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Abstract. We review an ab-initio method for calculating the dynamical structure function
of an interacting many–body quantum system. The method consists in coupling a generalized
integral transform approach with imaginary time Quantum Monte Carlo calculations. The
strength of the method has been tested on the excitation spectrum of bulk atomic 4He. The
peculiar form of the kernel as a representation of the delta-function has allowed to minimize
the ill-posedness of the integral transform inversion. In fact it has been possible to obtain, at
a considerable degree of reliability, both position and width of the collective excitations in the
maxon–roton region, as well as the second collective peak. What we stress here is the ability
of such a δ-function-like kernel, for which one can control position and width, to maintain in
the transformed space the characteristics of the collective structures. The application to the
coherent and incoherent density excitation spectrum of liquid 4He is discussed.

1. Introduction
The computation of microscopic dynamic quantities is routinely performed for classical systems
by numerically solving Newton equations and collecting the information of interest from the
generated trajectories. In quantum mechanics this process is not possible, since there is no
reliable method for solving the time-dependent Schroedinger equation for a general many-body
system. Information about the dynamical evolution must be obtained by the computation of
spectral function relative to some excitation operator. It is possible, by a simple mathematical
manipulation, to show that some integral transform of the spectral function can be easily
obtained as a ground-state expectation value. While this fact is extremely valuable, since there
are many reliable ab-initio methods available for ground state calculations, the price to pay
is the ill-posedness of the inversion problem that needs to be faced to extract the excitation
spectrum.

In this paper we will discuss the problem of extending in a reliable way a class of Quantum
Monte Carlo (QMC) algorithms to make it possible to determine the Dynamical Structure
Function (DSF) for a generic quantum many-body system and a generic excitation operator.
As already mentioned, we will follow the general approach of computing an Integral Transform
(IT) of the DSF with generalized kernels. As an example, we will present an application to the
study of the coherent and incoherent density excitation spectrum in 4He.

At present, QMC calculations provide benchmark-quality results for the study of a variety
of many-body systems as, for example, in quantum chemistry, physics of ultra-cold gases, and
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nuclear physics. One of the most severe limitation of QMC methods is their inability to treat
dynamical properties in a similarly reliable way. This failure is essentially due to the fact
that the propagators required to implement the time evolution are usually not normalizable,
and cannot be sampled. However, by Monte Carlo methods it is possible to implement an
imaginary-time evolution, which yields the projection of some generic state belonging to an
arbitrary Hilbert space on the component along the eigenstate of the Hamiltonian with lowest
eigenvalue. Quantities that do not directly translate into imaginary-time language, are affected
by statistical noise when analytically continued to real time. This noise can be hardly reduced
and make calculations unfeasible.

The standard approach to the problem is to compute the Laplace transform of the DSF
as an imaginary-time autocorrelation function and then to attempt a numerical inversion.
However, this inversion is an exponentially ill-posed problem [1]. Sophisticated regularization
techniques [2, 3] are needed to correctly extract the physical information. In this context, the
reliability of the calculation becomes strongly dependent on the employed inversion scheme. As
an example, one of the most powerful inversion schemes, the Maximum Entropy Method [4, 5],
cannot resolve the (measured) double peaked structure of S(q, ω) in superfluid 4He [6],
corresponding to a higher energy collective roton mode. In a recent paper this structure was
eventually resolved inverting the imaginary time correlation function in a Path Integral Ground
State calculation by using a falsification method based on a genetic algorithm [7].

For strongly interacting few-body systems the problem of computing various DSF of density
and current excitations is solved by using a generalized integral transform approach, i.e. the
Lorentz Integral Transform (LIT) method [8, 9]. The success of this approach, so far applied in
nuclear physics, is based on the specific choice of a Lorentzian function as kernel of the IT. On
the one hand this choice allows to calculate the transform with bound state techniques, such
as expansions on localized many-body basis functions, even when the response is defined in the
continuum. On the other hand, and most important, the fact that the kernel is a representation
of the δ-function allows for a reliable and stable inversion. So far, the application of this technique
has been limited to a small number of particles (up to N=6 [10] and 7 [11]), due to the huge
computational costs of the diagonalizations needed to calculate the LIT. In the following we
will discuss how it is possible to extend the same ideas to many-body system. In general, QMC
methods do not allow for computing generic integral transforms, due to the fact that not all
kernels easily translate into functions that can be sampled in coordinates space. However, we
will see that it is possible to write a kernel that is suitable for QMC evaluation, and at the
same time retains the main features of the Lorentz kernel, i.e. being a peaked function (and a
δ-function in some limit), and having a controllable width.

