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Some Results About the Structure of
Primitivity Domains for Linear Partial
Differential Operators with Constant
Coefficients

S. Delladio

Abstract. Let G(D) be a linear partial differential operator on R
n,

with constant coefficients. Moreover let Ω ⊂ R
n be open and F ∈

L1
loc(Ω,CN ). Then any set of the form

Af,F := {x ∈ Ω | (G(D)f)(x) = F (x)}, with f ∈ W g,1
loc (Ω,Ck)

is said to be a G-primitivity domain of F . We provide some results
about the structure of G-primitivity domains of F at the points of the
(suitably defined) G-nonintegrability set of F . A Lusin type theorem for
G(D) is also provided. Finally, we give applications to the Maxwell type
system and to the multivariate Cauchy-Riemann system.

Mathematics Subject Classification. 47Fxx, 35Axx, 28A75, 26Bxx.

1. Introduction

Let:
• G = [Gjl] be a matrix of polynomials in C[ξ1, . . . , ξn] of dimension N×k,

with deg G := maxj,l(deg Gjl) = g ≥ 1;
• (x1, . . . , xn) be the standard coordinates of R

n and G(D) denote
the system [Gjl(D)], where Gjl(D) is the linear partial differential
operator with constant coefficients obtained by replacing each ξq in
Gjl(ξ1, . . . , ξn) with −i∂/∂xq;

• Ω ⊂ R
n be open and F ∈ L1

loc(Ω,CN );
• m be a positive integer and Σm denote the family of all matrices S of

polynomials in C[ξ1, . . . , ξn], with N columns, satisfying deg S ≤ m and
SG = 0.

Then any set of the form

Af,F := {x ∈ Ω | (G(D)f)(x) = F (x)}, withf ∈ W g,1
loc (Ω,Ck)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-021-01955-7&domain=pdf
http://orcid.org/0000-0002-5028-9573


39 Page 2 of 29 S. Delladio MJOM

is said to be a G-primitivity domain of F and the following simple fact holds:
If F ∈ Wm,1

loc (Ω,CN ) and there is an open ball B ⊂ Ω such that almost all
of B is covered by a G-primitivity domain Af,F (i.e., Ln(B\Af,F ) = 0), with
f ∈ W g+m,1

loc (Ω,Ck), then one has S(D)F = 0 a.e. in B for all S ∈ Σm.
This property, which can be readily extended to the case of f ∈ W g,1

loc (Ω,Ck)
(cf. Proposition 3.1), has naturally led us to expect that the structure of the
G-primitivity domains of F may be somewhat singular at the points of

Υm
F :=

⋃

S∈Σm

ΥF,S , where ΥF,S := {x ∈ Ω | (S(D)F )(x) �= 0},

that (just for this reason) will be called the G-nonintegrability set of F . To
confirm this intuition we first obtained the following results (cf. Corollary
3.2):

(1) If F ∈ Wm,p(Rn,CN ) and f ∈ W g+m,p(Rn,Ck), with p ∈ (1,+∞), then
one has Ln(Af,F ∩ Υm

F ) = 0;
(2) If F ∈ Wm+1,p(Rn,CN ) and f ∈ W g+m+1,p(Rn,Ck), with p ∈ (1, n),

then the set Af,F ∩ Υm
F is (n − 1)-rectifiable (cf. [13,17]), so that its

Hausdorff dimension is less or equal to n − 1.

Things can obviously improve if we consider a wider class of functions f . For
example, if F ∈ Wm,1

loc (Ω,CN ) then it may very well happen to come across
f ∈ W g,p(Rn,Ck) such that Ln(Af,F ∩ Υm

F ) > 0 (cf. (4) below). However,
even in this case, the structure of Af,F at points of Υm

F is significantly affected
by the G-nonintegrability properties. In particular, the following fact holds
(cf. Corollary 3.5):

(3) Let F ∈ Wm,p
loc (Ω,CN ) and f ∈ W g,p

loc (Ω,Ck), with p ∈ (1,+∞). Then,
at a.e. point of Υm

F , the set Af,F has density lower than n+pm/(p−1).

In Sect. 4 we provide a Lusin type result which extends [2, Theorem 1] to a
certain class of linear partial differential operators with constant coefficients
(cf. Theorem 4.1). The assumptions that define this class are quite stringent.
In particular, it is required that k = 1 and that the components of G be
different from each other. Moreover the following cohercivity condition is
required: there exist a nonnegative integer l ≤ g and a positive real number
c∗ such that

‖G(D)ϕ‖∞,Ω ≥ c∗ max
α∈N

n

|α|=l

‖∂αϕ‖∞,Ω

for all ϕ ∈ C∞
c (Ω,C). Despite these limitations, we believe that Theorem

4.1 may have some interesting applications. In support of this assertion, in
Sect. 5 we actually provide two examples of application, respectively to the
Maxwell type system and to the multivariate Cauchy-Riemann system. In a
corollary to Theorem 4.1, we prove that (cf. Corollary 4.1):

(4) Under the assumptions of Theorem 4.1 with l = g and F ∈ L1
loc(Ω,CN ),

one has
sup

f∈Cg
0 (Ω,C)

Ln(Af,F ) = Ln(Ω).
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Thus, under suitable conditions, there are G-primitivity domains of F arbi-
trarily close in measure to Ω, even if F ∈ Wm,1

loc (Ω,CN ) and Ln(Υm
F ) > 0

(even if Υm
F = Ω, which is the least favorable case for the “G-integrability of

F”!).

2. Notation and Preliminaries

2.1. General Notation

Br(x) is the open ball in R
n with center x and radius r. The open cube of

side 2r centered at x in R
n, that is (−r, r)n + x, is denoted by Qr(x). For

z = (z1, . . . , zN ) ∈ C
N , we set |z| := (|z1|2 + · · · + |zN |2)1/2. The Lebesgue

outer measure and the s-dimensional Hausdorff outer measure in R
n will be

denoted by Ln and Hs, respectively. If E ⊂ R
n is a Lebesgue measurable

set and uj , vj : E → R (j = 1, . . . , N) are Lebesgue measurable functions,
we say that (u1 + iv1, . . . , uN + ivN ) : E → C

N is Lebesgue measurable. If
f : E → C

N is a Lebesgue measurable function and p ∈ [1,+∞), then we
define

‖f‖p,E :=
(∫

E

|f |p dLn

) 1
p

while ‖f‖∞,E is defined as the infimum (which is actually a minimum) of the
numbers M ∈ [0,+∞] satisfying

Ln({x ∈ E : |f(x)| > M}) = 0.

If Ω ⊂ R
n is open and u, v : Ω → R are Lebesgue integrable (resp. p-

summable, locally p-summable; p ∈ [1,+∞)) on Ω, then we say that u+ iv is
Lebesgue integrable (resp. p-summable, locally p-summable) on Ω and define
(omitting for simplicity to specify explicitly the measure, which is obviously
the Lebesgue measure Ln)

∫

Ω

(u + iv) :=
∫

Ω

u + i

∫

Ω

v.

The space of p-summable functions on Ω and the space locally p-summable
functions on Ω will be denoted by Lp(Ω,C) and Lp

loc(Ω,C), respectively. If
f1, . . . , fk : Ω → C are Lebesgue integrable (resp. p-summable, locally p-
summable) on Ω, then we say that f = (f1, . . . , fk)t is Lebesgue integrable
(resp. p-summable, locally p-summable) on Ω and define

∫

Ω

f :=
(∫

Ω

f1, . . . ,

∫

Ω

fk

)t

.

We also set

Lp(Ω,Ck) := {(f1, . . . , fk)t | fj ∈ Lp(Ω,C) for 1 ≤ j ≤ k},

Lp
loc(Ω,Ck) := {(f1, . . . , fk)t | fj ∈ Lp

loc(Ω,C) for 1 ≤ j ≤ k}.
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The coordinates of Rn are denoted by (x1, . . . , xn) and we set for simplicity
∂j := ∂/∂xj . For α = (α1, . . . , αn) ∈ N

n, define

|α| := α1 + . . . + αn, α! := α1! · · · αn!, ∂α :=
∂|α|

∂xα1
1 · · · ∂xαn

n
.

Similarly, if (ξ1, . . . , ξn) ∈ R
n then we write

ξα := ξα1
1 · · · ξαn

n .

If Ω ⊂ R
n is open, m ∈ N and k ∈ N\{0}, then we set

Cm(Ω,C) := {u + iv |u, v ∈ Cm(Ω)}, Cm
c (Ω,C) := {u + iv |u, v ∈ Cm

c (Ω)}
and

Cm(Ω,Ck) := {(f1, . . . , fk)t | f1, . . . , fk ∈ Cm(Ω,C)},

Cm
c (Ω,Ck) := {(f1, . . . , fk)t | f1, . . . , fk ∈ Cm

c (Ω,C)}.

For α ∈ N
n and f = (f1, . . . , fk)t ∈ C|α|(Ω,Ck), we set

∂αf := (∂αf1, . . . , ∂
αfk)t.

The norm in Cm(Ω,Ck) is defined as

Cm(Ω,Ck) � f �→ ‖f‖Cm(Ω,Ck) :=
∑

α∈N
n

|α|≤m

‖∂αf‖∞,Ω.

The closure of C∞
c (Ω,Ck) in (Cm(Ω,Ck); ‖ · ‖Cm(Ω,Ck)) will be denoted by

Cm
0 (Ω,Ck). For simplicity, we will write C(Ω,Ck), Cc(Ω,Ck) and C0(Ω,Ck)

in place of C0(Ω,Ck), C0
c (Ω,Ck) and C0

0 (Ω,Ck), respectively. If m is a positive
integer and p ∈ [1,+∞), then we set

Wm,p
loc (Ω,C) := {u + iv |u, v ∈ Wm,p

loc (Ω)}
and

Wm,p
loc (Ω,Ck) := {(f1, . . . , fk)t | f1, . . . , fk ∈ Wm,p

loc (Ω,C)}.

