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Abstract—In order to improve both the efficiency and accuracy
of video semantic recognition, we can perform feature selection
on the extracted video features to select a subset of features
from the high dimensional feature set for a compact and accurate
video data representation. Provided the number of labeled videos
is small, supervised feature selection could fail to identify the
relevant features that are discriminative to target classes. In many
applications, abundant un-labeled videos are easily accessible.
This motivates us to develop semi-supervised feature selection
algorithms to better identify the relevant video features, which
are discriminative to target classes by effectively exploiting the
information underlying the huge amount of un-labeled video
data. In this paper, we propose a framework of video semantic
recognition by Semi-Supervised Feature Selection via Spline
Regression (S2FS2R). Two scatter matrices are combined to cap-
ture both the discriminative information and the local geometry
structure of labeled and un-labeled training videos: A within-class
scatter matrix encoding discriminative information of labeled
training videos and a spline scatter output from a local spline
regression encoding data distribution. An �2,1-norm is imposed
as a regularization term on the transformation matrix to ensure
it is sparse in rows, making it particularly suitable for feature
selection. To efficiently solve S2FS2R, we develop an iterative
algorithm and prove its convergency. In the experiments, three
typical tasks of video semantic recognition, namely video concept
detection, video classification, and human action recognition, are
used to demonstrate that the proposed S2FS2R achieves better
performance compared with the state-of-the-art methods.

Index Terms—Video Analysis, Semi-Supervised Feature Selec-
tion, Spline Regression, �2,1-norm.

I. INTRODUCTION

In many applications of video semantic recognition, such as
video concept detection [1], [2], human activity analysis [3],
[4], and object tracking [5], [6], data are always represented by
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high dimensional feature vectors. For example, we can extract
high dimensional heterogeneous visual features from one given
video key frame, such as global features (color moment, edges
direction, and Gabor) and local features (space-time interest
points [7] and MoSIFT [8]). In the high dimensional space
of visual features, it is hard to discriminate video samples
of different classes from each other, which results in the so
called “curse of dimensionality” problem [9]. Moreover, in the
presence of many irrelevant features, the training process of
classification tends to overfitting. This paper explores feature
selection and its applications to video semantic recognition.

Feature selection has a twofold role in improving both the
efficiency and accuracy of data analysis. First, the dimension-
ality of selected feature subset is much lower, making the
subsequential computation on the input data more efficient.
Second, the noisy features are eliminated for a better data rep-
resentation, resulting in a more accurate classification result.
Therefore, during recent years feature selection has attracted
much research attention [1], [4], [10], [11], [12], [13]. In
video semantic recognition, feature selection is usually applied
for a higher classification accuracy and a compact feature
representation [1], [4], [10], [6].

Feature selection algorithms can be roughly classified into
two groups, i.e., supervised feature selection and unsupervised
feature selection. Supervised feature selection determines fea-
ture relevance by evaluating a feature’s correlation with the
classes [14], [15], [16]. Because discriminative information is
enclosed in the labels, supervised feature selection is usually
able to select discriminative features. Without labels, unsuper-
vised feature selection exploits data variance and separability
to evaluate feature relevance. A frequently used criterion is to
select the features which best preserve the data distribution or
local structure derived from the whole feature set [17]. How-
ever, because there is no label information directly available,
it is much more difficult for unsupervised feature selection to
select the discriminative features [10].

In real-world applications, collecting high-quality labeled
training videos is difficult, and at the same time abundant un-
labeled videos are often easily accessible. Provided the number
of labeled data is small, supervised feature selection could
fail to identify the relevant features that are discriminative to
target classes. This motivates us to develop semi-supervised
feature selection algorithms to better identify the relevant
features. In order to use both labeled and un-labeled data,
inspired by the semi-supervised learning algorithms [18], [19],
semi-supervised feature selection algorithms utilize the data
distribution or local structure of both labeled and un-labeled
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Fig. 1. Flowchart of the proposed framework S2FS2R. We first construct the within-class scatter matrix to encode label information of labeled training
videos. Data distribution and local geometry structure of both labeled and un-labeled training videos are preserved by the local spline regression. Combining
within-class and spline scatters, we form a semi-supervised scatter matrix to encode data distribution and label information. An �2,1-norm is imposed as a
regularization term on the transformation matrix W to ensure that W is sparse in rows, making it particular suitable for feature selection.

data to evaluate the features’ relevance. For example, Zhao
and Liu [12] introduced a semi-supervised feature selection
algorithm based on spectral analysis. Spectral assumption
states that the data points forming the same structure are
likely to have the same label. Similarly, the method in [20]
utilizes manifold regularization to consider the geometry of
data distribution. In [21], Kong et al. proposed a semi-
supervised feature selection algorithm for graph data. Many
local evaluations are introduced to model the neighboring data
points so as to explore the data structures. Typical methods
include data affinity between neighbors [22] and locally linear
representation [23], and locally nonlinear representation with
kernels [24]. However, besides the parameter tuning problem
in affinity measure with Gaussian function, the locally linear
representations and kernel functions may lack the ability to
accurately capture the local geometry [25].

In this paper, to better exploit the data distribution and
the local geometry of both labeled and un-labeled videos, we
propose a framework of Semi-Supervised Feature Selection via
Spline Regression (S2FS2R). The flowchart of the proposed
framework is illustrated in Figure 1. Both the labeled and
un-labeled video data are collected as training videos. For
each video sample in the training and testing video sets, we
extract high-dimensional features to form the feature matrix
X = [XL;XU ] of the training data. As illustrated in Figure 1,
to make use of the discriminative information in the labeled
videos, we form a within-class scatter matrix on the labeled
training videos. To exploit the data distribution and local

geometry underlying the huge amount of un-labeled videos,
we use splines developed in Sobolev space [26], [25] to
interpolate scattered videos in geometrical design (see the step
of spline regression in Fig. 1). By integrating the polynomials
and Green’s functions into the local spline [27], [25], the
local geometry of video data can be smoothly and accurately
captured according to their distribution. By summing the
local losses estimated from all of the neighboring videos,
we construct a spline scatter matrix to preserve the local
geometry of labeled and un-labeled video data. Thus, the local
structure and geometry of all training videos are preserved in
the formed spline scatter matrix. Combining within-class and
spline scatters, we form a semi-supervised scatter matrix to
encode data distribution and label information. Our goal is to
compute a transformation matrix W (see matrix W in Fig.
1) which optimally preserves discriminative information and
data distribution of training videos. To make W suitable for
feature selection, we add an �2,1-norm of W as a regularization
term to ensure that W is sparse in rows [11], [15]. Then the
learned W is able to select the most discriminant features
for testing videos prediction. To efficiently solve the �2,1-
norm minimization problem with the orthogonal constraint,
we develop an iterative algorithm and prove its convergence.

