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a b s t r a c t 

When reading a sentence, individual words can be combined to create more complex meaning. In this study, we 

sought to uncover brain regions that reflect the representation of the meaning of sentences at the topic level, as 

opposed to the meaning of their individual constituent words when considered irrespective of their context. Using 

fMRI, we recorded the neural activity of participants while reading sentences. We constructed a topic-level sen- 

tence representations using the final layer of a convolutional neural network (CNN) trained to classify Wikipedia 

sentences into broad semantic categories. This model was contrasted with word-level sentence representations 

constructed using the average of the word embeddings constituting the sentence. Using representational similar- 

ity analysis, we found that the medial prefrontal cortex, lateral anterior temporal lobe, precuneus, and angular 

gyrus more strongly represent sentence topic-level, compared to word-level, meaning, uncovering the important 

role of these semantic system regions in the representation of topic-level meaning. Results were comparable when 

sentence meaning was modelled with a multilayer perceptron that was not sensitive to word order within a sen- 

tence, suggesting that the learning objective, in the terms of the topic being modelled, is the critical factor in 

capturing these neural representational spaces. 
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. Introduction 

The human brain represents concepts not only as single elements

ut combines them to form more complex ideas. While single concepts

an be well represented by individual words, such as dog or release , the

ombination of these concepts into more complex pieces of information

nd knowledge is, in part, reflected in the information contained in sen-

ences. Within a sentence, constituting words provide context to and in-

orm each other to facilitate the comprehension of the often complex and

pecific meaning that it conveys. The higher level meaning in sentences

an convey meaning that relates not only to single concepts but to gen-

ral topics of information, for example, the topics ‘religion’ or ‘sports’.

onsequently, understanding the neural processes associated with the

igher, topic-level, meanings of a sentence may be facilitated by using

odels that specifically aim to capture these topic-level meanings and

hat represent word meaning within the context of the sentence, rather

han representing those words as decontextualized elements. 
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ontent of single concepts ( Bruffaerts et al., 2013 Devereux et al., 2013 ;

airhall and Caramazza, 2013 ; Liuzzi et al., 2020 ;). 

The processing of sentences has been investigated using univariate

echniques, for instance contrasting the response to sentences to lists

f non-words or scrambled sentences ( Brennan and Pylkkänen, 2012

edorenko et al., 2010 ; E. 2016 ;) or identifying parametric increases

n activity with the number of linguistic constituents within a series

f words or pseudowords ( Pallier et al., 2011 ). This comparison aims

o identify not just the semantic meaning of the sentence (i.e. the end

esult: the sentence-level meaning) but also the integrative linguistic

rocesses through which words are combined (the process of sentence

omprehension). While the regions identified in these studies largely

verlap with the left-lateralized semantic system described by Binder

nd colleagues ( Binder et al., 2009 ), they additionally include the mid-

le and superior frontal gyri and do not involve the dmPFC, vmPFC or

recuneus ( Fedorenko et al., 2010 Hagoort, 2016 ;). 

In the present study, we are interested in uncovering brain areas

hat hold representations of the semantic context or topic at the level

f sentences. Recent advances in machine learning provide a potential
ruary 2022 
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ool for investigating human topic-level representations. Topic mod-

lling is indeed an established field in text mining, whose goal is to

evelop techniques to automatically find structures and annotate text

ata, and has been used in a wide range of fields ranging from natu-

al language processing, software engineering, bioinformatics and the

umanities ( Kherwa and Bansal, 2018 Vayansky and Kumar, 2020 ;).

uman topic processing has mostly been investigated in the context of

iscourse comprehension, most particularly studying inferences (how

e link the meaning of sentences or paragraphs together) or integration

how we process discourse units within their more general context; i.e. a

entence within a paragraph or a paragraph within a story ( Regev et al.,

013 Egidi and Caramazza, 2013 ;; see Yang et al., 2019 for a recent

eta-analysis). Results points toward an involvement of regions belong-

ng to the semantic network, in particular the bilateral IFG, the dmPFC

nd the MTG. On the other hand, studies comparing sentences drawn

rom a limited number of distinct experimenter-defined topics based on

pecific object classes (e.g. sentences related to people, food, places or

bjects) have found the activation of distributed networks that were se-

ective for these different domain-based topics ( Rabini et al., 2021 ). 

We approached the problem of constructing sentence topic-level rep-

esentations by focusing on a Convolutional neural network (CNNs).

his architecture was selected as CNNs create representations of sen-

ences through the hierarchical combination of tokens into successively

arger chunks and units of semantic meaning. CNNs trained under su-

ervised learning have enjoyed great success in the field of computer vi-

ion (e.g Krizhevsky et al., 2012 .) and successfully been used to classify

entences and achieve a classification accuracy comparable to recurrent

eural networks, which are built upon an architecture more closely fol-

owing the left-right process of sentence construction ( Zhang and Wal-

ace, 2017 ). Using sentence topics as training categories, the sentence

epresentations extracted from such CNNs can then be used as a model

o capture the added meaning arising from combination of words within

 sentence, which in turn can be compared to neural patterns measured

ith brain imaging. 

In this study, we sought to identify where sentence topic-level rep-

esentations are most strongly represented in the brain compared to its

onstituent conceptual units (words). This approach is largely distinct

rom approaches whose aim is to understand the linguistic processes

hrough which meaning is constructed, i.e. the syntactic combination of

ords. This is in particular the focus of studies looking for the neural

ases of Merge-like processes combining words into hierarchical struc-

ures ( Zaccarella et al., 2017 ), or for the progressive formation and up-

ate over time of integrated meaning (conceptual ‘gestalt’; ( Branzi et al.,

020 ). We instead employ of a computational model that extracts the-

atic consistencies between words to generate a sentence topic-level

epresentation that we then compare to neural representations . 

We trained a CNN to categorize sentences from Wikipedia, the largest

ext corpus of human knowledge, into 64 broad semantic categories or

opics. Rather than parsing sentences through syntactic rules, the CNN

earns by performing local-to-global (from trigram to whole sentence)

perations. In that way, it flexibly constructs combinatorial meaning

t progressively large scales of meaning. We demonstrate that the last

ayer of this CNN provides a representation of the overall meaning of

he sentence, which we then used to construct a sentence topic-level

epresentational semantic space. We refer to this as topic-level sentence

eaning as the representation reflects information both about the lo-

alised context of words within the sentence and about the topics being

odelled. These topic-level sentence representations were contrasted

o context-free word-level sentence representations using an averaged

ord embedding model. We refer to these as word-level representations

s they model the words independently both of their present context

nd of the topics being modelled. We then recorded participants’ brain

esponses while reading sentences using fMRI. By applying representa-

ional similarity analysis (RSA), we uncovered which cortical regions

ore fully captured the topic-level sentence meaning than the word-

evel meaning. In so doing, we can identify neural systems involved in
2 
he high-level representation of sentence-level meaning more than the

onstituent words themselves. 

