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Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio Massacci

Abstract—
Vulnerable dependencies are a known problem in today’s free open-source software ecosystems because FOSS libraries are highly
interconnected, and developers do not always update their dependencies. Our paper proposes Vuln4Real, the methodology for
counting actually vulnerable dependencies, that addresses the over-inflation problem of academic and industrial approaches for
reporting vulnerable dependencies in FOSS software, and therefore, caters to the needs of industrial practice for correct allocation of
development and audit resources. To understand the industrial impact of a more precise methodology, we considered the 500 most
popular FOSS Java libraries used by SAP in its own software. Our analysis included 25767 distinct library instances in Maven. We
found that the proposed methodology has visible impacts on both ecosystem view and the individual library developer view of the
situation of software dependencies: Vuln4Real significantly reduces the number of false alerts for deployed code (dependencies
wrongly flagged as vulnerable), provides meaningful insights on the exposure to third-parties (and hence vulnerabilities) of a library,
and automatically predicts when dependency maintenance starts lagging, so it may not receive updates for arising issues.

Index Terms—Vulnerable Dependency; Free Open Source Software; Mining Software Repositories
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1 INTRODUCTION

The inclusion of free open-source software (FOSS) com-
ponents in commercial products is a consolidated practice
in the software industry: as much as 80% of the code of
the average commercial product comes from FOSS [1]. For
example, SAP is an active user of and contributor to FOSS1.
Modern dependency management tools (such as Maven, Ivy,
and Gradle for Java, or npm, pip for other languages) auto-
mates part of the process of managing such libraries, so the
developers could focus on the interaction with the libraries
they directly invoke (usually called ‘direct dependencies’)
and treat the rest of the codebase as a black-box.

The price to pay is that the opportunity of using mature,
high-quality FOSS components conflicts with the need of
maintaining a secure software supply chain, and therefore,
effective vulnerability analysis and management for one’s
software dependencies. This problem is worsened as de-
pendency analysis methodologies are based on assumptions
which are suitable for a research analysis but are not valid in
an industrial context. They may not distinguish dependency
scopes (e.g. [2]) which may lead to reporting vulnerabilities
that are not exploitable in the field or consider only direct
dependencies (e.g. [3]) although security issues may be
introduced transitively [4]. Dependency analysis method-
ologies also miss several important factors. For example,
some dependencies are maintained and released together
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1. https://archive.sap.com/documents/docs/DOC-29056

(they may belong to the same project), and therefore, should
be treated as a single unit, when constructing dependency
trees and reporting results of a dependency study. Another
example is the presence of dependencies whose develop-
ment had been suspended for an unspecified time. Such a
dependency may turn to be harmful to a dependent project
in case of a vulnerability discovery as there might be no new
release that fixes the issue2.

Hence, the current approaches may present a distorted
view of the situation with vulnerable dependencies:

1) Inflation of unexploitable vulnerabilities - a non-negligible
number of development-only dependencies could not
be possibly exploited;

2) Underestimation of transitive vulnerabilities - transitive
dependencies may as well introduce vulnerabilities;

3) Imprecise vulnerability mapping - manual or name-based
mapping is error-prone, and therefore, not reliable;

4) Misrepresentation as somebody’s else problem - separately
considered dependencies that belong to same projects
reduce the visibility of the nodes that can be directly
changed from an analysed library;

5) Misreporting that nobody is in charge - the mitigation
strategy should consider the fact that maintenance of
a library has significantly delayed.

In this paper we build on our case study [5] as follows
• We provide richer details on the Vuln4Real method-

ology for reliable measurement of vulnerable depen-
dencies in free open-source software, by transforming
observations into actionable steps that could be applied
for analysis of dependencies of various dependency

2. For example, there is no fixed version available for the halted li-
brary org.springframework:spring-dao with CVE-2014-1904. Although
the latest version of the Spring framework does not depend on the
spring-dao library, the dead library is present in Maven Central and 43
other libraries still use it (as reported by mvnrepository.com).
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Figure 1. Dependency tree
ecosystems and also discussing how Vuln4Real can be
adapted from Java to Javascript and Python;

• we provide two different perspectives to analyze such
data (the traditional) ecosystem view of research papers,
and a developer view on the impact that it might have on
the analysis of an individual, average library;

• we support the analysis with a tool3 a to perform
large-scale studies of (Maven-based) FOSS libraries and
to determine whether any of their dependencies are
affected by known vulnerabilities;

• we validate the approach by running an empirical
study of 500 Java Maven-based FOSS libraries (corre-
sponding to 25767 versions) that are most frequently
used in SAP software.

We found that Vuln4Real changes the hopelessly inse-
cure ecosystem perception, by showing that the developers
of the analysed libraries can potentially fix 80% of vulner-
able dependencies by updating the direct dependencies of
their projects, in contrast to the state-of-the-art approaches
where it seems that by manipulating direct dependencies,
developers can fix only 37% of vulnerable dependencies4

The proposed methodology also identifies and removes
alerts for 27% of vulnerable direct and 21% of vulnerable
transitive dependencies that could not be exploited.

These results also transfer from the ecosystem view to
the developer view. This transfer is not obvious and has
a major impact on industrial applicability. A ‘significant’
finding when analyzing an ensemble of 25K instances might
not transfer to the rank-and-file developer who manages on
average a dozen direct dependencies for his application.

Our simulation of the state of the art and Vuln4Real
reports of the dependency analysis methodologies to under-
stand what the individual developer would see shows that
an individual developer would receive 27% less false alerts
(i.e. save 4 bogus vulnerability alerts out of 9-11 that might
be presented to him). Also, Vuln4Real helps planning the
mitigation activities by showing which safe versions of the
affected dependencies the developer can adopt directly and
for which vulnerable libraries more complex mitigations
should be considered.

2 TERMINOLOGY

In this paper we rely on the terminology established among
practitioners and used in well-known dependency manage-

3. Similarly to releasing Eclipse Steady (https://eclipse.github.io/
steady/) after publishing [6], we are planning to undergo the SAP
procedure for publishing the tool behind Vuln4Real as FOSS. A reader
interested in accessing the tool may contact the corresponding author.

4. A user of a library can fix all vulnerabilities by accessing and
modifying the code base of dependencies, but developers tend to avoid
it [7]. Equally, ‘simply updating’ ain’t so simple [8].

ment tools such as Apache Ivy5 and Apache Maven6:

• A library is a separately distributed software compo-
nent, which typically consists of a logically grouped set
of classes (objects) or methods (functions). To avoid any
ambiguity, we refer to a specific version of a library as
a library instance.

• A dependency7 is a library instance, some functionality of
which is used by another library instance (the dependent
library instance).

• A dependency is direct if it is directly invoked from the
dependent library instance.

• A dependency tree8 is a representation of a software li-
brary instance and its dependencies where each node is
a library instance and edges connect dependent library
instances to their direct dependencies.

• A transitive dependency is connected to the root library
instance of a dependency tree through a path with more
than one edge.

• A project is a set of libraries developed and/or main-
tained together by a group of developers. Dependencies
belonging to the same project of the dependent library
instance are within-project dependencies, while library
instances maintained within other projects are third-
party dependencies.

• A deployed dependency is delivered with the application
or system that uses it, while a development-only depen-
dency is only used at the time of development (e.g., for
testing) but is not a part of the artifact that is eventually
released and operated in a production environment.

• A library instance is outdated if there exists a more recent
instance of this library at the time of analysis. A lagging
behind library is such that the next estimated release
time has been passed by far based on the interval of
past releases (see Step 4 of Section 6).

To illustrate how this terminology is used in practice, we
refer to Figure 1, which depicts the dependency tree for a
library instance m1. The library instance under analysis m1

is the root, m2, x1, and y1 are direct dependencies, while
u1, y2, and z1 are transitive dependencies. Library instances
m1, m2 and y1, y2 are within-project dependencies of projects
M and Y respectively, while library instances x1, y1, y2, u1,
and z1 are third-party dependencies of project M.

Suppose now that m2, y2, and z1 are affected by known
security vulnerabilities.
• Although, from the perspective of the build system,

within-project dependency m2 is just a direct dependency,
in practice, it is a piece of vulnerable code shipped as
part of project M . Hence, the vulnerability should be
fixed as part of the project development, i.e., by directly
changing its source code.

5. http://ant.apache.org/ivy/history/latest-milestone/ivyfile/
dependency.html

6. https://maven.apache.org/pom.html\#Dependencies
7. For the sake of consistency with the terminology used in Maven,

we use the term ‘dependency’ to denote a node (not an edge) of a
dependency tree.

8. Although dependency relations mathematically represent a graph
(one dependency may have several dependent library instances), we
use the term dependency tree to be consistent with an industrial usage:
after the resolution step, dependencies of a library instance are typically
presented in a form of a tree.
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Figure 2. A Dependency Lagging Behind

• Developers of M can variate the version of y2 by
selecting a suitable y1: if a fixed version of y1 is released,
they should update project M to use it.

