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Abstract

We introduce a general framework for the algebraic representation of the
weighted mean in the case in which priorities and values refer to a common
aggregation domain, for instance in hierarchical multicriteria decision models of
the AHP type.

The general framework proposed is based on the semifield structure of open
interval domains and provides a natural algebraic description of weighted mean
aggregation, including the essential mechanism of normalization which trans-
forms priorities into weights. Such description necessarily involves two opera-
tions, addition (abelian semigroup) and multiplication (abelian group), which
generalize the role of addition and multiplication in P = (0,∞). In this sense,
the semifield framework extends recent work by Cavallo, D’Apuzzo, and Squil-
lante on the multiplicative group structure on the basis of the representation of
pairwise comparison matrices and their associated priority vectors.

We consider open interval domains S ⊆ R whose semifield structures are
generated by bijections ϕ : S ⊆ R → P. Continuous (thus strictly mono-
tonic) bijections play a central role. In such case, continuous strict triangular
conorms/norms and uninorms emerge naturally in the representation of the
semifield structure and, in their weighted version, they also provide the repre-
sentation of the weighted mean, in both the arithmetic and geometric forms.

Keywords: Aggregation on semifield domains, additive and multiplicative struc-
tures; Weighted mean, priority normalization; Triangular conorms (norms) and
uninorms; Pairwise comparison matrices; Consistency and anti-consistency

1. Introduction

The classical weighted mean is a fundamental aggregation paradigm which
is central to a wide range of generalized weighted aggregation models, see for
instance Dombi [22], Yager [50], Fodor and Roubens [23], Mesiar [40], Grabisch
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[27], Calvo and Mesiar [10], Marques Pereira and Ribeiro [39] Calvo et al. [11],
Yager [51], Mesiar et al. [41], Calvo and Beliakov [12], and Grabisch et al. [30,
31]. The mathematical framework of the weighted mean combines the different
roles of priorities and values by means of interrelated sums and products which
express a composite algebraic structure, particularly in relation with priority
normalization, an essential feature of the weighted mean.

In this paper we consider an interesting special case of the weighted mean
framework, in which priorities and values refer to a common aggregation domain.
In such case the algebraic description of the weighted mean requires a combined
additive and multiplicative structure, which suffices to capture the different
aspects of normalization and aggregation.

The algebraic structure of the aggregation domain emerges clearly in the
canonical instance of this framework, the weighted mean over P = (0,∞), with
priorities ui ∈ P and values xi ∈ P, with i = 1, . . . , n ≥ 2,

u1 · x1 + . . .+ un · xn

u1 + . . .+ un
= w1 · x1 + . . .+ wn · xn (1)

where the normalized priorities produce the weights wi = ui/(u1 + . . .+ un) ∈
(0, 1), i = 1, . . . , n with w1 + . . .+ wn = 1.

As the weighted mean formula suggests, the aggregation domain is required
to be an additive semigroup and a multiplicative group, plus the usual dis-
tributivity. Assuming the abelian nature of the two operations, we obtain the
algebraic structure of a semifield, whose canonical instance is the set of strictly
positive reals P = (0,∞) with the usual addition and multiplication.

In the context of multicriteria decision models, we can find the canonical
semifield framework of the weighted mean in the Analytic Hierarchy Process
(AHP), see for instance Saaty [43, 44, 45, 46], Saaty and Vargas [47, 48], and
Brunelli [8]. In the AHP the weighted mean plays a central role and P = (0,∞)
is the common aggregation domain of priorities and values. In hierarchical
models of this kind the aggregation acts on priority values at various levels, and
the normalized priorities of a higher level weight priority values of a lower level.

The multicriteria priorities in the AHP are formulated in terms of pairwise
comparison matrices, which are strictly positive and reciprocal. In the context
of the AHP the natural abelian multiplicative group structure of pairwise com-
parison matrices and their associated priority vectors has been investigated by
Crawford and Williams [21], Barzilai et al. [3], and Barzilai and Golany [4].
These authors consider two main algebraic representations of the abelian mul-
tiplicative group structure, the canonical representation on P and an equivalent
representation on R. The two representations, so-called multiplicative (P) and
additive (R), are further discussed in Barzilai and Golany [5] and Barziali [1, 2].