In the experiments, four open benchmark video datasets are
used to evaluate the performance of video semantic recognition
by Semi-Supervised Feature Selection via Spline Regression
(S2FS2R), which correspond to three typical video semantic
recognition tasks: Video concept detection in news videos,
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video classification of consumer videos, and human action
recognition. Experimental results show that S2FS2R gets better
performance for video semantic recognition compared with
state-of-the-art algorithms.

The remainder of this paper is organized as follows. In
Section II, we briefly review the recent related works. The
framework of S2FS2R and its solutions are introduced in
Section III. In Section III-D, we present an iterative algorithm
to solve S2FS2R and prove its convergence. The experimental
analysis are given in Section IV. Finally, we summarize the
conclusion in Section V.

II. RELATED WORKS

In this section, we review some of the representative related
works of video representation and feature selection for video
semantic recognition.

A. Video Feature Representations

In applications of video classification and video concept
detection, one key frame within each shot is obtained as a
representative image for that shot. In this way, video shots
can be represented by the extracted low-level visual fea-
tures of corresponding key frames. For example, TRECVID 1

provides global features of each key frame, such as color
histograms, textures, and Canny edge. With the popularity
of key point based local features, e.g., SIFT feature [28],
and the successful applications in scene classification [29],
we can also represent each key frame using a Bag-of-Words
(BoW) approach. Another important characteristic of video
data is the temporal associated co-occurrence. Considering
that each video frame is a two-dimensional object represented
by image features, the temporal axis makes up the third
dimension. Thus, a video stream spans a three-dimensional
space. As discussed in [3], the SIFT feature lacks the ability
of representing temporal information in videos and does not
consider motion information. Recently, multi-instance space-
time volumes [30], space-time interest points (STIP) [7], and
MoSIFT [8] representations have been respectively proposed
to model the time information of video data. In order to
perform video event detection in real-world conditions, Ke et
al. [30] efficiently match the volumetric representation of an
event against over-segmented spatio-temporal video volumes.
The STIP descriptor concatenates several histograms from
a space-time grid defined on the patch and generalizes the
SIFT descriptor to space-time. In contrast, MoSIFT detects
interest points and not only encodes their local appearance
but also explicitly models the local motion. Owing to above
characteristics, STIP and MoSIFT have been widely used in
motion analysis and human action recognition [3], [7], [8].

B. Feature Selection for Video Semantic Recognition

Feature selection has an important role in improving both
the efficiency and accuracy of video semantic recognition.
During recent years, feature selection has attracted much re-
search attention [14], [17], [12]. However, most of the feature

1http://trecvid.nist.gov/

selection algorithms evaluate the importance of each feature
individually and select features one by one. A limitation is
that the correlation among features is neglected. Sparsity-based
methods, e.g., lasso [31], use the �1-norm of coefficient vectors
as a penalty to make many coefficients shrink to zeros, which
can be used for feature selection. For example, the sparse
multinomial logistic regression via Bayesian �1 regularization
(SBMLR) [32] exploits sparsity by using a Laplace prior.
Inspired by the block sparsity, [15] employs a joint � 2,1-norm
minimization on both the loss function and regularization to
realize feature selection across all data points. More recently,
researchers have applied the two-step approach, i.e., spectral
regression, to supervised and unsupervised feature selection
[16]. The works in [15], [16], [33], [34] have shown that it
is a better way to evaluate the importance of the selected
features jointly. On the other hand, though some multiple
kernel feature selection methods have been proposed for video
semantic recognition [35], semi-supervised feature selection
for video semantic recognition has not been well explored.
In this paper, we propose a new one-step approach to perform
semi-supervised feature selection by simultaneously exploiting
discriminative information and preserving the local geometry
of labeled and un-labeled video data.

III. SEMI-SUPERVISED FEATURE SELECTION VIA SPLINE

REGRESSION

In this section, we present the framework of Semi-
Supervised Feature Selection via Spline Regression (S2FS2R).
In order to solve this framework efficiently, we develop
an iterative algorithm and prove its convergence. To better
present the proposed methods, we also introduce local spline
regression in this section. In the following, we first provide
the notations used in the rest of this paper.

A. Notations

Let us denote X = {x1, x2, . . . , xn} as the training set
of videos, where xi ∈ R

d(1 ≤ i ≤ n) is the i-th video
sample and n is the total number of training instances. For
each video sample, we extract d-dimensional video features
and then the matrix of training videos can be represented by
X = [x1, . . . , xn] ∈ R

d×n. We let XL = [x1, . . . , xnl
] ∈

R
d×nl denote the first nl (nl ≤ n) video samples in X

which are the labeled videos, for which the labels Y L =
[y1, . . . , ynl

] ∈ {0, 1}c×nl are provided for the c semantic
categories. XU = [xnl+1, . . . , xnl+nu ] ∈ R

d×nu denote the
un-labeled videos whose labels are not given. Thus we have
X = [XL, XU ] and n = nl+nu. In this paper, I is an identity
matrix. For an arbitrary matrix M ∈ R

r×p, its �2,1-norm is
defined as

||M ||2,1 =

r∑
i=1

√√√√ p∑
j=1

M2
ij . (1)

We let M(s,:) and M(:,t) denote the s-th row and t-th column
vector of matrix M , respectively.
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B. Proposed Framework

In applications of video semantic recognition, such as
video concept detection, video classification, and human action
recognition, the extracted video features are usually high-
dimensional. Selecting a subset of features for a compact and
accurate video representation will improve the efficiency and
accuracy of video semantic recognition. To select the most
discriminative video features for video semantic recognition,
we assume there is a transformation matrix W ∈ R

d×c(c < d)
which maps the high-dimensional video samples onto a lower-
dimensional subspace, and x′

i = WTxi is the new representa-
tion for each video sample xi in such subspace. As each row
of W is used to weight each feature, if some rows of W shrink
to zero, W can be used for feature selection. In the general
framework of graph embedding for dimensionality reduction
[36], a better transformation matrix W can be learned by
the minimization of Tr(W TMW ), where matrix M encodes
certain structures of the training data. In this paper, we propose
the framework of semi-supervised feature selection to solve the
following �2,1-norm regularized minimization problem:

min
WTW=I

Tr(WTMW ) + λ||W ||2,1, (2)

where the regularization term ||W ||2,1 controls the capacity
of W and also ensures that W is sparse in rows, making it
particularly suitable for feature selection. Parameter λ > 0
controls the regularization effect, which should be well tuned.
M ∈ R

d×d is a semi-supervised scatter matrix which encodes
both data distribution and label information. The orthogonal
constraint W TW = I is imposed to avoid arbitrary scaling
and the trivial solution of all zeros.