If f ∈ Wm,1
loc (Ω,C) and α ∈ N

n with |α| ≤ m, then ∂αf will denote the precise
representative of the αth weak derivative of f (cf. [12,18]). In particular, ∂0f

is the precise representative of f . If f = (f1, . . . , fk)t ∈ Wm,1
loc (Ω,Ck) and

α ∈ N
n with |α| ≤ m, then ∂αf := (∂αf1, . . . , ∂

αfk)t. If d ≥ 0, p > 1 and
E ⊂ R

n, then Bd,p(E) denotes the Bessel capacity of E (cf. Section 2.6 in
[21]). Recall that B0,p = Ln.

2.2. Linear Partial Differential Operators

Let

P (ξ1, . . . , ξn) =
∑

α∈N
n

|α|≤d

cα ξα ∈ C[ξ1, . . . , ξn].

If cα �= 0 for some α ∈ N
n with |α| = d, then the number d is said to be

the total degree of P and is denoted by deg P . As usual (cf. [5,15]), P (D)
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is the differential operator obtained by replacing each variable ξj with −i∂j ,
namely

P (D) :=
∑

α∈N
n

|α|≤d

(−i)|α|cα ∂α. (2.1)

Also define

P ∗(ξ) := P (−ξ) =
∑

α∈N
n

|α|≤d

(−1)|α|cα ξα ∈ C[ξ1, . . . , ξn].

Observe that if P,Q ∈ C[ξ1, . . . , ξn] then these identities holds:

(P + Q)∗ = P ∗ + Q∗, (PQ)∗ = P ∗Q∗ (2.2)

and

(PQ)(D) = P (D)Q(D). (2.3)

Now consider P ∈ C[ξ1, . . . , ξn], with d := deg P ≥ 1, an open set Ω ⊂ R
n

and

ϕ ∈ Cd
c (Ω,C), ψ ∈ W d,1

loc (Ω,C).

Then (P (D)ψ)ϕ and (P ∗(D)ϕ)ψ are obviously Lebesgue summable on Ω and
a trivial computation shows that

∫

Ω

(P (D)ψ)ϕ =
∫

Ω

(P ∗(D)ϕ)ψ. (2.4)

If M = [Pjl] is a matrix of polynomials in C[ξ1, . . . , ξn] of dimension N × k,
then we set

deg M := max
(j,l)

deg Pjl, M(D) := [Pjl(D)].

For all (j, l) ∈ {1, . . . , N} × {1, . . . , k} the polynomial Pjl can be written as
follows

Pjl(ξ1, . . . , ξn) =
∑

α∈N
n

|α|≤m

c(jl)
α ξα,

where c
(jl)
α ∈ C and m := deg M . If f ∈ Wm,p

loc (Ω,Ck), with m = deg M and
Ω ⊂ R

n open, then one has

M(D)f =
∑

α∈N
n

|α|≤m

(−i)|α|Cα∂αf

where Cα is the matrix of dimension N × k whose entries are the numbers
c
(jl)
α , with (j, l) ∈ {1, . . . , N} × {1, . . . , k}.
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2.3. Distributions

Let Ω be an open subset of R
n. We recall that a linear functional T :

C∞
c (Ω,C) → C is said to be a distribution on Ω if one has limj→∞ T (ϕj) =

T (ϕ) for every sequence {ϕj}∞
j=1 ⊂ C∞

c (Ω,C) and ϕ ∈ C∞
c (Ω,C) such that

(i) There exists a compact set K ⊂ Ω such that suppϕj ⊂ K, for all j;
(ii) One has limj→∞ ‖∂αϕj − ∂αϕ‖∞,Ω = 0, for all α ∈ N

n.
If conditions (i) and (ii) are satisfied we say that the sequence {ϕj}∞

j=1 con-
verges to ϕ in C∞

c (Ω,C). The set of all distributions on Ω, denoted by D′(Ω),
is obviously a vector space with addition and scalar multiplication defined by

(T1 + T2)(ϕ) = T1(ϕ) + T2(ϕ), (λT )(ϕ) = λT (ϕ)

for all T1, T2, T ∈ D′(Ω), λ ∈ C and ϕ ∈ C∞
c (Ω,C). For every u ∈ L1

loc(Ω,C)
one can define Tu ∈ D′(Ω) as

Tu(ϕ) :=
∫

Ω

uϕ, ϕ ∈ C∞
c (Ω,C).

We recall that, if P ∈ C[ξ1, . . . , ξn], T ∈ D′(Ω) and set

[P (D)T ](ϕ) := T (P ∗(D)ϕ), ϕ ∈ C∞
c (Ω,C)

then P (D)T ∈ D′(Ω). In particular, if u ∈ L1
loc(Ω,C) then one has

[P (D)Tu](ϕ) =
∫

Ω

(P ∗(D)ϕ)u, ϕ ∈ C∞
c (Ω,C).

Hence, in the special case when u ∈ Cm(Ω,C) with m = deg P , recalling
(2.4), we find the following regularity identity

P (D)Tu = TP (D)u. (2.5)

We shall use the weak topology in D′(Ω), according to which

lim
j→∞

Tj = T (T, Tj ∈ D′(Ω))

means that

lim
j→∞

Tj(ϕ) = T (ϕ), for allϕ ∈ C∞
c (Ω,C).

The map

L1
loc(Ω,C) � u �→ Tu ∈ D′(Ω)

is continuous. More precisely, if {uj}∞
j=1 converges to u in L1

loc(Ω,C), namely
uj , u ∈ L1

loc(Ω,C) and

lim
j→∞

∫

K

|uj − u| = 0

for all compact set K ⊂ Ω, then one has

lim
j→∞

Tuj
= Tu. (2.6)

Let G = [Glh] be a matrix of polynomials in C[ξ1, . . . , ξn] of dimension N ×k
and let

f = (f1, . . . , fk)t ∈ L1
loc(Ω,Ck), Φ = (Φ1, . . . ,ΦN )t ∈ L1

loc(Ω,CN )
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be such that equality G(D)f = Φ holds in the sense of distributions, that is
k∑

q=1

Glq(D)Tfq
= TΦl

for all l = 1, . . . , N , i.e.,
k∑

q=1

∫

Ω

(G∗
lq(D)ϕ)fq =

∫

Ω

ϕΦl (2.7)

for all ϕ ∈ C∞
c (Ω,C) and l = 1, . . . , N . Observe that if S = [Sjl] is another

matrix of polynomials in C[ξ1, . . . , ξn] of dimension h × N , then (2.7), (2.3)
and (2.2) yield

N∑

l=1

∫

Ω

(
S∗

jl(D)ϕ
)
Φl =

N∑

l=1

k∑

q=1

∫

Ω

(
G∗

lq(D)S∗
jl(D)ϕ

)
fq

=
k∑

q=1

∫

Ω

(( N∑

l=1

SjlGlq

)∗
(D)ϕ

)
fq

namely
N∑

l=1

∫

Ω

(
S∗

jl(D)ϕ
)
Φl =

k∑

q=1

∫

Ω

(
(SG)∗

jq(D)ϕ
)
fq (2.8)

for all ϕ ∈ C∞
c (Ω,C) and for all j = 1, . . . , h. In the special case when

f ∈ W g+s,1
loc (Ω,Ck), with g := deg G and s := deg S, identity (2.8) provides
∫

Ω

(
N∑

l=1

Sjl(D)

[
k∑

q=1

Glq(D)fq

])
ϕ =

∫

Ω

(
k∑

q=1

(SG)jq(D)fq

)
ϕ

for all ϕ ∈ C∞
c (Ω,C) and for all j = 1, . . . , h, that is

S(D) [G(D)f ] = (SG)(D)f a.e. in Ω. (2.9)

2.4. Superdensity

A point x ∈ R
n is said to be a m-density point of E ⊂ R

n (where m ∈
[n,+∞)) if

Ln(Br(x)\E) = o(rm) (as r → 0+).

The set of all m-density points of E is denoted by E(m).

Remark 2.1. The following properties hold:
• Every interior point of E ⊂ R

n is an m-density point of E, for all
m ∈ [n,+∞). Thus, whenever E is open, one has E ⊂ E(m) for all
m ∈ [n,+∞);

• If E ⊂ R
n and n ≤ m1 ≤ m2 < +∞, then E(m2) ⊂ E(m1). In particular,

one has E(m) ⊂ E(n) for all m ∈ [n,+∞);
• If A,B ⊂ R

n then (A ∩ B)(m) = A(m) ∩ B(m), for all m ∈ [n,+∞);
• For all A ⊂ R

n and m ∈ [n,+∞), the set A(m) is Ln-measurable (cf. [7,
Proposition 3.1]).
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Remark 2.2. Let E ⊂ R
n. Then one has the following inequality

Ln(Br(x) ∩ E)
Ln(Br(x))

≥ 1 − Ln(Br(x)\E)
Ln(Br(x))

(r > 0)

where equality holds if E is Ln-measurable. Thus:
• If x ∈ E(n), then x is a Lebesgue density point of E;
• If E is Ln-measurable and x is a Lebesgue density point of E, then

x ∈ E(n).