More recently, Cavallo and D’Apuzzo [15, 16, 18, 19] and Cavallo, D’Apuzzo,
and Squillante [17] have extended the previous work on the two classical rep-
resentations by introducing a general framework for representing pairwise com-
parison matrices and their associated priority vectors. The general framework
proposed is based on the abelian group structure of open real intervals. In addi-
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tion to the representations on P and R, these authors have discussed two further
representations referring to the bounded domains (−1, 1) and (0, 1).

The weighted mean aggregation scheme, however, can not be described by
the multiplicative group structure alone, for it requires an additional additive
semigroup structure. In the canonical framework of the AHP, for instance, the
weighted mean involves the full semifield structure of P = (0,∞), an abelian
semigroup under addition and an abelian group under multiplication.

In this paper we introduce a general framework for the representation of
the weighted mean, as well as the representation of pairwise comparison ma-
trices and their associated priority vectors. The general framework is based on
the semifield structure of open real intervals and extends the work by Cavallo,
D’Apuzzo, and Squillante in so far as it incorporates a natural description of
weighted mean aggregation. This necessarily involves two operations, addition
(abelian semigroup) and multiplication (abelian group), which generalize the
role of addition and multiplication in P = (0,∞).

We consider open interval domains S ⊆ R whose semifield structures are gen-
erated by bijections ϕ : S ⊆ R → P. The additive and multiplicative structures
generated by continuous (and thus strictly monotonic) bijections are represented
by continuous strict triangular conorms/norms and continuous strict uninorms,
respectively. In turn, the weighted mean is represented by weighted continu-
ous strict triangular conorms/norms (weighted arithmetic mean) or by weighted
continuous strict uninorms (weighted geometric mean).

We discuss in detail the normalization and aggregation aspects of the weighted
mean in four basic algebraic representations, the multiplicative and additive rep-
resentations on P = (0,∞) and R = (−∞,∞), plus the bounded additive repre-
sentation on (−1, 1) and the bounded multiplicative representation on (0, 1).

The use of two operations, in the context of an abelian semiring structure,
has already been considered by Hou [34, 35] and Cavallo [14]. In the framework
proposed by these authors, however, the additive abelian semigroup is by no
means isomorphic to the addition of strictly positive reals and the multiplicative
abelian semigroup is poorer than the multiplication of strictly positive reals.

In recent years there has been growing interest in aggregation over (complete,
distributive) lattices, see for instance Couceiro and Marichal [20], Lizasoain and
Moreno [38], and Castiñeira, Calvo, and Cubillo [13]. In Lizasoain and Moreno
[38], particularly, the authors consider the formulation of the ordered weighted
mean (OWA) within the lattice framework. With respect to our approach,
besides the different nature of the algebraic structures involved, in [38] weight
normalization is assumed a priori, and the two operations are triangular norms
and conorms. These, in our semifield approach, are alternative representations
of addition, whereas multiplication is represented by uninorms.

The paper is organized as follows. In Section 2 we consider the semifield
structure of a general aggregation domain and we define the module, the sym-
metric ratio, and the weighted mean as natural algebraic constructions involving
addition and multiplication. In Section 3 we describe the canonical semifield
representation on P = (0,∞), with the usual addition and multiplication, and we
derive the general form of equivalent semifield representations on open interval
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domains S ⊆ R. In Section 4 we examine the four basic semifield representa-
tions on S = P, R, (−1, 1), and (0, 1). In Section 5 we review the description
of reciprocal pairwise comparison matrices and the associated priority vectors,
both in general and in the four basic representations, and we discuss the notions
of consistency and anti-consistency. Finally, Section 6 contains some conclusive
remarks.

2. The algebraic structure

We begin by considering the general semifield framework and we define some
useful functions in terms of the natural algebraic structure involved. In partic-
ular, we introduce the weighted mean and we discuss its transformation prop-
erties. Comprehensive reviews of semirings and semifields can be founded in
Hebisch and Weinert [32, 33], and Golan [26].

