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Overview

In writing this Thesis we aim at blending together recent advances in the analysis of stochastic
self–exciting processes with recent mathematical challenges characterizing the well–known class
of portfolio optimization problems "à la Merton". Such problems are particularly related to the
optimal portfolio allocation over a fixed time horizon (not necessarily finite), with the portfolio’s
dynamic being possibly influenced by random components. More specifically, we focus our
attention on portfolio’s evolution steered by a specific class of self-exciting processes, which has
been introduced in [HM16]. This has led us first to recall fundamental stochastic analysis results
which have been applied then to our framework as to determine the right mathematical setting
to exploit self–exciting model. In particular, we describe the case where the investor’s goal is to
maximize his utility, with the corresponding portfolio dynamic calibrated on market data.

Portfolio optimization problems have gained an increasing interest starting from the second
half of the 20th century when H. Markowitz, see e.g. [Mar52], proposed a solution identifying
the most efficient portfolio composition in terms of mean and variance for a set of securities,
hence promoting a series of subsequent analyses based on considering portfolio tasks within the
optimal control theory framework, see among others [Sha64; CR76; BL90].
Later on, R. Merton, see e.g. [Mer69], paved the way for applications of stochastic calculus to
finance with the goal of providing the optimal allocation for a given portfolio with continuous
dynamic over a finite time horizon. Further, in [Mer89], by exploiting results contained in
[CH89], Merton solved the optimal consumption and portfolio policy in closed form in infinite
horizon. Such seminal contributions have then known several variants along the years. The above
mentioned results have guided us to add extra factors trying to enrich the financial scenario already
treated to allow investor’s preferences to be defined via a second control, namely cumulative
consumption, analogously to [HH93]. This choice embodies the peculiarity of durability in the
setting, see Section 1.3.
Moreover, our approach overcomes the limit imposed by considering only Lévy processes,
allowing to model time-dependent increments and including a self-exciting process to describe
the instantaneous frequency of jumps. For the sake of completeness, we underline that our
proposal generalizes the ones in [BKR02] and [BKR01a] where an infinite-time horizon has
been considered.

It is worth stressing that our risky model has relevant financial applications, as first noticed
in [HO74], and then extensively used in economic scenarios, see e.g. [ASJ+09]. Previous choice
has been made to accurately describe jump clustering characterizing observations in assets’ level,
also overcoming the difficulty of justifying extreme increments gathered in a small amount of
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time, see e.g. [Haw18].
Our contribution is, to the best of our knowledge, the first successfully completed attempt along
the previously described direction.

The Thesis is structured as follows: in the first chapter we provide the general notation and
necessary definitions to have a self-contained work by also resuming and exposing the self-
exciting model introduced in [HM16] and [HM19].
Then, we exploit the model presented in the first part as starting point for the innovative part of
this work: the self-exciting model will describe the dynamic of the risky part of the portfolio.
In this first part, we also report several propositions and results that will be later exploited along
the whole Thesis. We conclude by presenting the stochastic control problem whose solution is
defined by the investor’s optimal risky allocation and consumption which maximize the investor’s
satisfaction at any given time considered.

In the second chapter, we tackle down the stochastic control problem previously formalized.
The main result characterizing this part is the derivation of the Hamilton-Jacobi-Bellman (HJB)
equation corresponding to the aforementioned optimization problem as a Partial-Integro Differ-
ential Equation (PIDE) with a gradient constraint. In doing so, we start from proving that the
Dynamic Programming Principle (DPP) holds in our framework by extending and adapting the
approach reported in [GS12, Section 3, Chapter 4]. Since DPP holds, we can then derive the
HJB equation as a PIDE, by exploiting the Itô-Doeblin’s lemma for discontinuous processes.
The PIDE obtained is subject to a gradient constraint which will derived in Section 2.2.1.

In Chapter 3, we formulate the notions of viscosity solution for our specific problem and then,
we will use them to cover the last part of the work. The goal of the chapter is prove that the value
function V is the unique constrained viscosity solution for the optimization problem. In doing
so, we report several equivalent formulations for viscosity solutions, each of which particularly
addresses specific results later stated. We conclude by showing, based on a comparison principle
technique, the uniqueness result for V .

Then, in Chapter 4, we derive the penalty approximation needed to solve the HJB equation,
and we also discuss the numerical scheme used to solve the corresponding penalization problem.

Within the final part of the Thesis, we provide a complete treatment of a real-world case
embedding previously stated tasks and solutions also developing an effective calibration proce-
dure. In particular, we have chosen to apply the model to a period when financial market turmoil
has intensified and broadened. Within this scenario, it has been observed overall increments of
assets’ volatility values, with related extreme returns clustering occurred. This has led to market
instability, accompanied by fluctuations whose dynamics were hard to predict via standard mod-
els, even on small time windows and with respect to both their magnitude and frequency. As to
give an example, approaches based on canonical Gaussian assumptions for log-returns failed by
a large amount. Consequently, in Chapter 5, we extensively describe the approach in [CDPVnda]
which will be later used to capture the cluster phenomenon we are interested in. To the best of
our knowledge, we remark that such approach has not been used in presence of real data before.
In particular, we provide an algorithm which collects a fast, but robust, calibration of a self-
exciting jump model for the ENI asset listed in the Italian Stock Exchange.

For the sake of completeness, we remark that our proposal calibration is a two-step algorithm:
first we operate a preliminary tuning of the model, which will turn out to be the a good starting
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point to retune the high-dimensional system through sequential Monte Carlo (SMC2 ) algorithm
and, finally, we compare the results obtained.

The second part of the approach mentioned is based on SMC2 algorithm, which develops the
Monte Carlo Particle Filtering algorithm, see e.g. [ABL02].
Let us underline that SMC2 is more accurate compared to other currently widely used method-
ologies as, e.g., standard Monte Carlo based solutions and log-likelihood routines. Finally,
the approach proposed gives more insights from the pure practitioners’ point of view, when
compared to more theoretically oriented papers as, e.g., [Cor+20].

In the last chapter of the Thesis, we exploit the obtained calibration results and, by using
the numerical scheme defined in Chapter 4, we investigate and comment the numerical results
obtained.





Part I

Portfolio optimization in the presence
of a self-exciting jump diffusion process





Chapter 1

General framework

In what follows we provide an introduction on the theoretical model and on the framework
exploited, with all the necessary machineries and results needed. The goal is to rigorously define
both the dynamic of the risky quantities involved and the financial setting proposed in [HM16]
and [HM19].

1.1 Notation and preliminary concepts

Consider a finite time horizon T > 0 and a filtered probability space
(
Ω,F, (Ft)t∈(0,T ],P

)
,

supporting a Brownian motion W := (Wt)t∈[0,T ] and a Poisson-type stochastic process N :=
(Nt)t∈(0,T ] both defined under real-world probability measure P. The most common interpreta-
tion of the probability space is an experiment, thus we can represent ω ∈ Ω as the experiment
result and, therefore, Ω denotes all the possible realizations of the random experiment with a
certain probability given by P. Finally F is the σ-field representing the set of events B ⊂ Ω
which we will work with. Therefore, we can define the filtration (Ft)t∈(0,T ] as complete and
right continuous: the former condition is satisfied by the fact that F0 contains the null P-set and
the latter by the fact that

Ft =
⋂
t<u

Fu,∀t ∈ [0, T ]

In particular, we denote the cumulative filtration Ft := FW
t ∨ FN

t ∨ FJ
t , ∀ t ∈ (0, T ], where

(FW
t )t∈[0,T ] is the filtration generated by the Brownian Motion, while (FN

t )t∈(0,T ] is the filtration
generated by the Poisson process and, finally, (FJ

t )t∈(0,T ] is the filtration generated by the
collection of jump-sizes occurred. Such jumps are described by a continuous random variable.
The stochastic process N is characterized by the mean of the Poisson random measure N(·) :
R+ × R→ N, defined in the following, similarly to what has been done in [IW14].

Definition 1.1.1. Let (Ω,F,P) be a probability space with finite measure ν on (E,E). The
Poisson random measure with intensity λ is a family of integer-valued random measure such that
N : Ω× E → N0. The following conditions are satisfied:
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1. for each B ∈ E, N(B) is Poisson distributed, i.e.

P(N(B) = n) = e−ν(B) ν(B)n

n!
,

for all n ∈ N;

2. if B1, B2, . . . , Bk ⊂ E are disjoint sets, then N(B1), N(B2), . . . , N(Bk) are mutually
independent.

Therefore, we can derive that for almost all ω ∈ Ω, N(ω, ·) is an integer-valued random
measure in E. For sake of simplicity, in the Thesis we will make use of the compact notation
Nt :=

∫ t
0

∫
R\{0}N(ds, dq).

Moreover, we will also deal with the compensated version of the previous measure, that is
to say Ñ(dt, dq) := N(dt, dq) − λ([0, t))ζ(q)dtdq. In particular, we define λ([0, t)) as the
instantaneous frequency forNt which, for the sake of simplicity, will be denoted byλt := λ([0, t))
in the remaining part of the Thesis. Moreover, we identify with J := (J1, . . . , JNt) the sequence
of independent, identically distributed (i.i.d.) random variables defining the jumps occurred up
to time t.
Namely, the random variable Ji describes the amplitude of the i-th jump occurred, which is
distributed according to a double exponential density, defined by its continuous probability
distribution as follows:

ζ(q) := pρ+e−ρ+q
1{q≥0} + (1− p)|ρ−|e−ρ−q

1{q<0}. (1.1)

We identify with p ∈ (0, 1) the probability of obtaining a positive jump, while 1/ρ+ ∈ R+ (resp.
1/ρ− ∈ R−) is the expected value of the positive (resp. negative) jumps.
Previous choice of jumps distribution has been made to properly model jumps in finance (see
e.g. [Den07]) also in case of extremely ample ones. Moreover, we remark that ζ(·) in Equation
(1.1) satisfies the following integrability conditions:

N(dt, {0}) = 0,

∫
R\{0}

(|q|2 ∧ 1)ζ(q)dq <∞,
∫
R\{0}

|q(eq − 1)|ζ(q)dq

<∞ and
∫
|q|≥1

|eq − 1|ζ(q)dq <∞. (1.2)

1.1.1 Instantaneous frequency

This section will be devoted to describe the instantaneous frequency we have introduced for the
Poisson random measure in Definition 1.1.1.
Note that the instantaneous frequency will be extensively studied in 1.2. Let N be a Poisson
random measure over the probability space (Ω,F,P). Then we can introduce over the same
space the stochastic process λ := (λt)t∈(0,T ], denoting the instantaneous frequency of jumps for
each t ∈ [0, T ]:

λt := lim
∆t↘0

E[Nt−+∆t −Nt− |Ft− ]

∆t
.

In what follows, we will exploitλt as solution of a mean-reverting Stochastic Differential Equation
(SDE) driven by the Poisson random measure.
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1.2 The model

In writing this Thesis we have been inspired by the model exposed in [HM16] and [HM19]. We
use such model as a starting point to study a portfolio optimization problem characterized by a
self-exciting dynamic, which represents the innovative part of this Thesis since, to the extend of
our knowledge, a self-exciting dynamic has never been exploited in a portfolio optimization "à
la Merton".

Before diving into the innovative part, we recall the model used to describe the risky asset
and all the quantities needed in defining the tasks we will consider later on.

Let us introduce the instantaneous frequency of jumps. Let
(
Ω,F,P, (F)t∈(0,T ]

)
be the

filtered probability space defined in Section 1.1.1, and let us introduce the stochastic process
λ := (λt)t∈(0,T ] solution of the following SDE:

dλt = α(ξ − λt)dt+ η

∫
R\{0}

|q|N(dt, dq), (1.3)

where q represents the jump size distributed according to ζ(·) in Equation (1.1).
Therefore, λ turns to be a stochastic process depending on its current value: whether the current
value of the process is less than the long-term mean (see ξ, then the drift will be positive, with
reversion speed α ∈ R+; if the current value of the process is greater than the long-term mean,
the drift will be negative. Hence, ξ acts as an equilibrium level for the process itself. Finally,
η ∈ R+ is the parameter governing the influence of the past jumps on the current frequency.
Moreover, we introduce the cumulative frequency up to time t:

Λt :=

∫ t

0
λsds. (1.4)

Although the definition has not a particular economic meaning, it will be useful in terms of
compact notation later on.

1.2.1 The dynamic for the risky asset

On the same probability space defined for Equation (1.3), let us introduce the stochastic process
S := (St)t∈(0,T ], solution of the following SDE:

dSt
St−

= µdt+ σdWt +

∫
R\{0}

(eq − 1)N(dt, dq)− λtE[eJ − 1]dt

= µdt+ σdWt +

(∫
R\{0}

(eq − 1)N(dt, dq)− λt
∫
R\{0}

(eq − 1)ζ(q)dqdt

)

= µdt+ σdWt +

(∫
R\{0}

(eq − 1)Ñ(dt, dq)

)
, (1.5)

where µ ∈ R, σ ∈ R+ are, respectively, the deterministic drift and the parameter governing the
Brownian increments. All the remaining elements are defined as in Section 1.1.
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1.2.2 Features of the model

In what follows, we exhibit some useful propositions to better comprehend the model, and the
corresponding proofs are collected in order to have a self-contained work. Among the various
propositions, we remark that the conditions of stability for the processλwill be used as constraints
in the calibration procedure in Chapter 5.

Proposition 1.2.1. The Equation (1.5) has the following closed-form exponential solution:

St = S exp

((
µ− σ2

2

)
t− ΛtE

[
eJ − 1

]
+ σWt +

∫ t

0

∫
R\{0}

qN(dt, dq)

)
, (1.6)

with S0 = S.
Furthermore, the corresponding log-return Rt := log(St/S0) is defined by the equation

Rt =

((
µ− σ2

2

)
t− ΛtE[eJ − 1] +

∫ t

0

∫
R\{0}

qN(dt, dq)

)
. (1.7)

Proof. Let St satisfy Equation (1.5) and let us define Zt = f(t, St) := log(St). Then, since
f(·) satisfies the required regularity conditions, we can apply the Itô-Doeblin’s formula for jump
processes, see e.g. [Shr04, Section 11.5].

Thus, we obtain that Zt is the solution of the following SDE:

dZt =

(
µ− σ2

2
− λtE[eJ − 1]

)
dt+ σdWt +

∫
R\{0}

qN(dt, dq),

which can be rewritten, including the initial condition Z0 := log(S), as the integral:

log(St)

log(S)
=

(
µ− σ2

2

)
t− E[eJ − 1]

∫ t

0
λsds+ σWt +

∫ t

0

∫
R\{0}

qN(dt, dq).

By applying the inverse mapping of f(·), we can immediately obtain the solution reported in
Equation (1.6). Finally, Equation (1.6) comes directly from the definition of Rt.

Proposition 1.2.2. The Equation (1.3) has solution:

λt = ξ + (λ− ξ)e−αt + η

∫ t

0

∫
R\{0}

e−α(t−s)|q|N(ds, dq). (1.8)

with λ0 = λ ∈ R+ denoting the initial value for the process λ.

Proof. As for Equation (1.6), we start the proof by considering λt as solution of (1.3).
Then, we introduce a suitable change of variable Lt := λt − ξ, whose derivative is defined as:

dLt = dλt = −αLtdt+ η

∫
R\{0}

|q|N(dt, dq).
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Successively, we apply another change of variable Zt := Lte
αt and, exploiting the Itô-Döeblin

Lemma, we obtain:

dZt = dLte
αt + Lte

αtαdt

= (−αLdt+ η|q|N(dt, dq)) eαt + Lte
αtαdt

= eαtη

∫
R\{0}

|q|N(dt, dq) .

Therefore, we assert

Zt = Z0 + η

∫ t

0
eαs
∫
R\{0}

|q|N(ds, dq).

By reverting the transformations applied, we obtain the solution reported in Equation (1.8), with
initial value for the solution process being λ0 = λ.

Proposition 1.2.3. The first absolute moment of J is given by:

E [|J |] = p

ρ+
+

(1− p)
|ρ−|

=: µJ . (1.9)

While the second moment is:

E
[
|J |2

]
=

2p

(ρ+)2
+

2(1− p)
|ρ−|2

. (1.10)

Proof. First of all, we compute µJ := E [|J |] as:

E [|J |] =
∫ ∞

−∞
|q|ζ(q)dq = p

∫ ∞

0
qρ+e−ρ+qdq − (1− p)

∫ −∞

0
qρ−e−ρ−qdq

=p

[
q2

2
ρ+e−ρ+q − 1

ρ+
e−ρ+q

]∞
q=0

− (1− p)
[
ρ−
q2

2
e−ρ−q − 1

ρ−
e−ρ−q

]−∞

q=0

=
p

ρ+
− (1− p)

ρ−
. (1.11)

Then, the second moment is obtained as follows:

E
[
|J |2

]
=

∫ ∞

−∞
|q|2ζ(q)dq = p

∫ ∞

0
q2ρ+e−ρ+qdq + (1− p)

∫ −∞

0
q2ρ−e−ρ−qdq

=p

[
q3

3
ρ+e−ρ+q +

2

ρ+

∫
ρ+e−ρ+qqdq

]∞
q=0

+ (1− p)
[
ρ−
q2

2
e−ρ−q +

2

ρ−

∫
ρ−e−ρ−qqdq

]−∞

q=0

=
2p

(ρ+)2
+

2(1− p)
(ρ−)2

,

the latter deriving analogously as provided in treating Equation (1.11). In particular, E[J |J >
0] = p

∫∞
0 qρ+e−ρ+qdq and E[J |J ≤ 0] = −(1− p)

∫ −∞
0 qρ−e−ρ−qdq.
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Proposition 1.2.4. Let X0 := [0, T ]×R+×R+, S and λ be defined according to the Equations
(1.18) and (1.8).
Therefore, we can define ϕ ∈ C1,2,1

0 (X0) the linear integro-differential operator for ϕ : X0 → R
with compact support as:

Lϕ(t, S, λ) = (α(ξ − λ) + ηλµJ)
∂

∂λ
ϕ+

(
µ− λE[eJ − 1]

)
S
∂

∂S
ϕ

+
1

2
(Sσ)2

∂2

∂S2
ϕ+ λ

∫
R\{0}

ϕ(t, S + q, λ+ η|q|)− ϕ(t, S, λ)

− S(eq − 1)
∂

∂S
ϕ(t, S, λ)− η|q| ∂

∂λ
ϕ(t, S, λ)ζ(q)dq.

Proof. The proof follows directly from [Pro, Theorem 35], since (S,λ) is a semimartingale.
Therefore, we assert:

Lϕ(t, S, λ) := lim
h↘0

E[ϕ(t+ h, St+h, λt+h)− ϕ(t, S, λ)|Ft]

h
=

lim
h↘0

1

h
E

[(∫ t+h

t
α(ξ − λs)ds+ η

∫ t+h

t

∫
R\{0}

|q|N(ds, dq)

)
∂

∂λ
ϕ

+

∫ t+h

t

(
µ− λsE[eJ − 1]

)
Ss

∂

∂S
ϕds

+

∫ t+h

t

1

2
(Ssσ)

2 ∂
2

∂S2
ϕds+

∫ t+h

t

∫
R\{0}

ϕ(s, Ss + q, λs + η|q|)− ϕ(t, S, λ)

−Ss(eq − 1)
∂

∂S
ϕ(s, Ss, λs)− η|q|

∂

∂λ
ϕ(s, Ss, λs)N(ds, dq)

∣∣∣∣Ft

]
Then, since ϕ ∈ C1,2,1(X0), the proof follows directly by Taylor expansion of ϕ around (t, S, λ).

With the next proposition, we report the first two moments of instantaneous frequency, since
they will be useful in Section 5.2.4.

Proposition 1.2.5. The first two moments of λt are defined by E [λt|F0] and V [λt|F0], and their
analytical solutions respectively read as:

E[λt|F0] = λe−(α−ηµJ )t + λ∞

(
1− e−(α−ηµJ )t

)
, (1.12)

with λ∞ := limt→∞ E[λt|F0] =
αξ

(α−ηµJ )
; and

V[λt|F0] = η2E[|J |2]
[
λ∞
2α

(1− e−2αt) +
(λ− λ∞)

α+ ηµJ

(
e−(α−ηµJ )t − e−2αt

)]
. (1.13)
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Proof. The first expected value for λt is obtained as follows:

E[λt|F0] = E
[
ξ + (λ− ξ)e−αt +

∫ t

0
ηe−α(t−s)|q|N(ds, dq)

∣∣∣∣F0

]
= ξ + (λ− ξ)e−αt + ηµJ

∫ t

0
e−α(t−s)E[λs|F0]ds.

Then, the analytical solution for E[λt|F0] follows by solving the corresponding ODE:

∂

∂t
E[λt|F0] = −α(λ− ξ)e−αt + ηµJE[λt|F0]− αηµJ

∫ t

0
e−α(t−s)E[λs|F0]ds

= −α
[
(λ− ξ)e−αt + ηµJ

∫ t

0
e−α(t−s)E[λs|F0]ds

]
︸ ︷︷ ︸

=E[λt|F0]−ξ

+ηµJE[λt|F0]

= ξα+ E[λt|F0](ηµJ − α).

leading to

E[λt|F0] = λe−(α−ηµJ )t +
αξ

(α− ηµJ)

(
1− e−(α−ηµJ )t

)
. (1.14)

Before focusing on the variance, we introduce a new process λ̃ := (λ̃t)t∈(0,T ], where λ̃t :=
λt − E[λt|F0].
Since λ̃ is the compensated version of the process λ, thus a local martingale, we can exploit
semimartingale quadratic variation properties, see e.g. [Pro, Theorem 22].
In particular, the quadratic variation of a continuous part of a semimartingale is null, therefore
we have that V[λt|F0] = E

[
[λ̃, λ̃]t|F0

]
= E [[λ, λ]t|F0], thus

[λ, λ]t =

[
ξ + (λ− ξ)e−αt + η

∫ t

0
e−α(t−s)|q|N(ds, dq),

ξ + (λ− ξ)e−αt + η

∫ t

0
e−α(t−s)|q|N(ds, dq)

]
=

∫ t

0
η2e−2α(t−s)|q|2N(ds, dq). (1.15)
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And

V[λt|F0] =E [[λ, λ]t|F0] = E[|J |2]η2
∫ t

0
e−2α(t−s)E[λs|F0]ds

=E[|J |2]η2e−2αt

∫ t

0
e2αs

(
λe−(α−ηµJ )s +

αξ

(α− ηµJ)

(
1− e−(α−ηµJ )s

))
ds

=E[|J |2]η2e−2αt

[
λ

(α+ ηµJ)
(e(α+ηµJ )t − 1) +

αξ

2α(α− ηµJ)
(e2αt − 1)

− αξ

(α− ηµJ)(α+ ηµJ)
(e(α+ηµJ )t − 1)

]
=E[|J |2]η2

[
λ

(α+ ηµJ)
(e−(α−ηµJ )t − e−2αt) +

αξ

2α(α− ηµJ)
(1− e−2αt)

− αξ

(α− ηµJ)(α+ ηµJ)
(e−(α−ηµJ )t − e−2αt)

]
=E[|J |2]η2

[
(λ− λ∞)

(α+ ηµJ)
(e−(α−ηµJ )t − e−2αt) +

λ∞
2α

(1− e−2αt)

]
, (1.16)

where E[|J |2] has the closed-form solution reported in Equation (1.10).

Proposition 1.2.6. The process λ is stable for α− ηµJ > 0.

Proof. The previous proposition is directly derived from the forms of E[λt|F0] and V[λt|F0],
where the two moments for λt are to be kept positive. In particular, we study the asymptotic
behaviour of the process, denoted as λ∞, which is computed as

λ∞ := lim
t→∞

E[λt|F0] =
αξ

(α− ηµJ)
.

The above ratio should be positive in order to ensure that the expectation of λt with t → ∞ is
well-defined, and converges to a finite positive value if α, ξ > 0 and α− ηµJ > 0.
Note thatα, ξ should be positive by the meaning of the parameters themselves, while the condition
α > ηµJ will be a useful constraint in the calibration procedure in Section 5.1.

Moreover, we assert that the process has finite variance as t goes to ∞ if the previous
conditions are satisfied:

lim
t→∞

V[λt|F0] = E[|J |2]η2λ∞
2α

.

Therefore, we conclude by saying that the asymptotic results reported guarantee the stability of
the process λ for t→∞.

Proposition 1.2.7. The solution for E [Λt|F0] is defined as:

E[Λt|F0] =
λ(1− e−(α−ηµJ )t)

(α− ηµJ)
+ λ∞

(
t− 1− e−(α−ηµJ )t

(α− ηµJ)

)
, (1.17)

where λ∞ is defined in Proposition 1.2.5.
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Proof. By Fubini’s theorem

E[Λt|F0] = E
[∫ t

0
λsds

∣∣∣∣F0

]
=

∫ t

0
E[λs|F0]ds

=

∫ t

0

(
λe−(α−ηµJ )s +

αξ

(α− ηµJ)

(
1− e−(α−ηµJ )s

))
ds.

