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a b s t r a c t 

The analysis of sound scattered by a rough surface and measured by multiple microphones 

positioned in the far field yields an estimate of the unknown scattering surface profile. Ex- 

panding from previous work, the approach used in this paper is based on an expansion and 

linearization of the Kirchhoff integral equation, and applies to a low density of receivers. 

Here, the original algorithm is modified in order to reduce the measurement bias, and ex- 

tended to broadband signals to over-constrain the problem and improve its robustness. The 

improved method is rigorously assessed alongside the original algorithm and its small per- 

turbation version, for a two-dimensional geometry and for scattering surfaces with a spa- 

tial power-function spectrum. The impact of the measurement setup and surface character- 

istics on the reconstruction uncertainty are evaluated by means of numerical simulations. 

Additional experimental data obtained for three known surface profiles reveal the impact 

of noise and measurement uncertainties. The optimal measurement configuration requires 

a trade-off between resolution (higher at high frequencies), and robustness (higher at low 

frequencies). This limit is overcome at least partially by the proposed multiple-frequency 

extension. The resulting measured uncertainties were close to the theoretical expectation 

of approximately 2% of the acoustic wavelength. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license 
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1. Introduction 

Measurements of the shape of the interface between two media are ubiquitous across engineering and geophysics, in- 

cluding applications such as non-destructive testing, microscopy, and remote sensing. In this paper the focus is on rough 

surfaces, i.e., smooth perturbations of an otherwise flat plane. Examples include the ocean bottom [1] , sea waves [2,3] ,

or river surfaces [4,5] . The accurate characterization of these surfaces is key to effective flood prevention and monitoring of

geophysical processes. One way to measure them is to observe the behavior of a wave field as it interacts with the interface.

Specifically, if transmission through the interface can be neglected (this is the case, for example, of high frequency sound 
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on the water-air or air-water interface), the surface shape can be estimated based on a model of scattering and a measure-

ment of the scattered signal by a number of sensors distributed in space. Surface reconstruction techniques based on this 

principle have been developed for optical [6,7] , electromagnetic [8–13] , elastic [14] , and acoustic [15–17] wave signals. 

Uniqueness of the solution of the inverse surface scattering problem is discussed in [9,18–20] . Surface reconstruction 

techniques include methods that apply to time-domain data [3,21,22] , methods that identify the surface location from the 

maxima or minima of an imaging function mapped in all spatial dimensions [6,23–25] , and methods that yield directly the

surface function (or its projection on a certain basis). The latter is achieved either by minimizing the difference between 

the observed and predicted field variable distribution (optimization problem) [10,20,26–28] , or by inverting the boundary 

integral equations that define the forward problem, i.e., that of calculating the scattered field for a given scattering interface 

geometry. The advantage of these latter approaches is that they do not require, in principle, a prior parametrization of 

the surface. On the other hand, one needs to determine the unknown distributions of two quantities (the surface shape 

and the field variable on all boundaries, including the interface). This can be achieved iteratively [12,13,29,30] or directly 

[31,32] . An alternative is to use an approximate expression to determine the field at the surface, thus reducing the number

of unknowns. Approximations that can be used include the Kirchhoff approximation [8,16] , Rytov approximation [33] , small 

perturbation expansion [11,34] , and Milder’s operator expansion [15] . This simplifies the inversion, although it may yield a 

loss of accuracy in the conditions where the approximations fail, typically for surfaces with high curvature or in the presence

of shadowing or multiple reflections. 

Starting from the Kirchhoff approximation of the scattering integral equations, Krynkin et al. [17] formulated the acoustic 

scattering forward problem for a rigid surface in the form of a matrix product. This enabled a straightforward reconstruc- 

tion of the surface shape after a singular value decomposition (SVD) of the transfer matrix, and its subsequent inversion. 

A similar approach is commonly used for some source imaging problems [35] . There, the method has been extended to

underdetermined problems [36] , where the number of unknown elementary sources is greater than the number of sensors. 

Similarly, the surface reconstruction method introduced in [17] applies to sparse sensors arrays, where the number of re- 

ceivers is smaller than the number of points that discretize the surface. This makes the method a strong candidate for a

variety of applications, especially in acoustics where physical dimensions and cost of the microphones limit the achievable 

density of sensors. The approach introduced in [17] was validated experimentally [37] , for two examples of rough surface

and with a single microphone that was scanned along an arch. With the exception of [16] (tested on periodic gratings), and

[3] (tested on non-periodic water waves), most other surface reconstruction techniques lack an experimental validation. As 

a result, little is known about their performance in a realistic measurement environment. Additionally, the influence of the 

sensors array geometry and surface parameters on the measurement uncertainties, and the statistics of the reconstruction 

error, have not been thoroughly investigated. 

The present work aims to bridge these gaps using new numerical and experimental results obtained with approaches 

derived from the method presented in [17] . Here, this method is denoted as the short array (SA) method. Synthetic data of

the sound field scattered by a large number of random rough surfaces with a power-function spatial spectrum are gener- 

ated with an acoustic model based on the Kirchhoff approximation, assuming constant surface elevation in one direction. 

The synthetic data are then analyzed with the SA method, to reconstruct the profile of each surface. The SA method is also

based on the Kirchhoff approximation, but the inverse model equations include additional approximations and expansions. 

This avoids the ‘inverse crime’ consisting in using the same model for the forward and inverse problem, except when this

is required for a self-consistency test. The analysis of numerical data enables to inspect the statistical distribution of the 

reconstruction error for a large collection of surfaces with similar properties, and for various characteristics of the mea- 

surement setup (signal frequency, sensors height and separation) and surface parameters (roughness vertical and horizontal 

scales, spectrum slope). Three error metrics are found necessary for a compact and consistent representation of the error 

distribution. The numerical analysis is complemented by experimental tests on three rough surfaces, obtained with an array 

of 34 microphones. The experimental data, recorded at multiple frequencies using a broadband random excitation, serve two 

purposes: they validate (within the range of the tests) the numerical analysis based on a Kirchhoff approximation model, 

and they highlight a number of issues relevant for the application, namely the effect of phase uncertainty and noise, and

the robustness and accuracy of single measurements. 

Two modifications of the SA method are newly introduced in this work, and tested alongside the SA method. The first

(SA0 method) is a preconditioning of the linearized problem which fixes an otherwise inconsistent use of the Tikhonov 

regularization. The second (SP method) is an alternative derivation based on a small perturbation expansion of the scatter- 

ing integral equations. A further multiple frequency extension to all methods is introduced, based on the following idea: 

since the shape of a scattering surface is independent of the frequency of excitation of the incident field, information about

the scattered field at different frequencies can be combined to impose additional constraints on the inversion. This had 

been achieved previously for other methods, by sequentially introducing data at increasing frequencies to improve an initial 

coarse reconstruction at a low frequency [20,27,28,38] . Here, the additional information is combined into a single problem, 

which is solved simultaneously at all frequencies. A somehow similar approach was recently proposed for the related prob- 

lem of scattering from finite-size volumetric scatterers [39] . In its application to the SA surface reconstruction method, the 

most noticeable property of the multiple frequency extension is its capability to transform the forward linear system from 

underdetermined to overdetermined, with consequences on the accuracy and stability of the inverse solution. 

This work is organized as follows: The statement of the forward problem and the derivation of the three inversion meth-

ods and their multiple-frequency extension are presented in Section 2 ; the results of the numerical analysis based on syn-
2 
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Fig. 1. Schematic representation of the surface scattering problem geometry, and characteristic parameters: acoustic wavenumber k 0 , source inclination 

angle φ0 , equivalent piston radius a 0 , microphone array separation d 0 and height z 0 , surface standard deviation σ0 , spectrum slope α0 , and large-scale, κ0 , 

and short-scale, κ1 , cut-off wavenumbers. The rough surface is described by the function z = ζ (x ) , with normal vector n . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

thetic scattered field data are presented in Section 3 ; the synthetic data was calculated based on a form of the Kirchhoff

approximation equation, which is derived in Appendix A for scattering surfaces with constant elevation in one direction; 

experimental surface reconstruction results are reported in Section 4 ; numerical and experimental results are compared and 

discussed in Section 5 ; and the conclusions of the study can be found in Section 6 . 

2. Fundamentals of the method 

All surface inversion methods discussed here have the so-called Kirchhoff approximation [40] as a starting point. This 

approximation is valid when the scattering surface is sufficiently smooth, i.e., 2 kr c sin 

3 φ > 1 , where k = 2 π/λ is the acoustic

wavenumber, λ = c/ f is the wavelength, f is the frequency, c is the speed of sound, r c is the surface local radius of curvature, 

and φ is the angle of incidence of sound measured from the horizontal. Here it is assumed that sound propagates in air,

with c = 340 m s −1 . The acoustic signal is harmonic in time with frequency f, or can be represented as a linear combination

of harmonic signals. In the latter case, the theory applies to each component independently. The Kirchhoff approximation 

consists in evaluating the acoustic field on the rough surface at each point, considering only the locally tangent flat plane.