In particular, if E is Ln-measurable then: x ∈ E(n) if and only if x is a
Lebesgue density point of E, hence

Ln(EΔE(n)) = 0 (2.10)

e.g., cf. Corollary 1.5 in [20, Chapter 3]. It follows that Ln(Br(x)\E(n)) =
Ln(Br(x)\E), for all r > 0, hence

(E(n))(n) = E(n).

A remarkable family of superdense sets is the class of finite perimeter
sets. Indeed Theorem 1 in [12, Section 6.1.1] states that almost every point
in a set E ⊂ R

n (with n ≥ 2) of finite perimeter is a m0-density point of E,
with

m0 := n + 1 +
1

n − 1
.

The number m0 is also the maximum order of density common to all sets of
finite perimeter. More precisely one has this result, cf. [6, Lemma 4.1] and
[7, Proposition 4.1].

Proposition 2.1. The following facts hold (n ≥ 2):
(1) If E is a set of locally finite perimeter in R

n, then Ln-almost every point
in E belongs to E(m0);

(2) For all m > m0 there exists a compact set Fm of finite perimeter in R
n

such that Ln(Fm) > 0 and F
(m)
m = ∅.

2.5. A class of cut-off functions

Consider r > 0, ρ ∈ (0, 1) and a function ψ ∈ C∞(R) such that

0 ≤ ψ ≤ 1, ψ|(−∞,0] ≡ 1, ψ|[1,+∞) ≡ 0.

If define ϕρ,r : Rn → R by

ϕρ,r(x) :=
n∏

j=1

ψ

(
|xj | − ρr

(1 − ρ)r

)
, for all x = (x1, . . . , xn) ∈ R

n,

then one obviously has

ϕρ,r ∈ C∞(Rn, [0, 1]), ϕρ,r|Qρr(0) ≡ 1, ϕρ,r|Rn\Qr(0) ≡ 0. (2.11)

Moreover, a standard computation yields

|∂αϕρ,r(x)| =
1

(1 − ρ)|α|r|α|

n∏

j=1

∣∣∣∣ψ
(αj)

(
|xj | − ρr

(1 − ρ)r

)∣∣∣∣ ,
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for all α ∈ N
n and x = (x1, . . . , xn) ∈ R

n, hence

‖∂αϕρ,r‖∞,Rn ≤ C(α)
(1 − ρ)|α|r|α| (2.12)

for all α ∈ N
n, where C(α) is a number depending only on α (and n).

3. Some structure results for G-primitivity domains

Throughout this section, Ω is an open subset of R
n while G = [Gjl] is a

matrix of polynomials in C[ξ1, . . . , ξn] of dimension N × k. Let us assume

g := deg G = max
(jl)

deg Gjl ≥ 1.

Moreover, for any couple of integers m,h ≥ 1, let Mm,h denote the family of
all matrices S of polynomials in C[ξ1, . . . , ξn] of dimension h × N such that
deg S ≤ m. We also define

Σm,h := {S ∈ Mm,h |SG = 0}, Σm :=
+∞⋃

h=1

Σm,h.

Definition 3.1. Let F ∈ L1
loc(Ω,CN ). Then any set of the form

Af,F := {x ∈ Ω | (G(D)f)(x) = ∂0F (x)}, with f ∈ W g,1
loc (Ω,Ck),

is called “ G-primitivity domain of F”. For F ∈ Wm,1
loc (Ω,CN ), with m ≥ 1,

we define

Υm
F :=

⋃

S∈Σm

ΥF,S , where ΥF,S := {x ∈ Ω | (S(D)F )(x) �= 0}.

We shall refer to Υm
F as the “ G-nonintegrability set of F”.

Remark 3.1. If F ∈ C(Ω,CN ) and f ∈ Cg(Ω,Ck) then one has

Af,F ∩ Υ0
F = ∅. (3.1)

Indeed, let S ∈ Σ0 and observe that it must coincide with a matrix M whose
entries are all in C. Then, for all x ∈ Af,F , one has

(S(D)F )(x) = M(F (x)) = M((G(D)f)(x)) = ((SG)(D)f)(x) = 0

that is Af,F ∩ ΥF,S = ∅. Now (3.1) follows from the arbitrariness of S ∈ Σ0.

Remark 3.2. The family Mm,h is a finite dimensional vector space on the
field C. Let us consider S = [Sjl] ∈ Mm,h with

Sjl(ξ1, . . . , ξn) =
∑

α∈N
n

|α|≤m

c(jl)
α ξα

and define

||S|| :=
∑

j,l,α

|c(jl)
α |.

Then S �→ ||S|| is a norm in Mm,h. Obviously Σm,h is a closed vector subspace
of (Mm,h, || · ||), normed by the restriction of || · || to Σm,h. In particular it is
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separable, i.e., it has a countable subset Σ∗
m,h which is dense with respect to

the norm topology. Observe that for all F ∈ Wm,1
loc (Ω,CN ) one has

⋃

S∈Σm,h

ΥF,S =
⋃

S∈Σ∗
m,h

ΥF,S (h = 1, 2, . . .)

hence

Υm
F =

+∞⋃

h=1

⋃

S∈Σm,h

ΥF,S =
+∞⋃

h=1

⋃

S∈Σ∗
m,h

ΥF,S

that is

Υm
F =

⋃

S∈Σ∗
m

ΥF,S , with Σ∗
m :=

+∞⋃

h=1

Σ∗
m,h. (3.2)

From (2.9) and (3.2) we get at once the following property, that
is the original reason why Υm

F is called G-nonintegrability set of F : Let
F ∈ Wm,1

loc (Ω,CN ) and assume that there is an open ball B ⊂ Ω and
f ∈ W g+m,1

loc (Ω,Ck) such that G(D)f = F a.e. in B. Then Ln(B ∩Υm
F ) = 0.

The next result extends such a property and will be further generalized in
Corollary 3.2 and Corollary 3.5 below (cf. Remark 3.5).

Proposition 3.1. Let F = (F1, . . . , FN )t ∈ Wm,1
loc (Ω,CN ), with m ≥ 1.

Assume that there is an open ball B ⊂ Ω such that almost all of B is covered
by a G-primitivity domain Af,F with f = (f1, . . . , fk)t ∈ W g,1

loc (Ω,Ck), i.e.
Ln(B\Af,F ) = 0. Then Ln(B ∩ Υm

F ) = 0.

Proof. Let S be chosen arbitrarily in Σ∗
m, whereby there is h ≥ 1 such that

S ∈ Σ∗
m,h. From (2.4) and (2.8) (with Φ = F ), we get

∫

B

(S(D)F )jϕ =
N∑

l=1

∫

B

(Sjl(D)Fl)ϕ =
N∑

l=1

∫

B

(
S∗

jl(D)ϕ
)
Fl

=
k∑

q=1

∫

B

(
(SG)∗

jq(D)ϕ
)
fq = 0

for all ϕ ∈ C∞
c (B) and j = 1, . . . , h. Hence S(D)F = 0 a.e. in B, that is

Ln(B ∩ ΥF,S) = 0. The conclusion follows from the arbitrariness of S ∈ Σ∗
m

and (3.2). �

Remark 3.3. Let F ∈ Wm,1
loc (Ω,CN ) and f ∈ Wm+g,1

loc (Ω,Ck) be such that
G(D)f = F a.e. in Ω, i.e., Ln(Ω\Af,F ) = 0. In this special case, Proposition
3.1 leads to Ln(Υm

F ) = 0, i.e., the obvious compatibility condition S(D)F = 0
a.e. in Ω, for all S ∈ Σm.

Remark 3.4. In general, the problem of determining S such that SG = 0
is not easy and for an account about its resolution we refer the reader to
algebraic analysis literature, e.g., [5] (and the references therein), where it
is addressed also through the use of specific software. In this regard it must
be remembered that a particularly significant case is when S is the matrix
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yielded by the first syzygies of G, also considered in Corollary 3.3, Corol-
lary 3.7, Example 3.1 and in [10, Sect. 5.2] (Maxwell type system), [10,
Sect.5.3] (multivariable Cauchy-Riemann system). In this case, the identity
(S(D)F )(x) = 0 for each x ∈ Ω, under the further assumption that Ω is con-
vex, is a necessary and sufficient condition for the existence of a solution f to
the partial differential equation G(D)f = F in the frameworks corresponding
to a large class of sheaves of functions, cf. [5, Theorem 2.1.1].

3.1. Structure of Af,F at Points of the G-nonintegrability Set of F ∈
Wm+d,p : The Case of f ∈ Wg+m+d,p

In paper [10] we have proved the following result.

Theorem 3.1. Let F ∈ Cm(Ω,CN ) and f ∈ Cg+m(Ω,Ck). Define A∗
f,F as the

set of all x ∈ Af,F satisfying the following property: There exists S, possibly
depending on x, such that 1 ≤ deg S ≤ m, SG = 0 and (S(D)F )(x) �= 0.
Then the set A∗

f,F is covered by a finite family of (n−1)-dimensional regularly
imbedded C1 submanifolds of Rn.

Corollary 3.1. Let F ∈ Cm(Ω,CN ) and f ∈ Cg+m(Ω,Ck). Then the set
Af,F ∩Υm

F is covered by a finite family of (n−1)-dimensional regularly imbed-
ded C1 submanifolds of Rn.

Proof. Since {S ∈ Σm | deg S = 0} = Σ0, one has

Υ0
F =

⋃

S∈Σ0

ΥF,S =
⋃

S∈Σm
deg S=0

ΥF,S .

Then, also recalling (3.1), we obtain

A∗
f,F = Af,F ∩

⎛

⎜⎜⎝
⋃

S∈Σm
deg S≥1

ΥF,S

⎞

⎟⎟⎠ = Af,F ∩ (Υm
F\Υ0

F ) = Af,F ∩ Υm
F

and the conclusion follows from Theorem 3.1. �
From Corollary 3.1 we get, quite easily, this result in the context of

Sobolev functions.

