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Abstract

In the brain, neuronal cells located in different functional regions communicate through a dense
structural network of axons known as the white matter (WM) tissue. Bundles of axons that share similar
pathways characterize the WM anatomy, which can be investigated in-vivo thanks to the recent advances
of magnetic resonance (MR) techniques.

Diffusion MR imaging combined with tractography pipelines allows for a virtual reconstruction of the
whole WM anatomy of in-vivo brains, namely the tractogram. It consists of millions of WM fibers as 3D
polylines, each approximating thousands of axons. From the analysis of a tractogram, neuroanatomists
can characterize well-known white matter structures and detect anatomically non-plausible fibers, which
are artifacts of the tractography and often constitute a large portion of it. The accurate characterization of
tractograms is pivotal for several clinical and neuroscientific applications. However, such characterization is
a complex and time-consuming process that is difficult to be automatized as it requires properly encoding
well-known anatomical priors.

In this thesis, we propose to investigate the encoding of anatomical priors with a supervised deep
learning framework. The ultimate goal is to reduce the presence of artifactual fibers to enable a more
accurate automatic process of WM characterization. We devise the problem by distinguishing between
volumetric and non-volumetric representations of white matter structures. In the first case, we learn
the segmentation of the WM regions that represent relevant anatomical waypoints not yet classified by
WM atlases. We investigate using Convolutional Neural Networks (CNNs) to exploit the volumetric
representation of such priors. In the second case, the goal is to learn from the 3D polyline representation
of fibers where the typical CNN models are not suitable. We introduce the novelty of using Geometric
Deep Learning (GDL) models designed to process data having an irregular representation. The working
assumption is that the geometrical properties of fibers are informative for the detection of tractogram
artifacts.

As a first contribution, we present StemSeg that extends the use of CNNs to detect the WM portion
representing the waypoints of all the fibers for a specific bundle. This anatomical landmark, called stem,
can be critical for extracting that bundle. We provide the results of an empirical analysis focused on the
Inferior Fronto-Occipital Fasciculus (IFOF). The effective segmentation of the stem improves the final
segmentation of the IFOF, outperforming with a significant gap the reference state of the art.

As a second and major contribution, we present Verifyber, a supervised tractogram filtering approach
based on GDL, distinguishing between anatomically plausible and non-plausible fibers. The proposed
model is designed to learn anatomical features directly from the fiber represented as a 3D points sequence.
The extended empirical analysis on healthy and clinical subjects reveals multiple benefits of Verifyber: high
filtering accuracy, low inference time, flexibility to different plausibility definitions, and good generalization.

Overall, this thesis constitutes a step toward characterizing white matter using deep learning. It
provides effective ways of encoding anatomical priors and an original deep learning model designed for
fiber.

Keywords [Brain, Neuroimaging, Tractography, Deep Learning, Geometric Deep Learning]
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Chapter 1

Introduction

The white matter structure of the human brain The human brain can perform plenty
of tasks, like processing sensory signals, reasoning, memorizing, and regulating the human
body. The execution of such tasks happens across different regions of the brain, usually
located in the cerebral cortex. Neuronal cells in the cortical regions exchange information
between each other through electrochemical spikes traveling along axonal pathways. Most
of the axonal pathways traverse the internal part of the brain to connect neurons of different
regions, forming a dense connective tissue called white matter (WM). Within the white
matter, axons are organized in bundles of similar pathways that share the same connection
scope (Meynert, 1885). The spatial disposition of these bundles constitute the so-called
WM structure or anatomy or structural connectivity. Unfortunately, the comprehensive
organization of WM structural connectivity is still unknown, and the scientific debate is
discussing further WM characterizations. For example, neuroanatomists frequently discover
or refine landmark anatomical regions where bundles pass through or cross/intersect with
other bundles (Hau et al., 2017). Characterizing more accurately the WM is beneficial
for many clinical applications like surgical intervention, brain diseases, neuroplasticity
understanding, and neuroscientific studies (Jeurissen et al., 2017; De Benedictis et al.,
2016; Yang et al., 2021; Yeh et al., 2020; Kruper et al., 2021).

The anatomy of the white matter has been historically studied via invasive techniques,
such as histology, direct stimulation, or post-mortem dissection. Only in the last 20 years,
the advancement of neuroimaging techniques allowed reliable non-invasive analysis. The
development of diffusion magnetic resonance imaging (dMRI) (Le Bihan et al., 1986) has
enabled the in-vivo inspection of the white matter anatomy. dMRI estimates a map (3d
image) of the local directions of white matter pathways by measuring the diffusivity of
water molecules, which diffuse along the myelin sheath that surrounds the axons (Basser
et al., 1994). Nowadays, thanks to complex computational pipelines built upon dMRI
data (Basser et al., 2000), we can retrieve a virtual approximation of the whole white
matter connectivity, namely the tractogram, which is a collection of millions of virtual
white matter fibers each representing thousands of axonal pathways. The WM fibers,
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4 1.1. MOTIVATIONS

also referred to as streamlines, are virtually modeled as 3D polylines, i.e., unoriented
sequences of points in the 3D space, having varying length and trajectory. The grouping
of anatomically similar fibers constitutes bundles.

Deep learning Along with neuroimaging advancements, the last decades have witnessed
the widespread use of machine learning (ML) approaches as computational tools to
autonomously complete tasks driven by data experience. For example, deep learning (DL)
(LeCun et al., 2015; Schmidhuber, 2015) has been a breakthrough for many applications,
such as computer vision (Krizhevsky et al., 2012) and natural language processing
(Bahdanau et al., 2015). The main reason for the DL success resides in the ability of
deep neural networks (NNs) to learn new representations of the input signal (Bengio
et al., 2013), that are relevant for the target task at hand, e.g., image classification
and segmentation. This property allows scientists to avoid the manual engineering of
discriminative data representations, i.e., feature vectors, which is necessary for traditional
ML models as a pre-condition to obtain good performance. The recent leap in high-
performance parallel computing allows the training of complex DL models having millions
of learnable parameters, which may encode thousands of features. In the presence of
enough data, learning richer feature representations often leads to better performance than
using traditional handcraft feature vectors. On the contrary, when too few training data
are available, the quality of the learned representation is not general enough to successfully
perform the target tasks on unseen data.

The amount of data required by DL models exponentially increases with the model
complexity/size, i.e., the number of learnable parameters, becoming quickly impossible to
be collected and manually annotated. To solve this issue known as curse of dimensional-
ity (Bach, 2017) and learn meaningful representations with less data, a NN must exploit
the structural regularities present in the data itself. This is possible by encoding such
regularities within the NN architecture as structural inductive bias (Mitchell, 1980). For
example, Convolutional Neural Networks (CNNs) (LeCun and Bengio, 1995), which show
good performance on grid-based data like images, use local convolutional and pooling filters
that are invariant/equivariant to shift and local deformation of the input. However, CNNs
are not ideal with irregular, non-grid data structures, and other types of architectures may
be needed. Geometric Deep Learning (GDL) (Bronstein et al., 2017) was born to provide
suitable architectures for domains like graphs (Kipf and Welling, 2017) and point-clouds
(Qi et al., 2017; Wang et al., 2019), where there is no grid structure, and the NN inductive
bias must ensure permutation invariance/equivariance on nodes and points respectively.

1.1 Motivations

Open problems of tractograms Tractograms are data derivatives obtained as the out-
come of a complex pipeline of data processing. After the diffusion MRI preprocess-
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ing (Glasser et al., 2013; Fischl, 2012; Jenkinson et al., 2012; Tournier et al., 2019) and
diffusivity model reconstruction (Pierpaoli et al., 1996; Tournier et al., 2007; Descoteaux,
2015), the tractography or tracking (Mori et al., 1999; Basser et al., 2000; Jeurissen et al.,
2017) computes the fiber pathways. The tracking process is an iterative procedure that
requires the definition of many parameters, like the policy of seeding (where to start
tracking), the strategy of stepping (how to track next point of a fiber), the stop criterion
(where/when to stop tracking), and the constraints on curvature and length of fibers.
Slightly different parameter choices may produce quite different tractograms (Thomas
et al., 2014), and the evaluation of their accuracy is not straightforward (Neher et al.,
2015).

In recent years, the tractography community has given great attention to the evaluation
of the tractograms accuracy. Multiple international contests, e.g., (Fillard et al., 2011;
Maier-Hein et al., 2017; Schilling et al., 2019b; Nath et al., 2020), have proposed the use
of physical phantoms, simulated diffusion data, post-mortem dissection, and histological
tracing as ground-truth reference. While the debate on the definition of a proper ground-
truth is still open (Rheault et al., 2020a) — and far from ending —, state-of-the-art
tractography pipelines can produce tractograms comprehensive of the well-known WM
pathways but at the cost of generating a significant amount of false positive fibers (Maier-
Hein et al., 2017; Schilling et al., 2019a). Usually, they draw twisted, unrealistic fiber
trajectories or fibers that traverse/terminate in the wrong anatomical regions of the WM.
Such fibers are not compliant with the underlying anatomy, and they are artifacts due to
the intrinsic ambiguity of the diffusion signal (Jeurissen et al., 2017). Different dispositions
of axonal pathways, e.g., kissing and crossing fibers, might correspond to the same diffusion
signal.

To mitigate the false positives problem, there is the need to enrich the characterization
of anatomical principles in tractography and tractograms. This can be done by imposing
anatomical priors during the tracking or directly on the reconstructed tractogram. For
example, there exist attempts to restrict the tracking area to bundle-specific regions
(Rheault et al., 2019), or to impose the passage/termination of fibers only in certain tissues
(Smith et al., 2012). However, these are not the only ways of encoding anatomical priors,
and other approaches define anatomical priors as fiber features (Petit et al., 2019) like
fiber geometry. In general, the anatomical prior definition can involve either (i) specific
regions of the white matter (ROI-based prior), or (ii) properties inherent of the fiber
trajectory (fiber-based prior).

ROI-based prior. Anatomical regions are typically used by neuroanatomists to syntacti-
cally characterize and extrapolate bundles. In ex-vivo dissection, they locate key white
matter regions and scrape the surroundings following the route traced by axonal pathways
until dissecting an entire bundle. Similarly, in virtual bundle segmentation, experts use
volumetric masks of the region of interests (ROIs) already available in brain parcellation
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atlases to obtain a first very broad segmentation. Then, they manually draw additional
ROIs to refine the segmentation and avoid false positive streamlines.

In the recent literature, there have been many tentatives to automatize ROIs for bundle
segmentation. From the one side, there is a series of methods that seek to emulate manual
bundle segmentation by using segmentation rules expressed as logical combinations of
ROIs, e.g., White Matter Query Language (WMQL) (Wassermann et al., 2013, 2016)
and Automated Fiber Quantification (AFQ) (Yeatman et al., 2012). Rules are usually
defined on template brains, where ROI atlases are ready-to-use, and then are applied to
new subjects via volumetric brain co-registration. On the other side, there are data-driven
approaches like TractSeg (Wasserthal et al., 2018), that cast the segmentation of bundles
as a single ROI segmentation, i.e., the bundle volumetric mask. These approaches exploit
the exceptional power of CNN in segmenting images to segment bundle masks directly
from fiber orientation maps.

However, there are some pitfalls in both approaches that may reduce the accuracy of
the final bundle segmentation. In particular, the accuracy is directly related to the quality
of the ROIs. In the rule-based approaches, ROIs from existing atlases are rather coarse
due to the standardization process (Figley et al., 2017) and characterize only partially
the white matter anatomy (Hansen et al., 2021). Moreover, the co-registration step is
complex and frequently registers poorly the WM tissue. In CNN-based approaches, despite
co-registration is not needed, the predicted bundle masks hardly capture the detailed
structure of bundles. Studies like (Bertò et al., 2021) have empirically shown the tendency
of CNN-based approaches, e.g., TractSeg, to miss details in the most complex bundles
— generally in the termination regions.

Fiber-based prior Fiber-based characterization of WM priors can be considered as an
alternative strategy that goes beyond the possible weaknesses of ROIs, which may not
remove/avoid some false positive fibers. In this characterization, fibers can be directly
characterized based on their anatomical correspondence as anatomically plausible or non-
plausible. Ideally, such distinction would allow the complete filtering of tractograms
from false positives, identified as anatomically non-plausible fibers. However, since the
whole white matter structural connectivity is still not known, the definition of a unique
plausibility criterion is not possible (Jörgens et al., 2021).

Existing tractogram filtering methods encode different plausibility criteria based on
the signal explainability of fibers and/or the fiber consistency. In all cases, they adopt
an unsupervised approach for filtering. Signal-based filtering, e.g., (Smith et al., 2013,
2015a; Pestilli et al., 2014; Daducci et al., 2015), removes streamlines when their spatial
distribution do not match the distribution derived by the amount of underlying diffusion
signal. Differently, consistency-based filtering methods cast the filtering task as an outlier
detection task. They detect false positive fibers by looking at the excessive deviation of
fiber trajectories from the local distributions, which are normally estimated from known
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bundles, either population-wide (O’Donnell and Westin, 2007; Wang et al., 2018; Xia and
Shi, 2020) or intra-individual (Yeh et al., 2019; Legarreta et al., 2021). Lastly, there exist
mixed approaches, e.g., (Aydogan and Shi, 2015; Neher et al., 2018; Nie and Shi, 2019;
Schiavi et al., 2020; Ocampo-Pineda et al., 2021), that try to merge the two criteria by
focusing on outlier removal in well-known bundles, while regulating the remaining fibers
using the signal prior.

A shared drawback of current approaches is the lack of explicit anatomical priors to
encode fiber plausibility. The only attempt to use anatomical constraints is in recent mixed
approaches but limited to specific bundles. Without anatomical grounding, unsupervised
fiber-based approaches may not guarantee to detect anatomically non-plausible fibers
effectively. For example, fibers not explainable by the underlying signal can still represent
an anatomically plausible pathway (Smith et al., 2020a; Frigo et al., 2020; Zalesky et al.,
2020b). Similarly, fibers considered as outliers might be plausible for the specific anatomy
of an individual.

Anatomical prior in supervised learning Many recent studies have confirmed the
benefit of using anatomical priors to obtain more accurate tractography representations
(Schilling et al., 2020; Girard et al., 2020; Bertò et al., 2021; Schiavi et al., 2020). However,
the majority of existing approaches either integrate anatomical priors with intensional
strategies 1 or consider data-driven strategies. Intensional strategies are based on heuristic
rules/constraints that are too general to precisely describe different individuals or use
proxy objective functions unsupervised for the anatomy, e.g., signal- and consistency-based
approaches. An alternative solution is given by data-driven methods like (Wasserthal
et al., 2018). Such methods adopt an extensional definition of anatomy, where each ROI is
assigned with an anatomical label. This allows them to train deep learning models in a
supervised manner, guaranteeing anatomically sound solutions.

Using DL models for supervised learning allows flexibility in the input data represen-
tation. However, depending on the data structure, certain DL architectures might be
more suitable than others. In the case of ROI- and fiber-based WM characterizations, the
corresponding virtual representations are usually voxel- and streamline-based, respectively.
Voxel-based representations, like the volumetric image of an ROI, have a grid structure and
thus may be better exploited by CNNs. On the contrary, the polyline structure of stream-
lines is not a regular grid, and a CNN cannot properly process it due to the varying number
of points and the lack of orientation. Hence, existing streamline-based DL approaches
based on CNNs (Gupta et al., 2017; Xu et al., 2019; Zhang et al., 2020; Legarreta et al.,
2021) resort to heuristics or embeddings to standardize the input streamline representation.
However, such standardization is not needed with geometric deep learning models such as
(Qi et al., 2017; Wang et al., 2019), as they are designed to handle non-regular structures

1The term intensional is borrowed from logic, where the meaning is: “specifying the necessary and sufficient
properties that an object needs to have in order to be counted as a referent of the term”
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with variable size and no parsing order.

1.2 Aim of the thesis

We propose to further improve the characterization of white matter priors to overcome
the current limitations of the state of the art. The final goal is to reduce the impact of
false positives in tractograms by providing an effective and automatic way of encoding
anatomical priors in automatic methods. In particular, we hypothesize that supervised deep
learning frameworks might produce anatomically sound solutions yet flexible to different
types of anatomy characterizations, i.e., ROI-based and fiber-based.

In the context of ROI-based white matter characterization, we propose a novel approach
that combines CNN- and rule-based methods. Given the volumetric representation of
ROIs, we devise using CNNs to segment those regions plausible for certain bundles, which
are not present in existing ROI atlases. CNNs have already proved to be effective in
segmenting large ROIs such as bundle masks (Wasserthal et al., 2018), but can they be
as effective when targeting small but regular eloquent ROIs? An additional benefit of
CNNs would be the segmentation of such ROIs directly in the subject anatomy, avoiding
complex (and error-prone) steps of co-registration. Subsequently, the integration of the
segmented fiducial regions within bundle segmentation rules can be used to evaluate their
impact. Therefore, the question is: will such ROIs improve the segmentation accuracy by
reducing the presence of undesired fibers, i.e., false positives?

In the case of fiber-based WM characterization, the challenge of proposing a supervised
deep learning approach is hard due to the 3D polyline structure of streamlines. Can we
successfully apply DL directly on streamlines (and not only on voxels, as in the ROI-based
case)? We argue against the use of CNNs as it is currently done in the literature since the
grid-targeted inductive bias of CNNs may be suboptimal when considering the unoriented
sequential structure of fibers. Alternatively, we propose to investigate the white matter
using Geometric Deep Learning. Are GDL models really more suitable for the streamline
representation? Can such models learn the anatomical features of streamlines? These
questions are yet to be answered in the literature. However, given the existing relation
between fiber geometry and anatomical plausibility (Petit et al., 2019), we speculate that
the supervised training of a GDL model to distinguish between anatomically plausible and
non-plausible fibers might enable the learning of geometrical features underlying fibers’
anatomy. The remaining question is: what kind of GDL model can be more effective for
artifactual fiber detection?

1.3 Novel contributions

The overall contribution of this thesis is the investigation of how different deep learning
models may help in the ROI- and fiber-based characterization of the white matter anatomy.
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We present two distinct methods for the two types of characterization, namely StemSeg
and Verifyber, respectively.

StemSeg As the first contribution, we present StemSeg, a data-driven approach that uses
a CNN to individuate fiducial white matter regions that are eloquent for a specific bundle,
namely stem of the bundle. According to several recent neuroanatomical studies (Hau et al.,
2016, 2017; Sarubbo et al., 2013, 2019; De Benedictis et al., 2012, 2014, 2016) the anatomical
stem of some association bundles like the Inferior Fronto-Occipital Fascicle (IFOF) can be
used to delineate all the pathways composing the bundle. It also emerges that a stem-based
virtual segmentation, where the anatomical stem is represented by a manually drawn
stem-ROI, is more accurate compared to standard rule-based segmentation and significantly
reduces the presence of false positives fibers. In our StemSeg, we propose to automatize
the segmentation of the stem-ROI in order to enable the subsequent stem-based bundle
segmentation. We design a two-steps method. First, we train a U-Net (Ronneberger et al.,
2015) to segment the stem-ROI on a fiber orientation image, like the colored Fractional
Anisotropy (CFA) map. Then, we integrate the predicted stem as a waypoint region in a
WMQL segmentation rule (Wassermann et al., 2016) that also includes the well-known
termination regions derived from a WM atlas (Rolls et al., 2015). We apply the method
to the case of the IFOF, where this segmentation rule allows extracting the target (left or
right) IFOF from a tractogram.

For the empirical analysis of StemSeg, we considered the open diffusion data of the
Human Connectome Project (HCP). After generating the tractogram for more than 150
subjects, we have collaborated with two expert neuroanatomists to obtain a reference
set of stem-ROIs and two smaller validation sets (one from each expert) containing the
manually segmented IFOF bundles. We make the dataset of stem-ROIs available to the
public (De Benedictis et al., 2019). We consider this dataset a valuable contribution to
the community, as it is the first large collection of IFOF stem-ROIs.

The quantitative evaluation of StemSeg in the first step of stem-ROI segmentation
reveals satisfactory results. The segmented stem-ROIs have the correct shape and are
located in correspondence to the IFOF bottleneck. This result validates our hypothesis
of adopting a CNN model to segment small fiducial ROIs. The subsequent deployment
of the predicted stem-ROIs for the IFOF segmentation produces very accurate bundles.
The volumetric overlapping with the reference IFOFs is higher than 93% and robust to
the different validation sets. Such results greatly outperform the state-of-the-art TractSeg
(Wasserthal et al., 2018), with a ∼30% gap. Hence, the choice of a stem-based approach
in contrast to the direct bundle mask segmentation has proved successful. Additionally,
we provide qualitative evidence of the StemSeg robustness in clinical quality data with a
low magnetic field scanner by segmenting stem-ROIs and IFOFs on patients affected by
cancer.
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Verifyber As the second and most relevant contribution, we present Verifyber a novel
Geometric Deep Learning model for tractogram filtering. Verifyber is designed as a
supervised classifier to discriminate between anatomically plausible and non-plausible
fibers. The intuitive idea is to exploit the increasing effort of the community in proposing
anatomical labelings of tractograms, e.g., (Petit et al., 2019; Zhang et al., 2018). As the
WM anatomy is not fully known, such labelings are in continuous evolution and propose
different elicitation of anatomical knowledge, i.e., follow different criteria of anatomical
plausibility. We distinguish between exclusive labeling policies like (Petit et al., 2019),
which conservatively prioritize the definition of anatomical non-plausibility (false positives
characterization) and inclusive policies like (Zhang et al., 2018), which prioritize the
definition plausible fibers (well-known bundles). Although these labelings do not share
a unified WM characterization, they both suggest a direct relation between the fiber
geometry and its plausibility. In our proposal, we consider both these types of labeling,
one at a time, to train a novel GDL model conceived for learning anatomical features
directly from the fiber representation as a 3D points sequence. The proposed model is the
first to be fully invariant to the fiber orientation while being sensitive to the sequentiality
of points in the trajectory. Once trained, Verifyber can filter fibers in a new tractogram
very fast, e.g., 1M fibers in less than 1 min.

To evaluate Verifyber, we present an extensive set of experiments on HCP diffusion
data. In the first group of experiments, we investigate the performance of our GDL
architecture compared to other alternative models, like Bidirectional LSTM (bLSTM)
(Graves and Schmidhuber, 2005), PointNet (PN) (Qi et al., 2017), and Dynamic Graph
CNN (DGCNN) (Wang et al., 2019). We measure the filtering accuracy with 5-fold
cross-validation over a set of 20 tractograms labeled with exclusive policy (Petit et al.,
2019). In the test set, we show filtering accuracy higher than 95% and substantiate the
superiority of Verifyber in learning longer and complex fiber trajectories. Then, in the
second group of experiments, we test the robustness and adaptability of Verifyber to
different labeling, tractography pipelines, and data source. Additionally, we compare our
supervised approach with a competing unsupervised approach like FINTA (Legarreta
et al., 2021). The overall result is that Verifyber is easily adaptable to evolving labeling,
and regardless of the labeling adopted, is robust to different tractography scenarios, which
instead is not the case of FINTA. Finally, a last qualitative investigation on clinical patients
shows promising filtering results that can be very helpful to support doctors.

1.4 Structure of the thesis

• In Chapter 2 we present the basic principles of the white matter anatomy, and
we describe how they can be investigated using current in-vivo imaging techniques
(Chapter 2.1.2). Then, in Chapter 2.2 we introduce the fundamentals of deep learning,
reserving a deeper explanation to Convolutional Neural Networks and Geometric
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Deep Learning, which are particularly of interests for this thesis.

• In Chapter 3 we provide a targeted description of the related works differentiating
between ROI-based WM characterization and tractogram filtering.

• Then, in Chapter 4 we highlight current lacks and pitfalls and argue for possible
solutions to them in the form of research questions (RQ 1, RQ 2).

• Chapter 5 refers to the StemSeg contribution. First, we introduce and present the
method; then, we show our empirical analysis. Finally, we discuss the results.

• Chapter 6 presents Verfyber. After the introduction and the description of the
method, we discuss our methodological choices, positioning Verifyber with respect to
alternative models (see Chapter 6.3). Next, we report a large set of experiments dis-
tinguishing between model-related and task-related, which we discuss in the subsequent
section.

• In Chapter 7 we draw the conclusions of the thesis, arguing the contribution this
work carries to the community and the possible impacts it can have for the future.

• Appendix A reports additional specifications for datasets

• Appendix B contains multiple supplementary investigations, which can help to clarify
doubts to the reader.
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Chapter 2

Background

This Chapter describes the contextual information necessary to understand the studies
presented in this thesis. As this thesis lies in the between neuroscience and computer
science, we will present a twofold background: brain white matter anatomy (Section 2.1),
and deep learning (Section 2.2)—the specific target of the thesis bounds the level of details
to which these areas are presented. Many concepts might be obvious if the reader is
an expert in those fields. In that case, this Chapter can be skipped and used only as a
reference.

2.1 Brain white matter anatomy

The brain is the most fascinating organ in the human body, responsible for all the actions,
feelings, and reasonings a person can do. It is an incredibly complex object, and for this
reason, still partially undiscovered. While the main emphasis is on understanding brain
functioning, e.g., reasoning and memorization, a mandatory precondition is comprehending
the brain’s structural connectivity. In particular, understanding brain connectivity concerns
the anatomy/structure of brain white matter (WM), which is being investigated in the last
decade. The next sections illustrate what we know about the WM and how it is possible
to investigate it.

2.1.1 White matter structural connectivity

Neurons are the basis of brain anatomy and activity. They are electrically excitable
(spiking) cells communicating with each other through synapses. More precisely, as
illustrated in Figure 2.1, a neuron is composed of a cell body (soma) containing the
nucleus, surrounded by many short-range connections, dendrites, and extended by a single
long-range connection, the axon, which has synaptic terminations. To guarantee a proper
circulation of electrical spikes, axons inside the brain are insulated with sheaths of myelin,
as shown in Figure 2.1, a white-colored compound consisting of water (∼40%), lipids
(∼40-50%), and proteins (∼10-20%).

13
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Figure 2.1: Illustration of a neuron cell on the left. SEM photo of myelinated axons. The myelin
sheath is colored with whiter color, while the axon is in orange. Image source: Doctor C’s On
Line Histology, 2015

The disposition of neurons in the brain determines the two main issues of the brain:
grey matter and white matter. The neurons’ soma and dendrites are mostly displaced in
the external layer of the brain, namely the cortex, and compose the grey matter, while the
neurons’ axons fill the internal part of the brain, which, due to their white color, is called
white matter. A simple illustration of this situation is shown in Figure 2.2, where can also
be noted the peculiar shape of the cortex. Such a shape is known as brain folding, and
it uniquely characterizes each individual. When the cortex folds outward is called gyrus,
vice versa when it folds inward, it is called sulcus. See Figure 2.2 for a schematic example.

Some gyri and sulci are well-known and can be recognized in all individuals (Gray,
1918). A map of the major gyri and sulci is reported in Figure 2.3. From the map,
we may recognize that some of the sulci define the border between the different brain
lobes: frontal, parietal, temporal, and occipital (colored in Figure 2.3). For example, the
central sulcus and the Sylvian fissure separate the frontal lobe from the parietal lobe and
the temporal lobe, respectively. More in general, gyri and sulci are used as landmarks
by neuroanatomists, who can build different cortex parcellations based on them. Such
parcellations subdivide the cortex into multiple anatomical regions, usually associated
with different brain functions. The different regions of the cortex communicate, like nodes
in a graph, thanks to the white matter structural connections between them, i.e., fascicles
of neuronal axons.