• Usage of dependency z1 cannot be controlled without
transforming the (transitive) dependency z1 into a di-
rect dependency of the project. Since this would break
the “black-box” dependency management principle,
such a solution is not likely to be adopted. As a matter
of fact, it is a responsibility of the developers of project
Y to keep the version of the dependency z1 up-to-date.

Even if library dependencies are not affected by known
vulnerabilities, presence of dependencies lagging behind
may lead to costly mitigations in future: if a security vul-
nerability is discovered in a library that is no longer actively
developed, there may be no version of this library that fixes
the vulnerability9. Hence, being a dependency, this library
will introduce the vulnerability to all its dependents.

Additionally, a lagging dependency may transitively in-
troduce outdated dependencies and expose the root library
instance to bugs and security vulnerabilities (Figure 2): the
root library instance m1 depends on the last version of
lagging dependency x1, which, in turn, uses an “alive”
dependency u1. Although both versions v1 and v2 of library
m1 use the latest available version of direct dependency x1,
outdated transitive dependency u1 would be also present.

3 MOTIVATING EXAMPLE

Figure 3a shows the dependency migration analysis [2] of
the xalan:xalan library. The number of appearances of
each library version in the dependency trees of the analyzed
libraries is reported on the ordinates for each year.

In the span of 12 years different versions of
xalan:xalan appear in 197 dependency trees of the an-
alyzed libraries in our dataset (See further Section 7). The

9. There may be cases when a certain library does not receive new
commits for a long time, but its developers still quickly react on
arising issues. For example, although there were no releases of the
Apache commons-collection library for 7 years, its developers quickly
provided a fix for a vulnerability discovered in 2015 and released it
within a new version. Alternatively, another organization may decide
to fork an abandoned library and fix the arising security issues, as,
for example, Apache Software Foundation did for the beanshel:bsh
library. However, such outcomes are not guaranteed, since library
developers may decide to move on and no other organization may
want to support it (e.g., Apache moved from Axis to Axis2 project,
but, according to mvnrepository.com, 176 libraries still depend on the
vulnerable axis:axis library).

versions of xalan:xalan prior to 2.7.2 are affected by CVE-
2014-0107. The red dashed line shows the variation of the
number of analyzed libraries that depend on a vulnerable
version of xalan:xalan in time, while the green solid
line represents the variation for the analyzed libraries that
adopted the safe version 2.7.2.

Figure 3b shows the dependency migration plot after
considering the five issues of the current state-of-the-art
dependency analysis approaches (See Section 1). By remov-
ing development-only versions, and eliminating the cases
where xalan:xalan itself was part of the analyzed project,
we observe a reduction of the number of (falsely-reported)
usages of the vulnerable versions (the peak on Figure 3a).

The presence of lagging dependencies has a major im-
pact on a library maintenance strategy. Indeed, in Figure 3b,
the only three libraries that depend on the vulnerable ver-
sion of xalan:xalan even after more than two years since
the release of the safe version, depend on a vulnerable
version of xalan:xalan via direct lagging dependencies.
In this case, a different mitigation strategy might be needed:
(i) contribute to the lagging library, i.e., to develop its new
release; or (ii) fork the lagging library and continue its
maintenance as part of the dependent library.

4 RELATED WORKS

Table 1 presents the existing approaches for analyzing soft-
ware dependencies.

Accounting for Deployment

Kula et al. [2] studied whether developers update depen-
dencies of their projects. They report 81,5% of the studied
projects to have outdated dependencies, and 69% of the
project owners to be unaware of vulnerable dependencies
in their projects. Although the authors provide a thorough
insight into developers’ motivation, the reported quotes of
software developers reveal that the paper actually included
development-only dependencies in its study:

“. . . In this case, it’s a test dependency, so the
vulnerability doesn’t really apply . . . ”
“. . . It’s only a test scoped dependency which
means that it’s not a transitive dependency for
users of XXX so there is no harm done . . . ”

As a result vulnerable dependency count presented in [2]
may be over-inflated (see Figure 3).

Several other works [3], [9], [10], [13] do not mention
explicitly that they consider only deployed dependencies.
Hence, their results and conclusions may be affected by low-
priority non-exploitable vulnerabilities in development-
only dependencies of the analysed projects.

Accounting for Transitivities

Transitive dependencies are known to be the source of
vulnerabilities in software projects. For example, the first
large scale study of JavaScript open source projects done
by Lauinger et al. [4] underlines the finding that transitive
dependencies of a project are more likely to be vulnerable,
since developers (i) may not be aware of their existence and
(ii) they have less control on them.
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(a) Threat inflation based on state-of-the-art methods (b) Reality
State of the art methodologies for counting the usage of vulnerable libraries over-inflate the actual risks as they count vulnerabilities that are by construction
not-exploitable being part of the development and test libraries. After the release of a safe version, three libraries did not adopt the safe version of the analyzed
dependency for the simple reason that maintenance and development of those libraries had halted.

Figure 3. Threat inflation vs reality for Apache’s Xalan vulnerable libraries in Maven

Table 1
Distinctions considered in the related works

Considered aspects Consequences
Sample

language
Rel

work
Only

deployed
Includes
transitive

Vuln
mapping

Dep
groups

Dead
deps

Over-
inflation

FN
alerts

Unreliable
mapping

Misleading
dep picture

No is-dead
analysis

JS

[9] 3 Name-based 7 7 7 7
[10] 3 Name-based 7 7 7 7
[4] 3 3 Manual 7 7

[11] 3 7 7 7 7
JS, Ruby,

Rust [12] 3(no re-
solution) 7 7 7 7

Java
[2] Manual 7 7 7 7 7

[3] Name-based
+ manual 7 7 7 7 7

Ours 3 3 Code-based 3 3

Several recent studies [2], [3], [11], [12] do not consider
transitive dependencies. A plausible reason is that the analy-
sis of transitive dependencies is technically complex because
it requires one to follow the dependency tree construction
and the resolution procedures of a specific dependency
management system.

For example, Wittern et al. [11] in their study of the npm
ecosystem did not follow the dependency tree construction
algorithm and only considered the (direct) dependencies
specified in the package.json files. Similarly, both Kula et
al. [2] and Cox et al. [3] extracted dependencies from project
configuration pom.xml files in their studies of the Maven
ecosystem. Hence, the studies reported results only for
direct dependencies and did not apply the resolution pro-
cedure of the analysed dependency management systems.

Kikas et al. [12] in their study of the dependency network
structure and evolution of the JavaScript, Ruby, and Rust
ecosystems considered both direct and transitive dependen-
cies. However, the authors used dependency versions as
they were specified in the project configuration files (i.e.,
they did not resolve versions for transitive dependencies),
since the implementation of the resolution procedure of
the dependency management systems required too many
resources for their study.

Table 2
Approaches for Identification of Vulnerable Dependencies

Name Approach Advantages Disadvantages
[14] name-based

matching
High

performance Prone to FP and FN[13]

[15] semantic-web
name matching

High
performance Prone to FP and

FN (5% more than
OWASP Dependency
Check)

[6] Patch-base
matching

High
precision Manual effort

required to create
Vuln DB

Vulnerability Matching Approaches

Table 2 presents the most popular approaches to identify
whether a certain library is affected by a vulnerability.

The main source of vulnerabilities in software compo-
nents is the National Vulnerability Database (NVD10) that
uses the Common Platform Enumeration (CPE) standard for
enumerating the affected components. The NVD represents
the most complete, public source of vulnerabilities11 albeit

10. https://nvd.nist.gov/
11. Other sources of vulnerabilities are software-specific advisories

and bug tracking systems which are used to report and solve security
issues. Some of them might be product or vendor-specific, e.g. MSFA
for Mozilla’s Firefox browser.
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it does not cover all FOSS projects with the same accuracy.
Moreover, CPE names used to denote the affected software,
use a different granularity and convention than software
package repository coordinates.

False negatives easily result from the fact that the NVD
is not complete and whenever the assigned CPEs are not
listing all required software (e.g., in some cases the NVD
assigns vulnerabilities to products rather than the responsi-
ble libraries). For example, a vulnerability only affecting the
poi-ooxml artifact within the Apache POI project, would be
assigned to the entire project in the NVD, thereby resulting
in false positives whenever an application only uses ‘Poi’
artifacts other than poi-ooxml. This might be further exac-
erbated since the NVD might use an over-approximation
rule ’X and all previous versions’ for marking vulnerable
versions (See, for example, [16], [17] for the study of browser
vulnerabilities and the large presence of false positives).

OWASP Dependency Check12 is a tool that provides the
functionality to automatically extract a list of project de-
pendencies and check if this list contains any libraries with
known security vulnerabilities. The tool allows automatic
matching of a library with an associated CVE by comparing
the name of a library with a CPE version indicated in the
description of a vulnerability (CVE) in NVD. Although such
an approach has high performance, it fully relies on the
information present in the NVD, and therefore, may be
exposed to both false positive and false negative issues.

Cadariu et al. [13] enhanced the OWASP Dependency
Check tool to create a Vulnerability Alert Service (VAS)
to provide the information about vulnerable dependencies
used by clients of the Software Improvement Group (SIG).
However, the authors acknowledged that the matching
mechanism based on comparing library names with CPEs
yields many false positives. Moreover, at the time of publi-
cation of [13] VAS was capable only to provide information
regarding direct dependencies, while vulnerabilities may be
also introduced via transitive dependencies [10].