2. Integral transforms
At zero temperature the contribution to the response of a system of interacting particles due
to a perturbative probe transferring momentum q and energy ω to it, can be expressed using a
spectral representation

SÔ(q, ω) =
∑
ν |〈Ψν |Ô(q)|Ψ0〉|2δ(Eν − ω)

(1)

= 〈0|Ô†(q)δ(Ĥ − ω)Ô(q)|0〉,

where |Ψ0〉 is the ground state of the system, |Ψν〉 are the final states of the reaction, Ô is
an excitation operator, δ(Ĥ − ω) is the spectral-density of the hamiltonian and the summation
is extended to all discrete and continuum spectrum states in the set.
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The cost of a direct calculation of SÔ(q, ω) becomes rapidly not affordable when the number
of particles or the energy transfer ω increases. The latter problem is due to the fact that to
account for continuum states one would need to solve the many-body scattering problem. It is
instead possible to consider an integral transform of SÔ(q, ω) with a generic kernel K(σ, ω)

Φ(q, σ) =
∫
K(σ, ω)SÔ(q, ω) dω. (2)

Substituting the expression (1) for SÔ(q, ω) one obtains:

Φ(q, σ) =
∑
ν

〈Ψ0|Ô†(q)|Ψν〉K(σ, ω)〈Ψν |Ô(q)|Ψ0〉

= 〈Ψ0|Ô†(q)K(σ, Ĥ) Ô(q)|Ψ0〉 (3)

Equation (3) can be viewed as a generalization of the energy-weighted sum rules, which now
depends on a continuous parameter σ. Provided that the kernel and the excitation operator have
suitable analytic properties, the right hand side of equation (3) can be calculated using bound-
state type methods. This is the case both for the Stieltjes kernel [12, 13], and for the Lorentz
kernel. However, while in the former case the inversion of the transform is as problematic as in
the case of the Laplace kernel, in the latter case even a rather simple regularization procedure
allows to obtain accurate and stable results. The reason can be easily understood. In the case of
the Laplace or the Stieltjes kernels, or, in general, kernels that are significantly non-zero over a
wide σ range, the information about SÔ(q, ω) in the ω domain is spread in a large σ domain. On
the contrary the Lorentz kernel, as well as any function that is a δ-function representation, keeps
that information in an arbitrarily narrow σ domain, governed by the width of the kernel. In
the δ function limit of the kernel no inversion is needed. Once the transform is available we can
obtain R(ω) via a proper inversion of the transform, using a suitable regularization procedure.

3. Sumudu transform
As we already mentioned, the way to the success for a method based on IT is using kernels that
are δ-function representations. While there is a large number of them, very few have a practical
implementation. In the past the use of Gaussian kernels has been investigated in different fields
from condensed matter [14, 15], to non perturbative QCD [16, 17], but with limited results.

Quite fortunately, it is possible to recast one specific δ-function representation in the
imaginary-time propagation language, typical of QMC methods.

Consider the following family of integral kernels built out of the so-called Sumudu transform:

KP (σ, ω; a, b) =
1
σ

[(
b

a

)−aω
σ

−
(
b

a

)−bω
σ

]P
, (4)

where the parameters b > a are integer numbers. This kernel function converges to a scaled
delta function δ(ω − σ) in the P → ∞ limit, independent of the choice of a and b. For a finite
P the kernel is still centered around ω = σ but has a finite width that depends on σ and the
integers P ,a and b. This property makes the choice of the resolution in a given energy range
extremely flexible.