Corollary 3.2. Let F ∈ Wm+d,p(Rn,CN ) and f ∈ W g+m+d,p(Rn,Ck), with
m ≥ 1, p ∈ (1,+∞) and d ∈ {0, 1}. The following facts hold:
(1) If d = 0 then Ln(Af,F ∩ Υm

F ) = 0;
(2) If d = 1 and p < n, then Af,F ∩ Υm

F is (n − 1)-rectifiable (cf. [13,17]),
so that its Hausdorff dimension is less or equal to n − 1.

Proof. Let d ∈ {0, 1} and p ∈ (1,+∞) be such that pd < n. Then, recall-
ing a well known Lusin-type approximation result for Sobolev functions (cf.
Theorem 3.10.5 in [21]), we can find

F l ∈ Cm(Rn,CN ), f l ∈ Cg+m(Rn,Ck) (l = 1, 2, . . .)

such that
Bd,p(Rn\El) ≤ 1

l
, (3.3)
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where

El := El
1 ∩ El

2

with

El
1 :=

⋂

|α|≤m

{x ∈ R
n : ∂αF (x) = ∂αF l(x)},

and

El
2 :=

⋂

|α|≤g+m

{x ∈ R
n : ∂αf(x) = ∂αf l(x)}.

Now consider an arbitrary S ∈ Σ∗
m, define for simplicity

AS := Af,F ∩ ΥF,S , Al
S := Af l,F l ∩ ΥF l,S , E :=

∞⋃

l=1

El

and observe that

El ∩ AS ⊂ El ∩ Al
S ⊂ Al

S (l = 1, 2, . . .).

Then

AS = (AS ∩ E) ∪ (AS\E) ⊂
(+∞⋃

l=1

Al
S

)
∪ (Rn\E)

for all S ∈ Σ∗
m, hence

⋃

S∈Σ∗
m

AS ⊂

⎛

⎝
⋃

S∈Σ∗
m

+∞⋃

l=1

Al
S

⎞

⎠ ∪ (Rn\E) =

⎛

⎝
+∞⋃

l=1

⋃

S∈Σ∗
m

Al
S

⎞

⎠ ∪ (Rn\E).

Recalling (3.2), we get

Af,F ∩ Υm
F ⊂

+∞⋃

l=1

(
Af l,F l ∩ Υm

F l

)
∪ (Rn\E). (3.4)

But for all l = 1, 2, . . . there is a finite family of (n−1)-dimensional regularly
imbedded C1 submanifolds of Rn that covers Af l,F l ∩ Υm

F l , by Corollary 3.1.
Moreover Bd,p(Rn \ E) = 0, by (3.3). Thus:

• If d = 0 and p ∈ (1,+∞), one has Ln(Rn \ E) = 0. Hence Ln(Af,F ∩
Υm

F ) = 0, by (3.4);
• If d = 1 and 1 < p < n, one has Hn−1(Rn \ E) = 0 (cf. Theorem 2.6.16

in [21]). Hence Af,F ∩ Υm
F is (n − 1)-rectifiable, by (3.4).

�

Corollary 3.3. Let us consider the special case when k = 1, namely G :=
(G1, . . . , GN )t and g = deg G ≥ 1. Moreover, let F = (F1, . . . , FN )t ∈
W g+d,p(Rn,CN ) and f ∈ W 2 g+d,p(Rn,Ck), with p ∈ (1,+∞) and d ∈ {0, 1}.
Assume that for Hn−d-a.e. x ∈ Af,F there exist j, l ∈ {1, . . . , N} such that

(Gj(D)Fl)(x) �= (Gl(D)Fj)(x). (3.5)

The following facts hold:
(1) If d = 0 then Ln(Af,F ) = 0;
(2) If d = 1 and p < n, then Af,F is (n − 1)-rectifiable.
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Proof. Let S = [Sjl] be the matrix yielded by the first syzygies of G (cf.
Example 2.1.1 in [5]), which can be obtained as follows. First of all, set
h := N(N − 1)/2 and let {(rj , sj)}h

j=1 be the set of all the couples

(r, s) ∈ N
2, with 1 ≤ r < s ≤ N

ordered in some way (e.g. lexicographically). Then S = [Sjl] is the matrix of
polynomials in C[ξ1, . . . , ξn] of dimension h × N such that

Sjl :=

⎧
⎪⎨

⎪⎩

Gsj
if l = rj

−Grj
if l = sj

0 otherwise.
(j = 1, . . . , h).

Observe that deg S = g. Moreover, by assumption (3.5), one has

Hn−d(Z) = 0, with Z := {x ∈ Af,F | (S(D)F )(x) = 0}.

Since Af,F \Z = Af,F ∩ ΥF,S , one also has

Af,F = (Af,F ∩ ΥF,S) ∪ Z ⊂ (Af,F ∩ Υg
F ) ∪ Z.

Hence (1) and (2) follow at once from Corollary 3.2. �

3.2. Structure of Af,F at Points of the G-nonintegrability Set of F ∈ Wm,p :
The Case of f ∈ Wg,p

In Sect. 3.1 we have proved that if F ∈ Wm,p(Rn,CN ) then every G-
primitivity domain Af,F with f ∈ W g+m,p(Rn,Ck) intersects the G-
nonintegrability set of F in a set of Lebesgue measure zero. Things change if
one considers f ∈ W g,p(Rn,Ck). In fact, as we will see, it can happen to come
across functions f ∈ W g,p(Rn,Ck) such that Ln(Af,F ∩Υm

F ) > 0 (cf. Theorem
4.1 and Corollary 4.1 in the next section). However, as Corollary 3.4 below
shows, even in this case the G-nonintegrability properties strongly shape the
structure of Af,F at points of Υm

F . More precisely: if S ∈ Σm then, at a.e. point
of ΥF,S , the set Af,F has density lower than n+p deg S/(p−1). Consequently,
at a.e. point of Υm

F , the set Af,F has density lower than n + pm/(p − 1), cf.
Corollary 3.5.

Theorem 3.2. Let p ∈ (1,+∞) and consider

f = (f1, . . . , fk)t ∈ L1
loc(Ω,Ck), Φ = (Φ1, . . . ,ΦN )t ∈ Lp

loc(Ω,CN )

such that G(D)f = Φ holds in the sense of distributions. Moreover, let F =
(F1, . . . , FN )t ∈ Wm,p

loc (Ω,CN ) with m ≥ 1 and define

BΦ,F := {x ∈ Ω |Φ(x) = F (x)}.

Then there exists a null measure set Z ⊂ Ω such that

S(D)F = 0 in Ω ∩ B
(n+δS)
Φ,F \ Z,

for all S ∈ Σm, where δS := p deg S/(p − 1).

Proof. First of all, we observe that:
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• There exists a null measure set Z1 ⊂ Ω such that |F (x)|, |Φ(x)| < +∞
and

εx(r) :=

(∫

Qr(x)

|F − F (x)|p
)1/p

+

(∫

Qr(x)

|Φ − Φ(x)|p
)1/p

→ 0, as r → 0+

for all x ∈ Ω \ Z1 (cf. Corollary 1 in [12, Sect.1.7.1]);
• There exists a null measure set Z2 ⊂ Ω such that |∂αF (x)| < +∞,

lim
r→0+

∫

Qr(x)

∂αF = ∂αF (x)

and
lim

r→0+

∫

Qr(x)

|∂αF |p = |∂αF (x)|p

for all x ∈ Ω \ Z2 and for all α ∈ N
n with |α| ≤ m (cf. Theorem 1 in

[12, Sect.1.7.1]);
• From (2.10) it follows that Z3 := B

(n)
Φ,F \BΦ,F is a null measure set, while

B
(n+δS)
Φ,F \BΦ,F ⊂ Z3, for all S ∈ Σm (3.6)

by Remark 2.1.

Let us define Z := Z1 ∪ Z2 ∪ Z3. Moreover, consider S ∈ Σm and
x ∈ Ω ∩ B

(n+δS)
Φ,F \Z. Also, consider ρ ∈ (1/2, 1) and let r ∈ (0, 1) be small

enough so that Qr(x) ⊂ Ω. Recall from Sect. 2.5 that a function ϕρ,r,x ∈
C∞

c (Rn, [0, 1]) has to exist such that

ϕρ,r,x|Qρr(x) ≡ 1, ϕρ,r,x|Rn\Qr(x) ≡ 0

and

‖∂αϕρ,r,x‖∞,Rn ≤ C(α)
(1 − ρ)|α|r|α| (3.7)

for all α ∈ N
n, where C(α) is a number depending only on α (and n). In the

formulas below we set for simplicity

Qr := Qr(x), Qρr := Qρr(x), ϕρ,r := ϕρ,r,x.