A general form of the resulting integral equation valid for an acoustically rigid surface of the form z = ζ (x, y ) is reported in

the Appendix A . Different boundary conditions at the surface could lead to qualitatively similar results [41, p. 228] , but their

implementation is beyond the scope of this work. 

In a realistic three-dimensional case, ζ varies along x and y, and the microphones are distributed in three dimensions in 

space. To reduce the computational effort and the number of parameters that describe the system, here the problem was 

simplified as follows: (i) the elevation of the rough surface ζ was assumed to vary only in the x -direction, i.e., ζ = ζ (x ) ; (ii)

the width of the surface in the y direction was assumed to be infinite; (iii) the source and all microphones were assumed

to lie on the same plane y = 0 , normal to the surface. These conditions enable a stationary phase expansion within the

Kirchhoff approximation integral equation, hence allowing to integrate along y, independently of the surface shape. Details 

of the calculations are reported in the Appendix. 

With such premise, sound is considered to be emitted by an acoustic source with co-ordinate vector S = (x s , z s ) , and

scattered at a rough surface z = ζ (x ) , where the plane z = 0 coincides with the average of ζ (x ) over x, ζ̄ (x ) = 0 . The scat-

tered sound field is recorded by an array of N m 

microphones, with the co-ordinates of the m th microphone indicated by

M m 

= (x m 

, z m 

) , as depicted in Fig. 1 . The source is approximated as a point source with a directivity pattern D (θ (v − S )) ,

where θ (v − S ) is the angle between vector v − S and the axis of the transducer, and v is a generic location in space.

D (θ (M m 

− S )) is assumed to be small at the microphone locations, therefore the direct field is neglected. The distance from

v = (x v , z v ) to a point at the intersection between the surface and the plane y = 0 , ρ = (x, ζ (x )) , is 

R (v , ρ) = | v − ρ| = 

√ 

(x − x v ) 2 + (ζ (x ) − z v ) 2 . (1) 

Finally, the complex acoustic potential p(M m 

, k, t) at the m th microphone and at wavenumber k is calculated as 

p(M m 

, k, t) = p 0 (k ) P (M m 

, k ) exp ( −i kct ) , (2) 

where p 0 (k ) is the amplitude of the emitted signal, or its complex Fourier coefficient at wavenumber k, and 

P (M m 

, k ) = 

e −i π/ 4 

√ 

k 8 π

∫ 
D (θ (ρ − S )) exp { i k [ R (M m 

, ρ) + R (S , ρ) ] } √ 

R (S , ρ) R (M m 

, ρ) 
√ 

[ R (S , ρ) + R (M m 

, ρ) ] 

{[
1 + 

i 

kR (S , ρ) 

][
(x − x s ) 

R (S , ρ) 

d ζ

d x 
− (ζ − z s ) 

R (S , ρ) 

]

+ 

[
1 + 

i 

kR (M m 

, ρ) 

][
(x − x m 

) 

R (M m 

, ρ) 

d ζ

d x 
− (ζ − z m 

) 

R (M m 

, ρ) 

]}
d x. (3) 
3 
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Hereafter only the non-dimensional time-independent factor P (M m 

, k ) is considered, without loss of generality. 

Eq. (3) describes the relation between the acoustic field at one location M m 

and the shape of the rough surface. If ζ is

assigned at a discrete set of locations x r , the equation can be evaluated numerically using a quadrature method. Such an ap-

proach has been validated numerically and experimentally in the past, for static [37] and slowly moving [17,42,43] surfaces. 

Its accuracy was found comparable to that of a standard boundary element method for surfaces with similar characteris- 

tics to the ones considered here [43] , which satisfied the Kirchhoff approximation condition. The solution of the inverse 

problem, i.e., the estimation of ζ (x r ) knowing P (M m 

, k ) , is difficult because of the strongly nonlinear character of Eq. (3) . A

simplified approach proposed by Krynkin et al. [17] and common to all the techniques discussed here consists in isolating

(within the integral) the terms of Eq. (3) that depend on ζ from the ones that depend on M m 

. In this way, the numerical

solution of the forward problem takes the form of a matrix product, 

F (k ) 
N m ×1 

= H 

(k ) 
N m ×N r 

E 

(k ) 
N r ×1 

, (4) 

where H 

(k ) 
m,r = H(x r , M m 

, k ) is the element of a transfer matrix from a point x r on the surface to a microphone in M m 

,

F (k ) 
m 

= F (P (M m 

, k )) is a function of the acoustic potential at the m th microphone, and E (k ) 
r = E(ζ (x r ) , k ) is a function of the

surface elevation at the location x r . N m 

and N r are the number of microphones and the number of grid points that discretize

the surface, respectively. 

Eq. (4) can be inverted easily if the number of microphones equals the number of points where the surface is recon-

structed, but this is seldom achievable given that the discretization grid must be fine enough for the numerical integration 

to converge. A solution [17] , is to apply a singular value decomposition (SVD) [44] along with a regularization procedure

to approximate an inverse of matrix H . Following [17] , here the regularization was performed in the sense of Tikhonov,

and the regularization parameter was selected by the generalized cross-validation (GCV) method [45] . Then, vector E can 

be calculated from the known F , and the surface elevation can be calculated independently at each point of the grid by

inverting the function E as ζ (x r ) = E −1 (ζ (x r ) , k ) . The way to obtain a formulation similar to that of Eq. (4) starting from

Eq. (3) differs for the three main approaches considered here, although it can be summarized into two main steps: a first

expansion step common to all methods, and a subsequent separation of variables. 

2.1. Expansion step: all methods 

To simplify the dependence of P on ζ , the following assumptions must be introduced into Eq. (3) : (i) the maximum

surface elevation is small compared to the distance of the source and microphones from the surface, ζ /R � 1 ; (ii) the

source and the microphones are in the far-field of the surface, kR � 1 ; (iii) the surface gradient is small, d ζ / d x � 1 . As a

result, 

P (M m 

, k ) ≈ ∫ 
A (S , M m 

, x, k ) exp [ −i q z (M m 

, S , x, k ) ζ (x ) ] d x, (5) 

where 

q z (M m 

, S , x, k ) = k 

[
z m 

R (M m 

, ρ0 ) 
+ 

z s 

R (S , ρ0 ) 

]
, (6) 

ρ0 is the projection of ρ onto the x -axis, ρ0 = (x, 0) , and 

A (S , M m 

, x, k ) = 

e −i π/ 4 

k 
√ 

k 8 π

D (θ (ρ0 − S )) exp { i k [ R (M m 

, ρ0 ) + R (S , ρ0 ) ] } √ 

R (S , ρ0 ) R (M m 

, ρ0 ) 
√ 

[ R (S , ρ0 ) + R (M m 

, ρ0 ) ] 
q z (M m 

, S , x, k ) . (7)

In Eq. (5) , the surface shape appears only inside the exponential. However, q z still varies with M m 

. In [8] , this dependence

was removed by arranging the sensors along a curve where q z is constant. In this way, the factors depending on ζ could be

separated within the integral. The same result is accomplished by the three methods discussed here by means of an average

or expansion. The consequent definition of the three matrices F , H , and E , differentiates the three methods, as outlined

below. 

2.2. Separation of variables: SA method 

This is the method presented by Krynkin et al. [17] . Here, the way to remove the dependence of q z from M m 

, hence to

isolate ζ , is to approximate q z with the function 

˜ q z (S , x, k ) = q z (M m 

, S , x, k ) + k 

[
˜ z m 

R ( ̃  M , ρ0 ) 
− z m 

R (M m 

, ρ0 ) 

]
= k 

[
˜ z m 

R ( ̃  M , ρ0 ) 
+ 

z s 

R (S , ρ0 ) 

]
(8)

where ˜ M = ( ̃  x m 

, ̃  z m 

) is a representative microphone location, for example the center of the array ˜ M = 

∑ 

m 

M m 

/N m 

. The ap-

proximation of q z is more accurate if M m 

− ˜ M is small, i.e., for a short array. Therefore, here the method is referred to as

the Short Array (SA) method, although it remains accurate even for relatively long arrays, as demonstrated for example by 

Krynkin et al. [37] . 
4 
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With the SA method, the elements of the three matrices are defined as 

F (k ) 
m 

= P (M m 

, k ) , (9) 

H 

(k ) 
m,r = A (S , M m 

, x r , k )
x, (10) 

where 
x is the x r grid size, and 

E 

(k ) 
r = exp { −i ̃  q z (S , x r , k ) ζ (x r ) } . (11) 

Once the vector E has been calculated from the inversion of Eq. (4) , ζ is found as 

ζ (x r ) = i 
ln 

[
E 

(k ) 
r 

]
˜ q z (S , x r , k ) 

. (12) 

2.3. Separation of variables: SA0 method 

Due to the ill-posedness of the inverse scattering problem, the solution of Eq. (4) usually requires some type of regular-

ization. A common regularization strategy, implemented for example by Krynkin et al. [17] , and also here, is the so-called

Tikhonov regularization [46] . The regularized solution in the sense of Tikhonov minimizes a weighted sum of the squared 

residual and of the norm of the solution [46] , which corresponds here to the sum ‖ F − HE ‖ 2 + β2 ‖ E ‖ 2 , where β is a reg-

ularization parameter. Accordingly, the Tikhonov regularization constrains the norm ‖ E ‖ 2 . However, for the SA method, 

E = exp (−i ̃  q z ζ ) → 1 when ˜ q z ζ → 0 , therefore the optimal solution in the sense of Tikhonov can be biased, especially when

the surface deformation is small. 

