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A Survey on Learning to Hash
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Abstract—Nearest neighbor search is a problem of finding the data points from the database such that the distances from them to the
query point are the smallest. Learning to hash is one of the major solutions to this problem and has been widely studied recently. In this
paper, we present a comprehensive survey of the learning to hash algorithms, categorize them according to the manners of preserving
the similarities into: pairwise similarity preserving, multiwise similarity preserving, implicit similarity preserving, as well as quantization,
and discuss their relations. We separate quantization from pairwise similarity preserving as the objective function is very different
though quantization, as we show, can be derived from preserving the pairwise similarities. In addition, we present the evaluation
protocols, and the general performance analysis, and point out that the quantization algorithms perform superiorly in terms of search
accuracy, search time cost, and space cost. Finally, we introduce a few emerging topics.

Index Terms—Similarity search, approximate nearest neighbor search, hashing, learning to hash, quantization, pairwise similarity
preserving, multiwise similarity preserving, implicit similarity preserving.

F

1 INTRODUCTION

THE problem of nearest neighbor search, also known as
similarity search, proximity search, or close item search,

is aimed at finding an item, called nearest neighbor, which is
the nearest to a query item under a certain distance measure
from a search (reference) database. The cost of finding the
exact nearest neighbor is prohibitively high in the case that
the reference database is very large or that computing the
distance between the query item and the database item
is costly. The alternative approach, approximate nearest
neighbor search, is more efficient and is shown to be enough
and useful for many practical problems, thus attracting an
enormous number of research efforts.

Hashing, a widely-studied solution to the approximate
nearest neighbor search, aims to transform a data item to
a low-dimensional representation, or equivalently a short
code consisting of a sequence of bits, called hash code.
There are two main categories of hashing algorithms: lo-
cality sensitive hashing [14], [44] and learning to hash.
Locality sensitive hashing (LSH) is data-independent. Fol-
lowing the pioneering works [14], [44], there are a lot of
efforts, such as proposing random hash functions satisfy-
ing the locality sensitivity property for various distance
measures [10], [11], [14], [19], [20], [100], [111], proving
better search efficiency and accuracy [19], [113], developing
better search schemes [29], [29], [95], providing a similarity
estimator with smaller variance [70], [55], [74], [54], smaller
storage [72], [73], or faster computation of hash functions
[71], [74], [54], [129]. LSH has been adopted in many appli-
cations, e.g., fast object detection [21], image matching [17],
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[99] The detailed review on LSH can be found in [146].
Learning to hash, the interest of this survey, is a data-

dependent hashing approach which aims to learn hash
functions from a specific dataset so that the nearest neighbor
search result in the hash coding space is as close as possible
to the search result in the original space, and the search cost
as well as the space cost are also small. The development
of learning to hash has been inspired by the connection
between the Hamming distance and the distance provided
from the original space, e.g., the cosine distance shown
in SimHash [14]. Since the two early algorithms, semantic
hashing [120], [121] and spectral hashing [155] that learns
projection vectors instead of the random projections as done
in [14], learning to hash has been attracting a large amount
of research interest in computer vision and machine learning
and has been applied to a wide-range of applications such
as large scale object retrieval [51], image classification [122]
and detection [138], and so on.

The main methodology of learning to hash is similarity
preserving, i.e., minimizing the gap between the similarities
computed/given in the original space and the similarities
in the hash coding space in various forms. The similarity
in the original space might be from the semantic (class)
information, or from the distance (e.g., Euclidean distance)
computed in the original space, which is of broad interest
and widely studied in real applications, e.g., large scale
image search and image classification. Hence the later is the
main focus in this paper.

This survey categorizes the algorithms according to the
similarity preserving manner into: pairwise similarity pre-
serving, multiwise similarity preserving, implicit similarity
preserving, quantization which we will show is also a form
of pairwise similarity preserving, as well as an end-to-end
hash learning strategy learning the hash codes directly from
the object, e.g., image, under the deep learning framework
instead of first learning the representations and then learn-
ing the hash codes from the representations. In addition,
we discuss other problems including evaluation datasets
and evaluation schemes, and so on. Meanwhile, we present
the empirical observation that the quantization approach



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, JUNE 2016 2

outperforms other approaches and give some analysis about
this observation.

In comparison to other surveys on learning to hash [144],
[146], this survey focuses more on learning to hash, dis-
cusses more on quantization-based solutions. Our catego-
rization methodology is helpful for readers to understand
connections and differences between existing algorithms.
In particular, we point out the empirical observation that
quantization is superior in terms of search accuracy, search
efficiency and space cost

2 BACKGROUND

2.1 Nearest Neighbor Search

Exact nearest neighbor search is defined as searching an
item NN(q) (called nearest neighbor) for a query item
q from a set of N items X = {x1,x2, · · · ,xN} so that
NN(q) = arg minx∈X dist(q,x), where dist(q,x) is a dis-
tance computed between q and x. A straightforward gen-
eralization is K-nearest neighbor search, where K nearest
neighbors are needed to be found.

The distance between a pair of items x and q depends
on the specific nearest search problem. A typical example is
that the search (reference) databaseX lies in a d-dimensional
space Rd and the distance is introduced by an `s norm,
‖x− q‖s = (

∑d
i=1 |xi − qi|s)1/s. The search problem under

the Euclidean distance, i.e., the `2 norm, is widely studied.
Other forms of the data item, for example, the data item is
formed by a set, and other forms of distance measures, such
as `1 distance, cosine similarity and so on, are also possible.

There exist efficient algorithms (e.g., k-d trees) for exact
nearest neighbor search in low-dimensional cases. In large
scale high-dimensional cases, it turns out that the prob-
lem becomes hard and most algorithms even take higher
computational cost than the naive solution, i.e., the linear
scan. Therefore, a lot of recent efforts moved to searching
approximate nearest neighbors: error-constrained nearest
(near) neighbor search, and time-constrained approximate
nearest neighbor search [103], [105]. The error-constrained
search includes (randomized) (1 + ε)-approximate nearest
neighbor search [1], [14], [44], (approximate) fixed-radius
near neighbor (R-near neighbor) search [6], and so on.

Time-constrained approximate nearest neighbor search
limits the time spent during the search and is studied mostly
for real applications, though it usually lacks an elegant
theory behind. The goal is to make the search as accurate as
possible by comparing the returned K approximate nearest
neighbors and the K exact nearest neighbors, and to make
the query cost as small as possible. For example, when
comparing the learning to hash approaches that use linear
scan based on the Hamming distance for search, it is typi-
cally assumed that the search time is the same for the same
code length by ignoring other small cost. When comparing
the indexing structure algorithms, e.g., tree-based [103],
[105], [151] or neighborhood graph-based [150], the time-
constrained search is usually transformed to another ap-
proximate way: terminate the search after examining a fixed
number of data points.

2.2 Search with Hashing

The hashing approach aims to map the reference (and
query) items to the target items so that approximate nearest
neighbor search is efficiently and accurately performed by
resorting to the target items and possibly a small subset of
the raw reference items. The target items are called hash
codes (a.k.a., hash values, or simply hashes). In this paper,
we may also call it short/compact codes interchangeably.

The hash function is formally defined as: y = h(x),
where y is the hash code, may be an integer, or a binary
value: 1 and 0 (or −1), and h(·) is the hash function. In the
application to approximate nearest neighbor search, usually
several hash functions are used together to compute the
compound hash code: y = h(x), where y = [y1 y2 · · · yM ]>

and h(x) = [h1(x) h2(x) · · · hM (x)]>. Here we use a vector
y to represent the compound hash code for convenience.

There are two basic strategies for using hash codes to
perform nearest (near) neighbor search: hash table lookup
and hash code ranking. The search strategies are illustrated
in Figure 1.

The main idea of hash table lookup for accelerating the
search is reducing the number of the distance computations.
The data structure, called hash table (a form of inverted
index), is composed of buckets with each bucket indexed by
a hash code. Each reference item x is placed into a bucket
h(x). Different from the conventional hashing algorithm in
computer science that avoids collisions (i.e., avoids mapping
two items into some same bucket), the hashing approach us-
ing a hash table essentially aims to maximize the probability
of collision of near items and at the same time minimize
the probability of collision of the items that are far away.
Given the query q, the items lying in the bucket h(q) are
retrieved as the candidates of the nearest items of q. Usually
this is followed by a reranking step: rerank the retrieved
nearest neighbor candidates according to the true distances
computed using the original features and attain the nearest
neighbors.

To improve the recall, two ways are often adopted.
The first way is to visit a few more buckets (but with a
single hash table), whose corresponding hash codes are the
nearest to (the hash code h(q) of) the query according to the
distances in the coding space. The second way is to construct
several (e.g., L) hash tables. The items lying in the L hash
buckets h1(q), · · · ,hL(q) are retrieved as the candidates of
near items of q which are possibly ordered according to the
number of hits of each item in the L buckets. To guarantee
the high precision, each of the L hash codes, yl, needs to be
a long code. This means that the total number of the buckets
is too large to index directly, and thus the buckets that are
non-empty are retained by using the conventional hashing
over the hash codes hl(x).

The second way essentially stores multiple copies of the
id for each reference item. Consequently, the space cost is
larger. In contrast, the space cost for the first way is smaller
as it only uses a single table and stores one copy of the id for
each reference item, but it needs to access more buckets to
guarantee the same recall with the second way. The multiple
assignment scheme is also studied: construct a single table,
but assign a reference item to multiple hash buckets. In
essence, it is shown that the second way, multiple hash
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Fig. 1. Illustrating the search strategies. (a) Multi table lookup: the list corresponding to the hash code of the query in each table is retrieved. (b)
Single table lookup: the lists corresponding to and near to the hash code of the query are retrieved. (c) Hash code ranking: compare the query with
each reference item in the coding space. (d) Non-exhaustive search: hash table lookup (or other inverted index structure) retrieves the candidates,
followed by hash code ranking over the candidates.

tables, can be regarded as a form of multiple assignment.
Hash code ranking performs an exhaustive search: com-

pare the query with each reference item by fast evaluating
their distance (e.g., using distance table lookup or using the
CPU instruction popcnt for Hamming distance) according
to (the hash code of) the query and the hash code of the
reference item, and retrieve the reference items with the
smallest distances as the candidates of nearest neighbors.
Usually this is followed by a reranking step: rerank the
retrieved nearest neighbor candidates according to the true
distances computed using the original features and attain
the nearest neighbors.

This strategy exploits one main advantage of hash codes:
the distance using hash codes is efficiently computed and
the cost is much smaller than that of the distance computa-
tion in the original input space.

Comments: Hash table lookup is mainly used in locality
sensitive hashing, and has been used for evaluating learning
to hash in a few publications. It has been pointed in [155]
and also observed from empirical results that LSH-based
hash table lookup, except min-hash, is rarely adopted in
reality, while hash table lookup with quantization-based
hash codes is widely used in the non-exhaustive strategy
to retrieve coarse candidates [50]. Hash code ranking goes
through all the candidates and thus is inferior in search
efficiency compared with hash table lookup which only
checks a small subset of candidates, which are determined
by a lookup radius.