Then, by (2.4), we obtain (for all j ∈ {1, . . . , h}, where h is the positive
integer such that S ∈ Σm,h)
∫

Qr

(S(D)F )jϕρ,r =

N∑

l=1

∫

Qr

(Sjl(D)Fl)ϕρ,r =

N∑

l=1

∫

Qr

(S∗
jl(D)ϕρ,r)Fl

=

N∑

l=1

∫

Qr\BΦ,F

(S∗
jl(D)ϕρ,r)Fl +

N∑

l=1

∫

Qr∩BΦ,F

(S∗
jl(D)ϕρ,r)Φl

that is
∫

Qr

(S(D)F )jϕρ,r = Ir,j +
N∑

l=1

∫

Qr\BΦ,F

(S∗
jl(D)ϕρ,r)(Fl − Φl) (3.8)

where

Ir,j :=
N∑

l=1

∫

Qr

(S∗
jl(D)ϕρ,r)Φl =

k∑

q=1

∫

Qr

(
(SG)∗

jq(D)ϕρ,r

)
fq = 0 (3.9)
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by (2.8) and the assumption SG = 0. By assumption and by (3.6), one also
has

x ∈ B
(n+δS)
Φ,F \ Z3 ⊂ B

(n+δS)
Φ,F ∩ BΦ,F

hence
Φ(x) = F (x), Ln(Qr\BΦ,F ) = o(rn+δS ). (3.10)

From (3.7), (3.8), (3.9), (3.10) and Hölder inequality, we get
∣∣∣∣
∫

Qr

(S(D)F )jϕρ,r

∣∣∣∣ =

∣∣∣∣∣

N∑

l=1

∫

Qr\BΦ,F

(S∗
jl(D)ϕρ,r)(Fl − Φl)

∣∣∣∣∣

≤
N∑

l=1

(∫

Qr\BΦ,F

|S∗
jl(D)ϕρ,r| |Fl − Fl(x)|

+
∫

Qr\BΦ,F

|S∗
jl(D)ϕρ,r| |Φl − Φl(x)|

)

≤
N∑

l=1

‖S∗
jl(D)ϕρ,r‖∞,Qr

[(∫

Qr

|F − F (x)|p
)1/p

+
(∫

Qr

|Φ − Φ(x)|p
)1/p]

Ln(Qr\BΦ,F )1−1/p

≤ εx(r)rn/p o(rn+δS )1−1/p
∑

α∈N
n

|α|≤deg S

1
(1 − ρ)|α|r|α|

that is
∣∣∣∣
∫

Qr

(S(D)F )jϕρ,r

∣∣∣∣ ≤ εx(r)o(rn+δS(p−1)/p)
(1 − ρ)deg Srdeg S

=
εx(r)o(rn)
(1 − ρ)deg S

. (3.11)

On the other hand
∣∣∣∣
∫

Qr

(S(D)F )jϕρ,r

∣∣∣∣ ≥
∣∣∣∣∣

∫

Qρr

(S(D)F )jϕρ,r

∣∣∣∣∣ −
∣∣∣∣∣

∫

Qr\Qρr

(S(D)F )jϕρ,r

∣∣∣∣∣

=

∣∣∣∣∣

∫

Qρr

(S(D)F )j

∣∣∣∣∣ −
∣∣∣∣∣

∫

Qr\Qρr

(S(D)F )jϕρ,r

∣∣∣∣∣
(3.12)

and ∣∣∣∣∣

∫

Qr\Qρr

(S(D)F )jϕρ,r

∣∣∣∣∣ ≤
∫

Qr\Qρr

|S(D)F | ≤ C1

∑

|α|≤m

∫

Qr\Qρr

|∂αF |

≤ C1

∑

|α|≤m

(∫

Qr

|∂αF |p
)1/p

Ln(Qr\Qρr)1−1/p

≤ C2r
n(1 − ρn)1−1/p

∑

|α|≤m

( ∫

Qr

|∂αF |p
)1/p

(3.13)
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where C1 and C2 do not depend on r and ρ.
From (3.11), (3.12) and (3.13) it follows that

ρn

∣∣∣∣∣

∫

Qρr

(S(D)F )j

∣∣∣∣∣ ≤ 1

2nrn

(∣∣∣∣
∫

Qr

(S(D)F )jϕρ,r

∣∣∣∣ +

∣∣∣∣∣

∫

Qr\Qρr

(S(D)F )jϕρ,r

∣∣∣∣∣

)

≤ εx(r)o(rn)

rn(1 − ρ)deg S
+ C3(1 − ρn)1−1/p

∑

|α|≤m

(∫

Qr

|∂αF |p
)1/p

where C3 does not depend on r and ρ. Recalling that x ∈ Ω\(Z1 ∪ Z2) and
passing to the limit for r → 0+, we obtain

ρn |(S(D)F )j(x)| ≤ C3 (1 − ρn)1−1/p
∑

|α|≤m

|∂αF (x)|

for all j ∈ {1, . . . , h}. We conclude by passing to the limit for ρ → 1−. �

Corollary 3.4. Let F ∈ Wm,p
loc (Ω,CN ), with m ≥ 1 and p ∈ (1,+∞). Then

one has Ln(A(n+δS)
f,F ∩ ΥF,S) = 0 for all f ∈ W g,p

loc (Ω,Ck) and S ∈ Σm, where
δS := p deg S/(p − 1).

Proof. Let us consider f ∈ W g,p
loc (Ω,Ck) and S ∈ Σm. Moreover set Φ :=

G(D)f and observe that BΦ,F = Af,F . Then one has

(S(D)F )(x) = 0 for all x ∈ Ω ∩ A
(n+δS)
f,F \ Z

by Theorem 3.2. It follows that

∅ = ΥF,S ∩ (Ω ∩ A
(n+δS)
f,F \ Z) = ΥF,S ∩ A

(n+δS)
f,F \ Z

hence ΥF,S ∩ A
(n+δS)
f,F ⊂ Z. �

Corollary 3.5. Let F ∈ Wm,p
loc (Ω,CN ), with m ≥ 1 and p ∈ (1,+∞). Then

one has Ln(A(n+pm/(p−1))
f,F ∩ Υm

F ) = 0 for all f ∈ W g,p
loc (Ω,Ck).

Proof. Let f ∈ W g,p
loc (Ω,Ck). By Remark 2.1 one has

A
(n+pm/(p−1))
f,F ⊂ A

(n+δS)
f,F

for all S ∈ Σm, with δS := p deg S/(p − 1). Hence and recalling (3.2), we
obtain

A
(n+pm/(p−1))
f,F ∩ Υm

F

=
⋃

S∈Σ∗
m

(
A

(n+pm/(p−1))
f,F ∩ ΥF,S

)
⊂

⋃

S∈Σ∗
m

(
A

(n+δS)
f,F ∩ ΥF,S

)
.

The conclusion follows from Corollary 3.4. �

Remark 3.5. For F ∈ Wm,p
loc (Ω,CN ) and f ∈ W g,p

loc (Ω,Ck), with p > 1, the
property stated in Proposition 3.1 follows at once from Corollary 3.4. Indeed,
under the assumptions of Proposition 3.1, one has B ⊂ Ω ∩ A

(n+d)
f,F ⊂ A

(n+d)
f,F

for all d ≥ 0. From Corollary 3.5 it follows that Ln(ΥF,S ∩ B) = 0.
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Corollary 3.6. Let F ∈ W 1,p
loc (Ω,CN ) with p ∈ [n,+∞) and assume that there

exist S and a set of locally finite perimeter E ⊂ Ω (of positive measure) such
that SG = 0, deg S = 1 and S(D)F �= 0 a.e. in E. Then there is no function
f ∈ W g,p

loc (Ω,Ck) such that G(D)f = F a.e. in E.

Proof. Suppose (by absurd) that there exists f ∈ W g,p
loc (Ω,Ck) such that

G(D)f = F a.e. in E, that is Ln(E \ Af,F ) = 0. Thus E(r) ⊂ A
(r)
f,F for all

r ≥ n, in particular

E(n+n/(n−1)) ⊂ A
(n+n/(n−1))
f,F

hence
E ∩ E(n+n/(n−1)) ⊂ E ∩ A

(n+n/(n−1))
f,F . (3.14)

On the other hand, Corollary 3.4 yields

Ln
(
E ∩ A

(n+p/(p−1))
f,F

)
= 0. (3.15)

Moreover, since p ≥ n, one has n + p/(p − 1) ≤ n + n/(n − 1) so that

A
(n+n/(n−1))
f,F ⊂ A

(n+p/(p−1))
f,F (3.16)

by the second point in Remark 2.1. From (3.14), (3.15) and (3.16) we get
now

Ln
(
E ∩ E(n+n/(n−1))

)
= 0

which contradicts (1) of Proposition 2.1. �
Corollary 3.7. Let k = 1, namely G := (G1, . . . , GN )t and g = deg G ≥ 1.
Moreover let f ∈ W g,p

loc (Ω,C) and F = (F1, . . . , FN )t ∈ W g,p
loc (Ω,CN ), with

p ∈ (1,+∞). Then one has

Gj(D)Fl = Gl(D)Fj a.e. in Ω ∩ A
(n+δ)
f,F

for all j, l ∈ {1, . . . , N}, with δ := pg/(p − 1).

Proof. Let S = [Sjl] be the matrix considered in the proof of Corollary 3.3.
Since S ∈ Σg, the conclusion follows at once from Corollary 3.4.

Example 3.1. From Corollary 3.7 with N = n and Gj(ξ1, . . . , ξn) = iξj , i.e.,
G(D) is the gradient operator, we get immediately the following result which
generalizes the obvious property of equality of mixed partial derivatives for
Sobolev functions (cf. (i) of Theorem 1 in [11, Sect.5.2.3]): Let f ∈ W 1,p

loc (Ω,C)
and F ∈ W 1,p

loc (Ω,Cn), with p ∈ (1,+∞). Then, for all j, l = 1, . . . , n, one has
∂jFl = ∂lFj a.e. in Ω ∩ A

(n+p/(p−1))
f,F .

4. A Lusin Type Result for a Class of Linear Partial
Differential Operators

The proofs of Lemma 4.1 and Theorem 4.1 below go along the lines of those
of Lemma 4.1 and Theorem 4.1 in [10], respectively. Several steps are actually
the same, but the intertwining of these replicas with the new arguments, as
well as the complexity of the proof, make it (in our opinion) impossible to
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cut the presentation without compromising clarity. For this reason we have
decided to provide them in full.