HenceEquation (1.17) is solved by computing the last integral.

1.3 Portfolio optimization problem

Given the general framework introduced in Section 1.1, we can now focus on the optimal control
problem. Throughout the Thesis we will consider a financial market where bonds remunerate
the investor at an instantaneous constant risk-free rate r > 0, and where there exists a risky asset
following the dynamic presented in Equation (1.5). Moreover, we will assume that the risk-free
rate r satisfies the condition defined in [BKR01b], which corresponds to r < µ− σ2/2.

Suppose now there is an investor in the market who wants to maximize his satisfaction over
some finite time horizon T . Let π := (πt)t∈[0,T ] and πt ∈ [0, 1] be the fraction of the investor’s
wealth concerning the risky asset at time t and let us assume there are no transaction costs.
Let C := (Ct)t∈[0,T ] be the cumulative consumption process. Namely Ct represents the total
amount of consumption at time t, see e.g. the original formulation in [HH93], and the application
over a Lévy process in [BKR01a; Hol10] for more details. Thus, we denote with dCt the
increment of consumption occurred at time t when the investor decides to consume part of his
wealth.
According to [Rog13, Section 1.2], the investor’s wealth dynamic is derived as

dXπ,C
t =rXπ,C

t dt+ πtX
π,C
t (dSt/St − rdt)− dCt

=
(
r(1− πt)Xπ,C

t + µπtX
π,C
t

)
dt− dCt + πtX

π,C
t σdWt (1.18)

+ πt−X
π,C
t−

(∫
R\{0}

(eq − 1)N(dt, dq)− λt
∫
R\{0}

(eq − 1)ζ(q)dqdt

)
,

=
(
r(1− πt)Xπ,C

t + µπtX
π,C
t

)
dt− dCt + πtX

π,C
t σdWt (1.19)

+ πt−X
π,C
t−

∫
R\{0}

(eq − 1)Ñ(dt, dq),
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whose solution reads as follows

Xπ,C
t =x−

∫ t

s
dCu +

∫ t

s
(r + (µ− r)πu)Xπ,C

u du+

∫ t

s
σπuX

π,C
u dWu (1.20)

+

∫ t

s
πu−Xπ,C

u−

(∫
R\{0}

(eq − 1)N(du, dq)−
∫ t

s
λu

∫
R\{0}

(eq − 1)ζ(q)dqdu

)
,

=x−
∫ t

s
dCu +

∫ t

s
(r + (µ− r)πu)Xπ,C

u du+

∫ t

s
σπuX

π,C
u dWu

+

∫ t

s
πu−Xπ,C

u−

∫
R\{0}

(eq − 1)Ñ(du, dq) (1.21)

where x represents the wealth at time s, and π,C represent the control processes. The average
past consumption,Y := (Y π,C

t )t∈[0,T ), evolves according to the following Stochastic Differential
Equation:

dY π,C
t = −βY π,C

t dt+ βdCt, (1.22)

whose solution reads as:

Y π,C
t = ye−β(t−s) + βe−βt

∫ t

s
eβudCu. (1.23)

Here β denotes the decaying speed and Ys = y > 0 is the past average consumption at time s.
Equation (1.23) has been considered since it enriches the problem with the notion of durability.
In particular, it causes the effect that a consumption at a certain date leads to decaying effects
persisting in the future. Note that, since Y decays exponentially with velocity given by the
parameter β, higher values for β imply higher emphasis on the recent past and less emphasis on
consumption in the distant past. Thus, durability spurs us to consider Y instead of simply C.
Indeed, it is reasonable to assume that the utility provided by a consumption in perishable goods
will decrease in time.

The investor aims at maximizing S : X→ R+, being X := [0, T ]× R3
+, where

S(t, x, y, λ) = E
[∫ T

t
e−δuf(Y π,C

u )du+ e−δTh(Xπ,C
T , Y π,C

T , λT )

]
→ max , (1.24)

for a positive constant δ > 0. The first component of Equation (1.24), f : R→ R, is the running
utility function, whilst the second one is the terminal utility h : R3 → R.
In the following we will denote by X the closure of the set X.

Then, we denote by π∗, resp. C∗, the optimal allocation control process, resp. consumption
process, that lets S attain the maximum. We thus define the so-called value function as

V (t, x, y, λ) = sup
(π,C)∈A[t,T ](x,y)

S(t, x, y, λ), (1.25)

over the admissible set for (x, y), defined as:

A[t,T ](x, y) := {(π,C) : (πs, Cs) ∈ [0, 1]× [0, Xπ,C
s ], ∀ s ∈ [t, T ]}. (1.26)
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The admissible set is explicitly defined only for the variables x, y since they directly depend
on the controls, however we should remark that λ should be a positive value as required by its
dynamic. It is worth to note that x represents the maximum level of admissible consumption,
meaning that the investor cannot spend more than the wealth he owns and cannot borrow money.
Indeed, the condition sups∈[t,T ]Cs < Xπ,C

s ensures that the process C is admissible for the
initial wealth x and consumption y, which leads to the fact that the processes X and Y remain
non-negative for all the time considered, see [HH93]. We remark that we have extended the value
function presented in [HH93]. In particular, the terminal utility depends on the instantaneous
frequency: such a choice seems unusual, but it is due to the fact that the investor will decide
if and how to reinvest the wealth at time T , and his decision will be certainly affected by the
turmoil in the market, which is expressed in the model through the mean of λT .

1.3.1 Main definitions and assumptions

Before stating the main results of the Thesis, let us recall some definitions that will be used in
the following.

Definition 1.3.1. For k ∈ N, denote by

Ck(X) =

{
φ ∈ C(X) : sup

X

|φ(t, x, y, λ)|
(1 + x+ y + λ)k

<∞

}
,

the set of continuous real-valued function with domain X with at most polynomial growth of
order k. Notice that C

k̃
(X) ⊆ Ck(X) if k̃ < k.

Definition 1.3.2. For all k ≥ 0, be

C′
k(X) = {φ ∈ X : φ ∈ Ck′(X) for some k’ < k}.

Note that Ck′(X) ⊂ C′
k(X) for all k′ < k.

Throughout the Thesis, we will assume the following to hold.

Assumption A1. 1. C is a finite-variation, non-decreasing, càdlàg process, adapted to the
filtration (Ft)t∈(0,T ], as defined in Section 1.1. We further require that C has finite first
moment, i.e. E[Ct] <∞, ∀ t ∈ [0, T ] and C0 = 0.

2. π is a (Ft)t∈(0,T ]-adapted càdlàg process assuming values in [0, 1].

3. The terminal utility function h : R → R is affine in the third component, i.e. there exist
two functions h1 : R→ R and h2 : R→ R such that

h(x, y, λ) = h1(x, y) + h2(λ) .

Furthermore, h is a continuous, monotone non-decreasing w.r.t. the first and second
components and non-increasing w.r.t. the third component, non-negative and concave
function over R3

+.
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4. The running utility function f : R → R is a continuous, monotone non-decreasing,
non-negative and concave function over R+.

5. For all x, y, λ ∈ R+, there exist positive constants Cf , Ch ∈ R+ and γ ∈ (0, 1) such that:

f(y) ≤ Cf (1 + y)γ ,

and
h(x, y, λ) ≤ Ch(1 + x+ y + λ)γ .

Assumption A2. There exists γ ∈ (0, 1) such that

k(γ) := αγ|ξ − 1|+ γηµJ + max
π∈[0,1]

[
γ(r + (µ− r)π) + 1

2
γ(γ − 1)(σπ)2

+ sup
t∈(0,T ]

λt

∫
R\{0}

[(1 + π(eq − 1) + η|q|)γ − 1− γπ(eq − 1)− γη|q|] ζ(q)dq
]
< δ,

where
µJ := E[|J |] = p

ρ+
− (1− p)

ρ−
.

By Taylor expansion, we remark that the integral term of k(γ) is well-defined in a neigh-
bourhood of 0, whereas, outside, it is finite. Therefore, we can conclude that k(γ) is finite for
γ ∈ (0, 1).
Furthermore, it is worth to note that in the case of null integral operator, k(γ) : R+ → R+, with
k(0) = 0 and it is increasing, which is not the case if the integral operator is non-null, for more
details see e.g. [Alv94].

Therefore k(γ) : (0,∞)→ R can be negative and non-monotone.

Assumption A3. Let γ ∈ (0, 1), and f, h be the functions in Equation (1.25), then the following
homogeneity conditions hold

f(αy) = αγf(y), h(αx, αy, λ) = αγh1(x, y) + h2(λ) ∀α ≥ 0 , (x, y, λ) ∈ R3
+.

The Assumption A1 ensures that the problem is well-posed and the safe investments are
preferable to risky investments, while the Assumption A3 guarantees the possibility to reduce
the dimension of the problem, which will be a key assumption in the numerical scheme presented
in Chapter 6.

1.3.2 A priori results for the value function

In this part we report some features for the value function, which will be exploited in the Section
3.3.

Proposition 1.3.1. The value function V defined in Equation (1.25) satisfies

0 ≤ V (t, x, y, λ) ≤ C2(1 + x+ y + λ)γ , ∀ (t, x, y, λ) ∈ X ,

with C2 > 0 a time-independent constant.
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Proof. First of all, let us remark that, according to Assumption A1, f and h are non-negative,
therefore we can immediately conclude that, using Equation (1.25), V is also non-negative.

Regarding the upper bound, suppose (t, x, y, λ) ∈ X and (π,C) ∈ A[t,T ](x, y), and define
the process

Zt = Xπ,C
t +

Y π,C
t

β
+ λt,

where β > 0.
Since Xπ,c

t ≥ 0 and Y π,c
t ≥ ye−β(t−s) > 0, it follows that Zt > 0.

Using the Equations (1.18) and (1.22), we get

dZt =
(
(r + (µ− r)πt)Xπ,C

t − Y π,C
t + α(ξ − λt)

)
dt+ η

∫
R{0}
|q|N(dt, dq)

+ σπtX
π,C
t dWt + πt−X

π,C
t−

(∫
R\{0}

(eq − 1)Ñ(dt, dq)

)
.

We apply the Itô-Doeblin’s lemma and we consider that πt
Xπ,C

t
Zt
∈ [0, 1], then we exploit the

martingale property of both the Brownian motion and the Poisson random compensated measure,
to get

E[Zγ
t ] =z

γ + E
[ ∫ t

s
γZγ−1

u

(
((r + (µ− r)πu)Xπ,C

u − Y π,C
u + α(ξ − λu)

)
du

+
1

2
γ(γ − 1)

∫ t

s
(σπuX

π,C
u )2Zγ−2

u du+ ηZγ−1
u

∫ t

s

∫
R\{0}

|q|N(du, dq)

+

∫ t

s
λu

∫
R\{0}

((Zu + πuXu(e
q − 1) + |q|η)γ − Zγ

u

−γπuZγ−1
u Xu(e

q − 1)− γη|q|Zγ−1
u

)
ζ(q)dqdu

]
=zγ + E

[∫ t

s
Zγ
u

(
γ(r + (µ− r)πu)

Xπ,C
u

Zu
− γ Y

π,C
u

Zu
+ γ

α

Zu
(ξ − λu)

+
1

2
γ(γ − 1)(σπu)

2

(
Xπ,C

u

Zu

)2

+
η

Zu

∫ t

s

∫
R\{0}

|q|N(du, dq)

+λu

∫
R\{0}

((
1 + πu

Xπ,C
u

Zu
(eq − 1) +

η|q|
Zu

)γ

− 1− γπu
Xπ,C

u

Zu
(eq − 1)− γ

Zu
η|q|

)
ζ(q)dq

)
du

]

≤zγ + E
[∫ t

s
Zγ
udu

]
k(γ),

where k(γ) is reported in Assumption A2.
By exploiting the Grönwall’s inequality, we obtain

E[Zγ
t ] ≤ zγek(γ)(t−s),



16 General framework

which, using the fact that z := x+ y
β + λ, in turn implies that

E[Xγ
t ] ≤ CX(x+

y

β
+ λ)γek(γ)(t−s), (1.27)

and
E[Y γ

t ] ≤ CY (x+
y

β
+ λ)γek(γ)(t−s), (1.28)

with CX = max{1;β−γ} and CY = max{1;βγ} Therefore, by Assumption A1, we get

E
[∫ T

t
e−δsf(Y π,C

s )ds+ h(Xπ,C
s , Y π,C

T , λT )

]
≤E

[∫ T

t
e−δsCf (1 + Y π,C

s )γds+ Ch(1 +Xπ,C
T + Y π,C

T + λT )
γ

]
≤E

[
Cf

∫ T

t
e−δs

(
1 + (Y π,C

s )γ
)
ds+ Ch

(
1 + (Xπ,C

T )γ + (Y π,C
T )γ + (λT )

γ
)]

≤Cf

∫ T

t
e−δs

(
1 + CY (x+ y + λ)γek(γ)(t−s)

)
ds

+ Ch

(
1 + (CX + CY )(x+ y + λ)γek(γ)(t−s)

)
≤C1 + C1(x+ y + λ)γ

≤C2(1 + x+ y + λ)γ ,

where the constants C1 and C2 are time-dependent, but we can choose them independently since
we are considering a bounded time interval.

Therefore, maximizing over the admissible set, we get

V (t, x, y, λ) ≤ C2(1 + x+ y + λ)γ .

The next proposition is adapted from [BKR01b, Lemma 4.2], and it will be useful in proving
that the function V is a viscosity solution of the optimization problem considered.

Proposition 1.3.2. Let (t, x, y, λ), (t, x̃, ỹ, λ) ∈ X, satisfying x̃ = x − c and ỹ = y + βc for
some positive constant c, then V (t, x, y, λ) ≥ V (t, x̃, ỹ, λ).

Proof. Let (x, y) and (x̃, ỹ) ∈ R2 such that ỹ := y + βc and x̃ := x − c, for some c ∈ (0, x],
then V (s, x, y) ≥ V (s, x̃, ỹ).
Let us suppose X and Y , take value x and y at time s, respectively. If at time s there was a
consumption gulp c, we have that X and Y have initial values x̃ and ỹ, respectively, and we
denote such processes as X̃ and Ỹ , respectively. Let us introduce A[s,T ](x̃, ỹ) ⊆ A[s,T ](x, y),
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the set of controls which allows an initial consumption c. Therefore:

V (t, x, y, λ) = sup
(π,C)∈A[t,T ](x,y)

E
[∫ T

t
e−δuf(Y π,C

u )du+ h(Xπ,C
T , Y π,C

T , λT )

]
≥ sup

(π,C)∈A[t,T ](x,y)
E
[∫ T

t
e−δuf(Ỹ π,C

u )du+ h(X̃π,C
T , Ỹ π,C

T , λT )

]
= V (t, x̃, ỹ, λ),

where we denote X̃, Ỹ the processes with initial values x̃ and ỹ. respectively.

The following theorem is the main regularity result for the current section.

Theorem 1.3.1. The value function V in Equation (1.25) is uniformly continuous on compact
subsets of X.

In order to prove Theorem 1.3.1, we will prove separately continuity in time and space.
Firstly we will prove continuity in space.

Proposition 1.3.3. The value function V is uniformly continuous in (x, y, λ) ∈ R3
+.

Proof. For the sake of readability, we will split the proof in two main steps.

Step 1 For a fixed t ∈ [0, T ], there exists a modulus of continuity ωt : R3
+ → [0,∞) such that

1. ωt is continuous in (0, 0, 0),
2. ωt(0, 0, 0) = 0, and
3. ωt ensures ∀ (x, y, λ), (x̃, ỹ, λ̃) ∈ R3

+,

|V (t, x, y, λ)− V (t, x̃, ỹ, λ̃)| ≤ ωt(|x− x̃|, |y − ỹ|, |λ− λ̃|) .

By using Proposition 1.3.1, it follows that, for all (t, x, y, λ) ∈ X, the value function V
assumes finite values.
Fix t ∈ (0, T ] and assume (π,C) be admissible controls in the sense of Equation (1.26),
and compare the paths of X,Y and X̃, Ỹ starting, respectively, from the initial values
x, y and x̃, ỹ.
Define the stopping time τ as

τ :=

{
inf{s ∈ [t, T ] : X̃π,C

s < 0} if X̃π,C
s < 0 for some s ∈ [t, T ] ,

∞ if X̃π,C
s ≥ 0 for all s ∈ [t, T ] ,

and set
C̃s := Cs1s<τ + (∆X̃π,C

τ + X̃π,C
τ− + Cτ )1s≥τ , (1.29)

and
Γs := Cs − C̃s = (Cs −∆X̃π,C

s −∆X̃π,C
τ− − Cτ )1s≥τ .
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Notice that, when x̃ > x, we have that τ =∞, Cs = C̃s, and Γs = 0. Further, we assert
that since

∆X̃π,C
τ + X̃π,C

τ− + Cτ

=
(
−∆Cτ + πτ−X̃

π,C
τ− (eq − 1)

)
+ X̃π,C

τ− + (Cτ− +∆Cτ )

= Cτ− + X̃π,C
τ− (πτ−e

q − πτ− + 1)

≥ Cτ− ,

it follows that C̃s and Γs are non-decreasing.

We note that X̃π,C̃
s = X̃π,C

s 1s<τ since for s < τ we have C̃s = Cs and X̃π,C̃
s = X̃π,C

s

and

X̃π,C̃
τ = X̃π,C̃

τ− + πτ (e
q − 1)X̃π,C̃

τ− −∆C̃τ (1.30)

= X̃π,C̃
τ− + πτ (e

q − 1)X̃π,C
τ− − (∆X̃π,C

τ− + X̃π,C̃
τ− + Cτ − Cτ−)

= πτ (e
q − 1)X̃π,C

τ− −∆X̃π,C
τ −∆Cτ

= 0.

The first equality in Equation (1.30) comes from the fact that each discontinuous variation
in the process X̃ is due either to a jump and to the control process increment, whereas the
second equation is due to the fact that ∆C̃τ = C̃τ − C̃τ− by using Definition 1.29. The
third equation is a direct consequence of the fact that τ− < τ therefore, since C̃τ− = Cτ ,
we have that X̃π,C

τ− = X̃π,C̃
τ− . The last equality follows from the first one since we rewrite

∆X̃π,C
τ = X̃π,C

τ − X̃π,C
τ− . Given that X̃π,C

τ = 0 and C̃s is constant for s ≥ τ , therefore
the entire process is null for s ≥ τ , and X̃π,C̃

τ = X̃π,C̃
τ 1s<τ .

Thus (π, C̃) ∈ A[t,T ](x̃, ỹ) since for all s ∈ [t, T ] we have X̃π,C̃
τ = X̃π,C̃

τ 1s<τ ≥ 0. We
have (π,Γ) ∈ A[t,T ](|x− x̃|, |y− ỹ|), which holds for x̃ > x, this gives Γ ≡ 0. For x ≥ x̃
we also have

(X − X̃)π,Γs : = Xπ,C
s − X̃π,C̃

s

= Xπ,C
s − X̃π,C

s 1s<τ

≥ 0.

And we see that |Xπ,C
s − X̃π,C̃

s | = |X − X̃|π,Γs holds for the next three cases

1. x̃ ≥ x,

2. x̃ ≤ x and τ ≥ s,

3. x̃ ≤ x and τ < s.
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Similarly, by exploiting the triangle inequality and the explicit form for Y we assert that

|Y π,C
s − Ỹ π,C̃

s | ≤ |Y − Ỹ |π,Γs ,

and we can extend it for λ also, the latter being not controlled.
By using the previous results, we finally conclude that

E
[∫ T

t
e−δsf(Y π,C

s )ds+ h(Xπ,C
s , Y π,C

T , λT )

]
≤ E

[∫ T

t
e−δsf(Ỹ π,C̃

s )ds+ h(X̃π,C
s , Ỹ π,C

T , λT )

]
+ E

[∫ T

t
e−δsωf (|Y − Ỹ |π,Γs ds+ ωh(|X − X̃|π,ΓT , |Y − Ỹ |π,ΓT , |λT − λ̃T |)

]
≤ V (t, x̃, ỹ, λ̃) + ωt(|x− x̃|, |y − ỹ|, |λ− λ̃|), (1.31)

where ωf , ωh are, respectively, the moduli of continuity of f and h.
We remark that f and h admit moduli of continuity being both continuous, concave and
non-decreasing by Assumption 3, such moduli are assumed to be non-decreasing in x, y
and λ.

Maximizing over the admissible set A[t,T ](x, y) and exploiting Inequality (1.31), we get

|V (t, x, y, λ)− V (t, x̃, ỹ, λ̃)| ≤ ωt(|x− x̃|, |y − ỹ|, |λ− λ̃|).

Moreover we observe that ωt(0, 0, 0) = 0, so the remaining part of the proof will be devote
to show that ωt is continuous in (0, 0, 0). For any given ε > 0, there exist Kε and Cε such
that:

1. ωf (y) < ε+Kεy
γ ,

2. ωh(x, y, λ) < ε+ Cε(x
γ + yγ + λγ).

Note that such constants exist thanks to Assumption 5. By using Gröwnwall’s lemma and
Inequality (1.27) we get

E
[∫ T

t
e−δsωf (Y

π,C
s )ds+ ωh(X

π,C
s , Y π,C

s , λs)

]
≤ Kε+ E

[
Kε

∫ T

t
e−δs(Y π,C

s )γds

]
+Kε+ E

[
Cε

(
(Xπ,C

T )γ + (Y π,C
T )γ + (λT )

γ
)]

≤ Kε+KKε(x+ y + λ)γ +Kε+KCε(x+ y + λ)γ ,

for some positive constant K independent of t, ε, x, y, λ, π, C. Taking the maximum over
the controls π and C, we finally obtain

ωt(x, y, λ) ≤ K(Cε +Kε)(x+ y + λ)γ + 2Kε,
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which, for sufficiently small x, y and λ, can be reduced to

ωt(x, y, λ) ≤ 3Kε. (1.32)

Since K in Equation (1.32) is independent of t and ε is arbitrary, we see that ωt is a
modulus of continuity for V for any fixed t ∈ [0, T ].

Step 2 Define ω : X→ [0,∞) as

ω(x, y, λ) := sup
t∈[0,T ]

ωt(x, y, λ),

where ωt(·) is introduced in inequality (1.31) and satisfies the requirements in Proposition
1.3.3. In this way, we finally claim that the modulus continuity is t-independent.

Now, we are to prove the time-continuity of V . It is worth to stress that the next continuity
results are among the main differences from the results obtained in [BKR01b]. In fact, in
[BKR01b], the authors consider an infinite horizon optimal control and, in doing so, the resulting
value function is time-independent. On the contrary, as typical when considering a finite horizon
optimal control, in the case considered in this current research, the value function inherits the
time-continuity of the driving process. Before stating the main proposition, let us assert an
auxiliary result.

Proposition 1.3.4. Consider (t, x, y, λ) ∈ X and (π,C) admissible controls.

(i) For t < T , consider a sequence (tn)n∈N such that tn → t+. Then:

(1) limn→∞ E
[∫ tn

t e−δsf(Y π,C
s )ds

]
= 0;

(2) if (π∗,C∗) is an optimal control, then:

lim
n→∞

E
[
V (tn, X

π∗,C∗

tn , Y π∗,C∗

tn , λtn)
]
= lim

n→∞
E [V (tn, x, y, λ)] . (1.33)

(ii) For t < T , consider (tn)n∈N such that tn → t−. Then:

(3) limn→∞ E
[∫ t

tn
e−δsf(Y n,πn,Cn

s )ds
]
= 0 ;

(4) denoting by ∆n := (Cn)t − (Cn)t−n , we have

lim
n→∞

E
[
V (t,Xn,πn,Cn

t , Y n,πn,Cn
t , λnt )− V (t, x−∆Cn, y + β∆Cn, λ)

]
= 0 . (1.34)

Proof. We start by proving (1): we immediately see that the equation holds for a given Y π,C
t = y.

Moreover, for a sufficiently large M ∈ N, we have:

E
[∫ tn

t
e−δsf(Y π,C

s )ds

]
≤

M∑
m=1

E
[∫ tn

t
f(Y π,C

s )ds|CT < M

]
P(CT < M) + ϵ/2,
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since P(CT < M) ≤ 1; and

E
[∫ t

tn

e−δsf(Y n,πn,Cn
s )ds

]
<

∫ t

tn

e−δsf(y + βM)ds→ 0

for n→∞, therefore (1) holds. We assert (2) holds by proving that, given ϵ > 0 and sufficiently
large n,

E[V (tn, X
π∗,C∗

tn , Y π∗,C∗

tn , λtn)] ≤ E[V (tn, x, y, λ) + ϵ; (1.35)

E[V (tn, X
π∗,C∗

tn , Y π∗,C∗

tn , λtn)] > E[V (tn, x, y, λ)− ϵ. (1.36)

Let Cs on [t, T ] be Cs := max{C∗
t ;C

∗
s − ϵ}. Since C∗ is right-continuous a.s., C is constant at

some interval starting at t a.s., therefore Cs < C∗
s for all s ∈ [t, T ], and

Ωm :=

{
ω ∈ Ω : m− 1 ≤ max

{
sup

s∈(t,T ]

|Xπ∗,C
s −Xπ∗,C

t |
s− t

; |C∗
s − C∗

t |; sup
s∈(t,T ]

|λs − λt|

}
< m

}
for all m ∈ N.

