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Abstract: Binder jetting (BJ) has demonstrated high competitiveness among additive manufacturing
processes on account of its high production rate at a low material cost. However, both the design
procedure and the process for BJ have to be further developed, aiming towards the proper control
of the geometrical and dimensional precision and accuracy of the final product. This paper aims
to study the factors that affect the flatness form error. Five geometries were designed to obtain
planes that were inclined with respect to the fabrication direction. These planes were measured by a
coordinate measuring machine in both the green and sintered state, deriving the best-fitting plane and
the flatness form error. The analysis of the green samples demonstrates the prevailing influence of
saturation level and layer shifting on flatness form error. In the sintered parts, a dimensional change
in sintering can determine shape distortion, or an increment in the surface irregularity observed in
the green state. The experimental results clearly evidence the effect of both printing and sintering on
the quality of the final product, which should be considered when designing parts to be produced
using BJ technology.

Keywords: binder jetting; geometrical accuracy; staircase error; layer-shifting error

1. Introduction

The new potential and opportunities of Additive Manufacturing (AM) technologies
are currently under investigation in different production fields [1,2]. According to these
studies, one fundamental challenge concerns the identification of the most suitable AM
technique on the basis of the product’s requirements and characteristics [3], as different
AM technologies are associated with different benefits and issues. The positive balance of
benefits and challenges is particularly convenient in binder jetting (BJ) process technology.
BJ can theoretically process any type of metal and ceramic powder feedstock, guarantee a
high production rate, and the printing operation does not require a high-energy source or
controlled atmosphere [4]. Nevertheless, the as-built product encounters high dimensional
changes on sintering, which can detrimentally affect the product’s quality [4,5]. For these
reasons, the success of BJ technology depends on the future development of design methods
accounting for dimensional changes and on the related process set-up.

BJ is an AM process, based on a sliced CAD file, which serves as the basis to build-up
the product layer-by-layer. A powder layer is spread on a table in a printing chamber,
and, successively, a binder agent is injected and dried, corresponding to the section area of
the CAD file. After repeating powder spreading and binder injection, the green product
is obtained. A thermal treatment, inducing the crosslinking of the binder to enhance
the mechanical resistance of the green product, is then performed (curing), followed by
de-binding and sintering to consolidate the structure, as shown in Figure 1.

Metals 2022, 12, 430. https://doi.org/10.3390/met12030430 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met12030430
https://doi.org/10.3390/met12030430
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-2798-5482
https://orcid.org/0000-0003-3022-9597
https://doi.org/10.3390/met12030430
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met12030430?type=check_update&version=2


Metals 2022, 12, 430 2 of 14
Metals 2022, 12, 430 2 of 15 
 

 

 

Figure 1. Scheme of the different steps of printing process (powder spreading, binder deposition 

and drying) and secondary operations: curing, de-powdering, de-binding and sintering. 

The shape of products obtained using the BJ process is theoretically unlimited; 

nevertheless, the layer-by-layer process leads to novel constraints related to the building 

orientation. In fact, as effectively reviewed by Taufik and Jain, building orientation 

influences several characteristics: the product quality, the surface finishing, the need for 

support, the building time and cost [6]. These new challenges stimulated the development 

of new design methodologies, generally called design for additive manufacturing (DfAM) 

[7,8]. Different DfAM methodologies were specifically developed for layer-by-layer 

manufacturing. Arni e Gupta modelled the effect of a staircase on flatness form error [9]. 

Paul and Anand designed an algorithm to minimize the flatness and cylindricity form 

error and the need for support [10]. 

The layer-by-layer building process is only one possible source of geometrical 

inaccuracy, with respect to the nominal geometry, as reported in different works. Crane 

demonstrated that an improper control of part thickness and drying conditions leads to 

an excessive saturation level, which produces bleeding defects on sample surfaces [11]. 

Other works reported defects induced by layer shifting, which are attributed to an 

excessive saturation level, or to an improper powder spreading set-up [12,13]. Miyanaji et 

al. experimentally verified that binder droplet shifts from a nominal impacting zone on 

increasing printing speeds and, consequently, the partial accuracy along binder injection 

direction decreases [14]. Similarly, Parab et al. observed, using high-speed X-ray imaging, 

a drift of droplets from the impact zone, and the possible formation of satellites [15]. 