Lemma 4.1. Let G1, . . . , GN ∈ C[ξ1, . . . , ξn] and define G(D) := (G1(D),
. . . , GN (D))t. Assume that there exist α(1), . . . , α(N) ∈ N

n such that

Gr(D)xα(s)
=

{
0 if s �= r

cr ∈ C\{0} if s = r

and
min

j
|α(j)| ≥ g := max

j
deg Gj . (4.1)

Moreover consider an open set Ω ⊂ R
n such that Ln(Ω) < +∞, a bounded

function f = (f1, . . . , fN )t ∈ C(Ω,CN ), ε ∈ (0, 1/2) and η > 0. Then there
exist a compact set K ⊂ Ω and a function v ∈ C∞

c (Ω,C) such that
(1) Ln(Ω \ K) ≤ εLn(Ω);
(2) ‖G(D)v − f‖∞,K ≤ η;
(3) ‖G(D)v‖p,Ω ≤ C ε

1
p −g‖f‖p,Ω for all p ∈ [1,+∞), where C is a constant

not depending on f, ε, η, p.

Proof. According to the first steps in the proof of [2, Lemma 7], we can find
δ ∈ (0, 1) and a compact set K ⊂ Ω with the following properties:

• The estimate (1) holds and

K =
⋃

j∈J

Qj ,

where {Qj}j∈J is a finite family of closed cubes of side (1 − ε/2n)δ,
whose centers yj belong to the lattice (δZ)n;

• For j ∈ J , let Tj be the closed cube of side δ centered at yj . Then, for
all j ∈ J , one has Tj ⊂ Ω and

|f(x) − f(y)| ≤ η, whenever x, y ∈ Tj . (4.2)

Now, for all j ∈ J and x ∈ R
n, set

Φj(x) := ϕρ,δ/2(x − yj), with ρ := 1 − ε

2n
,

and observe that

Φj ∈ C∞(Rn, [0, 1]), Φj |Qj
≡ 1, Φj |Rn\Tj

≡ 0, (4.3)

by (2.11). Moreover

‖∂αΦj‖∞,Rn ≤ C(α)ε−|α|δ−|α| (4.4)

for all α ∈ N
n, by (2.12). Then define

μsj :=
∫

Tj

fs, μj := (μ1j , . . . , μNj)t =
∫

Tj

f

and the function

v(x) :=
∑

j∈J

Φj(x)
N∑

s=1

μsj

cs
(x − yj)α(s)

, x ∈ Ω.
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One obviously has v ∈ C∞
c (Ω,C), by (4.3). To prove (2) and (3), we need the

explicit expressions of the polynomials Gr, that is

Gr(ξ1, . . . , ξn) =
∑

α∈N
n

|α|≤g

c(r)
α ξα (c(r)

α ∈ C)

where the coefficients c
(r)
α are assumed to be zero when |α| exceeds the degree

of Gr. Recalling (2.1), we find (for x ∈ Ω)

[Gr(D)v](x) =
∑

j∈J

N∑

s=1

∑

α∈N
n

|α|≤g

(−i)|α|c(r)
α μsj

cs
∂α

[
Φj(x)(x − yj)α(s)

]

where, for suitable integer coefficients k
(α)
β (which coincide with 1 for β = 0

and β = α), one has

∂α
[
Φj(x)(x − yj)α(s)

]
=

∑

β∈N
n

β≤α

k
(α)
β ∂βΦj(x) ∂α−β [(x − yj)α(s)

]

= Φj(x) ∂α[(x − yj)α(s)
]

+
∑

β∈N
n

0<β≤α

k
(α)
β ∂βΦj(x) ∂α−β [(x − yj)α(s)

].

It follows that (for x ∈ Ω)

(x) =
∑

j∈J

Φj(x)
N∑

s=1

μsj

cs
Gr(D)[(x − yj)α(s)

]

+
∑

j∈J

N∑

s=1

∑

α∈N
n

1≤|α|≤g

(−i)|α|c(r)
α μsj

cs

∑

β∈N
n

0<β≤α

k
(α)
β ∂βΦj(x) ∂α−β [(x − yj)α(s)

]

=
∑

j∈J

Φj(x)μrj

+
∑

j∈J

N∑

s=1

∑

α∈N
n

1≤|α|≤g

∑

β∈N
n

0<β≤α

(−i)|α|c(r)
α k

(α)
β

cs
μsj ∂βΦj(x) ∂α−β [(x − yj)α(s)

].

(4.5)
In the formulae below, C1, C2, . . . will denote constants which do not depend
on f, ε, η, p. From the previous identity, we obtain (for all j ∈ J and x ∈ Ω)

|[G(D)v](x)| ≤
∑

j∈J

Φj(x)|μj |

+ C1

∑

j∈J

|μj |
N∑

s=1

∑

α∈N
n

1≤|α|≤g

∑

β∈N
n

0<β≤α

|∂βΦj(x)| sup
ξ∈Tj

|∂α−β [(ξ − yj)
α(s)

]|

where
sup
ξ∈Tj

|∂α−β [(ξ − yj)α(s)
]| ≤ C2 δ|α(s)|−|α|+|β|.
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Hence, by also recalling (4.4):

|[G(D)v](x)| ≤
∑

j∈J

χTj
(x)|μj |

+ C3

∑

j∈J

χTj\Qj
(x)|μj |

N∑

s=1

∑

α∈N
n

1≤|α|≤g

∑

β∈N
n

0<β≤α

ε−|β|δ−|β| δ|α(s)|−|α|+|β|

for all x ∈ Ω. Since δ ∈ (0, 1), ε ∈ (0, 1/2) and (4.1) holds, it follows that

|[G(D)v](x)| ≤
∑

j∈J

|μj |

⎛

⎜⎜⎝χTj
(x) + C3χTj\Qj

(x)

N∑

s=1

∑

α∈N
n

1≤|α|≤g

δg−|α| ∑

β∈N
n

0<β≤α

ε−|β|

⎞

⎟⎟⎠

≤
∑

j∈J

|μj |
(
χTj

(x) + C4ε
−gχTj\Qj

(x)
)

for all x ∈ Ω. Thus

‖G(D)v‖p,Ω ≤
∥∥∑

j∈J

|μj |χTj

∥∥
p,Ω

+ C4ε
−g

∥∥∑

j∈J

|μj |χTj\Qj

∥∥
p,Ω

. (4.6)

Moreover, by Jensen’s inequality, one has

∥∥
∑

j∈J

|μj |χTj

∥∥p

p,Ω
=

∫

Ω

(∑

j∈J

|μj |χTj

)p

=
∫

Ω

∑

j∈J

|μj |pχTj

=
∑

j∈J

|μj |pLn(Tj) ≤
∑

j∈J

Ln(Tj)
∫

Tj

|f |p

hence ∥∥
∑

j∈J

|μj |χTj

∥∥
p,Ω

≤ ‖f‖p,Ω. (4.7)

Analogously (recalling that 1−nt ≤ (1−t)n, for all t ≤ 1, hence 1−(1− ε
2n )n ≤

ε
2 ) we get

∥∥
∑

j∈J

|μj |χTj\Qj

∥∥p

p,Ω
=

∑

j∈J

|μj |pLn(Tj\Qj) ≤
∑

j∈J

Ln(Tj\Qj)
∫

Tj

|f |p

=
∑

j∈J

Ln(Tj\Qj)
Ln(Tj)

∫

Tj

|f |p ≤ ε

2

∑

j∈J

∫

Tj

|f |p

hence
∥∥
∑

j∈J

|μj |χTj\Qj

∥∥
p,Ω

≤
(

ε

2

)1/p

‖f‖p,Ω. (4.8)

Finally, inequality (3) follows from (4.6), (4.7) and (4.8). �

Remark 4.1. As we observed in Remark 4.1 of [10], when N ≥ 2 the condition
assumed for G in Lemma 4.1 forces the components Gj to be different from
each other.
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Remark 4.2. Consider an open set Ω ⊂ R
n with finite measure, F ∈

L∞(Ω,CN ) such that ‖F‖∞,Ω > 0 and recall that limq→+∞ ‖F‖q,Ω =
‖F‖∞,Ω (cf. Theorem 2.8 in [1]). Then, as it is outlined in [2], an easy argu-
ment shows that the function q �→ Ln(Ω)1/q/‖F‖q,Ω has a finite positive
upper bound on [1,+∞).

Theorem 4.1. Let G1, . . . , GN ∈ C[ξ1, . . . , ξn] and Ω ⊂ R
n satisfy the same

hypotheses as in Lemma 4.1. Moreover assume that there exist a nonnegative
integer m ≤ g = deg G and a positive real number c∗ such that

‖G(D)ϕ‖∞,Ω ≥ c∗ max
α∈N

n

|α|=m

‖∂αϕ‖∞,Ω (4.9)

for all ϕ ∈ C∞
c (Ω,C). Then, for every Borel function F : Ω → C

N and
for every ε ∈ (0, 1), there exist an open set O ⊂ Ω, f ∈ Cm

0 (Ω,C) and
Φ ∈ C0(Ω,CN ) ∩ L∞(Ω,CN ) with the following properties:
(1) Ln(O) ≤ εLn(Ω);
(2) Φ = F a.e. in Ω\O;
(3) The equality G(D)f = Φ holds in the sense of distributions;
(4) In the special case m = g one has G(D)f = Φ in Ω, hence G(D)f = F

a.e. in Ω\O. Moreover one has

‖G(D)f‖p,Ω ≤ C 2g+2 ε
1
p −g‖F‖p,Ω, for all p ∈ [1,+∞) (4.10)

and
‖G(D)f‖∞,Ω ≤ C 2g+2 ε−g‖F‖∞,Ω, (4.11)

where C is the constant of (3) in Lemma 4.1.