Given any ϵ > 0, there is an M ∈ N such that

E[V (tn, Xtn , Ytn , λtn)] <
M∑

m=1

E[V (tn, Xtn , Ytn , λtn)|Ωm]P(Ωm) + ϵ

= E[V (tn, Xtn , Ytn , λtn)| ∪Mm=1 Ωm]P(∪Mm=1Ωm) + ϵ.

If ω ∈ ∪Mm=1Ωm, we know that Xtn(ω) ≤ Xt(ω) +M(tn − t), Ytn(ω) ≤ Yt(ω) + βM(tn − t)
and λtn(ω) ≤ λt(ω) +M(tn − t). Assuming ω̃ the modulus of continuity of V in (x, y, λ), we
have:

E[V (tn, Xtn , Ytn , λtn)| ∪Mm=1 Ωm]P(∪Mm=1Ωm)

≤ V (tn, Xt +M(tn − t), Yt + βM(tn − t), λt +M(tn − t))
≤ V (tn, Xt, Yt, λt) + ω̃(M(tn − t), βM(tn − t),M(tn − t))

By Proposition 1.3.3, we see that Inequality (1.36) holds since ω̃(0, 0, 0) = 0 and ω̃ is continuous
in (0, 0, 0). We have

V (t, x, y, λ) = E
[∫ tn

t
e−δsf(Y π∗,C∗

s )ds+ V (tn, X
π∗,C∗

tn , Y π∗,C∗

tn , λtn)

]
≥ E

[∫ tn

t
e−δsf(Y 0,0

s )ds+ V (tn, x
0,0
tn , Y

0,0
tn , λtn)

]
(1.37)

where V (tn, X
0,0
tn , Y

0,0
tn , λtn) = V (tn, xe

r(tn−t), ye−β(tn−t), λtn). Then, we see that the inte-
grals in Inequality (1.37) converge to 0 by (1.3.4) and, since V is continuous in (x, y, λ), we can
assert that Inequality (1.36) holds. Now we have to prove that (1.3.4) holds. Let us define

Ωm :=

{
{ω ∈ Ω| supn∈N(Cn)t ∈ [m− 1,m)} if m ∈ N,
{ω ∈ Ω| supn∈N(Cn)t =∞} if m =∞
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for all m ∈ N ∪ {∞}. Then:

E
[∫ t

tn

e−δsf(Y π,C
s )ds

]
≤ E

[∫ t

tn

f(Y π,C
s )ds| ∪Mm=1 Ωm

]
P(∪Mm=1Ωm) + ϵ.

Thus,

E
[∫ t

tn

e−δsf(Y π,C
s )ds| ∪Mm=1 Ωm

]
<

∫ t

tn

e−δsf(y + βM)ds→ 0.

We see that (1.3.4) holds as n→∞. We conclude with the proof of (1.3.4): let ω̃ be the modulus
of continuity for V such that:

E
[
|V (t,Xn,πn,Cn

t , Y n,πn,Cn
t , λnt )− V (t, x−∆Cn, y + β∆Cn, λ)|

]
≤ E

[
ω̃(|Xn,πn,Cn

t − x+∆Cn|, |Y n,πn,Cn
t − y − β∆Cn|, |λnt − λ|)

]
for all n ∈ N.

Let us define

Ωm = {ω ∈ Ω :

m− 1 ≤ max

{
sup
n∈N

|Xn.π,Cn
t +∆Cn − x|√

t− tn
; sup
n∈N

∆Cn, sup
n∈N
|λnt − λ|

}
< m

}

for all m ∈ N.
Let now ϵ > 0, then there exists m ∈ N, such that

E
[
ω̃(|Xn,πn,Cn

t − x+∆Cn|, |Y n,πn,Cn
t − y − β∆Cn|, |λnt − λ|)

]
< E

[
ω̃(|Xn,πn,Cn

t − x+∆Cn|, |Y n,πn,Cn
t − y − β∆Cn|, |λnt − λ|)| ∪Mi=1 Ωm

]
×

× P(∪Mi=1Ωm) + ϵ

< ω̃
(√

t− tnM,y|e−β(t−tn) − 1|+ βe−βt|e−βtn − e−βt|M,λ|M − 1|
)
+ ϵ.

The right-hand side of the above Inequality goes to 0 as n→∞, therefore Proposition 1.3.5 has
been proved.

Using Proposition 1.3.4 we can thus prove the time-continuity of the value function.

Proposition 1.3.5. The value function V is continuous in time.

Proof. Let (t, x, y, λ) ∈ X and let (tn)n∈N be a right-continuous sequence in (t, T ] converging
to t+ as n→∞. By Proposition 2.1.1, we assert that

V (t, x, y, λ) = E
[∫ tn

t
e−δsf(Y π∗,C∗

s )ds+ V (tn, X
π∗,C∗

tn , Y π∗,C∗

tn , λtn)

]
, ∀n ∈ N . (1.38)
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By using Proposition 1.3.4, it follows that the running utility integral in Equation (1.38) con-
verges to 0. Thus, V (tn, X

π∗,C∗

tn , Y π∗,C∗

tn , λtn) converges to limn→∞ V (tn, x, y, λ), by Proposi-
tion 1.3.4. The right-continuity follows directly from the fact that the right-hand side of (1.38)
converges to limn→∞ V (tn, x, y, λ).

Now we are left to prove that V is left-continuous at (t, x, y, λ). Let (tn)n∈N be a sequence
on [0, t) such that tn → t−.

Denote by ∆tn := t− tn > 0, so that we aim at proving that

1. V (tn, x, y, λ) ≥ V (t, x, y, λ)− ϵ,

2. V (tn, x, y, λ) ≥ V (t, x, y, λ) + ϵ,

for all ϵ > 0 and a sufficiently large n.

For any admissible set of controls at tn, let Xn,Y n and λn the processes at time tn. Assume
(π∗,C∗) is an optimal control, and let

(πn)s =

{
π∗n,s+∆tn

if s ≤ T −∆tn,

0 if s > T −∆tn,

and

(Cn)s =

{
C∗
s+∆tn

if s ≤ T −∆tn,

C∗
T if s > T −∆tn.

If we consider the initial time to be tn, we see that Xn,πn,Cn
s = Xn,π∗,C∗

s , Y n,πn,Cn
s = Y n,π∗,C∗

s

and, obviously λns = λs for all n ∈ N and s ∈ [t, T −∆tn]. Moreover,

Xn,πn,Cn
s = Xn,π∗,C∗

T−∆tn
+

∫ s

T−∆tn

rXn,π∗,C∗
u du = Xn,π∗,C∗

T−∆tn
er(s−(T−∆tn)),

Y n,πn,Cn
s = Y n,πn,Cn

T−∆tn
e−β(s−(T−∆tn)),
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for s ∈ [T −∆tn, T ]. By exploiting the previous equations, we have

V (tn, x, y, λ) ≥E
[∫ T

tn

e−δsf(Y n,πn,Cn
s )ds+ h(Xn,πn,Cn

T , Y n,πn,Cn

T , λnT )

]
=E

[∫ T−∆tn

t
e−δsf(Y n,πn,Cn

s )ds+ h(Xn,πn,Cn

T−∆tn
, Y n,πn,Cn

T−∆tn
, λnT−∆tn)

]
+ E

[∫ T

T−∆tn

e−δsf(Y n,πn,Cn
s )ds+ h(Xn,πn,Cn

T , Y n,πn,Cn

T , λnT )

− h(Xn,πn,Cn

T−∆n , Y n,πn,Cn

T−∆n , λnT−∆n)
]

=V (t, x, y, λ)

+ E
[∫ T

T−∆tn

e−δsf(Y n,πn,Cn

T−∆tn
e−β(s−T+∆tn))ds

]
+ E

[
h(Xn,πn,Cn

T−∆tn
er∆tn , Y n,πn,Cn

T−∆tn
e−β∆tn , λT )

− h
(
Xn,πn,Cn

T−∆tn
, Y n,πn,Cn

T−∆n , λnT−∆tn

)]
=V (t, x, y, λ)

+ E
[∫ T

T−∆tn

e−δsf
(
Y n,πn,Cn

T−∆tn
e−β(s−T+∆tn)

)
ds

]
+ E

[
h
(
Xπ∗,C∗

T er∆tn , Y π∗,C∗

T e−β∆tn , λT − λT−∆tn

)]
− E

[
h(Xπ∗,C∗

T , Y π∗,C∗

T , λT )
]

(1.39)

We see that the second term on the right-hand side of Equation (1.39) is decreasing as n→∞,
so it converges to 0 for all ω ∈ Ω, and consequently Inequality (1) holds.

Regarding Inequality (2), by Proposition 2.1.1, we have that

V (tn, x, y, λ) = E
[∫ t

tn

e−δsf(Y π∗,C∗
s )ds+ V (t,Xπ∗,C∗

t , Y π∗,C∗

t , λt)

]
, ∀n ∈ N. (1.40)

By Proposition 1.3.4, the running utility integral converges to 0 so, for all ϵ > 0, it can be
proved that

E[V (t,X
π∗
n,C

∗
n

t , Y
π∗
n,C

∗
n

t , λt)] ≤ V (t, x, y, λ) + ϵ, (1.41)
for sufficiently large n ∈ N. It thus follows that

E
[
V (t,X

π∗
n,C

∗
n

t , Y
π∗
n,C

∗
n

t , λt)− V (t, x, y, λ)
]

=E
[
V (t,X

π∗
n,C

∗
n

t , Y
π∗
n,C

∗
n

t , λt)− V (t,X
π∗
n,∆Cn

t , Y
π∗
n,∆Cn

t , λt)
]

+ E
[
V (t,X

π∗
n,∆Cn

t , Y
π∗
n,∆Cn

t , λt)− V (t, x, y, λ)
]

with ∆Cn := (Cn)t − (Cn)t−n . By using again Proposition 1.3.4, we infer that the first term
converges to 0, and the second term converges to a negative value by Proposition 1.3.2. We can
therefore conclude that Inequality (1.41) holds.
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Finally, we can prove the main continuity result, Theorem 1.3.1.

Proof of Theorem 1.3.1. Denote by O a compact subset of X. Then, using the continuity of the
value function in Propositions 1.3.3-1.3.5, the claim follows from the classical Heine-Cantor
Theorem.





Chapter 2

The Stochastic Control Problem

This chapter is based on the results reported in the working paper [CDPVndb].
Accordingly, we introduce all the notions and definitions needed to generalize the Merton’s
problem, see [Mer75], to then derive the equation providing the solution according to the
framework proposed in Chapter 1.
In particular, in Section 2.1, we prove that Dynamic Programming Principle (DPP) holds in the
case where a self-exciting Poisson point process is driving the discontinuous part of the portfolio,
although it leads to a more complex and less tractable formulation of the problem.
Then, thanks to the previous result, we derive and study the so called Hamilton-Jacobi-Bellman
(HJB) equation in 2.2. Finally, HJB equation is formally derived a Partial Integro Differential
Equation (PIDE) subject to a gradient constraint which will be introduced in 2.2.1. uniqueness
of the viscosity solution for the PIDE.

2.1 The Dynamic Programming Principle

The validity of the Dynamic Programming Principle is based on the fact that (N ,λ) are jointly
Markovian, and follows the arguments reported in [Zhu94; GS12; CB21] and [Ish04]. In order to
have a self-contained work, we report the generalized version of the proof in [GS12]. Therefore,
we decide to use a similar notation in the following section.

Firstly, in favour of a lighter notation, we will denote z(t) := (Xπ,C
t , Y π,C

t , λt), where
Xπ,C

t , Y π,C
t and λt describe, respectively, the wealth of the investor reported in Equation (1.18),

the average past consumption in Equation (1.22), and the jump frequency defined in Equation
(1.3).
Then, we collect the control pair introducing u(t) := (πt, Ct) for all t ∈ [0, T ].

The value function defined in Equation (1.25), will be rewritten with a slightly different
notation. In particular we will denote V0(z) := V (0, x, y, λ) = supu∈A[t,T ](z)

S0(z(·), u(·)),
where St(z(·), u(·)) := S(t, x, y, λ, π, C) defined in Equation (1.24), for each s ∈ [0, T ].
Moreover, we define h̃(z(·), u(·)) := h(x, y, λ) and f̃(z(·), u(·)) := f(y) to highlight the
dependence of h̃ and f̃ to the control process u(·).
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We proceed by defining St(z(·), u(·)), t ∈ [0, T ], which is a family of functionals of the form

St(z(·), u(·)) =
∫ T

t
e−δsf̃(z(s), u(s))ds+ e−δ(T−t)h̃(z(T ), u(T ), (2.1)

where h̃(·), f̃(·) are given real functions bounded and continuous in their arguments as reported
in Assumption 3. Then, functionals of the family expressed in Equation(2.1) can be rewritten as
solutions of the following backward differential equation:{

−dSt = −δSt(z(t), u(t))dt+ f̃(z(t), u(t))dt, 0 ≤ t ≤ T,
ST = h̃(z(T ), u(T )).

(2.2)

Moreover, to stress the dependence of St on T , we denote it by S[t,T ](z(·), u(·)).
In fact, S[t,T ]∀t ∈ [0, T ] defines a class of functionals exploiting the realizations of the stochastic
processes (z(·), u(·)), and satisfying the condition:

S[t1,T ] = Sa
[t1,t2]

+G[t1, t2]S[t2,T ]

where
G[t1, t2] = G[t1,t2] = exp (−δ(t2 − t1))

and
Sa
[t1,t2]

=

∫ t2

t1

G[t1, s]f̃(z(s), u(s))ds, Sa
T = Sa

[t,T ].

We are now in position to apply the general method of constructing ε-optimal controls. Therefore,
we can introduce the canonical subdivision Tn := {0 = t0 < t1 < · · · < tn = T} of the interval
[0, T ] with |Tn| ↘ 0 and proceed to define the stepwise optimal controls corresponding to the
ε-optimal solutions of Equation (1.18).
For a given Tn, we introduce the u-controlled sequences {Zk}nk=0 following the same dynamic
in Equation (1.18), by the iteration

Zk+1 = Zk +

∫ tk+1

tk

a(s, Z0, . . . , Zk, uk)ds+

∫ tk+1

tk

b(s, Z0, . . . , Zk)dWs

+

∫ tk+1

tk

c(s, Z0, . . . , Zk, uk)dC +

∫ tk+1

tk

∫
R\{0}

d(s, Z0, . . . , Zk, q, uk)N(ds, dq),

(2.3)

where we ease the notation as

a(s, Z0, . . . , Zk, uk) = a(s, Ž(·)),

similarly we define the functionals b(·), c(·), d(·) similarly.
In particular, in our problem, we can use the formulation

a(s, Ž(·)) :=

r + (µ− r − λkE[eJ − 1])πkX
π,C
k

−βY π,C
k

α(ξ − λk)

 , b(s, Ž(·)) :=

σπkXπ,C
k

0
0

 ,
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c(s, Ž(·)) :=

−1β
0

 , d(s, Ž(·), q) :=

πkXπ,C
k (eq − 1)

0
η|q|

 ,

for s ∈ [tk, tk+1). Now, we can introduce the optimal control η∗ = {η∗i }ni=0, which is obtained
by recursion: we start from η∗n, namely the optimal control at time T , and we decrease the index
down to i = 0. Moreover, among all the generalized controls, there exists an optimal feedback
control which can be defined as η∗k = gk(Z0, Z1, . . . , Zk) whereas gk(z0, · · · , zk) refers to some
Borel function of their arguments.
Finally, the optimal control can be achieved with the following routine.
Let η = (ηi)

n
i=0 be an arbitrary generalized control for the collection (Zk)

n
k=0, then we denote

S(η) = E[S(Ž(·), η̌(·))], Ž(t) = Zk, η̌(t) = ηk for t ∈ [tk, tk+1). Consequently, we have the
natural filtration defined as

Fk := σ(η0, . . . , ηk−1,Ws, N(s,B) : s ∈ [0, tk), B ∈ B(R)).

By setting Ŝn(z) := maxu h̃(z, u), we can prove that the following inequality holds.

S(η) =E
[
E
[
S(Ž(·), η̌(·))|Fn

]]
=E

[
Sa
0 (Ž(·), η̌(·)) +G[0, T ]E[h̃(Zn, ηn)|Fn]

]
≤E

[
Sa
0 (Ž(·), η̌(·)) +G[0, T ]Ŝn(Zn)

]
,

which is fundamental for the DPP to hold.
Let now u = gn(z) be a Borel function which allows to get the optimal u for the given z,

attaining the maximum for h̃(z, u).
Thus:

h̃(z, gn(z)) = max
u

h̃(z, u) = Ŝn(z) = Vn(z).

Now, we replace the control η with η(n) := (η0, η1, . . . , ηn−1, η
∗
n) where η∗n = gn(Zn), therefore

the control η(n) is at least as good as η, that is to say S(η) ≤ S(η(n)).
Furthermore

S(η̌(n)) = E
[
Sa
[0,tn−1]

(Ž(·), η̌(·)) +G[0, tn−1]E[Stn−1(Ž(·), η̌(·))|Fn−1]
]
,

E
[
Stn−1(Ž(·), η̌(·))|Fn−1]

]
= Vn−1(Ž(·), η̌n−1),

where

Vn−1(ž(·), u) = Sa
tn−1

(zn−1, u) +G[tn−1,T ](zn−1, u)E[Ŝn(Zn(z(·), u))],

and ž(t) = zk, ǔ(t) = uk for t ∈ [tk, tk+1). Zn(z(·), u) are determined in accordance with the
Equation (2.3):

Zn =zn−1 +

∫ tn

tn−1

a(s, z0, . . . , zn−1, u)ds+

∫ tn

tn−1

b(s, ž(·), u)dWs

+

∫ tn

tn−1

c(s, ž(·), u)dC +

∫ tn

tn−1

∫
R\{0}

d(s, ž(·), q, u)N(ds, dq),
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where we replaced z(·) and u(·) with the constant values z and u. Thus, we get:

S(η(n)) = E
[
Sa
[0,tn−1]

(Ž(·), η̌(·)) +G[0, tn−1]Vn−1(Ž(·), ηn−1)
]
,

which is nothing else that the initial situation in time span [0, tn−1] and S∗
n−1(z, u). Similarly to

what has been done before, we set η∗n−1 = gn−1(Ž(·)); η(n−1) = (η0, η1, . . . , η
∗
n−1, η

∗
n), where

gn−1(ž(·)) = gn−1(z0, z1, . . . , zn−1) is a Borel function of its arguments satisfying the equation

Vn−1(ž(·), gn−1(ž(·))) = max
u

Vn−1(ž(·), u),

then, for any ηn−1, it holds that S(η) ≤ S(η(n−1)).
Set now Ŝn−1(ž(·)) = maxu Vn−1(ž(·), u), iterating, we get a sequence of functionals Ŝk(ž(·)), Vk(ž(·))
depending on the values of the process z(·) on the time arrival [0, tk] such that

Ŝk(ž(·)) = maxu Vk(ž(·), u), k = n, n− 1, . . . , 0,

Vk(ž(·), u) = h̃(z, u),

Vk(z(·), u) = Sa
[tk,tk+1]

(z(·), u(·)) +G[tk, tk+1]E[Ŝk+1(Zk+1(ž(·)), u)],
(2.4)

with Vk(ž(·), u) and Zk(z(·)) depending on the values of z(·) on [0, tk] if gk(z(·)) is a Borel
function satisfying

Vk(z(·), gk(ž(·))) = Ŝk(ž(·)), k = 0, 1, . . . , n (2.5)

which depends only on the values z0, z1, . . . , zk. Thus, for any control η = (ηi)
n
i=1 and any

j ≤ n the control η(j) = (η1, . . . , ηj−1, η
∗
j , . . . , η

∗
n) will be at least as good as the control η:

S(η) ≤ S(η(j)). In particular, the control η(0) = (η∗0, . . . , η
∗
n) is optimal for the sequence

(Zi)
n
i=0 and the optimal control for Z0 = z is equal to Ŝ0(z).
Furthermore, we can achieve a method for constructing ε-optimal feedback control for

solution of the Equation (2.3) under the conditions of [GS12, Theorem 3.16].
For any ε > 0, there exists an ε-optimal feedback control of the form

η(t) = gk(Z0, Z1, . . . , Zk),

for t ∈ [tk, tk+1).
The functions Sk(z(·)) express the value of the optimal control utility for the sequence (Zk)

n
k=0

such that the variables (Zj)
n
j=k+1 are given by Equations (2.4) under the conditions Z0 =

z0, . . . , Zk = zk up to time k. We now introduce the function representing the optimal cost of
control for the solution of Equation (1.18) on the time interval [t, T ]:

V (t, z(·)) = sup
η(·)∈A[t,T ](z)

E[St(Z
(η)
t (·), η(·))]

assuming Z(η)
t (s) = z(s), s ∈ [0, t]. We remark that A[t, T ](z) refers to the uncountable set of

measurable control functions on [t, T ] defined in (1.26),therefore, we introduce the least-upper-
bound of this set of measurable functions as its essential l.u.b. without leading to a new notation.
Thus

sup
η(·)∈A[t,T ](z)

E
[
St(Z

(η)
t (·), η(·))

]
= ess sup

η(·)∈A[t,T ](z)
E
[
St(Z

(n)
t (·), η(·))

]
.
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Then, we can introduce the optimality principle also known as Bellman’s principle, see e.g.
[GS12, Theorem 3.19].

Theorem 2.1.1. Let (a, b, c, d) be the functionals in Equation (2.3).
Then, if (a, b, c, d) are linearly bounded and satisfy the uniform Lipschitz condition, we have, for
all s ∈ [t, T ], that

V (t, z(·)) = sup
η(·)∈A[t,s](z)

E
[
Sa
[t,s](Z

(η)
t (·), η(·)) +G[t, s]V (s, Z

(η)
t (·))

]
.

Proof. Let t, z(·) and ε > 0 be fixed. For any ε > 0, δ and η(·) ∈ A[t,T ](z), it can be proved
that:

Ŝ(t, z) + ε < E[Ŝt(Z
(n)
t (·), η(·))]

= E
[
Sa
[t,T ](Z

(η)
t (·), η(·)) +G[t, s]Ss(Z

(η)
t (·), η(·))

]
,

whereas the expression on the right-hand side is at least

E
[
Sa
[t,s](Z

(η)
t (·), η(·)) +G[t, s]Ŝ(s, Z

(η)
t (·))

]
.

This implies that

Ŝ(t, z) ≤ sup
η∈A[t,s](z)

E[Sa
[t,T ](Z

(η)
t (·), η(·)) +G[t, s]V (s, Z

(η)
t (·))].

The reverse inequality is also valid: since E[S[s,T ]

(
Z

(η∗)
s (·), η∗(·)

)
] converges to Ŝ(t, z(·)) as

|Tn| → 0 uniformly in z(·) on the ball ∥z(·)∥t ≤ ρ.
Note that we define η∗ as an optimal control for the approximating sequence (Z

(η)
k )nk=0 corre-

sponding to the given subdivision Tn. Moreover since sup0≤s≤T |Z
(η)
t (s)| is a stochastically

bounded random variable uniform in the above ball for all N > 0. Therefore, a subdivision Tn

can be found such that

P
(
E[S[s,T ](Z

(η∗)(·), η∗(·))|Fs] > Ŝ(s, Z(η∗)(s)) + ε
)
> 1− ε.

We have that

Ŝ(t, z(·)) = sup
η∈A[t,T ](z)

E[S[t,T ](Z
(η)
t (·), η(·))]

= sup
η∈A[t,T ](z)

E[Sa
[t,T ](Z

(η)
t (·), η(·))] +G[t, s]E[S[s,T ](Z

(η)
t (·), η(·))|Fs].

Each one of the controls η(·) ∈ A[t,T ](z) can be decomposed in two components: η(·) = (η1(·), η2(·)),
where η1(·) ∈ A[t, s](z) and η2(·) ∈ A[s,T ](z). Therefore

Ŝ(t, z(·))

≥ sup
η∈A[t,s](z)

E[Sa
[t,s](Z

(η)
t (·), η(·)) +G[t, s](Ŝ(s, Z(η∗)(s)) + ε+ C1ε)]

≥ C2ε+ sup
η∈A[t,s](z)

E[Sa
[t,s](Z

(η)
t (·), η(·)) +G[t, s]Ŝ(s, Z

(η∗)
t (s))],
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where

C1 = sup
z(·),u(·)

S[s,T ](z(·), u(·)), C2 = C1 + sup
z(·),u(·)

G[0, T ] = C1 + exp−δT .