We define M as:

M = A+ μD, (3)

where the weight parameter μ (0 ≤ μ ≤ 1) is used to control
the weight of matrix D. Matrix A ∈ R

d×d is a scatter matrix
which encodes label information of labeled training videos.
Matrix D ∈ R

d×d is a scatter matrix which encodes local
structural information of all training videos (both labeled and
un-labeled). Thus, if μ = 0 we incorporate no local distribution
of training videos. In the experiments of this paper, we set
μ = 1 to treat equally the scatter matrices D and A. In the
following section, we present the details of matrix A and D.

C. Estimation of Scatter Matrices

1) The Within-Class Scatter Matrix: Fisher discriminant
analysis [14] is a well-known method to utilize discriminative
information of the labeled data to find a low dimensional sub-
space to better separate samples. Fisher discriminant analysis
maximizes the ratio of between-class and within-class scatter
matrices. In this way, data from the same class are close to
each other and data from different classes are far apart from
each other in the subspace. If we incorporate between-class
and within-class scatter matrices into A of Eq. (3) one more
parameter has to be introduced [37], adding up the difficulty
to tune its value. Thus, in this work, we use the within-class
scatter matrix of Fisher discriminant analysis to encode the
label information of training videos.

The within-class scatter matrix A is estimated as follows.

A =

c∑
j=1

1

Nj

∑
x∈ωj

(x−mj)(x−mj)
T , (4)

where mj = 1
Nj

Y(j,:)X
T is the sample mean mj (j =

1, . . . , c) for the j-th class, and Nj =
∑nl

i=1 Y(j,i) is the
number of labeled samples in class j. ωj = {xi|Y(j,i) = 1} is
the set of labeled videos in class j.

2) The Spline Scatter Matrix: Suppose matrix G ∈ R
n×n

encodes the local similarity relationship of each pair of sam-
ples in X , then the local structure of training videos can be
preserved in XGXT . A recent study [25] shows that, if the
local geometry of training data (both labeled and un-labeled)
are represented in G, then the unsupervised local distribution
of training data can be utilized. We define the spline scatter
matrix D to be:

D = XGXT , (5)

where matrix G is obtained by a local spline regression [25].
It has been shown that splines developed in Sobolev space
[26] can be used to interpolate the scattered distribution and
preserve the local geometry structure of training data. A
Sobolev space is a space of functions with sufficiently many
derivatives for some applications domain [26]. One important
property of the Sobolev space is that this space provides
conditions under which a function can be approximated by
smooth functions. Splines developed in Sobolev space [26]
are a combination of polynomials and Green’s function which
is popularly used to interpolate scattered data in geometrical
design [27]. This spline is smooth, nonlinear, and able to
interpolate the scattered data points with high accuracy. Recent
research has showed that it can effectively handle high-
dimensional data [25]. In the following, we briefly introduce
how to estimate the matrix G.

Given each datum xi ∈ X , to exploit its local similarity
structure, we add its k−1 nearest neighbors as well as xi itself
into a local clique denoted as Ni = {xi, xi1 , xi2 , . . . , xik−1

}.
The goal of local spline regression is to find a function g i :
R

d → R such that it can directly associate each data point
xij ∈ R

d to a class label yij = gi(xij ) (j = 1, 2, . . . , k),
which is a regularized regression process:

J(gi) =
k∑

j=1

(
fij − gi(xij )

)2
+ γS(gi), (6)

where S(gi) is a penalty functional and γ > 0 is a trade-off
parameter. Parameter γ controls the amount of smoothness of
the spline [25], which should be well tuned. According to the
setting of [25], we fix γ to be 0.0001 in all the experiments
of this paper. In order to utilize the good characteristics of
splines in Sobolev space [38], provided the penalty term S(g i)
is defined as a semi-norm2, the minimizer gi in Eq. (6) is given

2A norm is a function that assigns a strictly positive length or size to all
vectors in a vector space, other than the zero vector (which has zero length
assigned to it). A semi-norm, on the other hand, is allowed to assign zero
length to some non-zero vectors (in addition to the zero vector).
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by

gi(x) =

m∑
j=1

βi,jpj(x) +

k∑
j=1

αi,jGi,j(x), (7)

where m = (d + s − 1)!/(d!(s − 1)!) [38]. {pj(x)}mj=1 and
Gi,j are a set of primitive polynomials and a Green’s function,
respectively, which are defined in [38]. In mathematics, a
Green’s function is the impulse response of an inhomogeneous
differential equation defined on a domain, with specified initial
conditions or boundary conditions. In the spline, Green’s func-
tion is a conditionally positive semidefinite function, which is
used to interpolate scattered data in geometrical design [38]. It
has been shown in [25] that the local function g i(x) can better
fit the local geometry structure near the scattered points, as the
data points can be locally wrapped by the Green’s function
Gi,j(x). Now, our task is to estimate the parameters α and β.
According to [38], The coefficients αi and βi can be solved
by

A ·
(

αi

βi

)
=

(
Y T
i

0

)
(8)

where Yi = [yi, yi1 , yi2 , . . . , yik−1
] corresponds to the label

indicator of data points in Ni generated by the local function

gi and A =

(
Ki P
PT 0

)
∈ R

(k+m)×(k+m), in which Ki

is a k × k symmetrical matrix with its elements Kp,q =
Gp,q(||xip −xiq ||) and P is a k×m matrix with its elements
Pi,j = pi(xij ). Denoting Mi as the upper left k×k sub-matrix
of the matrix A−1, it can be demonstrated that [25], [38]

J(gi) ≈ ηY T
i MiYi, (9)

where η is a scalar. Since there are n local functions with
respect to n local cliques, now we consider how to integrate
the label indicators generated by different local function-
s. As can be seen that each local indicator matrix Yi =
[yi, yi1 , . . . , yik−1

] is a sub-matrix of the global indicator
matrix Y = [y1, y2, . . . , yn], we can find a column selection
matrix Si ∈ R

n×k to map the global indicator matrix into the
local indicator matrix.

