linear solver such as GUROBI MILP-solver [58] are fast enough to handle linearized versions
of the problems in a reasonable time for applications. How the problem is linearized is shown in the next Section.

4.6 Piecewise linearization

The high level problem presents two functions of continous variable ti that are non-linear: Ti(ti) and vf (ti). These
two function are reciprocal each other, indeed Ti(ti) = 1/vf (ti). We hereby show the linearization technique used
to find an approximated MILP to model the MINLP presented in 4.5. The problem is reformulated into a linear one
using the piecewise linearizations of the nonlinearities Ti(ti) and vf (ti), on some discretizations of the intervals
[ti,min, ti,max]. Where ti,max denotes some reasonable time at which we are sure that the i’s car will enter an
intersection. We will se that we can use an arbitrary large value for ti,max, and for this reason we use the same
ti,max = tmax for all i ∈ V , we cannot do the same for ti,min since it is different for every evhicle and it comes
from the lowe level problem (see Section 4.4).

The solvers do not directly handle piecewise linear functions. We need to define them as some constrained
combination of linear functions and integer variables. The technique we use to model such functions is used
in [125].

4.6.1 Piecewise linearization technique

The piecewise linearization, according to [125] consists in modeling every segment of the piecewise linear function
as a convex combination of the two breakpoints values. Which segment to choose is modeled by binary variables
that are constrained to be nonzero only for one segment at a time. The new variables and constraints are illustrated
in (4.29) and discussed below. For now, we only consider the function Ti(ti) to explain the method, and then we
discuss how we actually model the functions. For each i ∈ V we have

ti =

Ki∑
k=1

λi,k ti,k, (4.29a)

Ti,pw =

Ki∑
k=1

λi,k Ti(ti,k), (4.29b)

Ki∑
k=1

λi,k = 1,

Ki−1∑
k=1

zi,k = 1, (4.29c)
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Figure 4.7: Example of the piecewise linearization of Ti(ti) function, ti,⋆ is known. Also the stationary point
ti,peak can be calculated in advance if exists.

λi,1 ≤ z1,
λi,k ≤ zi,k + zi,k−1, k ∈ {2, . . . ,Ki − 1},

λi,Ki ≤ zKi−1,
(4.29d)

λi,k ≥ 0, k ∈ {1, . . . ,Ki},
zi,k ∈ {0, 1} , k ∈ {1, . . . ,Ki − 1}, (4.29e)

where ti,k, k ∈ {1, . . . ,Ki}, are the breakpoints of the argument ti in the interval [ti,min, ti,max] with ti,1 =
ti,min and ti,Ki = ti,max, Ki its an integer constant that denotes the number of discretization points of the i− th
time interval. Note that the distance between the breakpoints can vary between segments. Let us now explain the
new variables presented in (4.29). The real variables lambdas λi,k, k ∈ {1, . . . ,Ki} plays the role of weighting
the two values of the breakpoints of the function on the selected segment. The binary variables (z-variables) zi,k,
k ∈ {1, . . . ,Ki − 1} indicate the segment on which the function is evaluated. The constraint on the sum of the
binary variables (4.29c) guarantees that only one value along k is equal to one and the other are equal to zero (this
is to select only one segment at a time). In the same Equation (4.29c) we find that the sum of lambdas is 1, but
thanks to (4.29d) two values of lambda are non-zero, and they correspond to the weight of the breakpoints of the
convex combination modeling the select segment. At the end (4.29a) and (4.29b) are linear combinations over the
ti corresponding segment.