Alqahtani et al. [15] used a semantic-web approach
for mapping CVE descriptions from the NVD database to
the corresponding Maven library identifiers. However, the
precision of the approach is 5% lower when compared to
OWASP Dependency Check (and consequently to VAS).
Hence, the results reported in [15] may provide an inaccu-
rate estimation of the number of vulnerable dependencies in
the open-source projects being affected by both FP and FN.

We rely on the works from Plate et al. [18] and Ponta
et al. [6], who propose a precise approach to use the patch-
based mapping of vulnerabilities onto the affected compo-
nents (see Section 6).

Accounting for within-project Dependencies
To the best of our knowledge, none of the existing de-
pendency studies considers the fact that certain software
libraries belong to the same project.

Although the concept seems intuitively simple, failure
to distinguish within-project and third-party dependencies
may incorrectly present as an insecure ecosystem with sev-
eral vulnerable dependencies (a “dependency hell” [19])

12. https://www.owasp.org/index.php/OWASP_Dependency_
Check

what in reality is just a project that has broken its com-
ponents into several libraries. An update of one of those
dependencies would automatically bring the new versions
of all other dependencies from the same project. Hence,
some transitive dependencies may actually be controlled
directly from the project under analysis.

Maintenance of Software Libraries

If an outdated direct dependency is affected by a known vul-
nerability, the simplest solution to mitigate this vulnerability
is to update the dependent library to use the fixed version
of the dependency [20]. However, this becomes impossible,
if a FOSS library becomes inactive [2]:

“. . . our project has been inactive and production
has been halted for indefinite time”

Zerouali et al. [21] proposed a framework to measure
the technical lag (i.e., the time and/or number of versions
between the last released library version and the actually
used dependency) in open source repositories. In their later
study, Zerouali et al. [22] claimed that the technical lag
of third-party components might lead to the presence of
vulnerabilities in Docker images. However, the proposed
way to calculate the semantic technical lag is might be
misleading as it by far overestimates the actual semantic
difference between library versions13. Therefore, claims that
an increasing technical lag leads to more vulnerabilities
needs to be reviewed with a correct definition of semantic
technical lag. An interesting issue that the paper [22] does
not touch is automatically establishing when a particular
project is lagging behind too far to warrant an action from
the developers to decrease the risk of being vulnerable as
captured in Figure 2.

The recent work by Coelho et al. [23] presented a ma-
chine learning based approach that uses standard metrics
(number of commits, pull requests, contributors, etc.) ex-
tracted from Github to classify, whether maintenance of a
particular project becomes dead. However, such features
are particular to Github and may not be available for the
libraries stored in other places.

Other academic approaches rely on the time of the
latest commit in a certain software project. For example,
Khondhu et al. [24] in their study of SourceForge projects
define a project to become dormant if the latest commit
occurred more than one year ago. The same time thresh-
old is used by Mens et al. [25], Izquierdo et al. [26], and
Coelho et al. [27]. However, the one-year threshold used
by the above-mentioned studies is arbitrary, since various
software projects have different development strategies, and
therefore, different intervals between commits and releases.
Hence, the time threshold to count project as lagging behind
should vary depending on a project development strategy.
In this respect, we rely on an individual project history to
predict whether its maintenance is likely to have lagged or
even halted.

13. The authors count the total number of minor versions and patches
without resetting them after each major version. For instance, a library
updating from 2.0.0 to 3.0.0 is just an update of 1 major version from the
perspective of a developer. If there were intermediate versions 2.1.0 and
2.2.0, the proposed measure would instead give a distance of one major
version and two minor versions and all possible patches in between.
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5 RESEARCH QUESTIONS AND VALIDATION OF
THE METHODOLOGY

A dependency measurement methodology may impact the
analysis of vulnerable dependencies for a sample of selected
libraries in several different ways. To understand such im-
pact, we structure our analysis according to the principles of
Empirical Based Software Engineering (EBSE) [28, Chapter
8]: we propose a number of research questions and related
hypotheses, which will be then tested and analyzed.
RQ1: Does Vuln4Real significantly reduce the number of

false alerts for deployed code (dependencies wrongly
flagged as vulnerable)?
Hypothesis 1 (H1). Considering only deployed de-
pendencies reduces the number of security alerts in
deployed dependencies.

RQ2: Does Vuln4Real provide insights on the exposure to
third-parties functionalities (and hence vulnerabilities)
of a library?
Hypothesis 2 (H2a). Grouping software dependencies
by projects reveals a significant number of dependen-
cies whose versions could be directly controlled by the
developers of the libraries under analysis.

Hypothesis 2 (H2b). Grouping software dependencies
by projects reveals a lower level of exposure to third
parties vulnerabilities.

RQ3: Can Vuln4Real predict when a library’s development
is lagging behind?
Hypothesis 3 (H3). The history of library releases can
be used for predicting if a library maintenance lags.

RQ4: Can the number of dependencies be used as a predic-
tor for a number of vulnerabilities in a library?
Hypothesis 4 (H4). The number of dependencies can
be used to predict the number of vulnerabilities in a
library.

Before going to the actual evaluation we observe that
for each research question there are two distinct and equally
important viewpoints:

1) The ecosystem view assesses the hypotheses by con-
sidering the ensemble of libraries as a whole. It is
interesting from research and systemic perspective (i.e.
the perspective of a CTO using our 500 libraries). If our
hypotheses were true we would expect variations in the
population parameters such as mean and median or, at
least, in the tails of the distribution.

2) The developer view simulates what would change for
the average developer who is using the methodology
and whether she would see visible changes in the daily
activity for the average number of dependency alerts. It
is important from an industrial perspective.

Given a large number of libraries (more than 25K GAVs)
a measurable change in the overall distribution might still
be into an invisible change for the individual developer
working with a dozen of libraries.

To understand the difference, suppose we find that the
average number of dependencies falsely reported as vulner-
able is bounded by a 95% confidence interval at [0.01, 0.02].
When multiplied by a large number, this is going to be

a very large effect. Our hypothesis of a significant effect
is definitely satisfied. Yet, to the individual developer, it
might remain immaterial as she cannot ‘experience’ it: a
concrete dependency is always a unit and cannot be 0.2 of
the unit. For the dozen of dependencies of her library she
might not see any visible change as, at worst, she will have
0.24 false reports i.e., mostly none. If such falsely reported
vulnerabilities are clustered at the tail among infrequently
unused libraries she might never face the difference. As
we shall see later this is not the case for us (Table8. The
difference is materially visible.

Hence, it is important to check whether a methodology
has an impact on both the ecosystem view and the individual
developer’s view. From the perspective of EBSE this means
that we would have to check our hypothesis twice: one for
each viewpoint.

To answer the research questions for the ecosystem view
we have collected both direct and transitive dependencies
of the library instances. First, we treated them according to
a SoA approach affected by all the dependency presentation
issues (See Section 1), which corresponds to approaches pre-
sented in, for example, [2] or [3]. Then we applied Vuln4Real
and compared the number of vulnerable/ non-vulnerable
dependencies calculated according to both approaches.

To identify a typical industrial library, we have extracted
the number of direct dependencies for each SAP software
project in the proprietary repository. We assume that the
number of direct FOSS dependencies in a typical industrial
library is equal to the mean number of direct dependencies
that SAP projects have, which we found to be equal to 11.

Then we have artificially constructed dependency trees
for 100 software projects according to Algorithm 1. This ap-
proach could be adapted to any dependency methodology
by replacing Vuln4Real with one’s own.

6 VULN4REAL METHODOLOGY

Table 3 overviews the Vuln4Real methodology for counting
vulnerable dependencies.

Step 1: Extraction of a dependency tree for a library

The extraction of a dependency tree for a library includes
two steps:
• full dependency tree construction that contains all the

dependencies as they are specified in the configuration
files of the dependency tree nodes;

• resolution of conflicts between dependency versions
when the full dependency tree contains several differ-
ent instances of the same library.