. Materials and methods 

.1. Semantic models design 

.1.1. Convolutional neural network design and training 

The dataset was composed of Wikipedia sentences labelled according

o the category (or topic) of the article to which they belong. For this pur-

ose, we used the DBpedia project ( Lehmann et al., 2015 ), which links

ach one of the Wikipedia articles (1.4 million in Italian) to a category

ithin an ontology (e.g., Airport, Mountain, Politician, Tennis Player, Mu-

ical Artist ). The sentences of every Italian Wikipedia article were thus

okenized (the samples) and linked to their articles’ DBpedia category

the labels). Since some categories have very few articles, 64 categories

ere chosen from the 320 categories available to obtain similar sample

izes of 6000 sentences per category between 6 and 38 words. Sentences

ere pre-processed so that all punctuation was removed and digits re-

laced by the hash character ‘#’. An 80–20 train-test split was applied

hich resulted in a training set of 4800 sentences per category used for

yperparameter tuning through 5-fold cross validation and a test set of

200 sentences per category. 

We designed an architecture with a trainable embedding layer, two

onvolutional-maxpool layers, two fully connected layers and a soft-

ax layer (see Fig. 1 ) (for further discussion, see Zhang and Wal-

ace, 2017 ). Sentences were fed to the network as a list of zero-padded

8 word tokens. Embedding values were initialised using Italian fastText

ord embeddings ( Grave et al., 2018 ). The CNN was built with Keras

 https://keras.io ). Gridsearch hyperparameter tuning and model train-

ng were performed on the GPU Peregrine HPC cluster of the University

f Groningen and the Titan V GPU of the University of Trento donated

y NVidia Corporation. 

After hyperparameter tuning, the final parameters of the CNN were:

ropout rate: 0.2, batch size: 512; optimizer: Adam; activation: ELU;

umber of filters: 128, and performance (both validation loss and accu-

acy) stopped improving at 3 epochs, so epoch was set at 3 to avoid over-

tting. Training cross-validation accuracy was 68.65% (SD = 0.31). The

nal categorization accuracy on the test set was 69.83% (see Table 1 ).

s it is reasonable to assume that there may be several appropriate la-

els for many sentences because articles from different categories can

ontain similar sentences (e.g., sentences from Cycling Competition and

yclist ), the top-2 to top-5 accuracies may be more valid estimates of

erformance. 

.1.2. Word embeddings 

Word-level representations were modelled with GloVe vectors

 Pennington et al., 2014 ) trained on Italian words using the code

vailable on https://nlp.stanford.edu/projects/glove/ . Vectors of size

00 were trained for a vocabulary of 634,072 words comprising the

96,365 most common words in the Italian Wikipedia (words occur-

ing at least 5 times), and all the words from our training and test-

ng set (so as to have a word vector representation for each word

or the models to learn from). All corpus data was pre-processed

n the same way as for CNN training before vocabulary extraction.

raining was performed on the Italian Wikipedia, extracted from a

ikipedia dump ( http://download.wikimedia.org/ ) using WikipediaEx-

ractor ( http://medialab.di.unipi.it/wiki/Wikipedia_Extractor ). The to-

al number of tokens in the corpus was 421,369,469. Co-occurrences

ere counted with a symmetric window of size 15. For GloVe training,

lpha was set to 0.75 and x_max to 100 ( Pennington et al., 2014 ). Train-

ng was stopped at 25 iterations, yielding a final cost of 0.0060. To test

he validity of our embeddings, two tests were performed: (1) we com-

ared embeddings semantic relationships between words with human

udgments for 160 basic objects from Giari et al. (2020) and found a

trong similarity [ r = 0.39]; (2) we performed a standard analogy test

https://keras.io
https://nlp.stanford.edu/projects/glove/
http://download.wikimedia.org/
http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
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Fig. 1. Convolutional neural network (CNN) architecture. The architecture comprises two convolutional-maxpool layers followed by two dense layers. The input 

(sentence) is a list of word tokens zero-padded to 38, and the output is a vector of size 64 corresponding to the prediction probability that the input sentence belongs 

to each of the 64 categories. The first layer assigns an embedding vector of size 1 × 300 to each word, constituting a 38 × 300 sentence matrix. Conv1 is the first 

convolutional layer applying 128 filters of weights to the preceding layer through a dot product resulting in a single value per filter and trigram. Each filter can be 

seen as a sliding window looking at one trigram at a time applying a dot product between the trigram values and the filter weights. The filter weights are learned 

by the model in such a way to optimize the classification of the different categories and initialised using a random seed. Maxpool1 extracts the maximum value 

from every 3 values of Conv1, keeping only the largest features values. These Conv-Maxpool layers are repeated for gradual composition, and are then followed by 

two fully-connected dense layers which allow the information of the whole sentence to be accessed regardless of word order. Finally, information is passed through 

a softmax layer which is a probability distribution summing to 1 and assigns a probability to 64 possible categories, the highest of which becomes the model’s 

prediction. ‘Dense 2 ′ (Final Layer) is the layer used in the present study to build the sentence-level representational space (see Fig. 2 ). 

Table 1 

Nearest centroid classifiers results, compared to chance level and full model output accu- 

racy (%) for CNN and MLP models. 

Top 1 Top 2 Top 3 Top4 Top 5 

Chance level 1.6 3.1 4.7 6.3 7.8 

Embeddings nearest centroid classifier 45.4 59.3 66.8 71.7 75.3 

CNN Final Layer nearest centroid classifier 69.0 80.4 85.5 88.6 90.6 

MLP Final Layer nearest centroid classifier 68.8 80.9 86.5 89.8 91.9 

CNN output category 69.8 81.1 86.4 89.4 91.4 

MLP output category 74.7 86.1 90.8 93.3 94.9 
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t  
 Berardi et al., 2015 ; http://hlt.isti.cnr.it/wordembeddings/ ) and found

ood performance: hit rate of 0.41, compared to 0.26 reported by those

uthors. Word-level sentence meaning was then calculated as the aver-

ge of the embeddings of the sentence’s constituent words, including all

top words (pronouns, prepositions, determiners, etc.). 

.2. Comparing semantic models’ level of abstraction 

The purpose of this study is to contrast two levels of sentences’ se-

antic content: one that has incorporated the combination of words into

uccessively more integrated semantic units to form a semantic ‘gestalt’

r topic (CNN Final Layer) and one that considers the non-integrated

verage of sentences’ constituent words (average embeddings). One of

he advantages of word embeddings is the fact that one can perform

athematical operations on them such as the ones carried out in the

nalogy test (see Section 2.1.2 ), but also averaging. Averaging embed-

ings has often been used in the past to model sentence meaning for

 variety of applications such as automatic answer selection ( Yu et al.,

014 ), semantic similarity ( Banea et al., 2014 ) and knowledge comple-

ion ( Socher et al., 2013 ). However, while powerful, the averaging oper-

tion only treats the sentence as a bag of words: it overlooks word order

s well as the differential importance of words within the sentence. It

s merely the sum of the parts that constitute the overall meaning of

he sentence. In addition, word embeddings are learned through unsu-

ervised learning using the surrounding words and ignores the wider

ontext or general topic of the text. In the current section, we describe

he evaluations intended to test whether the CNN model (Final Layer

epresentation) indeed reflected a more relevant topic-level integrated

eaning greater than that present in the average embeddings. 