Definition 1. A semifield (S,⊕,⊙) is a set S equipped with two binary oper-
ations ⊕ and ⊙, called addition and multiplication, such that:

1. (S,⊕) is an abelian semigroup:

• a⊕ b = b⊕ a (commutativity)

• (a⊕ b)⊕ c = a⊕ (b⊕ c) (associativity)

2. (S,⊙) is an abelian group with identity element e:

• a⊙ b = b⊙ a (commutativity)

• (a⊙ b)⊙ c = a⊙ (b⊙ c) (associativity)

• a⊙ e = e⊙ a = a (identity element)

• a⊙ a−1 = a−1 ⊙ a = e (inverse)

3. Multiplication left and right distributes over addition:

• (a⊕ b)⊙ c = (a⊙ c)⊕ (b⊙ c) (distributivity)

• a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c) (distributivity)

In general, we use the notation ⊕na = a⊕ . . .⊕ a and ⊙na = a⊙ . . .⊙ a. As
usual, e = e−1 and a⊙ b−1 is denoted a÷ b. The canonical semifield instance is
S = (0,∞) with the usual addition and multiplication.

Definition 2. Given a semifield (S,⊕,⊙), the module s : S → S of an element
x ∈ S is defined as

s(x) = (x⊕ x−1)÷ (e⊕ e) (2)

where s(x) = s(x−1) ∈ S. Notice that s(e) = e.
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Definition 3. Given a semifield (S,⊕,⊙), the symmetric ratio r : S × S → S
between two elements x, y ∈ S is defined as

r(x, y) = (x÷ y ⊕ y ÷ x)÷ (e⊕ e) (3)

where r(x, y) = r(y, x) ∈ S. Notice that r(x, y) = s(x ÷ y) and therefore
r(x, e) = s(x) for all x, y ∈ S.

In relation with a semifield (S,⊕,⊙), we consider the semivector space Sn

equipped with the two standard operations, addition and multiplication by
scalar, which fulfill the following axioms: for all a, b ∈ S and x ,y , z ∈ Sn,

x ⊕ y = y ⊕ x (x ⊕ y)⊕ z = x ⊕ (y ⊕ z ) (4)

e⊙ x = x (a⊙ b)⊙ x = a⊙ (b⊙ x ) (5)

a⊙ (x ⊕ y) = a⊙ x ⊕ a⊙ y (a⊕ b)⊙ x = a⊙ x ⊕ b⊙ x . (6)

For simplicity the semifield elements a, b ∈ S and the semivector space elements
x ,y ∈ Sn will be called scalars and vectors, respectively.

Definition 4. Given a semifield (S,⊕,⊙) and a vector x = (x1, . . . , xn) ∈ Sn,
the plain mean x̄ ∈ S is defined as

x̄ = (x1 ⊕ . . .⊕ xn)÷ (⊕ne) . (7)

The semifield structure leads naturally to the fundamental notion of weighted
mean at the basis of most aggregation schemes, whose complexity often depends
on the way the weighted mean units are arranged and concatenated.

Definition 5. Given a semifield (S,⊕,⊙), the weighted mean Au : Sn → S
with respect to a priority vector u = (u1, . . . , un) ∈ Sn is defined as

Au(x ) = (u1 ⊙ x1 ⊕ . . .⊕ un ⊙ xn)÷ (u1 ⊕ . . .⊕ un) (8)

in relation with the vector x = (x1, . . . , xn) ∈ Sn. The weighted mean can be
written as

Au(x ) = w1 ⊙ x1 ⊕ . . .⊕ wn ⊙ xn (9)

where the normalized priorities produce the weights wi = ui ÷ (u1 ⊕ . . .⊕ un),
i = 1, . . . , n with w1 ⊕ . . .⊕ wn = e.

In particular, with ui = e for i = 1, . . . , n, we obtain the plain mean

Ae(x ) = (x1 ⊕ . . .⊕ xn)÷ (⊕ne) = x̄ . (10)

Notice that s(x) corresponds to the plain mean between x and x−1. Analogously,
r(x, y) corresponds to the plain mean between x÷ y and y ÷ x.

In the definition of the weighted mean the priorities take unconstrained
values in S and therefore the priority vector u = (u1, . . . , un) ∈ Sn is not
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normalized. Normalization is obtained by dividing the vector u by the scalar
u1 ⊕ . . .⊕ un ∈ S.

A natural extension of the weighted mean in Definition 5 is obtained in the
case in which the scalars x1, . . . , xn ∈ S are substituted by vectors x 1, . . . ,xn ∈
Sm, and the weighted mean aggregation acts componentwise.

The transformation properties of the weighted mean under translations and
dilations in the semifield domain S are described in the following result.