The simplest possible choice of the parameters is a = 1 and b = 2. In this case, using a
binomial expansion, and rewriting powers as exponential functions, leads to a more transparent
form of the kernel:

KP (σ, ω) =
P∑
k=0

(
P
k

)
(−1)ke− ln(2)(P+k)ω

σ , (5)
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By operating the substitution ω → Ĥ according to equation (3), we are lead to a simple
linear combination of imaginary-time propagators (h̄=1), taken at imaginary-time points τPk =
ln(2)(P + k)/σ.

4. Integral transforms in projection Monte Carlo methods
Projection QMC methods are all based on the implementation of such an imaginary-time
propagation. The underlying idea is to solve the corresponding integral equation:

Ψ(R, τ) =
∫

dR′G(R,R′, τ)Ψ(R′, 0). (6)

This can be achieved, for instance, sampling a representation in coordinate space of the Green’s
function G(R,R′, τ) to propagate a set of configurations representing in turn an expansion of
the function Ψ(R, τ) in eigenstates of the position operator (Diffusion Monte Carlo methods).
Alternatively, it is possible to break up the Green’s Function in a product of short time
propagators in coordinate space:

Ψ(R, τ) =
∫
dR′ . . . dRnG(R,Rn,∆τ)×
×G(Rn, Rn−1,∆τ) · · ·G(R′′, R′,∆τ)ψ(R′, 0), (7)

with τ = n∆τ . This formulation is implemented in the so-called Path-Integral Ground State
methods [18], and in the Reptation Monte Carlo (RMC) algorithm [19], where the whole path
{R,R′, R′′, . . . , Rn} is sampled from the product of the short-time propagators G, possibly
modified with the use of a suitable importance function ΨT to be determined in a variational
calculation. The fact that estimating Φ(σ) reduces to the computation of an imaginary time
correlation function makes this second formulation more convenient and straightforward. In
particular, path-based methods yield estimates that never depend on the (necessary) importance
function used to improve the convergence of the calculation.

In order to evaluate the transform (2) within a QMC approach, we need to compute the
imaginary-time correlation functions, and then construct the corresponding linear combinations.
When needed, a smaller width of the kernel could be achieved using a large value of P or reducing
the value of the ratio b/a. In both cases the imaginary time correlation function needs to be
evaluated for long imaginary time, severely increasing the computational time. In any case,
the guiding criterion is that the kernel should have a width at least comparable to the distance
between the structures of the DFT.

5. Application to liquid helium
As a first application to a realistic physical problem, we have computed the density excitation
response in bulk atomic 4He at T = 0. The system is modeled as a periodic box containing
N = 64 or N = 125 4He atoms. The chosen interaction is the HFDHE2 potential [20, 21], which
quantitatively reproduces the binding energy of bulk 4He up to the freezing point. Calculations
were performed at the experimental saturation density (n0 = 0.02186 Å−3). The density
excitation operator is defined as:

Ô(q) ≡ ρ̂ =
N∑
i=1

eiq·ri , (8)

and the transformed DSF in equation (2) becomes

Φ(σ) = 〈Ψ0|
N∑

i,j=1

eiq·ri(0)KP (σ, Ĥ)e−iq·rj(σ)|Ψ0〉.
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Computations have been performed by means of a RMC algorithm, as described in Ref. [19].
The variational importance function includes two- and three-body correlations expanded in a
basis set [22] and optimized using a variational Monte Carlo procedure. Ground state properties
are well reproduced: the ground-state energy per particle is εRMC

0 = −7.23 ± 0.01 K, in good
agreement with previous calculations using the same potential [19], and with the experimental
value εexp0 = −7.17 K. In the computation of the Sumudu transform, we have found by numerical
testing that the values of P = 2, a = 1, and b = 2 satisfy this criterion in the range of energy
and momenta explored.

As it is customary in neutron spectroscopy one can distinguish the contribution coming from
the so-called coherent part, given by the terms with i 6= j, related to collective excitations,
and an incoherent part with i = j that essentially picks up contributions from single particle
excitations. We have obtained results for both the full and for its incoherent part, in the most
studied region of the spectrum: the low momentum phonon-maxon-roton part q ≈ 0.3÷3.5 Å−1.
The computed static structure factor S(q) is consistent with experimental data and previous
calculations [19, 22].
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Figure 1. A typical result for the response function (Q,ω) in liquid 4He. Points with errorbars
are experimental results at Q = 0.4Å−1. The thick dotted line is the result obtained using a
Laplace kernel. The dotted line is the result computed by using the Sumudu kernel. Theoretical
calculations refer to Q = 0.44Å−1, value determined by the size of the simulation box.