We performed two complementary tests to compare the CNN Final

ayer to the average embeddings, whose representational dissimilarity
3 
atrices (RDMs) correlation yielded r = 0.226: (1) we tested whether

he CNN model contained more topic-level information (i.e., sentence-

evel meaning) than the average embeddings using simple nearest cen-

roid classifiers; (2) we qualitatively analysed the structure of semantic

istances between sentences using hierarchical clustering, with the hy-

othesis that distances between categories in the CNN model will reflect

ore intuitive semantic relationships than the embedding model. 

.2.1. The CNN final layer contains more topic-level semantic information 

Two nearest centroid classifiers were constructed, respectively using

he average embedding vectors and the CNN Final Layer vectors. Cen-

roids were computed by averaging the vectors across all sentences of

ach category of the training set (resulting in 64 centroids for each clas-

ifier). Each testing set sentence vector was then correlated with each

entroid. Classification was done by taking the index of the centroid

ith the highest correlation Table 1 . lists the results of the classifiers. 

We observe that the performance using Final Layer vectors is consis-

ently superior to the average embeddings vectors. The Final Layer per-

ormance is also close to the actual performance of the model ( Table 1 ).

This result indicates that combinatorial representations in the Final

ayer effectively contains more topic-level information than the average

mbedding model. 

.2.2. Analyzing abstraction with hierarchical clustering across sentence 

epresentations 

To evaluate whether the CNN model captures the human-intuitive

emantic relationships between categories in a better manner than the

verage embeddings model, we applied Ward hierarchical clustering on

he Final Layer and averaged embeddings representations of the sen-

ence stimuli subsequently used in the experiment (see Section 2.2 ). 

We used hierarchical clustering to see if the similarity between sen-

ences of different categories would capture our intuitions. We found

http://hlt.isti.cnr.it/wordembeddings/
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Fig. 2. Ward clustering of the sentence stimulus representational similarity matrix (RSM) from CNN Final Layer features. Left: RSM of the 384 stimulus sentences 

using Pearson’s correlation. Each row and column correspond to a sentence; Centre: Corresponding dendrogram using Ward hierarchical clustering. The clustering 

reveals intuitive semantic relationships, in such a way that we were able to assign a representative supra-category label to clusters ( natural places, science , etc.) which 

the CNN learned with only the sentence category labels. This was not possible using the average embedding features. Right: Details of the full dendrogram from 

clusters containing sentences related to Sports and State & Military themes. Sentence category is indicated on the vertical axis. The full tree with labels is available 

on the Open Science Framework repository (see Section 2.5 ). 
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hat clustering applied to the CNN model captured human clustering

ntuitions, with the emergence of natural relationships between cate-

ories. Indeed, sentences belonging to related categories tended to clus-

er together, in a way that allows the assignment of supra-category

abels. For instance, sentences belonging to the categories Basketball

layer, American Football Player, Ice Hockey Player clustered together

see Fig. 2 ), themselves clustering close to sentences belonging to e.g.

he Cycling Competition or Sports Team categories, effectively forming a

ports-themed supra-category. Similarly, sentences associated with ve-

icles such as Aircraft and Ship clustered close to Military Unit and Deco-

ation , forming a military-related supra-category, and so on. The model

as therefore learnt between-category semantic structures without this

nformation being fed to it explicitly. By contrast, the clustering results

f the average embeddings model showed so little intuitive structure

hat no supra-category labels could be assigned to the clusters. The full

rees with sentence category labels are available for download on the

pen Science Framework repository; see Section 2.5 . 

The cumulative results of the nearest centroid classifier and the hi-

rarchical clustering thus confirm that the CNN model contains more

nformation about sentence category, than the averaged word em-

eddings, and that this information captures not only topic-level dis-

inctions but also the relationship between them. As an additional

ontrol, we tested that the CNN representations outperformed the

ord-level representation for a benchmark task requiring sentence-

evel meaning. Because we did not find benchmarks in the Italian

anguage, we used an English version of our model that was trained

n 144 Wikipedia categories. We used the semantic textual similar-

ty benchmark ( http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

er et al., 2017 ;), where pairs of sentences were rated according to the

imilarity of their meaning by humans. Sentences came from news out-

ets, image captions and online forums, and similarity scores went from

 (‘The two sentences are completely dissimilar’) to 5 (‘The two sen-

ences are completely equivalent, as they mean the same thing’). The

esting dataset that we used comprises 1379 English-language sentence

airs. We found that the CNN representations outperformed the GloVe

w  

4 
epresentations ( r = 0.54 vs r = 0.33) suggesting that the former reflect

he global meaning of the sentence better than the word-level represen-

ations. 

.3. Experiment 

.3.1. Participants 

Twenty-five native Italian speakers (female = 11; age range = 20 to

2; mean age = 25.2) took part in the experiment. One participant was

xcluded due to excessive head movement. Participants gave their in-

ormed consent and were compensated for their participation. All pro-

edures were approved by the ethical committee of the University of

rento. 

.3.2. Stimuli preprocessing and selection 

Stimuli were algorithmically selected from the Wikipedia corpus to

e representative of the model. Sentences with psycholinguistic con-

ounds, such as mean lexical frequency outside the 5 and 95 percentile-

ange, were excluded using the frequency dictionary from Crepaldi and

olleagues ( Crepaldi et al., 2015 ; http://crr.ugent.be/subtlex-it/ ). Only

entences with length 14 and 15 words were kept. A CNN architecture

as partially chosen because it allows quantification of representations

t different hierarchical layers and our initial goal was to distinguish

rain patterns resembling the Conv1 and Dense2 (Final Layer) layers

see Fig. 1 ). We performed hierarchical agglomerative clustering with

 Ward criterion to form 64 clusters using the vectors at these two hi-

rarchical levels. The top 6 sentences from each cluster (measured by

ilhouette score) were chosen (i.e., the most representative sentences of

ach category). Half the sentences were selected for optimal clustering

n the Conv1 layer of the model and half on the Final Layer. As a fi-

al control, we ran a survey with 4 Native Italian speakers that rated

he comprehensibility of the sentences. The 50% more highly rated sen-

ences were selected as stimuli, resulting in 192 sentences representative

f each of the two layers (384 in total). The next 24 easiest sentences

ere selected as distractor sentences for the recognition task (see next

http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
https://www.zotero.org/google-docs/?wcIY7h
http://crr.ugent.be/subtlex-it/
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ection). Despite the strategy to select sentences that were representa-

ive of each later, interlayer RDM correlation was very high ( r = 0.79)

nd analysis of the differential contribution of Conv1- and Dense2-level

epresentations to observed cortical pattens was deemed unviable. 

Examples of sentence stimuli (and their category) translated from

talian are: ‘ The same year, they performed as a pop-rock band in Casa Verdi

n Milano. ’ [ Musical Artist ]; ‘ The number of its speakers varies considerably

epending on the methodology used to count them. ’ [ University ]; ‘ After the

ears of conflict, the casino reopened officially on the evening of the 31st of

ecember 1945 .’ [ Building ]. 