The SA0 method consists in a simple preconditioning of the SA method, introduced for this work with the aim of fixing

such an inconsistency. Note that 

P (M m 

, k ) − P 0 (M m 

, k ) ≈ ∫ 
A (S , M m 

, x, k ) { exp [ −i q z (M m 

, S , x, k ) ζ (x ) ] − 1 } d x, (13) 

where P 0 (M m 

, k ) is the acoustic field reflected from a flat surface ζ ≡ 0 . Unlike Eq. (6) , the term that multiplies the kernel

A is small when kζ is small. The pre-conditioned problem is consistent with the Tikhonov regularization. However, solving 

Eq. (13) requires either the measurement or the theoretical calculation of P 0 . The latter is straightforward, for example by

means of Eq. (4) . The replacement of q z with ˜ q z is still necessary with this method. 

With the SA0 method, the elements of the three matrices are defined as 

F (k ) 
m 

= P (M m 

, k ) − P 0 (M m 

, k ) , (14) 

H 

(k ) 
m,r = A (S , M m 

, x r , k )
x, (15) 

and 

E 

(k ) 
r = exp [ −i ̃  q z (S , x r , k ) ζ (x r ) ] − 1 . (16) 

ζ is calculated as 

ζ (x r ) = i 
ln 

[
E 

(k ) 
r + 1 

]
˜ q z (S , x r , k ) 

. (17) 

2.4. Separation of variables: SP method 

This last method is based on a Small Perturbation (SP) expansion [e.g., 41, ch. 3] , which only applies to a small surface

elevation q z ζ � 1 . The derivation is similar to the ones described in [11] and [34] for an electromagnetic problem, but here

the inversion is obtained without iterations and without resorting to Fourier analysis, for a potentially underdetermined 

system of equations. Expanding the exponential in Eq. (13) at first order yields 

P (M m 

, k ) − P 0 (M m 

, k ) ≈ −i 
∫ 
A (S , M m 

, x, k ) q z (M m 

, S , x, k ) ζ (x )d x. (18) 

Then, ζ is already isolated and there is no need to approximate the function q z . The elements of the three matrices are 

defined as 

F (k ) 
m 

= P (M m 

, k ) − P 0 (M m 

, k ) , (19) 

H 

(k ) 
m,r = −i q z (M m 

, S , x, k ) A (S , M m 

, x r , k )
x, (20)

and 

E 

(k ) 
r = ζ (x r ) . (21) 

ζ is obtained directly from the inversion as ζ (x r ) = E (k ) . 
r 

5 
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Fig. 2. Schematic representation of the linearized forward problem cast as matrix product. The single-frequency (standard) approach is represented by the 

terms inside the dashed line: the unknown surface shape is represented by the vector E N r ×1 , and is obtained from the complex pressure F (k 1 ) 
m measured 

at each microphone m = 1 . . . N m , by inverting the rectangular known transfer matrix H 

(k 1 ) 
N m ×N r 

numerically. The multiple frequency approach is obtained by 

concatenating matrices F 
(k j ) 

N m ×1 
and H 

(k j ) 

N m ×N r 
obtained for different wavenumbers k j , j = 1 , . . . , N k , while E N r ×1 remains unchanged. 

 

 

 

 

 

 

 

2.5. Multiple frequency extension 

All three approaches described above typically require a numerical inversion scheme to solve a sometimes largely un- 

derdetermined linear system. As it will be shown, the accuracy of the reconstruction depends strongly on the numerical 

inversion, and on the presence of noise. Furthermore, the choice of the signal frequency affects the results in such a way

that it is difficult to identify an optimal frequency without knowledge of the surface statistics. To overcome these issues, 

here it is suggested to extend the three methods above, combining information available at different frequencies in order to 

improve the robustness of the surface reconstruction. 

It is assumed that the same surface can be tested at multiple wavenumbers k j , j = 1 , . . . , N k , either using harmonic

signals at subsequent times, or simultaneously with a sine sweep or a random noise. For each frequency, an equation like

Eq. (4) applies. For the SP method, the unknown vector E N r ×1 is independent from k, while for the SA and SA0 methods 

it is a function of the frequency through ˜ q z . For these methods, ˜ q z can be approximated by its average across multiple

frequencies, ˜ q k . Since ˜ q z is directly proportional to k, the error introduced with such approximation is proportional to the 

bandwidth. Then, 

E 

(k ) 
r ≈ E r = 

{ 

exp [ −i ̃  q k (S , x r ) ζ (x r ) ] , SA method , 

exp [ −i ̃  q k (S , x r ) ζ (x r ) ] − 1 , SA0 method , 

ζ (x r ) , SP method . 

(22) 

Finally, a larger multi-frequency system can be constructed by using vertical concatenation ( Fig. 2 ), as ⎡ 

⎢ ⎣ 

F (k 1 ) 
N m ×1 

. . . 

F 
(k N k 

) 

N m ×1 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

H 

(k 1 ) 
N m ×N r 

. . . 

H 

(k N k 
) 

N m ×N r 

⎤ 

⎥ ⎦ 

E N r ×1 , (23) 

and ζ can be estimated from N m 

N k data obtained at N m 

microphones, by inverting a much larger matrix with size N m 

N k × N r .

When N m 

N k > N r , the system becomes overdetermined, and the solution can be found for example with a least squares

method. As it will be seen in Section 4 , this can strongly improve the robustness of the inversion. 

3. Numerical study of the inversion uncertainty 

3.1. Numerical model 

The performance of the various reconstruction methods presented in the previous section is here investigated numerically 

with a Monte Carlo approach. The scripts used for the numerical simulations and analysis can be found in [47] . The acoustic
6 
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field is calculated numerically by means of Eq. (3) for a large number of realizations of the surface function ζ , generated by

means of a linear random phase model. The acoustic model has been previously validated for similar surfaces by Dolcetti and

Krynkin [42] in forward scattering, and by Dolcetti et al. [43] in a backscattering configuration. A further test of convergence

with respect to the density and extent of the surface discretization grid used for the numerical integration of Eq. (3) has

been performed for this work, in the most stringent conditions (highest frequency, largest distance of the array from the 

surface). As a result, a grid spacing of 1 mm ( 
x/λ < 0 . 1 ) with 2048 points is chosen to calculate Eq. (3) numerically. Further

refinements or extensions of the grid caused variations of the magnitude and phase of the potential < 1%. The synthetic

acoustic field was then analyzed with the procedures described previously, yielding an estimate of the surface shape. The 

statistics of the reconstruction error are inferred by comparing the known initial realizations with their reconstructions. 

The geometry of the measurement setup and the characteristics of the surface are defined in such a way to allow their

characterization by a small number of parameters. Therefore, in contrast with the works of Krynkin et al. [17,37] , a line-array

setup is used in this work, i.e., the source and each microphone are all at the same height z 0 above the plane z = 0 . The

spacing between microphones is constant, and defined by the parameter d 0 . The source is modeled as a baffled piston, with

radius a 0 and with directivity [48, p. 381] 

D (θ ) = 2 

J 1 (ka 0 sin (θ )) 

ka 0 sin (θ ) 
, (24) 

where J 1 is the Bessel function of the first kind, and θ is the angle with respect to the source axis. The axis is inclined by an

angle φ0 with respect to the horizontal direction. The microphones are modeled as omnidirectional. To give a more realistic 

representation and take into account the physical dimensions of the source, a minimum fixed distance equivalent to 60 mm 

(2.6 to 4.4 times the acoustic wavelength) is imposed from the first microphone to the source in all simulations. 