A practical way is to do a non-exhaustive search which is
suggested in [4], [50]: first retrieve a small set of candidates
using the inverted index that can be viewed as a hash
table, and then compute the distances of the query to the
candidates using the hash codes which are longer, providing

the top candidates subsequently reranked using the original
features. Other research efforts include organizing the hash
codes to avoid the exhaustive search with a data structure,
such as a tree or a graph structure [104].

3 LEARNING TO HASH

Learning to hash is the task of learning a (compound) hash
function, y = h(x), mapping an input item x to a compact
code y, aiming that the nearest neighbor search result for
a query q is as close as possible to the true nearest search
result and the search in the coding space is also efficient. A
learning-to-hash approach needs to consider five problems:
what hash function h(x) is adopted, what similarity in the
coding space is used, what similarity is provided in the in-
put space, what loss function is chosen for the optimization
objective, and what optimization technique is adopted.

3.1 Hash Function
The hash function can be based on linear projection, ker-
nels, spherical function, (deep) neural networks, a non-
parametric function, and so on. One popular hash function
is the linear hash function, e.g., [135], [140]:

y = h(x) = sgn(w>x + b), (1)

where sgn(z) = 1 if z > 0 and sgn(z) = 0 (or equivalently
−1) otherwise, w is the projection vector, and b is the bias
variable. The kernel function,

y = h(x) = sgn

(∑T

t=1
wtK(st,x) + b

)
, (2)

is also adopted in some approaches, e.g., [40], [66], where
{st} is a set of representative samples that are randomly
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drawn from the dataset or cluster centers of the dataset and
{wt} are the weights. The non-parametric function based on
nearest vector assignment is widely used for quantization-
based solutions:

y = arg mink∈{1,··· ,K} ‖x− ck‖2, (3)

where {c1, · · · , cK} is a set of centers computed by some
algorithms, e.g., K-means, and y ∈ Z+ is an integer. In
contrast to other hashing algorithms in which the distance,
e.g., Hamming distance, is often directly computed from
hash codes, the hash codes generated from the nearest
vector assignment-based hash function are the indices of
the nearest vectors, and the distance is computed using the
centers corresponding to the hash codes.

The form of hash function is an important factor influ-
encing the search accuracy using the hash codes, as well as
the time cost of computing hash codes. A linear function
is efficiently evaluated, while the kernel function and the
nearest vector assignment based function lead to better
search accuracy as they are more flexible. Almost all the
methods using a linear hash function can be extended to
nonlinear hash functions, such as kernelized hash functions,
or neural networks. Thus we do not use the hash function
to categorize the hash algorithms.

3.2 Similarity
In the input space the distance doij between any pair of
items (xi,xj) could be the Euclidean distance, ‖xi − xj‖2
or others. The similarity soij is often defined as a function
about the distance doij , and a typical function is the Gaussian

function: soij = g(doij) = exp (− (doij)2

2σ2 ). There exist other

similarity forms, such as cosine similarity x>i xj

‖xi‖2‖xj‖2 and
so on. Besides, the semantic similarity is often used for
semantic similarity search. In this case, the similarity soij is
usually binary, valued 1 if the two items xi and xj belong
to the same semantic class, 0 (or −1) otherwise. The hashing
algorithms for semantic similarity usually can be applied to
other distances, such as Euclidean distance, by defining a
pseudo-semantic similarity: soij = 1 for nearby points (i, j)
and soij = 0 (or −1) for farther points (i, j).

In the hash coding space, the typical distance dhij be-
tween yi and yj is the Hamming distance. It is defined as
the number of bits where the values are different and is
mathematically formulated as

dhij =
∑M

m=1
δ[yim 6= yjm],

which is equivalent to dhij = ‖yi − yj‖1 if the code is
valued by 1 and 0. The distance for the codes valued by
1 and −1 is similarly defined. The similarity based on the
Hamming distance is defined as shij = M −dhij for the codes
valued by 1 and 0, computing the number of bits where
the values are the same. The inner product shij = y>i yj is
used as the similarity for the codes valued by 1 and −1.
These measures are also extended to the weighted case: e.g.,
dhij =

∑M
m=1 λmδ[yim 6= yjm] and shij = y>i Λyj , where

Λ = Diag(λ1, λ2, · · · , λM ) is a diagonal matrix and each
diagonal entry is the weight of the corresponding hash code.

Besides the Hamming distance/similarity and its vari-
ants, the Euclidean distance is typically used in quantization

approaches, and is evaluated between the vectors corre-
sponding to the hash codes, dhij = ‖cyi − cyj‖2 (symmetric
distance) or between the query q and the center that is
the approximation to xj , dhqj = ‖q − cyj‖2 (asymmetric
distance, which is preferred because the accuracy is higher
and the time cost is almost the same). The distance is
usually evaluated in the search stage efficiently by using
a distance lookup table. There are also some works learn-
ing/optimizing the distances between hash codes [37], [147]
after the hash codes are already computed.

3.3 Loss Function
The basic rule of designing the loss function is to preserve
the similarity order, i.e., minimize the gap between the
approximate nearest neighbor search result computed from
the hash codes and the true search result obtained from the
input space.

The widely-used solution is pairwise similarity preserv-
ing, making the distances or similarities between a pair
of items from the input and coding spaces as consistent
as possible. The multiwise similarity preserving solution,
making the order among multiple items computed from the
input and coding spaces as consistent as possible, is also
studied. One class of solutions, e.g., spatial partitioning,
implicitly preserve the similarities. The quantization-based
solution and other reconstruction-based solutions aim to
find the optimal approximation of the item in terms of the
reconstruction error through a reconstruction function (e.g.,
in the form of a lookup table in quantization or an auto-
encoder in [120]). Besides similarity preserving items, some
approaches introduce bucket balance or its approximate
variants as extra constraints, which is also important for
obtaining better results or avoiding trivial solutions.

3.4 Optimization
The challenges for optimizing the hash function parameters
lie in two main factors. One is that the problem contains the
sgn function, which leads to a challenging mixed-binary-
integer optimization problem. The other is that the time
complexity is high when processing a large number of data
points, which is usually handled by sampling a subset of
points or a subset of constraints (or equivalent basic terms
in the objective functions).

The ways to handle the sgn function are summarized be-
low. The first way is the most widely-adopted continuous re-
laxation, including sigmoid relaxation, tanh relaxation, and
directly dropping the sign function sgn(z) ≈ z. The relaxed
problem is then solved using various standard optimization
techniques. The second one is a two-step scheme [76], [77]
with its extension to alternative optimization [32]: optimiz-
ing the binary codes without considering the hash function,
followed by estimating the function parameters from the
optimized hash codes. The third one is discretization: drop
the sign function sgn(z) ≈ z and regard the hash code as an
approximation of the hash function, which is formulated as
a loss (y−z)2. There also exist other ways only adopted in a
few algorithms, e.g., transforming the problem into a latent
structure-SVM formulation in [107], [109] , the coordinate-
descent approach in [66] (fixing all but one weight, optimize
the original objective with respect to a single weight in
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each iteration), both of which do not conduct continuous
relaxation.

3.5 Categorization

Our survey categorizes the existing algorithms to various
classes: the pairwise similarity preserving class, the multi-
wise similarity preserving class, the implicit similarity pre-
serving class, as well as the quantization class, according to
what similarity preserving manner is adopted to formulate
the objective function. We separate the quantization class
from the pairwise similarity preserving class as they are
very different in formulation though the quantization class
can be explained from the perspective of pairwise similarity
preserving. In the following description, we may call quan-
tization as quantization-based hashing and other algorithms
in which a hash function generates a binary value as binary
code hashing. In addition, we will also discuss other studies
on learning to hash. The summary of the representative
algorithms is given in Table 1.

The main reason we choose the similarity preserving
manner to do the categorization is that similarity preser-
vation is the essential goal of hashing. It should be noted
that as pointed in [144], [146], other factors, such as the hash
function, or the optimization algorithm, is also important
for the search performance.

4 PAIRWISE SIMILARITY PRESERVING

The algorithms aligning the distances or similarities of a pair
of items computed from the input space and the Hamming
coding space are roughly divided in the following groups:

• Similarity-distance product minimization (SDPM):
min

∑
(i,j)∈E s

o
ijd

h
ij . The distance in the coding space

is expected to be smaller if the similarity in the
original space is larger. Here E is a set of pairs of
items that are considered.

• Similarity-similarity product maximization (SSPM):
max

∑
(i,j)∈E s

o
ijs

h
ij . The similarity in the coding

space is expected to be larger if the similarity in the
original space is larger.

• Distance-distance product maximization (DDPM):
max

∑
(i,j)∈E d

o
ijd

h
ij . The distance in the coding space

is expected to be larger if the distance in the original
space is larger.

• Distance-similarity product minimization (DSPM):
min

∑
(i,j)∈E d

o
ijs

h
ij . The similarity in the coding

space is expected to be smaller if the distance in the
original space is larger.

• Similarity-similarity difference minimization
(SSDM): min

∑
(i,j)∈E(s

o
ij − shij)

2. The difference
between the similarities is expected to be as small as
possible.

• Distance-distance difference minimization (DDDM):
min

∑
(i,j)∈E(d

o
ij − dhij)2. The difference between the

distances is expected to be as small as possible.
• Normalized similarity-similarity divergence mini-

mization (NSSDM):
min KL({s̄oij}, {s̄hij}) = min(−

∑
(i,j)∈E s̄

o
ij log s̄hij).

Here s̄oij and s̄hij are normalized similarities in the

input space and the coding space:
∑
ij s̄

o
ij = 1 and∑

ij s̄
h
ij = 1.

The following reviews these groups of algorithms ex-
cept the distance-similarity product minimization group
for which we are not aware of any algorithm belonging
to. It should be noted that merely optimizing the above
similarity preserving function, e.g., SDPM and SSPM, is
not enough and may lead to trivial solutions, and it is
necessary to combine other constraints, which is detailed
in the following discussion. We also point out the re-
lation between similarity-distance product minimization
and similarity-similarity product maximization, the relation
between similarity-similarity product maximization and
similarity-similarity difference minimization, as well as the
relation between distance-distance product maximization
and distance-distance difference minimization.

4.1 Similarity-Distance Product Minimization
We first introduce spectral hashing and its extensions, and
then review other forms.

4.1.1 Spectral Hashing
The goal of spectral hashing [155] is to minimize∑

(i,j)∈E s
o
ijd

h
ij , where the Euclidean distance in the hashing

space, dhij = ‖yi − yj‖22, is used for formulation simplicity
and optimization convenience, and the similarity in the
input space is defined as: soij = exp (−‖xi−xj‖22

2σ2 ). Note
that the Hamming distance in the search stage can be still
used for higher efficiency as the Euclidean distance and
the Hamming distance in the coding space are consistent:
the larger the Euclidean distance, the larger the Hamming
distance. The objective function can be written in a matrix
form,

min
∑

(i,j)∈E
soijd

h
ij = trace(Y(D− S)Y>), (4)

where Y = [y1 y2 · · ·yN ] is a matrix of M × N ,
S = [soij ]N×N is the similarity matrix, and D =

diag(d11, · · · , dNN ) is a diagonal matrix, dnn =
∑N
i=1 s

o
ni.