.3.3. Experimental design and task 

The participants’ task was to carefully read the presented sentences

hile being informed that there would be a subsequent recognition test

fter each of the 6 runs. In each recognition test, participants indicated

hether or not they had seen 8 sentences (48 in total per participant),

alf of which were distractors. After a practice run with 12 stimuli and

 full recognition task performed outside the scanner, participants com-

leted 6 sessions with 64 sentences each. Each sentence was presented

ord by word for 150 ms per word. Words were presented such that

 third of their mass was to the left of fixation and two thirds to the

ight of fixation (indicated by a red letter). Each sentence lasted on av-

rage 2.1 s (max. length = 2.25) and the inter-trial interval was 6 s. Due

o equipment failure, responses were not available for 23.6% of trials

n average. Average accuracy for recorded responses was 76.8%, well

bove the 50% chance level, indicating good task-compliance. 

.3.4. fMRI acquisition 

We conducted Magnetic resonance imaging (MRI) with a Siemens

risma 3T scanner (Siemens, Erlangen, Germany) using a 32-channel

ead coil. 239 vol composed of 68 Anterior Commissure–Posterior Com-

issure aligned slices were acquired over six runs for each participant.

radient-echo planar imaging (EPI) sequence parameters were: repeti-

ion time TR = 2 s, echo time TE = 28 ms, flip angle = 75°, field of vision

FOV) read = 200 mm, gap size = 0 mm, voxel size = 2 × 2 × 2 mm 

3 ,

lices = 68, slice thickness = 2 mm, multi-band acceleration factor = 4.

tructural images we acquired using a standard T1-weighted sequence:

92 sagittal slices, FOV = 192 mm, TR = 2.3 s, TE = 2.26 s, flip angle = 9°

.3.5. fMRI preprocessing 

The preprocessing steps were performed using the MATLAB (The

athworks, Natick, USA) toolbox SPM12 ( www.fil.ion.ucl.ac.uk/spm/ ).

mages were realigned for head movement. Slice-acquisition delays were

orrected using the middle slice as reference. All images were normal-

zed to the standard SPM12 EPI template (Montreal Neurological Insti-

ute MNI stereotactic space), retaining the 2-mm isotropic voxel size,

nd spatially smoothed using an isotropic Gaussian kernel of 5-mm full-

idth half-maximum (FWHM). The time series at each voxel for each

articipant were high pass filtered using a FIR filter of order 80, and

ut-off = 0.0156 Hz (64 s). 

.4. Data analysis 

.4.1. fMRI searchlight representational similarity analysis 

The comparison between fMRI activations and language-derived

odels was performed using representational similarity analysis (RSA;

or a similar approach with images, see Cichy et al., 2016 ). Search-

ight RSA was implemented using the CoSMoMVPA MATLAB toolbox

 Oosterhof et al., 2016 ). RSA was performed twice on the whole brain

sing either representations of the sentences from average word embed-

ings or the Final Layer of the CNN. The two representational similarity

atrices (RSM) were built by calculating the similarity between each

air of sentences using the average word embeddings or the Final Layer

f the CNN (Pearson’s correlations). This resulted in two 384 × 384

SMs reflecting the similarity of each sentence pair for embedding and

NN models, from which two RDMs (1-RSMs) were calculated. These
5 
DMs were then used in subsequent brain-model RSA (see Fig. 3 ). The

earchlight RSAs (radius 8 mm) were performed across the whole brain

f each participant. At each searchlight location, an fMRI RDM was built

sing Pearson’s correlations after demeaning the data. The correlation

etween the vectorised sentence RDMs (derived from the embeddings

r the CNN Final layer) and the vectorised fMRI RDMs was then cal-

ulated using Pearson’s correlation. The correlation value was reported

t the centre voxel of the sphere. Finally, the correlation maps were

ischer-transformed and smoothed using a kernel of 12-mm FWHM. 

.4.2. ROI-based RSA 

Eight cortical regions of interest (ROIs) known to be involved in se-

antic processing ( Binder et al., 2009 ) were selected on both hemi-

pheres: the angular gyrus (AG), the precuneus, the posterior middle

emporal gyrus (pMTG), the lateral anterior temporal lobe (latATL), the

entral temporal cortex (VTC), the inferior frontal gyrus (IFG), the dor-

omedial prefrontal cortex (dmPFC) and the ventromedial prefrontal

ortex (vmPFC). Regions were selected using the Brainnetome Atlas

 Fan et al., 2016 ) available at https://atlas.brainnetome.org . Additional

NI coordinate constraints were defined for the VTC and the latATL.

he latATL ROI excludes all Brainnetome subregions of the superior

nterior gyrus (with the exception of subrostral area 22 covering the

nterior superior temporal sulcus) and covers BA21. ROI shapes were

moothed by applying a dilation, followed by an erosion using a spheri-

al kernel of size 5 Table 2 . indicates the subregions and MNI coordinate

onstrains defining each ROI, its respective size and centre of mass lo-

ation, while Fig. 5 A schematizes their locations. RSAs were performed

sing all the voxels of each ROI. 

.4.3. Statistical analysis 

Statistical analyses on searchlight RSA output were performed using

PM12. To find regions that were significantly explained by the aver-

ged embeddings and the CNN Final Layer, the correlation maps from

he 24 participants were fed into a one-factor two-level general linear

odel with subject-specific constants. The contrast between Final Layer

nd embeddings was evaluated using one-tailed paired-sample t-tests.

eported results present locations where p < 0.001, cluster-corrected at

 < 0.05 using family-wise error (FWE). Visualizations were performed

sing SPM12 rendering ( Fig. 4 A and 4 B) and MRIcron ( Fig. 4 C). For

OI analysis, one-tailed paired-sample t-tests with Bonferroni multiple-

omparisons correction were used to compare RSA outputs between the

NN Final Layer and the average embeddings models. 

.5. Data and code availability 

Participant-level RSA data for the searchlight ( Fig. 4 ), ROI-

ased analyses ( Fig. 5 ) and full dendrograms with labels ( Fig. 2 )

re available on the Open Science Framework repository:

ttps://osf.io/95ftn/?view_only = 9a1a085583544c3eac44d1c75870599

atasets and code will be made available upon request. 

. Results 

.1. Whole-brain searchlight analyses 

Participants’ brain activity was recorded while reading sentences.

 whole-brain searchlight RSA strategy was applied to identify regions

hose patterns were best captured by the CNN-based and word-level

odels (see Fig. 3 for a summary). RSA revealed that word-level repre-

entations were widespread across the cortical surface ( Fig. 4 A). They

ere more left-lateralised and regions included left precentral gyrus,

ilateral IFG, bilateral occipito-temporal regions, bilateral precuneus

nd left SMA and dmPFC. Sentence topic-level representations ( Fig. 4 B)

onverged on word-level representation but encompassed greater sec-

ions of the precuneus, and additionally included the dmPFC, vmPFC

http://www.fil.ion.ucl.ac.uk/spm/
https://atlas.brainnetome.org
https://osf.io/95ftn/?view_only=9a1a085583544c3eac44d1c75870599c
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Fig. 3. Searchlight representational similarity analysis (RSA) general method. Sentences are modelled using the CNN Final Layer which incorporates semantics 

produced through the combination of words) and the average word embeddings (which considers the contribution of words individually), and read by humans 

undergoing fMRI. Representational Similarity matrices (RSMs) are built by computing the pairwise Pearson’s correlation between the feature vectors from the 

models (averaged word embeddings or the CNN Final Layer), and vectors corresponding to the fMRI voxel values at the searchlight location. RDMs (Representational 

Dissimilarity Matrices) are then computed from the RSMs and correlated to one another after vectorisation. This process is applied for each searchlight location, 

model, and participant. Consistent correlations across participants uncover brain regions where neural patterns contain representations of the tested model. 