Proposition 1. Given a semifield (S,⊕,⊙) and the weighted mean Au : Sn →
S with respect to a priority vector u ∈ Sn, it holds that:

• additive transformations on x: with y = (x1 ⊕ t, . . . , xn ⊕ t) ∈ Sn,

Au(y) = Au(x)⊕ t (11)

for all x ∈ Sn and t ∈ S.

• additive transformations on u: with v = (u1 ⊕ t, . . . , un ⊕ t) ∈ Sn,

Av(x) = Aw(Au(x), x̄) (12)

where w = (ū, t) ∈ S2, for all x ∈ Sn and t ∈ S.

• multiplicative transformations on x: with y = (x1 ⊙ t, . . . , xn ⊙ t) ∈ Sn,

Au(y) = Au(x)⊙ t (13)

for all x ∈ Sn and t ∈ S.

• multiplicative transformations on u: with v = (u1 ⊙ t, . . . , un ⊙ t) ∈ Sn,

Av(x) = Au(x) (14)

for all x ∈ Sn and t ∈ S.

Proof : Concerning the translations on u , we have

Av (x ) =
(u1 ⊕ t)⊙ x1 ⊕ . . .⊕ (un ⊕ t)⊙ xn

(u1 ⊕ . . .⊕ un)⊕ (⊕nt)

=
(u1 ⊙ x1 ⊕ . . .⊕ un ⊙ xn) ⊕ (⊕nt)⊙ x̄

(u1 ⊕ . . .⊕ un) ⊕ (⊕nt)

=
(u1 ⊕ . . .⊕ un)⊙Au(x ) ⊕ (⊕nt)⊙ x̄

(u1 ⊕ . . .⊕ un) ⊕ (⊕nt)

=
(⊕nū)⊙Au(x ) ⊕ (⊕nt)⊙ x̄

(⊕nū) ⊕ (⊕nt)

=
ū⊙Au(x ) ⊕ t⊙ x̄

ū⊕ t
= Aw (Au(x ), x̄) (15)

where w = (ū, t) ∈ S2. In the proof we have used that ⊕nt = (⊕ne) ⊙ t and
analogously for ū, that is, ⊕nū = (⊕ne) ⊙ ū = u1 ⊕ . . . ⊕ un. The remaining
statements are straightforward: additive transformations on x , multiplicative
transformations on x , and multiplicative transformations on u .
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In the following sections we discuss the representation of the additive and
multiplicative semifield structures, plus that of the weighted mean itself, in the
context of various open interval domains S ⊆ R.

3. Algebraic representations

In this section we discuss the general semifield framework for the algebraic
representations of the weighted mean on open interval domains S ⊆ R. We begin
with the canonical semifield representation on S = (0,∞) = P and we derive
equivalent semifield representations on other open interval domains. In each of
these algebraic representations the semifield structure of S ⊆ R is generated by
a bijection ϕ : S ⊆ R → P from the canonical semifield structure of P.

The material presented considers both the additive and multiplicative struc-
tures of open real interval semifields S ⊆ R, thereby extending the purely mul-
tiplicative description of the various representations presented in Cavallo and
D’Apuzzo [15, 16, 18] and Cavallo et al. [17].

In discussing the semifield structure of open real intervals S ⊆ R, we also
refer to the order and topology of R, which allows the use of the notions of
monotonicity and continuity in relation to bijections ϕ : S ⊆ R → P. In this
respect, the terms positive (negative), increasing (decreasing), and monotonic
are used in the weak sense. Otherwise these properties are said to be strict.

3.1. The canonical semifield representation

The canonical instance of the semifield structure is the so-called canoni-
cal representation, whose domain S = (0,∞) = P is equipped with the usual
addition and multiplication,

a⊕ b = a+ b a⊙ b = a · b for all a, b ∈ P . (16)

The identity element is e = 1 and every element a has an inverse a−1 = 1/a. In
this representation equations of the form a⊕ b = c and a⊙ b = c take the form
a+ b = c and a b = c, respectively.

In the open interval domain S = (0,∞) = P the usual addition corresponds
to a continuous strict t-conorm and the usual multiplication corresponds to a
continuous strict uninorm, with neutral element e = 1.

The involution ς : P → P with ς(x) = 1/x transforms the usual addition
in the continuous strict t-norm a ⊕ b = ς−1(ς(a) + ς(b)) = ab/(a + b), whereas
multiplication remains the continuous strict uninorm a⊙b = ς−1(ς(a)ς(b)) = ab.