There is a trivial solution to the problem (4): y1 =
y2 = · · · = yN . To avoid it, the code balance condition
is introduced: the number of data items mapped to each
hash code is the same. Bit balance and bit uncorrelation are
used to approximate the code balance condition. Bit balance
means that each bit has about 50% chance of being 1 or −1.
Bit uncorrelation means that different bits are uncorrelated.
The two conditions are formulated as,

Y1 = 0, YY> = I, (5)

where 1 is anN -dimensional all-1 vector, and I is an identity
matrix of size N .

Under the assumption of separate multi-dimensional
uniform data distribution, the hashing algorithm is given
as follows,

1) Find the principal components of the N d-
dimensional reference data items using principal
component analysis (PCA).

2) Compute the M one-dimensional Laplacian eigen-
functions with the M smallest eigenvalues along
each PCA direction (d directions in total).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2699960, IEEE
Transactions on Pattern Analysis and Machine Intelligence

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, JUNE 2016 6

TABLE 1
A summary of representative hashing algorithms with respect to similarity preserving functions, code balance, hash function similarity in the

coding space, and the manner to handle the sgn function. pres. = preserving, sim. = similarity. BB = bit balance, BU = bit uncorrelation, BMIM = bit
mutual information minimization, BKB = bucket balance. H = Hamming distance, WH = weighted Hamming distance, SH = spherical Hamming

distance, C = Cosine, E = Euclidean distance, DNN = deep neural networks; Drop = drop the sgn operator in the hash function, Sigmoid = Sigmoid
relaxation, [a, b] = [a, b] bounded relaxation, Tanh = Tanh relaxation, Discretize = drop the sgn operator in the hash function and regard the hash

code as a discrete approximation of the hash value, Keep = optimization without relaxation for sgn, Two-step = two-step optimization.
Approach Similarity pres. Code balance Hash function Code sim. sgn

Pairwise

Spectral hashing [155] (2008)

soijd
h
ij

BB + BU Eigenfunction

H

Drop
ICA hashing [39] (2011) BB + BMIM Linear Drop
Kernelized spectral hashing [40] (2010) BB + BU Kernel Drop
Hashing with graphs [86] (2011) BB + BU Eigenfunction Drop
Discrete graph hashing [84] (2014) BB + BU Kernel Discretize
Kernelized Discrete graph hashing [127] (2016) BB + BU Kernel Discretize & Two-step
Self-taught hashing [163] (2010) BB + BU Linear Two-step
LDA hashing [135] (2012) BU Linear Drop
Minimal loss hashing [107] (2011) - Linear Keep
Deep supervised hashing [82] (2016) - DNN Drop
Semi-supervised hashing [140], [141], [142] (2010) soijs

h
ij BB+BU Linear H Drop

Topology preserving hashing [166] (2013) doijd
h
ij + soijd

h
ij BB+BU Linear H Drop

Binary reconstructive embedding [66] (2009)
(doij − d

h
ij)2

- Kernel
H

Keep
ALM or NMF based hashing [106] (2015) - Linear [0, 1] + two-step
Compressed hashing [79](2013) BB Kernel Drop
Supervised hashing with kernels [85] (2012)

(soij − s
h
ij)2

- Kernel

H

Sigmoid
Bilinear hyperplane hashing [87] (2012) - BiLinear Sigmoid
Label-regularized maximum margin hashing [102] (2010) BB Kernel Drop
Scalable graph hashing [56] (2015) BU Kernel Drop
Binary hashing [25] (2016) - Kernel Two-step
CNN hashing [157] (2014) - DNN [−1, 1]
Multi-dimensional spectral hashing [154] (2012) BI + BU Eigenfunction WH Drop
Spec hashing [78] (2010) KL({s̄oij}, {s̄

h
ij}) - Decision stump H Two-step

Multiwise

Order preserving hashing [149] (2013) Rank order BKB Linear H Sigmoid
Top rank supervised binary coding [131] (2015)

Triplet loss

- Linear

H

Tanh
Triplet loss hashing [109] (2012) - Linear + NN Keep
Deep semantic ranking based hashing [171] (2015) - DNN Sigmoid
Simultaneous Feature Learning and Hash Coding [67] (2015) - DNN Drop
Listwise supervision hashing [145] (2013) BU Linear Drop

Implicit
Picodes [7] (2011)

-

- Linear H Keep
Random maximum margin hashing [61] (2011) BB Kernel H Keep
Complementary projection hashing [60] (2013) BB+BU Kernel H Drop
Spherical hashing [41] (2012) BB Spherical SH Keep

Quantization

Isotropic hashing [63] (2012) ≈ ||x− y||2 BU Linear H Drop
Iterative quantization [35], [36] (2011)

||x− y||2

-

Linear H
Keep

Harmonious hashing [158] (2013) BB+BU Drop
Matrix hashing [33] (2013) - Keep
Angular quantization [34] (2012) - C Keep
Deep hashing [80] (2015) BB+BU DNN H Discretize
Hashing with binary deep neural network [24] (2016) BB+BU DNN H Discretize
Product quantization (PQ) [50] (2011)

||x− y||2

-

Nearest vector E

-
Cartesian k-means [108] (Optimized PQ [31]) (2013) - -
Composite quantization [168] (2014) - -
Additive quantization [2] (2014) - -
Revisiting additive quantization [96] (2016) - -
Quantized sparse representations [47] (2016) - -
Supervised discrete hashing [125] (2015) ||x− y||2

- Kernel H Discretize
Supervised quantization [153] (2016) - Nearest vector E -

3) Pick the M eigenfunctions with the smallest eigen-
values among Md eigenfunctions.

4) Threshold the eigenfunction at zero, obtaining the
binary codes.

The one-dimensional Laplacian eigenfunction for the
case of uniform distribution on [rl, rr] is φm(x) = sin(π2 +
mπ
rr−rlx), and the corresponding eigenvalue is λm = 1 −
exp (− ε

2

2 |
mπ
rr−rl |

2), where m (= 1, 2, · · · ) is the frequency
and ε is a fixed small value. The hash function is formally
written as h(x) = sgn(sin(π2 + γw>x)), where γ depends
on the frequency m and the range of the projection along
the direction w.

Analysis: In the case the spreads along the top M PCA
directions are the same, the hashing algorithm partitions
each direction into two parts using the median (due to
the bit balance requirement) as the threshold, which is
equivalent to thresholding at the mean value under the
assumption of uniform data distributions. In the case that

the true data distribution is a multi-dimensional isotropic
Gaussian distribution, the algorithm is equivalent to two
quantization algorithms: iterative quantization [36], [35] and
isotropic hashing [63].

Regarding the performance, this method performs well
for a short hash code but poor for a long hash code. The
reason includes three aspects. First, the assumption that
the data follow a uniform distribution does not hold in
real cases. Second, the eigenvalue monotonously decreases
with respect to | m

rr−rl |
2, which means that the PCA direc-

tion with a large spread (|rr − rl|) and a lower frequency
(m) is preferred. Hence there might be more than one
eigenfunction picked along a single PCA direction, which
breaks the uncorrelation requirement. Last, thresholding the
eigenfunction φm(x) = sin(π2 + mπ

rr−rlx) at zero leads to that
near points may be mapped to different hash values and
farther points may be mapped to the same hash value. As
a result, the Hamming distance is not well consistent to the
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distance in the input space.
Extensions: There are some extensions using PCA. (1)

Principal component hashing [98] uses the principal direction
to formulate the hash function; (2) Searching with expecta-
tions [123] and transform coding [9] that transforms the data
using PCA and then adopts the rate distortion optimization
(bits allocation) approach to determine which principal di-
rection is used and how many bits are assigned to such a
direction; (3) Double-bit quantization that handles the third
drawback in spectral hashing by distributing two bits into
each projection direction, conducting only 3-cluster quanti-
zation, and assigning 01, 00, and 11 to each cluster. Instead
of PCA, ICA hashing [39] adopts independent component
analysis for hashing and uses bit balance and bit mutual
information minimization for code balance.

There are many other extensions in a wide range,
including similarity graph extensions [75], [176], [92],
[86], [84], [79], [127], [167], hash function extensions [40],
[124], weighted Hamming distance [152], self-taught hash-
ing [163], sparse hash codes [174], and so on.

4.1.2 Variants
Linear discriminant analysis (LDA) hashing [135] minimizes a
form of the loss function: min

∑
(i,j)∈E s

o
ijd

h
ij , where dhij =

‖yi − yj‖22. Different from spectral hashing, (1) soij = 1 if
data items xi and xj are a similar pair, (i, j) ∈ E+, and soij =
−1 if data items xi and xj are a dissimilar pair, (i, j) ∈ E−
(2) a linear hash function is used: y = sgn(W>x + b), and
(3) a weight α is imposed to soijd

h
ij for the similar pair. As a

result, the objective function is written as:

α
∑

(i,j)∈E+
‖yi − yj‖22 −

∑
(i,j)∈E−

‖yi − yj‖22. (6)

The projection matrix W and the threshold b are sepa-
rately optimized: (1) to estimate the orthogonal matrix W,
drop the sgn function in Equation (6), leading to an eigen-
value decomposition problem; (2) estimate b by minimizing
Equation (6) with fixed W through a simple 1D search
scheme. A similar loss function, contrastive loss, is adopted
in [18] with a different optimization technique.

The loss function in minimal loss hashing [107] is in the
form of min

∑
(i,j)∈E s

o
ijd

h
ij . Similar to LDA hashing, soij = 1

if (i, j) ∈ E+ and soij = −1 if (i, j) ∈ E−. Differently,
the distance is hinge-like: dhij = max(‖yi − yj‖1 + 1, ρ)
for (i, j) ∈ E+ and dhij = min(‖yi − yj‖1 − 1, ρ) for
(i, j) ∈ E−. The intuition is that there is no penalty if the
Hamming distance for similar pairs is small enough and if
the Hamming distance for dissimilar pairs is large enough.
The formulation, if ρ is fixed, is equivalent to,

min
∑

(i,j)∈E+
max(‖yi − yj‖1 − ρ+ 1, 0)

+
∑

(i,j)∈E−
λmax(ρ− ‖yi − yj‖1 + 1, 0), (7)

where ρ is a hyper-parameter used as a threshold in the
Hamming space to differentiate similar pairs from dissim-
ilar pairs, λ is another hyper-parameter that controls the
ratio of the slopes for the penalties incurred for similar (or
dissimilar) points. The hash function is in the linear form:
y = sgn(W>x). The projection matrix W is estimated
by transforming y = sgn(W>x) = arg maxy′∈H h′>W>x

and optimizing using structured prediction with latent vari-
ables. The hyper-parameters ρ and λ are chosen via cross-
validation.

Comments: Besides the optimization techniques, the
main differences of the three representative algorithms, i.e.,
spectral hashing, LDA hashing, and minimal loss hashing,
are twofold. First, the similarity in the input space in spectral
hashing is defined as a continuous positive number com-
puted from the Euclidean distance, while in LDA hashing
and minimal loss hashing the similarity is set to 1 for
a similar pair and −1 for a dissimilar pair. Second, the
distance in the hashing space for minimal loss hashing is
different from spectral hashing and LDA hashing.