In many cases a dependency management system pro-
vides the functionality to extract the dependency tree for
a specific library instance and to resolve the conflicts. For
example, to have a dependency tree of a Maven based
library instance, one may execute the dependency:tree goal
of the Apache Maven Dependency Plug-in14 and the depen-
dency:resolve goal to have the version conflicts resolved. The

14. https://maven.apache.org/plugins/
maven-dependency-plugin/index.html
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Algorithm 1: Evaluation of a Developer’s View
input : Sample of analysed libraries AnalysedLibs, sets of

deployed dependencies, grouped dependencies, and
lagging dependencies

output: Impact on the dependency analysis of a ‘sample’
library

1 V uln_Paths← ∅ // Output according to the
standard approach

2 V uln_Paths_filtered← ∅ // Output according to
Vuln4Real

3 Lagging_deps← ∅ ;
4 i = 0 ;
5 while i < 100 do

// Random selection of 12 libraries
6 l = 0;
7 Libs← ∅ ;
8 while l < 12 do
9 lib← {Random(lib)|lib ∈ AnalysedLibs)}

// random selection of a library
10 lib_version← {Random(version)|version ∈ lib}

// random selection of a library
version

11 Libs← Libs ∪ lib_version ;
12 l = l + 1;
13 end

// Calculation of the results according to
the standard approach

14 V uln_Paths← V ulnPaths(Libs) ;
// Calculation of the results according to

the proposed methodology
15 V uln_Paths_filtered← DeployedOnly(V uln_Paths)

// Leave only deployed deps
16 V uln_Paths_filtered← Group(V uln_Paths_filtered)

// Group coupled deps
17 Lagging_deps← Lagging(V uln_Paths_filtered)

// Get lagging deps
18 i = i+ 1 ;
19 end

JavaScript packet manager npm provides the npm ls com-
mand to display the dependency tree of a specified pack-
age15. Alternatively, there exists the dependency-tree plug-in16

that also handles version resolution conflicts. Although the
Python package manager pip does not provide a default
functionality to display the dependency trees, tools like
pipdeptree17 or pipenv18 support this. Those tools do not
provide the functionality for resolving version conflicts,
however the current resolution procedure is simple - pip
performs the breadth-first traversal of the dependency tree
and picks the first instance of a library it encounters19.

Step 2: Identification of development-only dependencies
We identify development-only dependencies as follows:
• we rely on the dependency management system (or

project configuration files) to provide us with addi-
tional information about the dependency type20;

• we use this information to classify dependencies in the
dependency tree.

For example, in Maven we extract the dependency scope:
the dependencies with scope test are used only for devel-

15. https://docs.npmjs.com/cli/ls.html
16. https://www.npmjs.com/package/dependency-tree
17. https://pypi.org/project/pipdeptree/
18. https://pypi.org/project/pipenv/
19. https://github.com/pypa/pip/issues/988
20. Such information is always available, albeit in possibly different

formats.

opment purposes. In npm development-only dependencies
are collected within the devDependencies section of the con-
figuration file, while in pip such dependencies are specified
as extraRequirements.

Step 3: Identification of within-project dependencies

To identify dependencies that are maintained and released
simultaneously, we perform the following procedure:
• we refer to the development practices adopted by the

developers within the corresponding dependency man-
agement systems;

• we use these practices to identify a project that includes
the analysed dependency and other within-project li-
braries of this project.

Maven libraries are grouped into multi-module projects
where each module is released as a separate artifact. Ac-
cording to the Maven naming conventions21, within-project
dependencies of a multi-module project have the same
groupId. Hence, within-project dependencies can be eas-
ily identified by comparing their groupIds. JavaScript and
Python developers may follow the monorepo development
strategy, when several software libraries are stored in the
same repository22. Such library groups do not share a com-
mon identifier, however, they still can be distinguished by
analysing monorepos separately. Although in these cases the
step of identification of within-project dependencies would
require additional efforts, it allows library developers to
receive the meaningful (and correct) presentation of the
dependency analysis results.

Step 4: Identification of lagging dependencies

Some libraries may have varying time intervals between
releases due to different release strategies adopted within
development teams, as well as the maturity of a certain
library: at earlier stages of development it needs to have
more updates than an established library with a long de-
velopment history. An example of a mature library is the
Apache commons-logging package. Released on 2007-11-26
version 1.1.1 was the latest available version for more than
5 years till the release of version 1.1.2 on 2013-03-16.

Since the time difference between recent releases should
have a bigger impact on the Last release interval comparing
to the time difference between older releases, the typical
statistical model that describes such a process is a simple
Exponential Smoothing model [33]:

Release interval = α
n∑

i=0

{
(1− α)i ∗ Release timen−i

}
Expected release date = Last release + Release interval

where Release timei is the time interval needed to release
the i-th version of a library, 0 < α < 1 is the smoothing
parameter that shows how fast the influence of previous

21. https://maven.apache.org/guides/mini/
guide-naming-conventions.html

22. The monorepo development strategy is widely adopted by large
software development companies, such as Google [30], Facebook [31],
and Microsoft [32]
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Table 3
Vuln4Real methodology overview

Step 1: Extraction of a dependency tree for a library
INPUT Source code of an analysed library

OUTPUT Resolved dependency tree for an analysed library
PROCEDURE Identify dependencies of an analysed library and represent them in a form of a dependency tree:

• Employ the mechanism of a dependency management system to construct dependency tree of a library
• Apply the dependency management system resolution procedure to resolve version conflicts
• Extract the resolved dependency tree

Step 2: Identification of development-only dependencies
INPUT Resolved dependency tree for an analysed library

OUTPUT The set of development-only dependencies
PROCEDURE Identify dependencies that are used only during development of the library, i.e., are not shipped with this library:

• Extract dependency scopes
• Mark dependencies in scopes that are not shipped with the analysed library as test. For example, in Maven dependencies

with scope test are not shipped with the library, npm has a set of devDependencies that are used only for development
purposes, and in pip such dependencies are specified as extra requirements.

Step 3: Identification of within-project dependencies
INPUT Resolved dependency tree for an analysed library

OUTPUT The set of groups of within-project dependencies
PROCEDURE Identify within-project dependencies:

• Identify dependencies that are maintained and released simultaneously. In Maven the libraries that have a common
groupid are parts of a single multi-module project, while in npm and pip dependencies are joined into monorepos.

Step 4: Identification of lagging dependencies
INPUT Resolved dependency tree for an analysed library

OUTPUT The set of lagging dependencies
PROCEDURE Identify dependencies of the analysed library that are no longer maintained:

• Refer to the dependency repository to extract the release times for all dependency instances
• Use release times to estimate the expected time of the next release
• In case the time of observation does not exceed the estimated time, count such dependency as alive, otherwise count it as

lagging

Step 5: Identification of dependencies with known vulnerabilities
INPUT Resolved dependency tree for an analysed library

OUTPUT The set of dependencies with known vulnerabilities
PROCEDURE Employ code-base matching procedure to check whether a dependency is affected by a known security vulnerability:

• If a patch to fix the vulnerability in the dependency exists use the code-base approach by Plate et al. [18] and [29] to
compare the nodes of the dependency tree of the version of interest to check whether one of them is affected

• If no such fix exists report the vulnerability according to database approach (i.e., listed version in the vulnerability
dataset).

Step 6: Path extraction
INPUT The dependency tree of an analysed library, the sets of development-only dependencies, groups of within-project dependencies,

lagging dependencies, and dependencies with known vulnerabilities
OUTPUT Dependency analysis report

PROCEDURE We use the following algorithm to construct paths from vulnerable nodes to the analysed libraries:
• Remove development-only dependencies (Step 2) and their subtrees from the dependency tree
• Use the output from Step 5 to identify nodes affected by known vulnerabilities
• For each node in the dependency tree from Step 1, extract the shortest path between the vulnerable dependency and the

analysed library
• Substitute a group of consecutive within-project dependencies in the path with the closest to the vulnerable node

dependency from the group.
• Use the output of Step 4 to identify lagging dependencies.

time intervals decreases23. We estimate the Expected release
date for a library by adding the Last release interval to the
release date of the latest available version of the library.
Considering, the error threshold, we count the Estimated next
release date to be within the following interval for a library
to be lagging

Now > Last release + 2 · Expected Release Interval

23. The observation of released dates for the analyzed libraries sug-
gests that the last three releases have the major impact on the Expected
release date of a library, and therefore, in this paper, we count α = 0.6.
For libraries with less than 3 releases, we take the Last release interval
equal 3 months.

The proposed model based on release dates is conser-
vative since it provides a bound for the estimation of the
Expected release date for a library. Hence, it is more likely
to be affected by false positives, i.e., to classify a library
as lagging when it is still under development. However,
such finding would mean that a library does not receive
a fix for a long time, during which a zero-day vulnerability
remains exploitable. Hence, even in case of “false positives”,
our model provides valuable information for developers.
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Step 5: Identification of dependencies with known vul-
nerabilities
To avoid the false positive and false negative inflation in-
troduced by name-based vulnerability matching ( [13], [14],
[15]), we leverage on precise code-based approaches to vul-
nerability detection such as Ponta et al. [6] and Dashevskyi
et al. [29]. Starting from known vulnerabilities disclosed
in the NVD, advisories, bug tracking systems, etc., we
manually identified and analyzed the commit fixing the vul-
nerability. This activity results in a list of code changes. All
software constructs (e.g., constructors, methods) included in
such a list are the so-called vulnerable code. The creation of
such knowledge is a one-time effort for each vulnerability.
Then, for every analyzed project, the list of all within-
project libraries of the project and all its dependencies is
collected by performing a code-level matching of the vulner-
able fragment following the approach of [6]. Whenever the
vulnerable code fragment is contained within a dependency,
the corresponding vulnerability is automatically reported
for our analysis. If a fixed version is not yet available, we
have to resort to the traditional approach of dataset-based
identification, i.e. the versions mentioned as vulnerable in a
dataset (e.g., the NVD) are marked as vulnerable. This case
is rare as the process of responsible disclosure [34] becomes
increasingly adopted.