Fig. 4. Representational similarity analysis searchlight (RSA) results. Areas explained by (A) Averaged word embeddings (word-level semantic meaning), and (B) 

CNN Final Layer (incorporating combinatorial semantic meaning). Surface projection of the T maps from the general linear model. (C) Areas better explained by 

the CNN Final Layer than the averaged word embeddings. Sagittal slices at the indicated X-axis MNI coordinates. All locations shown are significant at p < 0.001, 

cluster-corrected. 

6 
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Fig. 5. Region of interest (ROI) analysis . (A) 

Schematic localisation of the cortical ROIs 

covering the semantic network. All ROIs are 

bilateral Table 2 . provides details on the loca- 

tion, size and regions of each ROI. (B) Mean 

RSA results for each ROI and model (CNN 

Final Layer and average embeddings). Mean 

correlation across participants + /- standard 

errors (as described in ( Cousineau, 2005 ). 

Differences between models (paired t-tests): 

[ ∗ ] Significant with Bonferroni correction; [ † ] 

Significant without correction only. Depar- 

ture from zero (one-sample t-tests): [n.s.] non- 

significant. 
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w  
nd the right AG. To formally test which brain areas contained in-

ormation more consistent with combinatorial semantic representa-

ions rather than word-level sentence representations, we performed a

aired t -test, which revealed significantly greater information capture

y the sentence-level model (CNN Final Layer representations) in the

m/dmPFC (see Fig. 4 C, Table 3 ). 

We did not find any region significantly better explained by the em-

edding than CNN model. 

.2. ROI-based RSAs 

In addition to the whole-brain analyses, we sought to investigate dif-

erences between CNN and word-level meaning across the main regions

f the semantic network. For this purpose, we performed RSAs in 8 ROIs

n each hemisphere defined from ( Binder et al., 2009 ) (see Fig 5 A and

ethods Section 2.4.2 .). 

As a control, we tested whether we could observe a significant RSA

esult using the word embeddings in the left ventral anterior tempo-

al lobe. We defined an additional ROI from Jackson et al. (2016) us-

ng the mSTG, rostral parahippocampal gyrus and area TI Brainnetome

ubregions (with respective Brainnetome indices 69, 109 and 117).

e found a significant positive correlation with the embedding model:

(23) = 2.89, p = 0.008 [ m = 0.0026; std = 0.0044]. This replicates pre-

ious reports ( Bruffaerts et al., 2013 ) and provides confidence in the

alidity of the experimental paradigm and the word-level model. 

As a preliminary analysis, we tested the lateralization of the embed-

ings and CNN Final Layer representations in the semantic network, as

ell as differences in lateralization between the two. To this end, we

ntered RSA results for the ROIs situated laterally (AG, pMTG, latATL

nd IFG) into a Hemisphere (Left, Right) × ROI (AG, pMTG, latATL,

FG) × Model (embeddings, Final Layer) repeated measures ANOVA.

e found that while both models explained brain patterns better on

he left hemisphere than on the right hemisphere [F(1,23) = 9.589,
7 
 = 0.005], there was no interaction of Hemisphere with Model, ROI

nd Model × ROI (all Fs < 1). This was confirmed by 4 ROI-specific

emisphere × Model (2 × 2) ANOVAs, all yielding non-significant in-

eractions (Fs < 1). As a consequence, we performed RSAs on the ROIs

ollapsed across hemispheres. 

The CNN model predicted neural patterns in all ROIs (one-tailed t-

ests on correlation values: all ts > 2.8 and all p uncorr < 0.004, surviving

onferroni correction across ROIs with adjusted alpha = 0.0063), ex-

ept for the latATL and the vmPFC whose correlations with the average

mbeddings model did not significantly depart from zero even at uncor-

ected level: respectively t(23) = 1.05, p uncorr = 0.152 and t(23) = 1.64,

 uncorr = 0.056 (indicated as n.s. in Fig. 5 B). 

In the critical analysis, we compared the information present in the

NN and embeddings derived representational spaces. Specifically, one-

ailed paired t-tests were performed on each ROI, testing in which re-

ions the CNN model better explained brain patterns than the embed-

ings model (see Fig. 5 B). CNN-derived representational spaces better

xplained brain data in the AG [t(23) = 4.20, p uncorr = 0.0002, d = 0.86],

recuneus [t(23) = 2.73, p uncorr = 0.006, d = 0.56], latATL [t(23) = 2.92,

 uncorr = 0.004, d = 0.60], dmPFC [t(23) = 3.67, p uncorr = 0.0006,

 = 0.75] and vmPFC [t(23) = 3.95, p uncorr = 0.0003, d = 0.81], surviv-

ng Bonferroni correction. Uncorrected differences were also found in

he IFG [t(23) = 2.07, p uncorr = 0.025, d = 0.42]. No significant differ-

nces were found for the pMTG [t(23) = 0.55, p uncorr = 0.29, d = 0.11]

nd VTC [t(23) = 1.22, p uncorr = 0.12, d = 0.25]. These results are con-

istent with medium effect sizes in latATL and the precuneus and large

ffect sizes in AG, vmPFC and dmPFC. 

To assess whether inclusion of bilateral regions in the ROI analysis

iluted differences between the two models, the RSA was also performed

n the left hemisphere for lateral ROIs (AG, pMTG, latATL and IFG). We

bserved a drop in statistical power but found similar results. Signifi-

ant differences were present in the AG [t(23) = 3.12, p uncorr = 0.002]

ith Bonferroni-correct alpha = 0.0125, and at uncorrected levels in the
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Table 3 

Contrast between sentence-level and word-level representations, 

from searchlight representational similarity analyses (RSA). 

Stronger combinatorial than word-level representations constituted 

one cluster in the medial PFC (see Fig. 4 C). Significance and extent 

of the cluster, and significance, t-value and location of peaks. 

(dmPFC = dorsomedial prefrontal cortex; vmPFC = ventromedial 

prefrontal cortex.). 

Locations 

Cluster Peaks 

p FWE-corr Extent p FWE-corr t X Y Z 

dmPFC < 0.001 1052 0.131 5.71 − 6 44 36 

vmPFC 0.253 5.33 10 54 2 
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8 
atATL [t(23) = 2.18, p uncorr = 0.020] and below the 0.05 threshold in

he IFG [t(23) = 1.65, p uncorr = 0.057]. As in the bilateral-ROI analy-

is, no significant differences were evident in the pMTG [t(23) = 0.42,

 uncorr = 0.34]. 