When looking at the results on S(q, ω), the difference between the inversion of the Laplace
transform and the transform defined in equation (4) is clearly seen in figure 1, where we
compare the results of the inversion obtained from RMC data with both kernels. Momentum
discretization due to the finite simulation cell does not allow for a strict comparison to the
experimental results. The small shift of the peak might indeed be due to the 0.04 Å−1 difference
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Figure 2. Dispersion of the collective modes in liquid 4He at equilibrium density and T = 0.
Points with errorbars are the computed values. Errorbars are estimates of the width of the
peaks. + and × are the corresponding experimental data from Ref. [24] at T = 1.1K.

in the momentum transfer. However, the new kernel permits to retrieve the information on the
second peak and gives a much more realistic height and width of the one-phonon peak. It should
be pointed out that the width of the peak in the experiments is essentially due to instrumental
resolution.

As regards the inversion procedure, we have used both the Entropy Maximization
Maximum Likelihood (EMML) [23] and the Simultaneous Algebraic Reconstruction Technique
(SMART) [23]. Error bars in the figures are obtained taking the maximum spread between
the half-width position obtained from the two methods. We found that for q ≤ 2.4Å−1 both
methods converge to the same solution, confirming the robustness of the result.

In figure 2 we plot the excitation spectrum obtained using the new transform. The
experimental low-lying part [24] is extremely well reproduced up to q ≈ 2.6Å−1, where the
dispersion does not bend over around 2∆ but continues to raise. In this region (the so-called
Pitaevskii plateau), the peak corresponding to the collective excitation is mixing in the single
particle excitations spectrum. The resolution that can be reached by the kernel with P = 2 is
no longer sufficient, and EMML and SMART give different results indicating that the statistical
uncertainty in the QMC data is too large to allow a consistent reconstruction. The dispersion
corresponds to the centroid of the overall spectrum.

The two-phonon branch is clearly visible and well resolved. As it happens in Ref. [7], it only
qualitatively compares to the experiment. The difference might be due either to the fact that
measurements are taken at finite temperature, or to a larger sensitivity of the second peak to
the details, for instance, of the interatomic interaction (e.g. the presence of effective three-body
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Figure 3. Incoherent Dynamic Structure factor computed by means of the Sumudu integral
transform. Empty squares are simulations performed in a simulation box with N=64 atoms,
stars refer to a box with N=125 atoms. Dotted lines are plotted as a guid to the eye. The
dashed line is the free-particle excitation spectrum. ∆ is the roton gap, and the lines at energy
∆ and 2∆ are drawn as reference.

forces).
The most useful feature of these calculations is that the resolution is enough to allow for

separately compute the incoherent part of the full response function, in order to study single-
particle excitations.

In figure 3 we have plotted the calculated excitation spectrum of single-particle excited states.
The spectrum shows at least two distinct branches. A lower energy excitation starts from
Q ≈ 0.5A−1 and propagates with a velocity resulting slightly higher than the superfluid critical
velocity V e/V c ≈ 1.57. A second branch can be observed starting at an energy slightly below
two times the roton energy, tending asymptotically to the free particle spectrum. Interestingly
enough, the lower energy branch crosses the collective excitation spectrum exactly at the roton
minimum, thereby reinforcing the picture of the roton as a single particle excitation of an atom
exiting the superfluid. All these single-particle excitations might be related to the quantum
correlations induced by the particle-particle interaction. An extensive experimental analysis of
the single particle excitations properties in superfluid 4He is unfortunately not available.

6. Conclusions
We have proposed a method to reliably extract well resolved spectra from numerical calculations
implementing imaginary time propagation of an initial state, such as DMC or RMC. The
computations might be easily extended to the T 6= 0 case by using standard PIMC methods.
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The application to the study of the collective and single-particle excitations in 4He shows the
robustness and the higher resolution power of this technique. The limit to the accuracy of the
spectra is in principle limited only by the available computer power available.
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