Step 6: Path construction
We use the resulting dependency tree and the outputs of the
steps 2-5 of the proposed methodology to identify whether
the dependencies belong to one of the following groups:
• development-only dependencies;
• within-project dependencies;
• lagging dependencies;
• dependencies with known vulnerabilities.
Vulnerable dependencies represent the most valuable

assets, hence, we perform the final aggregation of the results
in the opposite direction, i.e., considering the paths from
vulnerable dependencies to libraries under analysis:
• we group all within-project dependencies within one

path and substitute them in the path with the library
instance, closest to the vulnerable dependency.

Consider the example of a dependency tree from Fig-
ure 1: let dependencies x1 and z1 be affected by known
security vulnerabilities. Initially there are two paths from
vulnerable dependencies to the analyzed root library: (x1,
m1) and (z1, y2, y1, m1). In the second path library instances
y1 and y2 belong to the same project Y , hence, they are
grouped. So, the analysis results in two vulnerable paths:
(x1, m1) and (z1, y2, m1).

7 DATA COLLECTION

Considering the popularity and industrial relevance of
Java24, in the following we demonstrate the proposed
methodology on Java projects.

24. Java is estimated to be the most popular programming language
since 2004, according to the two indexes used by IEEE Spectrum
(http://spectrum.ieee.org/) to assess popularity of a programming
language: (i) Tiobe index (http://www.tiobe.com/tiobe-index/), which
combines data about search queries from 25 most popular websites of
Alexa; and (ii) PYPL index (http://pypl.github.io/PYPL.html), which
uses Google search queries.

Table 4
Descriptive statistics of the library sample

We considered the 500 most popular FOSS Java libraries used by SAP in its
own software, which resulted in 25767 distinct GAVs when considering all
library versions.

µ σ min max Q25% Q50% Q75%
#GAVs 53.8 105.0 1.0 846.0 11.3 26.0 67.0
#deps 14.5 12.9 1.0 128.0 5.0 12.0 19.0

#direct 4.2 4.8 0.0 39.0 1.0 2.0 6.0
#trans 10.3 10.2 0.0 103.0 2.0 7.0 17.0

#vuln deps 1.3 1.9 0.0 24.0 0.0 1.0 2.0
#direct 0.4 0.9 0.0 10.0 0.0 0.0 0.0
#trans 0.9 1.5 0.0 15.0 0.0 0.0 1.0

rel intervals
(days) 43.6 106.2 0.0 3204 1.8 14.2 43.0

To understand how the selected sample is also used by the broader community,
this graph reports the #usages as reported in mvnrepository.com, it shows a
log-normal distribution (X-axis has logarithmic scale).

Figure 4. Distribution of library usages in the sample within Maven
ecosystem

Over the past decade, Apache Maven established itself as
a standard solution in the Java ecosystem for dependency
management and other tasks related to build processes.
Other solutions exist, such as Apache Ivy and Gradle (which
is gaining popularity)25, however Maven still has the largest
share of users26. Hence, we use it to demonstrate the pro-
posed mitigations for each problem described in Section 3.

In Maven the name of a component is standardized27

and represented as groupId:artifactId:version. Hence:
• a “project” may be referenced as Maven groupId
• a “library” corresponds to groupId:artifactId (GA)
• a “library instance” corresponds to the name of Maven

component groupId:artifactId:version (GAV)
Processing of a full Maven Central repository with al-

most 2,7 million GAVs would be impractical and especially
would include artifacts of no relevance in industrial practice.
Hence, for this paper, we take a sample from Maven Central,
as explained below.

7.1 Library selection - incorrect way

Initially, we followed the approach of [35] and selected the
number of usages of a library instance as a proxy for its
popularity. By usage we understood the number of direct

25. https://gradle.org/
26. https://zeroturnaround.com/rebellabs/

java-tools-and-technologies-landscape-2016/
27. https://maven.apache.org/guides/mini/

guide-naming-conventions.html
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Figure 5 shows the per-month distribution of times till the next release for the
cleaned release time dataset. The lines represent median and mean time of the
next release, the orange area shows the Q25% – Q75% release interval range,
and the background grey area shows the 95% confidence interval.

Figure 5. Release intervals of libraries in our sample

dependent library instances of a library instance of inter-
est28. We should note that the number of library instance
usages does not add up to the total number of usages of its
library, i.e.

∑
v Usage(GAv) 6= Usage(GA).

When we extracted the list of top 100 most used libraries,
the resulting list had an unbalanced usage distribution: scala
and spring-framework projects were over-represented, while
some well-known projects, like Apache Tomcat, were not
present in the list. A possible reason may be in the large
difference in numbers of within-project libraries in different
projects: if a project has 100 within-project libraries and
they directly depend on a certain library instance, then this
library instance would be “used” 100 times, while in reality
there is only one usage.

This approach may have potentially allowed us to re-
ceive a “good” list of libraries if as a proxy for popularity
we used the number of dependent projects. However, such
information is not easily available (to obtain it, we would
have to build dependency trees for all library instances in
Maven Central), so we had to find another way to construct
the list of libraries for our study.

7.2 Library selection - the way we followed
To identify the relevant ‘main libraries’, one needs an out-
side anchor. Indeed, just using the number of usage of
within Maven itself appeared to be severely biased as it
makes service libraries to be disproportionately selected.
However, this does not correspond to the popularity of the
software in the world (which makes the study interesting).

To ensure industrial relevance of our study, we selected
the top 500 FOSS libraries used by a set of more than 500
Java projects developed at SAP; these include actual SAP
products and software developed by the company for inter-
nal use. Those libraries comprise, for instance, org.slf4j:slf4j-
api and org.apache.httpcomponents:httpclient, and corre-
spond to 25767 library instances when considering all ver-

28. We used the data from MVNrepository (https://mvnrepository.
com/).

sions (see Table 4 for descriptive statistics of the selected
sample). We have also extracted the number of usages of the
libraries in our sample as reported in mvnrepository.com.
Figure 4 shows that the libraries in our sample are popular29

within FOSS projects: 121 libraries are used by more than
1000 other libraries (and even more library versions), while
median library has 291 dependents.

For the collected sample of libraries and their depen-
dencies, which resulted in 906 distinct libraries, we have
collected 54475 release intervals.

To validate the model for identification of dead depen-
dencies, we have extracted release intervals for all dis-
tinct library instances and dependencies in our sample.
As developers of several libraries support several ver-
sions of the same library simultaneously (e.g., develop-
ers of org.springframework.boot:spring-boot-starter-web sup-
ported 1.5.x, 2.0.x, 2.1.x, and 2.2.x versions in parallel),
to remove the possible bias introduced by simultaneous
releases of different versions, we have considered only the
releases of the library with increasing version labels30. For
example, if a library has the following versions order sorted
according to their release dates: 2.1.1, 1.5.19, 2.1.2, 1.5.20 -
we do not include releases 1.5.19 and 1.5.20 in our analysis.

We noticed that the dataset of release intervals has out-
liers: mean release interval is 43.6 days, while the longest
release interval is 3204 days. To decrease the influence of
the outliers, for our further analysis we have considered
only the libraries that have release intervals not exceeding
365 days (are within 95% confidence interval of the original
release interval dataset). This resulted in 35256 release inter-
vals of 632 libraries. Figure 5 and Table 4 describe release
intervals of libraries in our sample.

To automate our dependency study we implemented a
tool that:

• wraps dependency:tree and dependency:resolve Maven
commands, which helps us get a more manageable (and
a machine-readable) representation of the results of the
resolution mechanism. This allows us to construct the
resolved dependency tree for each library instance.

• uses the code-based approach of [6] to annotate depen-
dency trees with the vulnerability data at our disposal.
In particular, when a vulnerable library instance is
found among the dependencies of an analyzed root
library, our tool produces in the output (i) the identifier
of the vulnerability, (ii) the library instance importing
it, and (iii) the complete dependency path leading from
the root library to the vulnerable dependency.

• applies path simplifications and produces the results in
the form of a human-readable report.

29. We have manually checked 27 libraries that have less than 10
usages and we found that they might be industry-specific libraries:
e.g., they may have groupIds like com.sap.*. However, their share in
the selected library sample is quite small (≈ 5%).

30. If library version labels do not allow us to determine increasing
order of library versions (e.g., non-numeric labels are used to mark
library releases), we assumed that the library developers supported
only one version of the library at a time.
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8 EVALUATION: ECOSYSTEM VIEW

RQ1: Does Vuln4Real reduce the number of false alerts
in the deployed code (dependencies wrongly flagged as
vulnerable)?

Vulnerabilities in development-only dependencies cannot
be exploited once the library is deployed because the vul-
nerable code is simply not there. The library might still be
vulnerable for other - so far unknown - reasons, but from
the perspective of any developer this would be a false alert.

Figure 6a visually compares the per library instance
distributions of the total number of dependencies and the
number of deployed31 dependencies (p-value ≈ 0, Wilcoxon
test), while Figure 6b shows the difference between the per
library instance distributions of all and deployed dependen-
cies affected by known security vulnerabilities (p-value ≈ 0,
Wilcoxon test).