Proof. First of all observe that if F = 0 a.e. in Ω, then we can find an open
set O verifying

F |Ω\O ≡ 0, Ln(O) ≤ εLn(Ω),

so that statements (1–4) are obviously verified with f ≡ 0 and Φ ≡ 0. Thus
we can assume ‖F‖∞,Ω > 0. The proof below is divided into two steps.

Step 1: If F ∈ C(Ω,CN ) ∩ L∞(Ω,CN ).
Let us define f0 := F and show that there exist two sequences of func-

tions

{fj}∞
j=1 ⊂ C(Ω,CN ) ∩ L∞(Ω,CN ), {vj}∞

j=1 ⊂ C∞
c (Ω,C)

and a sequence {Kj}∞
j=1 of compact subsets of Ω satisfying the following

properties, for all j ≥ 1:
(i) Ln(Ω\Kj) ≤ 2−jεLn(Ω);
(ii) ‖G(D)vj −fj−1‖∞,Kj

≤ 2−j(g+1)s−1, where s := supq∈[1,+∞) Ln(Ω)1/q/

‖F‖q,Ω. Recall that 0 < s < +∞, by Remark 4.2;
(iii) ‖G(D)vj‖p,Ω ≤ 2j(g−1/p)Cε1/p−g‖fj−1‖p,Ω, for all p ∈ [1,+∞), where

C is the constant of (3) in Lemma 4.1;
(iv) fj(x) = fj−1(x) − [G(D)vj ](x) for all x ∈ Kj and ‖fj‖∞,Ω = ‖fj−1 −

G(D)vj‖∞,Kj
.

Such a statement is proved by the following induction argument:
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• First of all, use Lemma 4.1 to get a compact set K1 ⊂ Ω and v1 ∈
C∞

c (Ω,C) such that (i), (ii) and (iii) hold with j = 1. Then we get
f1 ∈ C(Ω,CN ) ∩ L∞(Ω,CN ) satisfying (iv) with j = 1, by extending
the function

f0(x) − [G(D)v1](x), x ∈ K1

by means of Tietze’s theorem [19, 20.4].
• Now suppose to have

{fj}H
j=1 ⊂ C(Ω,CN ) ∩ L∞(Ω,CN ), {vj}H

j=1 ⊂ C∞
c (Ω,C)

and a family {Kj}H
j=1 of compact subsets of Ω such that the properties

(i-iv) above are satisfied for j = 1, . . . , H, where H is any positive
integer. By using again Lemma 4.1 we can find a compact set KH+1 ⊂ Ω
and vH+1 ∈ C∞

c (Ω,C) such that (i), (ii) and (iii) hold with j = H + 1.
Moreover, by Tietze’s theorem [19, 20.4], we get fH+1 ∈ C(Ω,CN ) ∩
L∞(Ω,CN ) which satisfies (iv) with j = H + 1.

Now let

O := Ω\
∞⋂

j=1

Kj (4.12)

and note that (1) follows at once from (i) above. Moreover, from (iii), we get
∞∑

j=1

‖G(D)vj‖p,Ω ≤ Cε
1
p −g

∞∑

j=1

2jg‖fj−1‖p,Ω

= 2gCε
1
p −g

(
‖F‖p,Ω +

∞∑

j=1

2jg‖fj‖p,Ω

)

≤ 2gCε
1
p −g

(
‖F‖p,Ω +

∞∑

j=1

2jg‖fj‖∞,Ω Ln(Ω)
1
p

)

for all p ∈ [1,+∞), where

‖fj‖∞,Ω Ln(Ω)
1
p ≤ (2−j(g+1)s−1)(s‖F‖p,Ω) = 2−j(g+1)‖F‖p,Ω

by (ii) and (iv). Thus
∞∑

j=1

‖G(D)vj‖p,Ω ≤ C 2g+1ε
1
p −g‖F‖p,Ω, for all p ∈ [1,+∞) (4.13)

and hence (cf. [1, Theorem 2.8])
∞∑

j=1

‖G(D)vj‖∞,Ω ≤ C 2g+1ε−g‖F‖∞,Ω,

that is the series
∑∞

j=1 G(D)vj converges totally in L∞(Ω,CN ). If define
uH :=

∑H
j=1 vj ∈ C∞

c (Ω,C) (for H = 1, 2, . . .), then:

• There exists Φ = (Φ1, . . . ,ΦN )t ∈ C0(Ω,CN ) ∩ L∞(Ω,CN ) such that

lim
H→∞

‖G(D)uH − Φ‖∞,Ω = 0; (4.14)
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• By assumption (4.9) and Poincaré’s inequality (cf. Theorem 3 of [11,
Sect. 5.6]), we find that f ∈ Cm

0 (Ω,C) has to exist such that

lim
H→∞

‖uH − f‖Cm(Ω,C) = 0. (4.15)

Now, recalling (iv) above, one can easily prove by induction on k that if
x ∈ ∩∞

j=1Kj and H ≥ 1 then the following identity

F (x) − [G(D)uH ](x) = fk(x) −
H∑

j=k+1

[G(D)vj ](x)

holds for all k = 0, . . . , H − 1. Hence, recalling also (4.12) and (ii) above, we
obtain

‖F − G(D)uH‖∞,Ω\O = ‖F − G(D)uH‖∞,∩jKj

= ‖fH−1 − G(D)vH‖∞,∩jKj

≤ 2−H(g+1)s−1

(4.16)

for all positive integers H. From (4.14), (4.16) and the inequality

‖F − Φ‖∞,Ω\O ≤ ‖F − G(D)uH‖∞,Ω\O + ‖G(D)uH − Φ‖∞,Ω\O,

we get assertion (2).
By (4.14), (4.15), recalling the regularity identity (2.5) and the conti-

nuity property (2.6) for distributions, we obtain

Gj(D)Tf = lim
H→∞

Gj(D)TuH
= lim

H→∞
TGj(D)uH

= TΦj
(j = 1, . . . , N)

which proves (3). In particular, if m = g then one has G(D)f = Φ in Ω.
Moreover, from (4.15) and (4.13), we get at once

‖G(D)f‖p,Ω = lim
H→∞

‖G(D)uH‖p,Ω ≤ C 2g+1ε
1
p −g‖F‖p,Ω, (4.17)

for all p ∈ [1,+∞).
Step 2: If F is a Borel function.
Let ε > 0 be fixed arbitrarily. Then, proceeding as in the proof of

Theorem 1 in [2], we can find F1 ∈ C(Ω,CN ) ∩ L∞(Ω,CN ) and an open set
O1 ⊂ Ω satisfying

Ln(O1) ≤ ε

2
Ln(Ω), F1|Ω\O1 = F |Ω\O1

and
‖F1‖p,Ω ≤ 2‖F‖p,Ω, for all p ∈ [1,+∞]. (4.18)

By Step 1 we obtain another open set O2 ⊂ Ω, f ∈ Cm
0 (Ω,C) and Φ ∈

C0(Ω,CN ) ∩ L∞(Ω,CN ) such that

• Ln(O2) ≤ ε/2Ln(Ω);
• Φ = F1 a.e. in Ω\O2;
• The equality G(D)f = Φ holds in the sense of distributions;
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• In the special case m = g one has G(D)f = Φ in Ω, hence G(D)f = F1

a.e. in Ω\O2. Moreover, by (4.17), one has

‖G(D)f‖p,Ω ≤ C 2g+1ε
1
p −g‖F1‖p,Ω, for all p ∈ [1,+∞). (4.19)

Letting p tend to +∞ in (4.19), we also find

‖G(D)f‖∞,Ω ≤ C 2g+1ε−g‖F1‖∞,Ω (4.20)

cf. [1, Theorem 2.8].

Now (4.10) and (4.11) follow from (4.19) and (4.20), respectively, by recalling
(4.18). The conclusion follows by setting O := O1 ∪ O2. �

The following remark is a very slight variant of Remark 4.3 in [10], we
state it for the reader’s convenience.

Remark 4.3. The conclusions of Theorem 4.1 do not extend to families of
polynomials G1, . . . , GN in which there are repeated elements (compare
Remark 4.1). To prove it, let’s assume that there is a repetition, namely
Gr = Gs with r �= s, and consider any F = (F1, . . . , FN )t such that Fr ≡ 0
and Fs ≡ 1. Then at least one of statements (1),(2),(3) of Theorem 4.1 must
fail to be true. Indeed (3) yields TΦr

= TΦs
, hence Φr = Φs a.e. in Ω. Then

1 = 0 a.e. in Ω\O, by (2). But this implies Ln(O) = Ln(Ω), which contradicts
(1).

From Theorem 4.1 we get immediately the following property.

Corollary 4.1. Let G1, . . . , GN ∈ C[ξ1, . . . , ξn] and Ω ⊂ R
n satisfy the same

hypotheses as in Lemma 4.1. Moreover assume that there exists a constant
c∗ > 0 such that

‖G(D)ϕ‖∞,Ω ≥ c∗ max
α∈N

n

|α|=g

‖∂αϕ‖∞,Ω

for all ϕ ∈ C∞
c (Ω,C). Then, for every F ∈ L1

loc(Ω,CN ), one has

sup
f∈Cg

0 (Ω,C)

Ln(Af,F ) = Ln(Ω).

Remark 4.4. Corollary 4.1 states that, under suitable assumptions, there are
G-primitivity domains of F arbitrarily close in measure to Ω, even if F ∈
Wm,1

loc (Ω,CN ) and Ln(Υm
F ) > 0 (even if Υm

F = Ω, which is the least favorable
case for the “G-integrability of F”!).