The standard description of t-norms, t-conorms, and uninorms refers to
closed interval domains, for instance S̄ = [0,∞] or S̄ = [0, 1], which include
the neutral and absorbing elements of t-norms and t-conorms. Here however,
consistently with our semifield framework and particularly with its multiplica-
tive group structure, we refer instead to open interval domains. In this way
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we also avoid the conjunctive/disjunctive boundary completions regarding uni-
norms.

In the canonical representation, the module s : P → P and the symmetric
ratio r : P× P → P take the form

s(x) =
1

2

(
x+

1

x

)
r(x, y) =

1

2

(x
y
+

y

x

)
for all x, y ∈ P. (17)

In the canonical representation the module has a number of important prop-
erties. In particular, s(x) ≥ 1 for all x ∈ P and s(x) = 1 if and only if x = 1.
Moreover, the module s(x) increases as x ∈ P moves away from the identity 1,
with left-right symmetry due to s(x) = s(1/x).

Proposition 2. The module s : P → P as in (17) has the following properties,

• s(x) = 1 if and only if x = 1

• s(x) ≥ 1 for all x ∈ P

• s(x) + s(y) ≥ 2 s
(

x+y
2

)
for all x, y ∈ P

• s(x) + s(y) ≤ 1 + s(x)s(y) for all x, y ∈ P

• s(x y) ≥ s(x) s(y) if and only if x, y ≤ 1 or x, y ≥ 1, and
s(x y) ≤ s(x) s(y) if and only if x ≤ 1 ≤ y or y ≤ 1 ≤ x, with x, y ∈ P

• with x ≤ y, s(x) ≥ s(y) if and only if x y ≤ 1, and
s(x) ≤ s(y) if and only if x y ≥ 1, with x, y ∈ P .

Proof : The first statement is immediate and the second statement follows from
the inequalities

(x− 1)2 ≥ 0 ⇒ x+ x−1 ≥ 2 . (18)

The last inequality can be written as x − 1 ≥ 1 − x−1 which means (say 0 <
x−1 < 1 < x) that the segment from x−1 to 1 is shorter than the segment from
1 to x. In other words the plain mean of x and x−1 is always to the right of 1.

Regarding the third statement, we begin by noting that(
s(x) + s(y)− 2 s

(x+ y

2

))
(x+ y) = r(x, y)− 1 (19)

which can be verified straightforwardly. Then, since r(x, y) = s(x/y) ≥ 1, we
obtain directly

s(x) + s(y) ≥ 2 s
(x+ y

2

)
. (20)

The fourth statement is obtained from the inequalities

0 ≤ u+ v − uv ≤ 1 u, v ∈ [0, 1] (21)

substituting u and v by 1/s(x) and 1/s(y), respectively.
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In order to prove the first part of the fifth statement let us assume x, y ≤ 1
or x, y ≥ 1. It follows that

(x2 − 1)(y2 − 1) ≥ 0 ⇒ x y +
1

x y
≥ x

y
+

y

x
⇒ (22)

⇒ 1

2

(
x y +

1

x y

)
≥ 1

2

(
x+

1

x

)1
2

(
y +

1

y

)
. (23)

Since x, y ∈ P these steps can be taken backwards, which proves sufficiency.
The second part of the fifth statement has an analogous proof, with inequalities
reversed. Finally, s(x y) = s(x) s(y) if and only if x = 1 or y = 1 (or both).

In order to prove the first part of the sixth statement take x, y ∈ P with
x ≤ y and assume x y ≤ 1. It follows that

y − x ≥ (y − x)x y ⇒ 1

x
− 1

y
≥ y − x ⇒ s(x) ≥ s(y) . (24)

Since x, y ∈ P these steps can be taken backwards, which proves sufficiency.
The second part of the sixth statement has an analogous proof, with inequalities
reversed. �

The various results in Proposition 2 can be expressed in terms of the sym-
metric ratio, since r(x, y) = s(x/y) with x, y ∈ P. In particular, substituting x
by x/y in the first and second statements, we obtain r(x, y) ≥ 1 for all x, y ∈ P,
and r(x, y) = 1 if and only if x = y. Moreover, substituting x, y by x/z, y/z in
the third and fourth statements, we obtain the inequalities

2r(
x+ y

2
, z) ≤ r(x, z) + r(y, z) ≤ 1+ r(x, z)r(y, z) for all x, y, z ∈ P . (25)