4.2 Similarity-Similarity Product Maximization

Semi-supervised hashing [140], [141], [142] is the represen-
tative algorithm in this group. The objective function is
max

∑
(i,j)∈E s

o
ijs

h
ij . The similarity soij in the input space is

1 if the pair of items xi and xj belong to the same class or
are nearby points, and −1 otherwise. The similarity in the
coding space is defined as shij = y>i yj . Thus, the objective
function is rewritten as maximizing:∑

(i,j)∈E
soijy

>
i yj . (8)

The hash function is in a linear form y = h(x) =
sgn(W>x). Besides, the bit balance is also considered, and
is formulated as maximizing the variance, trace(YY>),
rather than letting the mean be 0, Y1 = 0. The overall
objective is to maximize

trace(YSY>) + η trace(YY>), (9)

subject to W>W = I, which is a relaxation of the bit
uncorrelation condition. The estimation of W is done by
directly dropping the sgn operator.

An unsupervised extension is given in [142]: sequentially
compute the projection vector {wm}Mm=1 from w1 to wM

by optimizing the problem 9. In particular, the first iteration
computes the PCA direction as the first w, and at each of the
later iterations, soij = 1 if nearby points are mapped to dif-
ferent hash values in the previous iterations, and soij = −1 if
far points are mapped to same hash values in the previous
iterations. An extension of the semi-supervised hashing to
nonlinear hash functions is presented in [156] using the
kernel hash function. An iterative two-step optimization
using graph cuts is given in [32].

Comments: It is interesting to note that∑
(i,j)∈E s

o
ijy
>
i yj = const − 1

2

∑
(i,j)∈E s

o
ij‖yi − yj‖22 =

const − 1
2

∑
(i,j)∈E s

o
ijd

h
ij if y ∈ {1,−1}M ,

where const is a constant variable (and thus
trace(YSY>) = const − trace(Y(D − S)Y>)). In
this case, similarity-similarity product maximization is
equivalent to similarity-distance product minimization.

4.3 Distance-Distance Product Maximization

The mathematical formulation of distance-distance product
maximization is max

∑
(i,j)∈E d

o
ijd

h
ij . Topology preserving
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hashing [166] formulates the objective function by starting
with this rule:∑

i,j
doijd

h
ij =

∑
i,j
doij‖yi − yj‖22 = trace(YLdY

>),

(10)

where Ld = Diag{Do1} −Do and Do = [doij ]N×N .
In addition, similarity-distance product minimization is

also considered:∑
(i,j)∈E

sij‖yi − yj‖22 = trace(YLY>). (11)

The overall formulation is given as follows,

max
trace(Y(Ld + αI)Y>)

trace(YLY>)
, (12)

where αI is introduced as a regularization term,
trace(YY>), maximizing the variances, which is the same
for semi-supervised hashing [140] for bit balance. The prob-
lem is optimized by dropping the sgn operator in the hash
function y = sgn(W>x) and letting W>XLX>W be an
identity matrix.

4.4 Distance-Distance Difference Minimization
Binary reconstructive embedding [66] belongs to this group:
min

∑
(i,j)∈E(d

o
ij − dhij)2. The Euclidean distance is used in

both the input and coding spaces. The objective function is
formulated as follows,

min
∑

(i,j)∈E
(
1

2
‖xi − xj‖22 −

1

M
‖yi − yj‖22)2. (13)

The kernel hash function is used:

ynm = hm(x) = sgn(
∑Tm

t=1
wmtK(smt,x)), (14)

where {smt}Tm
t=1 are sampled data items, K(·, ·) is a kernel

function, and {wmt} are the weights to be learnt.
Instead of relaxing or dropping the sgn function, a coor-

dinate descent optimization scheme is presented in [66]: fix
all but one weight wmt and optimize the problem 13 with
respect to wmt. There is an exact, optimal update to this
weight wmt (fixing all the other weights), which is achieved
with the time complexity O(N logN + |E|). Alternatively,
a two-step solution is presented in [106]: first relax the
binary variables to (0, 1) and optimize the problem via
an augmented Lagrangian formulation and a nonnegative
matrix factorization formulation.

Comments: We have the following equation,

min
∑

(i,j)∈E
(doij − dhij)2 (15)

= min
∑

(i,j)∈E
((doij)

2 + (dhij)
2 − 2doijd

h
ij) (16)

= min
∑

(i,j)∈E
((dhij)

2 − 2doijd
h
ij). (17)

This shows that the difference between distance-distance
difference minimization and distance-distance product max-
imization lies on min

∑
(i,j)∈E(d

h
ij)

2, minimizing the dis-
tances between the data items in the hash space. This could
be regarded as a regularizer, complementary to distance-
distance product maximization max

∑
(i,j)∈E d

o
ijd

h
ij which

tends to maximize the distances between the data items in
the hash space.

4.5 Similarity-Similarity Difference Minimization
Similarity-similarity difference minimization is mathemat-
ically formulated as min

∑
(i,j)∈E(s

o
ij − shij)

2. Supervised
hashing with kernels [85], one representative approach in this
group, aims to minimize an objective function,

min
∑

(i,j)∈E
(soij −

1

M
y>i yj)

2, (18)

where soij = 1 if (i, j) is similar, and soij = −1 if it is dissimi-
lar. y = h(x) is a kernel hash function. Kernel reconstructive
hashing [160] extends this technique using a normalized
Gaussian kernel similarity. Scalable graph hashing [56] uses
the feature transformation to approximate the similarity
matrix (graph) without explicitly computing the similarity
matrix. Binary hashing [25] solves the problem using a
two-step approach, in which the first step adopts semi-
definite relaxation and augmented lagrangian to estimate
the discrete labels.

Comments: We have the following equation,

min
∑

(i,j)∈E
(soij − shij)2 (19)

= min
∑

(i,j)∈E
((soij)

2 + (shij)
2 − 2soijs

h
ij) (20)

= min
∑

(i,j)∈E
((shij)

2 − 2soijs
h
ij). (21)

This shows that the difference between similarity-similarity
difference minimization and similarity-similarity product
maximization lies in min

∑
(i,j)∈E(s

h
ij)

2, minimizing the
similarities between the data items in the hash space, in-
tuitively letting the hash codes be as different as pos-
sible. This could be regarded as a regularizer com-
plementary to similarity-similarity product maximization
max

∑
(i,j)∈E s

o
ijs

h
ij , which has a trivial solution: the hash

codes are the same for all data points.
Extensions and variants: Multi-dimensional spectral hash-

ing [154] uses a similar objective function, but with a
weighted Hamming distance,

min
∑

(i,j)∈E
(soij − y>i Λyj)

2, (22)

where Λ is a diagonal matrix. Both Λ and hash codes
{yi} are needed to be optimized. The algorithm for solv-
ing the problem 22 to compute the hash codes is similar
to that given in spectral hashing [155]. Bilinear hyperplane
hashing [87] extends the formulation of supervised hashing
with kernels by introducing a bilinear hyperplane hashing
function. Label-regularized maximum margin hashing [102] for-
mulates the objective function from three components: the
similarity-similarity difference, a hinge loss from the hash
function, and the maximum margin part.

4.6 Normalized Similarity-Similarity Divergence Mini-
mization
Spec hashing [78], belonging to this group, views each pair
of data items as a sample and their (normalized) similarity
as the probability, and finds the hash functions so that
the probability distributions from the input space and the
coding space are well aligned. The objective function is
written as follows,

KL({s̄oij}, {s̄hij}) = const−
∑

(i,j)∈E
s̄oij log s̄hij . (23)
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Here, s̄oij is the normalized similarity in the input space,∑
ij s̄

o
ij = 1. s̄hij is the normalized similarity in the Hamming

space, s̄hij = 1
Z exp (−λdhij), where Z is a normalization

variable Z =
∑
ij exp (−λdhij).

Supervised binary hash code learning [27] presents a
supervised learning algorithm based on the Jensen-Shannon
divergence which is derived from minimizing an upper
bound of the probability of Bayes decision errors.

5 MULTIWISE SIMILARITY PRESERVING

This section reviews the category of hashing algorithms that
formulate the loss function by maximizing the agreement of
the similarity orders over more than two items computed
from the input space and the coding space.

Order preserving hashing [149] aims to learn hash func-
tions through aligning the orders computed from the orig-
inal space and the ones in the coding space. Given a
data point xn, the database points X are divided into
(M + 1) categories, (Chn0, Chn1, · · · , ChnM ), where Chnm cor-
responds to the items whose distance to the given point
is m, and (Con0, Con1, · · · , ConM ), using the distances in the
hashing space and the distances in the input (original) space,
respectively. (Con0, Con1, · · · , ConM ) is constructed such that
in the ideal case the probability of assigning an item to
any hash code is the same. The basic objective function
maximizing the alignment between the two categories is
given as follows,

L(h(·);X ) =
∑

n∈{1,··· ,N}

M∑
m=0

(|Conm − Chnm|+ |Chnm − Conm|),

where |Conm − Chnm| is the cardinality of the difference of
the two sets. The linear hash function h(x) is used and
dropping the sgn function is adopted for optimization.

Instead of preserving the order, KNN hashing [23] di-
rectly maximizes the kNN accuracy of the search result,
which is solved by using the factorized neighborhood rep-
resentation to parsimoniously model the neighborhood re-
lationships inherent in the training data.

Triplet loss hashing [109] formulates the hashing problem
by maximizing the similarity order agreement defined over
triplets of items, {(x,x+,x−)}, where the pair (x,x−) is less
similar than the pair (x,x+). The triplet loss is defined as

`triplet(y,y
+,y−) = max(1− ‖y − y−‖1 + ‖y − y+‖1, 0).

(24)

The objective function is given as follows,∑
(x,x+,x−)∈D

`triplet(h(x),h(x+),h(x−)) +
λ

2
trace (W>W),

where h(x) = h(x; W) is the compound hash function.
The problem is optimized using the algorithm similar to
minimal loss hashing [107]. The extension to asymmetric
Hamming distance is also discussed in [109]. Binary opti-
mized hashing [18] also uses a triplet loss function, with a
slight different distance measure in the Hamming space and
a different optimization technique.

Top rank supervised binary coding [131] presents an-
other form of triplet losses in order to penalize the samples

that are incorrectly ranked at the top of a Hamming-distance
ranking list more than those at the bottom.

Listwise supervision hashing [145] also uses triplets of
items. The formulation is based on a triplet tensor So

defined as follows,

soijk = s(qi; xj ,xk) =


1 if so(qi,xj) < so(qi,xk)
−1 if so(qi,xj) > so(qi,xk)
0 if so(qi,xj) = so(qi,xk)

.

The objective is to maximize triple-similarity-triple-
similarity product: ∑

i,j,k
shijks

o
ijk, (25)

where shijk is a ranking triplet computed by the binary
code using the cosine similarity, shijk = sgn(h(qi)

>h(xj) −
h(qi)

>h(xk)). Through dropping the sgn function, the ob-
jective function is transformed to

−
∑

i,j,k
h(qi)

>(h(xj)− h(xk))soijk, (26)

which is solved by dropping the sgn operator in the hash
function h(x) = sgn(W>x).