Excessive saturation level and printing speed can reasonably induce defects along the 

binder injection direction; in addition, layer shifting perpendicular to the printing 

direction is also reported in other works [16–18].  

To date, the literature has mainly focused on the analysis of an as-built product, 

disregarding the influence of the sintering process on the geometrical precision and 

accuracy of sinter-based AM parts. Few studies have analyzed the accuracy of BJ-sintered 

products. Zhao et al. experimentally studied, using the Taguchi method, the influence of 

process parameters on the dimensional accuracy and surface roughness of AISI 316L and 

420 stainless-steel powder metal parts [19,20]. In a previous work, Zago et al. validated a 

model to predict the shape variation in cylindrical holes. The experimental results 

demonstrate the role of both the anisotropic dimensional sintering change and the green 

accuracy on the final quality of sintered products produced by BJ [21].  

This study aims to investigate the factors that affect the flatness form error in the 

green and sintered states of BJ products, on the basis of previous experience with sinter-

based parts [22–26]. Five sample geometries were fabricated, presenting a plane at 

different inclination angles, to study the influence of both the layer-by-layer 

Figure 1. Scheme of the different steps of printing process (powder spreading, binder deposition and
drying) and secondary operations: curing, de-powdering, de-binding and sintering.

The shape of products obtained using the BJ process is theoretically unlimited; nev-
ertheless, the layer-by-layer process leads to novel constraints related to the building
orientation. In fact, as effectively reviewed by Taufik and Jain, building orientation influ-
ences several characteristics: the product quality, the surface finishing, the need for support,
the building time and cost [6]. These new challenges stimulated the development of new
design methodologies, generally called design for additive manufacturing (DfAM) [7,8].
Different DfAM methodologies were specifically developed for layer-by-layer manufac-
turing. Arni e Gupta modelled the effect of a staircase on flatness form error [9]. Paul and
Anand designed an algorithm to minimize the flatness and cylindricity form error and the
need for support [10].

The layer-by-layer building process is only one possible source of geometrical in-
accuracy, with respect to the nominal geometry, as reported in different works. Crane
demonstrated that an improper control of part thickness and drying conditions leads to an
excessive saturation level, which produces bleeding defects on sample surfaces [11]. Other
works reported defects induced by layer shifting, which are attributed to an excessive
saturation level, or to an improper powder spreading set-up [12,13]. Miyanaji et al. experi-
mentally verified that binder droplet shifts from a nominal impacting zone on increasing
printing speeds and, consequently, the partial accuracy along binder injection direction
decreases [14]. Similarly, Parab et al. observed, using high-speed X-ray imaging, a drift
of droplets from the impact zone, and the possible formation of satellites [15]. Excessive
saturation level and printing speed can reasonably induce defects along the binder injection
direction; in addition, layer shifting perpendicular to the printing direction is also reported
in other works [16–18].

To date, the literature has mainly focused on the analysis of an as-built product,
disregarding the influence of the sintering process on the geometrical precision and accuracy
of sinter-based AM parts. Few studies have analyzed the accuracy of BJ-sintered products.
Zhao et al. experimentally studied, using the Taguchi method, the influence of process
parameters on the dimensional accuracy and surface roughness of AISI 316L and 420
stainless-steel powder metal parts [19,20]. In a previous work, Zago et al. validated a model
to predict the shape variation in cylindrical holes. The experimental results demonstrate
the role of both the anisotropic dimensional sintering change and the green accuracy on the
final quality of sintered products produced by BJ [21].

This study aims to investigate the factors that affect the flatness form error in the green
and sintered states of BJ products, on the basis of previous experience with sinter-based
parts [22–26]. Five sample geometries were fabricated, presenting a plane at different
inclination angles, to study the influence of both the layer-by-layer manufacturing and
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the sintering process on the final product. A careful analysis of the surface morphology
was performed. On the basis of these experimental results, some hypotheses have been
proposed to explain the most relevant sources of geometrical error.