In the canonical representation the weighted mean Au : Pn → P associated
with the priority vector u ∈ Pn takes the form

Au(x ) =
u1x1 + . . .+ unxn

u1 + . . .+ un
= w1x1 + . . .+ wnxn for all x ∈ Pn (26)

where wi ∈ (0, 1) for i = 1, . . . , n and w1+ . . .+wn = 1. In particular, the plain
mean reduces to

x̄ =
x1 + . . .+ xn

n
. (27)

Definition 6. Given a bijection τ : P → R, we define the generalized weighted
mean Aτ

u : Pn → P associated with the priority vector u ∈ Pn,

Aτ
u(x ) = τ−1

(u1τ(x1) + . . .+ unτ(xn)

u1 + . . .+ un

)
for all x ∈ Pn . (28)

The generalized weighted mean can be written as

Aτ
u(x ) = τ−1(w1τ(x1) + . . .+ wnτ(xn)) (29)

where wi = ui/(u1 + . . .+ un) ∈ (0, 1) for i = 1, . . . , n, with w1 + . . .+ wn = 1.
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In particular, with the canonical bijection τ(x) = lnx we obtain the following
generalized weighted mean Bu : Pn → P associated with the priority vector
u ∈ Pn,

Bu(x ) = (xu1
1 . . . xun

n )
1

u1+...+un = xw1
1 . . . xwn

n for all x ∈ Pn . (30)

The weighted mean Au as in (26) corresponds to the standard weighted arith-
metic mean in P and the generalized weighted mean Bu as in (30) corresponds to
the standard weighted geometric mean in P. Notice that the weighted geometric
mean requires the use of exponential forms xy with x, y ∈ P, besides the two
semifield operations of addition and multiplication, the former being involved
in weight normalization. In other words, the weighted geometric mean requires
the full semifield structure of P, not only its multiplicative group structure.

In what follows we derive the general form of other semifield representations
on an open interval domains S ⊆ R.

3.2. Equivalent representations

Consider now an open interval domain S ⊆ R. In relation with the canonical
representation on P, an equivalent representation on S ⊆ R can be obtained by
pull-back with respect to a bijection ϕ : S ⊆ R → P, thereby endowing S with
a semifield structure which is isomorphic to that of P.

Definition 7. Given an open interval S ⊆ R and a bijection ϕ : S ⊆ R → P,
the semifield representation on S generated by ϕ is defined as

a⊕b = ϕ−1(ϕ(a)+ϕ(b)) a⊙b = ϕ−1(ϕ(a)·ϕ(b)) for all a, b ∈ S . (31)

In relation with the multiplicative structure we can show that ϕ−1(1) ∈ S
and ϕ−1(1/ϕ(a)) ∈ S, for every a ∈ S, play the role of identity and inverse,
respectively. In fact, denoting

e = ϕ−1(1) a−1 = ϕ−1
( 1

ϕ(a)

)
(32)

we have a⊙ e = ϕ−1(ϕ(a) · ϕ(e)) = ϕ−1(ϕ(a) · 1) = a and a⊙ a−1 = ϕ−1(ϕ(a) ·
ϕ(a−1)) = ϕ−1(ϕ(a)/ϕ(a)) = ϕ−1(1) = e for every a ∈ S. It follows that
a÷ b = a⊙ b−1 = ϕ−1(ϕ(a) · ϕ(b−1)) = ϕ−1(ϕ(a)/ϕ(b)) for all a, b ∈ S.

An central role is played by continuous and thus strictly monotonic bijections
ϕ. In such case, addition ⊕ is represented by a continuous strict t-conorm
(resp. t-norm) over S ⊆ R when the bijection ϕ is strictly increasing (resp.
decreasing), see Ling [37]. In the same way, multiplication ⊙ is represented by
a continuous strict uninorm with identity e = ϕ−1(1) when the bijection ϕ is
strictly monotonic, either increasing or decreasing, see Fodor et al. [24]. Notice
that the bijections ϕ and 1/ϕ generate the same uninorm.

Comprehensive reviews of aggregation functions can be found in Fodor and
Roubens [23], Klement et al. [36], Calvo et al. [9], Fodor and De Baets [25],
Beliakov et al. [6], Torra and Narukawa [49], Mesiar et al. [42], Grabisch et
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al. [28], Grabisch and Labreuche [29]. We consider the fundamental results on
the representation of t-norms, t-conorms, and uninorms in the context of our
framework based on open interval domains S ⊆ R.