More specifically, given the r-th row and c-th column
element Si(r, c), if the column selection matrix Si satisfies

Si(r, c) =

{
1, if r = ic,
0, otherwise.

(10)

then we have Yi = Y Si. In this way, the global label indicator
matrix Y can be mapped into n local indicator matrices by n
column selection matrices. Thus the combined local loss turns
to be

n∑
i=1

J(gi) = γ

n∑
i=1

Y T
i MiYi = γSTY TMY S (11)

where S = [S1, S2, . . . , Sn] and M =
diag(M1,M2, . . . ,Mn). For each video point, the local
indicators generated by different local functions are integrated
into one matrix to find the overall optimized label indicator
matrix. Defining

G = STMS, (12)

Algorithm 1 Semi-Supervised Feature Selection via Spline
Regression (S2FS2R)

Input: matrix of n training videos X = [x1, . . . , xn] ∈ R
d×n,

XL = [x1, . . . , xnl
] ∈ R

d×nl is a matrix of first nl(nl ≤ n)
labeled video samples and Y L = [y1, . . . , ynl

] ∈ {0, 1}c×nl

is the corresponding indicator matrix for c labels (or semantic
categories); XU = [xnl+1, . . . , xnl+nu ] ∈ R

d×nu is a matrix
of un-labeled videos whose labels are not given; k is the
number of the nearest neighbors in local clique N i for each
video xi; Control parameter μ and regularization parameter
λ; f is the number of features to be selected.
Output: index idx of the top f selected fea-
tures

1: for each video xi ∈ X do
2: Construct local clique Ni by adding xi with its k − 1

nearest neighbors;
3: Construct matrix Ki using Green’s function Gi,j de-

fined on Ni;

4: Construct matrix A =

(
Ki P
PT 0

)
;

5: Construct matrix Mi which is the up left k×k submatrix
of the matrix A−1;

6: end for
7: Form matrix D using Eq. (5);
8: Form matrix A using Eq. (4);
9: Form matrix M;

10: Set t = 0 and initialize D(0) ∈ R
d×d to be an identity

matrix;
11: repeat
12: U(t) = M + λD(t);
13: W(t) = [u1, . . . , uc] where u1, . . . , uc are the eigen-

vectors of U(t) corresponding to the first c smallest
eigenvalues;

14: Update matrix D(t+1) as

D(t+1) =

⎡
⎢⎣

1
2||w1

(t)
||2

. . .
1

2||wd
(t)

||2

⎤
⎥⎦;

15: t = t+ 1;
16: until convergence.
17: Sort each feature of the j-th video sample X(j,i)|di=1

according to the value of ||wi||2 in descending order;
18: Output the index idx of the top f selected features.

the spline scatter matrix D = XGXT , which sums up local
distributions and encodes geometry structure of labeled and
un-labeled training videos.

D. Solution and Algorithm

The �2,1-norm regularized minimization problem has been
studied in previous works [15]. However, it remains unclear
how to directly apply the existing algorithms to optimize our
objective function in Eq. (2), where the orthogonal constraint
WTW = I is imposed. In this section, we give a new ap-
proach to solve the optimization problem shown in Eq. (2) for
feature selection. The proposed algorithm is very efficient to
solve the �2,1-norm minimization problem with the orthogonal
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(a) bird (b) desert (c) explosion (d) office (e) sports (f) weather

(g) animal (h) birthday (i) dancing (j) picnic (k) sports (l) wedding

(m) walking (n) jogging (o) running (p) boxing (q) hand waving (r) hand clapping

(s) cycling (t) diving (u) juggling (v) jumping (w) riding (x) shooting

Fig. 2. Example video frames from the three datasets. From the top to the bottom rows are videos from TRECVID, Kodak, KTH, and UCF YouTube
datasets, respectively.

constraint. We summarize the detailed solution of S2FS2R in
Algorithm 1. Once the optimal W is obtained, we sort the d
features of the j-th video sample X(j,i)|di=1 according to the
value of ||wi||2 (i = 1, . . . , d) in descending order and select
top ranked video features.

From step 11 to step 16 in Algorithm 1, we propose an
iterative approach to optimize the minimization problem in
Eq. (2). In the following, we verify in Theorem 1 that the
proposed iterative approach in Algorithm 1 converges to the
optimal W corresponding to Eq. (2). We mainly follow the
proof from our previous work [11] to prove Theorem 1. The
details of the proof are given in Appendix A.

Theorem 1. The iterative approach in Algorithm 1 (from step
1 to step 16) monotonically decreases the objective function
value of Tr(W TMW ) + λ

∑d
i=1 ||wi||2,s.t.W TW = I in

each iteration until convergence [11].

According to Theorem 1, we can see that the iterative
approach in Algorithm 1 converges to the optimal W cor-
responding to Eq. (2). In Algorithm 1, because k is much
smaller than n, the time complexity of computing D, A,
and M is about O(n2). Moreover, the computation of D,
A, and M is outside the iterative process of Algorithm 1.
Thus, to optimize the objective function of S2FS2R, the most
time consuming operation is to perform eigen-decomposition
of U(t). Note that U(t) ∈ R

d×d. According to [39], the
eigen-decomposition of U(t) is solved by the tridiagonal QR
iteration algorithm, which is the main algorithm of function
eig in matlab. It first performs tridiagonal reduction of U (t),

which needs 8
3d

3+O(d2) flops [39]. Then the tridiagonal QR
iteration needs O(d2) flops. Thus, the time complexity of this
operation is O(d3) approximately.

IV. EXPERIMENTS

In this section, three typical tasks of video semantic recog-
nition, i.e., video concept detection in news videos, video
classification of consumer videos, and human action recogni-
tion, are used to investigate the performance of the proposed
S2FS2R algorithm. Accordingly, we use four open benchmark
video datasets to compare S2FS2R with the state-of-the-art
algorithms.

A. Video Datasets

We choose four video datasets, i.e., TRECVID3, Kodak
[40], KTH [41], and UCF YouTube action dataset [42] in
our experiments. In Figure 2, we show sample videos and
corresponding class labels/concepts of TRECVID, Kodak,
KTH, and UCF YouTube. We summarize the datasets used in
our experiment in Table I. The following is a brief description
of the four datasets.