Since ε > 0 is arbitrarily small, the last inequality implies

V (t, z(·)) ≥ sup
η(·)∈A[t,T ](z)

E[Sa
[t,s](Z

(η)
t (·), η(·)) +G[t, s]V (s, Z

(η)
t (s))],

which proves the theorem.

Exploiting previous results, we have the validity of the DPP, the latter being the basis for
Section 2.2.

Proposition 2.1.1 (Dynamic Programming Principle). For any (t, x, y, λ) ∈ X and ∆t ∈
[0, T − t] we have

V (t, x, y, λ) = sup
(π,C)∈A[t,t+∆t](x,y)

E
[∫ t+∆t

t
e−δuf(Y π,C

u )du+ V (t+∆t,Xπ,C
t+∆t, Y

π,C
t+∆t, λt+∆t)

]
.

(2.6)

Proof. By Theorem 2.1.1, we see that the regularity conditions required hold in the portfolio
model exploited, therefore the value function V (t, x, y, λ) is the solution of the optimization
problem.

In the next section, we will prove that the value function can be connected to the so-called
Hamilton-Jacobi-Bellman (HJB) equation via the Dynamic Programming Principle above stated.

2.2 The Hamilton-Jacobi-Bellman equation related to the problem

By exploiting the results in Section 2.1, we can use a technique similar to the one presented
in [ØS05], where the Hamilton-Jacobi-Bellman equation is obtained for a portfolio presenting
discontinuous paths.
In particular, Itô-Doeblin’s lemma will be exploited for the value function represented in Equation
(1.25). We remark that the value function satisfies the regularity requirements necessary to apply
the lemma.
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It holds that

Vt+∆t =Vt +

∫ t+∆t

t

(
∂Vu
∂t

+
∂Vu
∂x

(
r(1− πu)Xπ,C

u

)
− ∂Vu

∂y
βY π,C

u +
∂Vu
∂x

µπuX
π,C
u

+
∂Vu
∂λ

α(ξ − λu)−
∂Vu
∂x

λuE[eJ − 1]πuX
π,C
u +

1

2

∂2Vu
∂x2

(σπuX
π,C
u )2

)
du

+

∫ t+∆t

t
−∂Vu−

∂x
+ β

∂Vu−
∂y

dCu +

∫ t+∆t

t

∂Vu
∂x

σπuX
π,C
u dWu

+

∫ t+∆t

t

∫
R\{0}

∂Vu−
∂x

πu−X
π
u−(e

q − 1)N(du, dq) + η

∫ t+∆t

t

∂Vu
∂λ

∫
R\{0}

|q|N(du, dq)

+
∑

t≤u≤t+∆t

(
∆Vu −

∂Vu−
∂x

∆Xπ,C
u − ∂Vu−

∂y
∆Y π

u −
∂Vu−
∂λ

∆λu

)
, (2.7)

where ∂kVt

∂ak
, k ∈ N, refers to the k-order partial derivative of Vt with respect to a.

By exploiting the DPP and Equation (2.7), it holds that:

0 ≤ sup
(π,C)∈A[t,T ](x,y)

E
[∫ t+∆t

t
e−δuf(Y π,C

u )du+

∫ t+∆t

t

(
∂Vu
∂t

+
∂Vu
∂x

r(1− πu)Xπ,C
u

+
∂Vu
∂x

µπuX
π,C
u − ∂Vu

∂y
βY π,C

u +
1

2

∂2Vu
∂x2

(σπuX
π,C
u )2 + α(ξ − λu)πuXπ,C

u

)
du

+

∫ t+∆t

t

(
−∂Vu−

∂x
+ β

∂Vu−
∂y

)
dC + η

∫ t+∆t

t

∂Vu
∂λ

∫
R\{0}

|q|N(du, dq) (2.8)

+
∑

t≤u≤t+∆t

(
∆Vu −

∂Vu−

∂x
∆Xπ,C

u − ∂Vu−

∂y
∆Y π,C

u − ∂Vu−

∂λ
∆λu

) . (2.9)

Furthermore, if C is continuous in [t, t+∆t], the last part of Equation (2.8) can be rewritten in
the following form:

E

 ∑
t≤u≤t+∆t

(
∆Vu −

∂Vu−

∂x
∆Xπ,C

u − ∂Vu−

∂y
∆Y π,C

u +
∂Vu−

∂λ
∆λu

) (2.10)

=

∫ t+∆t

t
Jπu(u,Xπ,C

u , Y π,C
u , λu, V )du,

with

Jπ(t, x, y, λ, V ) :=λ

∫
R\{0}

V (t, x+ πx(eq − 1), y, λ+ η|q|)− V (t, x, y, λ)

− πx(eq − 1)Vx(t, x, y, λ)− η|q|Vλ(t, x, y, λ)ζ(q)dq, (2.11)
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where ζ(·) is the probability distribution defined in Equation (1.1).
Equation (2.11) follows by

∆Vu = V (u,Xπ,C
u− +∆Xπ,C

u , Y π,C
u− , λu +∆λu)− V (u,Xπ,C

u− , Y π,C
u− , λu),

∆Xπ,C
u = πu−Xπ,C

u− (eq − 1),

∆λu = η|q|,
and

∆Y π,C
u = 0.

By setting dC ≡ 0, dividing Equation (2.8) by ∆t, and letting ∆t↘ 0, we obtain the following
result:

0 ≤ e−δtf(y) +
∂Vt
∂t
− βy∂Vt

∂y
+ sup

π∈[0,1]

[
∂Vt
∂x

r(1− π)x+
∂Vt
∂x

πµx

+(α(ξ − λ) + ηλµJ)
∂Vt
∂λ

+
1

2

∂2Vt
∂x2

(σπx)2 + Jπ(t, x, y, λ, V )

]
. (2.12)

2.2.1 Heuristic derivation of necessary conditions for C

Further considerations on the consumption process will lead to an additional constraint on the
HJB equation in (2.8). We consider the consumption Ct to be either discontinuous at t, or
differentiable at t a.s. and continuous on [t, t +∆t]. Then, there is a constant c > 0, such that
C ′(t) = 0 or C ′(t) > c for differentiable C.

Suppose now (π̂, Ĉ) ∈ A[t,t+∆t](x, y) be an optimal control.
We take into account the three different cases:

1. a consumption gulp occurs at time t,

2. Ĉ is continuous on [t, t+∆t] and Ĉ ′(t) > c, and

3. Ĉ is continuous on [t, t+∆t] and Ĉ ′(t) = 0.

Consider Case 1, where a consumption gulp ∆C occurs at time t. By Proposition 1.3.2, it holds
that

V (t, x, y, λ) = V (t, x−∆C, y + β∆C, λ). (2.13)
Then, the gulp size should be chosen to maximize V , therefore the derivative of the right-hand
side of Equation (2.13), with respect to ∆C must be 0, that is say:

−Vx(t, x−∆C, y + β∆C, λ) + βVy(t, x−∆C, y + β∆C, λ) = 0. (2.14)

We differentiate Equation (2.13) with respect to x and exploit Equation (2.14). Then, the
following result holds

Vx(t, x, y, λ) = (−Vx(t, x−∆C, y + β∆C, λ) + βVy(t, x−∆C, y + β∆C, λ))
∂∆C

∂x
+ Vx(t, x−∆C, y + β∆C, λ)

=Vx(t, x−∆C, y + β∆C, λ). (2.15)
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A similar result can be obtained for Vy(t, x, y, λ) = Vy(t, x−∆C, y + β∆C, λ).
From Equations (2.14) and (2.15) and the respective results for y we get

Vx(t, x, y, λ) = βVy(t, x, y, λ).

Consider now Case 2, and let c > 0 such that Ĉ ′(t) > c.
Since (π̂, Ĉ) is an optimal control, we know that the control processes maximize the right-

hand side of the Equation (2.8).
Now, we apply a small perturbation from (π̂, Ĉ) to (π,C), where Cs = Ĉs + C∆

s and π̂s ≡ πs
for a function C∆

s : [t, T ]→ R defined by C∆
s := c′(t− s), c′ ∈ R.

Let us focus on (π,C) defined [t, t+∆t] by using the solution of (1.18) and (1.22), we see that
Xπ,C

s = X π̂,Ĉ
s − Ĉ∆

s +O(∆t2) and Y π,C
s = Y π̂,Ĉ

s + βC∆
s .

Finally, we verify that (π,C) ∈ A[t,t+∆t](x, y). To do so, we plug C into Equation (2.8) to get
an approximation of it, assuming g be a smooth function and ∆t small enough.∫ t+∆t

t
g(s,Xπ,C

s , Y π,C
s , λs)ds−

∫ t+∆t

t
g(s,X π̂,Ĉ

s , Y π̂,Ĉ
s , λs)ds

≈
∫ t+∆t

t
−C∆

s gx

(
s,X π̂,Ĉ

s , Y π̂,Ĉ
s , λs

)
+ βC∆

s gy

(
s,X π̂,Ĉ

s , Y π̂,Ĉ
s , λs

)
ds

= O(∆t2),

and ∫ t+∆t

t
g(s,Xπ,C

s , Y π,C
s , λs)dCs −

∫ t+∆t

t
g(s,X π̂,Ĉ

s , Y π̂,Ĉ
s , λs)dĈs

≈ c′
∫ t+∆t

t
g(s,Xπ,C

s , Y π,C
s , λs)ds−

∫ t+∆t

t
C∆
s gx

(
s,X π̂,Ĉ

s , Y π̂,Ĉ
s , λs

)
dĈs

+

∫ t+∆t

t
βC∆

s gy

(
s,X π̂,Ĉ

s , Y π̂,Ĉ
s , λs

)
dĈs

= c′
∫ t+∆t

t
g(s,Xπ,C

s , Y π,C
s , λs)ds+O(∆t2).

By plugging the previous approximations in Equation (2.8) and using the fact that C∗ maximizes
the right-hand side of Equation (2.8), we ascertain that

E
[
c′
∫ t+∆t

t
−Vx + βVyds

]
≤ 0. (2.16)

For all c′ ∈ (−c, 0] and small enough∆t, we have (π,C) ∈ A[t,t+∆t](x, y) sinceC is increasing

and Xπ,C
s ≥ X π̂,Ĉ

s ≥ 0 for c′ ∈ (−c, 0].
Assume now c′ ∈ R+, consequently Cs > Ĉs for s ∈ [t, t+∆t]. Since Cs is strictly increasing,
we have that (π,C) ∈ A[t,t+∆t](x, y) if and only if Xπ,C

s ≥ 0 on [t, t +∆t]. Since x > 0, we
will have (π,C) ∈ A[t,t+∆t](x, y) for small ∆t, and Inequality (2.16) holds for all c′ ∈ (−c,∞)
for ∆t→ 0; finally by continuity we have −Vx + βVy = 0.
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For what concerns Case 3, we know that (π̂,C) maximizes the r.h.s. of Equation (2.8) and
we have that βVy − Vx ≤ 0 (as in the previous case), but with the peculiarity that c′ should
be positive, in order to ensure that C is not decreasing. Equation (2.10) is still valid by the
continuity of C. Therefore, we insert Equation (2.10) and (π,C) = (π̂, Ĉ) into Equation (2.8)
and we note that all the terms are of order O(∆t), except for

∫ t+∆t
t− −Vx + βVydC, which is

of order O(Ct+∆t − Ct). Moreover Ct+∆t − Ct is of smaller order that ∆t since C ′(t) = 0.
Letting ∆t → 0 in the Equation (2.8), we note that the inequality (2.12) holds as equality. By
recollecting the previous results and lightening up the notation, we define Z := (X,Y ,λ) then,
for a generic function v ∈ C1,2,1,1(X) defined on the same domain as V , we have that v satisfies:

0 = max{G(DZv), vt + F (t, z,DZv,D
2
Zv, J

π(t, z, v))}, (2.17)

where
G(DZv) := βvy(t, x, y, λ)− vx(t, x, y, λ) (2.18)

and

F (t, z,DZv,D
2
Zv, J

π(t, z, v)) := e−δtf(y)− βyvy + (α(ξ − λ) + ηλµJ)vλ (2.19)

+ max
π∈[0,1]

[
(r(1− π) + µπ)xvx +

1

2
(σπx)2vxx + Jπ(t, z, v)

]
.

We remark that DZv, resp. D2
Zv, denote the first, resp. the second, order derivative of v with

respect to z. Furthermore, G(DZv) = 0 in presence of consumption, whereas, in absence of
consumption, Equation (2.19) turns into

vt + F (t, z,DZv,D
2
Zv, J

π(t, z, v)) = 0.



Chapter 3

Existence and uniqueness for the HJB
solution

In this chapter we will prove that the value function V defined in Equation (1.25) solves the HJB
equation in (2.8) in a viscosity sense.

To prove that, we start by showing the convergence of the integral part of the HJB equation.
Then, we formulate several, although equivalent, definitions for viscosity solutions. Indeed,
some theorems are easier to prove using a particular definition.

Therefore, we conclude with the main contribution of this chapter, we prove that the value
function V is the unique constrained solution of the HJB equation by the mean of the comparison
principle. The uniqueness result is based on [CDPVndb], where the approaches in [BKR01b;
BKR02] and [Hol10] have been generalized. In fact, in the first two mentioned works, the authors
consider a Lévy process over an infinite-horizon, while in the last one a Lévy process has been
taken into account over a finite-horizon.

3.1 Definitions and convergence for the integral operator

Let us start by providing definitions that will be then used to prove uniqueness of the viscosity
solution.

Definition 3.1.1. For any κ ∈ (0, 1), (t, z) ∈ X, φ ∈ C1(X) ∩ C1,2,1,1(X) and P :=
(p1, p2, p3) ∈ R3, let us define

Jπ,κ(t, z, φ, P ) := λ

∫
|q|>κ

(φ(t, x+ πx(eq − 1), y, λ+ η|q|)− φ(t, z)− πxp1(eq − 1)− p3η|q|) ζ(q)dq

and

Jπκ(t, z, φ) := λ

∫
|q|≤κ

(φ(t, x+ πx(eq − 1), y, λ+ η|q|)− φ(t, z)− πx(eq − 1)φx(t, z)− η|q|φλ(t, z)) ζ(q)dq
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Moreover, we must remark that Jπ(t, z, φ), defined in Equation (2.11), can be obtained as
the sum of Jπk(t, z, φ) and Jπ,κ(t, z, φ,DZφ), therefore we obtain that:

F (t,z,DZφ,D
2
Zφ, J

π,κ(t, z, φ,DZφ), J
π
κ(t, z, φ)) :=

F (t, z,DZφ,D
2
Zφ, J

π,κ(t, z, φ,DZφ) + Jπκ(t, z, φ)).

Although the previous statements seem not relevant at a first glance, they will be useful in the
proof of Theorem 3.3.2. In the following the convergence for the integral operator corresponding
to Jπ will be proved.

3.1.1 Convergence of integral part

The first part of this chapter is devoted to prove that the operator Jπ converges and therefore the
integral is well-defined. In particular, we will prove that

Jπ(tn, zn, φ)→ Jπ(t, z, φ) for (tn, zn)→ (t, z),

and
Jπ(t, z, φn)→ Jπ(t, z, φ)

for φn → φ, (φn)x → φx, (φn)λ → φλ, and (φn)xx → φxx.

Lemma 3.1.1. Let φ,φn ∈ C1,2,1,1(X) ∩ C1(X) and (tn, zn), (t, z) ∈ X ∀ n ∈ N.
If the assumptions

1. (tn, z̃n)→ (t, z̃),

2. φn(tn, z̃n)→ φ(t, z̃),

3. (φn)x(t, z̃)→ φx(t, z̃),

4. (φn)λ(t, z̃)→ φλ(t, z̃),

5. (φn)xλ(t, z̃)→ φxλ(t, z̃),

6. (φn)xx(t, z̃)→ φxx(t, z̃),

hold for all the (t, z̃) ∈ X, then

Jπ(tn, zn, φn)→ Jπ(t, z, φ)

as n→∞.

Proof. By the triangular inequality we have

|Jπ(tn, zn, φ)− Jπ(t, z, φ)|
≤ |Jπ(tn, zn, φn)− Jπ(tn, zn, φ)|+ |Jπ(tn, zn, φ)− Jπ(t, z, φ)|. (3.1)
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Given inequality (3.1), we must prove that the two terms on the right-hand side of the inequality
go to 0 as n→∞, in order to to have the desired convergence.
Therefore, we start by focusing on the first term:

|Jπ(tn, zn, φn)− Jπ(t, zn, φ)|

= λn

∣∣∣∣ ∫
R\{0}

(φn − φ)(tn, xn + xnπn(e
q − 1), yn, λn + η|q|)− (φn − φ)(tn, zn)

− xnπ(eq − 1)(φn − φ)x(tn, zn)− η|q|(φn − φ)λ(tn, zn)ζ(q)dq
∣∣∣∣

≤λn

(∣∣∣∣ ∫
|q|<1

(φn − φ)(tn, xn + xnπn(e
q − 1), yn, λn + η|q|)− (φn − φ)(tn, zn)

−xnπ(eq − 1)(φn − φ)x(tn, zn)− η|q|(φn − φ)λ(tn, zn)ζ(q)dq
∣∣∣∣

+

∣∣∣∣ ∫
1<|q|≤R

(φn − φ)(tn, xn + xnπn(e
q − 1), yn, λn + η|q|)− (φn − φ)(tn, zn)

−xnπ(eq − 1)(φn − φ)x(tn, zn)− η|q|(φn − φ)λ(tn, zn)ζ(q)dq
∣∣∣∣

+

∣∣∣∣ ∫
|q|>R

(φn − φ)(tn, xn + xnπn(e
q − 1), yn, λn + η|q|)− (φn − φ)(tn, zn)

−xnπ(eq − 1)(φn − φ)x(tn, zn)− η|q|(φn − φ)λ(tn, zn)ζ(q)dq
∣∣∣∣) , (3.2)

for all R > 1.
As n→ +∞, we ascertain that the first term on the right-hand side of inequality (3.1) goes

to 0. This can be proved by applying the Taylor expansion on (φn − φ) around (tn, zn) and by
using the following reasons, firstly we exploit the integrability conditions for ζ(·) defined in (1.2)
and then, the fact that (eq − 1)2 < 3q2 for |q| < 1.

Finally, by applying the Heine-Cantor Theorem, we obtain the following result:∣∣∣∣ ∫
|q|<1

(φn − φ)(tn, xn + xnπ(e
q − 1), yn, λn + η|q|)− (φn − φ)(tn, zn)

− xnπn(eq − 1)(φn − φ)x(tn, zn)− η|q|(φn − φ)λ(tn, zn)ζ(q)dq
∣∣∣∣

≤3(πxn)2 sup
|q|<1

∣∣∣∣(φn − φ)xx(tn, xn + πxn(e
q − 1), yn, λn + η|q|)

∣∣∣∣ ∫
|q|<1

q2ζ(q)dq

+ ηπxn sup
|q|<1

(∣∣∣∣(φn − φ)λx(tn, xn + πxn(e
q − 1), yn, λn + η|q|)

∣∣∣∣ ∫
|q|<1

q(eq − 1)ζ(q)dq

)
→0.

From the last inequality, it is easy to see that the right-hand side goes to 0 as n→ +∞.
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The second term of inequality (3.2) converges to 0 thanks to (1.2), and because of the
compactness of {q ∈ R : 1 ≤ |q| < R}:∣∣∣∣ ∫

1<|q|≤R
(φn − φ)(tn, xn + xnπ(e

q − 1), yn, λn + η|q|)− (φn − φ)(tn, zn)

− xnπ(eq − 1)(φn − φ)x(tn, zn)− η|q|(φn − φ)λ(tn, zn)ζ(q)dq
∣∣∣∣

≤2 sup
1<|q|≤R

(∣∣∣∣(φn − φ)(tn, xn + xnπ(e
q − 1), yn, λn + η|q|)

+xnπ

∣∣∣∣(eq − 1)(φn − φ)x(tn, xn + xnπ(e
q − 1), yn, λn + η|q|)

∣∣∣∣ ∫
1<|q|≤R

ζ(q)dq

+ηπ

∣∣∣∣(φn − φ)λx(tn, xn + xnπ(e
q − 1), yn, λn + η|q|)

∣∣∣∣ ∫
1<|q|<R

q(eq − 1)ζ(q)dq

)

+ ηR sup
1<|q|<R

∣∣∣∣(φn − φ)λ(tn, xn + xnπ(e
q − 1), yn, λn + η|q|)

∣∣∣∣ ∫
1<|q|≤R

ζ(q)dq

→0.

Therefore, also in this case, the right-hand side goes to 0 for n→∞.
When R → ∞, the third term of inequality (3.2) converges uniformly to 0 as well; in

particular limn→∞(φn − φ)x(tn, zn) = 0 by Heine-Cantor Theorem.
To prove it, let us recall that φ,φn ∈ C1(X), and let us define g := K(1 + x+ y + λ),K ∈ R.
Noticing that |φn − φ| ≤ g, ∀ n ∈ N for a sufficiently large value of K.
Therefore, there exists a constant H ∈ R independent of n such that∣∣∣∣(φn − φ)(tn, xn + xnπn(e

q − 1), yn, λn + η|q|)− (φn − φ)(tn, zn)
∣∣∣∣

≤ g(tn, xn + xnπn(e
q − 1), yn, λn + η|q|)− g(tn, zn) +H

= K(xnπ(e
q − 1) + η|q|) +H.

Since K(xnπ(e
q − 1) + η|q|) +H is integrable with respect to ζ(·), we prove that the first term

of (3.1) converges to 0 as R→∞ and that the convergence is uniform in n.
Now, we focus on the second term of the right-hand side of inequality (3.1); in the following

we will prove it converges to 0 as n→∞.
Applying the mean value theorem, we obtain

Jπ(tn, zn, φn)− Jπ(t, z, φ)

= λn

∫
R\{0}

It(tq,n, zq,n, q)(tϵn − t) + Ix(tq,n, zq,n, q)(xϵn − x) (3.3)

+ Iy(tq,n, zq,n, q)(yϵn − y) + Iλ(tq,n, zq,n, q)(λϵn − λ)ζ(q)dq, (3.4)

where we define It, Ix, Iy, Iλ as the partial derivative of the integrand part I : X × R → R
the operator representing the integrand part of Jπ, and (tq,n, zq,n) is some point on the line
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connecting (tn, zn) with (t, z). Immediately we ascertain that the integral is well-defined since
it is the sum of a difference of two integrable functions.
The derivative of I with respect to x is given by

Ix(tq,n, xq,n, yq,n, λq,n, q) :=vx(tq,n, xq,n + πxq,n(e
q − 1), yq,n, λq,n + η|q|)(1 + π(eq − 1))

− vx(tq,n, zq,n)− π(eq − 1)vxx(tq,n, zq,n).

We note that Ix is of order |eq−1| by Taylor expansion, for large |q|, thus Ix is bounded for some
integrable function. For a small q, we see, by Taylor expansion, that Ix is of order q2, so also in
this case Ix is bounded by some integrable function. Similarly, it can be proved the same result
for Iy, Iλ and It.

Assume Ix, Iy, Iλ, It are bounded by a certain g : X → R, integrable with respect to ζ(·).
Thus, by the dominated convergence theorem, we have that the right-hand side of Equation (3.3)
converges to 0 as n→∞.

3.2 Definitions for viscosity solutions

We can formally define the value function V as solution to the HJB equation (2.17) based on test
functions in C1(X).

Definition 3.2.1 (Viscosity solutions). Given D ⊆ X, a continuous function v : X → R is a
viscosity supersolution (resp. subsolution) of (2.17) at (t, z) ∈ D, if any continuous differentiable
function φ ∈ C1,2,1,1(X)∩C1(X), with φ : X→ R such that φ(t, z) = v(t, z) and v−φ reaches
the minimum (resp. maximum) at (t, z), satisfies the following conditions:

1. for all (t, z) ∈ D, it holds that

max{G(DZφ), φt + F (t, z,DZφ,D
2
Zφ, J

π(t, z, φ))} ≤ 0 (≥ 0) ;

2. ∀ z ∈ R3
+ it holds that

V (T, z) = max
c∈[0,x]

h(x− c, y + βc, λ) . (3.5)

Proposition 3.2.1. A continuous function v : X → R is a constrained viscosity solution of
Equation (2.17) if and only if v is a viscosity supersolution of (2.17) in X and v is a viscosity
subsolution of (2.17) in X;

Next result is the main theorem of the current section, providing that the value function V is
the viscosity solution of Equation (2.17). Before doing so, we introduce an alternative definition
of viscosity solution that is fundamental in the existence proof.