A white matter structural unit is an axon connecting one neuron to another. The
pathway traveled by an axon characterizes its scope. Usually, a certain pathway is traversed
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Figure 2.2: Coronal view of the brain. In contrast grey matter and white matter. Left zoom
shows the disposition of neuronal cells with soma within the grey matter and axons within the
white matter. Right zoom shows a simplistic cortical folding to illustrate the difference between
giry and sulci. Adapted from (Bonilha et al., 2015)

Figure 2.3: Gyri (left) and Sulci (right) based parcellation of the cortex. Colors highlight the
different brain lobes: light blue: frontal, yellow: parietal, red: occipital, green: temporal. Adapted
from (House and Pansky, 1960)

by a group of axons sharing the same scope. Such groups are called bundles of axons and
can be categorized based on the regions of the grey matter they connect (Meynert, 1885):

• Association bundles connect cortical regions (gyri) belonging to the same hemisphere
(see Figure 2.4 left). They have variable shapes and lengths, from short U-shaped
bundles connecting adjacent gyri to long straight bundles connecting frontal and
occipital lobes. Examples of some of the major association bundles are the Inferior
Fronto-Occipital Fasciculus (IFOF), the Arcuate Fasciculus (AF), the Cingulum
(CG), and the Uncinate Fasciculus (UF).

• Projection bundles connect the spinal cord, the cerebellum, and the deep grey matter
regions of the brain stem, with cortical regions. As in the case of association bundles,
also projection bundles do not cross the hemispheres. Among the most well-known
projection bundles are the Cortico Spinal Tract (CST), cortico-thalamic radiation
bundles, and cortico-pontine bundles.
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• Commissural bundles connect left and right hemispheres. This category of bundles is
dominated by the brain’s largest bundle, the Corpus Callosum (CC), which binds left
and right regions along all the fronto-occipital directions. Due to its wide extensions,
CC can be subdivided into multiple components, usually seven: CC1 - CC7, differing
from the most frontal to the most occipital location, respectively.

Figure 2.4: Illustrations of association (left), projection (center), and commissural (right) bundles.
Adapted from gray (Gray, 1918)

The white matters bundles described above, and sketched in Figure 2.4, can also
be identified on real ex-vivo brains thanks to Klingler dissection (Klingler et al., 1935;
Zemmoura et al., 2016). In the procedure proposed by Klingler et al., the brain is soaked
with a solution containing formalin, and then it is dried and cleaned from blood vessels.
At this point, the white matter axonal pathways are still not visible. However, after a
long freezing period (weeks) followed by fast de-freezing, they become visible due to the
formalin solution dilation. The bundles are manually dissected by scraping the brain with
rudimental wood utensils. The example of a Klingler dissection is shown in Figure 2.5.
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Figure 2.5: Ex-vivo dissection of the IFOF bundle. A → B: formalin. B → C: resection of blood
vessels. C → D: refrigerate. D → E: shock de-freeze and dissection. The white matter pathways
are now visible. Adapted from (Dziedzic et al., 2021)

2.1.2 Virtual representation of white matter structures

Megnetic Resonance Imaging The in-vivo study of the human brain, in particular of
the white matter, requires the use of non-invasive imaging techniques. The last decades
have seen the spread of techniques based on megnetic resonance due to a significant hard-
ware development accompanied by an equally important acquisition protocol refinement.
Magnetic Resonance Imaging (MRI) exploits a big magnetic field, usually of 1.5T, 3T, or
7T, to highlight different types of contrasts (Bitar et al., 2006) in the form of a volumetric
image. The standard brain MRI acquisition, namely structural MRI (sMRI), is sensitive
to the contrast between grey matter and white matter (and Cortico-Spinal fluid (CSF)).
Looking at Figure 2.6 it is easy to notice this contrast, as well as the absence of information
about the white matter structure, which is represented with a constant light gray color.
Different contrasts may be obtained in sMRI by tweaking the acquisition parameters. For
example T1-weighted (T1w) images (see Figure 2.6) enhance only the presence of fat in
tissues, while T2-weighted highlights fat and water presence. In this thesis, we will always
refer to T1w as a structural MRI image.

Diffusion MRI To retrieve information about the WM structures we need a diffusion
MRI (dMRI) protocol (Le Bihan et al., 1986; Basser et al., 1994; Jones, 2010). dMRI
uses multiple magnetic field gradients, i.e., oriented variations of the magnetic field, to
estimate the diffusivity direction of water molecules that are present in the myelin sheath
of white matter axons (Minati and Węglarz, 2007). In this way, dMRI produces a map of
the brain white matter, namely Diffusion Weighted Image (DWI), composed of multiple
channels, representing the intensity of the water diffusivity in a certain gradient direction.
As this type of measure is indirect, i.e., it does not trace diffusion in every single axon,
we can only obtain a discretized approximation of the diffusion at the millimetric voxel
resolution (Pierpaoli et al., 2001). Specifically, the outcome is a sequence of volumetric
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Figure 2.6: Coronal view of structural T1w image (left) and diffusion-based colored FA (right).
The T1w highlights the contrast between grey (dark grey) and white matter (light gray). The CFA
encodes the local diffusion anisotropy in the three main direction: left-right (red), front-occipital
(green), and inferior-superior (blue).

images, also known as diffusivity map, with shape (X, Y, Z,D). Each 3D coordinate
(x, y, z) indicates the voxel location, and d indicates the gradient direction. Moreover,
gradients are usually acquired at multiple field intensity and timiing, the so-called b-values,
resulting in a further increasing of the number of diffusivity maps (one for each b-value).
Different hardware and protocols may acquire a different number of directions D and
b-values, leading to completely different diffusion maps. Also, a diffusion acquisition
requires a non-negligible amount of time, from a few to tens of minutes, during which
multiple signal distortions like small head movement, field variations, etc., happen (Zhuang
et al., 2006; Pierpaoli, 2010).

Luckily, the acquisition protocols and distortion correction pre-processing have improved
over the recent years due the introduction of modern software/hardware acceleration
techniques, but also to some world- or nation-wide initiatives like the Human Connectome
Project (HCP) (Van Essen et al., 2013) and the UK BioBank (Miller et al., 2016). These
projects provide public access to MRI data in quantity, thousands of subjects, while
guaranteeing high acquisition standards, i.e., providing high-quality data. We will exploit
such public resources for the empirical analysis of Chapter 5 and 6.

Model fitting The map of diffusivity within the brain WM is not a ready-to-use object,
as the diffusivity information encoded by the several gradients acquired needs to be
summarized/aggregated. One way to distillate relevant diffusion information is to fit a
mathematical diffusivity model within each voxel of the image. This step is also called
model reconstruction. In the last years, different kinds of models have been proposed, from
the most simple capturing only three directions for each voxel, namely Diffusion Tensor
Imaging (DTI) (Basser et al., 1994; Pierpaoli et al., 1996), to more complex ones, namely
Higher Angular Resolution Diffusion Imaging HARDI (Descoteaux, 2015), able to capture
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tens of directions in each voxel, so that a local Orientation Distribution Function (ODF)
is generated.

Figure 2.7: DTI versus HARDI modeling. The figure depicts different fiber configurations coupled
with the expected pattern p, and the reconstructed models using DTI and HARDI (fODF).
Adapted from (Alexander and Seunarine, 2010)

DTI models In DTI, a 3D tensor is fitted locally in each voxel, and its three main
diffusivity directions are computed as principal eigenvectors, ε1, ε2, ε3 and eigenvalues,
λ1, λ2, λ3, forming an ellipsoid as in Figure 2.7. The same eigenvalues can also be used to
compute a Fractional Anisotropy (FA) map,

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2(λ21 + λ22 + λ23)
,

which compresses the local diffusivity to a single scalar value close to 0 in case of an
isotropic zone (sphere) or to 1 in case of strong anisotropy (thin ellipsoid). The FA map
can be enriched by considering the anisotropy for each of the conventional diffusivity
directions (x, y, z): right-left, anterior-posterior, and superior-inferior, respectively. By
associating the RGB encoding to these components we obtain the colored FA map shown
in Figure 2.6. In particular,

R = FA cosα G = FA cos β B = FA cos γ

, where α, β, γ are the angles between the principal eigenvector ε1 and the x, y, z axes
respectively. Unfortunately, in many zones of the white matter, the axonal pathways
present complex configurations like crossing or kissing, and the modeling of signal based
on 3D tensors cannot capture those configurations (Descoteaux, 2015).
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HARDI models The choice of HARDI models mitigates this problem. The fitting of the
underlying ODF can be performed using different paradigms e.g., model-based (Tournier
et al., 2004, 2007; Dell’Acqua et al., 2007) versus model-free (Tuch, 2004; Wedeen et al.,
2005). In particular, we mention the Constrained Spherical Deconvolution (Tournier et al.,
2004, 2007; Dell’Acqua et al., 2007) model-based approach that produces in output a fiber
ODF (fODF) modelled with spherical harmonics as the ones depicted in Figure 2.7. It is
important to remark that even these advanced HARDI models are not a definitive solution
to the ambiguity of the diffusion signal in certain regions of the white matter. Indeed,
the task of reconstructing diffusion signal is ill-posed, as the same signal might represent
different axonal pathways configurations (Mangin et al., 2013; Jeurissen et al., 2017).

Figure 2.8: Summary of tractography pipeline. The first step is diffusion MRI signal acquisition.
The second step is model reconstruction — in this case performed with CSD. The final step is
the fiber tracking. Image taken from (Tournier, 2019)

Tractography A subsequent step to obtain the virtual representation of white matter
axonal pathways is to estimate them from the diffusivity model. In this step, referred
as tracking or tractography (Basser et al., 1994; Mori et al., 1999; Conturo et al., 1999;
Basser et al., 2000), we can move from a voxel-based representation to a pathway-based
representation (see Figure 2.8). Tractography algorithms track a pathway by (i) seeding the
starting point in a certain 3D coordinate within a WM/GM region, (ii) estimating the next
point at a predefined distance called step based on the underlying diffusivity orientations,
and (iii) iterating the next-step estimate until a stopping condition is satisfied, e.g., gray
matter is reached. The next-step decision is subject to multiple tracking hyperparameters
such as the maximum angular difference between the previous and the next point, and
the length of the step-size. The tuning of these hyperparameters leads to the generation
of different pathways. Their values must be selected in order to reduce the generation of
anatomically implausible pathways, usually referred to as false positive, while maintaining
a comprehensive coverage of the well-known pathways. Moreover, different heuristics of
seeding and stopping, and tracking paradigms affect the tractography output.

Based on the heuristics of seeding, stepping, and stopping, we can differentiate ex-
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isting tractography algorithms. A usual distinction distinguishes among the following
dichotomies:

• Deterministic vs. probabilistic. In deterministic algorithms, the next-step decision is
performed by always choosing the principal diffusion direction. This means that if
we seed two times in the same 3D point, we obtain two equal pathways. When the
underlying diffusion model encodes the basic three directions, e.g., DTI, deterministic
algorithms can track only the easiest pathways (Mori et al., 1999; Basser et al., 2000),
i.e., pathways encoded by the principal directions of voxels, while in the case of an
underlying HARDI model, the algorithms can also track some of the trajectories
passing through confusion regions, e.g., crossing (Descoteaux et al., 2009; Tournier
et al., 2012). However, given the intrinsic ambiguity of the diffusion signal, choosing
the same next step given similar local conditions may lead to missing many existing
pathways. For this reason, probabilistic algorithms choose the next step by randomly
sampling from a pool of possible directions that are within the range of the maximum
angular difference (Descoteaux et al., 2009; Tournier et al., 2010, 2012). As a result,
such algorithms produce a richer set of pathways, including some false positives due
to the stochastic procedure combined with the underlying signal noise.

Figure 2.9: Example of deterministic and probabilistic tracking of the Cortico-Spinal Tract (CST).
Image taken from Calamante (2019)

• Local vs. global. This dichotomy opposes algorithms that decide the next tracking
step based only on the current situation, like in a Markov chain, to algorithms that
consider the impact of the next step for the entire pathway tracked until the current
point or to the neighbor pathways already tracked (Jbabdi et al., 2007; Smith et al.,
2012; Girard et al., 2014; Lemkaddem et al., 2014; Dong et al., 2017b; Aydogan
and Shi, 2018). The simplistic approach of local algorithms is sensitive to local
noise present in the diffusivity model, which then may lead to tracking false positive
pathways that do not respect the underlying anatomy of the white matter. On
the other hand, Global approaches try to overcome the limitations of local methods
but are not able to solve the issue of false positives. The reason is that also global
approaches inherit the limits of locally reconstructed diffusion models.
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• Whole-brain vs. bundle-specific. The tractography procedure does not impose to
track pathways covering the entire volume of the white matter. Instead, one might
be interested in tracking only a portion of it, or a specific bundle (Yendiki et al.,
2011; Thomas et al., 2014; Chamberland et al., 2017; Reisert et al., 2018; Rheault
et al., 2019; Wasserthal et al., 2019; Maffei et al., 2021). In this case, the seeding and
stopping criteria can be delimited to certain white matter regions according to the
target bundle. Additional bundle-specific constraints concerning fiducial waypoints,
the bundle mask, or regions of avoidance can limit even more the tracking. Such
restrictive constraints cannot be applied in the case of whole-brain tractography,
where, however, one might adopt global constraints. For example, a common global
constraint imposes the seeding and stopping only in the interface between white and
grey matter, where we expect neurons’ axons to start or end. Another possibility
is to pre-determine the different tissues in the brain and use the tissue map to
overall constraint the tracking as in Anatomically-constrained tractography (ACT)
(Smith et al., 2012). In terms of computational costs, focusing only on specific white
matter bundles consistently reduces the total amount of computation needed, and
consequently, the duration of the process. Instead, whole-brain tractography is rather
time-consuming.

Tractogram, fibers, bundles The final result of a whole-brain tractography is a trac-
togram (see Figure 2.10), an explicit representation of the brain connectivity structure
within the white matter. It is composed of a collection of virtual pathways, usually
hundreds of thousands or millions, representing the main axonal pathways. Such virtual
pathways are represented as 3D polylines by sequences of 3D points, also called fibers
or streamlines. However, in this thesis, we will indistinctly call them in one or in the
other way. The estimated fibers are characterized by different trajectories and lengths. In
a typical brain, the lengths range between 2cm of U-shaped fibers connecting adjacent
gyri to 20/25cm of fibers connecting the external border of anterior and occipital lobes.
The trajectory of a fiber, which reflects with a certain approximation several real axonal
pathways, define its anatomical meaning. Fibers having similar anatomical meanings
constitute virtual bundles, which are the virtual homologous of white matter bundles
described in the previous section. An explicative visualization of the analogy between real
and virtual bundles is shown in Figure 2.11.

Brain co-registration Another concept we need to introduce is the co-registration be-
tween brain images. Indeed, different subjects and, more in general different MR acquisi-
tions usually lie in different spaces. The result is that the different brain images are not
aligned with each other. The mismatch can be stronger when the two brain images come
from different subjects or smaller when the two images are two separate acquisitions of the
same brain. To compare different brain images, we need to co-register them in a common
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Figure 2.10: Whole-brain tractogram. Virtual representation of the white matter structural
connectivity composed of millions of fibers. Fibers are colored according to the local orientation:
red for left-right, green for front-occipital, and blue for inferior-superior

space. This operation can be be done through rigid, linear, or non-linear warping. Given
a target or reference brain image and a moving brain image, an optimization algorithm
computes the desired transformation that maps the moving to the reference. In the case of
rigid and linear transformations, the mapping is global and thus is represented by an affine
matrix. The difference between the two is that rigid involves only translation, rotation,
and reflection, while linear can also modify an image’s scale and shear. More advanced,
even though more complex to be optimized, are non-linear warps as they compute a
transformation, namely displacement field, which acts differently on each voxel. Example
of existing tools to compute image co-registration are Advanced Normalization Tools
(ANTs) (Avants et al., 2008, 2009) and FMRIB Software Library (FSL) (Jenkinson et al.,
2012).

Tractogram registration Similar to what happens with brain images, one may need to
normalize tractograms or bundles of different subjects to the same space, e.g., standard
brains. In this case there are two registration approaches: image-based and streamlines-
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Figure 2.11: Real (left) and virtual (right) depiction of AF. Ex-vivo photo taken from (De Bene-
dictis et al., 2018).

based. In image-based, the co-registration is computed, as usual, at the voxel level using
brain images and then applied to the points composing each fiber. In streamlines-based, the
fibers of the two subjects are used to compute either a linear transformation via overall fiber
alignment (O’Donnell et al., 2012; Garyfallidis et al., 2015) or a non-linear transformation
via multiple local bundle alignments (Wassermann et al., 2011; Olivetti et al., 2016;
Sharmin et al., 2016; Olivetti et al., 2020). While computationally more intensive, non-
linear streamline-based methods have been demonstrated to be more accurate compared
to non-linear image-based methods (Olivetti et al., 2020).

Cortical atlases Co-registering brains to a common space enable the definition of cortical
atlases as the average of several cortical parcellations of different subjects. Neuroanatomists
draw such parcellations by virtually encoding the anatomical knowledge concerning the
main sulci and gyri via volumetric parcels of structural images (see Figure 2.3). Several
atlases of cortical parcellations have been proposed. Basic parcellations only regards
gyri and sulci (Tzourio-Mazoyer et al., 2002; Desikan et al., 2006), while more advanced
atlases either refine such parcellations into more fine-grained parcels (Destrieux et al., 2010;
Rolls et al., 2015) or integrate multi-modal information such as functional signal (Glasser
et al., 2016; Eickhoff et al., 2018). Typically, such atlases are defined on template brains,
obtained from the averaging of a population. One example is the widely adopted standard
of the Montreal Neurosciences Institute - International Consortium for Brain Mapping
((MNI-ICBM-152) (Fonov et al., 2011), for which it has been computed T1w, T2w, and
Proton Density (PD) contrasts starting from 152 subjects.

Bundle atlases / White matter atlases The possibility to investigate in-vivo white
matter structures through tractography has also led to the creation of a standard collection
of virtual bundles, namely bundle atlases. Early attempts were made by (Catani and
Thiebaut de Schotten, 2012; Wakana et al., 2007; Oishi et al., 2008; Mori et al., 2005) using
basic DTI tracking, while more recently, new atlases based on advanced tracking pipeline
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and large population of subjects were presented (Yeh et al., 2018; Zhang et al., 2018).
In (Yeh et al., 2018) the averaging is made at the level of DWI, which are non-linearly
co-registered to same standard space, MNI-ICBM-152 (Fonov et al., 2011), during the
process of model reconstruction (Yeh and Tseng, 2011). Differently, in (Zhang et al., 2018)
the averaging is performed once the tractogram is computed for each of the considered (100)
subjects. In this case, the co-registration is only linear, and it is computed considering the
tractograms rather than volumetric images (O’Donnell et al., 2012). The two different
computation pipelines have led to visually different atlases: in (Yeh et al., 2018) bundles
are smoother and less voluminous, while in (Zhang et al., 2018) intra-bundle trajectory
variance is higher and the fanning more spread.

2.2 Deep learning

In the context of this thesis, Deep Learning (DL) (LeCun et al., 2015) represents a core
component, and this section summarizes some of the foundations needed to understand
our research choices. In particular, we first describe the basic principles and assumptions
that are behind the success of Convolutional Neural Networks (CNNs) (LeCun and Bengio,
1995) (Section 2.2.1), in order to introduce by analogies and contrasts Geometric Deep
Learning (GDL) (Masci et al., 2016; Bronstein et al., 2017, 2021), a recent family of
methods which extends CNNs to new domains different from images.

hidden layers

output layer

input layer

Figure 2.12: MultiLayer Perceptron (MLP) (Rosenblatt, 1961) architecture.

Deep Learning is a family of machine learning models that relies on artificial neural
networks (ANNs or NNs) (LeCun et al., 2015). In the last decade, DL has established the
state of the art for several applications such as computer vision (Srivastava et al., 2015; He
et al., 2016; Ronneberger et al., 2015), machine translation (Bahdanau et al., 2015), and
natural language processing (Devlin et al., 2019; Brown et al., 2020). However, the origins
of NNs date back to the previous century when McCulloch and Pitts (McCulloch and
Pitts, 1943) proposed the artificial neuron model, which was then used as a building block
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by Rosenblatt (Rosenblatt, 1958) to define the first single-layer neural network, namely
Perceptron. The number of neurons in a NN layer defines its width, while the number of
layers defines its depth. The stacking of several Perceptron layers in depth constitutes an
example of a deep NN known as multi-layer Perceptron (MLP) (Rosenblatt, 1961).

Multilayer Perceptron. The Multilayer Perceptron model (Rosenblatt, 1961) is the
simplest kind of deep NN architecture. It is composed of an input layer, several intermediate
layers called hidden layers, and an output layer, see Figure 2.12. All these layers have the
same structure, typically referred as fully-connected or dense, which involves a parametrized
linear function f(·) followed by a non-linear activation σ(·). We may formulate a layer at
depth l ∈ {1, ..., L} as follows:

f (l)(zl−1) = Wlzl−1 + bl

zl = σ(f (l)(zl−1)),
(2.1)

where zl−1 is the output vector of the previous layer whileW and b are learnable parameters
with W being a matrix of weights and b the bias vector. For the sake of simplicity we can
indicate a layer as a single function h(l)θ , parametrized by the set of learnable parameters
θ(l). It follows the MLP formulation:

y = h
(L)
θ ◦ h

(L−1)
θ ◦ · · · ◦ h(1)θ (2.2)

The training of a NN aims to learn the set of parameters that best approximate a
given data distribution. In practice, this is formulated as an optimization problem, where
the parameters are adjusted by iteratively minimizing a differentiable error function, also
known as the loss function. The training procedure is based on the Hebbian learning rule
(Hebb, 1949), which consists of an iterative update of the network parameters based on the
minimization of the current prediction error. The direction or gradient toward which each
parameter must be updated can be computed with the partial derivative of the error with
respect to the parameter itself. The computation of the derivatives is done in the backward
direction: starting from the output layer until the input layer, in a procedure called error
backpropagation (Werbos, 1988; Rumelhart et al., 1986). Once the gradients are computed,
an optimization algorithm, usually based on Stochastic Gradient Descent (SGD) (Robbins
and Monro, 1951), is in charge of computing the updated set of parameters also considering
a scaling factor, namely learning rate, which regulates the amount of update to be done at
each training iteration. We may formulate the learning rule as follows:

Wt+1 = Wt + ∆W

∆W = −η ∂L
∂W

(2.3)

where, W is the weight matrix, L is the loss function, and η is the learning rate.
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From the definition of the loss function, we can have different training settings. The
two most usual are supervised and unsupervised. In the first, the loss exploits external
supervision, i.e., data annotations or labels, to quantify the correctness of a prediction.
In the second setting, instead, there is no availability of labeling the data. Thus the loss
function must encode some kind of proxy tasks where there is no need of labels, e.g., input
reconstruction.

Representation learning The success of NNs resides in their ability to learn hierarchical
representations directly from data. In contrast to traditional machine learning models,
which need to pre-define a set of features representing the input data, NNs can learn
new features guided by the optimization of the task at hand. The intuitive idea is each
layer learns a mapping that project its input data into a new latent space, where data are
distributed according to a new set of features more convenient for the objective task. The
stacking of multiple layers allows the learning of hierarchical representations.

While representation learning is the most powerful aspect of NNs, the generation of
meaningful representations highly depends on the architectural choices, e.g., the type and
disposition of layers. Indeed, the architecture of a NN conveys an inductive bias for the
type of data regularities that the NN can learn. Different data structures present different
regularities and thus require different NN architectures to be properly processed. For this
reason a large variety of NNs is being proposed in the literature (Schmidhuber, 2015),
which may be categorized using a few fundamental class of architectures: Recurrent NNs
(RNNs), Convolutional NNs (CNNs), PointNets, Graph NNs (GNNs), and Transformers.
Among these, we set our attention on CNNs, PointNets, and GNNs in the next paragraphs.

2.2.1 Convolutional neural networks

The rise of Convolutional Neural Networks (CNNs) has origins to emulate human vision.
Fukushima (Fukushima, 1980) and later Lecun et al. (LeCun et al., 1989) proposed the
firsts pioneer CNNs architecture highly inspired by the vision circuit model of the human
brain proposed by (Hubel and Wiesel, 1959). While not effective at that time, these
works provided groundbreaking intuitions that are now at the base of every modern CNN
architecture. The idea is to exploit the grid structure underlying the images to generate
a hierarchical sequence of latent representations that capture certain visual patterns
independently of where these are located in the image grid. Learning new representations
at different grid resolutions allows a CNN to individuate both simple and complex patterns
like corners and faces, respectively. These properties led to a breakthrough in computer
vision when in 2012 Krizhevsky et al. won the ImageNet classification challenge. Since
then, there has been continuous advancement by introducing milestone architectures to
tackle different computer vision tasks. Residual networks (Srivastava et al., 2015; He
et al., 2016) has become the standard for image classification, as well as encoder-decoder
architecture like U-Net (Ronneberger et al., 2015) set the state-of-the-art for many image
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(a) (b) (c)

Figure 2.13: (Symmetries of the grid domain. (a) relation between the grid domain, the image
signal, and the symmetries. (b) Example of pooling (P ) to coarsen the grid. (c) Translation
equivariance of the image convolution (C), S stands for shift. Adapted from (Bronstein et al.,
2021)

segmentation tasks including neuroimaging applications (Dong et al., 2017a; Wasserthal
et al., 2018).

A better explanation of the success of CNNs may be obtained by adopting a geometric
perspective as proposed by (Bronstein et al., 2021). In this geometrical view, given a
domain characterized by a certain structure like a grid and a class of signals defined on
it as images, we want to explicit which are the geometric priors that a NN must encode
as part of its inductive bias in order to learn a task on these signals. In particular, we
describe three types of geometric priors playing a key role in existing NNs: symmetries,
local deformations, and scale separation.

Considering the specific case of CNNs, which excels on task based on the image signal,
we may refer, as domain, to the Euclidean plane discretized with a 2D grid Ω = ZH × ZW ,
and, as signal, to the grayscale images defined as functions on that grid: x ∈ X : Ω→ R.
Moreover, we can formalize the usual image-based tasks, e.g., image classification and
segmentation, defining a generic target function y : X (Ω)→ Y that we aim to approximate
with our NN.

Symmetries With this formulation, we may identify a group of symmetries T (Ω) that
characterizes the grid domain Ω with respect to y. We may define a symmetry of an object
or a system as a transformation τ ∈ T that preserves a certain property of it. Symmetries
are always invertible transformations, and their composition generates a new symmetry.
The symmetries of a domain are also inherited by the function defined on the domain
itself, X (Ω) in this case, and thus impose a geometric structure on the target function y.
However, different target functions, i.e., tasks, may be affected differently by the domain
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symmetries. In some tasks the output of y is invariant with respect to τ ∈ T (Ω):

y(τ(x)) = y(x) (2.4)

Alternatively, there are other tasks in which the output of y has the same structure of the
input, and thus must be affected by τ in the same way of the input:

y(τ(x)) = τ(y(x)) (2.5)

In this case y is said to be equivariant with respect to τ ∈ T .

Stationarity Considering the 2D grid domain Ω, the group of translations are symmetries
for its structure, and are applied via the shift operator to images x ∈ X (Ω): τs(x) = x− s,
where s ∈ Ω is a 2D vector. See Figure 2.13. In the case of image classification the class
of an image is invariant to shifting, while in case of segmentation the output mask must
shift equally i.e. equivariant to the input. Hence, to learn efficiently such tasks we search
for a NN that is translation invariant or equivariant depending on the task.