4.6.2 velocity function piecewise linearization

As stated earlier, we have two non-linear functions: Ti(ti) and vf (ti), one is the reciprocal of the other. Since the
argument is the same, we do not need to introduce a new set of Equations (4.29), we just need to add the piecewise
linear function using the piecewise arguments already defined. Thus, we need to introduce only the following
equation:

vf,i,pw =

Ki∑
k=1

λi,k vf,i(ti,k), (4.30)

4.6.3 Breakpoints selection

Our method to approximate the function is to select some breakpoints on the non-linear function and to use them
to build a piecewise linear function that approximates the non-linear one. As one can imagine, the choice of such
breakpoints is crucial to get the best out of the piecewise function in terms of the accuracy of the approximation.
In Figure 4.7 an example of a choice for breakpoints is shown. In the case of the function illustrated in low level
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problem Section, we can exploit the structure of the function to select effective breakpoints. The red points in
Figure 4.7 represent 4 (or 3) breakpoints that are always selected: the first is ti,min that is already discussed. The
second is a stationary point in the non-linear function, ti,peak that does not always exist. The third point is the
point at which the final velocity of the function saturates since the vehicle has to stop after the deceleration phase.
The last point is ti,max. The other breakpoint can be placed equidistantly between ti,min and ti,peak and between
ti,peak and ti,⋆. If ti,peak is not defined the breakpoints can distributed between ti,min and ti,⋆. The last part of
the functions, from ti,⋆ to ti,max is flat, therefore there is no need for further points. The error is zero since the
true function, and the piecewise linear function coincide in such range.

4.6.4 final MILP

The final problem is then obtained using the technique illustrated in Section 4.6 to approximate the non-linear
problem in Equation (4.28). The final Mixed Integer Linear Problem reads ad:

minti,wij

∑N
i=1

(
ti + LP (i)Tpw,i

)
s.t.

(4.21)(4.22)(4.24a)(4.25)(4.27)(4.29)(4.14)

. (4.31)

The problem can be solved by commercial solvers in a reasonable time. We will discuss this aspect in the next
Section.

4.7 Simulations and results

In order to validate the proposed algorithm, we performed simulations in a complex intersection presenting 16-
lanes, 8 entering lanes, and 8 exit lanes. The geometry of the intersection is shown in 4.8. We test our framework
with 32 vehicles, 4 per entering lane, the vehicle distances are all 20 meters while the velocity is randomly
generated around 50 KM/h (≈ 13.9 m/s). The distribution for the velocity is N (13.9, 1).
In Table 4.2 an example of the results is shown. In Figure 4.8 the trajectories are shown. The same color is
used for the same path and similar color for the same entering lane (for example, two shades of blue for paths
1 and 2 that share the same entering lane). When an external limit gives the final velocity, the deceleration is
the same as reaching the maximum velocity up to the time switch. After such time the motion is realized with a
third polynomial (since in such case we do not need to use the maximum and minimum acceleration) that fits final
velocity, time, and position at ti.

4.7.1 Comparison with distance-based heuristic

To prove the benefit of the proposed framework, we made a comparison with a First-Arrive-First-Served approach.
The latter is simulated with another bi-level optimization problem. Which is a different version of the proposed
approach. This approach consists in applying the simple rule that the closer the vehicle the first it has the right to
pass.
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Figure 4.8: Geometry of 16-lanes intersection, all the 16 paths are shown. Every lane has two possible paths, the
intersection is symmetric.
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n pi si,0 vi,0 ti Ti