The rough surface realizations are constructed by means of a linear random phase model, in a way similar to Thorsos

[40] : 

ζn (x q ) = 

∑ 

ν

√ 

(κν ) 

2 

[
ξν,n exp ( i κνx q ) + ξ ∗

ν,n exp ( −i κνx q ) 
]

(25) 

where the superscript ∗ indicates the complex conjugate, κν = ν2 π/L, ν = 1 , . . . L/ 2
x, L is the surface length, 
x is the 

surface grid size, ξν,n is a Gaussian-distributed complex variable, and (κ) is the surface Fourier power spectrum. Note that 

the discretization grid employed for the calculation of the acoustic potential (forward problem), x q , is different in general

from the reconstruction grid x r introduced in Section 2 . A power-function spectrum (κ) ∝ κ−α0 is used. Such a spectrum

is commonly used to describe natural surfaces such as water waves in the ocean [49] and in rivers [42] , or sea [50] and

river [51] bed shapes. Similarly to the work in [51] , a saturation range is introduced at wavenumbers < κ0 , as well as a

small scale cut-off at wavenumber κ1 , i.e., the spectrum is given the form 

(κ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

σ 2 
0 C, where κ < κ0 , 

σ 2 
0 C 

(
κ

κ0 

)−α0 

, where κ0 ≤ κ ≤ κ1 

0 , where κ > κ1 , 

(26) 

where C is a normalization constant, σ0 is the standard deviation of the surface elevation, κ0 = 2 π/l 0 is the lower saturation

wavenumber, and κ1 = 2 π/l 1 is the upper cut-off wavenumber. The saturation scale κ0 defines a maximum scale of the 

surface, and ensures that the statistical moments converge independently of the surface size. 

Finally, the problem is entirely defined by 9 parameters. Four of them ( σ0 , α0 , κ0 , and κ1 ) define the statistics of the

surface, two ( z 0 and d 0 ) the geometry of the acoustic array, and three more ( a 0 , φ0 , and k 0 ) the characteristics of the source.

The last parameter, k 0 = 2 π/λ0 , is the wavenumber of the acoustic signal, or the average of all wavenumber components

used for the analysis in the multiple-frequency calculations. All calculations in sections 3.2 to 3.7 are based on a signal with

a single frequency. The effect of the multiple frequency extension is discussed in Section 3.8 , and with the experimental

results in Section 4.2 . 

3.2. Error metrics 

For various combinations of the 9 parameters, the performance of the different reconstruction approaches is tested nu- 

merically on 10 0 0 random realizations of the rough surface constructed by means of Eq. (25) . ˜ ζn (x r ) is defined as the

estimated reconstruction of the n th surface realization ζn (x r ) . Then, the reconstruction error at each grid point x r and re-

alization is ε n (x r ) = 

˜ ζn (x r ) − ζn (x r ) . Binning the values of ε n (x r ) observed across all realizations yields a set of histograms

that estimate the probability distribution function (pdf) of the error at each x r . 

Fig. 3 shows examples of these normalized histograms obtained for the SA and SA0 methods, for two sets of surfaces

that differed only for their standard deviation of the surface function, σ0 /λ0 = 0 . 06 and σ0 /λ0 = 0 . 12 , respectively. Although

the error statistics are markedly different in the four cases shown in Fig. 3 , five characteristic regions of the plots where

the histograms behave similarly can be identified. These are designated with letters A, B, and C. The two areas indicated

with C are at the edges of the reconstructed surface. Here, the error distribution is multi-modal, and the error is large,
7 
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Fig. 3. Probability distribution of the local surface reconstruction error ε n = 

˜ ζn (x r ) − ζn (x r ) evaluated from 10 0 0 realizations. Geometry and surface 

parameters: α0 = 4 , κ0 /k 0 = 0 . 34 , κ1 /k 0 = 3 . 4 , z 0 /λ0 = 18 , d 0 /λ0 = 0 . 59 , k 0 a 0 = 7 . 4 , ψ 0 = π/ 3 rad, N m = 34 microphones. (a, b) σ0 /λ0 = 0 . 059 , (c, d) 

σ0 /λ0 = 0 . 118 . (a, c) SA method, (b, d) SA0 method. The vertical dashed lines indicate the boundaries of the effective reconstruction domain, comprised 

between the specular reflection points for the first and last microphone. The rectangular region A with green contours identifies the domain used for the 

computation of the error metrics. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

especially for the SA method. The distance between the peaks of the distribution is approximately λ0 / 2 . Since both the SA

and SA0 methods obtain the surface from the phase of a term proportional to exp ( −i ̃  q z ζ ) , the multiple modes may have

occurred due to an ambiguity of the phase. The boundaries between the outer C regions and the inner A and B region

in Fig. 3 are represented by the points of specular reflection of the first and last microphones of the array, (x s + x m, 1 ) / 2

and (x s + x m,N m ) / 2 , respectively. The portion of the surface in between these points, with size � = (x m,N m − x m, 1 ) / 2 , was

identified as the effective domain of the reconstruction [17] . Here, in this region, the error distribution appears narrower 

and with a clearer peak centered near ε n = 0 , except for the SA method at smaller σ0 , which shows a visible fluctuation

of the peak location along the surface. A broader distribution indicates a larger deviation between target and reconstructed 

surface, while the distance of the peak from zero indicates a bias of the reconstruction. Secondary peaks of the distributions

are visible in region B. Such large errors here indicate a failure of the reconstruction for some realizations, which could

strongly skew the statistical moments. In this work, a reconstruction is considered to have failed when the maximum of the

error (within the reconstruction domain �) falls in region B, i.e., when max | ε n (x r ) | > λ0 / 4 . 

To give a simple quantitative representation of the reconstruction error that takes into account the complexity of the 

observed distributions, three error metrics are defined. The error in the regions C is not considered for the calculation of

these metrics. The likelihood of a failure of the reconstruction is estimated with the parameter F ε , defined as the ratio

between the number of failed reconstructions and the total number of realizations, N, 

F ε = 

1 

N 

∑ 

n 

b(n ) , b(n ) = 

{
1 max | ε n (x r ) | > λ0 / 4 , x r ∈ �, 

0 otherwise . 
(27) 

This metric is assumed to represent the robustness of an algorithm. The remaining two metrics are defined considering 

only the realizations that do not fall into the failure criterion (i.e., with reference to region A in Fig. 3 ). They represent the

uncertainty (bias and deviation) that can be expected from a reconstruction that does not appear obviously wrong. Excluding 

the realizations that cross regions B, the 15.87%, 50%, and 84.14% percentiles of the ε n (x r ) distribution are calculated at each

location x r within the reconstruction domain �. The bias P ε is defined as the root-mean-square (rms) average of the 50%

percentile (median) error level calculated over x r . The reconstruction deviation, S ε , is instead defined as the rms average of

the difference between the 84.14% and 15.87% error levels, corresponding to a 68.27% confidence interval. To quantify the 

uncertainty of the error metrics computed by the Monte Carlo simulation, these were calculated for five independent sets of 
8 



G. Dolcetti, M. Alkmim, J. Cuenca et al. Journal of Sound and Vibration 494 (2020) 115902 

Fig. 4. Effect of the model approximations and numerical inversion procedure on the error metrics, for the three inversion methods: SA (blue), SA0 (red), 

and SP (green). The circles represent calculations with the standard procedure, applying the inversion to the synthetic pressure distribution determined by 

a Kirchhoff approximation, Eq. (3) . The triangles represent the error attributable to the numerical inversion only. Results shown for α0 = 4 , κ0 /k 0 = 0 . 34 , 

κ1 /k 0 = 3 . 4 , k 0 a 0 = 7 . 4 , ψ 0 = π/ 3 rad, N m = 34 , z 0 /λ0 = 18 . (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 0 0 surfaces each, with similar statistics, using the same setup and surface parameters of Fig. 3 a. The maximum variations

of the metrics across the five sets was found to be ±3 % for F ε , ±2 . 5 % for B ε , and ±0 . 5 % for S ε . 

Note that during the formalization of the inversion problem, the location of the points where the surface shape is cal-

culated, x r , is arbitrary. Here, x r is represented by a regular grid with length L 0 and spacing 
x r . It should be noted that,

although the reconstruction is accurate only within a limited portion of the reconstruction grid, bounded by the first and 

last stationary phase points, setting L 0 = � does not provide accurate reconstructions. The errors were found to decrease 

with an increase of L 0 , until L 0 > 5�. Further increases of L 0 have a non-significant effect on the error metrics. Hence, all

calculations reported here were conducted using L 0 = 6� = 3(x m,N m − x m, 1 ) . The simulations were found being marginally

affected by the reconstruction grid size 
x, as long as this was small enough to be able to resolve the smallest surface

scales. A variation of the three metrics smaller than 1.1% was observed for 
x between 0 . 025 λ0 and 0 . 4 λ0 . A value of


x < 0 . 1 λ0 has been used for all simulations. 