Local deformations and scale separation While symmetries are global transformations
to which we aim to provide an exact invariance or equivariance, in practice it often happens
that there are local symmetries, namely deformations, to which we can only provide an
approximate invariance. Local deformation fields ` can alter the signal at different degrees
of entity, from imperceptible deformations to highly visible distortions. We can indicate
the distortion as the smoothness of the deformation ∇`. Considering invariance (2.4) and
equivariance (2.5) equations respectively, we obtain the following:

||y(`(x))− y(x)|| ≈ ||∇`|| (2.6)
||y(`(x))− y(x)|| ≤ ||∇`||||x|| (2.7)

When one of these approximate equality or inequality is verified, we say the y is locally
stable. Such a property is crucial if we consider as local deformation the coarsening `p of
an image, which aggregates adjacent pixels. In fact, thanks to (2.6) we can state that
a hierarchy of grid resolutions like Ω,Ω′,Ω′′, . . . , maintains at each scale the important
information of x, see Figure 2.13. Also, assuming the local stability of y, we can factorize
it using different resolutions:

y ≈ y′ ◦ `′p, `′p : X (Ω)→ X (Ω′), y′ : X (Ω′)→ Y (2.8)

In practice, this means that we can separate across scales long-range interactions between
features that model complex objects like faces.
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Grid convolution Let us define a discrete convolutional filter in case of a 2D grayscale
image x = x(Ω) as a small matrix c(θ) of learnable parameters having size (Hc,W c). The
convolution on x is then referred as c(θ)x = x ? θ. For each point of the image, (u1, u2),
the convolution operator first computes an element-wise multiplication between the filter
centered on that point and the point neighborhood, then it reduce the obtained matrix
via summation (see Figure 2.17):

(x ? θ)ij =
Hc−1∑

i=0

W c−1∑

j=0

θijxu1+i,u2+j (2.9)

We may observe that the choice of a small convolutional filter is in agreement with the
local deformation prior. Indeed, according to (2.9) and (2.7), the convolution operation
is equivariant with respect to local deformations including local translations, and thus
locally stable. Also, as the convolutional filter is slid along all the coordinates (u1, u2) ∈ x

following a sequential arbitrary order, we derive other two desired properties. The first
is that the sliding filter becomes equivariant to global shift i.e. to image translations,
while the second is that the sliding allows the use of a fixed (small) amount of parameters
regardless of the size of the image.
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Figure 2.14: Schematic example of a CNN architecture (left) and U-Net (Ronneberger et al.,
2015) (right).

CNN architecture A convolutional layer, g(·), is composed of a convolution c(θ) followed
by a non-linear activation σ(·):

g
(l)
θ (x) = σ(c(θ)x) (2.10)

In a typical CNN architecture (see Figure 2.14(left)) for classification, several convolutional
layers are stacked in-depth to compose the encoder part of the network. However, while
these layers guarantee local stability to the encoder, they struggle to capture long-range
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dependencies. For this reason, convolutional layers are usually interleaved with local pooling
layers p(·), which perform coarsening using aggregators like max or mean. In this way, the
CNN may also exploit the scale separation prior. Then, to produce a single latent feature
vector of the input, a CNN may either flatten the feature maps or employ a global pooling
layer pG that performs a single reduction again using max or mean. Lastly, the CNN
uses a classification head, typically an MLP hθ, which takes as input the single descriptor
generated by the encoder and outputs a classification prediction. We may formulate the
whole architecture as follows:

hencθ = p
(L−1)
G ◦ g(L−1)θ ◦ p(L−2) ◦ g(L−2)θ ◦ · · · ◦ p(1) ◦ g(1)θ

y = h
(L)
θ ◦ hencθ

(2.11)

A schematic example of a CNN architecture is shown in Figure 2.14(left).

U-Net A very common CNN architecture for image segmentation to which we will
refer later in this thesis is U-Net (Ronneberger et al., 2015). The “U” in the name
indicates the peculiar shape of this architecture, shown in Figure 2.14 (right). Differently
from classification networks, in segmentation architectures, the encoder is followed by a
specular network, namely decoder, that instead of encoding and downsampling, decodes
(via convolution) and upsamples until it generates an output having the same size as the
input image. In the case of binary segmentation, the output image is a mask having 1s
in the pixel where the target object is expected to be and 0s elsewhere. In the U-Net
architecture, the decoder layers are conditioned directly, through skip connections, by the
layer of the encoder that is specular in the “U“. The idea behind the skip connections is
that features extracted while encoding/downsampling the image are richer than features
extracted while decoding/upsampling it. Hence, integrating the two different features map
done via summation generates higher-quality feature maps. Interestingly, skip connections
have been demonstrated to be particularly important for medical imaging applications
(Drozdzal et al., 2016).

2.2.2 Geometric deep learning

We have shown that the geometric prior on the Euclidean grid domain allows CNN to work
exceptionally well on a grid-based signal. However, in the real world, there are many other
domains and signals not characterized by a grid, but for which we would like to extend
CNN-like models. We refer to the family of models that does not rely on a Euclidean grid
domain as Geometric Deep Learning (GDL) (Masci et al., 2016; Bronstein et al., 2017,
2021).

Graphs and point clouds In particular, for the aim of this thesis, we are interested in
introducing two non-Euclidean domains: graphs and point clouds. A graph G is a structure
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Figure 2.15: Typical architecture of a GDL neural network. The figure illustrate a graph neural
network where the input graph is embedded through an equivariant layer, then locally aggregated
with a permutation invariant pooling, and again embedded with a second graph convolution layer.
Finally, applying global max pooling generates a single descriptor for the input graph, which can
be classified via a standard MLP. Image taken from (Bronstein et al., 2021)

where nodes V are connected each other with edges E : G = (V , E). A point cloud then
may be seen as a special graph without edges, E = ∅, also referred to as set. Graphs and
point clouds are highly flexible structures, and indeed they may be used to model different
real-world scenarios. Based on the scenario, the nodes can have a completely different
semantic such as persons in social graphs, regions in brain connectome, or 3D points in
meshes. Thus we can generically indicate them as d-dimensional vectors x ∈ V . Following
the same notation used for grid we obtain: Ω = G, and X = (G,Rd).

Cardinality and graph isomorphism Both graphs and point clouds domain when con-
sidered in the usual tasks of object classification or segmentation (node classification)
are characterized by the same group of symmetry, the permutation group. This type of
symmetry preserves the cardinality |X | as well as the connectivity of a graph i.e,. produces
a new graph isomorphic to the input one. The permutation group applies on X by
permuting in all possible orderings the points/nodes in it. If we indicate the permutation
transformation as τp, we can define permutation invariance and equivariance as in (2.4)
and (2.5) respectively, by simply replacing τ with τp.

GDL architectures To have CNN-like architectures also for graphs and point clouds, we
may recall the prototypical architecture of CNN, which alternate parametrized equivariant
(convolutional) layers with local or global poolings. We want to individuate similar types
of layers to compose GDL architectures, see Figure 2.15. However, the grid convolution as
in (2.9) requires locality and stationarity symmetries that are not present by constructions
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Figure 2.16: PointNet architecture. Image taken from (Qi et al., 2017)

in non-Euclidean domains. Also, grid-based local poolings are not always applicable as we
can no more rely on fixed-size neighborhoods. Instead, global poolings might be a viable
solution for both point clouds and graphs, but only at the condition of using permutation
invariant operations, e.g., max or mean.

Point-wise linear function In point clouds the relations between points are not explicit
i.e., E = ∅, and thus we can encode them independently. One way to do that is with a
point-wise learnable linear function f like the one of dense layers in Equation (2.1). We
can show the permutation equivariance of f by considering equation (2.5); by substituting
y with the linear function f , τ(·) with the permutation function τp(·), and the single point
x ∈ Rd with the entire point cloud X we obtain:

f(τp(X )) = τp(f(X )) (2.12)

Then, considering the shared point-wise application of f , we can write:

Wτp(xi) + b = τp(Wxi + b), ∀xi ∈ X
τp(xi) = xi, ∀τp ∈ T
Wxi = Wxi

(2.13)

Pointnet A famous architecture for point cloud, which will be recalled later in the thesis,
is PointNet (Qi et al., 2017) (see Figure 2.16). PointNet is a flexible yet powerful model
that can be used for point cloud classification and segmentation with little variations.
The classification variant is composed of an encoder which maps the point cloud X to
a single descriptor, namely global feature, and a classification head. The encoder and
the classification head are MLPs to guarantee permutation equivariance and invariance,
respectively. The encoder is the same in the segmentation variant, while the segmentation
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head is built to be equivariant to the input permutations. To do so, the global feature is
stacked |X | times and concatenated to a latent representation of X obtained after the first
layers of the encoder. The newly obtained representation of the point cloud is classified
point-wise with an MLP. It is important to notice that this network never downsamples or
aggregates points in the input point cloud except for the single global pooling at the end
of the encoder. Hence, it never exploits the local context of the points.

Figure 2.17: Comparison between grid and graph convolution. On the left an example of how
a grid convolutional filter is applied on the pixel structure. The pink pixel is updated using
the information in the contextual pixels. On the center, the analogous situation with graph
convolution. Nodes at 1-hop distance from the pink node are used to aggregate/learn contextual
information. Image credits: Simone Scardapane

Graph convolution When considering graphs with E 6= ∅, we have locality given by
1-hop edges. Differently from locality in grid, here we do not have a fixed number of local
neighbors but rather a varying number depending on the existing edges. We may define
the set of 1-hop neighbors of a node xi as Ni = {j : (i, j) ∈ E}. Again, as in the case of
point clouds, we want to apply a shared function node-wise, this time indicated with φ,
to obtain permutation equivariance on the entire graph G. This means that φ is locally
applied to each tuple (xi,Ni) – in a parallelism with the grid convolution (Section 2.2.1),
φ represents the convolutional filter, which in this case is known as propagation or message
passing. See Figure 2.17. To guarantee global permutation equivariance, φ must not affect
the structure G. Hence, it has to be permutation invariant. A graph convolution φ can be
obtained with an aggregator operator

⊕
such as max or average, applied over a learnable

linear transformation of xj ∈ Ni weighted by the importance of xj with respect to xi:

zi = φ

(
xi,
⊕

j∈Ni

eijf(xj)

)
(2.14)

In the simplest formulation of graph convolutions eij is a given constant (Kipf and Welling,
2017), while in more advanced formulations like graph attentional convolutions (Veličković
et al., 2018) and dynamic graph CNN (Wang et al., 2019) the value of eij is learned.
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Related Works

Tractogram analysis is pivotal for several real-world applications, e.g., neuroanatomy
understanding, neurosurgical planning, brain connectomics, and neuroscientific group
studies. However, reconstructing highly accurate tractograms is hard, especially due to
the multiple pre-processing steps and tracking parameters involved in a tractography
pipeline. One of the main problems affecting tractograms is the abundant presence of
false positive fibers, which are anatomically non-plausible. The current literature is facing
this problem by imposing anatomical priors either during the tracking or after it, i.e.,
directly on tractograms. In this thesis, we focus on the latter. In particular, we inspect
solutions that segment WM regions of interest (ROIs) to avoid false positives in well-known
bundles (see Section 3.1), and solutions using fiber-specific plausibility criteria to filter
entire tractograms (see Section 3.2).

Tractogram applications In the real world, there are plenty of scenarios where trac-
tograms play a key role. For such scenarios, the quality of tractograms considerably affects
the outcome of the task, and for some clinical cases, it might even be life-saving. Some
exemplary applications are:

• Neuroanatomy understanding, e.g., (Maffei et al., 2018; Jeurissen et al., 2017; Hau
et al., 2016, 2017; De Benedictis et al., 2016), where studies are aimed to confirm or
explore in details the anatomy of certain white matter structures. For examples (Hau
et al., 2016, 2017) individuate new termination regions for the inferior front-occipital
fasciculus (IFOF) and the uncinate fasciculus (UF).

• Neurosurgical planning and intervention, where surgeons first plan the intervention
strategy and then operate with the help of a neuro-planning and -navigation soft-
ware (Essayed et al., 2017; Henderson et al., 2020; Yang et al., 2021; Clark and
Byrnes, 2010; Orringer et al., 2012). The structural images, the tractography, and
the volumetric mask of anatomical structures such as bundles or fiducial ROIs are
provided to the software, which can be used to plan the surgery trajectory and
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subsequently to support the operation. The more accurate the provided information
is, the higher is the possibility for neurosurgeons to limit post-operative injuries or
cognitive impairments.

• Brain connectomics, where the focus is to understand the interactions between
different cortical regions. Such interactions are modelled as edges of a graph whose
nodes are the regions. The corresponding graph adjacency matrix, also known as brain
connectome (Sporns et al., 2005; Sporns, 2013), contains in each cell an estimate of the
connectivity between two regions based on the fibers connecting them. Characterizing
the connectome may help to validate functional correlations but also explore the
information integration, segregation, and propagation in the brain (Yeh et al., 2020;
Toga et al., 2012).

• Neuroscientific group studies, which often require reliable in-vivo tractography. Neu-
roscientists may be interested in quantitatively characterizing bundles of interests by
means of tractometry. For example, the Fractional Anisotropy (FA) distribution along
a bundle produces what is called the tract profile (Yeatman et al., 2012; Chandio
et al., 2020; Kruper et al., 2021). Statistical group analysis based on tractometry
may reveal meaningful patterns across populations as well as atypical conditions of
specific subgroups of individuals. Also, in the case of longitudinal studies (Leitner
et al., 2015), tractometry quantifies the development of white matter structures.

Challenges of tractography Tractography pipelines are complex and involve the choice
of multiple pre-processing steps and tracking parameters (see Section 2.1.2). Quantitative
studies like Bastiani et al. (2012); Thomas et al. (2014) have investigated how the choice
of hyperparameters might impact the result of tracking algorithms. Especially stochastic
methods for probabilistic tracking introduce a significant source of variability and a critical
dependency from the choice of parameters’ values. In general it has emerged that slightly
different choices may produce quite different tractograms (Bastiani et al., 2012; Thomas
et al., 2014), and the evaluation of their accuracy is not straightforward (Neher et al.,
2015; Girard et al., 2020; Rheault et al., 2020b,a).

In the last years the issues of tractography reliability and reproducibility have been
approached with several data analysis contests: FiberCup on 2011 (Fillard et al., 2011),
ISMRM 2015 tractography challenge (Maier-Hein et al., 2017), Traced on 2017 (Nath
et al., 2020), Votem on 2018 (Schilling et al., 2019b), and DISCO 2021 (Girard et al.,
2021). The design of these contests is quite similar, and it is based on the use of a phantom
to define the ground truth in advance (Côté et al., 2013). The evaluation is carried out
by measuring the mismatch between the synthetic model and the tractograms computed
using the state of the art methods. These initiatives achieved a general agreement on the
main limitations of the tractography techniques.

A recurring weakness of tracking algorithms is the generation of false positive fibers (Maier-
Hein et al., 2017). With the evolution from DTI to HARDI tractography, most algorithms
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Figure 3.1: Example of false positive generation in tractography. Under each set of bundles the
volumetric overlapping (OL) (volumes intersection) and overreach (OR) (volumes difference)
quantify the impact of false positives and negatives. It can be observed an high OR value
especially for HARDI PROBA, confirming the presence of a large amount of false positives. Image
taken from (Maier-Hein et al., 2017)

have been able to produce high sensitivity tractograms, i.e., to miss less well-known
pathways, at the cost of increasing the number of false positives fibers, i.e., decreasing
specificity (Thomas et al., 2014), and often to over-track the easiest pathways. See
Figure 3.1 The result is that the fiber density is not compatible with the physiological
distribution of axons in the white matter (Raffelt et al., 2012) and that there is a large quan-
tity of anatomically non-plausible streamlines, which for example, terminates prematurely
inside the WM or connect cortical regions known to be unrelated. Balancing sensitivity
and specificity of tracking is a hard problem so that there is no best tracking algorithm, but
rather one can find the most suitable for a certain application (Thomas et al., 2014). For
instance, (Zalesky et al., 2016) demonstrates that for connectome analysis, false positive
streamlines are twice impactful as false negative ones, and consequently (Sarwar et al.,
2019) suggested that deterministic is preferred over probabilistic in this application.

Anatomical prior in tractography Recent strategies of tractography are trying to
mitigate the generation of false positive fibers by introducing additional anatomical
constraints. The idea is to integrate such anatomical priors as part of the tracking heuristics.
For example, seeding and stopping criteria have been revised to be driven by the gray
matter, and white matter interface (Smith et al., 2012; Girard et al., 2014; Lemkaddem
et al., 2014) or the tracking have been constrained using topographic regularity (Aydogan
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and Shi, 2018) and geometric shape priors (Dong et al., 2017b). However, the brain white
matter anatomy is not entirely known, and thus it is not possible to perfectly constrain a
priori the whole brain tracking. Small errors in the application of whole-brain constraints
like a noisy tissue segmentation in ACT (Smith et al., 2012) might inhibit the generation
of entire bundles such as the IFOF or the UF, which pass through delicate regions close to
the WM boundaries (Wasserthal et al., 2018).

For this reason, it turns out to be easier and effective to focus on the characterization
of white matter where the anatomy is well-known (Schilling et al., 2020). This typically
means to characterize WM regions of interest (ROIs) that define specific bundles (Yendiki
et al., 2011; Maffei et al., 2021; Thomas et al., 2014; Chamberland et al., 2017; Reisert
et al., 2018; Rheault et al., 2019). Alternatively, a more global WM characterization might
be obtained at the level of tractogram by defining the property of a fiber pathway to get
considered either plausible or non-plausible, i.e., artifactual. We discuss existing methods
based on these two types of characterizations in the following sections 3.1 and 3.2.

3.1 ROI-based WM characterization

Anatomical regions are the easiest way of characterizing white matter. They are typically
used to define the pathway of well-known bundles. For example, neuroanatomists use
them to guide the ex-vivo brain dissection (Sarubbo et al., 2013; Martino et al., 2010). By
localizing eloquent white matter regions, e.g., the stem of a bundle (Hau et al., 2016, 2017),
they can dissect the pathways of interest. Analogously, given a tractogram of millions
of fibers, virtual ROIs can be used to extract the (small) portion of fibers belonging to
well-known bundles.

In literature this procedure is usually referred as ROI-based bundle segmentation, in
contrast to other bundle segmentation approaches based only on the fiber pathway e.g.,
clustering-based (Siless et al., 2018; O’Donnell et al., 2006; O’Donnell and Westin, 2007;
Guevara et al., 2012; Garyfallidis et al., 2012), correspondence-based (Garyfallidis et al.,
2018; Sharmin et al., 2018), and classification-based (Gupta et al., 2017; Olivetti and
Avesani, 2011; Zhang et al., 2020), which we consider out of the scope for this thesis.
ROI-based approaches are widely adopted as they allow anatomically grounded, i.e.,
anatomy-driven, and convenient solutions that avoid dealing directly with millions of
streamlines, while still producing a fiber-based representation of the bundle as output.

The typical ROI-based segmentation procedure consists of two steps: (i) ROIs are
segmented on volumetric images of the brain, and then (ii) combined through logical
operators such as AND, OR, NOT, to extract the fibers of interest from the tractogram.
In the first step, the segmentation of ROIs can be performed manually; otherwise, ROIs
can be derived by existing template and parcellation atlases. This step is crucial as it
allows the encoding of anatomical knowledge into anatomical prior. We describe the
existing techniques of WM ROI segmentation in the next Section. Similar to step one,
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also the second step of bundle extraction can be done via manual/ad-hoc combination
of ROIs, or automatically, via segmentation rules or protocols, which define in a general
and reproducible way the trajectory of well-known bundles. Methods that adopt a fully
automatic segmentation approach involving atlas-ROIs and segmentation rules are usually
referred to as rule-based methods.

Another approach to ROI-based WM characterization is proposed by direct CNN-based
methods (see Section 3.1.3). In this approach, the WM characterization is faced with
data-driven methods based on Convolutional Neural Networks(CNNs). The basic idea is
to directly segment bundles as volumetric ROIs, namely bundle masks, from the diffusion
images of the brain. Compared to manual and rule-based methods, which adopt two
steps to obtain a bundle of fibers as output, there is a single step leading to a volumetric
segmentation of the bundle. No fibers are involved during this process.

3.1.1 White matter ROI segmentation

The task of white matter ROI (WM-ROI) segmentation concerns the delineation of one
or multiple regions within the white matter volume. Practically, this task consists in
producing a binary mask of the brain, having 1s in the voxels composing the region of
interest (ROI) and zeros elsewhere. In addition to the aforementioned manual versus
atlas-ROIs, we may distinguish between anatomical and heuristic ROIs. The former have
a well-defined anatomical meaning, delineating fiducial regions of the WM or termination
regions in the interface GM/WM of gyri and sulci. Contrarily, the latter has no anatomical
correspondence and serves only to facilitate the segmentation of bundles. For example, a
heuristic ROI could be a 2D plane used as a primal filter to extract a broad superset of
the bundle or an ROI to avoid fibers not belonging to the bundle, including artifacts.

Figure 3.2: Manual ROI-based bundle segmentation. ROIs are sketched on the 2D views (sagittal,
coronal, and axial) of the brain. Then, they are combined to filter the bundle of interest, in this
case an Arcuate Fascicle. Image credits: Paolo Avesani

Manual ROIs In the manual ROI segmentation, schematized in Figure 3.2, the expert,
with the aid of software, draws the ROIs of interest on a volumetric brain image like the
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T1w or the FA of the subject at hand. In the common software, e.g., TrackVis (Wang
et al., 2007), MRTrix3 (Tournier et al., 2019), and many others (Rheault et al., 2016;
Norton et al., 2017; Yeh, 2021; Fischl, 2012; Jenkinson et al., 2012; Yushkevich et al.,
2006), the segmentation of anatomical ROIs is performed on (one or more) 2D slices of
the reference image. For this reason, anatomical ROIs are often planar-like, as shown in
Figure 3.2. The segmented anatomical ROIs are then used as inclusion ROIs to extract
the fibers which they intersect. If among the extracted fibers there are still artifacts or
other fibers not belonging to the bundle of interest, experts can remove them by drawing
ad-hoc heuristic ROIs, which are used as exclusion ROIs. Since these ROIs do not have
to match the underlying anatomy, they are usually outlined with regular shapes such as
spheres, disks, or entire planes, already available in the software.

The manual drawing of ROIs on subject-specific reference images is undoubtedly
an ideal way of characterizing the white matter anatomy. First, because ROIs directly
encode the anatomy. Second, expert supervision guarantees the extraction of anatomically
plausible and accurate bundles. However, the manual approach also has some practical
drawbacks. It requires high expertise, and it is very time-consuming (Jones, 2008). Also,
the final segmentation depends on the expert subjective interpretation of the WM anatomy,
which is often in disagreement with the interpretation of other experts (Rheault et al.,
2020a; Schilling et al., 2021). As a result, the manual approach does not scale to a large
or even medium population of individuals.

Template and parcellation atlas ROIs One solution to scale up ROIs segmentation to
populations is the definition of atlases of ROIs on standard brains like MNI152 (Fonov
et al., 2011). The idea is that ROIs might be segmented only a few (tens) times for
the definition of the atlas and then derived to subject-specific anatomy through image
registration. ROI atlases can be created in different ways and encode different anatomical
information. For examples, in works such as (Catani et al., 2002; Catani and Thiebaut
de Schotten, 2008, 2012; Mori et al., 2005; Wakana et al., 2007; Thiebaut de Schotten
et al., 2011; de Groot et al., 2013; Warrington et al., 2020; Rheault et al., 2022) one or two
anatomical ROIs of “obligatory passage” are drawn to segment each well-known bundle on
a subset of subjects. Then, the segmented ROIs are averaged to obtain template ROIs.
In some cases like (Wakana et al., 2007; Warrington et al., 2020) also exclusion ROIs are
defined as part of the atlas. Otherwise, there are parcellation atlases, e.g., (Salat et al.,
2009; Schiffler et al., 2017), which instead of defining template ROIs from manual drawing,
expand cortical parcellations to cover also part of the white matter.

In general, ROI atlases are a convenient way of encoding anatomical information of WM.
Once defined, their application at a large scale comes at no cost. However, the syntactical
definition of comprehensive ROI atlases requires extensive knowledge (and agreement) of
the WM anatomy, which is, to date, still not available. Existing atlases are limited to the
most well-known major white matter bundles (Hansen et al., 2021), and they are missing
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some anatomical landmarks, which have been already investigated in post-mortem studies.
For example, the stems of the IFOF and the Uncinate Fascicle (Hau et al., 2016, 2017) are
not present in any of the existing atlases. Another critical aspect of ROI atlases is the poor
anatomical specificity (Figley et al., 2017). The process of ROIs averaging to accommodate
the anatomy of a group of individuals, and guarantee reproducibility, leads to the loss of
subject-specific anatomical variabilities (Wakana et al., 2007). This phenomenon is even
more accentuated by the step of registration to a new subject. Although modern (non-
linear) registration algorithms, e.g., (Avants et al., 2008), employ advanced optimization
techniques, it is very unlikely to perfectly map the smoothed/simplistic anatomy of a
standard brain to the specific anatomy of the target subject. As a result, co-registration
and generalization errors can highly affect the final segmentation, especially when involving
small ROIs.

3.1.2 Segmentation rules definition

Segmentation rules are generated by combining multiple ROIs in logical propositions. In
the literature there are many methods adopting a rule-based approach, e.g., Automatic
Fiber Quantification (AFQ) (Yeatman et al., 2012), White Matter Query Language
(WMQL) (Wassermann et al., 2013, 2016), and XTRACT (Warrington et al., 2020).
These methods propose segmenting bundles based on ROIs borrowed from existing atlases.
In particular, AFQ and XTRACT present segmentation rules for 20 and 42 bundles,
respectively, combining multiple waypoint and exclusion ROIs. Differently, WMQL proposes
a set of open rules, which can be adapted to different atlases of ROIs. The WMQL
assumption is that there is no gold standard of anatomy, but experts may redefine rules
based on new anatomical findings. An example might be again the case of the stem of
IFOF and UF (Hau et al., 2016, 2017), whose discovery led to the revision of those bundles’
termination regions. Thanks to the use of open rules, WMQL has become widely adopted
in the community, and also in our case, we decided to use it as the reference method for
the approach presented in Chapter 5.

WMQL (Wassermann et al., 2016) In WMQL the proposed query language is composed
of predicates that act on anatomical ROIs derived from existing parcellations like (Salat
et al., 2009; Desikan et al., 2006; Fischl et al., 2002), and logical operators e.g., AND, OR,
which combine them to obtain segmentation rules. Specifically, Wassermann et al. identify
two types of predicates, referred as: divisional terms, and relative clauses. Divisional
terms are anatomical predicates stating if streamlines traverses or ends in a certain brain
structure, such as only(roi_name) and endpoints_in(roi_name). Relative clauses are
instead relative position predicates indicating whether the streamlines are, for instance,
superior_of(roi_name) or frontal_of(roi_name) to a brain structure. Using this
formalism each bundle of interest can be defined in a strict and reproducible way.
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Rule-based methods are principled for the current knowledge of anatomy. The result
of the segmentation is a direct consequence of the anatomical definition provided for the
bundle at hand. However, this means that a (probable) poor anatomical specificity of the
employed atlas ROIs negatively impacts the accuracy of the final segmentation. For this
reason, rule-based methods usually require a subsequent step of manual revision, where
some additional exclusion ROIs are used to remove false positive fibers. In some cases, it
can also happen that instead of false positives, a segmentation rule underestimates the
true pathway by missing several streamlines as false negatives. This case usually happens
when the segmentation rules contain multiple exclusion ROIs, which may wrongly fit the
target brain’s anatomy.

3.1.3 Direct CNN-based methods

Direct CNN-based methods adopt a data-driven approach to learn the segmentation of
bundle masks in new unseen brains. A dataset of reference fiber bundles, usually obtained
with manual and rule-based procedures on multiple subjects, is used to derive a new dataset
composed of the corresponding bundle masks. These masks are used as ground-truth
for training a segmentation CNN, which is fed with diffusion-based images such as DTI
or fODF. It is important to remark that given the translation equivariance and local
stability of CNNs (see Chapter 2.2.1), the input brain images need to be only rigidly
co-registered. At the end of the training, the CNN is able to segment all the bundle masks
of a new subject with a single inference step. The output is a binary 4D mask of shape
(H,W,D,Nb), where Nb is the number of target bundles to segment.

In the recent literature various direct CNN-based methods have been presented (Li
et al., 2020; Lu et al., 2021; Wasserthal et al., 2018, 2019). They mainly differ for the type
of input signal adopted, e.g., DTI versus fODF peaks, and training procedure, e.g., use
of self-supervised loss. Such methods have achieved exceptional performance on bundle
segmentation, being the top performer until the very recent publication of Classifyber (Bertò
et al., 2021). In the following, we describe in more detail TractSeg (Wasserthal et al., 2018,
2019) the pioneering and most adopted direct method, which we choose as a competitor
for our experiments in Chapter 5.