Comments: Order preserving hashing considers the re-
lation between the search lists while triplet loss hashing and
listwise supervision hashing consider triplewise relation.
The central ideas of triplet loss hashing and listwise su-
pervision hashing are very similar, and their difference lies
in how to formulate the loss function besides the different
optimization techniques they adopted.

6 IMPLICIT SIMILARITY PRESERVING

We review the category of hashing algorithms that focus
on pursuing effective space partitioning without explicitly
evaluating the relation between the distances/similarities
in the input and coding spaces. The common idea is to
partition the space, formulated as a classification problem,
with the maximum margin criterion or the code balance
condition.

Random maximum margin hashing [61] learns a hash func-
tion with the maximum margin criterion. The point is that
the positive and negative labels are randomly generated by
randomly sampling N data items and randomly labeling
half of the items with −1 and the other half with 1. The for-
mulation is a standard SVM formulation that is equivalent
to the following form,

max
1

‖w‖2
min{ min

i=1,··· ,N2
(w>x+

i + b), min
i=1,··· ,N2

(−w>x−i − b)},

where {x+
i } are the positive samples and {x−i } are the neg-

ative samples. Note that this is different from PICODES [7]
as random maximum margin hashing adopts the hyper-
planes learnt from SVM to form the hash functions while
PICODES [7] exploits the hyperplanes to check whether the
hash codes are semantically separable rather than forming
hash functions.

Complementary projection hashing [60], similar to comple-
mentary hashing [159], finds the hash function such that
the items are as far away as possible from the partition
plane corresponding to the hash function. It is formulated as
H(ε−|w>x+b|), whereH(·) = 1

2 (1+sgn(·)) is the unit step
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function. Moreover, the bit balance condition, Y1 = 0, and
the bit uncorrelation condition, the non-diagonal entries in
YY> are 0, are considered. An extension is also given by
using the kernel hash function. In addition, when learning
the mth hash function, the data item is weighted by a
variable, which is computed according to the previously
computed (m− 1) hash functions.

Spherical hashing [41] uses a hypersphere to partition the
space. The spherical hash function is defined as h(x) = 1 if
d(p,x) 6 t and h(x) = 0 otherwise. The compound hash
function consists of M spherical functions, depending on
M pivots {p1, · · · ,pM} and M thresholds {t1, · · · , tM}.
The distance in the coding space is defined based on the
distance: ‖y1−y2‖1

yT
1 y2

. Unlike the pairwise and multiwise sim-
ilarity preserving algorithms, there is no explicit function
penalizing the disagreement of the similarities computed
in the input and coding spaces. The M pivots and thresh-
olds are learnt such that it satisfies a pairwise bit balance
condition: |{x | hm(x) = 1}| = |{x | hm(x) = 0}|, and
|{x | hi(x) = b1, hj(x) = b2}| = 1

4 |X |, b1, b2 ∈ {0, 1}, i 6= j.

7 QUANTIZATION

The following provides a simple derivation showing that
the quantization approach can be derived from the distance-
distance difference minimization criterion. There is a similar
statement in [50] obtained from the statistical perspective:
the distance reconstruction error is statistically bounded by
the quantization error. Considering two points xi and xj
and their approximations zi and zj , we have

|doij − dhij | (27)

= ||xi − xj |2 − |zi − zj |2| (28)
= ||xi − xj |2 − |xi − zj |2 + |xi − zj |2 − |zi − zj |2| (29)
6 ||xi − xj |2 − |xi − zj |2|+ ||xi − zj |2 − |zi − zj |2| (30)
6 |xj − zj |2 + |xi − zi|2. (31)

Thus, |doij − dhij |2 6 2(|xj − zj |22 + |xi − zi|22), and

min
∑

i,j∈{1,2,··· ,N}
|doij − dhij |2 (32)

6 min 2
∑

i,j∈{1,2,··· ,N}
(|xj − zj |22 + |xi − zi|22) (33)

= min 4
∑

i∈{1,2,··· ,N}
|xi − zi|22. (34)

This means that the distance-distance difference minimiza-
tion rule is transformed to minimizing its upper-bound, the
quantization error, which is described as a theorem below.

Theorem 1. The distortion error in the quantization approach
is an upper bound (with a scale) of the differences
between the pairwise distances computed from the input
features and from the approximate representation.

The quantization approach for hashing is roughly di-
vided into two main groups: hypercubic quantization, in
which the approximation z is equal to the hash code y,
and Cartesian quantization, in which the approximation z
corresponds to a vector formed by the hash code y, e.g., y
represents the index of a set of candidate approximations.
In addition, we will review the related reconstruction-based
hashing algorithms.

7.1 Hypercubic Quantization

Hypercubic quantization refers to a category of algorithms
that quantize a data item to a vertex in a hypercubic, i.e., a
vector belonging to a set {[y1 y2 · · · yM ]> | ym ∈ {−1, 1}}
or the rotated hypercubic vertices. It is in some sense related
to 1-bit compressive sensing [8]: Its goal is to design a
measurement matrix A and a recovery algorithm such that a
k-sparse unit vector x can be efficiently recovered from the
sign of its linear measurements, i.e., b = sgn(Ax), while
hypercubic quantization aims to find the matrix A which is
usually a rotation matrix, and the codes b, from the input x.

The widely-used scalar quantization approach with only
one bit assigned to each dimension can be viewed as a
hypercubic quantization approach, and can be derived by
minimizing

||xi − yi||22 (35)

subject to yi ∈ {1,−1}. The local digit coding approach [64]
also belongs to this category.

7.1.1 Iterative quantization
Iterative quantization [35], [36] preprocesses the data, by
reducing the dimension using PCA to M dimensions,
v = P>x, where P is a matrix of size d × M (M 6 d)
computed using PCA, and then finds an optimal rotation R
followed by a scalar quantization. The formulation is given
as,

min ‖Y −R>V‖2F , (36)

where R is a matrix of M × M , V = [v1v2 · · ·vN ] and
Y = [y1y2 · · ·yN ].

The problem is solved via alternative optimization.
There are two alternative steps. Fixing R, Y = sgn(R>V).
Fixing B, the problem becomes the classic orthogonal Pro-
crustes problem, and the solution is R = ŜS>, where S and
Ŝ is obtained from the SVD of YV>, YV> = SΛŜ>.

Comments: We present an integrated objective func-
tion that is able to explain the necessity of PCA dimen-
sion reduction. Let ȳ be a d-dimensional vector, which is
a concatenated vector from y and an all-zero subvector:
ȳ = [y>0...0]>. The integrated objective function is written
as follows:

min ‖Ȳ − R̄>X‖2F , (37)

where Ȳ = [ȳ1ȳ2 · · · ȳN ], X = [x1x2 · · ·xN ], and R̄ is a
rotation matrix of d × d. Let P̄ be the projection matrix of
d×d, computed using PCA, P̄ = [PP⊥], and P⊥ is a matrix
of d × (d −M). It can be derived that, the solutions for y
of the two problems in 37 and 36 are the same, and R̄ =
P̄ diag(R, I(d−M)×(d−M)).

7.1.2 Extensions and Variants
Harmonious hashing [158] modifies iterative quantization
by adding an extra constraint: YY> = σI. The problem
is solved by relaxing Y to continuous values: fixing R,
let R>V = UΛV>, then Y = σ1/2UV>; fixing Y,
R = ŜS>, where S and Ŝ is obtained from the SVD of YV>,
YV> = SΛŜ>. The hash function is finally computed as
y = sgn(R>v).
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Isotropic hashing [63] finds a rotation following PCA
preprocessing such that R>VV>R = Σ becomes a matrix
with equal diagonal values, i.e., [Σ]11 = [Σ]22 = · · · =
[Σ]MM . The objective function is written as ‖R>VV>R −
Z‖F = 0, where Z is a matrix with all the diagonal entries
equal to an unknown variable σ. The problem can be solved
by two algorithms: lift and projection, and gradient flow.

Comments: The goal of making the variances along the
M directions being the same is to make the bits in the hash
codes equally contributing to the distance evaluation. In the
case that the data items satisfy the isotropic Gaussian distri-
bution, the solution from isotropic hashing is equivalent to
iterative quantization.

Similar to iterative quantization, the PCA preprocessing
in isotropic hashing is also interpretable: finding a global
rotation matrix R̄ such that the first M diagonal entries of
Σ̄ = R̄>XX>R̄ are equal, and their sum is as large as
possible, which is formally written as follows,

max
∑M

m=1
[Σ̄]mm (38)

s. t. [Σ̄]mm = σ,m = 1, · · · ,M, R̄>R̄ = I. (39)

Other extensions include cosine similarity preserving
quantization (Angular quantization [34]), nonlinear embed-
ding replacing PCA embedding [46] [172], matrix hash-
ing [33], and so on. Quantization is also applied to super-
vised problems: Supervised discrete hashing [125], [165],
[167], present an SVM-like formulation to minimize the
quantization loss and the classification loss in the hash
coding space, and jointly optimize the hash function pa-
rameters and the SVM weights. Intuitively, the goal of these
methods is that the hash codes are semantically separable,
which is guaranteed through maximizing the classification
performance.

7.2 Cartesian Quantization
Cartesian quantization refers to a class of quantiza-
tion algorithms in which the composed dictionary C
is formed from a Cartesian product of a set of small
source dictionaries {C1, C2, · · · , CP }: C = C1 × C2 ×
· · · × CP = {(c1i1 , c2i2 , · · · , cPiP )}, where Cp =
{cp0, cp2, · · · , cp(Kp−1)}, ip ∈ {0, 1, · · · ,Kp − 1}.

The benefits include that (1) P small dictionar-
ies, with totally

∑P
p=1Kp dictionary items, generate a

larger dictionary with
∏P
p=1Kp dictionary items; (2)

the (asymmetric) distance from a query q to the com-
posed dictionary item (c1i1 , c2i2 , · · · , cPiP ) (an approxi-
mation of a data item) is computed from the distances
{dist(q, c1i1), · · · ,dist(q, cPiP )} through a sum operation,
thus the cost of the distance computation between a query
and a data item is O(P ), if the distances between the query
and the source dictionary items are precomputed; and (3)
the query cost with a set of N database items is reduced
from Nd to NP through looking up a distance table which
is efficiently computed between the query and the P source
dictionaries.

7.2.1 Product Quantization
Product quantization [50], which initiates the quantization-
based compact coding solution to similarity search, forms

the P source dictionaries by dividing the feature space into
P disjoint subspaces, accordingly dividing the database into
P sets, each set consisting of N subvectors {xp1, · · · ,xpN},
and then quantizing each subspace separately into (usu-
ally K1 = K2 = · · · = KP = K) clusters. Let
{cp1, cp2, · · · , cpK} be the cluster centers of the pth sub-
space. The operation forming an item in the dictionary
from a P-tuple (c1i1 , c2i2 , · · · , cPiP ) is the concatenation
[c>1i1c

>
2i2
· · · c>PiP ]>. A data point assigned to the nearest

dictionary item (c1i1 , c2i2 , · · · , cPiP ) is represented by a
compact code (i1, i2, · · · , iP ), whose length is P log2K. The
distance dist(q, cpip) between a query q and the dictionary
element in the pth dictionary is computed as ‖qp − cpip‖22,
where qp is the subvector of q in the pth subspace.