.3. Comparison with other models 

The CNN was trained specifically to categorize sentences into

ikipedia categories in a supervised manner, while the embeddings

ere trained to form a general model of word meaning in an unsuper-

ised manner. To ensure that observed differences were not attributable

o the fact that the word-level embeddings were uninformed about

ikipedia category while the sentence topic-level CNN was informed,

e performed a supplementary analysis. We built an category-informed

ord-level model using the tf–idf (term frequency, inverse document

requency Salton and Buckley, 1988 ;) features of the words. This model

etermines the importance of each word in distinguishing the 64 cat-

gories and these were averaged into a vector for each sentence. Each

ord was represented by a tf–idf vector of size 64. Sentences were repre-

ented by the average tf–idf across all of its constituent words. An RDM

as built from these tf–idf sentence representations, and then correlated

o the fMRI-RDM of each ROI. Performing the test on the 6 significant

OIs using the embeddings (adjusted alpha = 0.0083), we found that

he CNN model continued to better explain neural patterns in the AG

t(23) = 2.60; p uncorr = 0.0082], IFG [t(23) = 3.61; p uncorr = 0.0007],

mPFC [t(23) = 2.95; p uncorr = 0.0036] and vmPFC [t(23) = 3.31;

 uncorr = 0.0015], but not in the latATL [t(23) = 2.48; p uncorr = 0.01]

nd the precuneus [t(23) = 1.62; p uncorr = 0.059]. 

To assess how our model derived from a CNN designed to cap-

ure specific semantic categories compared with pre-trained state-of-

he-art sentence encoders, we compared results using the Multilin-

ual Universal Sentence Encoder Large V3 (MUSEL3; Google LLC, CA,

SA Chidambaram et al., 2019 ;; https://tfhub.dev/google/universal-

entence-encoder-multilingual-large/3 ). No significant difference was

bserved between CNN and MUSEL3 models, with the CNN model show-

ng only a trend towards better explaining neural representations. This

endency was also evident when contrasting MUSEL3 with the em-

edding model where there was no evidence that MUSEL3 better ex-

lained neural representational spaces better than the averaged em-

eddings after correction for multiple comparisons [AG: t(23) = 2.22,

 uncorr = 0.018; precuneus: t(23) = 2.68, p uncorr = 0.007; pMTG:

(23) = 0.62, p uncorr = 0.27; latATL: t(23) = 2.4, p uncorr = 0.012; VTC:

(23) = 0.81, p uncorr = 0.21; IFG: t(23) = 1.98, p uncorr = 0.030; dmPFC:

(23) = 1.96, p uncorr = 0.031; vmPFC: t(23) = 1.63, p uncorr = 0.059]. 

CNNs create representations of sentences through the hierarchical

ombination of tokens into successively larger chunks and units of se-

antic meaning. In a post hoc control analysis to assess the importance

f this localised context, we constructed a fully connected multilayer

erceptron (MLP). Using the same Wikipedia training data, we set the

nputs to the averaged sentence embeddings and used the scikit-learn li-

rary (parameters following gridsearch: 3 layers with 300, 512 and 128

odes, followed by softmax layer; Alpha: 0.1; Batch size: 256; Learn-

https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3
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c  
ng rate init: 0.001; Activation: tanh; Solver: adam). Averaging word

mbeddings does not take word order into account but using the MLP

llows these representations to be transformed in order to predict a label

the topic). Therefore, due to the inputs and fully connected nature of

he MLP, it does not contain hierarchical information about context, but

oes share the training goal of distinguishing the 64 Wikipedia topics

test-set accuracy 74.72%). 

Compared to averaged word embeddings, MLP-derived represen-

ational spaces better explained brain data in the AG [t(23) = 2.85,

uncorr = 0.005;] and dmPFC [t(23) = 2.94, puncorr = 0.004], sur-

iving Bonferroni correction. Uncorrected differences were found in

he precuneus [t(23) = 2.46, puncorr = 0.011],; latATL [t(23) = 1.99,

uncorr = 0.029], IFG [t(23) = 2.09, puncorr = 0.024] and vmPFC

t(23) = 2.15, puncorr = 0.021]. No significant differences were found

n pMTG [t(23) = 1.19, puncorr = 0.123] or VTC [t(23) = 1.28, pun-

orr = 0.106]. This pattern of results is consistent with those observed

hen comparing averaged embedding to the CNN and no significant dif-

erences were present between the amount of neural variance accounted

or by CNN and MLP models. Overall, the results provide no evidence

hat localised context present in CNNs aids in the modelling of neural

epresentational spaces and suggests that topic-level training objectives

est accounts for the convergence between computational and neural

odels of sentence meaning. 

. Discussion 

The goal of this study was to identify brain regions that represent

he topic-level meaning of sentences. To this end, we trained a CNN to

istinguish between sentences drawn from 64 broad semantic categories

resent in Wikipedia. The model learned not only to effectively identify

hese topic categories but also the natural relationship between them.

hese overarching similarity relations emerged even though the model

id not know the relatedness between categories a priori . We then com-

ared representational similarity spaces of 384 sentences using the Final

ayer of the CNN (sentence-level meaning) and average word embed-

ings (word-level meaning) to the fMRI activity from reading the same

entences. 

We found that neural patterns significantly explained by both sen-

ence topic- and word-level models were broadly distributed, with a high

egree of overlap and stronger representations in the left hemisphere.

he overlapping distribution of these effects indicates that the cortical

egions contributing to sentence topic and word-level meaning are not

ully discrete and share common cortical substrates. The distributions of

oth sentence topic- and word-level brain maps is highly consistent with

he anatomical location of the semantic system ( Binder et al., 2009 ), as

ell as those regions showing sensitivity to single object-concepts in

he multivariate pattern of the response ( Fairhall and Caramazza, 2013 ;

ee also Pereira et al., 2018 ). In a control analysis we found that such

ord-level concept representation extended to the left medial temporal

obe ( Bruffaerts et al., 2013 ). The fact that both word-level and sentence

opic-level representations of sentences explained activation patterns in

hese regions underscores the importance of individual tokens (words)

n the way in which semantic knowledge is represented in the brain. 

The critical contrast between these two models revealed stronger

opic-level than word-level representations in ventral and dorsal com-

onents of the medial PFC. This whole-brain contrast was supported

y an a priori anatomical ROI analysis encompassing the key nodes of

he semantic system ( Binder et al., 2009 ). This revealed stronger sen-

ence topic-level (vs. word-level) stimuli representations not only in the

mPFC and dmPFC but additionally in the AG, latATL and precuneus.

hese differences cannot simply be attributed to the specialized topic-

elated information that is not present at the individual word level. The

ontrast of our CNN sentence-topic model with the tf–idf word-level

odel, designed to determine the importance of each word into distin-

uishing the model categories, yielded comparable results, except for

he latATL and precuneus which did not survive the multiple compari-
9 
on correction. Although mechanisms or transformations differ between

he brain’s semantic system and the CNN, this collectively provides pow-

rful external validation for the enhanced capacity of deep neural net-

orks to capture human-like representational spaces (see also Jain and

uth, 2018 ). Importantly, our results also reveal how information is

epresented across the semantic system, emphasising the role of the me-

ial PFC, AG, latATL and precuneus in the representation of sentence

eaning at the topic level. 