TRECVID: We use the Columbia374 baseline detectors
[43] for TRECVID 20054 in our experiments. TRECVID
2005 consists of about 170 hours of TV news videos from
13 different programs in English, Arabic, and Chinese. We
use the development set in our experiments, since there are

3http://trecvid.nist.gov/
4http://www-nlpir.nist.gov/projects/tv2005/
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TABLE I
A BRIEF SUMMARY OF FOUR VIDEO DATASETS USED IN OUR EXPERIMENT. IN THIS TABLE, N , d, AND c DENOTE THE NUMBER OF INSTANCES,

DIMENSIONALITY OF VIDEO FEATURES, AND THE NUMBER OF CLASSES IN EACH OF THE FOUR DATASETS, RESPECTIVELY.

Dataset TRECVID Kodak KTH UCF YouTube
Video Types News Consumer Human Action Human Action

Tasks Video Concept
Detection

Video Concept
Detection

Human Action
Recognition

Human Action Recognition
“in the Wild”

N 61,562 3,590 2,391 1,596
d 546 1,000 1,000 1,000
c 39 22 6 11

annotations of semantic concepts defined in LSCOM (Large-
Scale Concept Ontology for Multimedia) [43], which could be
taken as the ground truth. As there are 39 concepts annotated
in the TRECVID 2005 dataset in total, we use all these 39
concepts in our experiment. Thus, the dataset used in our
experiments includes 61,562 labeled key frames. Three global
feature types used in [43], namely, 73-dimensional edged di-
rection histogram (EDH), 48-dimensional Gabor (GBR), 225-
dimensional grid color moment (GCM) and 200-dimensional
canny edge provided by NIST are combined to be a 546-
dimensional vector of global features to represent each key
frame in our experiments.

Kodak: There are 5,166 key frames extracted from 1,358
consumer video clips in this dataset. Among these key frames,
3,590 key frames are annotated by students from Columbia
University, who were asked to assign binary labels for each
concept. We use all the annotated keyframes belonging to
22 concepts in our experiments. We extracted SIFT points
for each key frame. Then the randomly selected subset of
extracted SIFT points are clustered and produces the 1,000
centers as the visual dictionary. Finally, each key frame is
quantized into a 1,000 dimensional histogram of bag-of-visual-
words (BoW).

KTH: KTH actions dataset [41] contains six types of human
actions (walking, jogging, running, boxing, hand waving, and
had clapping) performed several times by 25 subjects in
four different scenarios. Currently the dataset contains 2,391
videos sequences. In our experiments, we describe each video
sequences using space-time interest points (STIP) [7]. For
each STIP point, descriptors of the associated space-time
patch were computed. Two alternative patch descriptors were
computed in terms of (i) histograms of oriented (spatial)
gradient (HOG) and (ii) histograms of optical flow (HOF).
Thus, STIP descriptor concatenates several histograms from
a space-time grid defined on the patch and generalizes SIFT
descriptor to space-time. We built a 1,000 dimensional visual
vocabulary of local space-time descriptors and assign each
interest point to a visual word label. In this way, each video
sequence in KTH is represented by a 1,000 dimensional STIP
feature.

UCF YouTube: UCF YouTube action dataset [42] contains
11 action categories: basketball shooting, biking/cycling, div-
ing, golf swinging, horse back riding, soccer juggling, swing-
ing, tennis swinging, trampoline jumping, volleyball spiking,
and walking with a dog. This dataset is very challenging for
recognizing realistic actions from videos “in the Wild”, due to
large variations in camera motion, object appearance and pose,

object scale, viewpoint, cluttered background, illumination
conditions, etc. For each category, the videos are grouped
into 25 groups with more than 4 actions clips in each group.
The video clips in the same group may share some common
features, such as the same actor, similar background, similar
viewpoint, and so on. In our experiments, we describe each
video sequence using space-time interest points (STIP) [7].
We built a 1,000 dimensional visual vocabulary of local space-
time descriptors and assign each interest point to a visual word
label. In this way, each video sequence in UCF YouTube is
represented by a 1,000 dimensional STIP feature.

B. Evaluation Metric

We evaluate the classification performance in terms of F1-
Score (F-measure). Since there are multiple concepts (semantic
categories) in our experiments, to measure the global per-
formance across multiple classes, we use the microaveraging
methods following [44]. Therefore, the evaluation criterion we
use is microF1. More specifically, we present the “micro-”
definition as follows.

Let Y ∗ ∈ {0, 1}n×c denote the indicator matrix of ground
truth for testing data, and Ŷ ∗ ∈ R

n×c denote the correspond-
ing estimated indicator matrix, where c denotes the number
of classes. Function F1(a, b) compute the F1-score between
vector a and b. Let function V ec(A) denote the operator that
converts matrix A to a vector by concatenating each column
sequentially, then the “micro-” criterion is

microF1 = F1(V ec(Y ∗), V ec(Ŷ ∗)),

where F1 score is defined as the harmonic mean of preci-
sion and recall, where the functions of precision(a, b) and
recall(a, b) are defined in [45].

F1(a, b) =
2 · precision(a, b) · recall(a, b)
precision(a, b) + recall(a, b)

.

C. Experimental Configuration

1) Parameter Setting: Four parameters, i.e., k, μ, λ, and f
in Algorithm 1 need to be set and tuned. In our experiments,
we chose k = 5, 10 in the construction of local clique N i

for each video xi. We set μ = 1 to treat equally the scatter
matrices D and A. Parameter λ determines the regularization
effect of �2,1-norm in Eq. (2), which should be well tuned.
The best number of features to be selected, i.e., f , will be
different for different feature types and different video data.
In our experiments, we use a 5-fold cross-validation process
to tune parameter λ and f simultaneously. The ranges for λ
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Fig. 3. Different performance of video semantic recognition by the proposed S2FS2R for TRECVID, when λ and f are set to different values. Impacts of
parameters are reported when the ratios of labeled training data are set to be 5%, and 1%. The numbers “5” and “10” after the ratio in figures’ title denote
the value of k = 5, 10 in the construction of the local clique Ni. For example, “(1%,5)” denotes that the ratio of labeled training data is 1% and k = 5 for
Ni.
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Fig. 4. Different performance of video semantic recognition by the proposed S2FS2R for Kodak, when λ and f are set to different values. Impacts of
parameters are reported when the ratios of labeled training data are set to be 5%, and 1%. The numbers “5” and “10” after the ratio in figures’ title denote
the value of k = 5, 10 in the construction of the local clique Ni. For example, “(1%,5)” denotes that the ratio of labeled training data is 1% and k = 5 for
Ni.

are set to be λ ∈ {1e-3, 1e-2, 1e-1, 1, 10, 100, 1,000} for
all datasets. Because the feature dimensionality of TRECVID
is d = 546 and f ≤ d (see Section IV-A), the ranges of f
for TRECVID are f ∈ {100, 200, 300, 400, 500}. And f ∈
{50, 100, 200, 400, 600, 800, 900} for Kodak, KTH and UCF
YouTube datasets, as the feature dimensionality of these three
datasets is d = 1, 000.