Mathematically, product quantization can be viewed as
minimizing the following objective function,

minC,{bn}
∑N

n=1
‖xn −Cbn‖22. (40)

Here C is a matrix of d× PK in the form of

C = diag(C1,C2, · · · ,CP ) =


C1 0 · · · 0

0 C2 · · · 0

...
...

. . .
...

0 0 · · · CP

 ,
where Cp = [cp1cp2 · · · cpK ]. bn = [b>n1b

>
n2 · · ·b>nP ]> is the

composition vector, and its subvector bnp of length K is an
indicator vector with only one entry being 1 and all others
being 0, showing which element is selected from the pth
source dictionary for quantization.

Extensions: Distance-encoded product quantization [42] ex-
tends product quantization by encoding both the cluster
index and the distance between the cluster center and the
point. The cluster index is encoded in a way similar to that
in product quantization. The way of encoding the distance
between a point and its cluster center is as follows: the
points belonging to one cluster are partitioned (quantized)
according to the distances to the cluster center, the points in
each partition are represented by the corresponding parti-
tion index, and accordingly the distance of each partition to
the cluster center is also recorded with the partition index.

Cartesian k-means [108] and optimized production quan-
tization [31] extend product quantization and introduce a
rotation R into the objective function,

minR,C,{bn}
∑N

n=1
‖R>xn −Cbn‖22. (41)

The introduced rotation does not affect the Euclidean dis-
tance as the Euclidean distance is invariant to the rotation,
and helps to find an optimized subspace partition for quan-
tization. Locally optimized product quantization [62] applies
optimized production quantization to the search algorithm
with the inverted index, where there is a quantizer for each
inverted list.

7.2.2 Composite Quantization
In composite quantization [168], the operation forming an
item in the dictionary from a P-tuple (c1i1 , c2i2 , · · · , cPiP )
is the summation

∑P
p=1 cpip . In order to compute the

distance from a query q to the composed dictionary
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(a) (b) (c)

Fig. 2. 2D toy examples illustrating the quantization algorithms. The
space partitioning results are generated by (a) product quantization, (b)
Cartesian k-means, and (c) composite quantization. The space partition
from composition quantization is more flexible.

item formed by (c1i1 , c2i2 , · · · , cPiP ) from the distances
{dist(q, c1i1), · · · ,dist(q, c1i1)}, a constraint is introduced:
the summation of the inner products of all pairs of elements
that are used to approximate the vector xn but from differ-
ent dictionaries,

∑P
i=1

∑P
j=1,6=i cikincjkjn , is constant.

The problem is formulated as

min
{Cp},{bn},ε

∑N

n=1
‖xn − [C1C2 · · ·CP ]bn‖22 (42)

s. t.
∑P

j=1

∑P

i=1,i6=j
b>niC

>
i Cjbnj = ε,

bn = [b>n1b
>
n2 · · ·b>nP ]>,

bnp ∈ {0, 1}K , ‖bnp‖1 = 1,

n = 1, 2, · · · , N ; p = 1, 2, · · ·P.

Here, Cp is a matrix of size d × K, and each column
corresponds to an element of the pth dictionary Cp.

Sparse composite quantization [169] improves com-
posite quantization by constructing a sparse dictionary,∑P
p=1

∑K
k=1 ‖cpk‖0 6 S, with S being a parameter control-

ling the sparsity degree, resulting in a great reduction of
the distance table computation cost which takes almost the
same as the most efficient approach: product quantization.

Connection with product quantization: It is shown
in [168] that both product quantization and Cartesian k-
means can be regarded as constrained versions of composite
quantization. Composite quantization attains smaller quan-
tization errors, yielding better search accuracy with similar
search efficiency. A 2D illustration of the three algorithms
is given in Figure 2, where 2D points are grouped into 9
groups. It is observed that composition quantization is more
flexible in partitioning the space and thus the quantization
error is possibly smaller.

Composite quantization, product quantization, and
Cartesian k-means (optimized product quantization) can be
explained from the view of sparse coding, as pointed in [2],
[137], [168]: the dictionary ({Cp}) in composite quantization
(product quantization and Cartesian k-means) satisfies the
constant (orthogonality) constraint, and the sparse codes
({bn}) are 0 and 1 vectors where there is only one 1 for
each subvector corresponding to a source dictionary.

Comments: As discussed in product quantization [50],
the idea of using the summation of several dictionary items
as an approximation of a data item has already been studied
in the signal processing research area, known as multi-
stage vector quantization, residual quantization, or more
generally structured vector quantization [38], and recently
re-developed for similarity search under the Euclidean dis-

tance (additive quantization [2], [148], and tree quantiza-
tion [3] modifying additive quantization by introducing a
tree-structure sparsity) and inner product [26].

7.2.3 Variants
The work in [37] presents an approach to compute the
source dictionaries given the M hash functions {hm(x) =
bm(gm(x))}, where gm() is a real-valued embedding func-
tion and bm() is a binarization function, for a better distance
measure, quantization-like distance, instead of Hamming or
weighted Hamming distance. It computes M dictionaries,
each corresponding to a hash bit and computed as

ḡkb = E(gk(x) | bk(gk(x)) = b), (43)

where b = 0 and b = 1. The distance computation cost
is O(M) through looking up a distance table, which can
be accelerated by dividing the hash functions into groups
(e.g., each group contains 8 functions, and thus the cost
is reduced to O(M8 )), building a table (e.g., consisting of
256 entries) per group instead of per hash function, and
forming a larger distance lookup table. In contrast, optimized
code ranking [147] directly estimates the distance table rather
than computing it from the estimated dictionary.

Composite quantization [168] points to relation between
Cartesian quantization and sparse coding. This indicates the
application of sparse coding to similarity search. Compact
sparse coding [15], the extension of robust sparse coding [16],
adopts sparse codes to represent the database items: the
atom indices corresponding to nonzero codes, which is
equivalent to letting the hash bits associated with nonzero
codes be 1 and 0 for zero codes, are used to build the
inverted index, and the nonzero coefficients are used to
reconstruct the database items and calculate the distances
between the database items and the query. Anti-sparse cod-
ing [52] aims to learn a hash code so that non-zero elements
in the hash code are as many as possible.

7.3 Reconstruction
We review a few reconstruction-based hashing approaches.
Essentially, quantization can be viewed as a reconstruction
approach for a data item. Semantic hashing [120], [121] gen-
erates the hash codes using the deep generative model,
a restricted Boltzmann machine (RBM), for reconstructing
the data item. As a result, the binary codes are used for
finding similar data. A variant method proposed in [13]
reconstructs the input vector from the binary codes, which is
effectively solved using the auxiliary coordinates algorithm.
A simplified algorithm [5] finds a binary hash code that can
be used to effectively reconstruct the vector through a linear
transformation.

8 OTHER TOPICS

Most hashing learning algorithms assume that the similarity
information in the input space, especially the semantic simi-
larity information, and the database items have already been
given. There are some approaches to learn hash functions
without such assumptions: active hashing [173] that actively
selects the labeled pairs which are most informative for hash
function learning, online hashing [43], smart hashing [161],
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online sketching hashing [69], and online adaptive hashing [12],
which learn the hash functions when the similar/dissimilar
pairs come sequentially.

The manifold structure in the database is exploited for
hashing, which is helpful for semantic similarity search,
such as locally linear hashing [46], spline regression hash-
ing [93], and inductive manifold hashing [126]. Multi-table
hashing, aimed at improving locality sensitive hashing, is
also studied, such as complementary hashing [159] and its
multi-view extension [91], reciprocal hash tables [90] and its
query-adaptive extension [88], and so on.

There are some works extending the Hamming distance.
In contrast to multi-dimensional spectral hashing [154] in
which the weights for the weighted Hamming distance are
the same for arbitrary queries, the query-dependent dis-
tance approaches learn a distance measure whose weights
or parameters depend on a specific query. Query adaptive
hashing [81], a learning-to-hash version extended from query
adaptive locality sensitive hashing [48], aims to select the
hash bits (thus hash functions forming the hash bits) ac-
cording to the query vector. Query-adaptive class-specific bit
weighting [57], [58] presents a weighted Hamming distance
measure by learning the class-specific bit weights from the
class information of the query. Bits reconfiguration [101] is
to learn a good distance measure over the hash codes
precomputed from a pool of hash functions.

The following reviews three research topics: joint fea-
ture and hash learning with deep learning, fast search in
the Hamming space replacing the exhaustive search, and
the important application of the Cartesian quantization to
inverted index.

8.1 Joint Feature and Hash Learning via Deep Learning

The great success in deep neural network for representation
learning has inspired a lot of deep compact coding algo-
rithms [30], [67], [157], [171]. Typically, these approaches
except [67] simultaneously learn the representation using a
deep neural network and the hashing function under some
loss functions, rather than separately learn the features and
then learn the hash functions.

The methodology is similar to other learning to hash
algorithms that do not adopt deep learning, and the hash
function is more general and could be a deep neural
network. We provide here a separate discussion because
this area is relatively new. However, we will not discuss
semantic hashing [120] which is usually not thought as a
feature learning approach but just a hash function learning
approach. In general, almost all non-deep-learning hashing
algorithms if the similarity order (e.g., semantic similarity)
is given, can be extended to deep learning based hashing
algorithms. In the following, we discuss the deep learning
based algorithms and also categorize them according to
their similarity preserving manners.

• Pairwise similarity preserving. The similarity-
similarity difference minimization criterion is
adopted in [157]. It uses a two-step scheme: the hash
codes are computed by minimizing the similarity-
similarity difference without considering the visual
information, and then the image representation and

hash function are jointly learnt through deep learn-
ing.

• Multiwise similarity preserving. The triplet loss is
used in [67], [171], which adopt the loss function
defined in Equation (24) (1 is dropped in [67])

• Quantization. Following the scalar quantization ap-
proach, deep hashing [80] defines a loss to penalize
the difference between the binary hash codes (see
Equation (35)) and the real values from which a
linear projection is used to generate the binary codes,
and introduces the bit balance and bit uncorrelation
conditions.

8.2 Fast Search in the Hamming Space
The computation of the Hamming distance is shown much
faster than the computation of the distance in the input
space. It is still expensive, however, to handle a large scale
data set using linear scan. Thus, some indexing algorithms
already shown effective and efficient for general vectors
are borrowed for the search in the Hamming space. For
example, min-hash, a kind of LSH, is exploited to search
over high-dimensional binary data [128]. In the following,
we discuss other representative algorithms.

Multi-index hashing [110] and its extension [132] aim to
partition the binary codes into M disjoint substrings and
build M hash tables each corresponding to a substring,
indexing all the binary codes M times. Given a query,
the method outputs the NN candidates which are near to
the query at least in one hash table. FLANN [104] extends
the FLANN algorithm [103] that was initially designed for
ANN search over real-value vectors to search over binary
vectors. The key idea is to build multiple hierarchical cluster
trees to organize the binary vectors and to search for the
nearest neighbors simultaneously over the multiple trees by
traversing each tree in a best-first manner.

PQTable [97] extends multi-index hashing from the
Hamming space to the product-quantization coding space,
for fast exact search. Unlike multi-index hashing flipping
the bits in the binary codes to find candidate tables, PQTable
adopts the multi-sequence algorithm [4] for efficiently find-
ing candidate tables. The neighborhood graph-based search
algorithm [143] for real-value vectors is extended to the
Hamming space [59].