2. Materials and Methods

Five sample geometries were designed to study the dimensional and geometrical
accuracy of planes produced at different inclination angles with respect to the fabrication
direction. As shown in Figure 2, each geometry has a plane 70 mm × 20 mm wide, whose
normal vector determines an angle of 0◦, 30◦, 45◦, 60◦ and 90◦ with respect to the fabrication
direction. This surface is named plane D.
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Figure 2. Sampling geometries.

Each sample presents four through holes, whose diameter’s nominal dimensions are
3 mm, 5 mm, 7 mm, and 9 mm, respectively. Other dimensions differ per sample to provide
a constant hole depth, as explained in Reference [21].

Gas-atomized AISI 316L powder has been used, with particle size distributions of D90
25 µm, D50 10 µm, D10 4 µm, as declared by the Sandvik AM (Sweden) supplier. Samples
were produced by an Innovent Plus 3D printer machine (ExOne, North Huntingdon, PA,
USA); process parameters are reported in Table 1. The process set-up was derived using
the calibration procedure reported in Reference [27]. Interruptions to the printing process
were required to realize minor maintenance operations and avoid major deviations in the
printed components from the CAD files.

Table 1. Printing parameters used for the fabrication of binder jetting samples.

Layer
Thickness

Saturation
Level

Recoat
Speed

Roller
Speed

Ultrasonic
Intensity

Bed
Temp

Dry
Time

50 µm 55% 90 mm/s 500 rpm 100% 55 ◦C 12 s

In a single batch, one replicate was fabricated for each geometry, with the major
dimension of each sample aligned with the printhead movement direction, as shown
in Figure 3. Three batches were produced under the same conditions to fabricate three
replicates for each geometry.

The arrangement in Figure 3 was designed according to the building chamber size to
highlight the causes of the geometrical inaccuracy of nominally flat surfaces. In addition,
considering the position of samples in the printing area, it is theoretically possible to
discover the printing errors associated with part location, as was performed by Vitolo
et al. [28].
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Figure 3. Schematic representation of sample arrangement in the printing chamber.

After the printing process, samples were cured for 3 h at 180 ◦C according to ExOne
recommendation. Successively, extra powders were carefully removed, avoiding any
possible damage to green parts. The samples were measured by a Global DEA 07-07-07
coordinate measuring machine (CMM, Hexagon, Stockholm, Sweden), with a maximum
permissible error of 1.5 + L/333 µm, according to ISO 10360-2 [29]. The acquisition system
consists of a Renishaw SP600M touch-probe, which mounted a sphere tip with a diameter
of 1 mm.

Samples clamping in the CMM working plane are shown in Figure 4.

Metals 2022, 12, 430 4 of 15 
 

 

 

Figure 3. Schematic representation of sample arrangement in the printing chamber. 

The arrangement in Figure 3 was designed according to the building chamber size to 

highlight the causes of the geometrical inaccuracy of nominally flat surfaces. In addition, 

considering the position of samples in the printing area, it is theoretically possible to 

discover the printing errors associated with part location, as was performed by Vitolo et 

al. [28]. 

After the printing process, samples were cured for 3 h at 180 °C according to ExOne 

recommendation. Successively, extra powders were carefully removed, avoiding any 

possible damage to green parts. The samples were measured by a Global DEA 07-07-07 

coordinate measuring machine (CMM, Hexagon, Stockholm, Sweden), with a maximum 

permissible error of 1.5 + L/333 μm, according to ISO 10360-2 [29]. The acquisition system 

consists of a Renishaw SP600M touch-probe, which mounted a sphere tip with a diameter 

of 1 mm.  

Samples clamping in the CMM working plane are shown in Figure 4.  

 

Figure 4. Example of the clamping system and the datum planes used for the alignment procedure. 

A specific measurement procedure was programmed for each sample in the Hexagon 

Pc-Dmis 2019R2 suite (Hexagon, Stockholm, Sweden). The routine initially performed a 

3-2-1 alignment of sample Datum Reference Frame with respect to the machine reference 

frame. The primary (A), secondary (B) and tertiary (C) datum planes are indicated in 

Figure 4. A detailed description of the measurement procedure is given in Reference [21]. 