3.3. Self consistency 

The reconstruction algorithms examined here rely on three approximations: (i) a far-field expansion of the Kirchhoff

integral formula; (ii) a discretization and truncation of the scattering surface; (iii) a separation of variables leading to a lin-

earization of the problem, obtained either by expanding q z at a single location (SA, SA0), or by taking the small perturbation

limit q z ζ � 1 (SP). Each of these approximations is likely to introduce an error in addition to the one that arises from the

numerical inversion. To examine the impact of these additional error sources, the reconstruction was applied to an ‘ideal’ 

scenario, where the above approximations should not contribute. In this scenario, the acoustic pressure was estimated using 

Eq. (4) , which already includes all the above approximations, instead of Eq. (3) . In this way, any error observed after the

inversion would be a result of the numerical inversion procedure alone. 

Fig. 4 shows a comparison of the error metrics calculated with the standard procedure (synthetic pressure signal esti- 

mated from Eq. (3) ), and based on the ideal scenario ( Eq. (4) ), for the three methods and for a range of surface standard

deviations, σ0 /λ0 between 0.006 and 0.24. The probability of failure F ε was found to increase sharply with σ0 /λ0 when 

σ0 λ0 ≥ 0 . 1 , for all methods. B ε also increased with σ0 for the SA0 and SP methods. The SA method showed a considerable

bias also for small σ0 , and displayed a minimum of B ε at σ0 /λ0 ≈ 0 . 1 . Moreover, the deviation S ε increased with σ0 for all

methods, with larger values observed for SP at large σ0 /λ0 when the q z ζ � 1 approximation ceased to be valid. 

For the SA and SA0 methods, the difference between the more realistic case and the ideal case was generally not signif-

icant, indicating that the reconstruction error was dominated by the numerical inversion procedure. Visible differences ob- 

served at σ0 /λ0 = 0 . 24 may have been caused by the very small number of successful reconstructions for this case ( F ε ≈ 1 )

which strongly reduced the number of successful realizations used for the calculation of B ε and S ε . The SP-based recon-

struction showed a significant decrease of all error metrics when the expansion errors were removed, especially when 

σ0 /λ0 > 0 . 1 . This was to be expected, since the SP model looses validity when σ0 /λ0 ∼ 1 . These calculations confirm that

the approximations introduced by Krynkin et al. [17] to transform the integral Kirchhoff equation into an invertible lin- 

ear system of equations are appropriate, at least for the cases considered here. Note that, during a similar self-consistency 

test, Wombell and DeSanto [8] observed a much larger difference between the ‘realistic’ and ‘ideal’ case reconstruction at 

large σ0 /λ0 . However, the difference between the two cases in [8] was determined by the applicability of the Kirchhoff ap-

proximation, which has been assumed valid in both cases here. The difference observed here, instead, was due only to the

expansion and factorization steps. 
9 
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Fig. 5. Effect of Gaussian amplitude uncertainty, σξ (a, b, c), and phase uncertainty, σχ (d, e, f), on the error metrics, for the three inversion methods: 

SA (blue), SA0 (red), and SP (green). Results shown for σ0 /λ0 = 0 . 06 , α0 = 4 , κ0 /k = 0 . 34 , κ1 /k = 3 . 4 , k 0 a 0 = 7 . 4 , ψ 0 = π/ 3 rad, N m = 34 , z 0 /λ0 = 18 . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Effects of measurement noise 

The robustness of each method to noise was assessed by introducing additive Gaussian noise to either the amplitude or 

phase of the synthetic signal, i.e., 

P ν (M m 

, k ) = P (M m 

, k ) ( 1 + ξ ) exp ( i χ2 π) , (28) 

where P ν is the ‘noisy’ signal, and ξ and χ are Gaussian distributed random variables. Their respective standard deviations, 

σξ and σχ , represent the magnitude of the amplitude and phase noise, respectively. Examples of the error metrics calculated 

for different values of σξ and σχ (keeping σχ = 0 or σξ = 0 , respectively) are shown in Fig. 5 . Amplitude noise increased the

probability of failure F ε only for SA, but increased the deviation S ε similarly for all methods. The bias B ε was not affected.

Phase noise had a stronger effect on all metrics, and for all methods, except the probability of failure of SP which remained

very low even with large σχ . The strongest effect was observed for the SA method, where a phase uncertainty of 20%

was found sufficient to bring the probability of failure above 0.9. Random variations of the phase similar to those modeled

with σχ can be caused by uncertainties of the microphone locations, or lack of phase calibration. The rapid increase of S ε 
(and of F ε for SA) with σχ can severely harm the overall accuracy of the method, and requires care while setting up the

measurement system. 

3.5. Effects of the measurement setup 

The measurement setup is defined by the parameters z 0 , d 0 , a 0 , and φ0 . Variations of the speaker radius a 0 and angle φ0 

mainly affect the distribution of the incident sound intensity on the surface, and were found having small effect on the error

metrics as long as the insonified area was larger than the whole reconstruction domain. For all simulations considered here, 

the product k 0 a 0 = 7 . 4 was held constant and φ0 was fixed at 60 degrees from the horizontal. While evaluating the effects

of the height z 0 and microphone separation d 0 on the reconstruction errors, the position of the first and last specular points

were held constant to keep the reconstruction domain identical. For a given number of microphones N m 

, the locations of

the first and last microphones were determined as x m, 1 = 2 x sp, 1 − x s and x m,N m = 2 x sp,N m − x s , respectively, where x sp, 1 and

x sp,N m define the position of the two specular points. Then, d 0 followed from d 0 = (x m,N m − x m, 1 ) / (N m 

− 1) . 

The values of the three error metrics, calculated for different combinations of z 0 /λ0 between 8.8 and 29.4, and for d 0 /λ0 

between 0.37 and 2.7, are shown in Figs. 6–8 , respectively. Each row in these figures was calculated with a different fre-

quency, to test the non-dimensionalization of the error metrics and parameters by the acoustic wavelength. The axis ranges 

differ between rows due to the non-dimensionalization. For all methods, the probability of failure ( Fig. 6 ) increased sharply

when d 0 /λ0 ≤ 0 . 5 . For larger microphone separations, the SA0 and SP methods showed a small F ε < 5 %. In contrast, the

SA method showed a further increase of F ε when d 0 /λ0 > 1 . 5 , with estimated probability of failure well above 50%. This

indicates a lack of robustness of the SA method. 

The SA method performed poorly also with respect to the error bias, as shown in Fig. 7 . Here, the relative bias B ε /λ0 

was of the order of 1% for the SA method, almost one order of magnitude larger than for SA0 and SP. A different color

scale was used for the SA plots in Fig. 7 , to account for this difference. For these simulations, σ0 /λ0 was between 4.4%

and 7.4%, therefore the bias was a significant proportion of the standard deviation of the surface roughness. The smallest 
10 
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Fig. 6. Distribution of the probability of failure F ε as a function of the array height z 0 and microphone spacing d 0 , for the three methods: SA (a, d, 

g), SA0 (b, e, h), and SP (c, f, i). Geometry and surface parameters: α0 = 4 , k 0 a 0 = 7 . 4 , ψ 0 = π/ 3 rad. (a, b, c) σ0 /λ0 = 0 . 074 , κ0 /k 0 = 0 . 27 , κ1 /k 0 = 2 . 7 , 

f 0 = 25 kHz, (d, e, f) σ0 /λ0 = 0 . 059 , κ0 /k 0 = 0 . 34 , κ1 /k 0 = 3 . 4 , f 0 = 20 kHz, (g, h, i) σ0 /λ0 = 0 . 044 , κ0 /k 0 = 0 . 45 , κ1 /k 0 = 4 . 5 , f 0 = 15 kHz. The simulations 

were performed with the same dimensional parameters, for different excitation frequencies. The non-dimensional axis ranges are different for each row as 

a result. 

Fig. 7. Distribution of the non-dimensional error bias B ε /λ0 as a function of the array height z 0 and microphone spacing d 0 , for the three methods: SA (a, 

d, g), SA0 (b, e, h), and SP (c, f, i). Geometry and surface parameters are the same as in Fig. 6 . Note the different color-coding in (a), (d), and (g). 
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Fig. 8. Distribution of the non-dimensional reconstruction uncertainty S ε /λ0 as a function of the array height z 0 and microphone spacing d 0 , for the three 

methods: SA (a, d, g), SA0 (b, e, h), and SP (c, f, i). Geometry and surface parameters are the same as in Fig. 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bias seemed to occur at larger σ0 /λ0 for the SA method, in accordance with what has been observed in Fig. 3 . In contrast,

the SA0 and SP methods had smaller bias at smaller σ0 /λ0 . For all methods, an increase of B ε /λ0 at large microphone

separation d 0 /λ0 > 2 and small height z 0 /λ0 < 20 was observed. To maintain the bias small, an increase of the separation

between the microphones must be accompanied by an increase of the height of the array above the surface. The behavior

of the deviation S ε , in contrast, was similar for the three algorithms, as shown in Fig. 8 . S ε was generally larger when the

microphones separation d 0 /λ0 and array height z 0 /λ0 were large. Therefore, to minimize S ε the array needs to be kept near

the surface, and the distance between the microphones needs to be small (but larger than 0.5 λ0 ). The observed values of

S ε /λ0 were typically between 3% and 10%, which suggests that S ε was the main contribution to the overall reconstruction 

error, at least for the SA0 and SP method. 