1 1 50 m 14.44 m/s 3.61 s 0.158s
2 2 70 m 15.73 m/s 10.55 s 0.061s
3 1 90 m 11.64 m/s 11.63 s 0.158s
4 2 110 m 14.76 m/s 14.48 s 0.059s
5 3 50 m 14.22 m/s 4.08 s 0.059s
6 4 70 m 12.59 m/s 10.78 s 0.131s
7 3 90 m 13.47 m/s 14.27 s 0.059s
8 4 110 m 14.24 m/s 15.24 s 0.131s
9 5 50 m 17.48 m/s 1.47 s 0.158s
10 6 70 m 16.67 m/s 6.48 s 0.059s
11 5 90 m 12.55 m/s 11.10 s 0.158s
12 6 110 m 16.93 m/s 13.40 s 0.059s
13 7 50 m 14.63 m/s 5.23 s 0.070s
14 8 70 m 13.84 m/s 6.47 s 0.131s
15 7 90 m 14.61 m/s 9.34 s 0.059s
16 8 110 m 13.70 m/s 18.20 s 0.131s
17 9 50 m 13.78 m/s 4.04 s 0.158s
18 10 70 m 15.39 m/s 7.78 s 0.060s
19 9 90 m 15.31 m/s 10.74 s 0.158s
20 10 110 m 15.32 m/s 14.29 s 0.059s
21 11 50 m 14.57 m/s 4.03 s 0.059s
22 12 70 m 12.69 m/s 11.61 s 0.131s
23 11 90 m 14.62 m/s 14.09 s 0.059s
24 12 110 m 15.53 m/s 15.51 s 0.131s
25 13 50 m 14.39 m/s 4.61 s 0.158s
26 14 70 m 14.93 m/s 8.54 s 0.059s
27 13 90 m 14.63 m/s 9.79 s 0.158s
28 14 110 m 13.60 m/s 14.12 s 0.059s
29 15 50 m 14.19 m/s 4.72 s 0.065s
30 16 70 m 13.11 m/s 6.82 s 0.131s
31 15 90 m 14.79 m/s 9.39 s 0.059s
32 16 110 m 12.75 m/s 18.47 s 0.131s

Table 4.2: Solution example: initial conditions, paths and results of the scheduling
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Figure 4.9: Trajectories of the vehicle along the curvilinear coordinate s, same colors are used for same path and
similar colors for same entering lane
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To get the order of vehicles, we apply the following Linear Problem:

minti
∑N

i=1

(
ti + LP (i)Tpw,i

)
s.t.

(4.21)

{
wij = 1 si ≤ sj

wij = 0 si > sj

(4.22)

{
wij = 1 si ≤ sj

wij = 0 si > sj

(4.24a)(4.25)(4.27)(4.29)

. (4.32)

Let us now discuss the difference between the problem just defined in (4.32), and the framework’s proposed
problem in (4.31). The first is a linear problem since we removed the binary variables wij . The order now is
pre-defined by the distances. The constraints (4.21) and(4.22) in (4.31) where composed of two inequalities each,
that activates and deactivates basing on the values of the binary values. In problem (4.32) the active inequality is
the one associated with the closest vehicle.
For instance let us take the constraint (4.21) and two vehicles i and j such that si < sj , wij in this case is constant
equal to 1, and in (4.21) only the inequality (4.21a) is actually active, having the one with the null right-hand side.
In Table 4.3 the results applying the FAFS framework. Note that this approach is still optimal in term of leaving
times of each vehicle, in only the order that is predefined by the positions.
As a comparison term, we use the objective function. It is the sum of the times all the vehicles takes to exit the
intersection expressed by

∑N
i=1

[
ti + LP (i)Ti(ti)

]
. The objective function for the proposed framework is 440.5

seconds, and the FAFS approach obtain 659.6 seconds. The improvement is 33.7 %. The result is promising since
the FAFS comparison approach was optimal as well since the time is minimized, only the order was fixed by the
distances of the vehicles.

4.8 Additional observations
To understand the difference between our approach and the FIFO case, we show a plot that we called xyz or
“space-time trajectory plot” In Figure 4.11. Such plot uses 3 axis, x, y and t respectively. It shows the trajectories
of vehicles in terms of x(t) and y(t) on the horizontal axes, while the vertical axis is the time t. The trajectories
do not touch on those plots if there are no collisions (net of vehicle dimensions). The space-time trajectory plot of
the proposed approach is shown in Figure 4.11a, in direct comparison with Figure 4.11b that shows the same plot
of the FAFS approach results.
It is evident from the plots that the optimized approach tends to make better use of the space and time volume.
The height of the occupied volume is the total time elapsed. Such quantity is improved by 44%, cutting the total
time elapsed in almost a half. The FAFS approach results in a total time elapsed of 50.4 seconds while using the
proposed approach. Such time reduces to 28.6 seconds.
Zooming some regions of the xyt plots, we can recognize some patterns that explain such a difference of time.
Two examples are now listed and detailed.