Proposition 3.2.2. Let v be a continuous function over X, with v : X → R+. Then, v is a
viscosity supersolution of Equation (2.17) if and only if:

max
{
G(DZφ);φt + F (t, z,DZφ,D

2
Zφ, J

π(t, z, φ)
}
≤ 0, (3.6)

for all the φ ∈ C1,2,1,1(X) ∩ C1(X) and (t, z) ∈ X that satisfy the following conditions:
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(1) (t, z) is a global minimum of v − φ over X, and there exists a positive ϵ̃ such that
(v − φ)(t̃, z̃) > (v − φ)(t, z) + ϵ̃ for all other minima (t̃, z̃).

(2) (v − φ)(t, z) = −a(t, z) for some given function a : X→ R+,

(3) φ has compact support.

Proof. Let v : X → R+ be a continuous function. If v is a viscosity supersolution for all φ
satisfying (1)-(3), then Equation (3.6) holds by Definition 3.2.1. Therefore, we focus on the
opposite implication. Assume that Equation (3.6) holds for all φ which satisfies conditions
(1)-(3). We prove that Equation (3.6) must hold for all the φ for which

(0) (t, z) is a global minimum of v − φ over X.

We divide the proof in three parts: in the first one, we show that Equation (3.6) holds for all
the functions satisfying conditions (1)-(2); the second part will be devoted to demonstrate that
Equation (3.6) holds for all the functions which satisfy (1). We conclude with the third part,
where we prove that Equation (3.6) holds for all functions satisfying only (0).

Part 1: Let us assume φ satisfies (1)-(2), and let

φϵ(t̃, z̃) := φ(t̃, z̃)ηϵ

for all ϵ > 0, where ηϵ : X→ [0, 1] satisfying

(i) ηϵ ∈ C∞(X) ∩ C1(X),

(ii) ηϵ = 1 on Dϵ, where

Dϵ :=

{
(t̃, z̃) ∈ X : t ∈ [0, T ), z̃ < z +

1

ϵ

}
,

(iii) η(t̃, z̃) = 0 for z̃ > z + 2
ϵ .

We immediately note that φϵ ∈ C∞(X) ∩ C1(X) must satisfy (2)-(3). Finally, we assert that φϵ

satisfies (1) by contradiction. Let

(v − φϵ)(t̃, z̃) ≤ (v − φϵ)(t, z) + ϵ̃

for some (t̃, z̃) ∈ X. Therefore, (t̃, z̃) ∈ X\Dϵ, because v − φϵ = v − φ on Dϵ. Also,

(v − φϵ)(t̃, z̃) ≤ (v − φϵ)(t, z) + ϵ̃

holds since φ satisfies (1).
Moreover,

(v − φϵ)(t̃, z̃) < (v − φϵ)(t, z) = (v − φ)(t, z) = −a(t, z) < 0,
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and since v(t̃, z̃) ≥ 0, we conclude φ(t̃, z̃) > 0. Therefore, we have

(v − φϵ)(t̃, z̃) = v(t̃, z̃)− φ(t̃, z̃)ηϵ(t̃, z̃)
≥ v(t̃, z̃)− φ(t̃, z̃)
> (v − φ)(t, z) + ϵ̃

= (v − φϵ)(t, z) + ϵ̃,

contradicting what obtained before. Thus, φϵ satisfies (1). We proved that φϵ satisfies (1)-(3),
therefore φϵ satisfies Equation (3.6). We assert that

lim
ϵ→0

Jπ(t, z, φϵ) = Jπ(t, z, φ)

for all the admissible π. Therefore,

(φϵ)t + F (t, z,DZφϵ, D
2
Zφϵ, J

π(t, z, φϵ)→ φt + F (t, z,DZφ,D
2
ZφJ

π(t, z, φ)

andG(DZφϵ)→ G(DZφ) as ϵ→ 0. We can conclude by saying that φ satisfies Equation (3.6).

Part 2: Assume φ satisfies (1), and define φ̃ ∈ C1,2,1,1(X) ∩ C1(X) as

φ̃(t̃, z̃)− a(t, z) + v(t, z)− φ(t, z).

Since φ̃ differs from φ only for a constant, we note that φ̃ satisfies (1), condition (2) holds as
well by insertion. inequality (3.6) holds for φ̃ given the results in Part 1. Then

φ̃t + F (t, z,DZφ̃,D
2
Zφ̃, J

π(t, z, φ̃) = φt + F (t, z,DZφ,D
2
Zφ, J

π(t, z, φ)

and G(DZφϵ)→ G(DZφ). Therefore, we conclude that φ satisfies Equation (3.6).

Part 3: Finally, let φ satisfies (0), and let

φϵ(t̃, z̃) := φ(t̃, z̃) + ϵηϵ(t̃− t, z̃ − z)

for all ϵ > 0, where

ηϵ(t̃, z̃) := η

(
t̃

ϵ
,
z̃

ϵ

)
and

η(t̃, z̃) :=

{
exp

(
−(x̃2 + ỹ2 + λ̃2 + t̃2 − 1)

)
if |(t̃, x̃, ỹ, λ̃)| < 1,

0 if |(t̃, x̃, ỹ, λ̃)| ≥ 1

We see that φϵ satisfies (1), since η has a strict maximum at (0,0,0,0). Given the result in Part 2,
we assert that φϵ satisfies Equation (3.6). Then, by directly computing ϵηϵ, ϵDηϵ and ϵD2ηϵ we
see they converge to 0, so we assert, by Lebesgue’s dominated convergence, that

φ̃t + F (t, z,DZφ̃,D
2
Zφ̃, J

π(t, z, φ̃))→ φt + F (t, z,DZφ,D
2
ZφJ

π(t, z, φ))

and G(DZφ̃) → G(DZφ). Although it has not been explicitly stated, we briefly mention that
the integral part is convergent by the conditions reported in (1.2), for a more detailed proof we
refer to [BKR01b]. Therefore, φ must satisfy Equation (3.6) and the proposition is proved.
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Theorem 3.2.1. The value function V is a viscosity solution of Equation (2.17).

Proof. For the sake of readability, we divide the proof into two main steps: in the first part, we
show that V is a supersolution over X, while, in the second part, we focus on V as subsolution
over X.

Step 1 - supersolution. Define a continuous function φ ∈ C1,2,1,1(X) ∩ C1(X), that (t, z) ∈ X

is a global minimizer of V − φ and V (t, z) = φ(t, z) and that V satisfies inequality (3.19).

Since V is defined as a solution of Equation (2.19), we have

φ(t, x, y, λ) = V (t, x, y, λ) ≥ V (t, x− c, y + βc, λ) ≥ φ(t, x− c, y + βc, λ)

for all c ∈ (0, x].

Dividing by c, for c→ 0 we obtain the inequality

βφy(t, x, y, λ)− φx(t, x, y, λ) = G(DZφ) ≤ 0. (3.7)

By using the DPP together with the definition of V with C ≡ 0 and an admissible π ≡ π̃ ∈
[0, 1], we obtain that

V (t, x, y, λ) ≥ E
[∫ t+∆t

t
e−δsf(Y π̃,0)ds+ V (t+∆t,X π̃,0

t+∆t, Y
π̃,0
t+∆t, λt+∆t)

]
.

for all ∆t ∈ [0, T − t].

Since V − φ has a global minimum at (t, x, y, λ), we assert that

φ(t, x, y, λ) ≥ E
[∫ t+∆t

t
e−δsf(Y π̃,0)ds+ φ(t+∆t,X π̃,0

t+∆t, Y
π̃,0
t+∆t, λt+∆t)

]
.

Finally, we apply Itô-Döeblin’s lemma on φ(t+∆t,X π̃,0
t+∆t, Y

π̃,0
t+∆t, λt+∆t), and we get

0 ≥E
[∫ t+∆t

t
φt + e−δsf(Y π̃,0

s ) + φx(r(1− πs) + πsµ)X
π̃,0
s − βφyY

π̃,0
s

+α(ξ − λs)φλ +
1

2
(σπsX

π̃,0
s )2φxx + Jπ̃(s,X π̃,0

s , Y π̃,0
s , λs, φ)ds

]
≥∆t inf

s∈[t,t+∆t]

[
φt + e−δsf(Y π̃,0

s ) + φx(r(1− πs) + πsµ)X
π̃,0
s − βφyY

π̃,0
s

+α(ξ − λs)φλ +
1

2
(σπsX

π̃,0
s )2φxx + Jπ̃(s,X π̃,0

s , Y π̃,0
s , λs, φ)

]
.
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Since Xπ,C
s , Y π,C

s and λs are càdlàg, and φ, Jπ are smooth by construction, we can divide
the last inequality by ∆t. By letting ∆t→ 0, we obtain

0 ≥φt + e−δtf(y) + φx(r(1− π̃) + π̃µ)x− βφyy + (α(ξ − λ) + ηµJλ)φλ (3.8)

+
1

2
(σπ̃x)2φxx + Jπ̃(t, x, y, λ, φ). (3.9)

Inequality (3.8) holds for every π̃ ∈ [0, 1], thus

φt + F (t, x, y, λ,DZφ,D
2
Zφ, J

π̃(t, x, y, λ, φ)) ≤ 0.

From Equations (3.7) and (3.8), we see that V is a viscosity supersolution.

Step 2 - subsolution We are now to show that V is a viscosity subsolution. Suppose that φ
is a smooth function, and that (t, x, y, λ) ∈ X is a global maximizer of V − φ. Without loss
of generality, we assume that V (t, x, y, λ) = φ(t, x, y, λ), and that there is an ϵ̃ > 0 such that
(V − φ)(t̃, z̃) ≤ (V − φ)(t, z)− ϵ̃ for all the other possible maxima (t̃, z̃) ∈ X. We operate by
contradiction, by supposing that inequality (1) does not hold.

Recall that the value function V is continuous by Proposition 1.3.3 and 1.3.4. Since φ is
continuous as well, there exists an ϵ > 0 and a non-empty open ball N centered at (t, x, y, λ)
such that

βφy − φx ≤ 0 (3.10)

then

−ϵ >φt − βφyỹ + e−δt̃f(y) + (α(ξ − λ̃) + λ̃ηµJ)φλ

+ max
π∈[0,1]

[
(r(1− π) + πµ)x̃φx +

1

2
(σπx̃)2φxx + Jπ(t̃, z̃, φ)

]
, (3.11)

for all (t̃, z̃) ∈ N ∩ X.
We assume (T, x̃, ỹ, λ̃) ̸∈ N for any (x̃, ỹ, λ̃) ∈ R3

+ and that V ≤ φ− ϵ on ∂N ∩ X.
By the DPP, there exists a strategy (π,C) ∈ A[t,t+∆t](x, y) such that

V (t, x, y, λ) = E
[∫ t+∆t

t
e−δsf

(
Y π,C
s

)
+ φ

(
t+∆t,Xπ,C

t+∆t, Y
π,C
t+∆t, λt+∆t

)]
,

for all ∆t ∈ [0, T − t].
We define

∆t =


1
2 inf {s ∈ (0, T − t] : φ(t+ s,Xπ,C

t+s , Y
π,C
t+s , λt+s) ̸∈ N}

if φ(t+∆t,Xπ,C
t+∆t, Y

π,C
t+∆t, λt+s) ̸∈ N for some ∆t ∈ [0, T − t],

1
2T if φ(t+∆t,Xπ,C

t+∆t, Y
π,C
t+∆t, λt+s) ∈ N for all ∆t ∈ [0, T − t].

First of all, we consider the case where ∆t = 0: the self-exciting jump process does not
jump at time t a.s., so exiting from the ball N is due to a consumption increment.
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Suppose now that we have a jump of size ∆C > 0. Recalling the derivative of the value function
w.r.t. C is decreasing, we can choose arbitrary small V .
Then, we denote by l the segment joining (t, x, y, λ) and (t, x−∆C, y+βC, λ), and let (t, x̃, ỹ, λ̃)
be the intersection between the ball N and the line l. Since φ is decreasing along l in N ∩ X we
get

V (t, x, y, λ) = V (t, x̃, ỹ, λ̃) ≤ φ(t̃, x̃, ỹ, λ̃)− ϵ ≤ φ(t, x, y, λ)− ϵ = V (t, x, y, λ)− ϵ

which is a contradiction.
Now, let us consider ∆t > 0, we see that (V − φ)(t, x, y, λ) = 0 by construction, and that
(V − φ) ≤ 0 elsewhere, thus we get

φ(t, x, y, λ) ≤ E
[∫ t+∆t

t
e−δsf(Y π,C

s )ds+ φ(t+∆t,Xπ,C
t+∆t, Y

π,C
t+∆t, λt+∆t)

]
.

By exploiting Itô-Döeblin’s lemma on φ(t + ∆t,Xπ,C
t+∆t, Y

π,C
t+∆t, λt+∆t) and using inequalities

(3.10) and (3.11), we get

0 ≤E
[∫ t+∆t

t
φt + e−δsf(Y π,C

s ) + φx(r(1− π) + πµ)Xπ,C
s

−βφyY
π,C
s + (α(ξ − λ) + λµJη)φλ

+
1

2
φxx(σπsX

π,C
s )2 + Jπ(s,Xπ,C

s , Y π,C
s , λs, φ)ds+

∫ t+∆t

t
−φx + βφydC̃s

+
∑

∆Cs ̸=0

(φ(s,Xπ,C
s , Y π,C

s , λs)− φ(s,Xπ,C
s −∆C, Y π,C

s + β∆C, λs)


≤ −ϵ∆t,

with C̃ denoting the continuous part of the C process. This inequality is a contradiction as well,
and V is also a subsolution for the Equation (2.17) on X. Therefore, we see that the continuous
function V satisfies the viscosity solution definition over the domain X.

3.3 The comparison principle

To prove uniqueness of the viscosity solution, we rely on the comparison principle. To this end,
let us introduce the following (alternative) viscosity solution definitions, extending Definition
3.2.1 as follows.

Definition 3.3.1 (Strict viscosity solutions). Let D ∈ X. Any function v ∈ C(X) is a strict
supersolution (resp. subsolution) of Equation (2.17) in D if and only if, for any φ ∈ C1,2,1,1(X)∩
C1(X) and (t, z) ∈ D global minimum of v − φ on D, the following inequality holds:

max{G(DZφ);φt + F (t, z,DZφ,D
2
Zφ, J

π(t, z, φ)} ≤ −γ (≥ γ),

for some γ real positive constant.
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We are now in position to show the existence of a strict supersolutions arbitrary close to
subsolutions in the classical sense.

Proposition 3.3.1. Assume γ̃ > 0 such that δ > k(γ̃) (see A2) and let v ∈ Cγ̃(X) be a strict
supersolution of Equation (2.17) in X. Then, for γ > max{γ, γ̃} such that δ > γ, we have

w = (K + χγ(z))e−δt, χ(z) =

(
1 + x+

y

2β
+ λ

)
.

Then, for a large enough K, w ∈ C∞(X) ∩ Cγ(X) is a strict subsolution of Equation (2.17) in
any D ⊆ X. Furthermore, for θ ∈ (0, 1], the function

vθ = (1− θ)v + θw ∈ Cγ(X),

is a strict supersolution of Equation (2.17) in any bounded set D ⊆ X.

Proof. Firstly, we are intended to prove that

max{G(DZw);wt + F (t, z,DZw,D
2
Zw, J

π(t, z, w))} ≤ −g, (3.12)

for some g ∈ C(X) strictly positive.
To prove it, let us observe that:

G(DZw) = −e−δtγ

2
χγ−1.
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Since π x
χ ∈ [0, 1], we can rewrite the second term of (3.12) as follows:

wt + F (t, z,DZw,D
2
Zw, J

π(t, z, w))

=e−δt

[
f(y)− δ(K + χγ)− 1

2
yγχγ−1 + γ(α(ξ − λ) + ληµJ)χ

γ−1

+ max
π∈[0,1]

[
γ(r + (µ− r)π)xχγ−1 +

1

2
γ(γ − 1)(σπx)2χγ−2

+λ

∫
R\{0}

(χ+ πx(eq − 1))γ − χγ − γπxχγ−1(eq − 1)− γη|q|χγ−1ζ(q)dq

]]

=e−δt

[
f(y)− δK − 1

2
yγχγ−1 + γ(α(ξ − λ) + ληµJ)χ

γ−1

+

(
−δ + max

π∈[0,1]

[
γ(r + (µ− r)π)x

χ
+

1

2
γ(γ − 1)

(
σπ

x

χ

)2

+ λ

∫
R\{0}

(1 + π
x

χ
(eq − 1))γ − 1− γπ x

χ
(eq − 1)ζ(q)dq

])
χγ

]

≤e−δt

[
f(y)− δK +

(
−δ + max

π∈[0,1]

[
γ(r + (µ− r)π) + 1

2
γ(γ − 1)(σπ)2

+λ

∫
R\{0}

(1 + πx(eq − 1))γ − 1− γπ(eq − 1)− γ

χ
η|q|ζ(q)dq

])
χγ

]
≤e−δt

(
f(y)− δK − (δ − k(γ))χγ

)
≤− 1.

where the last inequality comes naturally, choosing for example

K =
1

δ

(
eδT + sup

(t,z)∈X

[
f(y)− (δ − k(γ))χγ

])
.

Since we choose δ ≥ k(γ) and γ, we have a finite K. We note that Equation (3.12) holds for a
proper function g(·, ·):

g(t, z) = min{1; γ
2
χγ−1(z)}

. In the second part, we prove that vθ is a strict supersolution of Equation (2.17) for all θ ∈ (0, 1].
Note that, for any φ ∈ C1,2,1,1(X), (t∗, z∗) is a global minimum of v − φ iff (t∗, z∗) is global
minimum of vθ −φθ, with φθ = (1− θ)φ+w. Since v is a supersolution of Equation (2.17) in
X and H is linear, we have

G(DZφ
θ) ≤ −θγ

2
χγ−1.
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Let π∗ denote the maximizing value of π when evaluating F with φθ. Then

φθ
t + F (t, z,DZφ

θ, D2
Zφ

θ, Jπ(t, z, φθ))

=(1− θ)f(y)e−δt + (1− θ)φt + (1− φ)βyφy + (1− θ)(α(ξ − λ) + ηλµJ)φλ

+ (1− θ)(r + (r + µ)π∗)xφx + (1− φ)1
2
(σπ∗x)2φxx

+ (1− θ)Jπ∗
(t, x, y, λ, φ) + θf(y)e−δt + wt + θβywy + θ(α(ξ − λ) + ηλµJ)wλ

+ θ(r + (µ+ r)π∗)xwx + θ
1

2
(σπ∗x)2wxx + θJπ

∗
(t, x, y, λ, w)

≤(1− θ)F (t, z, φx, φy, φxx, J
π(t, z, φ)) + θF (t, z,DZw,D

2
Zw, J

π(t, z, w))

≤− θg

By combining the previous results we found:

max{G(DZφ);φ
θ
t + F (t, z,DZφ

θ, D2
Zφ

θ, Jπ(t, z, φθ)} ≤ −θg.

As typically done in order to prove the comparison principle, a characterization of viscosity
solution in terms of subjets and superjets is employed. We thus provide next definition, as done
in [CIL92].

Definition 3.3.2. Denote by SN the set of N × N symmetric matrices, D ⊆ X, v ∈ C(D) and
(t, z) ∈ D. The second order superjet (resp. subjet), J2,+(−)

D v(t, z) is the set of (P,A) ∈ R3×S3
such that:

v(t, z) ≤ (≥ 0) v(t, z)+⟨P, (s, u)−(t, z)⟩+1

2
⟨A((s, u)−(t, z)), (s, u)−(t, z)⟩+o(|(s, z)−(t, u)|2),

as D ∋ (s, u)→ (t, z).
The closure J2,+(−)

D v(t, z) is the set of (P,A) for which there exists a sequence (Pn, An) ∈
J
2,+(−)
D v(tn, zn) such that (tn, zn, v(tn, zn), Pn, An)→ (t, z, v(t, z), P,A) as n→∞.

Now, we are about to prove the comparison principle for Equation (2.17), where we will use
the maximum principle for semicontinuous functions inspired by [CIL92].

Proposition 3.3.2 (Comparison principle). Assume v ∈ Cγ∗(X) is a subsolution of Equation
(2.17) in [0, T )× R3

+, that v ∈ Cγ∗(X) is a supersolution of the Equation (2.17) in X, and that
v ≤ v for t = T . Then, v ≤ v everywhere in X.

Proof. Since v, v ∈ Cγ∗(X), there exists a γ′ > 0 such that δ > k(γ′) and v, v ∈ Cγ′(X). Let
now w be defined as in 3.3.1, and choose K̃ large enough such that

vθ = (1− θ)v + θw

is a strict supersolution of Equation (2.17) on any bounded subset of X, with w > v for t = T .
By exploiting Proposition 3.3.1 and the fact that γ > γ, such a value for K̃ exists. The proof is
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based on the comparison between vθ and v, instead of the classical v and v. Then, at last we let
θ → 0, obtaining the classical comparison principle for v and v.

We thus have that, as x, y, λ→∞,

v(t, z)− vθ(t, z)→ −∞,

as z → −∞, and we have that v(T, z) − vθ(T, z) < 0. We will look for the maximum of
v(t, z)− vθ(t, z) on the domain DT , where we denote DT := [0, T )×D and D := {(x, y, λ) ∈
R3
+ : 0 < (x, y, λ) < R3} for some R > 0. Assume that v ≤ vθ is violated somewhere in DT ,

therefore there exists a M defined as

M := max
D
{(v − vθ)(t, z) + ϑ(t− T )} ,

where ϑ > 0 is chosen in such a way that M > 0. Assume z∗ := (x∗, y∗, λ∗), therefore
(t∗, z∗) ∈ DT satisfies

M = (v − vθ)(t∗, z∗) + ϑ(t∗ − T ).

By choosing R large enough, we may assume that we are in presence of one of the following
conditions:

1. (t∗, z∗) ∈ Γ, or

2. (t∗, z∗) ∈ DT ,

where

Γ :=

{
(t, z) ∈ DT : {x, λ = 0, y ∈ [0, R)} ∪ {x ∈ [0, R), λ, y = 0}

∪ {x, y = 0, λ ∈ [0, R)}
}

defines the lower boundaries of DT . Notice that t∗ ̸= T , since we initially assume v ≤ vθ for
t = T .

We can now have two different situations.

Situation 1. In the first case, (t∗, z∗) ∈ Γ. Since the boundaries are piecewise linear, there exist
h0, k0 ≥ 0 and a uniformly continuous function η : D→ R4 which satisfies

N((t, z) + hη(t, z), hk0) ⊂ DT , (3.13)

for all (t, z) ∈ DT and h ∈ (0, h0], where N(c, ρ) denotes the ball in R4 with center c ∈ R4 and
radius ρ. By using an approach similar to [Son86], let us define the auxiliary functions φ and Φ
on DT ×DT . For any γ > 1 and ε ∈ (0, 1), let:

φ((t1, z1), (t2, z2)) := |γ((t1,γ , z1,γ)− (t2,γ , z2,γ)) + ϵη(t∗, z∗)|2

+ ϵ|(t1, z1)− (t∗, z∗)|2 − ϑ(t2 − T ),
Φ((t1, z1), (t2, z2)) := v(t1, z1)− vθ(t2, z2)− φ((t1, z1), (t2, z2)).
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Then,
Mγ := max

DT×DT

Φ ((t1, z1), (t2, z2)) .

Mγ > 0 for any γ > 1 and ϵ ≤ ϵ0, with ϵ0 > 0 is some fixed small number.
Let now ((t1,γ , z1,γ), (t2,γ , z2,γ)) ∈ DT × DT be a maximizer of Φ, that is to say that Mγ =
Φ((t1,γ , z1,γ), (t2,γ , z2,γ)). By using the Equation (3.13), we may assume that γ is large enough
such that (t∗, z∗) + ε

γ η(t
∗, z∗) ∈ DT . By exploiting

Φ((t1,γ , z1,γ), (t2,γ , z2,γ)) ≥ φ((t∗, z∗), (t∗, z∗) +
ϵ

γ
η(t∗, z∗)),

we obtain

|γ((t1,γ , z1,γ)− (t2,γ , z2,γ) + ϵη(t∗, z∗)|2 + ϵ|(t1,γ , z1,γ)− (t∗, z∗)|2 (3.14)
≤ v(t1,γ , z1,γ)− vθ(t2,γ , z2,γ)− v(t∗, z∗)

+ vθ((t∗, z∗) +
ϵ

γ
η(t∗, z∗)) + ϑ((t2,γ − t∗ −

ϵ

γ
η(t∗, z∗)).

The right-hand side of this inequality is bounded as γ →∞, thus γ|(t1,γ , z1,γ)− (t2,γ , z2,γ)| is
bounded uniformly in γ. Therefore

lim
γ→∞

((t1,γ , z1,γ)− (t2,γ , z2,γ)) = 0

and
lim
γ→∞

(
v(t1,γ , z1,γ)− vθ(t2,γ , z2,γ)

)
≤M.