After alignment, from 50 to 150 points were acquired on each surface and used to 

reconstruct the planes by a gaussian best-fit least-squares method. The flatness form error 

was also calculated, for use as an indicator of the quality of the 3D printing process.  

As is well known, the layer-by-layer process produces the staircase error schematized 

in Figure 5.  

Figure 4. Example of the clamping system and the datum planes used for the alignment procedure.

A specific measurement procedure was programmed for each sample in the Hexagon
Pc-Dmis 2019R2 suite (Hexagon, Stockholm, Sweden). The routine initially performed a
3-2-1 alignment of sample Datum Reference Frame with respect to the machine reference
frame. The primary (A), secondary (B) and tertiary (C) datum planes are indicated in
Figure 4. A detailed description of the measurement procedure is given in Reference [21].
After alignment, from 50 to 150 points were acquired on each surface and used to reconstruct
the planes by a gaussian best-fit least-squares method. The flatness form error was also
calculated, for use as an indicator of the quality of the 3D printing process.

As is well known, the layer-by-layer process produces the staircase error schematized
in Figure 5.
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Figure 5. Graphical interpretation of the staircase error caused by a layer-by-layer manufacturing
process.

The flatness error due to the staircase effect can be predicted by Equation (1), according
to the Arni e Gupta formulation [9]

Flatness form error(green) = ∆z × cos(θg) (1)

where ∆z is the layer thickness and θg is the angle between the fabrication direction and
the plane vector in the green state.

After measurement, green samples were de-binded for 4 h at 470 ◦C in Argon atmo-
sphere and sintered in a vacuum furnace for 3 h at 1360 ◦C. On the sintering cycle, the
heating rate was set at 5 ◦C/min and the furnace pressure was 10−1 mbar. Sintered samples
were measured using the procedure previously developed for green parts, with proper
corrections due to shrinkage.

After sintering, flatness error is influenced by the dimensional change and can be
expressed by Equation (2)

Flatness form error(sintered) = ∆z (1 + εz) cos(θs) (2)

where εz is the dimensional change along the Z direction (fabrication direction), derived by
the normalized difference in dimensions parallel to the Z axis, and expressed by Equation (3)

εz = (ls − lg)/lg (3)

where ls represents the dimension at sintered state, and lg is the dimension at green state.
θs is the novel angle resulting from anisotropic dimensional changes in sintering, which is
expressed by Equation (4), as detailed in [21].

θs = tan−1[tan(θg)(1 + εx)/(1 + εz)] (4)

The anisotropic dimensional change in sintering, with higher dimensional change
along fabrication direction than in the building plane, is confirmed by several studies on
binder jetting process [30–32].

3. Results

The flatness form error of plane D is shown in Figure 6 for the samples in the green (6a)
and sintered state (6b), respectively. The estimated flatness error induced by the staircase
error was calculated by Equations (1) and (2), and is reported with the empirical data.
Concerning the printing parameters, the layer thickness (∆z) is assumed to be equal to
50 µm, the nominal building angle (θg) is derived from CAD geometry and the dimensional
changes in X and Z directions (εx and εz) are assumed to be equal to −15.5% and −17.8%,
respectively, corresponding to the average dimensional change in the linear dimensions,
as reported in Reference [21].
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Figure 6. (a) Flatness form error of plane D measured in the green state along with the flatness
predicted by Equation (1); (b) flatness form error of plane D measured in the sintered state along
with the flatness predicted by Equation (2). The error bars represent one standard deviation in the
measurements.