8.3 Inverted Multi-Index
Hash table lookup with binary hash codes is a form of in-
verted index. Retrieving multiple hash buckets for multiple
hash tables is computationally cheaper compared with the
subsequent reranking step using the true distance computed
in the input space. It is also cheap to visit more buckets in
a single table if the standard Hamming distance is used, as
the nearby hash codes of the hash code of the query which
can be obtained by flipping the bits of the hash code of the
query. If there are a lot of empty buckets which increases
the retrieval cost, the double-hash scheme or the fast search
algorithm in the Hamming space, e.g., [104], [110] can be
used to fast retrieve the hash buckets.

Thanks to the multi-sequence algorithm, the Cartesian
quantization algorithms are also applied to the inverted
index [4], [169], [31] (called inverted multi-index), in which
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each composed quantization center corresponds to an in-
verted list. Instead of comparing the query with all the
composed quantization centers, which is computationally
expensive, the multi-sequence algorithm [4] is able to ef-
ficiently produce a sequence of (T ) inverted lists ordered
by the increasing distances between the query and the
composed quantization centers, whose cost is O(T log T ).
The study (Figure 5 in [150]) shows that the time cost of
the multi-sequence algorithm when retrieving 10K candi-
dates over the two datasets: SIFT1M and GIST1M is the
smallest compared with other non-hashing inverted index
algorithms.

Though the cost of the multi-sequence algorithm is
greater than that with binary hash codes, both are relatively
small and negligible compared with the subsequent rerank-
ing step that is often conducted in real applications. Thus
the quantization-based inverted index (hash table) is more
widely used compared with the conventional hash tables
with binary hash codes.

9 EVALUATION PROTOCOLS

9.1 Evaluation Metrics
There are three main concerns for an approximate nearest
neighbor search algorithm: space cost, search efficiency,
and search quality. The space cost for hashing algorithms
depends on the code length for hash code ranking, and the
code length and the table number for hash table lookup. The
search performance is usually measured under the same
space cost, i.e., the code length (and the table number) is
chosen the same for different algorithms.

The search efficiency is measured as the time taken to re-
turn the search result for a query, which is usually computed
as the average time over a number of queries. The time cost
often does not include the cost of the reranking step (using
the original feature representations) as it is assumed that
such a cost given the same number of candidates does not
depend on the hashing algorithms and can be viewed as
a constant. When comparing the performance in the case
the Hamming distance in hash code ranking is used in the
coding space, it is not necessary to report the search time
costs because they are the same. It is necessary to report the
search time cost when a non-Hamming distance or the hash
table lookup scheme is used.

The search quality is measured using recall@R (i.e., a
recall-R curve). For each query, we retrieve its R nearest
items and compute the ratio of the true nearest items in
the retrieved R items to T , i.e., the fraction of T ground-
truth nearest neighbors are found in the retrieved R items.
The average recall score over all the queries is used as the
measure. The ground-truth nearest neighbors are computed
over the original features using linear scan. Note that the
recall@R is equivalent to the accuracy computed after re-
ordering the R retrieved nearest items using the original
features and returning the top T items. In the case where
the linear scan cost in the hash coding space is not the same
(e.g., binary code hashing, and quantization-based hashing),
the curve in terms of search recall and search time cost is
usually reported.

The semantic similarity search, a variant of nearest
neighbor search, sometimes uses the precision, the recall, the

TABLE 2
A summary of evaluation datasets

Dim Reference set Learning set Query set
MNIST 784 60K - 10K

SIFT10K 128 10K 25K 100
SIFT1M 128 1M 100K 10K
GIST1M 960 1M 50K 1K
Tiny1M 384 1M - 100K
SIFT1B 128 1B 100M/1M 10K

GloVe1.2M 200 ≈ 1.2M - 10K

precision-recall curve, and mean average precision (mAP).
The precision is computed at the retrieved position R, i.e.,
R items are retrieved, as the ratio of the number of retrieved
true positive items to R. The recall is computed, also at
position R, as the ratio of the number of retrieved true
positive items to the number of all true positive items in the
database. The pairs of recall and precision in the precision-
recall curve are computed by varying the retrieved position
R. The mAP score is computed as follows: the average
precision for a query, the area under the precision-recall
curve is computed as

∑N
t=1 P (t)∆(t), where P (t) is the

precision at cut-off t in the ranked list and ∆(t) is the change
in recall from items t−1 to t; the mean of average precisions
over all the queries is computed as the final score.

9.2 Evaluation Datasets

The widely-used evaluation datasets have different scales
from small, large, to very large. Various features have been
used, such as SIFT features [94] extracted from Photo-
tourism [130] and Caltech 101 [28], GIST features [112] from
LabelMe [119] and Peekaboom [139], as well as some fea-
tures used in object retrieval: Fisher vectors [116] and VLAD
vectors [51]. The following presents a brief introduction
to several representative datasets, which is summarized in
Table 2.

MNIST [68] includes 60K 784-dimensional raw pixel
features describing grayscale images of handwritten digits
as a reference set, and 10K features as the queries.

SIFT10K [50] consists of 10K 128-dimensional SIFT
vectors as the reference set, 25K vectors as the learning set,
and 100 vectors as the query set. SIFT1M [50] is composed
of 1M 128-dimensional SIFT vectors as the reference set,
100K vectors as the learning set, and 10K as the query
set. The learning sets in SIFT10K and SIFT1M are extracted
from Flicker images and the reference sets and the query
sets are from the INRIA holidays images [49].

GIST1M [50] consists of 1M 960-dimensional GIST vec-
tors as the reference set, 50K vectors as the learning set,
1K vectors as the query set. The learning set is extracted
from the first 100K images from the tiny images [136]. The
reference set is from the Holiday images combined with
Flickr1M [49]. The query set is from the Holiday image
queries. Tiny1M [151]1 consists of 1M 384-dimensional
GIST vectors as the reference set and 100K vectors as the
query set. The two sets are extracted from the 1100K tiny
images.

SIFT1B [53] includes 1B 128-dimensional BYTE-valued
SIFT vectors as the reference set, 100M vectors as the

1. http://research.microsoft.com/∼jingdw/SimilarImageSearch/
NNData/NNdatasets.html
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TABLE 3
A summary of query performance comparison for approximate nearest

neighbor search under Euclidean distance.

Accuracy Efficiency Overall
pairwise low high low

multiwise fair high fair
quantization high fair high

learning set and 10K vectors as the query set. The three
sets are extracted from around 1M images. This dataset, and
SIFT10K, SIFT1M and GIST1M are publicly available2.

GloVe1.2M [115]3 contains 1, 193, 514 200-dimensional
word feature vectors extracted from Tweets. We randomly
sample 10K vectors as the query set and use the remaining
as the training set.

9.3 Training Sets and Hyper-Parameters Selection

There are three main choices of the training set over which
the hash functions are learnt for learning-to-hash algo-
rithms. The first choice is a separate set used for learning
hash functions, which is not contained in the reference set.
The second choice is to sample a small subset from the
reference set. The third choice is to use all the reference set
to train hash functions. The query set and the reference set
are then used to evaluate the learnt hash functions.

In the case where the query is transformed to a hash
code, e.g., when adopting the Hamming distance for most
binary hash algorithms, learning over the whole reference
set might lead to over-fitting and the performance might
be worse than learning with a subset of the reference set
or a separate set. In the case where the raw query is used
without any processing, e.g., when adopting the asymmetric
distance in Cartesian quantization, learning over the whole
reference set is better as it results in better approximation of
the reference set.

There are some hyper-parameters in the objective func-
tions, e.g, the objective functions in minimal loss hash-
ing [107] and composite quantization [168]. It is unfair and
not suggested to select the hyper-parameters corresponding
to the best performance over the query set. It is suggested
instead to select the hyper-parameters by validation, e.g.,
sampling a subset from the reference set as the validation
set which is reasonable because the validation criterion is
not the objective function value but the search performance.

10 PERFORMANCE ANALYSIS

10.1 Query Performance

We summarize empirical observations and the analysis of
the nearest neighbor search performance using the compact
coding approach, most of which have already been men-
tioned or discussed in the existing works. We discuss about
both hash table lookup and hash code ranking, with more
focus on hash code ranking because the major usage of
the learning to hash algorithms lies in hash code ranking
for retrieving top candidates from a set of candidates ob-
tained from the inverted index or other hash table lookup
algorithms. The analysis is mainly focusing on the major

2. http://corpus-texmex.irisa.fr/
3. http://nlp.stanford.edu/projects/glove/

(a)
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𝐴: (1,1)

𝐷: (−1,1)

𝐶: (−1,−1)

𝐵: (1, −1)

Hash: 𝑑1 = 𝑑2
Quantization: 𝑑1 > 𝑑2

(b)

ℎ1

ℎ2

ℎ3

ℎ4 ℎ5 ℎ6

Hash: 6 𝑏𝑖𝑡𝑠
Quantization: 4 𝑏𝑖𝑡𝑠

Fig. 3. 2D toy examples illustrating the comparison between binary
code hashing and quantization. (a) shows the Hamming distances from
clusters B and D to cluster A, usually adopted in the binary code
hashing algorithms, are the same while the Euclidean distances, used
in the quantization algorithms, are different. (b) the binary code hashing
algorithms need 6 hash bits (red lines show the corresponding hash
functions) to differentiate the 16 uniformly-distributed clusters while the
quantization algorithms only require 4 (= log 16) bits (green lines show
the partition line).

application of hashing: nearest neighbor search with the
Euclidean distance. The conclusion for semantic similarity
search is similar in principle and the performance also
depends on the ability of representing the semantic meaning
of the input features. We also present empirical results of
the quantization algorithms and the representative binary
coding algorithms for hash code ranking.

10.1.1 Query Performance with Hash Table Lookup
We give a performance summary of the query scheme using
hash table lookup for the two main hash algorithms: the
binary hash codes and the quantization-based hash codes.

In terms of space cost, hash table lookup with binary
hash codes has a little but negligible advantage over that
with quantization-based hash codes because the main space
cost comes from the indices of the reference items and the
extra cost from the centers corresponding to the buckets
using quantization is relatively small. Multi-assignment and
multiple hash tables increase space cost as they require
to store multiple copies of reference vector indices. As an
alternative choice, single-assignment with a single table can
be used but more buckets are retrieved for high recall.

When retrieving the same number of candidates, hash
table lookup using binary hash codes is better in terms
of the query time cost, but inferior to the quantization
approach in terms of the recall, which has probably been
firstly discussed in [114]. In terms of recall vs. time cost
the quantization approach is overall superior as the cost
from the multi-sequence algorithm is relatively small and
negligible compared with the subsequent reranking step,
which is observed from our experience, and can be derived
from [103] and [4]. In general, the performance for other
algorithms based on the weighted Hamming distance and
the learnt distance is in between. The observation holds for
a single table with single assignment and multiple assign-
ment, or multiple tables.