TractSeg (Wasserthal et al., 2018) This method proposes to segment the volumetric
mask of bundles directly from the image of the fODF peaks of the white matter. An
fODF peak is a 4D image encoding the direction of the three main spherical harmonics
within each voxel. The resulting shape is (H,W,D, 9). As in other direct methods, the
ground-truth is a 4D sequence of binary bundle masks, (H,W,D,Nb). TractSeg employs a
standard U-net model (Ronneberger et al., 2015), whose training is performed by feeding
randomly sampled slices of the input peaks. The evaluation is carried out on a dataset of
105 healthy subjects, split into 84/21 for train and test. The performances are measured
in terms of volumetric overlapping with the reference bundle masks.



CHAPTER 3. RELATED WORKS 43

Figure 3.3: Streamline-based bundle (left) and voxel-based bundle, i.e. bundle mask (right).

TractSeg obtains the state of the art results in bundle segmentation. However, the
produced voxel masks are rather rounded and smoothed both in the central part of the
bundles but also in the termination part, where instead, the bundle is expected to have
jiggled fanning. This behavior is probably due to CNN pooling layers responsible for
eliminating some fine-grained features at each downsampling step. A quantification of
such roundness bias is presented by means of the fractal dimension in (Bertò et al., 2021).

3.2 Tractogram filtering

The task of tractogram filtering concerns the filtering out of anatomically non-plausible
fibers from tractograms, as considered false positives of the tracking procedure. This
post-processing step is complementary to the anatomical constraining of tracking, which
can only partially prevent the generation of false positives. Especially in the case of
whole-brain tractography, the tracking constraints cannot be as accurate as they are for
bundle-specific tractography (Rheault et al., 2019; Schilling et al., 2020), and thus there
could be generated a higher amount of false positives. Note that also bundle-specific
tracking may generate false positives if not using manually subject-specific inclusion
and exclusion ROIs (Wakana et al., 2007; Schilling et al., 2020). In general, if we want
to characterize the whole white matter connectivity, we cannot rely only on ROIs, but
we need to act the level of single fibers to identify the ones anatomically non-plausible.
Unfortunately, the current knowledge of white matter does not allow for a full definition
of the notion of anatomical plausibility. Different interpretations of plausibility may lead
to different filtering criteria (Jörgens et al., 2021).

In the tractogram filtering literature, we may distinguish three types of filtering solutions:
signal-based (Section 3.2.1), tractography-based (Section 3.2.2), and mixed signal- and
tractography-based (Section 3.2.3). Signal-based solutions formulate the filtering task
as an inverse problem of signal reconstruction, while tractography-based solutions adopt
filtering criteria based only on the tractography data. Mixed approaches heuristically



44 3.2. TRACTOGRAM FILTERING

combine the two types of filtering. All of them carry out an unsupervised strategy.

3.2.1 Signal-based filtering

In the signal-based solutions, the plausibility of fibers is estimated by computing how
much the diffusion signal explains their pathways. The base assumption is that the density
of fibers in a tractogram must be compliant with the amount of underlying diffusion signal.
Practically, this means that two voxels characterized by the same diffusion intensity should
underlie the same number of streamlines. Unfortunately, existing tracking methods, even
when using global approaches, are not able to guarantee uniform spatial distribution of
the streamlines, see Figure 3.4. To mitigate this problem, the most common signal-based
filtering methods cast the filtering task as a global regularization problem by assigning a
weight to each fiber. Fibers with weights lower than an arbitrary threshold are filtered
out. In SIFT (Smith et al., 2013) and SIFT2 (Smith et al., 2015a,b), the weights are a
proxy of the density of the fibers, higher for fibers traversing lower density white matter
zones. In LiFE (Pestilli et al., 2014) the weights capture how much the fiber pathways are
related to the diffusion signal. COMMIT (Daducci et al., 2015) extends the estimate of
weights by including microstructural information.

Figure 3.4: SIFT (Smith et al., 2013) regularization. By comparing b with c we observe a different
spatial distribution of fibers. In c, after the filtering, we have a more uniform distribution of
fibers. Image taken from (Smith et al., 2013)

In all signal-based methods, the thresholding of weights that discriminates between
plausible and non-plausible fibers is managed with heuristics. Finding the optimal threshold
may not be trivial and can be done only by empirical trials. Moreover, as remarked
in (Smith et al., 2020a; Frigo et al., 2020; Rheault et al., 2019), the filtering operated with
a regularization approach might remove fibers whose pathway is anatomically plausible.
Indeed, the signal-based definition of plausibility does not capture the anatomical structure
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of white matter. The main motivation of signal-based filtering is instead to enable
quantitative studies of tractograms such as brain connectome analysis — even though
ongoing debates are arguing a controversial impact also on connectome (Zalesky et al.,
2020b,a; Smith et al., 2020b).

3.2.2 Tractography-based filtering

Groub-wise filtering The alternative approaches are based only on tractography. With-
out considering the diffusion signal, tractography-based methods adopt filtering criteria
based on the consistency of the tractogram structure. Their basic assumption is that
the topographic regularity of tractogram structures across individuals might be a good
proxy of anatomical plausibility. A fiber is considered as non-plausible when it is an
outlier for the mean distribution over multiple subjects. Different unsupervised methods by
leveraging the group-wise consistency of fiber bundles have been proposed to detect outlier
pathways (O’Donnell and Westin, 2007; Wang et al., 2018; Xia and Shi, 2020). They differ
in the definition of the proximity metrics for the computation of topographic regularity.
However, consistency over individuals does not implicate anatomical plausibility. These
filtering methods lack of general anatomically-informed constraints, and so they are subject
to bias present in the population, mostly derived from tractography algorithms (Zhang
et al., 2021).

Intra-individual filtering While a large population of tractograms provides a more
robust estimate of structure regularity, thegroup consistency constraints tend to eliminate
inter-individual differences. To contrast the smoothing effect due to population averaging,
other unsupervised methods refer to intra-individual filtering criteria. For example, in (Yeh
et al., 2019) the fiber density map is used as a proxy of anatomical plausibility. In following
this criterion, fibers are filtered out as non-plausible when they traverse low-density areas,
i.e., they are intercepted by voxels with an extremely low number of fibers. Another
example is the sigma-based cleaning adopted by AFQ (Yeatman et al., 2012). A fiber
is considered non-plausible when its length or trajectory is distant, respectively, four
or five standard deviations from the mean of a bundle. Similar but more advanced is
BundleMAP (Khatami et al., 2017) that adopts a one-class Support Vector Machine (SVM)
to identify local outliers in a bundle. In general, these approaches define as non-plausible
fibers that are outlier with respect to their local neighborhood.

FINTA (Legarreta et al., 2021) The most recent unsupervised tractography-based
methods for tractogram filtering are investigating the use of deep learning techniques,
such as Filtering IN Tractography using Autoencoders (FINTA) (Legarreta et al., 2021).
Such a method proposes a convolutional autoencoder network to learn an embedded
representation of fibers. The autoencoder learns the embedded representation by optimizing
the reconstruction of the input fiber trajectories. An input streamline is encoded through
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traditional convolution and pooling layers until a single descriptor vector is obtained. This
vector is also called latent embedding, and it is used to reconstruct the input trajectory
by means of decoding layers such as upsampling and convolution. After the training
procedure, the fibers are projected into a new latent space where the computation of
nearest neighbors might easily detect the similarity as proximity, see Figure 3.5. The
working hypothesis of FINTA is that in this new space, fibers anatomically plausible are
closer to each other and far from non-plausible fibers. However, as the learning of the
embedding is not driven by neuroanatomical knowledge, there is no guarantee for the
subsequent fiber filtering to capture the notion of anatomical plausibility properly.

Figure 3.5: FINTA methodology. Image adapted from (Legarreta et al., 2021)

3.2.3 Mixed signal- and tractography-based filtering

The two distinct approaches, signal-based and tractography-based, have been combined
to design mixed solutions (Aydogan and Shi, 2015; Neher et al., 2018; Nie and Shi, 2019;
Schiavi et al., 2020; Ocampo-Pineda et al., 2021), where signal-based filtering is regularized
with a priori knowledge on segmented bundles. The basic intuition is that where a
priori knowledge of neuroanatomical bundles is not available, the fibers are regularized by
signal-based filtering. In contrast, along the pathways of known bundles, the fibers are
filtered out if they do not meet the expected topographic regularity. The result is that
the envelope of well-known bundles is cleaned from outliers, while other undefined fibers,
i.e., fibers not belonging to any well-known bundle, are filtered in agreement with the
signal-based expected fiber distribution. However, this sharp distinction between fibers of
bundles versus undefined fibers may lead to incoherent tractograms, where a streamline
with an anatomically plausible pathway, but not belonging to any bundle, is declared as
non-plausible because it does not satisfy the signal grounding. Viceversa, a streamline
belonging to a bundle but not explained by the diffusion signal is declared plausible.

Literature recap An overall recap of existing tractogram filtering techniques points
out that all the current filtering strategies, i.e., signal-based, tractography-based, and
mixed, work unsupervised. In the case of signal-based strategies, the lack of supervision is
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compensated by the principled approach, which leads to a definition of fiber plausibility
that does not coincide with anatomical plausibility. While, in the case of tractography-
based and mixed approaches, the trend, especially in the more recent works (Neher et al.,
2018; Nie and Shi, 2019; Schiavi et al., 2020; Ocampo-Pineda et al., 2021), is to include
a priori knowledge about bundles of interest. The use of bundles prior is a workaround
due to the lack of knowledge of whole-brain WM anatomy. The introduction of such a
priori can be interpreted as an additional anatomical constraint, similar to what recent
tractography algorithms proposed (Rheault et al., 2019).
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Chapter 4

Research Questions

This thesis aims to improve the overall accuracy of tractography-based representations
of the white matter. We frame this problem as a general lack of anatomical grounding
in reconstructed tractograms. For this reason, we focus on the integration of additional
anatomical knowledge, encoded as anatomical priors, to improve tractograms. We explore
two types of solutions: one using anatomical ROIs as additional prior to characterize
well-known white matter structures, and the other based on the extensional definition
of fibers as anatomically plausible or non-plausible. In practice, we propose to integrate
such priors with a supervised deep learning approach, where different models such as
Convolutional Neural Networks, and Geometric Deep Learning models may learn the
different WM characterizations, i.e., ROI-based and fiber-based. Multiple open questions
arise from this working hypothesis. In RQ 1 and RQ 2 we make them explicit.

Diffusion signal is not fully informative of WM Diffusion MRI together with trac-
tography has enabled advanced studies of the in-vivo brain white matter otherwise not
possible. However, the ambiguity of the diffusion signal in certain regions makes the
procedure of fiber tracking ill-posed (Jeurissen et al., 2017). The resulting tractograms are
not fully compliant with the underlying white matter anatomy (Maier-Hein et al., 2017;
Nath et al., 2020), lacking of sensitivity i.e. miss some pathways (false negatives), and/or
specificity i.e. contain anatomically non-plausible pathways (false positives). In particular
the tractogram specificity is increasingly concerning the community, as multiple studies
(Petit et al., 2019; Maier-Hein et al., 2017; Nath et al., 2020) are revealing that a large
portion of the fiber in a tractogram are non-plausible. Hence, to mitigate the presence of
false positive, there is the need of integrating additional information beyond the diffusion
signal, which might solve its ambiguities.

The adoption of additional a priori information require us to define:

1. Which type of information to exploit

2. How to virtually represent such information
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3. How to integrate it in a computational method

Exploiting anatomical knowledge From the analysis of the literature (see Chapter 3),
it emerges that the most prominent trend is to exploit anatomical knowledge as additional
information to solve tractogram inaccuracies due to signal ambiguities. Anatomical
knowledge is being encoded with anatomical priors1 such as fiducial white matter regions
or known fiber pathways. These priors are exploited both ex-ante the generation of a
tractogram (Smith et al., 2012; Girard et al., 2014; Rheault et al., 2019) i.e., during
tracking, and ex-post to clean it from artifacts (Schiavi et al., 2020) or extract bundles
of interest (Wassermann et al., 2016; Wasserthal et al., 2018). The benefit of imposing
anatomical priors in tractography has been demonstrated by quantitative studies like
(Schilling et al., 2020; Girard et al., 2020), where histology or macaque tracing is used to
validate the accuracy of anatomy-informed tractography. The take home message of these
studies is that when computational methods are properly bounded with anatomical priors,
the quality of the produced tractograms or bundles is higher, i.e., less artifacts, and more
coherent with the white matter anatomy.

Voxel- and fiber-based representation of WM The practical use of anatomical priors
requires proper virtual representations to encode the anatomical knowledge of interests.
Certain data representations might be more suitable than others to encode certain anatom-
ical priors. For example, existing methods usually represent white matter anatomy using
either a voxel- or a fiber-based representation. In the first case the anatomical prior is a
volumetric image like an ROI mask, while in the second case the prior is represented as
3D polylines i.e., sequences of 3D points. The use of the one or the other representation to
map anatomical principles is often an argument of debate. Our position is that both the
two might be useful, and their adoption depends on the type of investigation. Volumetric
representations might be more convenient when the aim is to characterize specific white
matter regions like the termination or the waypoint of a bundle. On the contrary, a voxel-
based representation might be sub-optimal if we want to identify artifactual trajectories of
pathways, as it may not capture the sequential pattern of fibers.

Anatomical priors in supervised learning How can we practically integrate the voxel-
or fiber-based anatomical prior into computational methods? In the literature, this step
is often carried out by means of heuristics, which end up in the definition of rules or
constraints based on the current knowledge of the anatomy (Wassermann et al., 2016;
Yeatman et al., 2012). However, the definition of rules is easier and effective in specific
cases when “we know where white matter pathways start, where they end, and where they
do not go” (Schilling et al., 2020). Instead, defining general rules that concern the whole

1Note that here the notion of anatomical prior does not refer to a bayesian prior meaning, commonly used in
machine learning.
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white matter, and are applicable to large populations is a much harder challenge. For
this reason other methods like (Bertò et al., 2021; Wasserthal et al., 2018) prefer to
adopt a data-driven approach, where data annotations are used as a mean to integrate
the anatomical prior in a supervised learning setting. In fact, the use of a sufficiently
large example set allows machine learning (ML) models to learn and generalize the rules
underlying the label distribution. The only drawback of traditional ML approaches, e.g.,
(Bertò et al., 2021), is the need to represent the input with handcrafted feature vectors,
which require a lot of domain-specific expertise and still may be suboptimal for the task
at hand.

Using deep learning To avoid the handcraft design of the input data representation we
endorse the use of deep learning (DL) (LeCun et al., 2015). Deep neural networks (NNs)
are able to learn representations, i.e., latent feature vectors, autonomously, based on the
optimization of the objective task (Bengio et al., 2013). This means that we do not need
to encode a priori the anatomical information by means of sophisticated features, but
rather, during NNs training we can directly learn such anatomical information in the form
of latent features. However, without adopting handcrafted input vectors, we have to deal
with different data structures e.g., voxel- and fiber-based, which may require different DL
architecture (see Section 2.2).

Encoding the anatomical prior with voxel-based or fiber representations makes a big
difference for the type of DL model we can use. In particular, the regular grid structure of
voxel-based representations is optimal for Convolutional Neural Networks (CNNs) (LeCun
and Bengio, 1995) (see Section 2.2.1), which can learn local features at different resolution
of the grid and thus succeed in task like image segmentation. Differently, the fiber
representation is not characterized by a regular structure because of the variable length
and the lack of orientation. Thus, it may require different deep learning models with respect
to standard CNNs. However, the current literature is lacking of satisfactory solutions to
this problem. Existing fiber-based DL approaches adopts suboptimal approximations such
as resampling to a fixed number of points (Gupta et al., 2017; Legarreta et al., 2021;
Zhang et al., 2020) and heuristic re-orientation of fibers (Legarreta et al., 2021; Zhang
et al., 2020), which allow them to use standard CNNs. Instead, we propose a novel and
more principled approach based on a recent family of models, referred as Geometric Deep
Learning (GDL) (Bronstein et al., 2017), see Section 2.2.2. Such models are designed
to handle irregular structures like graphs (Wang et al., 2019) and point clouds (Qi
et al., 2017), and thus might be more suitable to deal with the 3D polyline structure of
streamlines.

ROI-based WM characterization White matter ROIs are widely adopted representa-
tions to identify fiducial anatomical regions. They are typically leveraged to define bundles
as they provide a convenient/simplified way of describing fiber trajectories. ROIs can
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be manually drawn to encode different key anatomical points of the white matter. For
example, termination and waypoints ROIs delineate the anatomical key-points of a bundle
(Mori et al., 2005; Wakana et al., 2007; Warrington et al., 2020). A combination of ROIs
can be used to automatically segment bundles from tractograms considering logic rules,
i.e., rule-based bundle segmentation, such as in (Yeatman et al., 2012; Wassermann et al.,
2016). Another strategy to characterizing the white matter is to consider the whole bundle
as a single volumetric ROI, namely bundle mask, such as in (Wasserthal et al., 2018).
This strategy proposes to ignore the tractogram and directly segment the whole bundle
mask from the brain diffusion images using CNNs models, i.e., direct CNN-based methods.

In rule-based bundle segmentation, the quality of the ROIs is crucial to obtain accurate
bundles. Ideally, ROIs are manually segmented by experts from the volumetric images of
each target brain. However, this manual procedure is extremely time-consuming and cannot
scale to a large number of subjects. Hence, to increase the method generalization, rule-
based bundle segmentation considers ROIs from already existing atlases (Yeatman et al.,
2012; Wassermann et al., 2016; Warrington et al., 2020). Unfortunately, the availability
of WM ROIs is limited in atlases. Existing white matter atlases, e.g., (Wakana et al.,
2007; Oishi et al., 2008; Salat et al., 2009), comprehend only some well-known regions
while neglecting many other eloquent ROIs (Hansen et al., 2021). ROIs are standardized
to templates missing the user’s detailed information (Figley et al., 2017). Moreover, when
applying atlas ROIs to specific user anatomy, the co-registration error further reduces the
quality of such ROIs, leading to inaccurate bundle segmentation. For this reason, after
the automatic rule-based segmentation (overall in clinic), a manual revision is mandatory.

The co-registration problem is not present in direct CNN-based methods since they train
CNNs to segment volumetric masks in the specific subject space (Wasserthal et al., 2018).
However, these methods directly segment bundles as a whole volume without considering
fiber details. This voxel-based approximation often lead to a mismatch between the
segmented masks and the actual fiber envelope, especially in the termination zones where
the bundles’ fanning draws irregular shapes (Bertò et al., 2021).

RQ 1. Would it be possible to define an approach that exploits the information in
anatomically-defined rules and the power of CNN? Can deep convolutional networks
effectively segment fiducial white matter ROIs rather than entire bundle masks? If yes, is
it beneficial to integrate the segmented WM ROIs into bundle segmentation rules?

Tractogram filtering Tractogram filtering is a post-processing procedure that aims at
removing anatomically non-plausible fibers from tractograms. This step is very important as
tractography methods produce a large number of artifactual fibers, which are anatomically
non-plausible. Recent tractography methods, e.g., (Rheault et al., 2019), mitigated
this problem by focusing on well-known bundles and introducing ROI-based anatomical
constraints. However, such solutions do not scale to the entire tractogram (Schilling et al.,
2020) and produce artifacts when using template ROIs. Hence, to pursue the whole-brain
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anatomical plausibility, tractogram filtering is a better strategy as it analyzes fibers in
their entirety. However, the limited knowledge of white matter connectivity does not allow
for a gold standard distinction between anatomically plausible and non-plausible fibers.
Different interpretations of plausibility may lead to different filtering criteria (Jörgens
et al., 2021).

Existing tractogram filtering approaches adopt filtering criteria either following a signal-
based plausibility of fibers (Smith et al., 2013; Pestilli et al., 2014; Daducci et al., 2015) or
a tractography-based plausibility considering fiber consistency intra- and inter-individual,
e.g., (Yeatman et al., 2012; Yeh et al., 2019; O’Donnell and Westin, 2007; Wang et al.,
2018; Xia and Shi, 2020). However, both the filtering criteria are unsupervised with
respect to the anatomy, resulting in suboptimal filtering. Fiber consistency criteria are
subject to tractography (intra-individual) or population biases, which lead to considering
non-plausible fibers specific to one individual. Instead, signal-driven filtering removes
fibers whose pathway is anatomically plausible (Smith et al., 2020a; Frigo et al., 2020).
For this reason, more recent approaches integrated anatomical prior of well-known bundles
to extend signal-based methods (Neher et al., 2018; Nie and Shi, 2019; Schiavi et al., 2020;
Ocampo-Pineda et al., 2021). But, the mixed criteria generate inconsistent tractograms,
where the fiber’s signal and anatomical plausibility can be conflictual.

Designing a filtering criterion suitable to capture the notion of anatomical plausibility is
still an open challenge. Therefore, we propose to interpret plausibility following anatomical
priors. Such priors can be used to obtain an extensional definition of fibers, i.e., labeling
anatomically plausible and non-plausible fibers (Petit et al., 2019; Zhang et al., 2018),
enabling supervised learning approaches.

Our proposal is to adopt a supervised deep learning approach, where available label-
ings guide the anatomical plausibility of the model. Given the continuous evolution of
anatomical knowledge, we aim to find a model flexible to newer or different anatomical
interpretations. As in the case of FINTA (Legarreta et al., 2021), we assume that the
geometry of fibers is informative to understand their anatomical plausibility and that the
best way to extract such geometrical information is to perform learning directly on the
polyline representation. In this case, we speculate that Geometric Deep Learning models
may constitute a better solution compared to standard CNNs.

RQ 2. Can we successfully apply DL directly on streamlines? Are GDL models the
most suitable to extract information from the streamline structure? How do such GDL
models perform on tractogram filtering? Can they learn the anatomical features that
regulate the anatomical plausibility/non-plausibility of fibers using the supervision of labeled
tractograms?
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Chapter 5

Stem-based IFOF Segmentation with
Deep Learning

In this Chapter, we present our first contribution StemSeg, which tries to answer the open
problems raised in RQ1. After an initial introduction, where we present some crucial
elements like the notion of anatomical stem and the Inferior Front-Occipital Fascicle
(IFOF) (Section 5.1.1), we describe the method (Section 5.2) and the results obtained
during the empirical analysis (Section 5.4). Finally, we follow-up the results by discussing
their insights (Section 5.5). The reported analyses refer to a large extent to (Astolfi et al.,
2020a) published at the International Symposium of Biomedical Imaging (ISBI) 2020.

Synopsis The aim of this study is to investigate how a deep learning method based
on volumetric representation might be effective for the segmentation of white matter
anatomical regions. As a case study, we will illustrate the improvement in the rule-based
segmentation of the Inferior Frontal Occipital Fasciculus (IFOF) by combining a recent
insight on white matter anatomy from ex-vivo dissection (Sarubbo et al., 2013; Hau et al.,
2016) and a data-driven approach using a deep convolutional model (Ronneberger et al.,
2015). A more accurate characterization of the IFOF might benefit pre-neurosurgery
intervention planning and clinical studies on brain plasticity and brain disorders.

5.1 Introduction

The anatomy of a WM bundle can be characterized in-vivo at the individual level from
recordings of diffusion MRI. After the first step of diffusivity model reconstruction and
a subsequent step of fiber tracking, we may obtain a representation of structural brain
connectivity, namely tractogram, as a collection of millions of streamlines. Each streamline
is encoded with a 3D polyline. The task of bundle segmentation from a tractogram is
concerned with identifying those streamlines that have a specific neuroanatomical meaning.
In this study, we focus our contribution on the segmentation of the IFOF.
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Current rule-based methods for bundle segmentation are either neglecting crucial
neuroanatomical waypoints of a given bundle (Wassermann et al., 2013, 2016) or heavily
relies on co-registration of template-ROIs (Yeatman et al., 2012; Warrington et al., 2020).
When rules are not restrictive, or the co-registration is not successful, segmented bundles
contain undesired streamlines, which do not reflect the anatomy of the bundle. On the
contrary, very elaborated rules that combine several ROIs to avoid undesired fibers often
lead to over-segmentation, i.e., the missing of a relevant portion of a bundle.

A recent branch of direct CNN-based bundle segmentation approaches, e.g., (Wasserthal
et al., 2018), has demonstrated the efficacy of CNNs in segmenting binary masks of bundles
directly from a fiber orientation map of the brain. While these methods obtain very good
results on benchmarks, the produced bundle segmentation is not completely satisfactory:
masks often miss the fine-grained fanning usual of WM bundles. Moreover, the produced
masks are not effective if used as filtering constraints to extract bundles from a given
tractogram. They can only be used to constrain the tracking area in ex-post bundle-specific
tractography (Wasserthal et al., 2019).

In this work, we propose to go a step further by combining the anatomical soundness of
rule-based methods with the ability of CNNs in segmenting volumetric masks, i.e., ROIs.
The basic idea is to enable the automatic segmentation of waypoints ROIs, which are
not comprised in existing atlases, using CNNs trained with anatomical supervision. Our
method StemSeg segments a fiducial ROI for the IFOF, namely stem-ROI, directly in the
native space of a subject, and use it as a waypoint constraint in a WMQL (Wassermann
et al., 2013, 2016) bundle segmentation rule.

The task of stem-ROI segmentation is cast as a supervised segmentation problem
of a volumetric image, and the output is a three-dimensional binary mask. Since a
usual structural T1 MRI image does not provide enough information to discriminate the
structure of the white matter, we refer to a colored fractional anisotropy image (CFA),
a derivative from the fitting of diffusion tensor model (DTI) on DWI recordings (Basser
et al., 1994). The CFA is capturing the information on local fiber orientation, and our
working assumption is that the stem is characterized by streamlines with homogeneous
fronto-occipital directions.

The proposed method is validated on a subset of the Human Connectome Project
dataset, where expert neuroanatomists segmented the IFOF with different strategies of
manual segmentation. In these tests, we provide empirical evidence that an automated stem-
based IFOF segmentation can be robust for alternative strategies of manual segmentation.
In addition, we prove that our IFOF segmentation significantly outperforms the most
prominent method for direct bundle segmentation Tractseg (Wasserthal et al., 2018), which
uses a deep learning model but neglects the anatomy of the stem. Finally, we inspect the
generalization performance of StemSeg in case of simulated low resolution, as usually holds
in clinical settings, as well as real patients data showing promising results in both cases.
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5.1.1 IFOF and stem anatomy

The word stem generally indicates the central part of an object from which other parts
can develop, e.g., the stem of a wine glass is the narrow vertical part supporting the
container. Similarly, this term is adopted in neuroanatomy to define a very compact and
homogeneous portion of a bundle, usually located in the central part of it (Sydnor et al.,
2018). The typical structure of a bundle may be subdivided into three areas: the stem, the
spray area, where pathways start to diverge from the stem, and the termination fanning,
where pathways spread out to reach different cortical regions. This stem-centric view of
WM bundles is particularly applicable to association bundles so that an entire taxonomy
based on it has been proposed (Mandonnet et al., 2018). According to this view, the
anatomical stem identifies univocally a bundle; only pathways belonging to that bundle
should pass through it. A confirmation of stem-centric bundle definitions comes from
numerous recent ex-vivo dissection studies e.g., (Kier et al., 2004; Martino et al., 2011;
De Benedictis et al., 2016; Hau et al., 2017), including some focusing on the IFOF (Martino
et al., 2010; De Benedictis et al., 2012, 2014; Sarubbo et al., 2013, 2019; Hau et al., 2016).

The IFOF is the longest association bundle, connecting parts of the occipital cortex,
the temporo-basal area, and the superior parietal lobule to different cortical regions
in the frontal lobe (Forkel et al., 2014). Based on the pathways termination, different
sub-components may be individuated (Wu et al., 2016; Panesar et al., 2017). The main
functional role of the IFOF is usually associated with lexico-semantic as its stimulation
during awake neurosurgery causes semantic deficits (Martino et al., 2010; Turken et al.,
2011; Sarubbo et al., 2013; Duffau, 2015). The recent studies (Sarubbo et al., 2013;
Hau et al., 2016) on ex-vivo dissection (modified Klingler’s technique) of the IFOF have
provided a better characterization of its anatomy by validating the existence of the stem
(see Figure 5.1a). Moreover, Hau et al. have proposed to segment a virtual ROI narrowing
the anatomical stem crucial to obtain a proper IFOF segmentation from a tractogram (see
Figure 5.1b). By analyzing the IFOF resulting from this stem-based segmentation, they
have precisely defined some of the IFOF termination regions previously debated. The IFOF
stem defined according to these studies is located in the white matter of the ventral third
of the external capsule, just medial to the putamen and ventral to the claustrum (Sarubbo
et al., 2013).