Letting γ → ∞ in inequality (3.14) and using the uniform continuity for v and vθ in DT , we
see that γ ((t1,γ , z1,γ)− (t2,γ , z2,γ)) + ϵη(t∗, z∗) → 0, (t1,γ , z1,γ) , (t2,γ , z2,γ)) → (t∗, z∗) and
Mγ →M , for γ →∞.
Then, by using the uniform continuity of η, we have

(t2,γ , z2,γ) = (t1,γ , z1,γ) +
ϵ

γ
η(t∗, z∗) +O

(
1

γ

)
= (t1,γ , z1,γ) +

ϵ

γ
η(t1,γ , z1,γ) +O

(
1

γ

)
,

where we use (3.13) to get (t2,γ , z2,γ) ∈ D for γ large enough. Furthermore,

D2φ = 2γ

(
I −I
−I I

)
+ 2ϵ

(
I 0
0 0

)
,

Moreover, we note that the conditions exposed in [CL83] hold, so for any ς ∈ (0, 1), there exist
A1, A2 ∈ S4 such that (

A1 0
0 −A2

)
≤ 2

γ

ς

(
I −I
−I I

)
+ 2ϵ

(
I 0
0 0

)
, (3.15)
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0 ≤ max{G(DZ1φ); +φt1

+ F (t1,γ , z1,γ , DZ1φ, Â1, J
π,κ(t1,γ , z1,γ , DZ1φ), J

π
κ(t1,γ , z1,γ , φ))}, (3.16)

and

−θg ≥ max{G(−DZ2φ);−φt2

+ F (t2,γ , z2,γ ,−DZ2φ, Â2, J
π,κ(t2,γ , z2,γ , v

θ,−DZ2φ), J
π
κ(t2,γ , z2,γ ,−φ))}, (3.17)

where φt andDZφ are computed at ((t1,γ , z1,γ), (t2,γ , z2,γ)), Â1 and Â2 are the parts of A1 and
A2 corresponding to z1 and z2, respectively. Since Âi is a 4-dimensional matrix, we denote the
elements by ai,xx, ai,xy and ai,xλ and so on.
By multiplying the left-hand side by (z1,γe

′
2, z2,γe

′
2) and the right-hand side by (x1,γe

′
2, x2,γe

′
2)

′

(with e2 = (0, 1, 0, 0)′ ∈ R4 and e′ denotes the transpose of e), we get

x21,γa1,xx − x22,γa2,xx ≤
γ

ς
(x1,γ − x2,γ)2 + ϵx21,γ ,

and therefore

lim
ϵ→0

lim
γ→∞

(x21,γa1,xx − x22,γa2,xx) ≤ 0.

Moreover Equation (3.17) implies that G(−DZ2φ) ≤ −θg and

−θg ≥ −φt2 + F (t2,γ , z2,γ ,−DZ2φ, Â2, J
π,κ(t2,γ , z2,γ , v

θ,−DZ2φ), J
π
κ(t2,γ , z2,γ ,−φ))

(3.18)
In the following we show that G(DZ1φ) < 0 holds for a sufficiently large γ. We operate by
contradiction: by saying that G(DZ1φ) ≥ 0. Then it follows that

−θg ≥ G(−DZ2φ)−G(DZ1φ))

= −β(φy2 + φy1) + (φx2 + φx1)

= −2βϵ(y1,γ − y∗) + 2ϵ(x1,γ − x∗),

which is converging to 0 as γ →∞.
This is a contradiction since g is strictly positive on DT , so the assertion holds. Equation (3.16)
and G(DZ1φ) < 0 have as direct consequence that

φt1 + F (t1,γ , z1,γ , DZ1φ, Â1, J
π,κ(t1,γ , z1,γ , DZ1φ), J

π
κ(t1,γ , z1,γ , φ)) ≥ 0. (3.19)
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By using inequalities (3.17) and (3.19), we have

θg ≤φt1 + F (t1,γ , z1,γ , DZ1φ, Â1, J
π,κ(t1,γ , z1,γ , DZ1φ), v, J

π
κ(t1,γ , z1,γ , φ))

+ φt2 − F (t2,γ , z2,γ ,−DZ2φ, Â2, J
π,κ(t2,γ , z2,γ , v

θ,−DZ2φ), J
π
κ(t2,γ , z2,γ ,−φ))

≤
(
e−δt1,γf(y1,γ)− e−δt2,γf(y2,γ)

)
+ (φt1 + φt2)− β(y1,γφy1 + y2,γφy2)

+ α(ξ − (λ1,γφλ1 + λ2,γφλ2) + ηµJ(λ1,γφλ1 + λ2,γφλ2)) (3.20)
+ max

π∈[0,1]
[(r + (µ− r)π)(x1,γφx1 + x2,γφx2)

+
1

2
(σπ)2(x21,γa1,xx − x22,γa2,xx)

+Jπ,κ(t1,γ , z1,γ , v
θ, DZ1φ)− Jπ,κ(t2,γ , z2,γ , v,−DZ2φ))

+(Jπκ(t1,γ , z1,γ , φ)− Jπκ(t2,γ , z2,γ ,−φ))]

≤
(
e−δt1,γf(y1,γ)− e−δt2,γf(y2,γ)

)
+ 2ϵt1,γ − ϑ− βϵy1,γ(y1,γ − y∗)

+ max
π∈[0,1]

[2(r + (µ− r)π)ϵx1,γ(x1,γ − x∗)

+2αϵ(ξ − λ1,γ(λ1,γ − λ∗) + ηµJλ1,γ(λ1,γ − λ∗)) +
1

2
(σπ)2(x21,γa1,xx − x22,γa2,xx)

+ Jπ,κ(t1,γ , z1,γ , v
θ, DZ1φ)− Jπ,κ(t2,γ , Z2,γ , v,−DZ2φ))

+(Jπκ(t1,γ , z1,γ , φ)− Jπκ(t2,γ , z2,γ ,−φ))] (3.21)

We conclude by remarking that [BKR01b] demonstrated that

lim
ϵ→0

lim
γ→∞

Jπ,κ(t1,γ , z1,γ , v
θ, DZ1φ)− Jπ,κ(t2,γ , z2,γ , v,−DZ2φ) ≤ 0,

the convergence is uniform for positive κ. We know that

Jπκ(t1,γ , z1,γ , φ)− Jπκ(t2,γ , z2,γ , φ)→ 0,

as κ → 0. We conclude the first part of the proof by saying that, since γ → ∞, ϵ → 0, κ → 0,
and we see that the right-hand side of inequality (3.20) convergences to something negative
which is a contradiction to (3.20) itself.

Situation 2. The second case regards the internal part of DT . For any γ > 1 and ϵ ∈ (0, 1), we
define, similarly to what we have done in the previous part, the functions φ,Φ : [0, T ] ×DT ×
DT → R as

φ((t1, z1), (t2, z2)) :=
γ

2
|(t1, z1)− (t2, z2)|2 − ϑ(t2 − T ),

and
Φ((t1, z1), (t2, z2) := v(t1, z1)− vθ(t2, z2)− φ((t1, z1), (t2, z2)).

Let
Mγ := max

DT×DT

Φ ((t1, z1), (t2, z2)) .
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For all γ > 1 we have that Mγ ≥M > 0. Let us recall that ((t1,γ , z1,γ), (t2,γ , z2,γ)) maximizes
φ over DT ×DT .
From

φ((t1,γ , z1,γ), (t1,γ , z1,γ) + Φ((t2,γ , z2,γ), (t2,γ , z2,γ) ≤ 2Φ((t1,γ , z1,γ), (t2,γ , z2,γ),

we get

γ|((t1,γ , z1,γ)− (t2,γ , z2,γ)|2 (3.22)
≤ v(t1,γ , Z1,γ)− vθ(t2,γ , z2,γ)− v(t2,γ , z2,γ) + vθ((t2,γ , z2,γ)) + ϑ((t2,γ − t1,γ).

The right-hand side of this equation is bounded as γ → ∞, since all the functions reported are
uniformly continuous in DT ×DT .
Therefore, for γ →∞, we assert that |((t1,γ , z1,γ)− (t2,γ , z2,γ)| → 0 as γ →∞. Finally, using
v, vθ in DT again, we see that γ|((t1,γ , z1,γ)− (t2,γ , z2,γ)| → 0 as γ →∞.

Now, by making use of M ≤Mγ and the definition of M we get

0 = lim
γ→∞

γ|((t1,γ , z1,γ)− (t2,γ , z2,γ)|2

≤ lim
γ→∞

v(t1,γ , z1,γ)− vθ(t2,γ , z2,γ) + ϑ(t2,γ − T )−M

≤ 0.

Then, we conclude that Mγ → M as γ → ∞. Since M > 0 and v ≤ vθ on Γ, we see that any
limit point of ((t1,γ , z1,γ), (t2,γ , z2,γ)) belongs to DT ×DT . For large enough γ, we have that
((t1,γ , z1,γ), (t2,γ , z2,γ)) ∈ DT . Given

D2φ = γ

(
I −I
−I I

)
,

define g0 ≡ γ, g1 ≡ 0 and g2 ≡ 0, and note that the conditions for Theorem 3.3.2 are satisfied.
Thus, it follows that, for any ζ ∈ (0, 1), there exist matrices A1, A2 ∈ S4 such that(

A1 0
0 −A2

)
≤ γ

ς

(
I −I
−I I

)
.

So

0 ≤ max{G(DZ1φ);φt1 + F (t∗1, z
∗
1 , DZ1φ, Â1, J

π,κ(t∗1, z
∗
1 , v,DZ1φ), J

π
κ(t

∗
1, z

∗
1 , φ))}, (3.23)

and

−θg ≥ max{G(−DZ2φ); (3.24)

− φt2 + F (t∗2, z
∗
2 ,−DZ2φ, Â2, J

π,κ(t∗2, z
∗
2 , v

θ,−DZ2φ), J
π
κ(t

∗
2, z

∗
2 ,−φ))} ,

As in the first case, we obtain that

lim
γ→∞

(x21,γa1,xx − x22,γa2,xx) ≤ 0,
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G(−DZ2φ) ≤ −θg

, and

−φt2 + F (t∗2, z
∗
2 ,−DZ2φ, Â2, J

π,κ(t∗2, z
∗
2 ,−DZ2φ), J

π
κ(t

∗
2, z

∗
2 , φ)) ≤ −θg (3.25)

We have G(DZ1φ) < 0, because G(DZ1φ) ≡ G(−DZ2φ) < 0. By exploiting (3.23), we get

0 ≤ φt1 + F (t∗1, z
∗
1 , DZ1φ, Â1, J

π,κ(t∗1, z
∗
1 , v,DZ1φ), v, J

π
κ(t

∗
1, z

∗
1 , φ)) ≥ 0 (3.26)

θg ≤φt1 + F (t∗1, z
∗
1 , DZ1φ, Â1, J

π,κ(t∗1, z
∗
1 , v,DZ1φ), J

π
κ(t

∗
1, z

∗
1 , φ))

+ φt2 − F (t∗2, z∗2 ,−DZ2φ, Â2, J
π,κ(t∗2, z

∗
2 , v

θ,−DZ2φ), J
π
κ(t

∗
2, z

∗
2 ,−φ))

≤(e−δt1,γf(y1,γ)− e−δt2,γf(y2,γ))− ϑ+ (φt1 + φt2) (3.27)
− β(y1,γφy1 + y2,γφy2) (3.28)
+ α(ξ − (λ1,γφλ1 + λ2,γφλ2) + ηµJ(λ1,γφλ1 + λ2,γφλ2))

+ max
π∈[0,1]

[(r + (µ− r)π)(x1,γφx1 + x2,γφx2)

+
1

2
(σπ)2(x21,γa1,xx − x22,γa2,xx)

+(Jπ,κ(t1,γ , z1,γ , v
θ, DZ1φ)− Jπ,κ(t2,γ , z2,γ , v,−DZ2φ))

+(Jπκ(t1,γ , z1,γ , λ1,γ , φ)− Jπκ(t2,γ , z2,γ , λ2,γ ,−φ))]
(3.29)

As in the first case, we have that

lim
ϵ→0

lim
γ→∞

Jπ,κ(t1,γ , z1,γ , v
θ, DZ1φ)− Jπ,κ(t2,γ , z2,γ ,−v,DZ2φ) ≤ 0,

and
lim
κ→0

Jπ,κ(t1,γ , z1,γ , φ)− Jπ,κ(t2,γ , z2,γ ,−φ) = 0,

so letting γ →∞, κ→∞ in (3.27) we obtain the contradiction, which concludes the proof.

Finally, we conclude by proving that V is the unique viscosity solution to Equation (2.17).

Theorem 3.3.1. Viscosity solutions for the terminal value problem, Equation (3.5), and Equation
(2.17) in C′

γ∗(X) are unique.

Proof. Let v1, v2 ∈ C′
γ∗(X) be two viscosity solutions of Equations (3.5) and (2.17) on X, i.e.

v1, v2 ∈ Cγ′(X) for γ′ < γ∗ with δ > k(γ′).
We observe that v1 is a viscosity subsolution of Equation (2.17) on X, that v2 is a supersolution
of Equation (2.17) on X, and that v1 = v2 at t = T . By Proposition 3.3.2 we get v1 ≤ v2 ∈ X,
and we also have v1 ≥ v2 by a similar argument, so v1 ≡ v2, and uniqueness follows.





Chapter 4

Numerical scheme to solve HJB
equation

In this part, we describe a finite difference scheme suitable to penalty approximating Equation
(2.17). Firstly, we provide a description of the approach which will be used, then we will explicit
the discretization adopted for solving the HJB equation characterizing the penalty approximation
problem. In particular, we use a scheme similar to the one presented in [BJK10], whereas a
difference-quadrature scheme is exploited for non-linear degenerate parabolic PIDE. We remark
that the scheme presented in [BJK10] attains a solution over the domain [0, T ] × Rn, therefore
we will introduce some tailored boundary conditions for (t, z) ∈ ∂X.

4.1 Penalty Approximation

The numerical scheme adopted is called penalty approximation. This particular technique
allows to solve the non-linear parabolic integro-PDE arising from Equation (2.17) approximating
the original constrained problem defined in Equation (1.25), denoted by OP . The goal is to
approximate OP with a sequence of sub-problems indexed by ϵ, i.e. (OPϵ)ϵ>0, which solutions
converge to the original one. The main concern in applying such a method is to prove that the
family of sub-problems converges to the solution of the original problem. However, since this is
not the aim of the Thesis, see e.g. [NS79] and [DZ08], where this converging issue is extensively
discussed. We remark that the gradient constraint allows the cumulative consumption process C
to be discontinuous, therefore we derive a continuous version of the problem. In particular, for
any ϵ > 0, suppose Ct =

∫ t
s c(u)du for all t ∈ [s, T ], where |c(u)| ≤ 1/ϵ a.e.. Let us define

Vϵ(t, x, y, λ) = sup
π∈Bϵ

t,x,y

E
[∫ T

t
e−δsf(Y π,C

s )ds+ h(Xπ,C
T , Y π,C

T , λT )

]
,

where

Bϵ
t,x,y = {(π,C) ∈ A[t,T ](x, y) : C is absolutely continuous with derivative bounded by ≤ 1/ϵ};
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and, following the same steps in Section 2.2, we get

0 = e−δtf(y) + (Vϵ)t + (α(ξ − λ) + ηλµJ)(Vϵ)λ (4.1)

+ sup
π∈[0,1]

{
(r(1− π) + µπ)x(Vϵ)x +

1

2
(σπx)2(Vϵ)xx (4.2)

+ Jπ(t, x, y, λ, Vϵ)

}
+ sup

c∈[0,1/ϵ]
{c((−Vϵ)x + β(Vϵ)y)}.

We can easily note that the last part can be solved analytically for c: if −(Vϵ)x + β(Vϵ)y) < 0
we have c = 0, otherwise c is the maximum value inside the admissible region, that is to say
c = 1/ϵ. Therefore, by using Equation (2.18), we can rewrite Equation (4.1) as

0 =e−δtf(y) + (Vϵ)t + sup
π∈[0,1]

{
(r(1− π) + µπ)x(Vϵ)x +

1

2
(σπx)2(Vϵ)xx (4.3)

+ Jπ(t, x, y, λ, Vϵ)

}
+

1

ϵ
max {G ((Vϵ)x, (Vϵ)y) ; 0} ,

where the terminal condition has changed accordingly. We remark that existence and uniqueness
results hold also for the penalty approximation problem, as well as many results in Chapter 3, so
we will not report them.

4.2 Finite difference scheme for penalty approximation

In this section, we will focus on the numerical scheme providing the numerical solution for the
HJB equation defined in Equation (4.3). First of all, we write down the HJB equation in a more
convenient discrete form. Moreover, for a sake of lighter notation we denote a regular smooth
function by v instead if vϵ; therefore Equation (4.3) can be defined as

sup
a∈A

Sa(t, x, y, v) = 0,

where

Sa(t, z, v) =vt(t, z) + f(t, z) + La[v](t, z) + Ia[v](t, z),

La[v](t, z) =
1

2
(σπx)2vxx + (r + (µ− r)π)xvx − βyvy + c(βvy − vx) + (α(λ− ξ) + ηλµJ)vλ,

Ia[v](t, z) =Ja(t, z)

=λ

∫
R\{0}

v(t, x+ xπ(eq − 1), y, λ+ η|q|)− v(t, z)

− xπ(eq − 1)vx(t, z)− η|q|vλ(t, z)ζ(q)dq,
f(t, z) = e−δtf(y),

a =(π, c);

with A = [0, 1]× [0, 1/ϵ].
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4.2.1 Discretizating the HJB equation

We redefine the discrete domain as O = [0, T ] × [0, xmax] × [0, ymax] × [0, λmax], with
xmax, ymax, λmax > 0. Let N t, Nx, Ny, Nλ ∈ N, and let us define

∆t =
T

N t
,∆x =

xmax

Nx
,∆y =

ymax

Ny
,∆λ =

λmax

Nλ
,

and
tm = m∆t, xi = i∆x, yj = j∆y, λl = l∆λ

for m = 0, . . . , N t; i = 0, , . . . , Nx; j = 0, . . . , Ny; l = 0, . . . , Nλ, where the set of grid points
is

G = {(m, i, j, l) ∈ N4
0 : 0 ≤ m ≤ N t, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ l ≤ Nλ},

and

H = {(t, x, y, λ) ∈ O : t = m∆t, x = i∆x, y = j∆y, λ = l∆λ, (m, i, j, l) ∈ G}.

Let us now introduce the discrete approximation of the value function v̂ : H→ R defined by:

v̂mi,j,l = v̂(tm, xi, yj , λl) ≈ v(tm, xi, yj , λl) ∀ (m, i, j, l) ∈ G.

Now, Equation (4.3) can be rewritten as

sup
a∈A

Sa
H
(tm, xi, yj , λl, v̂) = 0,

where

Sa
H
(tm, xi, yj , λl, v̂) =

1

∆t

(
v̂mi,j,l − v̂m−1

i,j,l

)
+ fm−1

i,j,l + La
H
[v̂mi,j,l] + Ia

H
[v̂mi,j,l],

La
H
[v̂] =

1

2
(σπx)2∆xx,∆xv̂

+ (r + (µ− r)π)xδ+x,∆xv̂ − βyδ
−
y,∆yv̂

+ (α(ξ − λ) + ηµJλ)δ
−
λ,∆λv̂

+
1

ϵ
max

{
βδ+y,∆yv̂ − δ

−
x,∆xv̂; 0

}
.

where the finite differences used in the above scheme are defined by

δ±r,hφ(r, t, z) := ±
1

h
(φ(r ± h, t, z)− φ(r, t, z)) ,

∆rr,hφ(r, t, z) :=
1

h2
(φ(r + h, t, z)− 2φ(r, t, z) + φ(r − h, t, z)) ,

for functionsφ : R×X. Finally, a special mention should be set aside for the integral operator Ia.
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4.2.2 Quadrature rule for the integral operator

In our case, the finite integral cannot be solved analytically, so we make use of the difference-
quadrature scheme defined in [BJK08; BJK10], alternatives being, e.g., the trapezoidal rule,
the mid-point rule, and the Simpson’s rule; for more details see, e.g., [RS90; DCS98; Kun62]).
Anyway, we choose the scheme defined in [BJK10] since it provides a direct discretization of
the non-local part of the PIDE which leads to a monotone scheme capable of handling singular
measures. Therefore, we have:

Ia[φ](t, z) = Ia,+[φ](t, z) + Ia,−[φ](t, z)− b̃a(t, z)φx(t, z)− c̃a(t, z)φλ(t, z)

where

b̃a(t, z) :=

∫ +∞

−∞
∂2zxπ(e

q − 1)k̃(q)dq,

c̃a(t, z) :=

∫ +∞

−∞
∂2zη|q|k̃(q)dq,

Ia[φ] := ±
∫ ±∞

0
∂2z [φ(t, x+ πx(rq − 1), y, λ+ η|q|)]k̃(q)dq,

and the integrand measure is defined by:

k̃(q) :=

{ ∫ q
−∞

∫ w
−∞ k(r)drdw if q < 0∫∞

q

∫∞
w k(r)drdw if q > 0.

Discretization of Ia,± follows directly from [BJK10], therefore

Ia,±[φ](t, z) =
∞∑
n=0

∆qq,∆q[lH[φ](t, x+ πx(eq − 1), y, λ+ η|q|)]k̃±H,n,

where qn = n∆x, and ∆z =
√
∆x, IH is the second order interpolation operator, and

k̃±H,n = ±
∫ q±(n+1)

q±n

k̃(q)dq,

where

IHφ(t, z) :=
Nx∑
i=0

wi(x)φ(t, xi, y, λ),

and
|φ(t, x, y, λ)− IHφ(t, x, y, λ)| ≤ KI∆x

2|D2
Xφ|L∞ ,

for all x ∈ [0, xmax] and φ ∈ C2(X), where KI is some constant and wi : R → [0, 1], i =
0, . . . , Nx, are some weighting functions satisfying the following conditions:
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1. wi(xi) = 1,

2. wi(xj) = 0 for i ̸= j,

3.
∑Nx

i=0wi = 1.

In particular we define wi such that:

wi(x) :=


0 = if |x− xi| ≥ ∆x,

(x− xi−1)/∆x = if xi−1 < x < xi,

(xi+1 − xi)/∆x = if xi < x < xi+1.

Finally, b̃a(t, z)φx is discretized by an upwind difference b̃a(t, z)δ−x,∆xv̂, similarly for c̃a(t, z)φλ,
we have c̃a(t, z)δ−λ,∆λv̂.

4.2.3 Boundary conditions

Since the problem is defined on X, we need some boundary conditions in order to complete the
numerical scheme presented in Section 4.2.2.
In particular, we will explicit the value function for the time variable t = T , and for the space
variables x = 0, y = 0, λ = 0, x = xmax, y = ymax, and λ = λmax.

Condition for terminal utility

At the final time T , we have the following condition:

v̂N
t

i,j,l = h(xi, yj , λl),

for all (i, j, l) ∈ {N3
0 : 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ l ≤ Nλ}.

Conditions for the wealth

We discuss in this part the boundary conditions referring to x. In the null wealth case, i.e. x = 0,
we have that v̂m0,j,l collapses into:

v̂m0,j,l =sup
a∈A

{
1

∆t

(
v̂m0,j,l − v̂m−1

0,j,l

)
+ fm−1

0,j,l − βyδ
−
y,∆yv̂

+ (α(ξ − λ) + ηµJλ)δ
−
λ,∆λv̂

}
.

In the case of x = xmax, we can reasonably assume that Vx → 0 as x → ∞. Therefore, we
obtain the following Neumann boundary condition:

v̂mNx,j,l = v̂mNx−1,j,l

for all (m, j, l) ∈ {N3
0 : 0 ≤ m ≤ N t, 0 ≤ j ≤ Ny, 0 ≤ l ≤ Nλ}
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Conditions for average past consumption

At the boundary case where we have null past average consumption, i.e. y = 0, we can not
recover an explicit solution formula as we have done in Section 4.2.3. Anyway, we can investigate
in depth such case.
We note that max{G(DZv); 0} is always positive, and the numerical scheme is obtained as

sup
π∈[0,1]

S
(π,0)
H (tm, (xi, 0, λl), v̂) = 0.

Similarly to what has been done for the boundary conditions for x, we have, for y = ymax, that

v̂mi,Ny ,l = v̂mi,Ny−1,l,

for all (m, i, l) ∈ {N3
0 : 0 ≤ m ≤ N t, 0 ≤ i ≤ Nx, 0 ≤ l ≤ Nλ}.

Conditions for instantaneous frequency

Finally, we are left with the boundary conditions for λ.
In the case of null instantaneous frequency of jumps, we note that the HJB equation can

be simplified into the canonical case presented in [Mer75], whereas the risky asset dynamic is
described by a continuous Lévy process. Therefore, the value function is obtained through

sup
a∈A

SaH(tm, (xi, yj , 0), v̂) = 0.