3.6. Effects of the roughness parameters 

The performance of the three reconstruction algorithms with respect to changes of the surface standard deviation σ0 is 

investigated in Fig. 9 a–c. The error metrics were calculated for various combinations of σ0 (between 0.1 mm and 4 mm)

and of the frequency f 0 (between 15 kHz and 25 kHz). The results are found reasonably consistent after normalization of

σ0 , B ε , and S ε by the acoustic wavelength λ0 , although low-frequency data (triangles in Fig. 9 a–c) had slightly larger values

of the normalized error metrics. This might have been an effect of the difference of κ0 /k 0 and z 0 /λ0 . 

Although the reconstruction error appears to scale with the acoustic wavelength, the performance of the reconstruction 

is generally better described by the quantity S ε /σ0 . This is apparent from Fig. 9 c, where S ε /σ0 = 1 is represented with a

dashed line. In fact, at low frequency (low σ0 /λ0 ), although S ε /λ0 was very small for all methods, S ε was very close to

σ0 . This indicates an error as large as the amplitude of the surface roughness, which is generally not acceptable. The more

meaningful error S ε /σ0 is indicated by the distance of all points from the line S ε /σ0 = 1 . This distance increased for the SA

and SA0 methods at higher frequencies ( σ0 /λ0 > 0 . 1 ), where S ε /λ0 became significantly lower than σ0 /λ0 , while it remained

very small for the SP method due to the non applicability of the small perturbation expansion at high frequency. 

The sensitivity of the error metrics to the surface spectrum slope α0 is represented in Fig. 9 d–f. A steeper spectrum

(larger α0 ) yields a smoother surface. This was associated with a slight decrease of F ε and B ε , and a more marked decrease of

S ε . Similarly, a smaller value of the characteristic roughness wavenumber κ0 is associated with a gentler surface. These also 

corresponded to smaller B ε and S ε , for all algorithms ( Fig. 9 h-i). F ε , however, showed a maximum at κ0 /k 0 ≈ 0 . 5 ( Fig. 9 g),

which is currently difficult to motivate physically. The shorter cut-off scale represented by κ1 was found having no significant 

impact on the error metrics, at least in the range 1 . 1 ≤ κ1 /k 0 ≤ 8 . 5 (plot omitted). This suggests that the inversion acts as

an effective low-pass filter of the roughness function. 
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Fig. 9. Effect of surface roughness standard deviation (a, b, c), spectrum slope (d, e, f), and characteristic surface wavenumber (g, h, i) on the error metrics, 

for the three inversion methods. SA (blue), SA0 (red), and SP (green). The different symbols in (a, b, c) denote different frequencies: 15 kHz (triangles), 

20 kHz (circles), 25 kHz (squares). The dashed line in (c) indicates S ε = σ0 . Geometry and surface parameters: (a, b, c), κ0 /k 0 = 0 . 45 , z 0 /λ0 = 13 (triangles), 

κ0 /k 0 = 0 . 27 , z 0 /λ0 = 22 (squares); for all remaining, σ0 /λ0 = 0 . 06 (except a, b, c), α0 = 4 (except d, e, f), κ0 /k 0 = 0 . 34 (except g, h, i), κ1 /k 0 = 3 . 4 , k 0 a 0 = 

7 . 4 , ψ 0 = π/ 3 rad, N m = 34 , z 0 /λ0 = 18 . Note the different vertical scale in (a, b, c). The SA and SA0 data in (f) and (i) overlap and therefore are not 

distinguishable. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Effect of the signal frequency on the reconstruction accuracy at various surface scales. Contour levels indicate the average ratio (in dB) between 

the Fourier power spectral densities of the target and reconstructed surface. The white and the red dash-dotted lines indicate the characteristic surface 

scale κ0 /k 0 and the shortest surface scale κ1 /k 0 , respectively. SA (a), SA0 (b), and SP (c). Results are shown for α0 = 4 , k 0 a 0 = 7 . 4 , ψ 0 = π/ 3 rad, N m = 34 . 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

3.7. Frequency dependence 

To explore the hypothesis of the inversion procedure acting as a low-pass filter of the surface, the power spectral density

spectrum of the reconstructed surfaces was calculated, and compared with that of the known target surfaces, also exempli- 

fied by Eq. (26) . The average (across multiple realizations) reconstructed/target ratio between these two spectra is shown 

in Fig. 10 as a function of the non-dimensionalized surface wavenumber κ/k 0 , for various k 0 . All three methods showed a

tendency to underestimate the amplitude of the spectrum, by an amount that increased consistently with the normalized 

surface wavenumber κ/k 0 , almost independently of the absolute value of k 0 . In particular, scales shorter than ≈ 2 λ0 had

their power spectral density underestimated in average by more than 6 dB, for all methods. This underestimation increased 

even faster for the SP method, which appeared to be less sensitive to short wavelengths. 
13 



G. Dolcetti, M. Alkmim, J. Cuenca et al. Journal of Sound and Vibration 494 (2020) 115902 

Fig. 11. Effect of the signal bandwidth W k on the reconstruction error based on the multiple frequency extension of the SA (blue), SA0 (red), and SP (green) 

methods. Signal without noise (circles) and signal with 5% amplitude and phase noise (triangles). Results shown for σ/λ0 = 0 . 06 , α0 = 4 , κ0 /k 0 = 0 . 34 , 

κ1 /k 0 = 3 . 4 , k 0 a 0 = 7 . 4 , ψ 0 = π/ 3 rad, N m = 34 , z 0 /λ0 = 18 . (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 12. A photograph of the experimental setup. 
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3.8. Multiple frequency extension 

All results so far were obtained using the signal at a single frequency f 0 . The outcome of considering multiple frequencies

simultaneously according to the method described in Section 2 is presented in Fig. 11 . Here, the reconstruction was based on

a discrete set of wavenumbers k 1 , k 2 , . . . , k N k , where W k = k N k − k 1 was the effective bandwidth, the wavenumber grid spac-

ing was set as W k / (N k − 1) = 0 . 0025 k 0 , and the center wavenumber was k 0 = 

∑ 

j k j /N k . The error metrics were evaluated

for W k /k 0 between 0 (single frequency case) and 0.5, without noise and with 5% amplitude and phase uncertainty. All re-

sults shown in Fig. 11 were obtained with a fixed number of microphones, N m 

= 34 , and of reconstruction points, N r = 991 ,

while the number of frequency bands was N k = 400 W k /k 0 + 1 and varied between 1 and 201. As a result, the ratio between

number of rows and number of columns of the transfer matrix, N m 

N k /N r varied between 0.03 (single frequency case) and

6.90. A ratio N m 

N k /N r = 1 , which indicates the transition from an underdetermined to an overdetermined problem, would

have been obtained with W k /k 0 = 0 . 073 . As seen in Fig. 11 , the increase of the bandwidth caused a slight decrease of S ε /λ0 

for all methods, and a slight increase of the bias B ε /λ0 for the SA0 and SP methods. The improvement in S ε /λ0 was larger in

the presence of noise, and did not increase further beyond W k /k 0 = 0 . 1 ( N m 

N k /N r = 1 . 4 ). Widening the bandwidth generally

reduced the probability of failure F ε , more visibly in the presence of noise. Without noise, F ε initially showed a peak at

 k /k 0 = 0 . 05 . For this case, N m 

N k /N r = 0 . 7 , meaning that the problem was still underdetermined and required solution via

a singular value decomposition. The presence of a peak of F ε only for the case without noise suggests that the extended ma-

trix was nearly singular without noise and with small broadband. For larger W k /k 0 , the problem was overdetermined, and

the inversion was obtained with an iterative least squares procedure [52] . The steep decline of F ε for larger W k /k 0 , observed

in Fig. 11 , suggests that the least squares inversion is more robust. 