58 5.2. STEMSEG METHOD

(a) (b)

Figure 5.1: (a) Visual comparison of IFOF after ex-vivo dissection and bundle segmentation. The
red label in the ex-vivo brain locate the anatomical stem of the IFOF. Adapted from (Sarubbo
et al., 2019). (b) Stem-ROI overstimates the anatomical stem. This figure depicts a coronal
section of the stem-ROI (manually segmented) and the corresponding points of intersection with
streamlines of the IFOF. It can be observed that the voxel mask of the stem-ROI overestimates
the anatomical stem of the IFOF.

5.2 StemSeg method

StemSeg is designed as a two steps method as depicted in Figure 5.2: the first step is in
charge of the segmentation of the ROI of the stem, namely stem-ROI, and a second step
is devoted to the segmentation of the IFOF using the stem-ROI as additional clause of a
segmentation rule.

5.2.1 Basic notation

We define a streamline as a sequence of points s = (x1, . . . ,xL), where xi ∈ R3, i ∈
{1, . . . , L}. A whole brain tractogram is defined as a set of streamlines, T = {s1, .., sN},
with N ∼ 105 − 106. We denote a bundle as a subset of streamlines from the tractogram,
B = {s1, .., sM} where sj ∈ T, j ∈ {1, . . . ,M} and M � N .

A whole brain volumetric image is denoted as Vi,j,k = [i]× [j]× [k]. An ROI is defined
as a binary mask by a function VROI : Vi,j,k → {0, 1}. A colored FA (CFA) image is
defined as VCFA : Vi,j,k → C3, where C = [0, 255] denotes the RGB encoding (see Chapter
2.1.2). A slice of a volume is defined as a two dimensional plane, where Vi,j,k, Vi,j,k and
Vi,j,k are referring to axial, coronal and sagittal projections respectively.

A segmentation rule is defined as a logical expression of streamlines and ROIs, containing
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cFA slices 
(cornal, axial, sagittal)

stem-ROI

OccipitalFrontal

2.5D CNN
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crop predict register & filter

extended WMQL rule Left IFOF

Figure 5.2: StemSeg 2-step procedure.

conjunctions and disjunctions of predicates. Referring to the WMQL syntax (Wassermann
et al., 2013, 2016) (see Chapter 3.1.2), we report here two divisional terms that we will
use in our segmentation rule: endpoints_in(si,VROI), which is true when at least one of
the termination points xi

1 and xi
L of a streamline si is included in a binary mask VROI ,

and waypoint_in(si,VROI), which is true when at least one point of the streamlines si is
included in VROI .

5.2.2 Stem-ROI segmentation

Input and output of the CNN Even though the segmentation of the stem-ROI can
be approached with a 3D CNN, e.g., (Çiçek et al., 2016), such a model presents several
computational issues due to 3D operations, which limit the network to learn mostly local
(small field of view) features. A common workaround is to reformulate the task as multiple
2D image segmentations where CNNs proved to be effective while memory-efficient. This
strategy is known as 2.5D segmentation. From the original volumetric representation
Vi,j,k we randomly sample 2D slices to train a 2D CNN considering the three different
projections: Vi,j,k (axial), Vi,j,k (coronal) and Vi,j,k (sagittal). The output of the CNN is
again a 2D slice containing a probability mask. The whole volumetric estimate of the stem
is obtained by applying the trained CNN to all the slices of each projection sequentially,
obtaining three values per voxel corresponding to the prediction for the three projections.
The binary mask of the stem V̂stem is summarized by merging the three values using a
binarized average, i.e., thresholding at 0.5.

CNN architecture The CNN model we used for learning the 2D slice segmentation is a
U-net (Ronneberger et al., 2015), which is a famous encoder-decoder segmentation network.
The encoder learns latent features by alternating convolutional layers with max pooling,
which reduces the image resolution, while the decoder alternates convolutional layers with
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Figure 5.3: StemSeg U-net architecture.

upsampling to reconstruct a prediction mask. Furthermore, the decoder concatenates at
each layer features computed in the encoder at the same resolution, giving the network
the U shape. The precise network architecture of StemSeg is reported in Figure 5.3.

Choice of the input signal Which kind of MRI volume may enable an effective seg-
mentation of the stem? DWI images are recordings of information on fiber orientation.
As explained in Section 2.1.2 the fitting of a DTI model allows the estimation of the
components of three main directions of diffusivity within each voxel as a colored fractional
anisotropy (CFA) image: red for lateral, green for anteroposterior, and blue for vertical.
Since the anatomical stem of the IFOF is a waypoint where all the fibers have a homogenous
fronto-occipital orientation, we may assume that bright green color will encode such a
region in a CFA image 5.6. According to this assumption, we sampled 2D slices from all
the axis of VCFA.

5.2.3 Stem-based segmentation of IFOF

In the second step of StemSeg, we segment the IFOF using a WMQL rule which extends
the formal definition of the IFOF with the stem-ROI.

According to recent neuroanatomy studies (Sarubbo et al., 2013; Hau et al., 2016) the for-
mal definition of the IFOF can be encoded as a logical expression with the WQML (Wasser-
mann et al., 2016) to select the streamlines that belong to the IFOF. The parcellation of
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IFOF.left = (
endpoints_in(

frontal_inferior_lobe.left
OR frontal_middle_lobe.left
OR frontal_superior_orbitalis.left)

AND endpoints_in(
occipital_lobe.left
OR cuneus
OR lingual
OR parietal_superior
OR precuneus)

AND waypoints_in(stem.left))
frontal_inferior_lobe.left = (

frontal_inferior_operculus
OR frontal_inferior_orbitalis
OR frontal_inferior_triangularis)

occipital_lobe.left = (
occipital_superior
occipital_middle
occipital_inferior)

Frontal Inf Oper
Frontal Inf Orb
Frontal Inf Tri
Frontal Mid
Frontal Mid Orb
Frontal Sup
Frontal Sup Orb

Lingual
Occipital Inf
Occipital Mid
Occipital Sup
Parietal Sup
Precuneus
Cuneus

Stem

Figure 5.4: WMQL formal segmentation rule of left IFOF (black) extended with the stem (blue).
The regions used refer to AAL2 atlas (Rolls et al., 2015) and are illustrated on the right.

ROIs with the termination points of streamlines can be obtained from an atlas after the
normalization to a standard space. In particular, the termination points of streamlines of
the IFOF should be located in several regions of the occipital and frontal lobes. The exact
combination of these regions is reported (with black color) in the formal WMQL rule of
Figure 5.4.

Even with an accurate ROI parcellation, the formal definition of IFOF is not enough
to exclude many false positive streamlines, usually a by-product of sub-optimal tracking
algorithms (see example in Figure 5.5). For this reason, we propose to refine the formal rule
by imposing an additional constraint: at least one point of the streamlines of IFOF should
belong to the ROI segmented as the stem of the bundle, i.e. stem-ROI. The conjunctive
clause of waypoint_in is combined with the endpoints_in conditions (blue line in Figure
5.4). Using the stem as a waypoint condition prevents the usual manual effort of defining
exclusion regions to filter out false positive streamlines. An example is reported in Figure
5.5.
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Figure 5.5: Example of segmented IFOF with stem-based segmentation (green) and the false
positive streamlines (orange) not filtered out by considering only the regions of termination points.
In the box the anatomy of stem.

5.3 Material

HCP diffusion We based our empirical analysis on the Human Connectome Project
(HCP) (Van Essen et al., 2013) diffusion dataset. It is a public and widely adopted
dataset where the acquisition and pre-processing pipeline for diffusion MRI is carefully
validated (Milchenko and Marcus, 2013; Sotiropoulos et al., 2013; Glasser et al., 2013).
The dataset comprises healthy subjects (all genders) aged between 24 and 35. Each subject
has both the structural T1 image and the 3T Diffusion Weighted Image (DWI). The DWI
has resolution 1.25mm with 270 gradients multi-shell (Andersson and Sotiropoulos, 2016),
and is corrected for eddy currents (Andersson and Sotiropoulos, 2015).

HCP-low diffusion To quantitatively validate the robustness to the different image
resolutions of StemSeg, we created a low-resolution version of HCP. This HCP-low was
designed to emulate the clinical/real-world quality of diffusion images, which is often at
low resolution. To generate low-resolution HCP images, we downsampled the diffusion
signal of a factor of 2, passing from 1.25mm to 2.5mm. Although we are aware that the
resolution decrease alone is not enough to emulate clinical quality data properly, we believe
that an additional low-resolution validation dataset might still provide insights about the
robustness of the proposed model.
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Tracking We designed a pipeline to compute the diffusivity model both using DTI (Gary-
fallidis et al., 2014) and CSD (Tournier et al., 2007), after extracting 90 gradients at
b=2000. From the DTI, we derived FA and CFA, while from the CSD combined with the
deterministic local tracking algorithm of DiPy (Garyfallidis et al., 2014) (previous to be
updated to EuDX) we generated the tractograms (uniform seeding in the voxels of white
matter mask, step size 0.625mm). We sampled such data from the (temporally) last 158
acquired HCP subjects, including test-retest subjects (Buchanan et al., 2014).

ROI-based dataset Using the 158 HCP subjects, we built a dataset of labeled stem-ROIs
along with the corresponding IFOF bundles. The labeling of the stem-ROIs was supervised
by a neuroanatomist (S.S)., and followed the procedure used in (Hau et al., 2016). The
procedure is composed of three steps: (i) streamline filtering using the termination regions
derived from Hau et al. to the Automated Anatomical Labeling 2 (AAL2) atlas (Rolls
et al., 2015), (ii) manual definition of ROIs to exclude false positive streamlines, until a
satisfactory IFOF segmentation is achieved, (iii) manual segmentation of the stem-ROI in
three consecutive coronal slices of the CFA (see Appendix A.1.1 for a visual example of
the segmentation procedure). As a result, we obtained 316 stem-ROIs (step (iii)) bound to
316 segmented IFOF (step (ii)), half of them in the right hemisphere and the other half in
the left hemisphere. We call this collection of labeled data, ROI-based dataset. We report
additional stem-ROIs group statistics, such as average size and FA value, in Appendix A.1.2.
The labeled stem-ROIs are available at https://doi.org/10.25663/brainlife.pub.8

Bundle-based dataset ROI-based segmentations, even when performed by experts, are
not able to avoid all the false positive streamlines due to the coarse granularity of voxels.
Therefore, we considered operating an additional manual IFOF segmentation using a
method without the bias of ROIs, which we refer to as bundle-based. A second expert
neuroanatomist (A.D.B.) segmented the IFOF on a subsample of 30 out of the 158 subjects
using Tractome 1 (Porro-Muñoz et al., 2015). This tool gathers together streamlines based
on their trajectory similarity into bundles/clusters. One streamline representative of each
cluster is visualized to simplify the visual scene of the tractogram. The expert can decide
which cluster to maintain and which to delete by directly picking and removing clusters.
The segmentation procedure is executed iteratively, starting from a few hundred clusters
to represent the whole brain tractogram. At every iteration, only the clusters of interest
are maintained and exploded into new clusters more fine-grained. We report the difference
between the ground-truth (GT) IFOF segmented with a bundle-based and ROI-based
strategy both qualitatively in Figure 5.7a and 5.7b, and quantitatively by means of the
volumetric DSC (see Section 5.4.2), obtaining 93.9 ± 3.7%. We report in Appendix A.1 a
more detailed comparison of the two reference sets in terms of IFOF termination points.

1https://github.com/FBK-NILab/tractome

https://doi.org/10.25663/brainlife.pub.8
https://github.com/FBK-NILab/tractome
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APSS dataset As last, we adopt a clinical dataset for the purpose of validating the
generalization ability of our model. The dataset has been obtained from the Santa Chiara
Hospital (APSS) in Trento (Italy). It comprises of 5 subjects affected by brain tumors.
For each subject, we have available the DWI and the reconstructed tractogram, but not
the reference IFOF segmentations. The DWI was acquired with a 1.5T MR scanner
using 60 directions. Then, a single shell b=1000 s/mm2 was extracted to reconstruct
the diffusion model with DTI (Pierpaoli et al., 1996). The tracking was performed using
Euler Delta Crossing (EuDX) (Garyfallidis et al., 2014) and produced approximately 100K
streamlines. We remark that using this dataset we can have a qualitative evaluation of the
generalization ability of our model trained on HCP data. The main differences are data
source and pre-processing (HCP vs. APSS), diffusion image resolution (2mm vs. 1.25mm),
number of directions and b-values (90g b=2000 vs. 60g b=1000), and subjects condition
(healthy vs. patients).

5.4 Experimental analysis

5.4.1 Stem-ROI prediction

We designed an empirical analysis to assess how effective an automatic stem-based seg-
mentation method, like StemSeg, can be in the case of the IFOF bundle. We sampled
128 HCP subjects as training set of the CNN, with a further split into 114/14 to perform
model selection. The training was iterated for 500 epochs with learning rate 1e-3, using
data augmentation and batches of 47 2D slices, randomly sampled from different subjects.
We treated indistinctly left and right stem-ROIs, by feeding the network with images
containing only one of the two each time. To separate left and right stem-ROIs the CFA
images were cropped from the original size (145x174x145) to isotropic volumes (80x80x80),
knowing that by definition, the stem of the IFOF is located in the inferior, anterior, and
lateral portion of each hemisphere of the brain. Note that these values refer to HCP
1.25mm input, but the cropping can be applied to every brain volume that is Anterior
Commissure - Posterior Commissure (ACPC) aligned, i.e., rigidly registered with the
standard MNI space. In the training procedure, we optimized the binary cross-entropy
loss with weighting correction to better manage the class imbalance.

We tested the trained network over the remaining 30 subjects of the dataset, i.e.,
the subjects for which we have both ROI-based and bundle-based IFOF ground-truth.
We evaluated the stem-ROI prediction using two measures: the mean displacement
of the center of mass computed along the three axes and the mean volumetric recall
(TP/TP + FN). The first measure aims to assess whether the CNN has a directional bias
in the segmentation, while the second measure is informative for the segmentation task,
where a stem underestimation can lead to the loss of many IFOF streamlines.

The obtained results in terms of the mean displacement of the center of mass along
the three axes are: 0.33 mm (lateral), 0.82 mm (anteroposterior), 0.26 mm (vertical). An
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Figure 5.6: An example of stem detection in the CFA. The three panels show the sagittal, coronal
and axial view of the center of mass of the stem. Each small panel reports the detailed view of
the stem region (upper) and the overlap between the labeled and predicted stem (lower): true
positive (green), false negative (orange), and false positive (yellow).

visual example of the center of mass displacement is shown in Figure 5.6. In the figure the
lateral misplacement can be observed by looking at frame b3 and c3, the anteroposterior
is in frame a3 and c3, and the vertical is in frame a3 and b3. The mean volumetric recall
of the stem-ROI is 74.9±18.0.

5.4.2 IFOF segmentation

The IFOF segmentation of the 30 test subjects was performed by applying the rule in Figure
5.4 with regions taken from AAL2 atlas (Rolls et al., 2015), and co-registered to each subject
through the non-linear ANTs SyN algorithm (Avants et al., 2008). According to the best
practice in the literature, we evaluated the segmentation results by computing the bundle
volumetric mask from the streamlines. The comparison between expert segmentation and
automated segmentation was computed as overlapping of the voxel masks in terms of the
Dice Similarity Coefficient (DSC):

DSC =
2TP

2TP + FP + FN
=

2 ∗ Precision ∗ Recall

Precision + Recall
(5.1)

In addition, for the sake of completeness, we also computed the DSC on streamlines, which
can quantify the actual number of misclassified streamlines. This measure is computed
with the same equation of (5.1) but considering the fibers instead of voxels as units. This
metric may provide a more fine-grained evaluation of the results.
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A first comparison was carried out with respect to the IFOF segmented according to
the ROI-based approach to test the accuracy of our automated stem-based method. A
second comparison addressed the question of how robust is the proposed method with
respect to a second ground-truth produced by a second expert with a non-ROI-based
procedure, i.e., the bundle-based GT. The results in terms of volumetric DSC for the
two GTs are reported in Table 5.1 (second row). The overlapping of streamlines for the
ROI-based is 98.7 ± 0.9 and for the bundle-based 96.1 ± 2.3.

Table 5.1: Mean and standard deviation of volumetric DSC (reported in %) over 30 HCP test
subjects. Both IFOF right and left are aggregated in the score computation.

Method DWI res. ROI-based Bundle-based

TractSeg 1.25mm 61.0 ± 5.6 62.1 ± 5.7

StemSeg
1.25mm 98.8 ± 1.0 93.8 ± 3.5

2.5mm 96.4 ± 4.1 93.1 ± 3.9

An additional experiment was designed to compare StemSeg with TractSeg (Wasserthal
et al., 2018), the state of the art method for bundle segmentation. TractSeg casts the
bundle segmentation task as a problem of volume segmentation by encoding the streamlines
representation of a tract in the corresponding voxel binary mask. The segmentation is
performed by training a CNN following a 2.5D approach based on U-net in analogy to what
we presented here. However, unlike StemSeg, in TractSeg, the CNN is fed with a richer fiber
orientation map, where the three main direction peaks extracted from the fODFs (spherical
harmonics) are encoded in each voxel, resulting in a 9-dimensional volumetric image. We
trained TractSeg adopting the default parameters reported in Wasserthal et al. (2018),
using the same dataset split of the experiment above. For both TractSeg and StemSeg we
used the same code implementation, available on the BrainLife platform (Avesani et al.,
2019) at https://doi.org/10.25663/brainlife.app.205.

The results of the IFOF segmentation with StemSeg and TractSeg on ROI-based and
bundle-based datasets are summarized in Table 5.1, and a qualitative example is reported
in Figure 5.7. Note that we limit the comparison of the two methods to volumetric DSC
only as the streamlines DSC cannot be computed for TractSeg. The result on volumetric
DSC shows a large positive gap in favor of StemSeg, with +38% when considering the
ROI-based GT, and +32% for the bundle-based GT.

Lastly, we investigated the reliability of our method in the case of clinical data quality,
which is usually worse compared to a curated dataset such as HCP. We designed a
qualitative study on the APSS clinical dataset, inspecting the IFOF segmentation of 5
patients affected by tumors. In this experiment, the segmentation of the stem-ROI has
been possible after a rigid registration of the patients’ brains to ACPC, but without any re-
training of our CNN. Moreover, since no ground-truth segmentations were available for the

https://doi.org/10.25663/brainlife.app.205
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(a) Bundle-based GT (b) ROI-based GT

(c) StemSeg prediction (d) TractSeg prediction

Figure 5.7: Qualitative comparison of voxel masks of the two manual segmentation procedures
(green) and the two automated segmentation methods (yellow) for a left IFOF. The blue circles
highlight the anatomical differences, while the red highlights prediction errors.

APSS dataset, we designed a quantitative study by emulating a low-quality data scenario
starting from the HCP acquisitions — a similar setting is also presented in (Wasserthal
et al., 2018). The 3T DWI was downsampled from 1.25mm to 2.5mm and then used to
compute a new low resolution CFA. Next, we cropped and upsampled the CFA to obtain a
shape acceptable by our CNN, which was trained on high resolution CFA. Then, we used
the predicted stem to segment the IFOF from the same tractograms used in the previous
HCP-based experiments. Note that we did not compute the HCP-low segmentation score
also for TractSeg as we expected no improvement on lower resolution — as Wasserthal
et al. show in their paper. We presented the experiments on HCP-low only to provide a
quantitative measure of the robustness of our model.

The result of the low-resolution IFOF segmentation is reported in the last row of
Table 5.1. The qualitative segmentation of the patients is depicted using two different
visualizations. In Figure 5.8 we show, in the top part, the detailed anatomy of an IFOF
segmented in the case of a large tumor in correspondence of the occipital terminations. In
the bottom part, we visualize two additional segmentations of patients having the tumors
located nearby the IFOF frontal terminations. Lastly, in Figure 5.9 we provide the overall
segmentations of the five APSS patients.
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SUB 1

Figure 5.8: Example of IFOF segmentation in patients with tumor in correspondence of the
occipital (SUB 1) or frontal (SUB 5, SUB 4) IFOF termination regions. (SUB 1) We show the
entire IFOF segmented on the top left image, while the remaining images show the IFOF mapped
within the different sagittal slices of the T1w (with contrast agent). The black oval hole present
in the T1w is the tumor. As observable, the segmented IFOF tightly surrounds the tumor area.
(SUB 5, SUB 4) A yellow 3D ROI depicts the tumor. In SUB 5, the tumor apparently pushes
the frontal superior termination of the IFOF towards the longitudinal fissure. In SUB 4, the
tumor mass hinders the reconstruction of part of the frontal inferior IFOF terminations, which
are missing in the segmented bundle.
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Figure 5.9: Qualitative IFOF segmentation of the 5 patients in APSS dataset. For each patient
(column) we show the segmented left and right IFOFs (rows). Overall, the IFOF is successfully
segmented in all the patients. However, we observe the presence of a some false positives fibers
visually identifiable in SUB 1-L, 2-L, 3-L-R, and 5-R.

5.5 Discussion

According to the empirical results reported in Table 5.1 we may claim that the automated
segmentation of stem-ROI is a viable and effective method for IFOF segmentation.

5.5.1 Using CNNs to segment small waypoints ROIs

A targeted analysis of the error in segmenting the ROI of stem reveals that it is not isotropic.
The displacement of the center of mass with respect to the correct location is negligible
both in vertical and lateral directions (see Figure 5.6b3). Instead, the displacement error
in the anteroposterior direction is higher (see Figure 5.6a3 and 5.6c3), and it is responsible
for the high variance in the recall score. Luckily, this distribution of the displacement error
does not impact the accuracy of IFOF segmentation. The anteroposterior shift reflects
the variance that the expert has during the manual labeling of stem-ROIs — the three
manually segmented coronal slices may not be uniques. Such variance is mostly due to
the similar-planar approximation that the stem-ROIs does of the anatomical stem, which
instead is more extended in the anteroposterior direction, as can be noted in the ex-vivo
dissection of Figure 5.1b.

In light of the previous discussion, we may consider satisfactory the results obtained
on stem-ROI segmentation. The adoption of a CNN to segment the colored FA image



70 5.5. DISCUSSION

of the brain has proved to be a correct choice. In particular, the use of a 2.5D training
strategy compared to a more basic 2D strategy turned out to be decisive. In our earlier
investigations with 2D strategies (see Appendix B.1), we needed heuristics to select which
predicted slices to use for the generation of the final stem-ROI, and the obtained selection
resulted sometimes sub-optimal. Also, the use of coronal projections only in the 2D
strategy might limit the possibility for the CNN to better understand the contextual
information of the stem-ROI, which is present in sagittal and axial views.

5.5.2 Automatic stem-based bundle segmentation

ROI-based segmentation tends to have more false positive streamlines while bundle-based
segmentation allows the pruning of all outlier streamlines (see Figure 5.7b and 5.7a
respectively). StemSeg is performing well (see Table 5.1), even with respect to a manual
and time demanding segmentation. In particular, if we compute the DSC on fibers (instead
of voxels) of the segmented bundles we obtain 96.1% of overlapping with bundle-based
IFOF. This means that in addition to segmenting a bundle having the correct envelop i.e.
bundle mask, we only missclassify a very small portion of fibers.

StemSeg significantly outperforms TractSeg as reported in Table 5.1. The large gap
between the volumetric DSC measures is mainly motivated by two reasons. First, the
two models produce two different output representations: streamlines for StemSeg and
voxels for TractSeg. Second, CNNs tend to better perform in the segmentation of rather
regular shapes like the stem-ROI compared to quite irregular shapes like bundle masks.
Figure 5.7c and 5.7d, show an example of the IFOF anatomy dissected by StemSeg and
TractSeg respectively. Despite using the same examples of StemSeg, TractSeg is missing the
portion of superior regions, both frontal and occipital, where streamlines are fanning out.
Apparently, this pattern can not be properly detected with a voxel-based representation.
A similar claim is also reported in the study of (Bertò et al., 2021). The main argument is
that the inductive bias of CNNs especially given by discrete pooling filters induces the
learning model to be invariant to local variations present in the bundle fanning out of
different individuals. The impact of such a bias is quantified in (Bertò et al., 2021) by
means of volumetric fractal dimension (FD) of the output segmentations; a measure that
quantifies the irregularity of 3D shapes. The analysis in (Bertò et al., 2021) reveals a
systematic difference between the FD of the bundles segmented by TractSeg compared to
the reference bundles, with the former being more fractals i.e., less irregular.

Given the results of the application of StemSeg to low quality data we may claim a
very good robustness of our model. In the case of simulated low quality data we face
the challenge of a lower resolution input, but without altering the (high) quality of the
data source i.e. the HCP rigorous and well-tuned acquisition protocol. In Table 5.1 we
observe a very small drop of volumetric DSC with respect to the (original) high resolution
segmentations. Interestingly, we have the smallest drop when we compare to the bundle-
based ground-truths. This suggests an excellent preservation of segmentation quality albeit



CHAPTER 5. STEM-BASED IFOF SEGMENTATION WITH DEEP LEARNING 71

the use of low resolution CFA maps.
In the case of clinical APSS data instead we have a threefold challenge given by the low

resolution data, the low quality data source i.e. 1.5T acquired in time-restricted clinical
scenario, and the presence of additional noise in the MR signal due to tumors. Despite
this tough scenario, the segmentation examples illustrated in Figure 5.8 are all successful.
In SUB 1 the large volume of the tumor severely alters the trajectory of the IFOF in
the occipital terminations. We may consider anatomically correct the segmentation of
streamlines that circumnavigate the tumor mass, according to existing studies showing a
similar behavior in the same circumstances of DTI tractography and low-grade glioma
(such as the one of SUB 1) (Campanella et al., 2014; Yeh et al., 2021). By looking at SUB
5 we observe a similar situation, but in this case the alteration is less severe. Instead, in
SUB 4 the IFOF is missing a portion of the frontal inferior terminations, which would be in
correspondence of the tumor area. In this case, we may attribute most of the responsibility
to the tractography pipeline since a more detailed inspection of the input tractogram
revealed the lack of such streamlines — probably due to the strong signal noise caused by
the tumor.

Overall, considering the APSS segmentations in Figure 5.9 we may confirm a good
robustness of our StemSeg. We suggest that one of the reason might be the little reliance on
linear or non-linear co-registrations. We do not need any of them for the critical stem-ROI
segmentation, while we use them only to co-register the large frontal and occipital regions,
which are less sensitive to small alignment errors. However, in Figure 5.9 we notice the
presence of some false positives streamlines, which are clearly artifacts of the tractography
pipeline. Although we use an anatomically sound segmentation rule, the use of ROIs to
characterize the anatomy is not able to filter all the anatomically non-plausible fibers.
Indeed, as visible in Figure 5.1b there is a mismatch between the anatomical definition
of the stem and the corresponding stem-ROI given by the different data representations.
We argue that a better approach to detect false positive fibers should cast the learning
problem directly on the fiber trajectory — as we do with Verifyber described in the next
chapter.
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Chapter 6

Tractogram Filtering with Geometric
Deep Learning

In this Chapter, we present our main contribution Verifyber, which tackles the open
questions of RQ2. In the following sections we first introduce the main idea of the work,
and describe the existing labeling strategies for the extensional encoding of white matter
anatomical plausibility (see 6.1.1). Next, we present our Geometric Deep Learning model
in 6.2), and a comprehensive discussion of the alternative model to perform learning on
streamlines (6.3). Finally, we report the material and a large set of experiments in 6.4 and
6.5, respectively. We discuss the results in the subsequent 6.6. The presented results refer
in part to (Astolfi et al., 2020b) published at the International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI) 2020. But, they have
been extended to a large extent for submission to a journal.