From the experimental results, the flatness error very slightly increases at the green
state upon increasing the inclination angle from 30◦ to 90◦. However, the trend is not
systematic, since samples 0◦ show the same flatness error as samples 90◦. Sintered samples
show a pronounced decrease in flatness error upon increasing the inclination angle from
30◦ to 60◦, while the flatness of samples 0◦ and 90◦ are out of the trend and, again, very
similar. A significant worsening of flatness is also generally observed after sintering.
No definite influence of the staircase effect is shown by the results above at either the green
or sintered state. In fact, at the green state, the empirical data trend contrasts with the model
prevision, although the absolute values are quite similar. At the sintered state, the model
significantly underestimates the flatness form error. Consequently, other mechanisms
should originate the surface irregularity, in addition to the staircase induced by the layer-
by-layer manufacturing process. To highlight other causes of surface error, a more in-depth
analysis of the data is reported. The below analysis concerns the surface irregularity of
the replicate presenting the higher flatness form error at green and sintered states for each
geometry.

Figure 7 shows the reconstructed surface of plane D for sample 0◦ at the green
(Figure 7a) and sintered (Figure 7b) states, respectively; the asterisk symbols represent
the points measured by CMM, the semi-transparent grey surface corresponds to the plane
derived by the gaussian best-fit least-squares method of such points. The colored surface
represents a surface obtained by the natural neighbor interpolation method of the measured
points. The color bar shows the coordinates of the interpolated surface along the Z direc-
tion. It should be noted that the interval identified by the color bar does not correspond to
the measured flatness form error. The colored surface was obtained by extrapolating the
measured points up to the nominal area of plane D, not strictly corresponding to the overall
area obtained by the measured points. The clamping system did not allow for the probe to
access the plane edges; therefore, the colored surface in such regions was unconstrained by
the measured points and the shape curvature determined a fake overestimation of flatness
form error. This is not considered here; the only scope of reconstruction provides a visual
representation of the irregularities in the different samples by looking at the measured area.
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In the green state, the surface displays an irregular morphology. Different sources
of the surface defectiveness of BJ green products are reported in the literature. Li et al.
observed surface ridges on the powder bed surface in the case of compaction thickness
(defined as the excess of powder spread regarding nominal layer thickness) that were
higher than the layer thickness [33]. Nevertheless, in this study, compaction thickness was
lower than the layer thickness, and the visual inspection of powder bed surface during
the printing operation did not reveal such surface defectiveness, so it was excluded as
a source of the irregular surface. As suggested by Chen and Zhao, the irregular surface
might depend on the binder–powder interaction, and specifically on the printing saturation
level [19]. The saturation level is defined as the volume fraction between the binder volume
and the volume of voids, considering the theoretical density of the powder bed [4]. A low
saturation level means that the binder does not bond powders with sufficient strength;
therefore, some particles might detach from the nominal surface, creating cavities. On the
other hand, a high saturation level could attach extra powders, creating protrusions when
compared to the nominal geometry. A slight variation in binder saturation can be expected,
which is likely related to the droplets injected by the print-head or to the particle size
distribution. Tang et al. experimentally verified the different wettability of the binder on
two different particle size distributions. The particle size determining a higher powder bed
density produces a slight increase in the contact angle and a dramatic increase in infiltration
time [34]. Therefore, powders in a dense arrangement (high powder bed density) determine
a high saturation level, while low packed powders (low powder bed density), are related to
a lower saturation level. Consequently, a non-homogeneous powder density distribution
might result in an irregular surface, enhanced by the variation in saturation level.

The above hypothesis can also be confirmed by analysis of the sintered surface. The
dimensional change in sintering is affected by the homogeneity in density distribution,
which is, in turn, related to regular powder packing, and this is expected to amplify the
surface irregularities that were highlighted at the green state. The role of holes should be
further investigated; there is no evidence of a recurring scheme close to the circular section
at both the green and the sintered states.

Moreover, moving along the Y axis, the Z coordinates of measured points tend to
decrease, more evidently on sintered samples. Although this does not affect flatness error,
the effect has to be considered, determining an increase in the parallelism error with respect
to plane A (from 0.103 mm in the green state up to 0.312 mm in the sintered state).

The slope of the plane could be related to a gradient in powder bed density along
the Y axis. Some evidence of a slight inhomogeneity in powder bed density has been
demonstrated by Lores et al., using the same printing machine and a similar printing set-up
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with 17-4 PH stainless-steel powder [35]. According to the ANOVA study of Barthel and
Wieland, samples with a higher green density achieve a higher sintered density and higher
dimensional change [36].