A multilayer perceptron was used to model topics with an architec-

ural complexity closer to that of the CNN. Here, we observed similar

erformance between the MLP and the CNN. Unlike the tf-idf model,

hich focusses on individual words within the topic training set and

s uninformed about sentence membership, the input into the MLP was

he averaged word embeddings for each sentence. It is possible that the

rchitecture of the MLP, coupled with the algebraic properties of word

mbeddings discussed in Section 2.1.2 ., may render this model sensi-

ive to patterns in the occurrence of words, or semantic themes, within

entences. For this reason, it is uncertain if context at the level of word

ccurrence within the same sentence may have contributed to the abil-

ty of this model to explain neural data. On the other hand, these results

uggest that the localised context afforded by the hierarchical nature of

NN models and the flexible construction of combinatorial meaning at

rogressively larger scales, is not critical to the capacity of these mod-

ls to explain neural representational patterns and we have no evidence

hat combinatory semantic representations contribute to the observed

ortical representation . 

In the following paragraphs, we discuss our ROI-based results by re-

erring to relevant functions that each region has been associated with.

nformal reverse-inference type reasoning can be problematic, in partic-

lar when the inferences are stated as facts rather than conjectures, but

t can also provide useful insight about the role of the regions and the

unction investigated ( Poldrack, 2011 Young and Saxe, 2009 ;). 

The most reliable difference in sentence topic-level versus word-level

eaning was found in the medial PFC. The dmPFC has been proposed

o support self-guided, goal-directed retrieval of conceptual knowledge

 Binder et al., 2009 ) and the vmPFC linked to the affective significance

nd reward value of concepts ( Binder et al., 2009 Ferstl et al., 2005 ;

ackson et al., 2019 ;). At the same time, these medial PFC regions have

lso been implicated in a more general role in the combination of con-

epts, ranging from the combination of noun-noun compound words

 Forgács et al., 2012 Graves et al., 2010 ;) to the construction of mean-

ng over long narrative timescales (paragraphs or longer) ( Lerner et al.,

011 Yarkoni et al., 2008 ;). Our results provide further support for

he involvement of medial PFC in the representation of broad sentence

eaning at the topic level. 

Topic-level meaning was also better represented than context-free

ord-level meaning in the AG, the latATL and the precuneus. The

G has typically been associated with a range of semantic operations

 Binder et al., 2009 Price et al., 2015 ; A.R. 2016 ;), including general

taxonomic’ associations between concepts that are formed through con-

uence of shared features (e.g., apple and pear ) but particularly in the-

atic associations between pairs of concepts (e.g., mouse and cheese

oylan et al., 2015 ; Kalénine et al., 2009 ; Schwartz et al., 2011 ;). These

hematic associations, that reflect the more flexible combination of un-

ike concepts, may rely on shared neural substrates or computations

ecessary for topic representation. Indeed, the AG has been recently

dentified as a key structure for the representation of meaning at the

evel of paragraphs ( Branzi et al., 2021 ). The precuneus is one of the

ost consistently reported brain regions in studies of semantic process-

ng ( Binder et al., 2009 ). Its recruitment in semantic tasks has previ-

usly been attributed to the incidental retrieval of episodic memories

 Binder et al., 2009 Gobbini and Haxby, 2007 ;). However, this region

s also activated when people access semantic properties about animals

 Binder et al., 1999 ), or the nationality or occupation of famous people

 Aglinskas and Fairhall, 2019 Fairhall et al., 2014 ;) and for sentences

ontaining two object-concepts from different (compared to the same)
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bject domains ( Rabini et al., 2021 ). Moreover, RSA has shown that rep-

esentational spaces in voxel level patterns in the precuneus conform

o semantic representational spaces for single concepts ( Fairhall and

aramazza, 2013 ). Collectively, this suggests a role of the precuneus

n semantic representation that extends beyond that of an episodic by-

roduct of semantic access. The present result supports that assertion

nd extends it to show a role not only in the representation of individ-

al concepts but also in the representation of more general contextual

eaning. 

The ATL has long been identified as a critical region for semantic

rocessing, largely on the basis of neuropsychological studies of lesions,

emantic dementia and herpes encephalitis ( Patterson et al., 2007 ), but

lso functional neuroimaging data ( Visser et al., 2010 ). Source recon-

truction of magnetoencephalography data also indicate a role of this

egion in sentence composition ( Brennan and Pylkkänen, 2012 , 2017 ).

nterestingly, there is a lack of evidence for single concept represen-

ations in the lateral ATL using whole-brain functional neuroimaging

n healthy participants ( Bruffaerts et al., 2013 Devereux et al., 2013 ;

airhall and Caramazza, 2013 ;). A similar pattern is reflected here,

here the word-level models of sentence representations (averaged em-

eddings) failed to explain representational spaces within this region.

n the other hand, ATL has been previously associated with the for-

ation of composite concepts important for sentence comprehension

 Frankland and Greene, 2020 Friederici, 2011 ; Pallier et al., 2011 ;; see

lso Chadwick et al., 2016 ). Our pattern of results suggests the lateral

TL may have a particular role in the representation of the ensemble,

opic-level, semantic content of sentences. 

It is notable that the four identified regions (lateral ATL, medial

FC, AG and precuneus) belong to the default mode network (DMN;

.f Buckner et al., 2008 .). The functions of this network relate not only

o eponymous ‘default-mode’, task-deactivated states ( Raichle et al.,

001 ) but include a broad range of internalised integrative cognitive

rocesses: context integration, episodic memory and mental time travel

 Keidel et al., 2018 Schacter and Addis, 2007 ; Viard et al., 2011 ;), so-

ial cognition ( Greene et al., 2001 Van Overwalle, 2009 ;, 2011 ), as well

s general semantic knowledge ( Binder et al., 2009 Fairhall and Cara-

azza, 2013 ;; see Spreng et al., 2009 for a review). Unlike the process-

ng of a single word that may be directly available as stored memory,

he comprehension of a sentence most frequently requires the construc-

ion of new meaning and the extraction of a coarse context meaning or

opic, which shares many of the computational demands common with

hese high-level internally-driven and integrative processes. The over-

apping involvement of the DMN across these varied forms of cognition

ay reflect an intersecting role in the flexible integration of informa-

ion. In this way, it may be that, rather than a single region sitting atop

he conceptual processing hierarchy, this operation is supported in a dis-

ributed fashion by multiple nodes of the default mode system. A similar

rgument was recently put forward ( Frankland and Greene, 2020 ) with

he authors proposing that the conceptual combinations that underlie

he representation of the meaning of sentences also underlie the hu-

an capacity to internally generate complex thought through the Lan-

uage of Thought model ( Fodor, 1975 ). Under such a postulate, the inte-

rated representations of sentence topic-level meaning reported in this

tudy may additionally form a putative basis for higher-level genera-

ive thought. While these DMN regions may play a central role in the

epresentation of integrated topic-level meaning, this does not exclude

he possibility that it may accomplish this via coordination with brain

reas specialised for access to specific kinds of object or in the flexible

ccess to different kinds of content (e.g. geographic knowledge about

ood Fairhall, 2020 ;). 