4. Experimental validation 

4.1. Experimental setup 

Experimental tests were performed using an array of 34 1/4” microphones (G.R.A.S. 40PH) and a loudspeaker (Visaton 

G 25 FFL) positioned above a set of two rigid rough surfaces with known profiles ( Fig. 12 ). The surfaces were milled on

one side of two tiles made of medium density fiberboard (MDF) and aluminum, respectively. The opposite side of the tiles

was flat. The MDF surface had a power-function spectrum like the one described by Eq. (26) , with σ0 = 1 mm, α0 = 5 ,

κ0 = 2 π/ 0 . 05 rad m 

−1 , κ1 = 2 π/ 0 . 01 rad m 

−1 , and had dimensions of 0 . 6 × 0 . 4 m 

2 
. Being asymmetric and aperiodic, this

surface could be tested twice after a 180 ◦ rotation, effectively yielding two different surfaces with similar properties (surface 

A and B, Fig. 13 d and e, in black). The aluminum surface had the shape of a sinusoid with wavelength 50 mm and peak-to-

peak amplitude of 3 mm (surface C, Fig. 13 f, in black). 

For the experiments, the speaker was mounted at a height z 0 = 230 mm, and with an angle of 60 ◦. The directivity of

the speaker was measured, and the equivalent radius was estimated as approximately a = 20 mm. The spacing between
0 
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Fig. 13. Surface shape reconstruction using experimental data. Surfaces A (a, d), B (b, e), and C (c, f). (a, b, and c): non-dimensionalised rms-averaged 

local reconstruction error, for various acoustic frequencies and for three different surfaces. All results shown were obtained with the SA0 method and its 

broadband extension. ( ) : reconstruction based on experimental data; ( ): reconstruction based on synthetic data, without noise; ( ): reconstruction 

based on synthetic data, with 5% amplitude and phase noise; ( ): reconstruction obtained with the multiple frequencies extension with bandwidth W k = 

148 rad m 

−1 and center frequency shown at the abscissa; ( ): ε rms = σ0 . (d, e, and f): examples of surface reconstruction. ( ): target ‘known’ 

surface geometry; ( ) : reconstruction based on experimental data at 17.5 kHz ( σ0 /λ0 = 0 . 05 ); ( ): reconstruction obtained with the multiple 

frequencies extension with f 0 = 17 . 5 kHz, W k /k 0 = 0 . 46 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

microphones was 20 mm. The experimental setup differed slightly from the simplified model described thus far, in that the 

microphones were higher than the speaker, z m 

= 295 mm. This was chosen to minimize the direct field. The overall length

of the array was 660 mm, and the effective reconstruction domain had size � = 284 mm. 

The speaker was energized with both single frequency harmonic signals and with a random white noise with higher cut- 

off frequency of 51.2 kHz. The signals were recorded at a frequency of 102.4 kHz. The complex amplitude of the recorded

signal was calculated by means of a Fourier transform with a segment duration of 0.02 s, the result was divided by the

transform of the input signal to remove the time-dependence, and then averaged over 40 s with no overlap. No significant

difference between the measurements with harmonic signals and those obtained at the same frequency by a Fourier trans- 

form of the white noise were observed. All results presented here have been obtained from the white noise, by selecting

only the frequencies of interest from the wider spectrum. 

Calibration of each microphone in amplitude and phase was performed in situ, as follows: (i) the sound field reflected 

by a flat surface (the flat side of each tile) was recorded, and denoted as ˜ P 0 (M m 

, k ) ; (ii) the same flat-surface reflection

was calculated with Eq. (3) , based on the known position of the speaker and microphones, and denoted as P 0 (M m 

, k ) ;

(iii) a frequency-dependent calibration factor was calculated for each microphone as C(M m 

, k ) = P 0 (M m 

, k ) / ̃  P 0 (M m 

, k ) . Every

subsequent measurement obtained with the rough surfaces (after turning the tile upside down) was corrected by means of 

a multiplication by the complex factor C(M m 

, k ) . Numerical simulations were performed alongside each experimental test 

using the known setup and surface geometry as input, to aid the interpretation of the results. 

4.2. Experimental results 

The results of the experimental tests obtained with the SA0 method are exemplified in Fig. 13 . The SA0 method was cho-

sen because it was expected to yield the best results according to the numerical analysis in Section 3 . The single-frequency

reconstruction was performed independently at frequencies ranging between 10 kHz and 25 kHz. This corresponds to values 

of σ0 /λ0 between 0.03 and 0.07. Since only three surfaces were tested, a statistical analysis of the reconstruction error was 

not possible, and the three error metrics defined in Section 3 could not be calculated. Instead, the reconstruction error was

quantified in terms of the rms spatial average of the local difference ε(x r ) = 

˜ ζ (x r ) − ζ (x r ) over the effective reconstruction

domain. These errors are shown in Fig. 13 a–c with blue dots, for the experimental data. 

With this definition, the error in the single-frequency reconstruction exhibits a strong sensitivity to the operational fre- 

quency. The target surface profiles are shown in black in Figs. 13 d, e, and f for surfaces A, B and C, respectively. An example

of monochromatic reconstruction, obtained at a frequency of 17.5 kHz ( σ0 /λ0 = 0 . 05 ), is shown in blue in the same figures.

The monochromatic reconstruction is reasonably close to the actual surface shape for surfaces B and C ( Fig. 13 e and f),

while little resemblance to the target was found for surface A ( Fig. 13 d) at this frequency. For the case shown in Fig. 13 d,

e, and f, the measured relative errors ε rms /λ were 0.44 (surface A), 0.27 (surface B), and 0.038 (surface C). The percentage
0 
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of frequencies (relative to all tested frequencies shown in Fig. 13 a–c) that had a relative reconstruction error larger than 0.1

was 46% for Surface A, 40% for Surface B, and 50% for Surface C. These percentages can be assumed to be indicative of an

equivalent probability of failure of the reconstruction. The reconstruction in Fig. 13 d (surface A) is one typical example of

such failure, but also in Fig. 13 e the large rms error is due to the strong departure from the target profile near x r = 0 . 1 m.

Excluding the obvious failures, the relative error ε rms /λ0 was found increasing with σ0 /λ0 , as expected, and was generally 

between 0.03 and 0.06, or between 60% and 80% of σ0 /λ0 . The limiting condition ε rms /σ0 = 1 is shown in Fig. 13 a–c with

a purple dashed line. To determine if these figures were in line with the expectations, the reconstruction was applied to

synthetic signals obtained based on the same known surface profiles. The expected values of ε rms /λ0 calculated without 

artificial noise ( σξ = σχ = 0 ) are indicated with a dashed line in Fig. 13 a–c, and were considerably smaller, at ≈ 0 . 02 , or

between 30% and 40% of σ0 /λ0 . The addition of 5% uncertainty to the amplitude and phase of the synthetic signal yielded

values more in line with the measurements, also bringing the failure rate to between 38% (surface B) and 63% (surface A).

The ‘noisy’ synthetic data points are indicated with black dots in Fig. 13 a–c and show a sensitivity to frequency similar to

that of the experimental cases. 

Given the choice of acoustic stimulus used for the measurement (white noise), data at multiple frequencies was easily 

collected simultaneously for the three surfaces. This data was analyzed with the multiple frequency extension of the SA0 

method, selecting portions of the overall signal spectrum with a constant bandwidth of W k = 148 rad m 

−1 (6 kHz), and a

range of different center frequencies from 12.5 kHz to 22.5 kHz. The corresponding rms errors are shown with red rectangles

in Fig. 13 a–c, for each center frequency. Examples of reconstruction obtained with a center frequency of 17.5 kHz ( σ0 /λ0 =
0 . 05 ) are also shown in red in Fig. 13 d–f. Compared to the single frequency reconstruction (blue line), the multiple frequency

reconstruction appeared closer to the known surface profile. The measured relative rms errors for a center frequency of 

17.5 kHz were 0.017 (surface A), 0.020 (surface B), and 0.022 (surface C), corresponding to 33%, 38%, and 41% of σ0 . Unlike

the single frequency case, the reconstruction was similarly accurate for all three surfaces, and the error varied less with the

center frequency. Even with the multiple frequency extension, however, the probability of failure of the reconstruction was 

not zero, as revealed by the large rms error observed in Fig. 13 c for surface C, at σ0 /λ0 = 0 . 07 . However, all remaining cases

showed errors close to the theoretical limit, represented here by the synthetic results without noise. 

The results obtained with the SA and SP methods (not shown in Fig. 13 ) mostly confirmed the results obtained in

Section 3 with synthetic data. In the single-frequency case, reconstruction errors larger than 0 . 1 λ0 were observed at be-

tween 72% and 84% of frequencies (between 64% and 80% with synthetic noisy data) for the SA method, and at between

32% and 43% of frequencies (between 9% and 18% with synthetic noisy data) for the SP method, which confirms a lack of

robustness of the SA method. The relative error ε rms /λ0 at the center frequency of 17.5 kHz was found to vary between 0.09 

and 0.49 for the measurements with the SA method (between 0.16 and 0.37 with synthetic data), and between 0.033 and

0.067 for the measurements with the SP method (between 0.028 and 0.048 with synthetic data). Note that for the three

surfaces that were tested here, σ0 /λ0 < 0 . 1 , which was within the range where the performance of the SP and SA0 method

were expected to be comparable (see Fig. 9 a–c). For the SP method, the multiple frequency extension effectively reduced

the relative error to values between 0.02 and 0.03, close to the theoretical limit. For the SA method, the multiple-frequency

reconstruction error decreased substantially for surface A (approximately 0.02), while it remained relatively large for surface 

B (between 0.03 and 0.1) and for surface C (between 0.03 and 0.08). For both surfaces, the largest errors were observed at

the highest frequencies. 