These observations confirm H1 and allow us to con-
clude that the proposed methodology reduces the number
of low-priority security alerts.

Discussion: We observe that development-only vulnerable
dependencies are widely used within the analysed libraries;
for some library instances there are only development-
only dependencies. Hence, following the SoA approach,
developers would have to face a big number of alerts
for dependencies not included into the deployed version
of their libraries (for some library instances their amount
exceeds the alerts in deployed dependencies by up to 3
times). Their analysis may require a significant amount
of expensive developers’ time and, consequently, decrease
the value and trust in the dependency analysis findings.
Instead, Vuln4Real allows developers to receive trustworthy
dependency analysis reports.

RQ2: Does Vuln4Real provide insights on the level of ex-
posure to third-parties vulnerabilities of a given library?

To make an application safe, its developers need to be
sure that they address all the vulnerable dependencies. SoA
approach suggests that direct dependencies of a software
project are within the full control of its developers. However,
such an approach misses the fact that within-project depen-
dencies should also be considered to correctly report the
number of controlled dependencies in the analysed projects.

The dependency grouping procedure shortens the de-
pendency paths (by grouping dependencies belonging to
same projects), so some direct vulnerable dependencies ap-
pear to be within-project dependencies of the root libraries,
while the versions of some vulnerable transitive dependen-
cies appear to be in direct control from the root libraries.

Vulnerable within-project dependencies. Since the
analysed library instances may as well be parts of multi-
module projects while reporting the results it is also impor-
tant to correctly distinguish between the “true” number of
third-party and within-project dependencies of the analysed
libraries as the latter should be fixed by the developers of
those libraries by directly changing their code.

31. To identify deployed dependencies in Maven we have excluded
dependencies in test and provided scopes, since dependencies in both
scopes do not appear as transitive dependencies in the dependency
trees of the dependent libraries.

Figure 7a shows that within-project dependencies of
root libraries are often present in dependencies despite the
popularity of the analysed libraries. Several library instances
only have within-project dependencies. Figure 7b shows the
percentage of within-project dependencies of the analysed
libraries affected by known security vulnerabilities. These
vulnerabilities affect components of the analysed libraries,
and therefore, represent the parts of the multimodule project
the analysed library is included in.

Vulnerable direct dependencies. Figure 8a shows the
difference in the number of direct dependencies per library
before and after grouping libraries by software projects.
We observe that Vuln4Real allows us to reveal up to 60
additional dependencies, whose versions could be directly
controlled by developers of the analysed libraries. Figure 8b
shows the difference in the number of direct and the number
of revealed vulnerable dependencies which versions could
be directly updated by the developers of the analysed
libraries. We observe, that the proposed methodology sug-
gests that developers of the analysed libraries could have
directly adopted fixed versions of up to 10 dependencies
affected by known vulnerabilities. The negative values on
both Figures correspond to the within-project dependencies
of the analysed libraries.

Grouping dependencies by their projects allows
Vuln4Real to reveal (i) vulnerable dependencies whose
code should be directly changed by the developers of
the analysed libraries as these dependencies are parts of
their project (within-project dependencies), (ii) vulnerable
dependencies, safe versions of which could be directly
adopted by the developers of the analysed projects. Hence,
H2a is confirmed.

Discussion: We observe that many direct vulnerable de-
pendencies were presented as transitive for the developers
of the analysed libraries. This may influence developers to
select a wrong mitigation strategy, i.e., to wait for the de-
pendencies to adopt the fixed versions of vulnerable depen-
dencies, instead of fixing them directly from the analysed
projects. Hence, the SoA way of presenting the vulnerable
dependencies that can be fixed by updating direct depen-
dencies of the analysed libraries hides several dependencies,
safe versions of which could be directly adopted from the
root libraries (i.e., false negatives from the perspective of
a software developer). For several libraries, the amount
of such FN alerts is equal to the number of TPs. Hence,
Vuln4Real allows us to reveal direct vulnerable dependen-
cies, which were falsely hidden by the SoA approach.

Figure 9 allows us to visually compare the amount of
dependencies reported by SoA and Vuln4Real. Each cat-
egory of dependencies is presented as a rectangular area,
where the center has the mean numbers of vulnerable and
not vulnerable dependencies as coordinates and the height
and width are the respective 95% confidence intervals.

Results presented according to the SoA approach sug-
gest that there are more transitive dependencies and they
introduce more vulnerabilities (TransSoA(µvuln) = 0.51),
rather than direct dependencies (DirectSoA(µvuln) = 0.37)
per library instance (p-value� 0.05, Wilcoxon test).

In contrast, our methodology dramatically changes this
picture. Filtering out deployed dependencies decreased
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(a) #deployed vs #all dependencies (b) Percentage of vulnerabilities reported only by development-only
dependencies

To plot figures 6a and 6b, we have removed 84 library instances of 8 libraries that have more than 80 dependencies (outliers). The figures show a visible difference
between the distributions when all dependencies are considered and development-only dependencies are removed. The vulnerabilities affecting latter ones have
low priorities for software developers of the dependent libraries.

Figure 6. RQ1: per library instance comparison of all, deployed, and development-only dependencies.

(a) Percentage of root library components (b) Percentage of vulnerable components of root libraries

Figure 7. RQ2: Distribution of components of root libraries presented as its dependencies (within-project dependencies)

the mean number of non vulnerable dependencies from
AllSoA(µ¬vuln) = 13.18 to Alldeployed(µ¬vuln = 9.34 and
the mean number of vulnerable dependencies withing
the analysed library sample from AllSoA(µvuln) = 1.30
to Alldeployed(µvuln) = 0.94. Furthermore, after the
grouping procedure, the mean number of both vulnerable
(Directwithin−project&3rdPty(µvuln = 0.65) and non
vulnerable (Directwithin−project&3rdPty(µ¬vuln =
6.01) direct dependencies has become big-
ger than the mean number of vulnerable
(Transitivewithin−project&3rdPty(µvuln = 0.10) and
non vulnerable (Transitivewithin−project&3rdPty(µ¬vuln =
1.58) transitive dependencies.

While SoA presents that there are more transitive
dependencies and they are the main source of vulnera-

bilities, Vuln4Real shows that most vulnerabilities affect
within-project and 3rdPty dependencies, safe versions of
which could be directly adopted from the root libraries
(H2b is confirmed).

Discussion: The prevalence of transitive dependencies and
security issues affected them might create a feeling of ab-
sence of responsibility for fixing security issues in software
dependencies. I.e., if a problem is too large it cannot fit
into the next release interval of a library sprint. Hence, it
might be postponed until the moment when the issues make
development impractical and library dies. In this respect,
showing that most of the issues could (and should) be fixed
from the root libraries might be an important starting point
for developers to consider vulnerabilities in their depen-
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(a) #direct dependencies per library (b) Difference in #vuln direct dependencies per library

Figure 8. RQ2: differences of the number of direct dependencies per library before and after grouping

Figure 9. Number of direct and transitive dependencies calculated ac-
cording to SoA and Vuln4Real

dencies, so the task of adopting safe versions of vulnerable
dependencies becomes feasible and developers start fixing
dependency issues regularly.

RQ3: Can Vuln4Real predict when a library lags behind?

To understand which features have the biggest impact on
the release time of a library, we introduce two regression
models (Table 5):
• Int assumes, as Vuln4Real, that the release time of a

library can be essentially captured by observing the
past release intervals,

• All combines the Int model with the intuition that the
increasing complexity of library dependencies might
lead to a longer release interval.

To check the effectiveness of the models and compare their
performance with the Vuln4Real model based on Simple Ex-
ponential Smoothing, we have run them against the release
dates dataset. We have considered decision threshold to be
twice the predicted release time as specified in Section 6.

Table 5
Regressions

(a) Int: new release ∼ release intervalt−1 +
release intervalt−2 + release intervalt−3 (R2 = 0.345,
p-values� 0.05 for all explanatory variables)

estimate std. error
intercept 8.0272 0.307
intervalt−1 0.3264 0.007
intervalt−2 0.2071 0.007
intervalt−3 0.1776 0.007

(b) All: new release ∼ release intervalt−1 +
release intervalt−2 + release intervalt−3 + within-
project + direct + trans + within-project vuln + direct
vuln + trans vuln (R2 = 0.354, p-values � 0.05 for all
explanatory variables)

estimate std. error
intercept 11.4463 0.468
intervalt−1 0.3097 0.007
intervalt−2 0.1963 0.007
intervalt−3 0.1655 0.007
#within-project deps 0.0960 0.185
#direct deps -0.5681 0.052
#transitive deps 0.4198 0.057
#within-project vuln deps -0.2606 0.754
#direct vuln deps 2.7882 0.251
#trans vuln deps -2.4354 0.387

Table 6
Comparison of models for prediction of whether a library is lagging

Vuln4Real Int All
next releases within 2pred 78% 86% 70%
next releases later 2pred 22% 14% 30%

The coefficients of Int model shows that more recent
release intervals have higher impact in comparison to older
release intervals. This corresponds to our intuition and the
observations presented in [5].