Some regions frequently implicated in sentence processing

 Fedorenko et al., 2010 ) were not reported as representing topic-

evel sentence meaning with our RSA approach. It is through the

yntactic-semantic principles of language that single words and indi-

idual concepts are combined into more complex meaning. Language

egions, defined as those that result from the contrast of sentences
10 
which contain semantics, morphology, and syntax) with sequences

f non-words (which do not), have shown to be stable within and

cross individuals, visual and auditory modalities, and languages

 Fedorenko et al., 2010 ; for a discussion, see Fedorenko, 2014 ).

he present result may highlight different forms of cortical activity

ncovered using univariate approaches (classically used to identify

anguage regions) and multivariate measures of information represen-

ation (i.e., RSA). The univariate increase in blood oxygenation level

ependant (BOLD) signal as a function of integrative demand may,

n particular, uncover integration processes (e.g. syntactic processing,

yntactic-semantic integration). For instance, Pallier and colleagues

 Pallier et al., 2011 ) observed a parametric increase in activity with

he number of linguistic constituents within a series of words or

seudowords in the left IFG, and extending from the anterior temporal

obe to the angular gyrus. This approach is in contrast to the use of

SA in the present study, which finds activity patterns that conform to

emantic informational structures for stimuli balanced on the overall

evel of integrative demand. Regions like the ATL and angular gyrus

hat show both a representation of sentence-level topic meaning

present study) and a parametric sensitivity to integrative demand

 Pallier et al., 2011 ) potentially play a role in both the process of

entence integration/composition as well as representing the result

f that process – the topic-level meaning of the sentences. Regions

ike the mPFC and precuneus that represent the topic-level meaning

f the sentence but are not sensitive to integrative demand, may play

 role predominantly in representing the ensemble sentence meaning

ather than in its construction. Finally, regions like the IFG, which

how weak or no representation of topic-level meaning but that are

odulated by integrative demand ( Pallier et al., 2011 ) may play a role

n the integrative process but not in the final representation of that

rocess. This dissociation in role is further supported by the finding

hat, unlike the ATL or AG, the parametric modulation of response in

he IFG is comparable for meaningful and meaningless jabberwocky

entences ( Pallier et al., 2011 ), underscoring the role of this region in

he integration process even when meaning is absent. This is consistent

ith the broader role of the IFG in semantic control ( Binder et al.,

009 Lambon Ralph et al., 2017 ; Martin and Chao, 2001 ; Thompson-

chill et al., 1997 ;), syntactic-semantic integration ( Friederici, 2011 )

nd the domain-general role of this region in short-term memory, on

hich sentence comprehension relies ( Rogalsky and Hickok, 2011 ). 

A similar distinction may explain in particular why the pMTG did

ot show reliably stronger sentence topic-level than word-level repre-

entations. However, while the pMTG has also been implicated in se-

antic control ( Lambon Ralph et al., 2017 Noonan et al., 2013 ;), it has

dditionally been implicated in the semantic representation of single

oncepts ( Devereux et al., 2013 Fairhall and Caramazza, 2013 ;), sug-

esting a complex role in both representation and control. In particular,

t has been suggested that interactions between the IFG and the pMTG

llow sustained representations in short-term memory throughout sen-

ence processing, for integration into the overall context ( Lyu et al., 2019

oonan et al., 2013 ; Turken and Dronkers, 2011 ;). The lack of observed

ifference between models in the pMTG may therefore be explained by

ts main involvement in semantic control and single concept represen-

ation. 

For comparison, we compared the Wikipedia trained model to a

tate-of-the-art sentence level meaning encoder, MUSEL3. The MUSEL3

ncoder situates itself between the GloVe and the CNN (without any sig-

ificant differences with the other two models). The (non-significantly)

etter correlation of the CNN with brain data may be explained by the

act that the CNN model considers more the overarching meaning of the

entence, while the MUSEL3 is more general, as it was trained on an

everal tasks (conversational response prediction, quick-thought, nat-

ral language inference). It could also be due to the particular set of

entences used in the experiment, which were selected to emphasise

road thematic differences rather than subtle changes in meaning be-

ween similar sentences. 



D.J. Acunzo, D.M. Low and S.L. Fairhall NeuroImage 251 (2022) 119005 

 

c  

a  

t  

m  

t  

t  

c  

w  

e  

c  

t  

t  

s  

c  

F  

p  

d  

t  

b  

O  

w

 

o  

(  

w  

a  

b  

L  

r  

b  

e  

i  

m  

d  

a  

t  

f  

p  

t  

i  

t  

a  

t  

o  

t  

m  

l  

p

D

 

R  

(  

h c . 

D

F

 

i  

a  

M  

T  

N

D

C

 

n  

W  

i

A

 

q  

s  

F  

o  

p

R

A  

 

A  

 

 

A  

 

 

B  

 

B  

 

B  

 

B  

 

B  

 

 

B  

 

 

B  

 

B  

 

B  

 

B  

 

 

B  

 

C  

 

 

C  

 

 

C  

 

Indeed, one limitation of our study is that the stimulus-selection pro-

ess was designed to maximally differentiate topics and identify brain

ctivity that captured the relationship between these topics. One po-

ential side effect of this approach is that the resulting RDMs may be

aximized to detect differences at the sentence/CNN level rather than

he word/averaged-embeddings level. Future work employing stimuli

hat maximize information in word-level RDM models may highlight

ortical regions that better represent meaning at the level of individual

ords. A further potential consideration is that the averaging of word

mbeddings may result in a loss of information about the specific words

omposing the sentence. One of the advantages of word embeddings is

he fact that one can perform mathematical operations on them. In par-

icular, averaging embeddings has often been used in the past to model

entence meaning for a variety of natural language processing appli-

ations (e.g., Banea et al., 2014 Socher et al., 2013 ; Yu et al., 2014 ;).

urthermore, it has successfully been used to model brain activity. In

articular, Pereira et al. (2018) were able to predict average embed-

ings from the BOLD signal, which further underlines the relevance of

his model. These past works validate the relevance of average word em-

eddings representational space as a model for brain representations.

ur work intends to go further than the averaging model that treats

ords independently. 

In sum, we mapped two types of sentence representations

nto the cortex using RSA: word-level representational spaces

derived from averaged word embeddings, modelling individual

ord-meaning independently of the topic-level meaning of the sentence)

nd sentence topic-level representational spaces that consider the com-

ination of words into a higher-level semantic unit (from the CNN Final

ayer). This higher-level representation can be seen as a topic-level rep-

esentation, as the CNN is trained on broad categories and thus will not

e sensitive to subtle semantic and syntactic changes. While both mod-

ls explained neural patterns in broad overlapping areas of the cortex,

ndicating a shared reliance on common cortical regions, the CNN model

ore fully captured cortical representational spaces of sentences in me-

ial PFC, the precuneus, the AG and the lateral ATL. Analyses exploiting

n MLP model using the averaged word embeddings as input supported

he role of topic-level meaning - rather than integrated meaning built

rom fine-grained contextual information within the sentence - in ex-

laining neural representational spaces in the regions. The location of

hese regions provides insight into how these representations manifest

n the brain. Specifically, the location across multiple regions within

he DMN is consistent with: a) a broader role of this network, associ-

ted with other high-level internally-driven processes, in the represen-

ation of broad thematic information; b) the distributed representation

f topic-level meaning across this network rather than being confined

o a single node or hub; c) a potential distinction between regions pri-

arily involved in the representation of meaning within the DMN and

anguage-related regions outside of this network that are involved in the

rocesses underlying the integration of sentences. 
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