Optimally filling space-time slots When autonomous vehicles can optimize their order instead of following a
rigid rule (incomplete safety), some “missed opportunities” of passing for some vehicles arise. To show this
advantage visually when passing from FAFS to an optimal order, the xyt diagram helps. In Figure 4.12, we
show the xyz trajectories and time of the first vehicles that pass in both experiments (blue for optimal and
red for FAFS). It is evident how the last two vehicles (the two higher, almost straights trajectories in red) in
the First-Arrive-First-Served could have passed before, and this is what happens in the optimal framework,
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n pi si,0 vi,0 ti Ti

1 1 50 m 12.39 m/s 4.90 s 0.158s
2 2 70 m 13.46 m/s 13.38 s 0.059s
3 1 90 m 13.74 m/s 15.55 s 0.158s
4 2 110 m 14.18 m/s 31.34 s 0.059s
5 3 60 m 13.64 m/s 5.77 s 0.059s
6 4 80 m 14.34 m/s 18.16 s 0.131s
7 3 100 m 14.29 m/s 26.81 s 0.059s
8 4 120 m 12.65 m/s 36.11 s 0.131s
9 5 50 m 12.95 m/s 4.55 s 0.158s
10 6 70 m 13.16 m/s 12.30 s 0.059s
11 5 90 m 13.39 m/s 13.40 s 0.158s
12 6 110 m 13.58 m/s 30.26 s 0.059s
13 7 65 m 13.91 m/s 7.01 s 0.059s
14 8 85 m 10.87 m/s 21.12 s 0.131s
15 7 105 m 13.44 m/s 28.05 s 0.059s
16 8 125 m 15.14 m/s 39.08 s 0.131s
17 9 50 m 12.83 m/s 4.62 s 0.158s
18 10 70 m 14.83 m/s 11.22 s 0.059s
19 9 90 m 14.25 m/s 12.30 s 0.158s
20 10 110 m 13.87 m/s 28.77 s 0.059s
21 11 70 m 14.08 m/s 11.01 s 0.059s
22 12 90 m 12.33 m/s 24.08 s 0.131s
23 11 110 m 13.82 m/s 29.39 s 0.059s
24 12 130 m 15.50 m/s 42.04 s 0.131s
25 13 50 m 14.00 m/s 3.90 s 0.158s
26 14 70 m 13.94 m/s 10.14 s 0.059s
27 13 90 m 13.17 m/s 14.55 s 0.158s
28 14 110 m 13.87 m/s 27.69 s 0.059s
29 15 55 m 14.13 m/s 4.77 s 0.059s
30 16 75 m 14.33 m/s 14.20 s 0.131s
31 15 95 m 13.53 m/s 26.37 s 0.059s
32 16 115 m 13.66 m/s 32.15 s 0.131s

Table 4.3: Solution example: initial conditions, paths and results of the scheduling when the problem is the one
applying the F.A.F.S. approach.
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Figure 4.10: Trajectories of the vehicle along the curvilinear coordinate s, same colors are used for same path and
similar colors for same entering lane
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(a) (b)

Figure 4.11: Trajectories of the vehicles in time, on the left (a) the results of the FAFS approach, on the right
(b), the results using the proposed approach. The proposed approach fill the space-time volume occupying all the
gaps.
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Figure 4.12: Trajectories of the vehicles in a 3d plot with the time axis (xyt plots). Solutions of the first 6 vehicles
for the proposed approach (in blue) and the FAFS approach.
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where they pass. The two corresponding xyt trajectories that improve the overall timing passing before are
indicated in the plot. Interestingly, with this change, the xyt trajectory of the other vehicles did not change
much, showing that there was an almost empty “space-time” slot to take advantage of. Looking at Figure
4.12, we see that the xyz trajectories make the best use of the volume of the plot. This is visible also in
the comparison between Figure 4.11a and Figure 4.11b. Not that the height of the occupied volume is the
quantity that we optimize.