5. Discussion 

The numerical results presented in Section 3 suggested overall better performance of the SA0 method compared to the SA 

and SP alternatives, for the cases considered here. The SA0 method was less affected by bias at small σ0 /λ0 compared to SA,

and had smaller deviation S ε /λ0 than the SP method at large σ0 /λ0 . A possible explanation for the bias of the SA method at

small σ0 /λ0 can be identified in the regularization of the inverse problem in the sense of Tikhonov. The solution obtained by

means of the Tikhonov regularization minimizes a weighted sum of the inversion residual and of the norm of the solution

itself [46] . The latter is represented here by the vector E . However, for the SA method, a solution that minimizes the norm

of E does not minimize ζ . This could explain the bias at low σ0 /λ0 , when the regularization is expected to have a stronger

impact due to the smaller sensitivity of the scattered field. By removing the bias of the solution vector E , the SA0 method

effectively restores the applicability of the Tikhonov regularization, thus improving the performance of the reconstruction. 

The relative weight of the two norms minimized by the Tikhonov regularization is governed by the regularization parameter, 

which was determined here by means of the generalized cross-validation method. It is possible that further improvements 

could be obtained by means of alternative regularization approaches. These should be evaluated in future studies, using the 

error analysis framework introduced here. 

Amongst all parameters that affect the accuracy of the reconstruction, the relative roughness standard deviation σ0 /λ0 

had the strongest influence. Considering the SA0 method, lower σ0 /λ0 was associated with smaller values of all three error 

metrics. However, at σ0 /λ0 < 0 . 1 , the deviation S ε was found very close to σ0 . This would be unacceptable in most cases,

since the uncertainty needs to be considerably lower than the characteristic amplitude of roughness. To increase the ratio 

S ε /σ0 , one would need to increase the frequency of the signal (hence σ0 /λ0 ). This would also improve the ability to re-

construct shorter scales on the surface, as shown with Fig. 10 , but it would in turn increase very rapidly the probability of
16 
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failure. The quality of the reconstruction must rely on a compromise between accuracy and robustness, which is often made 

even more difficult by a lack of prior knowledge about the surface properties. 

The severity of the robustness issue was highlighted by the experimental results shown in Fig. 13 . Here, a relatively

small amount of noise in the data was shown making the reconstruction fail for more than 40% of the cases, for a given

surface, merely because of the different frequency used for the analysis. This is of notice, especially since the theoretical 

probability of failure for the same surfaces, without noise, was close to zero, as shown by the numerical simulations. A

multiple-frequency extension applicable to all methods was here proposed as a possible solution to maintain accuracy and 

improve robustness. With synthetic data, the impact of the extension on the analysis was somehow limited, although a 

substantial decrease of the probability of failure was demonstrated for the SA method in presence of noise. When applied 

to the experimental data, the extension gave results that were considerably more reliable and accurate than any single- 

frequency reconstruction, with an accuracy close to the theoretical limit calculated numerically. 

6. Conclusions 

This work provided a systematic comparison of various approaches to reconstruct a rough surface from measurements of 

the scattered acoustic field with a linear array of microphones. For all approaches, and for the range of conditions examined

in this work, the linearization of the scattering equations proposed in [17] was found having a small effect on the recon-

struction error. Instead, large errors were found arising from the inversion itself, likely as a result of the underdetermined 

and ill-posed nature of the problem. The reconstruction error was found to be strongly influenced by the ratio between 

roughness height and acoustic wavelength. Accuracy and resolution were found to improve at higher frequencies, at the 

expense of robustness. 

One of the new approaches proposed here, which addresses an inconsistent use of the Tikhonov regularization in [17] by

introducing a pre-conditioning of the problem, was found giving the best overall results. A further improvement was intro- 

duced via a multiple-frequency extension of the reconstruction procedure, which allows to combine information at multiple 

frequencies into a single, potentially overdetermined, linear problem. Application of this extended approach to the experi- 

mental data collected simultaneously over a broad range of frequencies, using a white noise as stimulus, demonstrated its 

efficacy in improving the robustness and reliability of the reconstruction, while providing errors close to the theoretical limit 

for the three tested surfaces. 

The main advantage of the surface reconstruction methodology under exam is its capability to estimate the surface shape 

using a relatively small number of sensors. This makes the technique fast, inexpensive, and simple to set up, calibrate, 

and operate. Although the method is derived for acoustic waves interacting with a sound-rigid surface, the extension to 

electromagnetic waves and/or Dirichlet boundary conditions should be feasible. Application to surfaces with larger or smaller 

scales should be possible as long as all quantities including the signal frequency are scaled consistently, and the Kirchhoff

approximation can be assumed valid. The results presented here can inform the design of measurement arrays for a variety 

of potential applications, while providing an indication of the limitations and uncertainties of the method. 
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Appendix A. Kirchhoff approximation for a cylindric surface 

Consider scattering of sound with wavenumber k generated by a point source with co-ordinates S , scattered by a rough

surface z = ζ (x, y ) , and recorded at location M m 

. A point on the surface is identified by the vector ρ = (x, y, ζ (x, y )) . As-
17 
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suming the validity of the Kirchhoff approximation, the complex potential at M m 

is [41, p. 226–228] 

P (M m 

, k ) = 4 π

∫ ∫ 
n · ∇ [ P i (S , ρ, k ) G 0 (M m 

, ρ, k ) ] 
d x d y √ 

1 + |∇ζ | 2 , (A.1) 

where the term inside the square root in Eq. (A.1) arises by changing variable of integration from the curvilinear surface-

following variable to the Cartesian variables x and y . n is the unit vector normal to the surface, G 0 is the far-field Green’s

function, 

G 0 (r , r ′ ) = − 1 

4 π

e i k | r ′ −r | 
| r ′ − r | , (A.2) 

P i is the incident field, 

P i (S , ρ, k ) = p 0 e 
−i2 π f t D (θ (ρ − S )) 

k 
G 0 (S , ρ) , (A.3) 

t is time, and p 0 is the signal amplitude, which carries the dimensions of an acoustic potential. Without loss of generality,

hereafter it is assumed p 0 e 
−i2 π f t = 1 , so that P (M m 

, k 0 ) takes the meaning of a normalized complex Fourier coefficient. 

Substituting Eqs. (A.2) and (A.3) into Eq. (A.1) , assuming a slowly varying directivity, yields an equation of the form 

P (M m 

, k ) = 

∫ ∫ 
C(S , M m 

, ρ, k ) exp { i k [ | ρ − S | + | M m 

− ρ| ] } d x d y, (A.4) 

where 

C(S , M m 

, ρ, k ) = 

i 

4 π

D (θ (ρ − S )) 

| ρ − S || M m 

− ρ| 
×
{[

1 + 

i 

k | ρ − S | 
][

− (x − x s ) 

| ρ − S | 
∂ζ

∂x 
− (y − y s ) 

| ρ − S | 
∂ζ

∂y 
+ 

(ζ − z s ) 

| ρ − S | 
]

+ 

[
1 + 

i 

k | M m 

− ρ| 
][

− (x − x m 

) 

| M m 

− ρ| 
∂ζ

∂x 
− (y − y m 

) 

| M m 

− ρ| 
∂ζ

∂y 
+ 

(ζ − z m 

) 

| M m 

− ρ| 
]}

. (A.5) 

The source and microphone are assumed to lie on the x –z plane, y m 

= y s = 0 . Assuming no variation of ζ along y, ∂ ζ /∂ y = 0 ,

then the complex exponential in Eq. (A.4) has a stationary phase point at y = 0 . Applying a stationary phase expansion [e.g.,

53, ch. 6.5, p. 276] , and integrating along y, yields 

P (M m 

, k ) ≈ e i π/ 4 

√ 

2 π

k 

∫ √ 

R (S , ρ0 ) R (M m 

, ρ0 ) 

R (S , ρ0 ) + R (M m 

, ρ0 ) 
C(S , M m 

, ρ0 , k ) exp { i k [ R (S , ρ0 ) + R (M m 

, ρ0 ) ] } d x, (A.6) 

where ρ0 = (x, 0 , ζ (x )) . This leads to Eq. (3) . 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jsv.2020.115902 . 
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