10.1.2 Query Performance with Hash Code Ranking
The following provides a short summary of the overall
performance for three main categories: pairwise similarity
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preserving, multiwise similarity preserving, and quantiza-
tion in terms of search cost and search accuracy under
the same space cost, guaranteed by coding the items using
the same number of bits, ignoring the small space cost of
the dictionary in Cartesian quantization and the distance
lookup tables.

Search accuracy: Multiwise similarity preserving is bet-
ter than pairwise similarity preserving as it considers more
information for hash function learning. There is no observa-
tion/conclusion on which algorithm, pairwise or multiwise
similarity preserving algorithm, performs consistently the
best. Nevertheless, there is a large amount of pairwise and
multiwise similarity preserving algorithms because differ-
ent algorithms may be suitable to different data distribu-
tions and optimization also affects the performance.

It has been shown in Section 7.1 that the cost func-
tion of hypercubic quantization is an approximation of the
distance-distance difference. But it outperforms pairwise
and multiwise similarity preserving algorithms. This is be-
cause it is infeasible to consider all pairs (triples) of items
for the distance-distance difference in pairwise (multiwise)
similarity preserving algorithms, and thus only a small
subset of the pairs (triples), by sampling a subset of items
or pairs (triples), is considered for almost all the pairwise
(multiwise) similarity preserving hashing algorithms, while
the cost function for quantization is an approximation for
all pairs of items. This point is also discussed in [153].

Compared with binary code hashing including hyper-
cubic quantization, another reason for the superiority of
Cartesian quantization, as discussed in [168], is that there are
only a small number (L+ 1) of distinct Hamming distances
in the coding space for binary code hashing with the code
length being L, while the number of distinct distances for
Cartesian quantization is much larger. It is shown that the
performance from learning a distance measure using a way
like the quantization approach [37] or directly learning a
distance lookup table [147]4 from precomputed hash codes
is comparable to the performance of the Cartesian quantiza-
tion approach if the codes from the quantization approach
are given as the input.

Search cost: The evaluation of the Hamming distance us-
ing the CPU instruction popcnt is faster than the distance-
table lookup. For example, it is around twice faster for the
same code length L than distance table lookup if a sub-
table corresponds to a byte and there are totally L

8 sub-
tables. It is worth pointing (also observed in [168]) that the
Cartesian quantization approaches relying on the distance
table lookup still achieve better search accuracy even with
a code of the half length, which indicates that the overall
performance of the quantization approaches in terms of
space cost, query time cost, and search accuracy is superior.

In summary, if the online performance in terms of space
cost, query time cost, and search accuracy is cared about, the
quantization algorithms are suggested for hash code rank-
ing, hash table lookup, as well as the scheme of combining
inverted index (hash table lookup) and hash code ranking.
The comparison of the query performances of pairwise

4. A similar idea is concurrently proposed in [117], [118] to learn
a better similarity for a bag-of-words representation and quantized
kernels.

and multiwise similarity preserving algorithms, as well as
quantization is summarized in Table 3.

Figure 3 presents 2D toy examples. Figure 3 (a) shows
that the quantization algorithm is able to discriminate the
non-uniformly distributed clusters with different between-
cluster distances while the binary code hashing algorithm
is lacking such a capability due to the Hamming distance.
Figure 3 (b) shows that the binary hash coding algorithms
require more (6) hash bits to differentiate the 16 uniformly-
distributed clusters while the quantization algorithms only
require 4 (= log 16) bits.

10.1.3 Empirical Results
We present the empirical results of the several representative
hashing and quantization algorithms over SIFT1M [50]. We
show the results for searching the nearest neighbor (T = 1)
with 128 bits and the conclusion holds for searching more
nearest neighbors (T > 1) and with other numbers of bits.
More results, such as the search time cost, and results using
inverted multi-index with different quantization algorithms
can be found in [169]. We also conduct experiments over
word feature vectors GloVe1.2M . We present the results
using recall@R for searching the nearest neighbor (T = 1)
with 128 bits.

We also report the results over deep learning features
extracted from the ILSVRC 2012 dataset. The ILSVRC 2012
dataset is a subset of ImageNet [22] and contains over 1.2
million images. We use the provided training set, 1, 281, 167
images, as the retrieval database and use the provided
validation set, 50, 000 images, as the test set. Similar to [125],
the 4096-dimensional feature extracted from the convolu-
tion neural networks (CNN) in [65] is used to represent
each image. We evaluate the search performance under
the Euclidean distance in terms of recall@R, where R is
the number of the returned top candidates, and under the
semantic similarity in terms of MAP vs. #bits.

Figure 4 shows the recall@R curves and the MAP results.
We have several observations. (1) The performance of the
quantization method is better than the hashing method in
most cases for both Euclidean distance-based and semantic
search. (2) LSH, a data-independent algorithm is generally
worse than other learning to hash approaches. (3) For Eu-
clidean distance-based search the performance of CQ is the
best among quantization methods, which is consistent with
the analysis and the 2D illustration shown in Figure 2.

10.2 Training Time Cost

We present the analysis of the training time cost for the case
of using the linear hash function. The pairwise similarity
preserving category considers the similarities of all pairs
of items, and thus in general the training process takes
quadratic time with respect to the number N of the training
samples (O(N2M + N2d)). To reduce the computational
cost, sampling schemes are adopted: sample a small number
(e.g., O(N)) of pairs, whose time complexity becomes linear
with respect to N , resulting in (O(NM + Nd)), or sample
a subset of the training items (e.g., containing N̄ items),
whose time complexity becomes smaller (O(N̄2M + N̄2d)).
The multiwise similarity preserving category considers the
similarities of all triples of items, and in general the training
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Fig. 4. (a) and (b) show the performance in terms of recall@R over SIFT1M and GloVe1.2M for the representative quantization algorithms.
(c) and (d) show the performance over the ILSVRC 2012 ImageNet dataset under the Euclidean distance in terms of recall@R and under the
semantic similarity in terms of mAP vs. # bits. BRE = binary reconstructive embedding [66], MLH = minimal loss hashing [107], LSH = locality
sensitive hashing [14], ITQ = iterative quantization [35], [36], SH = spectral hashing [155], AGH-2 = two-layer hashing with graphs [86], USPLH
= unsupervised sequential projection learning hashing [142], PQ = product quantization [50], CKM = Cartesian k-means [108], CQ = composite
quantization [168], SCQ = sparse composite quantization [169] whose dictionary is the same sparse with PQ. CCA-ITQ = iterative quantization
with canonical correlation analysis [36], SSH = semi-supervised hashing [142], KSH = supervised hashing with kernels [85], FastHash = fash
supervised hashing [76], SDH = supervised discrete hashing with kernels [125], SDH-linear = supervised discrete hashing without using kernel
representations [125], SQ = supervised quantization [153], Euclidean = linear scan with the Euclidean distance.

cost is greater and the sampling scheme is also used for
acceleration. The analysis for kernel hash functions and
other complex functions is similar, and the time complexity
for both training hash functions and encoding database
items is higher.

Iterative quantization consists of a PCA preprocessing
step whose time complexity is O(Nd2), and the hash code
and hash function optimization step, whose time complexity
is O(NM2 + M3) (M is the number of hash bits). The
whole complexity is O(Nd2 +NM2 +M3). Product quan-
tization includes the k-means process for each partition,
and the complexity is TNKP , where K is usually 256,
P = M

8 , and T is the number of iterations for the k-
means algorithm. The complexity of Cartesian k-means is
O(Nd2 + d3). The time complexity of composite quantiza-
tion is O(NKPd + NP 2 + P 2K2d). In summary, the time
complexity of iterative quantization is the lowest and that of
composite quantization is the highest. This indicates that it
takes larger offline computation cost to get a higher (online)
search performance.

11 EMERGING TOPICS

The main goal of the hashing algorithm is to accelerate the
online search as the distance can be efficiently computed
through fast Hamming distance computation or fast dis-
tance table lookup. The offline hash function learning and
hash code computation are shown to be still expensive,
and have become attractive in research. The computation
cost of the distance table used for looking up is thought
ignorable and in reality could be higher when handling
high-dimensional databases. There is also increasing interest
in topics such as multi-modality and cross-modality hash-
ing [45] and semantic quantization.

11.1 Speed up the Learning and Query Processes
Scalable Hash Function Learning. The algorithms depending
on the pairwise similarity, such as binary reconstructive
embedding, usually sample a small subset of pairs to reduce
the cost of learning hash functions. It has been shown that
the search accuracy is increased with a high sampling rate,
but the training cost is greatly increased. The algorithms

even without relying on the pairwise similarity, e.g., quanti-
zation, were also shown to be slow and even infeasible when
handling very large data, e.g., 1B data items, and usually
have to learn hash functions over a small subset, e.g., 1M
data items. This poses a challenging request to learn the
hash function over larger datasets.

Hash Code Computation Speedup. Existing hashing algo-
rithms rarely take into consideration the cost of encoding
a data item. Such a cost during the query stage becomes
significant in the case that only a small number of database
items or a small database are compared to the query. The
search combined with the inverted index and compact
codes is such a case. When kernel hash functions are used,
encoding the database items to binary codes is also much
more expensive than that with linear hash functions. The
composite quantization-like approach also takes much time
to compute the hash codes.

A recent work, circulant binary embedding [162], accel-
erates the encoding process for the linear hash functions,
and tree-quantization [3] sparsifies the dictionary items into
a tree structure, to speeding up the assignment process.
However, more research is needed to speed up the hash
code computation for other hashing algorithms, such as
composite quantization.

Distance Table Computation Speedup. Product quantization
and its variants need to precompute the distance table be-
tween the query and the elements of the dictionaries. Most
existing algorithms claim that the cost of distance table com-
putation is negligible. However in practice, the cost becomes
bigger when using the codes computed from quantization to
rank the candidates retrieved from the inverted index. This
is a research direction that will attract research interest in
the near future, such as a recent study, sparse composite
quantization [169].

11.2 Promising Extensions
Semantic Quantization. Existing quantization algorithms fo-
cus on the search under the Euclidean distances. Like binary
code hashing algorithms where many studies on seman-
tic similarity have been conducted, learning quantization-
based hash codes with semantic similarity is attracting
interest. There are already a few studies. For example, we
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have proposed an supervised quantization approach [153]
and some comparisons are provided in Figure 4.

Multiple and Cross Modality Hashing. One important char-
acteristic of big data is the variety of data types and data
sources. This is particularly true for multimedia data, where
various media types (e.g., video, image, audio and hyper-
text) can be described by many different low- and high-level
features, and relevant multimedia objects may come from
different data sources contributed by different users and
organizations. This raises a research direction, performing
joint-modality hashing learning by exploiting the relation
among multiple modalities, for supporting some special
applications, such as cross-modal search. This topic is at-
tracting a lot of research efforts nowadays, such as collab-
orative hashing [89], [164], collaborative quantization [170],
and cross-media hashing [133], [134], [175], [83].

12 CONCLUSION

In this paper, we categorize the learning-to-hash algorithms
into four main groups: pairwise similarity preserving, mul-
tiwise similarity preserving, implicit similarity preserving,
and quantization, present a comprehensive survey with a
discussion about their relations. We point out the empirical
observation that quantization is superior in terms of search
accuracy, search efficiency and space cost. In addition, we
introduce a few emerging topics and the promising exten-
sions.
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