Letting someone else pass We can recognize behavior expected in human driving from the first vehicles. The
vehicle coming from the south (vehicle 1 in Figure 4.12) has the right of way on the vehicle coming from
the west (vehicle 2). In the FAFS case (in red), vehicle 1 takes precedence, forcing vehicle 2 to slow down
a lot. In the optimization case, vehicle 1, even being closer to the intersection, considers vehicle 2 and gives
way to it. From the plot, vehicle 1 lost around 1 second, but vehicle 2 gained 5 seconds. This kind of
behavior can also be seen in everyday driving (if we are not selfish) when we consider the velocities of our
vehicles to decide to give way or not, minimizing the overall “wasted” time.

4.8.1 Conclusions and future developments
We proposed a bi-level optimization algorithm for intersection management for CAV whose scope is to minimize
time. We considered a simple OCP with a simple vehicle model on the lower level for each vehicle. On upper-level
consists of an MINLP where non-linearities are approximated (with bounded error) with a piecewise linearization
techniques. w.r.t. all the possible conflicts are treated. The comparison with a partial optimization on a popular
heuristic (First Arrived First Served) shows that the framework outperforms such heuristic by a significant amount
(>30%), even if the heuristic’s times are optimized. The overall time elapsed presents even a better improvement,
that is 44%. This difference is due to the difference between the cost function and the total time elapsed. The
cost function is the sum of the overall time taken from each vehicle. In the future, this work may benefit from a
consistent amount of simulations sufficient to perform a statistical analysis and to retrieve heuristics that are more
applicable in industrial use cases.
This work can be extended in several ways: implementing more sophisticated vehicle models, testing the
algorithm’s limits with an increasing number of vehicles, introducing uncertainty in states, and studying the
robustness.
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Glossary

ADAS Advanced Driving Assistance Systems. 2, 3, 7

CAV Connected Autonomous Vehicle. 2, 127

CD-MPC Co-Driver prediction MPC. 9, 87, 89, 92, 93, 95, 96, 97, 98

CSS Constrained Space Stop. 3, 7, 10, 14, 15, 16, 17, 18, 28, 35

CST Constrained Space Time. 3, 7, 16, 18, 19, 28

CZ Conflict Zone. 49, 103, 107, 113, 114, 115

ECMS Equivalent Consumption Minimization Strategie. 64

eDLM enhanced Dynamic Local Map. 21

EMS Energy Management Sistem. 8, 63, 64, 65, 66, 72, 80, 81, 83, 85, 86

EP-MPC Exact Prediction MPC. 86, 87, 89, 92, 93, 95

FAFS First-Arrive-First-Served. 118, 122, 125, 126, 127

FFCT Free Flow Constrained Time. 3, 11, 12, 13, 15, 17, 69

FSP Fuel Saving Percentage. 9, 88, 89, 92, 93

HEV Hybrid Electric Vehicle. 2, 63, 64, 75, 82, 83

HMI Human Machine Interface. 2, 4, 21, 24

ICE internal combustion engine. 64, 75, 81, 88

MINLP Mixed Integer Non-Linear Programming. 2, 4, 101

MINLP Mixed Integer Linear Programming. 101

MPC Model Predictive Control. 2, 4, 5, 8, 63, 64, 65, 83, 85, 86, 87, 93, 129

MSPRT Multi Hyphothesis Sequential Ratio Test. 67, 68, 70

NLP Non-Linear optimization Problem. 84, 85

OCP Optimal Control Problem. 4, 65, 66, 81, 82, 83, 84, 85, 86, 87, 101, 115, 129

OF-OCP off-line OCP. 86, 87, 92, 93, 95, 97, 98

ORU On Road Unit. 23
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PMP Pontryagin Minimum Principle. 64, 109

PTW Power Two-Wheeled. 3

RB Rule Based. 64

RCLP Relative Capacity Loss Percentage. 4, 9, 93, 95

RSU Road Side Unit. 24

SOC State-Of-Charge. 65, 82, 83, 87

TTC Time To Collision. 57

V2X Vehicle-To-Everything. 2, 3, 59

VRU Vulnerable Road User. 7, 4, 26, 57

WWD Wrong Way Driving. 26, 57
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