Synopsis The purpose of this contribution is to leverage the brain anatomical knowledge
to design a method for tractogram filtering based on the notion of anatomically plausible
and non-plausible pathways of the white matter. This challenge is approached with a
geometric deep learning model to better capture and learn the structural properties of the
brain fibers and to provide fast tractogram filtering at run time. The proposed method
may substantially reduce the amount of noise in tractograms, enabling more accurate
tractography-based analysis as well as neuroanatomical investigations.

6.1 Introduction

Tractograms are, to date, the most detailed in-vivo representation of the brain white
matter. They are obtained through complex computational pipelines that culminate in
tracking millions of virtual fibers, which approximate the white matter pathways. However,
despite such fibers might be highly informative of the WM structural connectivity, they
may also be false positives of the tracking, having no correspondence in the WM anatomy,
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i.e., anatomically non-plausible. Unfortunately, according to multiple recent evaluation
studies (Maier-Hein et al., 2017; Nath et al., 2020; Schilling et al., 2019b), false positives
often dominate tractograms.

One possible solution is to post-process tractograms by filtering out fibers based on
anatomical plausibility criteria. This task is known as tractogram filtering. Unfortunately,
the current knowledge of WM anatomy does not permit a complete definition of what is
plausible and what is non-plausible. The design of a loss function suitable to capture the
notion of anatomical plausibility remains an open challenge. For this reason, state of the
art methods (see 3.2) adopt unsupervised and intensional criteria either based on the signal
explainability of fibers and/or fibers consistency in local bundles or across individuals.
However, such unsupervised criteria only capture limited anatomical plausibility aspects,
often leading to suboptimal removal of false positives. They lack explicit anatomical priors
such as extensional fiber labeling, which would guarantee anatomically sound filtering.

In this work, we propose Verifyber, a novel tractography-based method to perform
filtering of non-plausible fibers from a tractogram. Unlike previously done in the literature,
the task of tractogram filtering is shaped as a supervised learning problem. A binary
classifier takes in input a fiber and outputs either the category anatomically plausible or
anatomically non-plausible. We present an original learning model based on Geometric
Deep Learning (GDL) (Masci et al., 2016; Bronstein et al., 2017),. GDL better fits the
learning with 3D data without forcing Euclidean vector representations. The notion
of anatomical plausibility is not hardcoded in the loss function but derived from fiber
examples, labeled either as anatomically plausible or anatomically non-plausible.

Regardless of the labeling source, the challenge of supervised learning is to train a
binary classifier based only on a digital representation of fibers. Choosing an appropriate
representation of a fiber suitable for the learning process is a crucial step. Usually, a fiber
is encoded as an ordered sequence of a variable number of 3D points. Previous works
on supervised learning for tractography dealt with the constraint of learning algorithms
requiring a fixed-length embedding. The most common solutions are the computation of
a Euclidean embedding such as dissimilarity representation (Olivetti and Avesani, 2011;
Bertò et al., 2021). Unfortunately, these fiber embeddings are lossy.

To overcome these limitations of traditional learning models and to preserve the full
geometrical information encoded in the fiber pathways, we propose to investigate the use
of Geometric Deep Learning (GDL) models like PointNet (Qi et al., 2017) and Dynamic
Graph CNN (Wang et al., 2019), which by construction can deal with variable size inputs
like point clouds and graphs. GDL architectures are based on layers of permutation
invariant operators whose combination allows a model to perform convolution in a non-
grid representation. Our working hypothesis is that GDL might be more accurate in
capturing the geometrical properties of pathways associated with the notion of anatomical
plausibility.

Verifyber is designed as a novel end-to-end trainable GDL model to handle traditional
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fibers encoding as ordered sequences of a variable number of 3D points. The proposal
extends the existing Edge Convolution (EC) layer (Wang et al., 2019) to take into account
the information encoded by the edges between two subsequent 3D points in a fiber. The
architecture comprises a global pooling layer that compresses each fiber to a single descriptor
and by a Multi-Layer Perceptron (MLP) to discriminate between the two categories, either
anatomically plausible or non-plausible. Unlike EC, our model is sequence sensitive, i.e.,
not permutation invariant, while it remains invariant to the orientation of the input
fibers. We provide the results of a broad set of experiments to prove the properties of
the proposed model and assess the efficacy in discriminating anatomically plausible and
non-plausible fibers. We show that Verifyber outperforms in accuracy competing deep
learning methods such as bidirectional LSTM (Graves and Schmidhuber, 2005; Huang
et al., 2015), PointNet (Qi et al., 2017), and Dynamic Graph CNN (Wang et al., 2019).
These results are robust to different types of tractography and equally effective on inclusive
and exclusive policies to elicit the notion of neuroanatomical plausibility. An additional
comparison aims to show the different behavior of supervised and unsupervised filtering
approaches such as FINTA (Legarreta et al., 2021). We also investigate how a trained
model behaves across different sources of tractograms, when the computation of tracking
is not necessarily homogeneous. We show some preliminary results of this kind of analysis
on a clinical dataset. An additional simulation study allows the evaluation of the method’s
behavior when the labeling of fiber is dynamically evolving over time.

6.1.1 Ground truth anatomy: inclusion vs. exlusion policies

We envision the task of elicitation of brain knowledge as binary labeling of fibers. Despite
the evolutionary nature of the knowledge of the human brain, we may conceive two
main labeling policies: inclusive and exclusive. The inclusive policy leans to be more
conservative and aims to prevent false positives. According to this bias, only fibers following
the pathways of well-known bundles are labeled as anatomically plausible, non-plausible
otherwise. Conversely, the exclusive policy is more sensitive to the false negative. In this
case, only fibers with clear artifactual pathways are labeled anatomically non-plausible.
It is out of the scope of this work to establish which policy might be more effective and
appropriate. Instead, our goal is to investigate whether the proposed method is equally
robust for the two policies.

Our empirical analysis is considering datasets labeled with both inclusive and exclusive
policies. As a reference example of inclusive policy, we point out to an anatomically curated
white matter atlas (Zhang et al., 2018). This atlas provides a whole-brain tractogram
averaged over 100 individuals. A team of experts manually curated the annotation of 74
bundles. For our purpose, we considered anatomically plausible all the fibers of those
bundles, non-plausible otherwise.

In the literature, the exclusive policy is less common. As an instance of this kind,
we consider Extractor (Petit et al., 2019). In this work, the notion of non-anatomical
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plausibility is defined by a set of heuristic rules based on the current knowledge of the
human white matter. Well-known artifactual pathways based on geometric properties or
brain locations are labeled as anatomically non-plausible, usually half portion of fibers.
This declarative knowledge can be applied to any tractogram enabling the annotation of
training and test sets for learning purposes.

6.2 Verifyber method

In this section, we describe our method, Verifyber. For the sake of comprehension, we
also summarize the Edge Convolution (EC) layer (Wang et al., 2019), which is a building
block of our model, and the base of our contribution sequence EC.

6.2.1 Edge convolution layer

Considering a point cloud X = {x1,x2, . . . ,xn}, xi ∈ R3, an Edge Convolution (EC) layer
first induces a graph structure for X by retrieving for each point xi the set of k nearest
neighbors, knn(xi) = {xji1

, . . . ,xjik
}, using the Euclidean distance as metrics (see Figure

6.1a). The result is a k-nn graph composed of V nodes and E edges:

G(V , E), V = X , eij ∈ E : xi → xj ⇐⇒ xj ∈ knn(xi). (6.1)

Then, each point representation xi is enriched with the representation of each of its
neighbors xji to obtain edges features eij, which are learnt through a neural network hΘ.
Specifically:

eij = hΘ(xi ⊕ (xj − xi)), (6.2)

where ⊕ denotes the concatenation operator. Finally, a new representation of a point,
x′i, is obtained by aggregating all the learned edge features with a pooling operator, i.e.
x′i = pool(eij), j : (i, j) ∈ E , where pool is either max or mean.

xji1

xji2 xi

(a)

xji1

xji2

xi

(b)

Figure 6.1: Comparison between Euclidean k-nn (a), and graph k-nn on the streamline (b).
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6.2.2 Sequence edge convolution layer

A remarkable property an EC layer is the invariance to the permutation of the points in
the input point cloud. Indeed, the layer contains only operators invariant to the order e.g.,
FC layers, max / mean pooling, Euclidean k-nn. Although this property is fundamental in
the point cloud domain, it becomes undesired if the input is a sequence as in our case. To
solve this issue, we propose a simple but well-motivated modification: we substitute the
Euclidean k-nn, which induces a new input graph structure, with a graph-based k-nn (see
Figure 6.1b) that instead preserves an existing input graph. Considering the streamline
structure, the graph-based k-nn preserves the input graph to be a bidirectional sequence
of points where each non-terminal point, xi 6=0,n, has two neighbors: the previous and the
next point in the sequence, while the terminal points, x0,xn, have just one neighbor:

G(V , E ′), e′ij ∈ E ′ : xi → xj, ⇐⇒ j = i+ 1 ∨ j = i− 1. (6.3)

By using this graph structure an EC layer loses the invariance to the input permutations,
while maintaining the invariance with respect to the input flipping (a crucial property
when dealing with streamlines), thanks to the bidirectionality of the edges. For this reason,
we define this modified EC layer as sequence EC (sEC) layer.

6.2.3 Verifyber model

The Verifyber (VF) model is characterized by the stacking in depth of one sEC layer
with one or more EC layers. Specifically, referring to the architecture adopted for our
experiments in Figure 6.2, one sEC layer and one EC layer are stacked to produce new
representations X ′ and X ′′ with 64 and 128 features respectively. The stacking of these two
layers guarantees the model to be both sequence sensitive and dynamic: as shown in (Wang
et al., 2019), the computation of knn in latent space allows a dynamical adjustment of the
local neighborhood of points guided by the semantics of the task at hand. Then, X ′ and
X ′′ are concatenated, encoded to 1024 features with a learning layer gΦ, and pooled to
obtain a single descriptor of the whole point cloud,

z = pool(gΦ(X ′ ⊕X ′′)). (6.4)

Finally, the 1024d feature vector z is classified using a fully connected (FC) network
composed of three layers, which decreases the number of features to 512, 256, and c

(number of classes).
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Figure 6.2: Verifyber architecture. Green, gray, and red blocks represent input, intermediate, and
output tensors, respectively. Parametric layers are colored in blue, while fixed layers in white. In
yellow we highlight the graph k-nn that allows the model to be sequence sensitive.

6.3 Streamline representation learning

The proposed Verifyber model is the result of a step-by-step investigation that arises to solve
a well-known problem in tractography analysis: finding a data representation compliant
with computational requirements. Performing automated analysis of a tractogram requires
a method able to deal with the structure of streamlines. Such a structure presents some
characteristics which differ from most common neuroimaging data like images and volumes:
(i) the length of a streamline is variable, (ii) a streamline is a sequence of points without
orientation.

Streamline embedding and traditional models These properties prevent many learning
methods from being directly applied to streamlines. One common requirement of learning
methods is to have fixed length vectors as input, and thus existing works resorted to
different preprocessing solutions to match that requirement. A widely adopted heuristics
consists in resampling the streamlines to a fixed number of points (Garyfallidis et al., 2012,
2018; Gupta et al., 2017; O’Donnell and Westin, 2007; Legarreta et al., 2021). However,
for many methods, especially traditional machine learning algorithms like support vector
machines or linear classifiers, the resulting 2-dimensional vectors of fixed size (n_points,
3) are not suitable, and they need to employ a more advanced embedding technique to
project streamlines in a new convenient space. An example are embeddings based on
dissimilarity representation like (Olivetti and Avesani, 2011) or more recently (Bertò et al.,
2021), which combines it with a set of handcrafted features based on the white matter
anatomy. These embeddings enable the training of traditional classifiers at the cost of
losing some geometrical/structural information of the streamlines e.g., the presence of a
loop.

CNNs for streamlines Such a limitation might be bypassed using deep learning tech-
niques as they are able to learn embeddings directly from the input data. Given the
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breakthrough of CNNs in computer vision, there have been recent attempts to apply them
also to streamlines. FINTA (Legarreta et al., 2021) proposes an unsupervised approach,
where the embedding is learned by means of a convolutional autoencoder, and then it
is used as input for the downstream task e.g., tractogram filtering. Even though the
learned embedding might preserve the structural information of streamlines, the lack of
a task-specific supervision does not guarantee its optimality for the downstream task.
FiberNet (Gupta et al., 2017) and FiberNet 2.0 (Gupta et al., 2018), Deep CNN (DCNN)
tract classification (Xu et al., 2019; Lee et al., 2020) and Deep White Matter Analisys
(deepWMA) (Zhang et al., 2020), instead, train standard CNN models like (Krizhevsky
et al., 2012) and (He et al., 2016) directly on streamlines using bundle supervision. In this
way they learn an embedding optimized with respect to the bundle segmentation task.

However, we notice a controversial use of convolutional filters in FiberNet and DCNN as
they treat a streamline of fixed size (n_points, 3) like it is an image of size (height, width).
As operated in FINTA and DeepWMA, the proper use of convolution considers the three
component (x, y, z) of a streamline to be channels like (r, g, b) in images so that different
filters are learned for each channel. We may also notice a general drawback concerning
the adoption of standard CNNs to perform learning on the streamline structure. Indeed,
the success of CNNs is strictly related with their translation invariance (or equivariance)
property that is crucial for the image domain. In other words the grid-based structure of
images allows the parameter sharing of spatial convolution filters. However, streamlines
do not have a grid structure, and thus the translation invariance/equivariance of CNNs is
not a crucial requirement, as it is for images. Streamlines, instead, require flip invariance
as they are unoriented sequences of points, but unfortunately this is not a property of
standard CNNs despite it is neglected by the approaches mentioned above

RNNs and GDL Based on these premises we investigate supervised deep learning
approaches different from standard CNNs. We seek for NN architectures more suitable for
the streamline structure. Guided by the sequentiality of the streamline structure, we start
our investigation from setting a baseline using a Recurrent Neural Network (RNN) model.
Then, with the aim to have a flip invariant model able to deal with size-varying input, we
explore some methods from the family of Geometric Deep Learning (GDL) (Masci et al.,
2016; Bronstein et al., 2017). GDL comprises all the methods that extend convolution
principles to non-Euclidean data e.g. non grid-based, like point clouds and graphs. To
deal with such data, GDL models perform convolutions and pooling that are permutation
invariant instead of translation invariant and that can be applied to batches of size-varying
samples.

bLSTM (Graves and Schmidhuber, 2005) In the literature of RNN methods, especially
in the field of Natural Language Processing where data has a sequential structure, a large
number of methods is based on Long Short Term Memory (LSTM) (Hochreiter and
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Schmidhuber, 1997). Among all, we individuate the bidirectional LSTM (bLSTM) (Graves
and Schmidhuber, 2005; Huang et al., 2015) as a reference deep learning method to analyze
streamlines. bLSTM is characterized by two LSTM layers, each of them fed with a different
orientation of the input. It learns a shared embedding of both orientations by combining
the two LSTM outputs with an aggregator operator e.g., concatenation, and then forwards
it to a FC network, which performs classification.

There are two main limitations of the bLSTM method when applied to streamlines.
First, it requires a fixed-length vector as input to its LSTM layers, and second it is not
invariant to the input flipping despite the bidirectional architecture. Indeed, the two LSTM
layers learn two different set of parameters, which may produce different hidden states
if fed with the same sequence. However, the use of the two directions is still beneficial
for the network because it improves the learning of local context information. Eventually,
bidirectionality combined with an augmented training where streamlines are given in both
orientations might mitigate the lack of flip invariant layers.

The limitations of bLSTM are not present in GDL methods, which by construction are
flip invariant (special case of permutation invariance) and can be fed with size-varying
point clouds or graphs. We may approximate a streamline to be a point cloud by neglecting
its sequential structure as point clouds do not assume any order in the points. Despite such
a representation loses sequentiality it maintains both the streamline spatial information
and its invariance to the flipping of orientation.

PointNet (Qi et al., 2017) In our experiment we investigate the precursor and most
adopted NN for point cloud, namely PointNet (PN) (Qi et al., 2017) (see Chapter 2.2.2).
PN is characterized by a simple architecture composed only of FC layers and pooling layers
that are by construction permutation invariant. In particular, for the task of classification
PN presents a series of FC layers as encoder, a max pooling layer that generates a single
global feature vector of the input point cloud, and another series of FC layers perming the
output classification.

Learning on streamlines using PN could be limited due to the non-consideration of
point relations. Indeed, PN is only able to consider a global relation among all the points
by performing the max pooling in latent space. For this reason we decided to investigate
also a GDL model that consider points relation as encoded by graph structures, namely
Dynamic Graph CNN (DGCNN) (Wang et al., 2019).

DGCNN (Wang et al., 2019) The DGCNN model is, according to Wang et al. a
generalization of PN. Instead of considering a single all to all relation, DGCNN considers
multiple local neighborhood relations, like in a k-nn graph structure, computed at different
depths of the network, i.e., in different latent spaces. The model is based on Edge
Convolution layers (explained in Section 6.2.1) which have deeply inspired our Verifyber.
However, since DGCNN makes only use of EC layers (plus the classification decoder), it
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is a permutation invariant model as well as PN. These models cannot distinguish two
streamlines whose points are randomly shuffled, and this is an undesired behaviour for the
tractogram filtering task.

Verifyber Our contribution sEC allows the proposed Verifyber model to overcome the
permutation invariance limitation while remaining orientation invariant. Also, VF inherits
the other good properties of DGCNN and PN, resulting able to work with size-varying
input and to consider point relations.

6.4 Material

In this section we present the datasets used for the experiments. A summary is reported
in Table 6.1. The name adopt for the datasets reflect the data source, the type of labeling
(E for exclusive and I for inclusive policies), and the initial letter of the first author of the
labeling policy.

Table 6.1: Summary of the adopted datasets. B: number of bundles. #: number of tractograms.
T: number of fibers in a tractogram.

Name Source p/np label B # T Track DWI

HCP-EP∗ HCP Exclusive
Petit et al. (2019)

- 20 1M CSD
PF-ACT

3T DWI, 1.25mm, 270g
multi-b=(1,2,3)K

HCP-IZ† HCP Inclusive
Zhang et al. (2018)

74 1‡ 1M HARDI
UKF

3T DWI, 1.25mm, 108g
single-b=3K

HCP-IW§ HCP Inclusive
Wasserthal et al. (2018)

72 23 10M CSD
iFOD2

3T DWI, 1.25mm, 270g
multi-b=(1,2,3)K

APSS-IS APSS Inclusive
expert: S.S.

4 5 100K DTI
EuDX

1.5T DWI, 2.5mm, 60g
single-b=1K

HCP diffusion The Human Connectome Project (HCP) (Van Essen et al., 2013) diffusion
dataset is the base of most of the datasets we present in the next paragraphs. It is a public
and widely adopted dataset where the acquisition and pre-processing pipeline for diffusion
MRI is carefully validated (Milchenko and Marcus, 2013; Sotiropoulos et al., 2013; Glasser
et al., 2013). The dataset comprises healthy subjects (all genders) aged between 24 and
35. Each subject has both the structural T1 image and the 3T Diffusion Weighted Image
(DWI). The DWI has resolution 1.25mm with 270 gradients multi-shell (Andersson and
Sotiropoulos, 2016), and is corrected with eddy currents (Andersson and Sotiropoulos,
2015).

∗https://doi.org/10.25663/brainlife.pub.13
†https://github.com/SlicerDMRI/ORG-Atlases
‡averaged from 100 subjects.
§https://zenodo.org/record/1477956#.Ya67UyzMKL8

https://doi.org/10.25663/brainlife.pub.13
https://github.com/SlicerDMRI/ORG-Atlases
https://zenodo.org/record/1477956#.Ya67UyzMKL8
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HCP-EP This dataset is composed of 20 randomly selected HCP subjects, for which
a tractogram has been reconstructed. The tracking pipeline comprised the estimation
of the diffusivity model using the Constrained Spherical Deconvolution (CSD) (Tournier
et al., 2007), and the (ii) Particle Filtering Anatomically Constrained Tractography (PF-
ACT) algorithm (Girard et al., 2014). More in detail, the tracking generated around
∼1M streamlines for each tractogram by seeding 16 points for each voxel with step size
0.5mm. Tractograms were normalized to the same space via non-linear co-registration
to the MNI152 standard brain (Fonov et al., 2011). For computational purposes, all the
streamlines have been compressed to the most significant points (Presseau et al., 2015).

For this dataset, we have available an exclusive labeling generated by the rule-based
method Extractor (Petit et al., 2019). The rules are manually defined based on the
white matter anatomy and provide a label for each streamline of a tractogram. The
label given is either anatomically plausible (p) or anatomically non-plausible (np). The
anatomical criteria encoded by the rules regards the non-plausibility i.e., the labeling is
conservative with respect to unknown pathways. Non-plausible streamlines are identified
with a 2-step procedure: (i) the first step individuates streamlines that are shorter than 20
mm, or contain a loop, or are truncated, i.e., they terminate before reaching the WM/GM
interface; (ii) the second step makes use of clustering (Côté et al., 2015) and based on on
the three main categories of pathways, i.e., associative, projective, commissural, marks
as non-plausible local outlier streamlines. Eventually, the labeling results in a balanced
partitioning: the average on the 20 tractograms is 49.7 ± 1.5% of p streamlines. Among
the non-plausible, the most prominent are short streamlines, representing the 31.8±1.2%
of the whole set of non-plausible.

HCP-IZ The second dataset adopted to test our method is again HCP-based, but in
this case, composed of only one averaged brain: tractogram and structural T1 image. The
average comes from a set of 100 HCP subjects, for which the tracking has been performed on
the estimated diffusivity model (Descoteaux et al., 2007) using the Unscented Kalman Filter
(UKF) Tractography (Reddy and Rathi, 2016). 10K streamlines were randomly selected
from each subject’s brain, resulting in a merged tractogram composed of ∼1M streamlines.
The merge was possible after a step of streamline-based linear registration (O’Donnell
et al., 2012), which moved all the tractogram to the space of one arbitrarily picked subject.
The same affine transformation was applied to the structural T1w images of subjects.
Finally, an average T1w was computed by merging all the subjects’ T1w through a simple
mean operation.

This dataset is presented in (Zhang et al., 2018) as an atlas of white matter bundles.
The bundles are extracted from the average tractogram using the White Matter Analysis
clustering (O’Donnell and Westin, 2007). First, 800 clusters are generated, and then they
are visually inspected and merged to obtain 74 different classes of bundles (see (Zhang et al.,
2018) for the full list), including 16 classes of superficial U-shape streamlines. However,
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in this procedure, almost 300 clusters are not merged into a bundle because composed
of unknown pathways. We consider all these unknown streamlines as anatomically non-
plausible. Moreover, we use the very high number of bundle classes to create multiple
split of p and np streamlines, emulating a real-world scenario where the labeling evolves
incrementally through time. Each split considers the streamlines belonging to certain
classes of bundles as plausible and all the others as non-plausible.

HCP-IW With the aim of proving the impact of our filtering method, we adopt a third
HCP-based dataset published along with TractSeg (Wasserthal et al., 2018, 2019). This
dataset is composed of 23 tractograms non-overlapping with the ones of the other HCP-
based datasets. The tractograms were obtained using multi-shell multi-tissue CSD model
estimation and the Second-order Integration over Fiber Orientation Distributions (iFOD2)
probabilistic tracking with MRtrix (Tournier et al., 2019). The tracking was performed by:
(i) random seeding within the masked brain, (ii) pruning streamlines shorter than 40mm,
(iii) cropping streamlines at the GM/WM interface, and (iv) stopping after reconstructing
10M streamlines. Moreover, the tracking was executed twice per subject, once considering
anatomical constraints and once not.

This HCP-IW dataset is one of the few benchmark datasets for bundle segmentation.
It contains the labeling of 72 white matter bundles per tractogram. Given the lack of p
versus np categorization in this dataset (as in all the other publicly available datasets), we
use bundles as proxy evaluators to quantitatively and qualitatively show the impact of our
method.

APSS-IS The last dataset we adopt is a clinical dataset obtained from the Department
of Neurosurgery at the Santa Chiara Hospital (APSS) in Trento (Italy). It comprises 5
patients1 affected by brain tumors. For each subject, we have available the DWI and
the reconstructed tractogram. The DWI was acquired with a 1.5T MR scanner using 60
directions. Then, a single shell b=1000 s/mm2 was extracted to reconstruct the diffusion
model with DTI (Pierpaoli et al., 1996). The tracking was performed using Euler Delta
Crossing (EuDX) (Garyfallidis et al., 2014) and produced approximately 100K streamlines.

An expert neurosurgeon manually segmented bundles for clinical purposes in both the
healthy and lesioned hemispheres of the patients. The manual segmentation followed an
ROI-based procedure operated with TrackVis (Wang et al., 2007). Due to the different
sizes and locations of tumors, the types of the segmented bundle were not consistent across
patients or hemispheres. Among the available segmentations, we selected the ones that
were in common with the 5 subjects. The selection resulted in three types of bundles for
the healthy hemisphere: the Arcuate Fascicle (AF), the Superior Longitudinal Fascicle

1These patients are not the same of the APSS dataset of Chapter 5.3. The different selection is due to the lack
of structural T1w without contrast agent for certain patients. VF requires the structural volume as it needs the
tractogram to be mapped to MNI space



84 6.5. EMPIRICAL ANALYSIS

(SLF), and the Inferior Fronto-Occipital Fascicle (IFOF), and one bundle in the lesioned
hemisphere: Pyramidal Tract (CST).

6.5 Empirical analysis

The design of the empirical analysis is organized into two parts: model-related and task-
related experiments. The former is devoted to assessing the properties of the proposed
model; the latter aims to investigate the effectiveness as a solution for the task of tractogram
filtering. The performances of Verifyber are compared with a selection of the state of
the art methods. The sensitivity to the sequential structure of the streamlines is carried
out with an ablation study. Finally, the impact of the proposed solution on tractogram
filtering is estimated both quantitatively and qualitatively by:

• looking at the distribution of the misclassification error,

• considering the behavior on different types of tractograms,

• simulating the evolving definition of anatomical plausibility to test the adaptation in
the case of concept drift.

6.5.1 Model related experiments

5-fold CV filtering on HCP-EP The first experiment is designed to measure the learning
performances of Verifyber according to the usual setting of cross-validation. For this
purpose, we consider a sample of 20 individuals from the HCP dataset where the fibers
have been labeled following the heuristic rules of Extractor. The train and test splitting
follows a 5-fold cross-validation scheme, where each fold is composed of 4 tractograms and
3.5 million fibers. For each run, the remaining 4 folds are randomly split into 4 buckets,
3 devoted to training and 1 to validation. The training procedure is designed as follows:
1K epochs; cross-entropy loss to optimize the classification; Adam optimizer with default
alfa and beta momentum (0.9, 0.99); initial learning rate of 10−3 multiplied by a factor
of 0.7 every 90 epochs until a minimum value of 5 · 10−5 is reached. In each epoch, we
define a mini-batch composed of 16K streamlines, randomly sampled from two subjects,
8K from each of them. A subject is sampled only once for each epoch. The evaluation of
the binary classification task, i.e., a fiber is either anatomically plausible or non-plausible,
is carried out by measuring the accuracy, the precision, the recall, and the Dice-Sørensen
coefficient (DSC). Results are reported in Table 6.3.

Comparison with alternative DL architectures The second experiment aims to com-
pare Verifyber with the competing deep learning models, namely bLSTM, PN, and DGCNN.
In this experiment, we operate the 5-fold cross-validation setting adopted for Verifyber
to all other methods and measure the same evaluation metrics. For a fair comparison,
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Table 6.2: Models architecture used for experiments.

Method Architecture params
bLSTM MLP(128)→LSTM(256)⊕LSTM−1(256)→ MLP(256,128)→FC(2) 800K

PN MLP(64,64,64,128,1024)→MAX→MLP(512,256,40)→FC(2) 800K

DGCNN
ec1:EC(64,64,64)→EC(64,64,64,128)→ec1⊕ec2→ 800K
→MLP(1024)→MAX→MLP(512,256)→FC(2)

we enforce a uniform configuration among the different models: the choice of the input
representation, the number of parameters of the NN models, and the hyper-parameters for
training. We report the training curves in Figure 6.3.