2) Partition of Training/Testing Videos: We randomly sam-
pled 10,000 and 2,000 video key frames as the training data
for TRECVID and Kodak datasets, respectively. For KTH and
UCF YouTube datasets, we randomly sampled 1,000 video
clips as training data. The remaining data are used as the
corresponding testing data for each of the four datasets. For all
these datasets, the sampling processes were repeated five times
to generate five random training/testing partitions, and then
the average performance of five-round repetitions is reported.
The significance of the repeated results has been demonstrated
according to the Student’s t-test. In this experiment, we report
the average results from the repetitions. For the first random
partition of the five-round repetitions, we tuned and chose the
best parameters λ and f using the 5-fold cross-validation. Then
the tuned values of λ and f were fixed for all the rest of
the partitions. In order to investigate the performance of semi-
supervised feature selection, we set the ratio of labeled training
videos in the sampled training videos to different values from
{50%, 25%, 10%, 5%, 1%}.

3) Classifiers and Comparison Methods: Once the index
idx of features to be selected is obtained, we train a classifier
on the selected video features. In our experiments, we chose
kNN classifier (k = 10) for the four datasets. Furthermore,
as shown in [46], the χ2 kernel SVM is a better classifier for
human action recognition, especially for the BoW histogram

representations. Thus, in this experiment, for the action recog-
nition task in KTH and UCF YouTube datasets, we also report
the results from the χ2 kernel in a Support Vector Machine
(χ2-SVM). To show the comparative performance, we first
compare S2FS2R with two baselines:

• Classification with full features: Conduct classification on
the original features by kNN (k = 10) or χ2-SVM.

• Classification with PCA [47]: Conduct classification on
the reduced features obtained by dimensionality reduction
with PCA.

We also compare S2FS2R with four state-of-the-art feature
selection methods. Detailed information of these methods is
given as follows.

• Fisher Score (FScore) [14]: It depends on fully labeled
training data to select features with the best discriminat-
ing ability.

• Feature Selection via Spectral Analysis (FSSA) [12]: It is
a semi-supervised feature selection method using spectral
regression.

• Feature Selection via Joint �2,1-Norms Minimization (F-
SNM) [15]: It employs joint �2,1-norm minimization on
both loss function and regularization to realize feature
selection across all data points.

• Sparse Multinomial Logistic Regression via Bayesian �1
Regularization (SBMLR) [32]: It exploits sparsity by
using a Laplace prior and is used for multi-class pattern
recognition. It can also be applied to feature selection.

• Discriminative Semi-Supervised Feature Selection via
Manifold Regularization (FS-Manifold) [20]: It selects
features through maximizing the classification margin
between different classes and simultaneously exploiting
the data geometry by the manifold regularization.
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Fig. 5. Different performance of video semantic recognition by the proposed S2FS2R for KTH, when λ and f are set to different values. Impacts of
parameters are reported when the ratios of labeled training data are set to be 5%, and 1%. The numbers “5” and “10” after the ratio in figures’ title denote
the value of k = 5, 10 in the construction of the local clique Ni. For example, “(1%,5)” denotes that the ratio of labeled training data is 1% and k = 5 for
Ni.
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Fig. 6. Different performance of video semantic recognition by the proposed S2FS2R for YouTube, when λ and f are set to different values. Impacts of
parameters are reported when the ratios of labeled training data are set to be 5%, and 1%. The numbers “5” and “10” after the ratio in figures’ title denote
the value of k = 5, 10 in the construction of the local clique Ni. For example, “(1%,5)” denotes that the ratio of labeled training data is 1% and k = 5 for
Ni.

Moreover, we investigate special instantiations of S2FS2R,
which correspond to different settings of |N i| = 5, 10 and
μ = 0, 1. To demonstrate the impact of the size of local clique
Ni in the local spline regression, we let “S2FS2R(5)” and
“S2FS2R(10)” denote S2FS2R with |Ni| = 5 and |Ni| = 10,
respectively. Note that, when μ = 0 we have M = A (see Eq.
(3)), which means the spline scatter matrix D is not included
and the information of unsupervised local distribution is not
utilized. In the following, we let “S2FS2R(without local)”
denote S2FS2R with μ = 0.

D. Experimental Results

1) Impacts of Parameters: In this section, we investigate
the impacts of parameters λ and f for different tasks of
video semantic recognition. In Figure 3 - Figure 6, we show
the performance of video semantic recognition by S 2FS2R
for TRECVID, Kodak, KTH, and UCF YouTube datasets,
respectively. From the figures we note that the parameters λ
and f have different impacts on the performance of different
video semantic recognition and on different datasets. Firstly,
the performance of video concept detection on TRECVID
varies little when λ and f are set to different values, whereas,
the performances of video semantic recognition on Kodak,
KTH, and UCF YouTube have bigger variances than that of
TRECVID dataset. From these results we can see that the
local features used in Kodak, KTH, and UCF YouTube are
more sensitive to parameters λ and f than to the global visual
features, which are used to represent key frames in TRECVID.
Especially, the performance of action recognition is very
sensitive to the number f of selected features. Secondly, we
can observe in some cases (e.g., TRECVID (5%,5) and f=100,
200), that the performance of video semantic recognition

decreases when increasing f . A possible reason could be
that, when f is set to f = 200, more noisy features are
selected than in the case of f = 100. Thirdly, for each of
the four datasets we can observe that the best performance
of video semantic recognition can be obtained by S 2FS2R
when f is set to larger values of the tuning ranges, e.g., 400
or 500 of 546 for TRECVID and 600 or 800 of 1,000 for
Kodak. This demonstrates that, for the video features used in
this experiment, most of the dimensions contribute to video
semantic recognition, given that the number of noisy features
is small. However in some cases (e.g., f is set to be small
values), more noisy features may be selected when f is larger.
In this experiment, we choose the best performance when λ
and f are set to different values. Moreover, as we will report in
the following results, the performance of S2FS2R is better than
when using all the features. It is clear that S2FS2R can select
the most discriminative subset of features for video semantic
recognition.