Table 6 compares the performance of Vuln4Real and
the regression models. The simple exponential decay of
Vuln4Real correctly predicted the next release date for 56%
of release intervals within the lengthened period. Addition-
ally, 22% of library instances had next releases earlier than
the expected release date. Hence, the Vuln4Real model has
correctly classified libraries as alive in 78% of cases.

The proposed model based on a library release history
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could be used for screening test to check that the devel-
oped of a library is slower than expected and therefore
could lag behind (H3 is partly confirmed).

Discussion: The All model coefficients generally support
the intuition behind the model: the increasing number of
within-project and transitive dependencies corresponds to
increasing release intervals, while the number of vulnerabil-
ities in transitive dependencies indicates its decrease. How-
ever, the positive coefficients of within-project and direct
vulnerable dependencies seem counter-intuitive. This might
be caused by the necessity of developers of an analysed
library to assess the vulnerability whether it affects their
project, check the suggested fix on breaking changes, and
thoroughly test the library.

Although, the regression models have a slightly higher
correct prediction to test whether a library is alive, they are
harder to apply in practice as they require a very large
sample of release intervals to fit them. In contrast, the
proposed model has a sufficiently high prediction rate and
requires only a handful of data points for prediction (and no
regression on 25K GAVs).

RQ4: Can the number of dependencies be used as a
predictor for a number of vulnerabilities in a library?

Although several studies name transitive dependencies as
one of the main vulnerability sources [4], [10], Vuln4Real
changes the distributions of vulnerabilities between direct
and transitive dependencies. Hence, we are interested in
studying the influence of software dependencies on the
number of vulnerabilities in the analysed libraries.

To do this, we count the number of vulnerabilities in an
analysed library instance V to be a function of its own code,
within-project dependencies, direct, and transitive dependencies:

V ∼ own code+within-project dep+direct dep+ trans dep
(1)

Then we compute the linear model for (1) and estimate
coefficients for each of the supposed ‘predictors’. Table 7
presents the estimated coefficients and their descriptive
statistics when we have considered the number of depen-
dencies to be the values of the independent variables for
the linear model. The SoA approach does not distinguish
within-project dependencies, hence, we have used the root
of the dependency tree (the analysed library instance) to
represent the own code in (1). The p-value � 0.05 for all
the predictors, hence they all have a statistically significant
influence on the dependent variable (number of vulnerabili-
ties). The model for estimating the number of vulnerabilities
according to the SoA approach has R2

SoA = 0.603 and
stochastically distributed residual errors, hence, is appropri-
ate for the description of the situation with dependencies.

We use the results returned according to the Vuln4Real
methodology to model the number of vulnerabilities in
direct and transitive dependencies. We used both root and
the number of within-project dependencies of the analysed
library to represent the own code. The root estimates for
both models (direct and transitive vulnerabilities) have p-
value > 0.05 and therefore are not significant. Other pre-
dictors are significant (p-values � 0.05). The models have
R2

# vulns direct = 0.523 and R2
# vulns trans = 0.623, residual

errors are stochastically distributed. Therefore, the number
of dependencies can be used for predicting both the number
of direct and transitive dependencies.

The regression analysis suggests that the number of
dependencies have a significant impact on the number
of vulnerabilities in a software library (H4 is confirmed).

Discussion: The analysis of the coefficients of the model for
predicting the total number of vulnerabilities suggests that
both the number of direct and transitive dependencies lead
to an increase in the number of vulnerable dependencies
in this library. This observation corresponds to a general
intuition: the more dependencies there is in a library, the
higher chance that one of them is affected by a vulnerability.

The regression for the number of vulnerable direct de-
pendencies suggests that the number of third party direct
dependencies (3rdPty) have a positive influence, while the
increase in within-project dependencies reduces the number
of direct vulnerable dependencies. This finding suggests
direct control to be the best assurance for quality criteria.

The coefficients of regression for the number of vulner-
able transitive dependencies are positive. It is intuitive that
the increasing number of transitive dependencies might lead
to an increase in the number of vulnerabilities affecting
them. The positive influence of within-project and 3rdPty
direct dependencies might also happen because their addi-
tion might increase the number of transitive dependencies
in a library, which indirectly increases the chance of having
a transitive dependency affected by a security vulnerability.

9 EVALUATION: DEVELOPER VIEW

In an industrial setting, the practical negative impact of
using an inadequate measurement method can be substantial.
Ensuring a healthy supply chain of third-party dependen-
cies (of which the large majority is FOSS) is a continuing ef-
fort that spans the development and the operational phases
of a product lifetime.

In general, imprecise approaches to vulnerability man-
agement undermine the trust of developers on automated
analysis because the dependencies identified as problematic
do not correspond to those that must be actually acted upon
to address the reported issues. As a consequence, despite
the promises of automation, considerable additional human
effort and expert judgment is required to determine the
appropriate mitigation strategy.

It is therefore important to analyze whether the global
analysis also has an impact as perceivable by the individual
developer. Table 8 shows the effect of Vuln4Real on the
dependency analysis results for a typical industrial library.

9.1 RQ1: Deployed dependencies
We observe from Table 8 that the 95% Confidence Inter-
val of the reported number of vulnerable dependencies is
significantly different between Vuln4Real and the state of
the art due to filtering out (falsely reported) findings of
development-only dependencies with known vulnerabili-
ties. This phenomenon is extremely visible already from
the lack of problems on the eight dependencies potentially
lagging behind on average (seven at the very least). They
become non-problematic in our analysis. They might have
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Table 7
The influence of software dependencies on the number of vulnerabilities in the analysed libraries

The table shows the estimates for regression models of the total number of vulnerable dependencies (R2 = 0.603, the p-value for all explanatory variables
� 0.05), the number of vulnerable direct dependencies according to Vuln4Real (R2 = 0.523, the p-value for all explanatory variables � 0.05), and the
number of vulnerable transitive dependencies (R2 = 0.623, the p-value for all explanatory variables� 0.05)

#vulns SoA #vulns direct #vulns trans
estimate std error estimate std error estimate std error

root -0.4113 0.012
Not Applicabledirect deps 0.1612 0.002

transitive deps 0.1007 0.001
within-project deps

Not Applicable
-0.0400 0.005 0.0063 0.003

3rdPty direct deps 0.1101 0.001 0.0012 0.001
transitive -0.0021 0.001 0.0949 0.001

Table 8
Impact of the Vuln4Real methodology on the view of a single developer
The SoA and Vuln4Real columns show how many known vulnerable (or not
vulnerable) dependencies would appear in the corresponding vulnerability
report with a 95% Confidence Interval. The ∆µ column show the means.
From the total of known vulnerabilities, the individual developer will see four
false alerts disappearing from one’s to-check list.

Issues SoA Ours
CI CI ∆µ

Not Known vulnerable [88, 103] [89, 104] +1
in lagging deps – [7, 9] +8

Known Vulnerable
total [9, 11] [6, 7] -4

in your code [0.3, 0.6] [0.3, 0.6] 0
in your within-project deps – [0, 1] +1

in your direct deps [3, 4] [4, 5] +1
in your transitive deps [6, 8] [1, 2] -6

in lagging deps – [0.1, 0.5] +0.3

other problems, but surely not the misleading ones that
some library used for their development was vulnerable.

The same situation is present on the dependencies af-
fected by known vulnerabilities. Four of them on average
are not affected at all (see the -4 in total row), and at the
very least a developer will have two less false alerts (the
difference between the lower bound of CI of the SoA and
the upper bound of our approach. Similarly for other cases.
Vuln4Real introduces no difference to the dependency anal-
ysis result from the perspective of an individual developer
only for one’s own individual library.

Hence, H1 is confirmed also from the view of an
individual developer.

Discussion: As part of SAP’s secure development life-cycle,
all development projects go through several validation steps
and each single finding has to be audited, assessed, and mit-
igated. After the product is released to customers, and for its
entire operational lifetime, its own security and the security
of its third-party dependencies are continuously monitored.
When a vulnerability is detected in one of the dependencies,
timely mitigations need to be developed and deployed to all
affected systems. In the case of FOSS dependencies, these
mitigations may consist of dependency updates, or in ad-
hoc fixes in the product that relies on the affected library or
in the dependency itself (through a company-internal fork
that can be temporary or persistent). When the product port-
folio of a company includes thousands of products, whose
support period can extend to decades, wrong assessments
lead to inadequate risk management and inefficient allo-
cation of resources, which ultimately translate to increased
chances of security incidents and financial loss.

Approaches that use imprecise vulnerability detection
methods and that ignore the interdependencies among the

individual nodes of the dependency tree yield a distorted
view, which requires tedious, manual reviews to be correctly
interpreted and that cause precious resources to be wasted.

The distinction between deployed and development-
only components allows quick and reliable pre-filtering of
not exploitable vulnerable dependencies, as they are not
part of the deployed product. Any metrics reporting the
“danger” of using FOSS libraries that do not discriminate
between the deployed and development-only dependencies
would lead to a wrong allocation of costly development and
audit resources.