Figure 6.3: Training curves of the four methods compared. Despite the similar number of
parameters of all the models we can observe that bLSTM (grey) has clear negative gap with
respect to all the other models. Conversely, VF (green) has always a positive gap compared to all
the others.

Regarding the input representation, GDL models can deal with size-varying input,
e.g., streamlines with different numbers of points, while bLSTM requires a fixed vectorial
representation in input, like common learning models. For this reason, we need to resample
the points of all streamlines to be a fixed number. According to previous works (O’Donnell
and Westin, 2007; Garyfallidis et al., 2012), the common choices are a resampling to
12, 16, or 20 points per streamline. Since a side empirical assessment did not provide
any significant difference in performance, we operate a resampling to 16 points for all
the subsequent experiments. To make the size of NN models homogeneous, we set the
architecture of the different methods with a uniform number of parameters, as reported in
Table 6.2.

In Table 6.3 we show the performance achieved by all methods on the HCP-EP dataset.
The scores obtained by Verifyber are the highest and most stable across different metrics,



86 6.5. EMPIRICAL ANALYSIS

even though the gap compared to PN and DGCNN is small. The lowest performance is
obtained by bLSTM, for which the computation of t-test provides a statistical significance,
with a p-value < 10−3. The inspection of behavior at training time, see the Figure 6.3,
confirms a poor minimization of the loss for bLSTM compared to other GDL models.

Table 6.3: Accuracy, precision, recall, and DSC 5-fold cross validation scores on HCP-EP dataset.
Reported values are the mean and standard deviation across the 5-folds. Each fold of 4 subjects
has been used once as a test.

Method Accuracy Precision Recall DSC
bLSTM 93.0 (±0.1) 93.8 (±0.1) 96.2 (±0.2) 95.0 (±0.1)
PN 94.7 (±0.1) 95.5 (±0.2) 96.9 (±0.2) 96.2 (±0.1)
DGCNN 94.4 (±0.1) 95.4 (±0.2) 96.5 (±0.1) 96.0 (±0.1)
VF 95.2 (±0.1) 96.1 (±0.2) 96.9 (±0.1) 96.6 (±0.1)

Permutation invariance test The third empirical investigation, concerned with the
property of the proposed model, aims to assess the sensitivity to order of points in a fiber.
Both Verifyber and DGCNN capture the notion of context by taking into account the
neighbors of a point. Nevertheless, the working assumption is that Verifyber is exploiting
more carefully the sequential relation of points in a fiber. For this purpose, we design a
simple permutation test where the order of points in a fiber is randomly permuted. The
side effect is to generate pathways anatomically non-plausible likely. We then operate
the inference on this new test set using just one split of 5-fold cross-validation since this
experiment is not sensitive to the selection of the individuals. The results evaluated with
the previous metrics are shown in Table 6.4. As expected, the performance of Verifyber
drops to 30.0% of accuracy and 0.0% of recall because permuted fibers are classified
as anatomically non-plausible. On the other hand, both DGCNN and PN preserve the
previous scores, 94.3% and 94.5% respectively, because these models are invariant to the
order of points.

Table 6.4: Permutation test results on HCP-EP. Reported values refer to only one split of the
5-fold. The mean and standard deviation are computed across the 4 test subjects. Lower values
are better. As expected PN and DGCNN proved the permutation invariance maintaining the
same results of Table 6.3 of the paper.

Method Accuracy Precision Recall DSC
bLSTMperm 64.1 (±1.1) 89.8 (±1.0) 55.1 (±1.1) 68.3 (±0.9)
PNperm 94.5 (±0.1) 95.4 (±0.2) 96.8 (±0.2) 96.1 (±0.2)
DGCNNperm 94.3 (±0.1) 95.4 (±0.3) 96.5 (±0.2) 95.9 (±0.2)
VFperm 30.0 (±2.8) 87.7 (±0.7) 00.3 (±0.0) 00.6 (±0.1)
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6.5.2 Task related experiments

Performance analysis for types of streamline A second purpose of the empirical inves-
tigation is to understand how the different models behave with respect to the geometrical
and anatomical properties of fibers. The geometrical properties of fibers might be captured
considering two features: the length and the curvature. The combination of these features
may represent a good proxy of the anatomical properties. We define a partition of fibers,
according to their length, into three intervals: short [0, 50] mm, medium [50,100] mm,
long [100,300] mm. Similarly, we operate a partition over the mean curvature (computed
per-point as in the Frenet-Serret Space Curve Invariants): straight [0.0,0.05], curved [0.05,
0.10], very curved [0.10, 0.20]. The partitions are designed to have at least 15% of fibers
in each interval. Combining the intervals of length and curvature, we obtain 9 groups of
fibers, see Figure 6.4.

Figure 6.4: Distribution of Extractor labels per streamline category.

Comparison with PointNet (Qi et al., 2017) We may proceed by looking at these
groups and inspecting where the predictions fail to discriminate between anatomically
plausible and non-plausible fibers properly. A deeper analysis of the misclassification error
might provide a better comprehension of how Verifyber, based on edge representation,
differs from PointNet, based on bare point clouds. Despite a similar score of classification
accuracy, the two methods share only a 60% of the error while the remaining 40% concerns
different fibers. The distribution of error with respect to these 9 groups is reported in
Figure 6.5a.

Figure 6.5a highlights that on longer and more curved fibers, Verifyber outperforms
PointNet. An interpretation of the source of such a difference might be achieved by looking
at the internal representation of the two models. The relevance weights associated with
each fiber point are uniformly distributed in PointNet, while in Verifyber, the learning
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(a) (b)

Figure 6.5: Comparison between PN and VF with respect to 9 streamlines categories that differ
for curvature and length. We report the comparison in terms of accuracy (a) and false positive
percentage (b).

process clearly identifies a few more discriminating points. We show visual evidence of
this difference for long and more curved fibers in Figure 6.6.

In-depth error characterization We may deepen our analysis by focusing our attention
on the false positive rate, i.e., the tendency of misclassifying non-plausible fiber as plausible.
We neglect the false negative rate in this analysis because Extractor (Petit et al., 2019)
adopts an exclusive policy to label the fibers as anatomically non-plausible, i.e., is more
sensitive to false positive error. False negative error is qualitatively investigated later.
In Figure 6.5b we show how false positive error differs between Verifyber and PointNet.
Even in this case, Verifyber behaves better than PointNet, meaning lower false positive
rate when fibers are long and curved. PointNet has a clear bias to classify those fibers as
anatomically plausible, while Verifyber is more robust and keeps the false positive rate
consistently in the range of 50− 60% across all the groups of fibers. More in detail, the
worst performance of PointNet are for medium length and very curved fibers (91.4%), long
and very curved (86.5%), long and curved (64.2%), where the rates of Verifyber are 64.1%,
49.5% and 51.1% respectively.
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Figure 6.6: Given a set of streamlines, we compared the per-point contribution to the classification
performed by PN and VF. The reported streamlines are all non-plausible and belong to the
category of long and curved where the misclassification error is greater. We analysed the amount
of contribution of each point to the global max pooling present in both PN and VF. The size of
points indicate their importance with respect to the single descriptor generated by the pooling.
We observe how PN tends to maintain a uniformly distributed importance, while VF seems able
to individuate few strategic points for the filtering task.

(a) PN (b) Verifyber

Considering the conservative approach of exclusive labeling, it might be interesting
to inspect the false negative error qualitatively. In this case, the goal is to evaluate
whether anatomically plausible fibers misclassified as non-plausible might be considered
controversial due to the noisy process of ground truth definition. For this purpose we
operate a visual inspection on a random sample of misclassified fibers, as reported in
Figure 6.7. Although those fibers are labeled as anatomically plausible, — probably
because considered unknown by the exclusive policy — a manual survey by an expert
anatomist confirms the classification of Verifyber as anatomically non-plausible.

Incremental learning with HCP-IZ The qualitative analysis of false negative fibers
highlights the issue of ground truth. Inconsistencies or mistakes in the definition of
anatomical plausibility are not only related to the manual labeling process. The debate
on human brain anatomy is an ongoing challenge, and the knowledge of white matter
pathways is constantly evolving. In the machine learning literature, this circumstance is
known as concept drift. For this reason, we need to investigate how Verifyber might be
robust when the ground truth is incrementally updated.

We design a simulation where the labeling of fibers is revised at different stages by
adding new knowledge following an inclusive policy. For this analysis, we refer to the
HCP-IZ dataset and the categories of bundles defined in the related atlas: association,
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Figure 6.7: Example of FN i.e., labeled as plausible but classified as non-plausible, produced
by VF. The streamlines shown are clearly non-plausible showing the presence of noise in the
rule-based labeling, and the capacity of VF of extending the concept learnt by the rules.

projection, commissural, cerebellar, and superficial. In the first stage, only fibers of
association bundles are labeled as anatomically plausible, non-plausible otherwise. In
the second, third, and fourth stages, we add the fibers of projection, commissural and
cerebellar bundles, respectively. Finally, in the fifth stage, we consider the fibers of all
bundles defined in the atlas, i.e., deep and superficial bundles. Even though the HCP-IZ
dataset is the result of processing hundred of individuals, it is composed of only a single
average tractogram. For this reason, we organize the training set by randomly picking 80%

of fibers and the test set with the remaining 20%. For all stages, we carry out a training
process using the same hyperparameters described above.

Table 6.5 shows the results of the incremental learning for the five stages. The scores
confirm that Verifyber is quite stable and does not suffer the drift of the anatomical
plausibility. However, we may notice a small decrease in accuracy, compensated by an
increase of DSC, when new groups of bundles are added to the ground truth. This behavior
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might be explained by the balance shift between the number of plausible and non-plausible
fibers.

Table 6.5: VF results on incremental learning setting in HCP-IZ dataset. The model is trained
always with the same configuration and hyperparameters. The labeling changes incrementally:
first row considers the streamlines of Association (A) bundles as plausible and the rest as
non-plausible; in the second row the labeling of plausible is incremented considering also the
streamlines of Projection (P) bundles; similarly the third and fourth rows add the streamlines of
Commissural (Co) and Cerebellar (Ce) bundles. Finally, the last row considers all the streamlines
of the Zhang et al. atlas (Zhang et al., 2018) as plausible and the rest as non-plausible.

Method Plausible Accuracy Precision Recall DSC
Verifyber A 98.8 96.4 96.0 96.2

A+P 98.0 96.4 95.9 96.1
A+P+Co 97.9 97.0 96.6 96.8
A+P+Co+Ce 97.8 97.1 96.4 96.7
All bundles 97.1 97.6 98.0 97.8

T-SNE analysis of learned features A deeper analysis of the results can be carried out
by looking at the latent space learned by Verifyber after the training process. In the
latent space, each fiber is encoded into a vector of 1024 dimensions. We may visualize this
space by projecting all the fibers into a two-dimensional plot by means of t-SNE (Van der
Maaten and Hinton, 2008) as reported in Figure 6.8. Using a color scheme, we highlight
the proximity of fibers that belong to the same bundle. It is worth noting that even the
proximity among the bundles is preserved: e.g., AF is close to SLF-II and SLF-III, CC[1-7]
are almost consecutive, MdLF is close to ILF. Lateralized bundles are well separated from
each other, e.g., IFOF left and right. There is consistency in the lateral grouping of similar
bundles, i.e., if a left bundle is close to another left bundle, the corresponding right bundles
are close too.

Comparison with FINTA (Legarreta et al., 2021) An interesting open question is
whether our supervised approach is better when compared to a state of the art unsupervised
tractogram filtering approach such as FINTA (Legarreta et al., 2021). FINTA is a recent
approach based on a convolutional autoencoder, which, as in our case, is trained directly on
the raw streamline structure. We think that such a comparison might be relevant to clarify
the difference between unsupervised and supervised approaches. Unfortunately, neither
the code nor the data utilized in (Legarreta et al., 2021) has been publicly distributed. For
this reason, we re-implemented FINTA, following the methodological description provided
by the authors in their article. We publish our FINTA implementation, see Section 6.5.3.

Analogously to what is done in (Legarreta et al., 2021) we train the autoencoder
of FINTA with a single average tractogram, the one of HCP-IZ, whose streamlines are
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Figure 6.8: Latent space learned by VFIZ. Each point corresponds to a streamline in the 1024D
space reduced to 2D by means of t-SNE (Van der Maaten and Hinton, 2008). The three plots
show the non-plausible streamlines in light-gray, together with one macro category of bundle i.e.,
association, projection, commissural at a time.

randomly split into 80/20 for train and test. The training is performed using the hyper-
parameters reported by the authors where possible; default values are used otherwise. We
trained the autoencoder until convergence (see Appendix B.3.1). In addition, we performed
a qualitative assessment of streamlines that were reconstructed with the trained autoencoder
to check that the reproduced approach worked as expected (see Appendix B.3.1). After the
training, we have run nearest neighbor classification of p/np streamlines considering both
the dataset HCP-IZ and HCP-EP. For each dataset, we computed the latent features of a
portion of the training streamlines labeled as p using the trained autoencoder. Subsequently,
we tuned a plausibility threshold, i.e., Euclidean distance in the latent space, using a
portion of streamlines randomly sampled from the validation set. Finally, the threshold
has been used to classify streamlines of the test set.

In Table 6.6 we report the values of accuracy, precision, recall, and DSC for the HCP-IZ
and the HCP-EP dataset. We observe that on HCP-IZ FINTA obtain scores similar to
the result published in (Legarreta et al., 2021) and reported in the first (light grey) row of
the table. Though, the performance of Verifyber is six points higher in terms of DSC and
nine points in accuracy. However, the gap becomes even more consistent if we look at the
result on HCP-EP, where FINTA has a significant drop in precision.

Model deployment on HCP-IW In the previous experiments, we trained Verifyber on
HCP-EP and HCP-IZ datasets, where tractography and ground truth policy differ. An
open question is to assess how these models behave on unseen tractograms. For this
purpose, we design an experiment where to do inference on a new dataset, namely HCP-IW,
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Table 6.6: FINTA performance evaluation. We report the score of accuracy, precision, recall, and
DSC for each run. The training of the FINTA autoencoder is performed using data from the
dataset indicated in the apex, e.g., FINTAIZ is trained on the dataset HCP-IZ. Specifically we
use the same training/test set split used for our Verifyber experiments e.g., HCP-IZ is split into
80/20 training/test. Then, we select a portion of p fibers is used as reference (Ref. p) for the
embedded nearest neighbor step of FINTA. The selection is performed from the training set of the
dataset reported in the second column. The radius threshold (reported in column two) is tuned
on the embedded space using as query fibers a portion of the validation set of the same dataset.

Method Thr Reference p Acc Prec Rec DSC
FINTA 13.6 Legarreta et al. (2021) 91.0 91.0 91.0 91.0

HCP-IZ all
FINTAIZ 36.9

Zhang et al. (2018)
88.0 87.3 95.8 91.3

Verifyber - 97.1 97.6 98.0 97.8

HCP-EP
FINTAIZ 46.0

Petit et al. (2019)
74.3 75.1 94.6 83.8

Verifyber - 95.2 96.2 96.9 96.6

using the models trained on HCP-EP and HCP-IZ. Since a ground truth is not available on
HCP-IW, we need to revise the evaluation procedure. The segmented bundles in HCP-IW
might be considered fiducial regions, where to focus on a quantitative and qualitative
analysis. We limit our analysis to 40 most common bundles, those shared with HCP-IZ,
out of the 72 available bundles. The list of chosen bundles is shown in Figure 6.10. We
operate the inference on the fibers of these bundles, then perform a quantitative and
qualitative analysis of potential false negative error since the expected prediction should
be only anatomically plausible by design. As a quantitative measure, we compute the
volumetric DSC score between the mask of the original bundle and the mask of fibers
classified as anatomically plausible. The working assumption is that a moderate false
negative error would not affect the estimate of the volumetric region of a bundle. We
deepen our evaluation with a qualitative analysis by visually inspecting a sample of fibers
classified as anatomically non-plausible, i.e., drawn from the portion of potential false
negative fibers. We replicate this procedure both on HCP-IZ and the 23 individuals of
HCP-IW datasets. In addition, we investigate the agreement of the two models trained on
two different ground truths, i.e., an inclusive and an exclusive policy.

In Figure 6.9 and Figure 6.10 we report the volumetric DSC score obtained with
Verifyber trained on HCP-EP and HCP-IZ respectively. In both the plots, the average
value of DSC is above 0.95 while the minimum does not fall below 0.80. The qualitative
analysis of the filtering is depicted in Figure 6.11 and Figure 6.12. A small sample of fibers
misclassified as false negative is selected from a few common bundles. Even though these
fibers belong to segmented bundles, the visual inspection by an expert confirms that their
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pathways are anatomically non-plausible. It is worth noting that even if a fiber falls in the
volumetric mask of a bundle not necessarily the related pathway is anatomically plausible.
The color scheme highlights those fibers that are classified as anatomically non-plausible
from both models.

Figure 6.9: Volumetric DSC of Tractseg bundles after filtering using VFEP. Reported mean and
standard deviation on 23 subjects. The filtering does not impact significantly the shape of the
bundle guaranteeing at least 80% of DSC. The mean DSC is 96.8± 5.4.

Figure 6.10: Volumetric DSC of Tractseg bundles after filtering using VFIZ. Reported mean
and std on 23 subjects. The filtering does not impact significantly the shape of the bundle
guaranteeing at least 85% of DSC. In most of the cases the DSC is above 95%. The mean DSC is
97.5± 2.4.
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Figure 6.11: Qualitative example of non-plausible streamlines belonging to Tractseg bundles
individuated using VFEP. The figure shows in blue streamlines individuated as non-plausible
both by VFEP and VFIZ (shared non-plausible). The orange streamlines are instead exclusive of
VFEP. In some bundles there is only a very small number of shared non-plausible, because the
amount of non-plausible found by both model on that bundle is globally very low e.g., the AF
bundles has 0.001% of non-plausible fibers found globally both when we use VFEP and when we
use VFIZ.
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Figure 6.12: Qualitative example of non-plausible streamlines belonging to Tractseg bundles
individuated using VFIZ. Blue streamlines are shared non-plausible examples, while red streamlines
are exclusive non-plausible of VFIZ.
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Model deployment on APSS-IS As an additional real-world experiment, we present
a possible clinical application of our approach. This experiment considers the patients
with tumors of the APSS-IS dataset, and we filter their tractograms with VFEP. Note
that the choice of filtering with VFEP rather than VFIZ is driven by the more conservative
approach of the underlying labeling. Similar to the experiments involving HCP TractSeg,
we also use, in this case, the segmented bundles as a proxy evaluator. However, since the
clinical bundles are much poorer, i.e., less dense, than the TractSeg ones (due to data
quality and time restrictions), the filtered bundles could change their shape significantly
even with the removal of very few non-plausible streamlines. Therefore, as we cannot
do any supposition on the expected shape, we opt to evaluate the filtering impact only
qualitatively, inspecting three bundles from the healthy hemisphere and one bundle from
the tumored hemisphere of each subject.

To evaluate the qualitative analysis of VFEP deployed on the APSS-IS dataset, we
report two figures. Figure 6.13 depicts the filtering of bundles segmented from the healthy
hemisphere of the subjects, while Figure 6.14 shows one bundle segmented from the
tumored hemisphere. In both cases, the individuated non-plausible streamlines (colored in
black) strongly disagree with the shape of the bundle. In many cases, such streamlines
either do a strict U-turn like in the AF of subject S2 or are truncated like in the PT of S3.

6.5.3 Code and reproducibility

Verifyber has been implemented using PyTorch (Paszke et al., 2019) and the extension for
geometric deep learning, PyG (Fey and Lenssen, 2019). Our implementation, along with the
trained models used in the experiments, is available at https://github.com/FBK-NILab/
tractogram_filtering. The Github repository also contains our FINTA (Legarreta
et al., 2021) implementation. In addition, to simplify the deployment of VFEP and VFIZ,
we published an App on the BrainLife platform (Avesani et al., 2019), accessible at
https://doi.org/10.25663/brainlife.app.390.

https://github.com/FBK-NILab/tractogram_filtering
https://github.com/FBK-NILab/tractogram_filtering
https://doi.org/10.25663/brainlife.app.390
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Figure 6.13: Qualitative results after filtering APSS clinical dataset using VFEP. Black streamlines
are classified as non-plausible. Bundles reported in this figure belong to the healthy hemisphere
of patients.
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Figure 6.14: Qualitative results of the tumored hemisphere after filtering APSS clinical dataset
using VFEP. The bundle shown is the pyramidal tract (PT). Black streamlines are classified as
non-plausible. The red ROI is the segmented tumor.
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6.6 Discussion

6.6.1 Verifyber performance

Verifyber effective for tractogram filtering The proposed method, Verifyber, resulted
successful for the tractogram filtering task. It can learn from an external supervision,
i.e., Extractor labeling (see Figure 6.3), and then maintain the high performance reached
during training also at test time, see Table 6.3. In all the metrics reported, very high
scores are coupled with a very low standard deviation in the cross-validation setting,
e.g., accuracy 95.2±0.01% and DSC 96.6%±0.01, proving robustness to the choice of the
train/test subjects. The higher recall compared to precision suggests more conservative
filtering, in agreement with the labeling’s exclusive policy. Additionally, VF revealed fast
inference at test time, classifying 1M streamlines in less than a minute, i.e., 46.2 sec using
a GPU NVIDIA Titan XP 12GB. Although we did not present a speed comparison with
common filtering methods, e.g., signal-based or rule-based, we remind that such methods
usually require tens of minutes.

Sequence Edge Convolution benefits Performing tractogram filtering using a state of
the art GDL model, e.g., PN or DGCNN, allows the use of raw streamline representation,
i.e., varying number of points without orientation, at the cost to be invariant to the
permutations of streamline points. In VF, we overcome such a drawback, as confirmed by
the permutation test results in Table 6.4 while remaining invariant to the fiber orienta-
tion. Furthermore, we show that considering the edges of the input graph (streamline)
matters, obtaining a percentage of non-shared error between PN and VF around 40%.
When streamlines are longer and curved, edges become more informative and provide a
competitive advantage. In these categories, VF has only a small drop in accuracy while
significantly outperforming PN, 89% vs. 76% and 88% vs. 71% in the very curved mid
and long fibers, respectively (see Figure 6.5). This gap is explainable by the different
representation learning abilities of the two models. (Sequence) Edge convolutional layers of
VF retain more local information into the learned embedding of fibers, capturing the most
salients in complex pathways. On the contrary, PN struggles to identify salient points as
the learned global embedding is not informative for local patterns. See Figure 6.6.

Error analysis In exclusive labeling policies, the false positive error is more relevant
than the false negative. Observing the FP analysis in Figure 6.5, VF disclosed robustness
despite the uneven distribution of the plausible and non-plausible labels, as observable
in Figure 6.4. Compared to PN, which seems to be influenced by the higher number of
plausible labels, the FP rate of VF is always lower or equal. Again, the difference is greater
for curve and long streamlines where considering the edges helps the classification. In the
false negative analysis, the presence of artifactual fibers (see Figure 6.7) proves to some
extent the ability of the model to generalize the rules beyond the labeling. Despite some
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noisy labels of these streamlines, the large number of streamlines seen during training
(around 10M) provide generalization ability to VF. We may remark the importance of this
property as manual labeling is intrinsically error-prone and always leads to having some
noisy labels. Also, the lack of complete knowledge of the white matter anatomy does not
allow the definition of a gold standard labeling.

Incremental learning The lack of a complete WM knowledge also leads to a continuous
evolution of the notion of anatomical plausibility, which reflects on tractogram labelings,
i.e., concept drift. New bundles are added to the definition of plausibility as long the
neuroanatomist consolidates their definition. We emulated such a real-world scenario in
the incremental learning experiments, where VF obtained convincing results, Table 6.5.
The iterative addition of new categories of bundles, e.g., adding projection bundles to
association bundles, has not affected the performance of VF. VF learns a meaningful latent
space where fibers of a bundle are grouped, and similar bundles are close (see Figure 6.8).
This result suggests that VF effectively captures the trajectory of fibers. Therefore, we
may expect robustness to (inclusive) incremental learning also in the real world. Moreover,
in the same experiment, we unveiled the possibility to learn the filtering by training VF
with a single averaged tractogram. Single-subject training works because our method
scales with the number of streamlines and not with the number of subjects. Note that a
single-subject training might lead to low inter-individual generalization, but this is unlikely
to be the case in HCP-IZ as the tractogram already contains information of 100 subjects.

Supervised vs. unsupervised One of our working hypotheses is the use of a supervised
DL approach in contrast with unsupervised to guarantee higher flexibility to different
definitions of anatomical plausibility. The comparison with FINTA, chosen as representative
of DL unsupervised methods, in Table 6.6 highlights a significant difference between the two
types of approach. The performance of Verifyber is high and stable on both the inclusive
and exclusive labeling policies, i.e., only 2% of accuracy and 1pt of DSC difference. On the
contrary, FINTA is not robust to two labeling policies, obtaining 14% of accuracy and 7%
of DSC difference. We remark that such a difference occurs although we tuned the filtering
threshold of FINTA specifically for each dataset/labeling. In our experience, adopting the
same threshold across different datasets highly worsen the results (see Appendix B.3.1).

An additional observation concerning FINTA is that it performs considerably better
on the inclusive labeling of the HCP-IZ dataset. This labeling policy discriminates
between plausible and non-plausible using the concept of bundle or cluster. Hence, non-
plausible fibers are isolated anatomically unknown bundles or outliers (false positives)
manually removed from clusters. Both the situations are favorable for autoencoder-based
solutions such as FINTA, as AEs are known to perform well in the task of anomaly/outlier
detection (Pang et al., 2021). The low dimensional bottleneck of the AE combined with
the reconstruction loss acts as a regularizer of the latent space and promotes a denoising
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of the input fiber trajectory (Vincent et al., 2010). As a result, in FINTA, the loss based
on fiber reconstruction is effective for detecting non-plausible fibers, considered outliers.
Nevertheless, the filtering done with FINTA is not perfect and tends to produce false
positives, i.e., it misclassifies non-plausible fibers as plausible(see Appendix B.3.1).

When we move from inclusive to exclusive labelings, the hypothesis of non-plausible as
outliers/isolated bundles no more holds. In exclusive labelings, the anatomical plausibility
concerns the artifactual geometry of fibers and the anatomical regions in which fibers pass
through or terminate. However, such characteristics might be altered by the denoising
effect of AEs (see Appendix B.3.2), e.g., a non-plausible sharp turn within a fiber is
deleted by denoising. The excessive denoising may explain the drop of performance of
FINTA on HCP-EP (-14% accuracy). In general, we may state that unsupervised filtering
approaches are accurate when the premises of their loss holds in the labeling at hand.
Instead, supervised approaches like Verifyber are more flexible to different labeling policies
as the classification loss directly optimizes the labeling at hand. For this reason, VF
substantially outperforms FINTA of 20% accuracy and 13% DSC on the exclusive labeling.

6.6.2 Model deployment

Impact on TractSeg bundles In the deployment of VF to unseen data, we proposed
the use of bundles from the HCP-IW as proxy evaluators of the filtering. We tested
the use of both VFEP and VFIZ. From the results reported in Figure 6.9 and 6.10, we
notice in both cases there is no meaningful change of volumetric bundle mask before and
after the filtering despite the removal of around 20% of the streamlines. In some specific
bundles such as the IFOF, our method detected a higher percentage of non-plausible
streamlines, around 50-60%. However, not having a ground truth labeling to refer to,
such high percentages of non-plausible may be an error of our model. For this reason, we
needed to operate an additional visual check to validate the fibers’ non-plausibility. In
the specific case of the IFOF, the visual check reported Figure 6.15 revealed a premature
termination in the frontal lobe. This situation is probably due to the lack of anatomical
constraints in the tracking procedure that TractSeg adopted for the IFOF ((Wasserthal
et al., 2018)). For all the other bundles, an expert visually investigated a portion of the
predicted non-plausible fibers confirming that such fibers conduct non-plausible pathways,
see Figure 6.11 and 6.12. However, the partial visual check is not enough to guarantee
a 100% correct filtering — which we do not expect —, but the preserved bundles masks
reveal a conservative/safe VF filtering. Using a common test dataset, i.e., HCP-IW, for
VFEP and VFIZ allows us to compute the agreement of the predictions as a rough estimate
of the labeling policies overlaps. The result is 84% of DSC of plausible streamlines and
37% of DSC of non-plausible streamlines. The low overlap of non-plausible is explainable
by the different approaches of Zhang et al. and Extractor, i.e., inclusive vs. exclusive.
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Figure 6.15: Filtering of Tractseg IFOF using VFIZ. Blue streamlines are classified as non-plausible,
while transparent green are classified as plausible.