2) Video Semantic Recognition Results: In this section, we
first investigate the performance of S2FS2R compared with the
state-of-the-art methods for different tasks of video semantic
recognition: video concept detection for TRECVID videos,
consumer videos classification for Kodak videos, and human
action recognition for videos in KTH and UCF YouTube.
In order to show the impacts of different ratios of labeled
training videos for semi-supervised methods, we report results
when the ratios of labeled training videos are set to 50%
and 5%. As is shown in Table II and Table III, results in
the left four columns are obtained using the kNN (k = 10)
classifier, whereas “χ2-SVM” denotes that we also report the
results using the χ2-SVM classifier for KTH and YouTube.
From the results we can observe: (1) The proposed framework
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TABLE II
COMPARISON RESULTS OF VIDEO SEMANTIC RECOGNITION ON DIFFERENT VIDEO DATASETS. FULL FEATURE DENOTES THE BASELINE OF

CLASSIFICATION WITH FULL FEATURES. PCA DENOTES THE BASELINE OF CLASSIFICATION WITH PCA. FOR THE SEMI-SUPERVISED S2FS2R AND

FSSA, THE RATIO OF LABELED TRAINING VIDEO IS 50%. IN THE FIRST FOUR COLUMNS, WE REPORT THE RESULTS USING THE kNN (k = 10)
CLASSIFIER. FOR KTH AND YOUTUBE, WE ALSO REPORT THE RESULTS USING THE χ2-SVM CLASSIFIER. THE NUMBER IN [] DENOTES THE REFERENCE

INDEX.

Methods TRECVID
(kNN)

Kodak
(kNN)

KTH
(kNN)

YouTube
(kNN)

KTH
(χ2-SVM)

YouTube
(χ2-SVM)

S2FS2R(5) 0.5821 0.4047 0.6252 0.2982 0.8940 0.6540
S2FS2R(10) 0.5874 0.4301 0.6714 0.2894 0.8994 0.6485
S2FS2R(without local) 0.5511 0.3107 0.5569 0.2660 0.8910 0.6279
Full Feature 0.5646 0.3107 0.5611 0.2376 0.8858 0.6459
PCA 0.5789 0.3556 0.5923 0.2817 0.1592 0.0926
FScore [14] 0.5561 0.3224 0.6080 0.2824 0.8922 0.6314
FSSA [12] 0.5330 0.3506 0.6130 0.2567 0.8876 0.6261
FSNM [15] 0.5571 0.3203 0.5765 0.2693 0.8784 0.6109
SBMLR [32] 0.4845 0.2075 0.6115 0.2562 0.8768 0.4899
FS-Manifold [20] 0.5633 0.3487 0.6133 0.2601 0.8799 0.6455

TABLE III
COMPARISON RESULTS OF VIDEO SEMANTIC RECOGNITION ON DIFFERENT VIDEO DATASETS. FULL FEATURE DENOTES THE BASELINE OF

CLASSIFICATION WITH FULL FEATURE. PCA DENOTES THE BASELINE OF CLASSIFICATION WITH PCA. FOR THE SEMI-SUPERVISED S2FS2R AND FSSA,
THE RATIO OF LABELED TRAINING VIDEO IS 5%. IN THE FIRST FOUR COLUMNS, WE REPORT THE RESULTS USING THE kNN (k = 10) CLASSIFIER. FOR

KTH AND YOUTUBE, WE ALSO REPORT THE RESULTS USING THE χ2-SVM CLASSIFIER. THE NUMBER IN [] DENOTES THE REFERENCE INDEX.

Methods TRECVID
(kNN)

Kodak
(kNN)

KTH
(kNN)

YouTube
(kNN)

KTH
(χ2-SVM)

YouTube
(χ2-SVM)

S2FS2R(5) 0.4961 0.1406 0.1981 0.0824 0.6965 0.2881
S2FS2R(10) 0.4857 0.1093 0.2080 0.1275 0.6419 0.2530
S2FS2R(without local) 0.4744 0.0578 0.0758 0.0228 0.5803 0.2482
Full Feature 0.4716 0.0326 0.0585 0.0298 0.6248 0.2406
PCA 0.4761 0.1071 0.0867 0.0781 0.1345 0.0755
FScore [14] 0.4778 0.0611 0.0917 0.0686 0.6021 0.2020
FSSA [12] 0.4701 0.0375 0.0192 0.0345 0.6261 0.2208
FSNM [15] 0.4781 0.0712 0.0241 0.0373 0.6454 0.2403
SBMLR [32] 0.4493 0.0000 0.0249 0.0000 0.1891 0.0000
FS-Manifold [20] 0.4721 0.1057 0.0604 0.0418 0.6233 0.2419
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Fig. 7. Performance comparison of S2FS2R with the baselines and the state-of-the-art methods on TRECVID, Kodak, KTH, and YouTube datsets. The
microF1 scores are plotted when the ratios of labeled training data are set to 100%, 50%, 25%, 10%, 5%, and 1%. The results of PCA are obtained using
the kNN (k = 10) classifier
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Fig. 8. Performance comparison of S2FS2R with S2FS2R(without local) and performing classification on the full features for TRECVID, Kodak, KTH, and
YouTube datasets. The microF1 scores are plotted when the ratios of labeled training data are set to 100%, 50%, 25%, 10%, 5%, and 1%.
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of semi-supervised feature selection via spline regression
outperforms the state-of-the-art methods for different settings
of the ratio of labeled training videos. (2) When there are
more labeled training videos (see Table II), S2FS2R with a
bigger local clique Ni has a better performance than that with a
smaller local clique for spline regression (except for YouTube
dataset). Despite a little variance of performance for N i = 5
and 10, S2FS2R outperforms all the compared methods. (3)
Comparing the results of S2FS2R(5) and S2FS2R(10) with
that of Full Feature and PCA we note that, S2FS2R gains
better performance than the case when using the full feature set
and conducting dimensionality reduction using PCA. (4) The
performance of conducting χ2-SVM after performing PCA is
poor for KTH and YouTube. As introduced in Section IV-A,
we extract BoW histogram of STIP for KTH and YouTube.
Thus, “PCA+χ2-SVM” is not suitable for the BoW histogram.
As is shown in Table II and III, the performance of conducting
kNN (k = 10) after performing PCA is better.