5. Examples of Application

In this section we apply the theory developed above to three contexts already
considered in [10, Section 5], where we dealt with the case of smooth func-
tions. Some basic facts established in [10], including presentations of contexts,
will also be useful here and will therefore be recalled for the convenience of
the reader.
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5.1. Alberti’s Theorem

Given a positive integer k, let Tk denote the set of n-tuples α ∈ N
n such

that |α| = k and set Nk := #Tk. Moreover let j �→ α(j) be an arbitrarily
chosen bijection from {1, . . . , Nk} to Tk. Then, by the same arguments as in
Section 5 of [10] with Theorem 4.1 in place of [10, Theorem 4.1], we obtain
the following well known result (cf. [2,14,16]).

Corollary 5.1. Let Ω be an open subset of Rn with finite measure and k be a
positive integer. Then, for every Borel function F : Ω → R

Nk and for every
ε ∈ (0, 1), there exist an open set O ⊂ Ω and f ∈ Ck

0 (Ω) with the following
properties (let f (k) := (∂α(1)

f, . . . , ∂α(Nk)
f)t):

(1) Ln(O) ≤ εLn(Ω);
(2) f (k) = F a.e. in Ω\O;
(3) There exists a constant C not depending on F, ε, p such that

||f (k)||p,Ω ≤ C 2k+2ε
1
p −k||F ||p,Ω, forallp ∈ [1,+∞)

and

||f (k)||∞,Ω ≤ C 2k+2ε−k||F ||∞,Ω.

5.2. Maxwell Type System

Let us recall that the electromagnetic field is characterized by the system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇ · E = ρ

∇ · B = 0
∇ × E + ∂tB = 0
∇ × B − ∂tE = j

where E,B, ρ and j are the electric field, the magnetic field, the electric
charge density and the electric current density, respectively. The symbol of
this system is the following matrix of polynomials in C[ξ1, ξ2, ξ3, ξ4]

G(ξ1, ξ2, ξ3, ξ4) = [Gjl(ξ1, ξ2, ξ3, ξ4)] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iξ1 iξ2 iξ3 0 0 0
0 0 0 iξ1 iξ2 iξ3

0 −iξ3 iξ2 iξ4 0 0
iξ3 0 −iξ1 0 iξ4 0

−iξ2 iξ1 0 0 0 iξ4

−iξ4 0 0 0 −iξ3 iξ2

0 −iξ4 0 iξ3 0 −iξ1

0 0 −iξ4 −iξ2 iξ1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ξ1, ξ2, ξ3 are the symbols of the spatial differential operators −i∂x1 ,
−i∂x2 ,−i∂x3 , while ξ4 is the symbol of the time differential operator −i∂x4

(for consistency with the notation introduced in the previous sections, we
denote the time variable with x4). In this case, a remarkable example of
matrix in Σ1 is the one associated to the first syzygies (cf. [5, Section 5.1])

S(ξ1, ξ2, ξ3, ξ4) = [Sjl(ξ1, ξ2, ξ3, ξ4)] =
[

0 iξ4 iξ1 iξ2 iξ3 0 0 0
iξ4 0 0 0 0 iξ1 iξ2 iξ3

]
.

Let us observe that deg G = deg S = 1.
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Corollary 5.2. Let Ω be an open subset of R4 with finite measure. Then, for
every Borel function F = (F1, . . . , F8)t : Ω → C

8 and for every ε ∈ (0, 1),
there exist an open set O ⊂ Ω and f ∈ C1

0 (Ω,C6) with the following proper-
ties:

(1) L4(O) ≤ εL4(Ω);
(2) G(D)f = F a.e. in Ω \ O;
(3) In the special case when F ∈ W l,p

loc (Ω,C8) with l ≥ 1 and p ∈ (1,+∞),
one has

Ln
(
A

(n+pl/(p−1))
f,F ∩ Υl

F

)
= 0.

Hence, in particular,

Ln
(
A

(n+p/(p−1))
f,F ∩ ΥF,S

)
= 0

that is
{

∂tF2 + ∇x · (F3, F4, F5) = 0
∂tF1 + ∇x · (F6, F7, F8) = 0

almost everywhere in Ω ∩ A
(n+p/(p−1))
f,F .

Moreover:

(4) Let F ∈ W l+d,p(R4,C8) and g ∈ W l+1+d,p(R4,C6), with l ≥ 1, p ∈
(1,+∞) and d ∈ {0, 1}. The following facts hold:

– If d = 0 then L4(Ag,F ∩ Υl
F ) = 0, hence L4(Ag,F ∩ ΥF,S) = 0;

– If d = 1 and p < 4 then Ag,F ∩Υl
F is 3-rectifiable, hence Ag,F ∩ΥF,S

is 3-rectifiable.

Proof. As we observed in the proof of [10, Corollary 5.2], both matrices

H := (H1,H2,H3,H4)t := (G11, G41, G51, G61)t

and

K := (K1,K2,K3,K4)t := (G24, G34, G74, G84)t.

verify the assumptions of Lemma 4.1 and satisfy condition (4.9) with m = 1.
Hence, by Theorem 4.1, there exist two open sets O1,O2 ⊂ Ω and f1, f4 ∈
C1

0 (Ω,C) such that

L4(O1) ≤ ε

2
L4(Ω), H(D)f1 = (F1, F4, F5, F6)t a.e. in Ω\O1

and

L4(O2) ≤ ε

2
L4(Ω), K(D)f4 = (F2, F3, F7, F8)t a.e. in Ω\O2.

Statements (1) and (2) follow by setting O := O1 ∪ O2 and f :=
(f1, 0, 0, f4, 0, 0)t. As for (3), it follows immediately from Corollary 3.5.
Finally, we obtain (4) from Corollary 3.2. �
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5.3. Multivariable Cauchy-Riemann system

Let G1, . . . , GN ∈ C[ξ1, . . . , ξ2N ] be defined as

Gj(ξ1, . . . , ξ2N ) :=
i

2
ξ2j−1 − 1

2
ξ2j (j = 1, . . . , N).

Then G = (G1, . . . , GN )t is the symbol of the Cauchy-Riemann system in N
complex variables zj = x2j−1 + ix2j (j = 1, . . . , N), namely

G(D) =

⎛

⎜⎝

∂
∂z̄1
...
∂

∂z̄N

⎞

⎟⎠ =

⎛

⎜⎝

1
2 ∂1 + i

2 ∂2

...
1
2 ∂2N−1 + i

2 ∂2N

⎞

⎟⎠ .

Observe that deg G = 1. Analogously as we have done for the Maxwell type
system, we can consider the matrix associated to the first syzygies, namely
the one of dimension N(N−1)

2 × N used in the proof of Corollary 3.3. Also in
this case we denote such a matrix by S and observe that deg S = 1.

Corollary 5.3. Let Ω be an open subset of R2N with finite measure. Then, for
every Borel function F = (F1, . . . , FN )t : Ω → C

N and for every ε ∈ (0, 1),
there exist an open set O ⊂ Ω, f ∈ C0(Ω,C) and Φ ∈ C0(Ω,CN )∩L∞(Ω,CN )
such that:
(1) L2N (O) ≤ εL2N (Ω);
(2) Φ = F a.e. in Ω\O;
(3) The equality G(D)f = Φ holds in the sense of distributions;
(4) In the special case when F ∈ W l,p

loc (Ω,CN ) with l ≥ 1 and p ∈ (1,+∞),
there exists a null measure set Z ⊂ Ω such that

S(D)F = 0 in Ω ∩ B
(2N+δS)
Φ,F \ Z

for all S ∈ Σl (where δS = p deg S/(p − 1)). In particular one has
S(D)F = 0 in Ω ∩ B

(2N+δS)
Φ,F \Z, that is

∂Fk

∂z̄j
=

∂Fj

∂z̄k
in Ω ∩ B

(2N+p/(p−1))
Φ,F \ Z

for all j, k ∈ {1, . . . , N}.
Moreover:
(5) Let F ∈ W l,p

loc (Ω,CN ) and g ∈ W 1,p
loc (Ω,C), with l ≥ 1 and p ∈ (1,+∞).

Then one has

L2N
(
A

(2N+pl/(p−1))
g,F ∩ Υl

F

)
= 0.

Hence, in particular,

L2N
(
A

(2N+p/(p−1))
g,F ∩ ΥF,S

)
= 0

that is
∂Fk

∂z̄j
=

∂Fj

∂z̄k
a.e. in Ω ∩ A

(2N+p/(p−1))
g,F

for all j, k ∈ {1, . . . , N}.
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(6) Let F ∈ W l+d,p(R2N ,CN ) and g ∈ W l+1+d,p(R2N ,C), with l ≥ 1,
p ∈ (1,+∞) and d ∈ {0, 1}. The following facts hold:

– If d = 0 then L2N (Ag,F ∩ Υl
F ) = 0, hence L2N (Ag,F ∩ ΥF,S) = 0;

– If d = 1 and p < 2N then Ag,F ∩ Υl
F is (2N − 1)-rectifiable, hence

Ag,F ∩ ΥF,S is (2N − 1)-rectifiable.

Proof. Recall from the proof of [10, Corollary 5.3] that G1, . . . , GN verify the
hypotheses of Lemma 4.1 and (4.9) holds with m = 0. Then (1), (2) and (3)
follow at once by Theorem 4.1. Assertions (4) and (5) follow from Theorem
3.2 and Corollary 3.5, respectively. Finally, we get (6) by Corollary 3.2. �
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