The increased slope in the sintered state might also be related to an inhomogeneous
heating rate of the sample during the sintering process. The presence of holes is associated
with a non-uniform sample section, which might have determined a faster heating rate
of material close to bigger hole. As a consequence, a more pronounced densification
and higher shrinkage is expected close to bigger holes, which could have provoked the
increased slope. Both hypotheses are reasonable and could have occurred simultaneously.
Further work is in progress to highlight the prevailing mechanism.

In conclusion, the flatness form error of sample 0◦ in the green state could be ascribed
to slight differences in saturation level at the printing stage, which determine an irregular
morphology, which is further enhanced upon sintering by the dimensional change. Future
work will investigate the role of any inhomogeneity of green density in the powder bed
and the thermal transient analysis of the sample upon sintering.

Figure 8 reports the reconstructed surface of plane D of sample 90◦ at the green state.
The figure shows the measured points, the best-fit plane and the interpolated surface, as in
Figure 7.
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As shown in Figure 8, the points measured at the same Z coordinates are systematically
located left or right to the best-fit plane. The flatness form error could be related to the
so-called bleeding defect, which corresponds to a binder migration outside the nominal
area due to an oversaturation of binder level. Another hypothesis ascribed the flatness-form
error to the fabrication of layers that were not in the same nominal positions. This error
could possibly be caused by some limits in the electro-mechanical actuator of the printhead
control system.

A slight drift in the measured points towards the X direction can also be observed
in Figure 8, which could be directly related to a layer shift. To prove this, the position of
the points measured on datum plane B was analyzed as follows. Figure 9 provides the
axonometric view of sample 30◦, showing the datum reference system XYZ and the pattern
of points acquired on the datum plane B (parallel to plane Y-Z). These points were projected
in Figure 10 on a plane parallel to X-Z plane, as indicated by the arrow “X-Z view” in
Figure 9. In addition to the points of sample 30◦, Figure 10 reports the points acquired on
the datum plane B in the other geometries, according to the datum reference system of each
sample.
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Figure 10. Points measured on datum plane B on each geometry: the dashed lines represent the layer
corresponding to the temperature drops that occurred during the printing procedure.

Figure 10 confirms the layer-shifting upon increasing the Z coordinate in all samples.
Some works have already reported the layer shifting defects induced by excessive saturation
levels, but their relationship with binder injection direction is not specified [12,13]. Cao
et al. demonstrated a clear correlation between the layer shifting along the powder-
spreading direction and the flatness form error [16]. In the cited study, experimental data
show a significant increase in flatness form error upon decreasing compaction thickness,
likely due to the powder failure mechanism. In another paper, Maximenko et al., using
discrete-element modeling, simulated the influence of powder-spreading on the accuracy
of previously deposited parts [17]. Although the experimental data do not exactly fit the
model prevision, there is evidence that powder deposition could cause a layer drift in the
same direction as powder spreading, as clearly shown in Figure 10.

Figure 10 also reveals that some measured points are positioned outside the general
trend identified by the layer shifting. The irregular position of some layers is more evident
at lower Z coordinates and tends to reduce on increasing sample height. This result is
related to the four temperature drops that occurred in the building chamber during the
fabrication of one sample batch, as shown in Figure 11, represented in Figure 10 by the
dashed lines. Similar trends were observed in the other batches.

The temperature drops occurred whenever the printing process was paused and the
machine was opened to perform maintenance operations (e.g., cleaning the spreading roller,
cleaning the printhead, checking the cleanliness of the hopper sieve) aiming to avoid more
relevant issues. As is well known, temperature drops cause a dramatic reduction in the
drying speed and, consequently, layers could be pushed away by the roller movement,
as described in the Innovent Plus 3D printing system user manual. Miyanaji et al. clearly
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show the part distortion caused by insufficient drying [18]. The layer shifting reported
by Miyanaji produces a layer drift that is opposite to the powder-spreading direction,
as shown in Figure 10: points close to the dashed lines (corresponding to the temperature
drops highlighted in Figure 11) tend to shift in direction opposite to spreading direction,
and the effect is more evident close to the deeper temperature drop.
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Figure 11. Bed temperature, referring to the printed layer.