Formally, we have:

Sa
H
(tm, xi, yj , 0, v̂) =

1

∆t

(
v̂mi,j,0 − v̂m−1

i,j,0

)
+ fm−1

i,j,0

La
H
[v̂] =

1

2
(σπx)2∆xx,∆xv̂

+ (r + (µ− r)π)xδ+x,∆xv̂ − βyδ
−
y,∆yv̂

+
1

ϵ
max

{
βδ+y,∆yv̂ − δ

−
x,∆xv̂; 0

}
.

Note that explicit solutions can be obtained for utility functions belonging to the Hyperbolic
absolute risk aversion (HARA) family. Finally, we define the boundary case where the investor
cannot bear more uncertainty, i.e. λ = λmax. Also in this case, we make use of the Neumann
condition:

v̂mi,j,Nλ = v̂mi,j,Nλ−1 ,

for all (m, i, j) ∈ {N3
0 : 0 ≤ m ≤ N t, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny}.
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Calibration and numerical results





Chapter 5

Calibration algorithms

In this part, we report the calibration algorithm for the self-exciting model on market data. In
particular, we provide an effective calibration procedure for an Italian asset, namely ENI, by con-
sidering a time interval where a canonical Lévy process cannot explain clusters of extraordinary
movements affecting the market. Indeed, we have chosen the COVID-19 breakout period, when
we assume the self-exciting effects can catch better cluster phenomenon.

The calibration procedure will be divided in two parts due to the high-dimensionality of
the problem. Firstly, we perform a preliminary calibration where we provide an estimate of the
parameters by mean of a log-likelihood procedure. Then, we comment such results and use them
as starting point to properly locate the prior distributions for a particular type of Sequential Monte
Carlo algorithm, which will be explained in details. Among the various calibration approaches
available, we calibrate the model over ENI asset, by using an asymmetric Peaks over Threshold
(PoT) methodology, see e.g. [ELL11]. Then, by focusing exclusively on the jump part, we obtain
the parameters defining either the double exponential distribution and the process λ.

We collected the daily level for ENI asset from March 3, 2012 to March 3, 2022, obtaining
2535 values. The data are stored in a vector of (n + 1) observed levels for the risky asset s.
Then, we compute the vector y = (y1, ..., yn), collecting the log-returns, where yi := log( si

si−1
).

Note that each observation is indexed to time ∆i, where we assume ∆ := 1/252, since we have
collected daily data.

5.1 Log-likelihood algorithm

Due to the high-dimensionality of the problem, we firstly apply the PoT methodology to divide
the total sample into a pure Gaussian and a mixture part. Therefore, we cut off the sample by
obtaining a subset of returns delimited by the Normal quantiles of two optimal confidence levels
q(α1), q(α2), such that the sample without jumps replicates the third and forth central moments
of a Gaussian random variable.
In such a way, we are excluding from the pure Gaussian sample those extreme returns which are
diverging the sample’s skewness and kurtosis from those desired. Table 5.1 reports the yearly
mean µ̂, standard deviation σ̂, skewness Ŝ, and excess of kurtosis K̂ of our sample.
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parameter µ̂ σ̂ Ŝ K̂

value 3.6929 % 27.5388 % -1.3907 23.8088

Table 5.1: Descriptive statistics (yearly basis) for the sample of daily log-returns y

There is no need of Jarque-Bera test to notice that the distribution is far for being Gaussian.
Indeed, the negative value of Ŝ highlights slightly extended tails on the left side, the value K̂
denotes fat tails, therefore the distribution is highly leptokurtic. Let us define Y := σ̂W∆, so
Y ∼ G(0, σ̂2∆). Now let us define the distribution of the centered yi in the following way:{

(yi − µ̂) ∼ Y if q(α1) ≤ (yi − µ̂) ≤ q(α2),

(yi − µ̂) ∼ Y + J otherwise ,

where we call q(α) the quantile of order α of the continuous random variable Y .
This optimization problem has solution in (α1 = 0.024, α2 = 0.975), such solution ensures a
purged sample with skewness Ŝ′ = 0.0045 and excess of kurtosis K̂ ′ = −0.0111. We can now
perform the Jarque-Bera test on the sample since the sample size is sufficient, see e.g. [GG08].
The results confirm our expectations: the statistic test is equal to 0.0208, with a corresponding
p-value of 98.96%, thus the hypothesis of Normal distribution cannot be rejected for the sample
considered, for almost every reasonable confidence level.

We report a graphical presentation in Figure 5.2, where log-returns of ENI have been plotted.
Then, we mark the threshold levels provided by the solution of the optimization problem.

The log-returns detected as jumps are 111 and are collected in the mixture part. These
observations allow us to calibrate the latent process λ for a triplet of parameters (α, ξ, η):

λi = λi−1 + α(ξ − λi−1)∆ + η|Ji|1(∆Ni = 1|λi−1),

where we reasonably set λ0 = ξ.
Given the frequency of the data collected, we assume that at most, one jump can occur

between two observations, so we focus only on the possibility of having one jump or no jumps
in ∆.
The jump distribution and the frequency parameters are then calibrated by jointly maximizing
the following two log-likelihood functions:{

(p, ρ+, ρ−) = argmax
∑n

i=1 logP(yi|p, ρ+, ρ−)1(∆Ni = 1|λi−1)

(α, ξ, η) = argmax
∑n

i=1 logP(∆Ni|λi−1)
.

Formally we have

(∆Ni|λi−1∆) =

{
0, P(∆Ni = 0|λi−1) = 1− λi−1∆+O((λi−1∆)2)

1, P(∆Ni = 1|λi−1) = λi−1∆−O((λi−1∆)2).

In the implementation, we will reasonably assume O((λi−1∆)2) is negligible, therefore where
we approximate the increment of the Poisson process with a Bernoulli process.
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Finally, in order to confirm the entire procedure, we calibrate µ and σ appearing in Equation
(1.5) by maximizing the log-likelihood of the distribution of zi, where:

zi :=yi −
(
µ− σ2

2
− λi−1E[eJ − 1]

)
∆− ji1(∆Ni = 1|λi−1), (5.1)

with ji denoting the jump size if a jump occurred at i. Finally, we denote the time-dependent
mean as

µ∗i =

(
µ− σ2

2
− λi−1E[eJ − 1]

)
.

Thus, the solution of the problem is

(µ, σ, p, ρ+, ρ−) = argmax
n∑

i=1

logP
(
zi
∣∣θ) ,

where θ = (µ, σ, p, ρ+, ρ−) ∈ Θ, and

P(zi|θ) = φ(yi − µ∗i |Θ)P(∆Ni = 0|λi−1, θ)

+ ι(yi − µ∗i |Θ)P(∆Ni = 1|λi−1, θ),

where φ(·) is the probability density function for a random variable distributed as G
(
0, σ2∆

)
and ι(·|θ) is the probability density function for Z := Y + J . It is called double exponential
modified Gaussian (DEMG) distribution, and it is an extension of the mixture of a Gaussian and
an exponential distribution, known, in literature, as exponential modified Gaussian (EMG), see
e.g. [AGG19; FD84].

Proposition 5.1.1. Let Y, J be two continuous and independent random variables, such that
Y ∼ G(0, σ2∆) and J is distributed according ζ(·|p, ρ+, ρ+) as Equation (1.1). Given a set of
parameters θ = (σ, p, ρ+, ρ−), the density function ofZ := Y +J , has the following closed-form
solution:

ι(z|θ) =− (1− p)ρ−e(
1
2
σ2∆(ρ−)2−ρ−z)Φ

(
−z + σ2∆ρ−

σ
√
∆

)
+ pρ+e

1
2
σ2∆(ρ+)2−ρ+z

(
1− Φ

(
−z + σ2∆ρ+

σ
√
∆

))
,

where Φ(·) denotes the distribution of a Gaussian random variable with null mean and variance
unity.

Proof. The solution for the closed-form for ι(·) can be obtained by the convolutional method,
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namely:

ι(z|θ) =(φ ∗ ζ)(z|θ) =
∫ ∞

−∞
φ(z − t)ζ(t)dt

=− (1− p)
∫ 0

−∞
ρ−e−ρ−t 1√

2π∆σ
e−

(z−t)2

2σ2∆ dt

+ p

∫ ∞

0
ρ+e−ρ+t 1√

2π∆σ
e−

(z−t)2

2σ2∆ dt

=− (1− p)ρ−e
1
2
σ2∆(ρ−)2−ρ+z×

×
∫ 0

−∞

1√
2π∆σ

e−
(t−(z−σ2∆ρ−))2

2σ2∆ dt

+ pρ+e
1
2
σ2∆(ρ+)2−ρ+z×

×
∫ ∞

0

1√
2π∆σ

e−
(t−(z−σ2∆ρ+))2

2σ2∆ dt

=− (1− p)ρ−e(
1
2
σ2∆(ρ−)2−ρ−z)Φ

(
−z + σ2∆ρ−

σ
√
∆

)
+ pρ+e

1
2
σ2∆(ρ+)2−ρ+z

(
1− Φ

(
−z + σ2∆ρ+

σ
√
∆

))
,

where Φ(·) is the cumulative density function of a standard Gaussian random variable.

5.1.1 Log-likelihood calibration results

Now, we can report the results of the procedure described the previous section. The parameters
values are collected in Table 5.2, where we denote the log-likelihood calibrated parameters by
µ̃, σ̃, p̃, ρ̃+, ρ̃−, α̃, η̃, ξ̃, to discern from the calibrated parameters in Section 5.2.

parameter µ̃ σ̃ p̃ ρ̃+ ρ̃−

value 4.42% 23.41% 0.5045 20.8960 -18.5073

parameter α̃ ξ̃ η̃

value 16.7859 5.1858 420.0910

Table 5.2: Parameters of the model obtained with the calibration on ENI.



5.1 Log-likelihood algorithm 69

Results
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Figure 5.1: Close adjusted values for ENI from March 03, 2012 to March 03, 2022. Source:
Refinitiv.
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Figure 5.2: Log-returns for ENI asset. Red lines report the thresholds exploited to detect jumps.
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Figure 5.3: Latent process λ with α = 16.7859, ξ = 5.1858, η = 420.0910.
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Figure 5.4: Quantile-Quantile plots for the log-returns distribution. On the left side the whole
log-returns are plotted, on the right side the sample without jumps is reported.

In Figure 5.1 we report the ENI asset levels for the considered period. We can notice that there
are some sudden increments and drops in prices in particular in the first months of 2020. Such
movements are highlighted in Figure 5.2, where we mark in red the thresholds dividing the pure
Gaussian from the mixture part.
Finally, in Figure 5.3, we report the latent process λ and, in particular, we notice that the model
describes accurately the jump cluster at the beginning of 2020, where the instantaneous frequency
reaches its peak in the period considered.
Note that the value reported for µ̃ and σ̃ are on yearly basis. Moreover, we should remark that σ̃
does not refer to the overall volatility of the asset in this case, differently to what happens in a
canonical Geometric Brownian Motion. Although the algorithm proposed is immediate and with
limited computational costs, we can observe that the Quantile-Quantile plot for the log-returns
without jumps seems different from being a Gaussian. Therefore, we apply different tests to
verify that the distribution is Normal, see for example Kolmogorov-Smirnov test, Lilliefors test,
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Shapiro-Wilk, Anderson-Darling test in [BZ14; AM07; RW+11]. In particular the Kolmogorov-
Smirnov test reports poor results for the p-value. Moreover, the Jarque-Bera test requires, at
least, 2000 elements, which is not always reasonable when dealing with daily data. Therefore,
these reasons motivate us to look for an additional and robust calibration routine which will be
presented in the next section.

5.2 The Sequential Monte Carlo algorithm

The previous preliminary results, reported in Section 5.1.1, will be the starting point and bench-
mark for a particular implementation of Sequential Monte Carlo algorithm, namely SMC2 .
The choice of a new particle filtering calibration routine is due to the main drawbacks of the
aforementioned log-likelihood method. In fact, it detects jumps only in the case we are exceeding
the thresholds set, concretely meaning it cannot detect jumps of small sizes. This drawback spurs
to look for further methods to retune the log-likelihood results presented in Section 5.1.
Aside the Particle Filtering method proposed above, let us underline that we have considered sev-
eral alternative ways to calibrate the parameters, namely neural networks (NNs) approach. This
family of methods has been already successfully exploited in recent literature, see e.g. [DPH16;
DPH17; GR11; Hou+18; KA16], gaining an increasing attention by the financial community.
However, we decide to use the SMC2 algorithm since it is more flexible given the parameter
uncertainty under analysis.

In this section, we report the procedure in [CDPVnda], where we focus on this particular
family of particle filtering techniques (PF). Such PF relies on Bayesian statistical Inference and
aims to compute the posterior distributions for some stochastic processes using a given set of
particles, see e.g. [DM96; LC98], which paved the way in this field.
The filtering problem is high-dimensional and the diffusive part is driven by several sources of
noise: this motivates a robust calibration procedure which acts simultaneously on (N,λ,J).
The proposed Sequential Monte Carlo approach is based on the joint use of the iterated bath im-
portance sampling (IBIS) algorithm, see e.g. [Cho02], and the PFs technique, see e.g. [Fea+10].
The procedure samples the values for the marginal distribution of θ and then reweights itera-
tively these values by using the likelihood increments p(yt|y1:t−1, θ). We must remark that the
reweighting algorithm plays a crucial role in the procedure since it avoids the degeneracy of
the importance weights, see e.g. [DDFG01; Dju+03], but, on the other side, it yields a loss of
heterogeneity in the population of particles including additional computational costs, for a de-
tailed description see [Che+03; DJ+09]. Before applying the SMC2 model, we will introduce the
notation and the pseudocode in Sections 5.2.1 and 5.2.2, providing a description of the quantities
involved. In Section 5.2.4, we implement a calibration routine based on the approach presented in
[CJP13], and then, after we have correctly set the framework, we apply the calibration algorithm
to the processes presented in Section 1.2.1 and comment the results in Section 5.2.4, remarking
the differences with the the log-likelihood approach presented in Section 5.1.



72 Calibration algorithms

5.2.1 Introduction to the notation for SMC2

We recall the colon notation for sets of random variables which will be used in this section, that
is to say x1:Nx

t :=
⋃Nx

n=1 x
n
t is a set of Nx random variables xnt , n = 1, . . . , Nx and, similarly,

x1:Nx
1:t :=

⋃t
s=1 x

1:Nx
s . Moreover, we denote by p(·) the probability density defined by the model,

meanwhile πt defines the posterior probability density at t, investigated by the algorithm. More
precisely, for a generic state-space model, with parameters θ ∈ Θ, prior p(θ), latent Markov
process (xt)t and p(x1|θ) = µθ(x1), we have

p(xt+1|x1:t, θ) = p(xt+1|xt, θ) =: fθ(xt+1|xt), t ≥ 1, (5.2)

with the observed process defined as

p(yt|y1:t−1, x1:t−1, θ) = p(yt|xt, θ) =: gθ(yt|xt), t ≥ 1.

The goal of the algorithm is the iterated exploration of the posterior distributions

π0(θ) = p(θ), πt(θ, x1:t) = p(θ, x1:t|y1:t), t ≥ 1,

as well as computing the distribution for the observed process p(y1:t). Therefore, in Section
5.2.4 we will perform some analysis on p(y1:t), whereas we prove the goodness of results in
the SMC2 algorithm, in particular focusing on the out-of-sample prediction. SMC2 is a generic
black box tool which allows to perform particle Markov chain Monte Carlo (PMCMC), a class
of MCMC algorithms that uses a particle filter of size Nx as a proposal method to overcome the
intractability of the distribution p(y1:t|θ), obtained as by-product of particle filtering outcome.
Formally, we have:

p(y1:t|θ) = p(y1|θ)
t∏

s=2

p(ys|y1:s−1, θ), 1 ≤ t ≤ T,

with the variance increasing linearly in time, for more details see [CDMG11]. Each of the
Nθ, θ-tuple particle θm is exploited by the particle filter to propagate Nx x-particles.
Differently from the canonical PF algorithms, SMC2 produces unbiased estimates for the θ
marginal likelihood instead of an exact filter, as the IBIS case. We report that, in [ADH10], it has
been shown that, as Nx grows, the PMCMC algorithm behaves more similarly to a theoretical
MCMC. This overcomes the intractability of πT (θ) and, even more important, for a given value
of Nx, the PMCMC algorithm returns stationary distribution for πT (θ, x0:T ).
Finally, we remark that such family of algorithms offers further advantages: it calibrates auto-
matically the Nx tuning parameters and the proposal distributions for θ.

5.2.2 Pseudocode for SMC2

In the following section, we present a pseudocode for SMC2 , the procedure is reported for a given
k-tuple of parameters θm, therefore the operations involving the index m should be intended on
(θm1 , θ

m
2 , . . . , θ

m
k ) =: θm,∀m ∈ {1, . . . , Nθ}.
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The algorithm proposed acts on the tuple (θ, x1:Nx
1:t , a1:Nx

1:t−1) in the following way: if the
degeneracy criterion is met, the set of variables is replaced by new ones, otherwise the set of
variables are kept with no changes. Before exploring the procedure, we remark that we denote
by Kt(·) a PMCMC kernel which defines the rejuvenation step, while the proposal step is based
on some kernel T (θ, dθ̃) in the k-dimensional support.

Algorithm 1 SMC2 : parameter and state estimation

procedure SMC2

for m ∈ {1, . . . , Nθ} do
Sample θm from p(θ) and set ωm ← 1.
t← 1.
Sample x1:Nx,m

i ∼ ψ0,θm(·) and compute

p̂(y1|θm) =
1

Nx

Nx∑
n=1

ω1,θ(x
n,m
1 ).

for t ∈ {2, . . . , T} do
Sample

(
x1:Nx,m
t , a1:Nx,m

t−1

)
∼ ψt−1,θm and compute

p̂(yt|y1:t−1, θ
m) =

1

Nx

Nx∑
n=1

ωt,θ(x
an,m
t−1

t−1 , x
n,m
t ).

Update the weights:

ωm ← ωmp̂(yt|y1:t−1, θ
m).

if some degeneracy criterion is fulfilled (see Section 5.2.3), then
Sample

(
θ̃m, x̃1:Nx,m

1:t , ã1:Nx,m
1:t−1

)
from

1∑Nθ
m=1 ω

m

Nθ∑
m=1

ωmKt

{(
θm, x1:Nx,m

1:t , a1:Nx,m
1:t−1

)
, ·
}
. (5.3)

Replace the current state of the system with the set of unweighted particles:(
ωm, x1:Nx,m

t , a1:Nx,m
t−1 , θm

)
←
(
θ̃m, x̃1:Nx,m

t , ã1:Nx,m
t−1 , 1

)
.
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5.2.3 The degeneracy criterion

In the pseudocode, we remark that we may want to rejuvenate the sample
(
θ̃m, x̃1:Nx,m

1:t , ã1:Nx,m
1:t−1

)
from Equation (5.3), whenever some criterion is met. We decide to use the most standard and
studied approach, which regards the Effective Sample Size (hence ESS) metric, defined as:

ESS :=
(
∑Nθ

m=1 ω
m)2∑Nθ

m=1(ω
m)2

.

Therefore, the move step is achieved by using a Markovian kernel Kt(·) which ensures p(θ|y1:t)
is invariant. In the calibration procedure, we set Kt(·) as a Metropolis-Hastings kernel, which
proposes a new set of particles whenever ESS < γNθ for γ ∈ (0, 1). For a more detailed
theoretical explanation, see Sections 3.7 and 4 in [CJP13], and [GK18].

5.2.4 SMC2 calibration results

In the final part of this section, we take into account the calibration of the risky model defined
in Section 1.2.1 by using the pseudocode in 5.2.2. We focus on the most recent thorny period
where a deep instability was affecting the market. Therefore, we reduce the sample used in
Section 5.1.1, by focusing on the interval from December 31, 2019 to March 3, 2022, just at the
beginning of the global outbreak of the conflict in Ukraine. In order to have a test set, we reduce
the sample by taking out the last 10 observations which will be used to briefly test the model.

Firstly, we define the marginal prior distributions for the model parameters, almost all of
them are centered in the log-likelihood calibrated parameters defined in Section 5.1.1, while the
probability of having a positive jump is bounded between 0 and 1. In details, we have:

α ∼ E(1/α̃),

ξ ∼ E(1/ξ̃);

η ∼ LN(log(η̃ − 50.0), 10.0),

p ∼ B(2.0, 2.0),

ρ− ∼ E−(1/ρ̃−),

ρ+ ∼ E(1/ρ̃+),

µ ∼ G(µ̃, 0.1),

σ ∼ LN(log(σ̃ − 0.02), 0.2),

where we denote, respectively, by E(a) an Exponential distribution of parameter a ∈ R+, by
E−(a) a (negative) Exponential distribution with parameter a ∈ R−, by LN(a, b) we denote a
Log-Normal distribution with location a ∈ R and scale b ∈ R+. Finally, B(a, b) is a Beta distri-
bution with concentration parameters a, b ∈ R+. The key feature of our approach is to consider
the latent multidimensional process x1:t as collection of all the singular latent processes. Despite
the great advantage of coping with a state-space with intractable densities, we have to deal with
the fact that the joint density distribution cannot be attained in a closed-form. Therefore, we make
use of the Dirac-delta distribution provided by the Github package pyro-ppl, see e.g. [PPJ19;



5.2 The Sequential Monte Carlo algorithm 75

Bin+18].
In the case considered, at each t ∈ {1, . . . , T}, we have xt = (λt,Nt, JNt), and we remark
that this tuple evolves with Nx = Nθ = 1000 particles. For what concerns the computational
cost, we briefly point out that SMC2 algorithm is memory-intensive, this forces us to use Google
Colaboratory, as suggested also in [Car+18], where an analysis is performed through the use of
Colaboratory for accelerating deep learning for computer vision and other GPU-centric applica-
tions.
In particular, in [CJP13], it is reported that the algorithm requires, up to iteration t, a computa-
tional cost of order O(tNθNx), which eventually can be reduced to O(NθNx) with little loss of
generality.

Then, we extended the Github package pyfilter [Vic22] by developing those new classes
required to run the algorithm in our case.

Given the previous considerations, we can now focus the analysis on the parameters calibrated
and, to mark the stability of the algorithm, we plot the results obtained with two different
calibration runs. The calibration is performed by setting the parameter γ defined in Section 5.2.3
equal to 0.2. In particular, we decide to focus on the Gaussian observations

ỹi = yi + λi−1E[eJ − 1]∆− ji(∆Ni = 1|λi−1) (5.4)

with ỹi ∼ G
(
(µ− 0.5σ2)∆, σ2∆)

)
.

Firstly, we investigate the posterior distributions for 2 different runs to show the stability and
then we compute the parameters distribution mean over several runs. In particular, we have:
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Figure 5.5: Posterior distributions for the model parameters for 2 different runs.

Therefore, we perform 100 runs and we store the distributions and their means. Then, for
each parameter we compute the mean over all the 100 means obtained at the previous step. The
results are reported in the following table.
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parameter µ σ p ρ+ ρ−

value 5.77 % 20.13 % 0.4889 60.5654 -53.8959

parameter α ξ η

value 9.3016 4.6756 419.2810

Table 5.3: Parameters mean obtained with the SMC2 procedure on ENI asset.

In Table 5.3, the parameters ρ− and ρ+ assume values which are coherent with our expecta-
tions, in fact, the SMC2 algorithm has detected more small jumps than the procedure presented in
Section 5.1. Moreover, due to the increment of the number of jumps detected, also the impact of
the Brownian Motion is reduced, as we observe a value of 20.13% for σ, whereas σ̃ was 23.41%
in Table 5.2. Further, we investigate the evolution of the most important latent process, namely
λ, and we observe that the particle filter detects similar behaviours over different runs:
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Figure 5.6: λ evolution for the observed period for different runs.

Also in this case, we note that the process λ describes the turmoil in the market during the
COVID-19 breakout in 2020.

Finally, we briefly test our model to predict an out-of-sample return 10-days ahead and
compare it with the forecast given by the historical rolling mean.
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Figure 5.7: Log-return forecast 10-day ahead.

We clearly see that the model overperforms the forecast provided by the rolling mean on
10-day windows.

Now that the risky part of the portfolio is calibrated, we can focus on the simulation part.
In the following chapter we represent the numerical solutions for the stochastic control problem
described in Chapter 2.





Chapter 6

Simulation and results

In this last part we solve the penalized HJB equation (4.1) numerically. Therefore, firstly we
explicit the utility functions used, and then we collect all the results from the simulations, in
particular focusing on the optimal value function and optimal investment strategies.

6.1 Settings

Thanks to Assumption A3 defined in Section 1.3.1, we can reduce the dimension of the problem.
Thus, we look for a solution on the space defined by w = x/y and then, in order to graphically
explore the results, we simulate separately λ.
The procedure consists in iterating backwards over the time interval [0, T ] solving the value
functions for optimal π using the finite difference scheme exposed in Chapter 4.