Clinical application The last validation of VF on clinical data, i.e., APSS dataset, shows
that the method is suitable for clinical use. Although the completely different data quality,
tracking pipeline, and the presence of alteration caused by tumors, our method filters
streamlines that after visual inspection confirmed to be truly non-plausible, see 6.13 and
6.14. Indeed, the characteristics of the detected non-plausible agree with the principles
of some of the Extractor rules, e.g., truncation, loop/strict U-turn. In most cases, it is
easy to notice the disagreement of filtered fibers compared to the retained fibers of the
respective bundles. One could argue that a similar strong disagreement may happen when
plausible streamlines belonging to other bundles are wrongly present in the APSS dataset
segmentations. To answer, we can assert that the inspection shows, on the contrary, that
such streamlines are truly non-plausible. Given the clinical circumstances, we may claim
that filtering such non-plausible streamlines could simplify and speed up clinicians’ manual
process of bundle extraction. With fewer false positives, they do not have to draw several
ROIs of exclusion otherwise necessary.

6.6.3 Possible weaknesses and limitation

Choosing between VFEP and VFIZ Some precautions must be taken into account when
deploying Verifyber to new data, particularly considering the choice of VFEP versus VFIZ.
In the case of VFEP, the filtering is highly dependent on a proper non-linear co-registration
of the target brain to standard MNI as many rules of Extractor concern the anatomy
of that standard. The same strict requirement is not present for VFIZ, as the HCP-IZ



104 6.6. DISCUSSION

training dataset contains fibers that are only linearly registered to a shared anatomical
reference. However, VFIZ has other limitations. First, it is biased towards the bundle
definitions followed by Zhang et al.. Secondly, the averaged tractogram of the atlas does
not contain spurious streamlines that terminate in the WM or contain loops, and thus one
cannot expect the removal of these in a new tractogram.

Verifyber is not designed for signal-based filtering In case one is interested in re-
training VF using new labelings, it is important to remind that VF is not meant to
learn signal-based filtering. The reason is that signal-based criteria are based on spatial
regularization of fibers, i.e., fiber density map, and not on fiber anatomy. For example,
considering SIFT2 (Smith et al., 2015b) weights, the anatomy of high-weight fibers is
often non-plausible (see Appendix B.2.3). For the sake of completeness, in additional
experiments, we explored using VF to learn the SIFT2 filtering. Such experiments are
reported in Appendix B.2.3.

Quantitative generalization experiments are missing Despite the extensive set of ex-
periments employed to test Verifyber, we miss a second labeled dataset where quantitatively
confirms the generalization performance of VF. The availability of labeled tractograms
is still limited, and in our case, we had available only a single additional non-HCP trac-
togram labeled with Extractor. Despite that tractogram contains more than 1.5M fibers,
we considered a single-subject test not statistically significant. We attach the result on
that dataset in Appendix B.2.2.



Chapter 7

Conclusion

In this Chapter, we draw the conclusions of the thesis. First, we provide an overall
discussion of the thesis impact, highlighting the novel contributions and limitations
(Section 7.1 and 7.2). Then, we discuss future research directions (Section 7.3).

White matter characterization with deep learning The ultimate goal of this thesis
was to reduce artifactual fibers in tractograms and enable a more accurate automatic
process of white matter characterization. The presented approaches, i.e., StemSeg and
Verifyber, enrich the neuroimaging literature with novel ways of characterizing the white
matter using deep learning. Our work constitutes a contribution from both an applicative
and a methodological perspective. First, we propose effective strategies for more accurate
characterization of the white matter, reducing the number of artifacts (see Section 7.1).
Then, we demonstrate the power of deep learning for accurately processing tractography
data (see Section 7.2).

7.1 White matter characterization with supervised learning

The accurate characterization of the brain white matter is a task/topic of pivotal im-
portance for several neuroanatomical, clinical, and neuroscientific applications. In this
thesis, we proposed to improve the WM characterization by injecting anatomical priors
into tractograms. The application of anatomical priors as constraints for tractography and
tractograms was already proved to be one of the best ways to obtain a correct characteri-
zation of the white matter (Schilling et al., 2020; Girard et al., 2020). However, one of
the necessary conditions is that anatomical priors must be accurate and specific for the
anatomy at hand. For this reason, such works resorted to experts’ manual intervention.
On the contrary, in this thesis, we explored the encoding of anatomical priors using an
automatic strategy. In particular, to guarantee anatomical grounding, we proposed casting
the white matter characterization as a supervised learning problem. Such an approach
constitutes a novelty for the task of learning anatomical priors not related only to bundles

105



106 7.2. GDL FOR STREAMLINE REPRESENTATION LEARNING

characterization.
Anatomical priors can encode different types of anatomical knowledge. Typically it

encodes either anatomical regions of the white matter or directly the white matter fibers.
In this thesis, we challenged the learning of both these types of anatomical priors via
supervised learning:

• In Chapter 5 we presented StemSeg, a supervised learning approach to learn anatom-
ical waypoints regions, namely stems, crucial for the definition/segmentation of
bundles. We proposed a two-step procedure that (i) automatically segments the
stem-ROI of a bundle using a Convolutional Neural Network (CNN), and (ii) exploits
the predicted stem to improve the accuracy of the segmentation rule for that bundle.
To the best of our knowledge, StemSeg is the first automatic stem-based method for
bundle segmentation. The experimental results show the effectiveness of the proposed
method for IFOF segmentation. StemSeg, substantially outperformed the competitor
approach, TractSeg (Wasserthal et al., 2018), which is the state-of-the-art for bundle
segmentation. Finally, as a side contribution of StemSeg, we published the training
dataset, composed of manually curated stem-ROIs for a large set of individuals (more
than 150 subjects).

• In Chapter 6, we proposed Verifyber, the first method for tractogram filtering based
on the supervised learning of fibers’ anatomical plausibility. Verifyber achieves high
accuracy on in-distribution and out-of-distribution tractograms from different trac-
tography pipelines, including clinical cases, showing a good generalization capability.
Moreover, it can be effectively trained with differently labeled data — as long as they
are based on fiber anatomy. In our analyses, we validated this property considering
two different anatomical labelings and a simulated evolutionary scenario with five
stages of labeling refinement. Further, the supervised strategy of Verifyber is more
beneficial compared to the unsupervised competing methods, such as FINTA (Legar-
reta et al., 2021), which show a lower flexibility to different labelings. We remark
that Verifyber’s flexibility to labelings is extremely valuable as the white matter
structural connectivity is still under investigation, and the community continuously
proposes novel accurate tractogram labelings. As soon as new labelings are available,
Verifyber can be re-trained to learn meaningful features and enable more accurate
tractogram filtering at a large scale.

7.2 GDL for streamline representation learning

From the methodological perspective, Verifyber provides an original and principled method
for learning on the streamline structure. Unlike images, which have a grid-based regular
structure, streamlines are represented by an irregular structure with no orientation and
variable length. Due to this irregularity existing machine learning approach on streamlines
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always resorted to embeddings or heuristic approximations, which lose part of the trajectory
information. With Verifyber, such pre-processings are not necessary. The proposed deep
neural network has a built-in invariance to the fibers’ orientation while being sensitive
to the order of points. This property differentiates our model from other pre-existing
geometric deep learning models. Moreover, Verifyber, like other GDL models, can deal
with streamlines of different lengths. All in all, Verifyber is the first GDL model designed
for streamlines.

7.3 Future directions

This thesis constitutes a small step toward characterizing white matter using deep learning.
The proposed methods are original but come with some limitations that could be overcome
in future studies.

Extending StemSeg to other bundles In StemSeg, we proposed an empirical analysis
only focused on the IFOF bundle. However, the stem also exists in other association
bundles, such as Uncinate and Arcuate Fascicle. Thus it would be interesting to extend
StemSeg also to such bundles. To enable the training of StemSeg on new bundles, it will
require a dataset of manually curated stem-ROIs for the bundle at hand. Unfortunately,
we cannot estimate how many examples StemSeg requires to be trained, as no ablation on
low-data regimes was done. Another aspect that could play a key role in the extension of
StemSeg to other bundles is the choice of the input image. In the case of the IFOF stem,
the fronto-occipital direction of fibers corresponds to a green region in the simplistic CFA.
However, it could be that the stem of other bundles does not align with one of the three
main directions, and thus it would be encoded by a uniform color in the CFA volume.
Hence, richer representations such as the fODF peaks will need to be tried.

Exploiting pre-trained Verifyber One of the main features of Verifyber is the flexibility
to new/refined labelings via retraining. However, the training from scratch could be risky in
some situations where the new labeling is available for a limited number of fibers/subjects.
An unexplored solution would be to fine-tune fully or partially a pre-trained VF with the
new labels available. Otherwise, the pre-training of VF can be exploited to extend the
model to new tasks like bundle segmentation. In such cases the last layer of the model
must substitute with a new layer encoding the correct output, i.e., number of classes.
Then, one can decide if fully fine-tuning the model or just learning the last layer (transfer
learning).

Learning relation inter-fibers Verifyber is an effective model for learning the streamline
structure, i.e., anatomy/trajectory. We can call this ability intra-fiber learning. However,
we know that fibers are related to each other forming bundles. Such inter-fiber relations
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have not been taken into account in the current approach. Thus, an intriguing open
direction is learning latent relations between fibers. While we still do not have a solution
to this problem, we believe that a self-supervised task to regularize the learned latent space
might help, e.g., latent clustering. An additional challenge of learning inter-fiber relations
is the computational complexity. There will be the need to simultaneously process the
highest number of fibers to have a comprehensive view of the white matter anatomy.
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Appendix A

Dataset specifications

A.1 Stem-ROI

Additional specifications for the manually curated stem-ROIs. See Figures A.1.1, A.1.2,
A.1.3, A.1.4

Figure A.1.1: Manual stem segmentation. The stem-ROI is segmented in three consecutive
coronal slices. The sagittal view is used as reference for the antero-posterior location of the stem.
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Figure A.1.2: Stem-ROI population statistics. The upper plots show the mean Fractional
Anisotropy (FA) value of the populations stems grouped by stem size (number of voxels). The
slightly decrease of mean FA value with the increase stem-ROI size is expected considering the
anatomy of stem: super-dense of antero-posterior streamlines in its center, less on its borders.
The bottom plots instead shows the stem-ROI size distribution across the population. We observe
a normal distribution centered in the range [30-40]voxels.
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Figure A.1.3: Termination statistics of reference IFOFs. Considering the different strategies of
labeling: ROI-based and bundle-based, we indicate with light colors IFOFs manually segmented
with the former strategy, and dark colors for bundle-based IFOFs. We report all the termination
regions defined according to (Hau et al., 2016), and derived from the Automated Anatomical
Labeling 2 (AAL2) atlas (Rolls et al., 2015). In addition we report also the ”null“ statistics for the
Rolandic Operculus, which is an exclusion ROI for the IFOF. Overall, we notice a good alignment
of the endpoints distribution for the two strategies.
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Figure A.1.4: Visual comparison of high quality colored FA (CFA) image versus clinical quality
CFA. First row shows the HCP high quality CFA (3T scanner, resolution 1.25mm), the mid row
shows the simulated low quality CFA i.e. reconstructed from HCP DWI at 2.5mm, clinical quality
CFA (1.5T, resolution 2mm).
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A.2 HCP-IW

Additional specifications for the dataset HCP-IW. See Table A.2.1

Table A.2.1: Full name list of (Wasserthal et al., 2018) bundles shared with (Zhang et al., 2018).

AF_left (Arcuate fascicle) SLF_I_left (Superior longitudinal fascicle I)
AF_right SLF_I_right
ATR_left (Anterior Thalamic Radiation) SLF_II_left (Superior longitudinal fascicle II)
ATR_right SLF_II_right
CC (Corpus Callosum - all) SLF_III_left (Superior longitudinal fascicle III)
CG_left (Cingulum left) SLF_III_right
CG_right STR_left (Superior Thalamic Radiation)
CST_left (Corticospinal tract) STR_right
CST_right UF_left (Uncinate fascicle)
MLF_left (Middle longitudinal fascicle) UF_right
MLF_right T_PAR_left (Thalamo-parietal)
ICP_left (Inferior cerebellar peduncle) T_PAR_right
ICP_right T_OCC_left (Thalamo-occipital)
IFO_left (Inferior occipito-frontal fascicle) T_OCC_right
IFO_right ST_FO_left (Striato-fronto-orbital)
ILF_left (Inferior longitudinal fascicle) ST_FO_right
ILF_right ST_PAR_left (Striato-parietal)
OR_left (Optic radiation) ST_PAR_right
OR_right ST_OCC_left (Striato-occipital)
MCP (Middle cerebellar peduncle) ST_OCC_right
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Appendix B

Additional investigations

B.1 2D CNN for stem-ROI segmentation

In this Section we present a early study on the segmentation of the stem-ROI of the IFOF,
aimed at the subsequent extraction of the IFOF itself. The content we report here-below
has been presented with a poster at the Organization for Human Brain Mapping (OHBM)
2019 conference.

INPUT

Tractogram

Color FA

Slice
Selection

Slice Candidates

Stem
Segmentation

Stem Candidates

Stem
Selection

IFOF Stem

Streamline
Filtering

IFOF Tract

OUTPUT

Figure B.1.1: IFOF segmentation with 2D stem-ROI segmentation.

Method The proposed method is composed by three main steps (see Figure B.1.1): (i)
the computation of a set of candidates for stem-ROI in 2D coronal slices of the CFA,
using a deep CNN; (ii) the selection of the slice containing the correct stem-ROI; (iii) the
filtering of IFOF streamlines passing through the stem-ROI and the regions of termination
as defined in (Hau et al., 2016). In details:

i From the CFA volume we select a range of 15 candidates coronal slices, and we split
each of them to separate the two hemispheres (see input image in Figure B.1.2). The
selection is based on the statistics of the input dataset: assuming an ACPC alignment
of the input subjects the range of 15 slices is large enough to guarantee the presence
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of the stem-ROI also in unseen brains. The selected slices are fed into the trained
CNN, which predicts a segmentation of the stem-ROI in each of the input half-slice
(see Figure B.1.2).

ii The slice containing the (possibly) best candidate stem-ROI is selected using a heuristic
based on the green intensity and the size. We reward higher mean green intensity in
the corresponding CFA voxels, and an average size between the stem-ROI candidates.

iii The extracted stem-ROI is used as waypoint to filter the streamlines of IFOF, together
with the termination points defined by the frontal (Frontal Inf. Oper., Frontal Inf. Orb.,
Frontal Inf. Tri., Frontal Mid., Frontal Mid. Orb., Frontal Sup., Frontal Sup. Orb.)
and occipital (Cuneus, Lingual, Parietal Sup., Precuneus, Occipital Inf., Occipital Mid.,
Occipital Sup.) regions, determined after a non-linear registration (Avants et al., 2008)
into subject space of the AAL atlas (Tzourio-Mazoyer et al., 2002).

CNN architecture As CNN we have re-implemented RefineNet (Lin et al., 2017) that
is an end-to-end trainable model based on ResNet (He et al., 2016) and U-net (Ron-
neberger et al., 2015), depicted in Figure B.1.2. The encoder is a pre-trained ResNet (on
ImageNet (Krizhevsky et al., 2012)), whose blocks are directly connected the multi-path
refinement decoder, which is a composed of a series of RefineNet blocks. The direct
connections allow the network to combine low-resolution and high-resolution features
during the decoding phase, where usually many features are lost due to the deconvolution
issues. In each RefineNet block the input features coming from the linked ResNet block
and the previous RefineNet block are first fine-tuned with Residual Convolutional Unit
(RCU), then fused with a Multi-resolution Fusion (MRF) that maps and upsample the
inputs to a common feature space, and finally pooled with multiple pooling filters of
different size combined together in a Chained Residual Pooling (CRP).

CNN loss The stem segmentation task presents an heavy unbalancing between the
background and the ROI we want to segment. Typical crossentropy and log losses suffer
such imbalance, thus we exploited a loss called Lovász-Softmax loss (Berman et al., 2018).
This loss is a valid surrogate of the Intersection over Union (IoU), which is a metric that
does not suffer the class unbalancing.

Experiments and results We used 150 subjects of the Human Connectome Project (Wu
et al., 2016) dataset (90 gradients; b = 2000; voxel size=1.25mm). For each of them,
we computed the CFA, and the tractogram using a deterministic local tracking algo-
rithm (Garyfallidis et al., 2014). We manually segmented the stem-ROI, left and right, in
three slices per subject. The subjects were split in a train set (120) and test set (30). The
CNN was trained with batches of 12 single hemisphere coronal slices randomly picking left
and right split for 18 epochs, using Adam optimizer with learning rate 2e-4 and weight
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Figure B.1.2: RefineNet (Lin et al., 2017) architecture adopted.

decay 3e-4. Data augmentation was performed with horizontal flipping, rotation, zooming,
and contrast distortion.

The trained CNN was evaluated by comparing the stem-ROI candidate, selected with
the proposed heuristics, with the corresponding ground-truth manual segmentation in
terms of IoU on voxels. To validate the optimality of the heuristic choice, we adopted
as reference optimal selection the central of the three slices manually segmented, and we
measured the slice offset between the selected and the reference.

The stem-ROI segmentation resulted is an average IoU value over the test subjects of
70.97%, while the optimality of the candidate selection is shown in Figure B.1.3.

Figure B.1.3: Candidate stem-ROI selection results. The yellow column indicate the interval
of three slices constituting the ground-truth stem-ROI. The blue curve is the heuristic value
distribution for the ten candidate slices considered. It can be observed that the max value of the
heuristic belong to the yellow column.

Finally, we evaluated the segmented IFOF with respect to two reference segmentations:
a segmentation using a ROI-based approach, and a segmentation with a bundle-based



142 B.2. SUPPLEMENTARY EXPERIMENTS FOR VERIFYBER

approach, where all streamlines with terminations in frontal and occipital regions but not
belonging to the IFOF were manually removed Porro-Muñoz et al. (2015). The evaluation
was measured with the Dice Similarity Coefficient (DSC) between the corresponding voxel
masks of tracts. We obtained a DSC value of 92.3% and 90.7% respectively. In Figure
B.1.4 we show the variance inter-subjects, and we plot for each bundle of the test set the
relation of DSC measure with respect to the corresponding reference bundle segmented
with ROI-based and bundle-based approach.

Figure B.1.4: Volumetric DSC of predicted IFOF. In the leftmost plot we highlight the (almost)
linear relation between the score obtained with respect to roi-based (y-axis) and stem-based
(x-axis) IFOF segmentations. In the central and rightmost plots we show the detailed results on
ROI-based and bundle-based test set, respectively, differentiating subjects and the left and right
IFOF.

B.2 Supplementary experiments for Verifyber

B.2.1 Alternative normalizations to MNI co-registration

Table B.2.1: Impact of different data normalizations on VFEP performance. In this ablation we
investigated if other non-registration based normalizations such as max-min and z-score could
guarantee high accuracy results while not requiring non-linear registration to MNI at test time.
However, it can be observed that MNI co-registration works best.

Normalization Train space Test space Acc. Prec. Rec. DSC

max-min MNI MNI 93.3 (±0.45) 95.3 (±0.43) 95.2 (±0.47) 95.2 (±0.34)
max-min MNI ACPC 83.2 (±4.54) 87.7 (±2.83) 88.7 (±2.65) 88.2 (±2.63)
z-score MNI MNI 92.7 (±0.63) 94.5 (±0.78) 95.1 (±0.43) 94.8 (±0.48)
z-score MNI ACPC 88.6 (±1.96) 91.6 (±1.39) 92.3 (±0.67) 92.0 (±1.00)

max-min wrt volume MNI MNI 95.2 (±0.13) 96.2 (±0.26) 96.9 (±0.19) 96.6 (±0.21)
max-min wrt volume MNI ACPC 81.6 (±2.80) 87.8 (±2.31) 85.7 (±2.46) 86.7 (2.37)
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B.2.2 Verifyber test on BIL&GIN tractogram

BILGIN-EP BIL&GIN (Mazoyer et al., 2016) data source. Exclusive labeling (Petit
et al., 2019). Single subject, with tractogram of 1.5M streamlines obtained via PF-ACT
tractography (Girard et al., 2020)

Table B.2.2: Generalization test on BILIGIN-EP. Models have been trained on one of the 5-fold
split of HCP-EP. We do not report standard deviation, as BILGIN-EP is a single-subject dataset.
The results confirm Veryfiber as best performing model. It maintains very high precision, while
it loose some points in terms of recall. This is probably due to the different distribution of
plausible/non-plausible.

Method Accuracy Precision Recall DSC
bLSTM 90.7 94.4 93.1 93.7
PN 91.2 95.1 93.1 94.1
DGCNN 91.4 95.5 92.8 94.1
VF 92.5 96.2 93.7 94.9

B.2.3 Exploring Verifyber with signal-based supervision

In this study, we adopted fiber weights obtained with SIFT2 (Smith et al., 2015b) as
target for Verifyber, which was trained for regression. The results suggested that VF
can learn weights regression decently well, but cannot capture the density-based filtering
criteria. In fact, with tractograms having similar fiber density map, VF was able to predict
weights, but as soon as new tractograms had different fiber density our methods failed.
See Figures B.2.1, B.2.3, B.2.2

Table B.2.3: Regression results on SIFT2 weights for HCP-EP. Both Verifyber and PointNet (Qi
et al., 2017) were trained on the training subjects of HCP-EP, for which we computed the SIFT2
weights. The table shows the test results averaged over 4 test subjects in terms of Mean Absolute
Error(MAE) — the same metric optimized during training —, and Spearman’s rank correlation
coefficient. The former indicate the absolute regression error, while the latter indicate how much
the ranking of fibers obtained for SIFT2 weights is preserved after weights prediction.

Model CSD MAE Spear. Corr.

Verifyber DiPy 0.173 (±0.011) 0.766 (±0.039)
PointNet DiPy 0.175 (±0.014) 0.757 (±0.033)



144 B.2. SUPPLEMENTARY EXPERIMENTS FOR VERIFYBER

Figure B.2.1: SIFT2 weights per streamline categories in a single tractogram. Relationship
between streamline anatomy and SIFT2 streamline weights. Each weight interval contains at
least 10% of fibers. The trend of length and curvature shows that high-weight is assigned to very
curved and short fibers. Viceversa, low-weight is given to straight and long fibers. This behavior
is almost opposite compared to the anatomical labeling of Extractor (Petit et al., 2019). Note
also a very high standard deviation.

Figure B.2.2: Visual example of non-plausible fibers according to SIFT2. 8 streamlines with
weights > 3, lengths > 92 mm, and curvatures > 2 (MNI space, downsampled to 16 points). The
figure shows that SIFT2 weights are not a good indicator for the anatomical plausibility of a
streamline.
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Figure B.2.3: Spatial distribution of SIFT2 weights vs. fiber density. SIFT weights distribution
(top rows) compared to streamline density map (bottom rows). Observing the two types of maps,
it is easy to see the high degree of correlation.
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Figure B.2.4: Fiber density map obtained after Ensemble Tractography (Takemura et al., 2016)
(top rows) and Particle Filtering tractography (Girard et al., 2014) (bottom rows). This figure
shows that we cannot expect generalization of VFSIFT2 across the two kind of tractograms.
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B.3 Investigation of FINTA

Additional results obtained with the reproduced FINTA (Legarreta et al., 2021). See
Table B.3.1 and Figures B.3.1, B.3.2, B.3.3.

Figure B.3.1: Reproduced FINTA autoencoder. The plot on the left refer to a training performed
on the dataset HCP-IZ. In this experiment, according to the setting used by the Authors of
FINTA, we split the streamlines of the HCP-IZ tractogram into 80/20 train/test. The train set
was then split in 4 buckets, 3 used for train and 1 for validation, which is performed once every
100 epochs. The training is stopped after 1000 epochs as it has converged to an MSE value in
validation ∼1mm. The image on the right depicts the qualitative reconstruction using the trained
autoencoder. Thin fibers are the original, while fat are the reconstructed. It can be observed
that the reconstruction is smooth and reasonably correct.



148 B.3. INVESTIGATION OF FINTA

Figure B.3.2: Non-plausible fibers (HCP-EP) reconstructed using FINTA autoencoder. As can
be noted original streamlines (thin) have a clear non-plausible trajectory with sharp curves. The
denoising action performed by the autoencoder reconstruct smoother trajectories (fat), which we
may observe to be more similar to plausible than to non-plausible fibers. Such denoising behaviour
is expected when adopting an autoencoder model. However, as the output reconstructions reflect
the learned embedding, such a behaviour can be a source of error for the task of tractogram
filtering.
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Table B.3.1: FINTA performance evaluation. We report the score of accuracy, precision, recall,
and DSC for each run. The training of the FINTA autoencoder is performed using data from
the dataset indicated in the apex, e.g., FINTAIZ is trained on the dataset HCP-IZ. Specifically
we use the same training/test set split used for our Verifyber experiments e.g., HCP-IZ is split
into 80/20 training/test. From the training set a portion of p fibers is used as reference (Ref.
p) for the embedded nearest neighbor step of FINTA. The radius threshold is then tuned on
the same space using as query fibers a portion of the validation set of each dataset, except for
BILGIN-EP v1 where we use the threshold computed on HCP-EP v1. We investigate the choice
of the threshold based on two different metrics (reported in table as subscripts of the method):
balanced accuracy (Bacc) and DSC. *: not tuned on this dataset.

Method Ref. p Thr. Acc Prec Rec DSC
HCP-IZ all

FINTAIZ
DSC HCP-IZ 36.9 88.0 87.3 95.8 91.3

FINTAIZ
BAcc HCP-IZ 32.9 87.6 89.9 91.5 90.7

Verifyber - - 97.1 97.6 98.0 97.8
HCP-EP

FINTAEP
DSC HCP-EP 39.9 73.6(1.2) 74.5(1.8) 94.8(0.4) 83.4(1.1)

FINTAIZ
DSC HCP-IZ 36.9* 59.9(0.8) 81.7(1.2) 55.0(1.7) 65.8(1.6)

FINTAIZ
DSC HCP-IZ 76.9 73.3(1.9) 74.0(2.4) 95.3(0.3) 83.3(1.4)

FINTAIZ
DSC HCP-EP 46.0 74.3(1.0) 75.1(1.6) 94.6(0.3) 83.8(1.0)

FINTAIZ
BAcc HCP-EP 32.9 71.2(0,7) 79.1(0.8) 80.2(1.0) 79.6(0.6)

Verifyber - - 95.2(0.1) 96.2(0.3) 96.9(0.1) 96.6(0.2)
BILGIN-EP

FINTAEP
DSC HCP-EP 39.9* 73.0 79.2 86.5 82.7

FINTAIZ
DSC HCP-IZ 36.9* 54.5 86.2 46.5 60.4

FINTAIZ
DSC HCP-IZ 76.9* 74.8 77.1 94.0 84.8

FINTAIZ
DSC HCP-EP 46.0* 74.0 80.2 86.6 83.3

FINTAIZ
BAcc HCP-EP 32.9* 61.9 84.0 60.5 70.3

Verifyber - * 92.5 96.2 93.7 94.9
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Figure B.3.3: IFOF left from HCP-IW Wasserthal et al. (2018) after classification of streamlines
as plausible (p) and non-plausible (np) using FINTA trained on HCP-IZ Zhang et al. (2018).
Considering the same classification performed with Verifyber (see Figure 16 of the paper) as a
reference labeling, we investigate the possible false positive prediction of FINTA i.e,. fibers that
are np according to Verifyber, but that FINTA classifies as p. In the figure we indicate such
fibers in fuchsia, while we color with green and blue fibers classified by both methods as p and np

respectively.
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