Figure 12 clearly shows that flatness form error can be directly ascribed to the shape
deformation of the sintered sample. The concave shape of plane D is also confirmed in
the opposite plane, datum plane B, which shows the same deformation, as displayed in
Figure 13 referred to sample 90◦.
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The dimensional change in sintering determines the shape distortion, which is likely
due to the differences in the powder bed density at the green state, as explained above.
The inhomogeneous heating rate of plane B and plane D, and the consequent thermal
deformation, should also be considered. Differing from sample 0◦, the presence of holes
does not play a major role: plane D heated up faster, likely due to its position in the furnace
and, consequently, densified earlier than plane B, causing distortion.

Figures 14–16 show plane D of samples 30◦, 45◦ and 60◦ at the green and sintered states.
Aiming to highlight the flatness form errors, a new X′(θ)Y′(θ)Z′(θ) reference system was
adopted, corresponding to the different orientations, so that X′(θ)-Y′(θ) was the reference
plane parallel to plane D, and Z′(θ) represents the direction perpendicular to the plane.
The color bar shows the coordinates of the interpolated surface along the Z′(θ) direction.
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Figure 15. Sample 45◦ (a) points measured at the green state and reconstruction of the plane; (b) points
measured at the sintered state and reconstruction of the plane.
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Figure 16. Sample 60◦ (a) points measured at the green state and reconstruction of the plane; (b) points
measured at the sintered state and reconstruction of the plane.

Figures 14a, 15a and 16a confirm the slightly irregular surface in green parts, likely to
be attributed to the differences in saturation level. Again, the surface morphology is not
significantly affected by the presence of holes. As highlighted above, referring to Figure 10,
layer shift is supposed to play the major role in determining the flatness form error at the
green state in the investigated sampling.

The analysis of sintered surfaces displayed different causes of flatness form error.
In samples 30◦ and 45◦, flatness form error is clearly related to the shape deformation, as
observed in sample 90◦. In agreement with the previous assumption, the higher thermal
irradiation in plane D determined the thermal deformation and an inhomogeneous shrink-
age. No shape deformation was observed in sample 60◦, and the flatness form error is
clearly associated with the amplification of the irregular morphology observed in the green
state, as discussed in sintered sample 0◦.

Upon increasing the inclination angle, the mechanisms observed for sample 0◦ prevail.
The transient thermal state of the sample during the sintering heating stage will be

investigated in more depth in future work to clarify the origin of distortion.

4. Discussion and Conclusions

Gas-atomized stainless steel AISI316L was used to fabricate five different geometries
using the binder jetting process. These samples were designed to show a plane with the
same nominal size, inclined at five different angles with respect to the fabrication direction.
Samples were measured in the green and sintered states by a coordinate measuring machine,
and the inclined plane was derived by a best-fit plane. The flatness form error of the plane
was calculated, and the actual shape of the plane was estimated by the natural neighbor
interpolation method of the measured points. According to this procedure, the geometrical
precision of the plane was studied to investigate the sources of geometrical deviation.
The results highlight:

• The staircase error, which is generally considered the main source of irregularities in
layer-by-layer manufacturing processes, is not the predominant cause of the flatness
form error in the green products. The experimental results evidence a prevailing
effect of layer shifting. According to the literature, the origin of layer shifting can
be attributed to powder spreading or insufficient drying. In the present study, layer
shifting mainly occurred due to powder spreading, but a direct relationship was also
revealed between the temperature drops in the powder bed and layer drift in the
opposite direction, likely due to insufficient drying.

• The distortion is the major cause of flatness form error in the sintered state. The results
show a thermal deformation related to the higher radiation that occurred on one side
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of the samples. When distortion was not observed, a dimensional change in sintering
amplifies the inhomogeneity in surface morphology observed at the green state.

To conclude, improving the quality of green products would clearly determine the
better-sintered parts. Proper control of the sintering process is crucial to avoid distortions.
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