6.1.1 Utility functions

Although the numerical scheme is defined for value functions directly depending also on λ, we
decided to omit this dependence and ease the graphical representation.
Therefore, we explicit the terminal utility function in Equation (6.1) as

h(x, y) :=
1

γ
(x+ βy)γ , (6.1)

where β ∈ R+, and γ ∈ (0, 1).
Then, we introduce the form of the running utility which will be used in the simulation, as
denoted by Equation (1.25).
Therefore, we define the functional f as

f(y) :=
yγ

γ
, (6.2)

with γ ∈ (0, 1).
Now, we can recollect the results obtained in Table 5.3 for Equations (1.18) and (1.3).
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parameter µ σ p ρ+ ρ−

value 5.77 % 20.13 % 0.48 60.5654 -53.8960

parameter α ξ η

value 9.3016 4.6756 419.2810

Table 6.1: Parameters of the model obtained with the calibration on ENI asset.

It is worth emphasizing that we decide to fix a maximum change in the portfolio allocation,
i.e. ∆π = 0.1 for each time step, in this way we bound the changes in the risky part of the
portfolio. Indeed, it is not always possible to disinvest a remarkable amount of capital from one
day to another.

Now we are left to set the risk-free short rate r. Although it is not completely realistic
according to the current market conditions, we set a positive value for r. Such condition, r > 0,
guarantees that the model does not collapse into a trivial solutions, that is to say that the entire
wealth is invested in the risky part.
We set now the parameters characterizing the objective function, which are reported in Table 6.2.

parameter r γ β δ

value 3.00 % 3.00% % 2.00 0.10

Table 6.2: Objective function parameters.

And finally, we report the model settings in Table 6.3:

parameter T πT ∆π wmax Nw N t λ

value 5.00 0.40 0.10 5.00 30.00 1260 5.00

Table 6.3: Model settings.

We decide to set the initial value for λ equal to 5.00, which is a reasonable starting point
given the calibration outputs.

6.2 Results

The results are graphically represented by the mean of the control and the value functions. In
particular, we use E[λt|F0] in the numerical scheme to solve the PIDE; therefore, we firstly
represent the optimal control against the evolution for E[λt|F0], obtained as for Equation 1.17.
Therefore, the control function is reported in Figure 6.1 and, in Figure 6.2, we represent the
expectation for λ against the control value for some fixed values for w. Furthermore, we would
like to remark that we choose a reasonable small amount for the risky allocation at timeT , because
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we expect that investors get more risk adverse as time passes by, preferring safer investments as
they get older.
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Figure 6.1: Control function for E[λ].
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For what concerns the value function V , the result is coherent with the literature on the topic.
In Figure 6.3 we report the value function results, where E[λt|F0] has been used in solving the
PIDE. The surface declines slowly over time, although it is almost flat for different values of w.
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We consider also the evolution of π for different realizations of λ, therefore we report some
simulations for λ and the corresponding values for π.

w

0
1

2
3

4
5 t0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

π(t,w|λt)

0.2

0.4

0.6

0.8

0 1 2 3 4 5
t

5

10

15

20

λ t

λt against π(t|x)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

π(
t|x

,λ
t)

w= 1.5
w= 3.0
w= 4.5

(a) First simulation



6.2 Results 83

w

0
1

2
3

4
5 t0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

π(t,w|λt)

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
t

5

10

15

20

25

30

35

40

45

λ t

λt against π(t|x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

π(
t|x

,λ
t)

w= 1.5
w= 3.0
w= 4.5

(b) Second simulation
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Figure 6.4: Different simulations for λ and corresponding values for π.

In presence of jumps, and consequently for sudden increases for λ, we note that the control
function drops for all the value of w and then immediately raises, converging to the value of
π reported in Figure 6.1. This effect is quite interesting and realistic, since it is due to some
economic reasons. In fact, in presence of jumps the total uncertainty incorporated in the portfolio
increases, forcing the investor to decrease the amount allocated in the risky asset since such a
high risk cannot be born in a small time frame.
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6.2.1 Sensitivity analysis for α

Finally, we conclude the chapter by performing some sensitivity analysis over α which governs
the speed convergence to the long-term mean for the λ process, see Equation (1.3).
Thus, we plot some realizations for λ with different α, as reported in the legend.
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Figure 6.5: Sensitivity analysis for different values of α and
(λ, ξ, η, p, ρ+, ρ−) = (10., 4.6756, 419.2810, 0.48, 60.5654,−53.8960).

We fix an initial frequency λ different from ξ, since we want to highlight convergence of the
process and mark its self-exciting nature.
In particular, for the realizations reported we can appreciate that the self-exciting feature is more
marked whenever we are in presence of small α since the jump effect is more persistent in time.



Conclusion

In the present work we investigated both the optimal risky allocation and consumption for a
portfolio whose dynamics is steered by a self–exciting Poisson point process. The proposed
model overcomes some drawbacks of the Lévy processes and generalizes the setting, indeed it
can justify extreme returns clusters which can be observed in a small amount of time. In the first
chapter we introduced the model, focusing in particular on the concept of instantaneous jump
frequency. Then, we enunciated the portfolio optimization problem over a finite time horizon
solved by the value function, proving its continuity over the whole domain and remarking all
the necessary conditions ensuring its well posedness. The latter allows to prove that Dynamic
Programming Principle holds within our framework, hence allowing us to derive the Hamilton-
Jacobi-Bellman equation for the portfolio optimization problem. Then, we included an extra
constraint on the gradient for the HJB equation because of the discontinuity of the second
control, and we studied such equation exploiting results obtained in [CDPVndb]. In particular
we proved that the V is the unique viscosity solution for our optimization problem, also providing
uniqueness via comparison principle. Then, we concluded the first part of the Thesis by penalty
approximating the HJB equation and presenting the corresponding backward numerical scheme,
incorporating the gradient constraint as a penalty term.

Within the second part of the present work, we applied aforementioned theoretical results to
the case of investors who might want to stay exposed in the market even during financial turmoil.
Therefore, we calibrated the self-exciting process on an Italian asset, namely ENI, during the
COVID-19 breakout. We started by using a likelihood approach joint with a Peaks over Threshold
(PoT) technique. Then, the previous results are used as a starting point to implement the model
in [CDPVnda], where a Sequential Monte Carlo (SMC2 ) algorithm has been used to solve the
high-dimensional calibration problem in presence of a self-exciting process. Finally, we used the
calibrated parameters to simulate the HJB equation, retrieving the optimal allocation and value
function, and commenting the results.

Concluding, we remark that further developments and other interesting extensions could
be investigated by including in the self-exciting framework a stochastic process modelling the
risk-free rate or the volatility, this kind of choice increases the complexity of the problem and
reduces the tractability of the HJB equation itself adding a new source of noise.





Bibliography

[ABL02] Torben G Andersen, Luca Benzoni, and Jesper Lund. “An empirical investigation
of continuous-time equity return models”. In: The Journal of Finance 57.3 (2002),
pp. 1239–1284.

[ADH10] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. “Particle markov
chain monte carlo methods”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 72.3 (2010), pp. 269–342.

[AGG19] Sebastian Ament, John Gregoire, and Carla Gomes. “Exponentially-modified
Gaussian mixture model: applications in spectroscopy”. In: arXiv preprint arXiv:1902.05601
(2019).

[Alv94] O Alvarez. “A singular stochastic control problem in an unbounded domain”. In:
Communications in Partial Differential Equations 19.11-12 (1994), pp. 2075–
2089.

[AM07] Hervé Abdi and Paul Molin. “Lilliefors/Van Soest’s test of normality”. In: Ency-
clopedia of measurement and statistics (2007), pp. 540–544.

[ASJ+09] Yacine Aït-Sahalia, Jean Jacod, et al. “Testing for jumps in a discretely observed
process”. In: The Annals of Statistics 37.1 (2009), pp. 184–222.

[Bin+18] Eli Bingham et al. “Pyro: Deep Universal Probabilistic Programming”. In: Journal
of Machine Learning Research (2018).

[BJK08] Imran H Biswas, Espen R Jakobsen, and Kenneth H Karlsen. “Error estimates
for a class of finite difference-quadrature schemes for fully nonlinear degenerate
parabolic integro-PDEs”. In: Journal of Hyperbolic Differential Equations 5.01
(2008), pp. 187–219.

[BJK10] Imran H Biswas, Espen R Jakobsen, and Kenneth H Karlsen. “Difference-quadrature
schemes for nonlinear degenerate parabolic integro-PDE”. In: SIAM Journal on
Numerical Analysis 48.3 (2010), pp. 1110–1135.

[BKR01a] Fred E Benth, Kenneth H Karlsen, and Kristin Reikvam. “On the existence of
optimal controls for a singular stochastic control problem in finance”. In: Mathe-
matical Finance. Springer, 2001, pp. 79–88.



88 Bibliography

[BKR01b] Fred Espen Benth, Kenneth Hvistendahl Karlsen, and Kristin Reikvam. “Optimal
portfolio selection with consumption and nonlinear integro-differential equations
with gradient constraint: a viscosity solution approach”. In: Finance and Stochas-
tics 5.3 (2001), pp. 275–303.

[BKR02] Fred Espen Benth, Kenneth Hvistendahl Karlsen, and Kristin Reikvam. “Portfolio
optimization in a Lévy market with intertemporal substitution and transaction
costs”. In: Stochastics: An International Journal of Probability and Stochastic
Processes 74.3-4 (2002), pp. 517–569.

[BL90] Fischer Black and Robert Litterman. “Asset allocation: combining investor views
with market equilibrium”. In: Goldman Sachs Fixed Income Research 115 (1990).

[BZ14] Vance W Berger and YanYan Zhou. “Kolmogorov–smirnov test: Overview”. In:
Wiley statsref: Statistics reference online (2014).

[Car+18] Tiago Carneiro et al. “Performance analysis of google colaboratory as a tool for
accelerating deep learning applications”. In: IEEE Access 6 (2018), pp. 61677–
61685.

[CB21] Yiling Chen and Baojun Bian. “Optimal dividend policy in an insurance company
with contagious arrivals of claims”. In: Mathematical Control & Related Fields
11.1 (2021), p. 1.

[CDMG11] Frédéric Cérou, Pierre Del Moral, and Arnaud Guyader. “A nonasymptotic the-
orem for unnormalized Feynman-Kac particle models”. In: Annales de l’IHP
Probabilités et statistiques. Vol. 47. 3. 2011, pp. 629–649.

[CDPVnda] Giuseppe Cordoni, Luca Di Persio, and Andrea Veronese. “A self-exciting jump
calibration approach in Finance during COVID-19 outbreak”. N.D.

[CDPVndb] Giuseppe Cordoni, Luca Di Persio, and Andrea Veronese. “Portfolio optimization
in presence of a self-exciting jump process”. N.D.

[CH89] John C Cox and Chi-fu Huang. “Optimal consumption and portfolio policies
when asset prices follow a diffusion process”. In: Journal of economic theory 49.1
(1989), pp. 33–83.

[Che+03] Zhe Chen et al. “Bayesian filtering: From Kalman filters to particle filters, and
beyond”. In: Statistics 182.1 (2003), pp. 1–69.

[Cho02] Nicolas Chopin. “A sequential particle filter method for static models”. In: Biometrika
89.3 (2002), pp. 539–552.

[CIL92] Michael G Crandall, Hitoshi Ishii, and Pierre-Louis Lions. “User’s guide to vis-
cosity solutions of second order partial differential equations”. In: Bulletin of the
American mathematical society 27.1 (1992), pp. 1–67.

[CJP13] Nicolas Chopin, Pierre E Jacob, and Omiros Papaspiliopoulos. “SMC2: an efficient
algorithm for sequential analysis of state space models”. In: Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 75.3 (2013), pp. 397–426.



Bibliography 89

[CL83] Michael G Crandall and Pierre-Louis Lions. “Viscosity solutions of Hamilton-
Jacobi equations”. In: Transactions of the American mathematical society 277.1
(1983), pp. 1–42.

[Cor+20] F. Cordoni et al. “A stochastic approach to path-dependent nonlinear Kolmogorov
equations via BSDEs with time-delayed generators and applications to finance”.
In: Stochastic Processes and their Applications 130.3 (2020), pp. 1669–1712.
url: https://www.scopus.com/inward/record.uri?eid=2- s2.0-
85068172305&doi=10.1016%2fj.spa.2019.05.013&partnerID=40&md5=
15abb883ff31d99fbde497ea7435b0e1.

[CR76] John C Cox and Stephen A Ross. “The valuation of options for alternative stochas-
tic processes”. In: Journal of financial economics 3.1-2 (1976), pp. 145–166.

[DCS98] Sever S Dragomir, Pietro Cerone, and Anthony Sofo. “Some remarks on the
midpoint rule in numerical integration”. In: RGMIA research report collection 1.2
(1998).

[DDFG01] Arnaud Doucet, Nando De Freitas, and Neil Gordon. “An introduction to se-
quential Monte Carlo methods”. In: Sequential Monte Carlo methods in practice.
Springer, 2001, pp. 3–14.

[Den07] Guohe Deng. “Pricing European option in a double exponential jump-diffusion
model with two market structure risks and its comparisons”. In: Applied Mathematics-
A Journal of Chinese Universities 22.2 (2007), pp. 127–137.

[DJ+09] Arnaud Doucet, Adam M Johansen, et al. “A tutorial on particle filtering and
smoothing: Fifteen years later”. In: Handbook of nonlinear filtering 12.656-704
(2009), p. 3.

[Dju+03] Petar M Djuric et al. “Particle filtering”. In: IEEE signal processing magazine
20.5 (2003), pp. 19–38.

[DM96] Pierre Del Moral. “Nonlinear filtering using random particles”. In: Theory of
Probability & Its Applications 40.4 (1996), pp. 690–701.

[DPH16] L. Di Persio and O. Honchar. “Artificial neural networks architectures for stock
price prediction: Comparisons and applications”. In: International Journal of
Circuits, Systems and Signal Processing 10 (2016), pp. 403–413. url: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-84998705847&
partnerID=40&md5=f3fa06042299716f81a58ef587947ec2.

[DPH17] L. Di Persio and O. Honchar. “Analysis of recurrent neural networks for short-
term energy load forecasting”. In: vol. 1906. 2017. url: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85038849154&doi=10.1063%2f1.
5012469&partnerID=40&md5=c9b0cb5acfc5507f154eb92ab7b7e915.

[DZ08] Min Dai and Yifei Zhong. “Penalty methods for continuous-time portfolio selec-
tion with proportional transaction costs”. In: Available at SSRN 1210105 (2008).

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068172305&doi=10.1016%2fj.spa.2019.05.013&partnerID=40&md5=15abb883ff31d99fbde497ea7435b0e1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068172305&doi=10.1016%2fj.spa.2019.05.013&partnerID=40&md5=15abb883ff31d99fbde497ea7435b0e1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068172305&doi=10.1016%2fj.spa.2019.05.013&partnerID=40&md5=15abb883ff31d99fbde497ea7435b0e1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84998705847&partnerID=40&md5=f3fa06042299716f81a58ef587947ec2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84998705847&partnerID=40&md5=f3fa06042299716f81a58ef587947ec2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84998705847&partnerID=40&md5=f3fa06042299716f81a58ef587947ec2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038849154&doi=10.1063%2f1.5012469&partnerID=40&md5=c9b0cb5acfc5507f154eb92ab7b7e915
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038849154&doi=10.1063%2f1.5012469&partnerID=40&md5=c9b0cb5acfc5507f154eb92ab7b7e915
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038849154&doi=10.1063%2f1.5012469&partnerID=40&md5=c9b0cb5acfc5507f154eb92ab7b7e915


90 Bibliography

[ELL11] Paul Embrechts, Thomas Liniger, and Lu Lin. “Multivariate Hawkes processes:
an application to financial data”. In: Journal of Applied Probability 48.A (2011),
pp. 367–378.

[FD84] Joe P Foley and John G Dorsey. “A review of the exponentially modified gaussian
(EMG) function: evaluation and subsequent calculation of universal data”. In:
Journal of chromatographic science 22.1 (1984), pp. 40–46.

[Fea+10] Paul Fearnhead et al. “Random-weight particle filtering of continuous time pro-
cesses”. In: Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 72.4 (2010), pp. 497–512.

[GG08] Yulia R Gel and Joseph L Gastwirth. “A robust modification of the Jarque–Bera
test of normality”. In: Economics Letters 99.1 (2008), pp. 30–32.

[GK18] Andrew Golightly and Theodore Kypraios. “Efficient SMC2 schemes for stochastic
kinetic models”. In: Statistics and Computing 28.6 (2018), pp. 1215–1230.

[GR11] S. Giebel and M. Rainer. “Stochastic processes adapted by neural networks with
application to climate, energy, and finance”. In: Applied Mathematics and Compu-
tation 218.3 (2011), pp. 1003–1007. url: https://www.scopus.com/inward/
record.uri?eid=2-s2.0-80052264353&doi=10.1016%2fj.amc.2011.
03.121&partnerID=40&md5=f5d3bce5a578d8d71581e7dce99cb6aa.

[GS12] Iosif Il’ich Gihman and Anatolĳ Vladimirovič Skorohod. Controlled stochastic
processes. Springer Science & Business Media, 2012.

[Haw18] Alan G Hawkes. “Hawkes processes and their applications to finance: a review”.
In: Quantitative Finance 18.2 (2018), pp. 193–198.

[HH93] Ayman Hindy and Chi-fu Huang. “Optimal consumption and portfolio rules with
durability and local substitution”. In: Econometrica: Journal of the Econometric
Society (1993), pp. 85–121.

[HM16] Donatien Hainaut and Franck Moraux. “A multifactor self-exciting jump diffu-
sion approach for modelling the clustering of jumps in equity returns”. In: Paris
December 2016 Finance Meeting EUROFIDAI-AFFI. 2016.

[HM19] Donatien Hainaut and Franck Moraux. “A switching self-exciting jump diffusion
process for stock prices”. In: Annals of Finance 15.2 (2019), pp. 267–306.

[HO74] Alan G Hawkes and David Oakes. “A cluster process representation of a self-
exciting process”. In: Journal of Applied Probability 11.3 (1974), pp. 493–503.

[Hol10] Nina Holden. “Portfolio optimization in a jump-diffusion market with durability
and local substitution: A penalty approximation of a singular control problem”.
MA thesis. 2010.

[Hou+18] K. in ’t Hout et al. “Special issue—Computational and algorithmic finance”. In:
Journal of Computational Science 24 (2018), pp. 180–181. url: https://www.
scopus.com/inward/record.uri?eid=2-s2.0-85042005204&doi=10.
1016%2fj.jocs.2017.12.009&partnerID=40&md5=79f0e1a23c9c659e4014405cd37a4df9.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052264353&doi=10.1016%2fj.amc.2011.03.121&partnerID=40&md5=f5d3bce5a578d8d71581e7dce99cb6aa
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052264353&doi=10.1016%2fj.amc.2011.03.121&partnerID=40&md5=f5d3bce5a578d8d71581e7dce99cb6aa
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052264353&doi=10.1016%2fj.amc.2011.03.121&partnerID=40&md5=f5d3bce5a578d8d71581e7dce99cb6aa
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042005204&doi=10.1016%2fj.jocs.2017.12.009&partnerID=40&md5=79f0e1a23c9c659e4014405cd37a4df9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042005204&doi=10.1016%2fj.jocs.2017.12.009&partnerID=40&md5=79f0e1a23c9c659e4014405cd37a4df9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042005204&doi=10.1016%2fj.jocs.2017.12.009&partnerID=40&md5=79f0e1a23c9c659e4014405cd37a4df9


Bibliography 91

[Ish04] Yasushi Ishikawa. “Optimal control problem associated with jump processes”. In:
Applied Mathematics and Optimization 50.1 (2004), pp. 21–65.

[IW14] Nobuyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and dif-
fusion processes. Vol. 24. Elsevier, 2014.

[KA16] K. Khashanah and T. Alsulaiman. “Network theory and behavioral finance in a
heterogeneous market environment”. In: Complexity 21 (2016), pp. 530–554.
url: https : / / www . scopus . com / inward / record . uri ? eid = 2 - s2 .
0- 84995632406&doi=10.1002%2fcplx.21834&partnerID=40&md5=
3eba71a2b9ece88ea710fa0ffdf72eb6.

[Kun62] Guy F Kuncir. “Algorithm 103: Simpson’s rule integrator”. In: Communications
of the ACM 5.6 (1962), p. 347.

[LC98] Jun S Liu and Rong Chen. “Sequential Monte Carlo methods for dynamic systems”.
In: Journal of the American statistical association 93.443 (1998), pp. 1032–1044.

[Mar52] Harry Markowitz. “Portfolio Selection, Journal of Finance”. In: Markowitz HM—1952.—№
(1952), pp. 77–91.

[Mer69] Robert C Merton. “Lifetime portfolio selection under uncertainty: The continuous-
time case”. In: The review of Economics and Statistics (1969), pp. 247–257.

[Mer75] Robert C Merton. “Optimum consumption and portfolio rules in a continuous-time
model”. In: Stochastic Optimization Models in Finance. Elsevier, 1975, pp. 621–
661.

[Mer89] Robert C Merton. “On the application of the continuous-time theory of finance
to financial intermediation and insurance”. In: The Geneva Papers on Risk and
Insurance-Issues and Practice 14.3 (1989), pp. 225–261.

[NS79] VH Nguyen and JJ Strodiot. “On the convergence rate for a penalty function
method of exponential type”. In: Journal of Optimization Theory and Applications
27.4 (1979), pp. 495–508.

[ØS05] Bernt Karsten Øksendal and Agnes Sulem. Applied stochastic control of jump
diffusions. Vol. 498. Springer, 2005.

[PPJ19] Du Phan, Neeraj Pradhan, and Martin Jankowiak. “Composable Effects for Flexi-
ble and Accelerated Probabilistic Programming in NumPyro”. In: arXiv preprint
arXiv:1912.11554 (2019).

[Pro] P Protter. Stochastic integration and differential equations, 1990. Springer, New
York.

[Rog13] Leonard CG Rogers. Optimal investment. Springer, 2013.
[RS90] Qazi I Rahman and Gerhard Schmeisser. “Characterization of the speed of conver-

gence of the trapezoidal rule”. In: Numerische Mathematik 57.1 (1990), pp. 123–
138.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995632406&doi=10.1002%2fcplx.21834&partnerID=40&md5=3eba71a2b9ece88ea710fa0ffdf72eb6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995632406&doi=10.1002%2fcplx.21834&partnerID=40&md5=3eba71a2b9ece88ea710fa0ffdf72eb6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995632406&doi=10.1002%2fcplx.21834&partnerID=40&md5=3eba71a2b9ece88ea710fa0ffdf72eb6


92 Bibliography

[RW+11] Nornadiah Mohd Razali, Yap Bee Wah, et al. “Power comparisons of shapiro-
wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests”. In: Journal of
statistical modeling and analytics 2.1 (2011), pp. 21–33.

[Sha64] William F Sharpe. “Capital asset prices: A theory of market equilibrium under
conditions of risk”. In: The journal of finance 19.3 (1964), pp. 425–442.

[Shr04] Steven E Shreve. Stochastic calculus for finance II: Continuous-time models.
Vol. 11. Springer Science & Business Media, 2004.

[Son86] Halil Mete Soner. “Optimal control with state-space constraint. II”. In: SIAM
journal on control and optimization 24.6 (1986), pp. 1110–1122.

[Vic22] Gruselius Victor. pyfilter. https://github.com/tingiskhan/pyfilter.
2022.

[Zhu94] Hang Zhu. “Dynamic programming and variational inequalities in singular stochas-
tic control.” In: (1994).

https://github.com/tingiskhan/pyfilter

	Overview
	I Portfolio optimization in the presence of a self-exciting jump diffusion process
	General framework
	Notation and preliminary concepts
	Instantaneous frequency

	The model
	The dynamic for the risky asset
	Features of the model

	Portfolio optimization problem
	Main definitions and assumptions
	A priori results for the value function


	The Stochastic Control Problem
	The Dynamic Programming Principle
	The Hamilton-Jacobi-Bellman equation related to the problem
	Heuristic derivation of necessary conditions for C


	Existence and uniqueness for the HJB solution
	Definitions and convergence for the integral operator
	Convergence of integral part

	Definitions for viscosity solutions
	The comparison principle

	Numerical scheme to solve HJB equation
	Penalty Approximation
	Finite difference scheme for penalty approximation
	Discretizating the HJB equation
	Quadrature rule for the integral operator
	Boundary conditions



	II Calibration and numerical results
	Calibration algorithms
	Log-likelihood algorithm
	Log-likelihood calibration results

	The Sequential Monte Carlo algorithm
	Introduction to the notation for SMC2 
	Pseudocode for SMC2 
	The degeneracy criterion
	SMC2 calibration results


	Simulation and results
	Settings
	Utility functions

	Results
	Sensitivity analysis for 


	Bibliography