9.2 RQ2: Grouping dependencies by software projects
The simulation shows that according to the SoA approach
the developer of an average software library would be
notified that the majority of vulnerable dependencies are
coming from transitive dependencies (7 out of 10). With
a 95% confidence interval our methodology changes this
view: only two vulnerabilities are introduced by transitive
dependencies, while five are coming from direct dependen-
cies. Moreover, one out of the seven vulnerable direct depen-
dencies is the within-project dependency of the library. The
visible difference in the number of direct and transitive
dependencies allows us to conclude that H2a is confirmed
from the perspective of the individual developer.

Discussion: The granularity at which dependencies are ana-
lyzed and the reliability with which vulnerabilities affecting
them are detected are essential to obtaining a meaningful
view of the (security) health of the project dependencies.
Failing to group dependency nodes that are updated to-
gether (e.g., belong to the same FOSS project), makes the
update of certain libraries appear more problematic than
it is. The vulnerability may affect a node that is deep in
the dependency tree, while the node that the application
developer would need to update might be much shallower
(e.g., it could even be a direct dependency).

9.3 RQ3: Dead dependencies
For a ‘sample’ library, Vuln4Real reports presence of eight
dead dependencies with the 30% – 50% chance that one
of these dead dependencies to be affected by a security
vulnerability. This observation only partly confirms H2b
as we don’t have a difference of a whole dependency among
the confidence intervals.

Discussion: Finally, determining precisely whether a depen-
dency could be upgraded to a non-vulnerable version or
not (because such a version does not exist, and perhaps will
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never exist, if the dependency is no longer maintained) is the
key to choosing the correct mitigation strategy. Addressing
vulnerabilities in FOSS components that are alive, but for
which a fixed release does not exist yet, requires to act fast,
so that an emergency solution can be rolled out as fast
as possible to all customers. Being temporary and urgent,
such mitigation might not be optimal. An upgrade to a
non-vulnerable version of the dependency will eventually
be done. Conversely, if a vulnerability affects a dependency
that is no longer maintained, fixing the code of the depen-
dency would effectively mean creating a company-internal
fork, whose long-term support could require substantial
additional investments and maintenance effort.

Hence, we can conclude that the proposed methodology
has a positive impact on the correct resolution of depen-
dency analysis results of a single industrial library.

10 THREATS TO VALIDITY

Threats to construct validity concern the appropriateness of
inferences made based on observations or measurements.

We use Maven groupIds as an approximation for a project.
This may potentially lead to an incorrect grouping of li-
braries because some projects may use the same cross-
project groupIds, or conversely, different groupIds to iden-
tify their components. The former threat has a minimal
impact since the Maven naming convention of assigning
different group identifiers to distinct projects is quite well
established. We observed the latter case for test or ex-
ample libraries, e.g., org.apache.activemq has a subgroup
org.apache.activemq.tooling. We considered two groupIds as
equal if one of the two includes the other groupId (as in the
activemq example). The projects that cannot be distinguished
only by groupId could be distinguished using additional
attributes, such as Repository, ProjectID, and others (which
might be specific to certain language ecosystems).

The proposed conservative model for identification of whether
a certain dependency has become dead may introduce some
misclassifications. The model depends on the α parameter
that defines the rate of decrease of the influence of more
recent releases on the estimation of the next release date.
Following our observations [5], the last three releases have
the biggest impact on the next release date. The analysis of
the reliability of the proposed model suggests that the model
has correctly predicted that the library was ‘alive’ in 78%
of cases. We believe this result to be sufficient to be used
for preliminary evaluation of the status of a dependency,
given the lightweight nature of the model. E.g., it only needs
to have access to release history of an analysed library,
in contrast with more sophisticated models based on, for
example, linear regression that requires a sufficiently large
dataset of release dates for training.

Threats to internal validity concern the external factors
not considered in our study:

The selection of FOSS libraries is based on the number of
usages from within SAP. Such a selection criterion may yield
a sample, not representative of what libraries are most
relevant for other industrial companies or FOSS developers.
To check the popularity of the studied libraries within
the FOSS community, we obtained the information about
library usages from MVNRepository and the number of

FOSS contributors that claimed to use the selected libraries
from BlackDuck Openhub32. The results obtained from both
sources suggested us that selected libraries are popular
within the FOSS developers. Since SAP is a large multi-
national software development company with a significant
number of Java projects, we believe that the threat of indus-
trial non-representativeness is minimal.

The vulnerability database used for our case study may not
cover all known vulnerabilities. To minimize this threat SAP
conducted an internal study of the vulnerability dataset,
which concluded that it covers 90% of all NVD vulnera-
bilities reported for FOSS projects developed in Java. The
coverage is closer to 100% when considering the FOSS
projects most relevant for SAP. Hence, we believe that this
threat has minimal influence on the results of our analysis.

Threats to external validity concern the generalization of
results of a case study:

Currently we considered only Maven-based projects. We used
Maven because it provides a very comfortable way to han-
dle dependency management and is wildly used within
both FOSS and commercial projects. Clearly, dependency
analysis can be enlarged to other build automation systems,
like Ant or Gradle. Although our tool depends significantly
on Maven, the approach that we present in this paper
is language independent and it only relies on the avail-
ability of a dependency management mechanism, such as
those provided for Java (Maven, Gradle), Javascript (npm),
Python (pip), PHP (pear), and so forth. Any tooling for these
languages would likely require fine-tuning on a case basis.

Vuln4Real targets on dependencies of software libraries. Since
the configuration of a dependency tree might differ depend-
ing on the dependencies that appear on the higher levels
of a dependency tree (e.g., direct dependencies), resolving
the dependent libraries impacted by a vulnerable library
may be not trivial. Moreover, developers of a library are
mostly interested in its own dependencies and typically
do not alert their users. Hence, we keep the analysis of
dependent libraries out of scope for Vuln4Real. To find
whether there is an impact of a vulnerable dependency on
a dependent library, one can start the analysis by applying
our methodology to the library of interest.

Threats to reliability concern the reliability of the tools
and methods we have used in our paper.

Vuln4Real methodology is evaluated through a self-developed
tool. Although tool development could have potentially in-
troduced bugs that might affect the results presented in the
paper, we tried our best to reduce the probability of bugs.
The code of the tool was developed by one researcher and
then carefully reviewed by other researchers. The results
corresponding to the SoA approach, being compared with
another dependency analysis tool internally used within
SAP, did not reveal errors. Hence, we believe that the eval-
uation results presented in the paper are minimally affected
by implementation bugs.

Table 9 shows the potential impact of the threats to
validity discussed above on each step of Vuln4Real.

32. https://www.openhub.net/
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Table 9
Possible errors at each step of the Vuln4Real methodology

# name of step FP FN Reason
1 Extraction of a dependency

tree
We employ actual mechanisms of a dependency management system to extract dependen-
cies and resolve version conflicts.

2 Identification of development-
only dependencies

7 FN may happen if some of the dependencies are specified as excluded, and therefore, not
shipped with the dependent library instance.

3 Identification of within-project
dependencies

7 7 In case of Maven both FP and FN are possible if a project does not follow Maven name
conventions.

4 Identification of dead depen-
dencies

7 A library may be falsely classified as dead due to an unusually long release time interval
of a new version.

5 Identification of dependencies
with known vulnerabilities

7 Due to the limitations of the code-centric vulnerability mapping approach [6], not all
vulnerable libraries could be identified (e.g., vulnerabilities whose fixes do not involve
code changes or vulnerabilities that are due to the deserialization of untrusted data).

6 Path extraction This step implies only postprocessing of the results, and therefore, is not affected by any
errors, besides the implementation mistakes (that we tried our best to reduce).

11 CONCLUSIONS

In this paper, we have proposed the Vuln4Real methodology
for a reliable measurement of vulnerable dependencies in
FOSS libraries. In particular, the proposed methodology
extends the state-of-the-art approaches to analysing soft-
ware dependencies by applying several steps, such as (i)
filtering development-only dependencies, (ii) grouping de-
pendencies on their belonging to software projects, and (iii)
determining whether a certain dependency is dead.

To demonstrate Vuln4Real, we selected the 500 most
used FOSS Maven-based libraries from within SAP. To
perform the analysis we have built a tool that leverages the
functionality of Apache Maven to extract the library depen-
dencies and applies the Vuln4Real postprocessing steps.

The results of our study demonstrate that the proposed
methodology has visible impacts on both ecosystem and
individual library developer views of the situation regard-
ing software dependencies: Vuln4Real significantly reduces
the number of false alerts for deployed code (dependen-
cies wrongly flagged as vulnerable), provides meaningful
insights on the exposure to third-parties (and hence vulner-
abilities) of a library, and automatically predicts when de-
pendency maintenance starts lagging, so it may not receive
updates for arising issues.

An interesting direction for future research is to under-
stand how important is the list of vulnerabilities. Obviously,
any improvement in the precision of the list of vulnera-
bilities will give better results for some libraries. However,
at the level of the ecosystem, when more than 20K GAV
are analyzed his might only be visible in 1/2 percentage
points. The same consideration might apply to the Devel-
oper’s view. We also plan to complement this work with
a qualitative study on the reasons why developers do not
update dependencies with an investigation of developers’
behaviour concerning security-related updates.
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