3) Performance of Semi-Supervised Feature Selection: In
order to investigate the performance of semi-supervised feature
selection, we set the ratio of labeled training videos in the
sampled training videos to different values of {50%, 25%,
10%, 5%, 1%}. Figure 7 shows the performance of video
semantic recognition of different methods when the ratio
of labeled training videos are set to different values. From
the results we observe the following: (1) As the number of
labeled training samples increases, the performance increases.
(2) Compared to the supervised feature selection methods,
S2FS2R(5) and S2FS2R(10) have competitive or better per-
formance than that of Fisher Score, FSNM, and SBMLR,
thanks to the preservation of local geometry structure of
un-labeled videos via spline regression. (3) S2FS2R(5) and
S2FS2R(10) outperform the semi-supervised FSSA on all the
ratios of labeled training videos for TRECVID, Kodak, KTH,
and YouTube. (4) When the ratio of labeled training videos
is very low, e.g., 1%, S2FS2R outperforms all the compared
methods, which shows a better property of semi-supervised
feature selection.

Figure 8 shows the performance of comparing S2FS2R(5)
with S2FS2R(without local) and the case when using full
features for TRECVID, Kodak, KTH, and YouTube datasets.
As introduced in the end of Section IV-C3, the information
of local geometry of the training videos is not incorporated
into S2FS2R(without local). S2FS2R(without local) can be
taken as a supervised version of S2FS2R. From the results we
observe that, without the local information, performance of
S2FS2R(without local) is worse than the case when using the
full feature set. Owing to the preservation of local geometry
of the unlabeled data, S2FS2R(5) outperforms S2FS2R(without
local) and when using the full feature set for the four datsets,
which further demonstrates the strength of semi-supervised
feature selection of S2FS2R.

4) Comparison of Computation Time: In Section III-D,
we discuss the convergency and computational cost of our
algorithm. To show the efficiency of S2FS2R, in this section,
we compare the computation time of S2FS2R with two state-
of-the-art semi-supervised feature selection algorithms, i.e.,
FSSA and FS-Manifold, as the proposed S2FS2R is also

TABLE IV
COMPARISON OF COMPUTATION TIME (SECONDS). WE REPORT THE

RESULTS WHEN THE RATIOS OF LABELED TRAINING DATA ARE SET TO
50%, 25%, 10%, 5%, AND 1%, RESPECTIVELY.

Dataset TRECVID
Ratio 1% 5% 10% 25% 50%
S2FS2R 7.43 8.50 9.12 10.19 13.56
FSSA 77.84 81.10 82.89 83.36 92.41
FS-Manifold 12.54 15.98 36.82 163.45 308.11

Dataset Kodak
Ratio 1% 5% 10% 25% 50%
S2FS2R 9.69 16.96 23.44 31.20 36.86
FSSA 607.20 743.63 1010.77 1045.28 1371.25
FS-Manifold 28.27 32.85 35.82 162.29 840.26

Dataset KTH
Ratio 1% 5% 10% 25% 50%
S2FS2R 7.84 8.33 8.41 13.09 18.14
FSSA 68.62 68.90 69.47 70.47 72.92
FS-Manifold 60.02 192.08 218.14 243.19 382.50

Dataset YouTube
Ratio 1% 5% 10% 25% 50%
S2FS2R 6.91 15.29 23.29 26.24 54.68
FSSA 93.63 95.58 98.82 101.52 109.45
FS-Manifold 121.35 260.93 321.06 352.82 413.43

a semi-supervised feature selection algorithm. In Table IV,
we report the comparison results of computational time of
the training process of each algorithm. All these results are
obtained after running the algorithms in MATLAB R2012b
on a workstation with Windows Server 2008 R2 Enterprise.
The system is equipped with the Intel(R) Xeon(R) CPU of
2.70 GHz and 64GB physical memory. For Kodak, KTH, and
YouTube, we use the same partition of training/testing videos
in Section IV-C2. For TRECVID, we randomly sampled 1,000
video key frames as the training data and the remaining data
are used as the corresponding testing data. From the results
we observe that S2FS2R is more efficient compared to FSSA
and FS-Manifold.

V. CONCLUSION

This paper proposed a framework for video semantic
recognition by Semi-Supervised Feature Selection via Spline
Regression (S2FS2R). In this framework, the discriminative
information between labeled training videos and the local
geometry structure of all the training videos are well preserved
by the combined semi-supervised scatters: within-class scatter
matrix encoding label information and spline scatter matrix
encoding data distribution by spline regression. An � 2,1-norm
is imposed as a regularization term on the transformation
matrix to control the capacity and also to ensure it is sparse
in rows. Three tasks of video semantic recognition were used
in our experiments to investigate the performance of S 2FS2R.
To efficiently solve S2FS2R, we proposed an iterative algo-
rithm and prove its convergence. Experimental results show
that the proposed S2FS2R has better performance of feature
selection compared to state-of-the-art methods. S2FS2R also
has an extension ability of incorporating new neighborhood
information into the feature selection process if we define new
scatter matrices.
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APPENDIX A
PROOF OF THEOREM 1

Proof: According to the definition of W(t) in step 13 of
Algorithm 1, we can see that

W(t) = argmin
WTW=I

Tr
(
WT (M+ λD(t))W

)
(13)

That is to say, for any matrix A such that ATA =

I , Tr
(
WT

(t)(M + λD(t))W(t)

)
≤ Tr

(
AT (M+ λD(t))A

)
.

Therefore, we have

Tr
(
WT

(t)(M+ λD(t))W(t)

)
≤

Tr
(
WT

(t−1)(M+ λD(t))W(t−1)

)

⇒ Tr
(
WT

(t)MW(t)

)
+ λ

∑
i

||wi
(t)||22

2||wi
(t−1)||2

≤

Tr
(
WT

(t−1)MW(t−1)

)
+ λ

∑
i

||wi
(t−1)||22

2||wi
(t−1)||2

(14)

Then we have the following inequality

Tr
(
WT

(t)MW(t)

)
+ λ

∑
i

||wi
(t)||2 −

λ

(∑
i

||wi
(t)||2 −

∑
i

||wi
(t)||22

2||wi
(t−1)||2

)

≤ Tr
(
WT

(t−1)MW(t−1)

)
+ λ

∑
i

||wi
(t−1)||2 −

λ

(∑
i

||wi
(t−1)||2 −

∑
i

||wi
(t−1)||22

2||wi
(t−1)||2

)
(15)

According to Lemma 1 in [15], we have

Tr
(
WT

(t)MW(t)

)
+ λ

∑
i

||wi
(t)||2

≤ Tr
(
WT

(t−1)MW(t−1)

)
+ λ

∑
i

||wi
(t−1)||2, (16)

which indicates that the objective function value of
Tr(WTMW )+λ

∑d
i=1 ||wi||2,s.t.W TW = I monotonically

decreases until convergence using the updating rule in Algo-
rithm 1.
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