In the semifield representation on an open interval S ⊆ R generated by a
bijection ϕ : S ⊆ R → P, the same pull-back scheme can be shown to apply to
the module, the symmetric ratio, and the weighted mean.

Proposition 3. Consider an open interval S ⊆ R and the semifield represen-
tation generated by the bijection ϕ : S ⊆ R → P. In this representation the
module s : S → S and the symmetric ratio r : S × S → S are given by

s(x) = ϕ−1
(1
2

(
ϕ(x) +

1

ϕ(x)

))
for all x ∈ S (33)

r(x, y) = ϕ−1
(1
2

(ϕ(x)
ϕ(y)

+
ϕ(y)

ϕ(x)

))
for all x, y ∈ S. (34)

Proof : According to the definition (17) of the module and the representation
(31) of addition and multiplication, with ϕ(x⊕ y) = ϕ(x) + ϕ(y), we obtain

s(x) = (x⊕ x−1)÷ (e⊕ e) = ϕ−1
(ϕ (x⊕ x−1)

ϕ (e⊕ e)

)
= ϕ−1

(ϕ(x) + ϕ(x−1)

ϕ(e) + ϕ(e)

)
= ϕ−1

(ϕ(x) + 1
ϕ(x)

1 + 1

)
(35)

which corresponds to the desired result. The proof regarding the symmetric
ratio is analogous. �

Proposition 4. Consider an open interval S ⊆ R and the semifield represen-
tation generated by the bijection ϕ : S ⊆ R → P. The module s : S → S satisfies
the following inequalities when ϕ is strictly increasing,

• s(x) = e if and only if x = e

• s(x) ≥ e for all x ∈ S

• s(x)⊕ s(y) ≥ (e⊕ e)⊙ s((x⊕ y)÷ (e⊕ e)) for all x, y ∈ S

• s(x)⊕ s(y) ≤ e⊕ s(x)⊙ s(y) for all x, y ∈ S

• s(x⊙ y) ≥ s(x)⊙ s(y) if and only if x, y ≤ e or x, y ≥ e, and
s(x⊙ y) ≤ s(x)⊙ s(y) if and only if x ≤ e ≤ y or y ≤ e ≤ x, with x, y ∈ S

• with x ≤ y, s(x) ≥ s(y) if and only if x⊙ y ≤ e, and
s(x) ≤ s(y) if and only if x⊙ y ≥ e, with x, y ∈ S .

The inequalities are reversed when ϕ is strictly decreasing.

11

Author’s Accepted Manuscript Fuzzy Sets and Systems DOI http://dx.doi.org/10.1016/j.fss.2016.07.007



Proof : Proposition 4 follows immediately from Proposition 2. The bijection ϕ
is an isomorphism between the semifields S ⊆ R and P, with

ϕ(a⊕ b) = ϕ(a) + ϕ(b) ϕ(a⊙ b) = ϕ(a) · ϕ(b) (36)

ϕ(s(c)) =
1

2

(
ϕ(c) +

1

ϕ(c)

)
for all a, b, c ∈ S. (37)

A strictly increasing ϕ is an isomorphism of the ordered semifields and there-
fore the two ordered semifield structures S ⊆ R and P satisfy the same inequal-
ities. Which in the case of a strictly decreasing ϕ are simply reversed. �

Proposition 5. Consider an open interval S ⊆ R and the semifield representa-
tion generated by the bijection ϕ : S ⊆ R → P. The weighted mean Au : Sn → S
associated with the priority vector u ∈ Sn is given by

Au(x) = ϕ−1
(ϕ(u1) · ϕ(x1) + . . .+ ϕ(un) · ϕ(xn)

ϕ(u1) + . . .+ ϕ(un)

)
for all x ∈ Sn . (38)

Proof : According to the general definition (8) of the weighted mean and the
representation (31) of addition and multiplication,, with ϕ(x⊕ y) = ϕ(x)+ϕ(y)
and ϕ(x⊙ y) = ϕ(x) · ϕ(y), we obtain

Au(x ) = (u1 ⊙ x1 ⊕ . . .⊕ un ⊙ xn)÷ (u1 ⊕ . . .⊕ un) (39)

= ϕ−1
(ϕ (u1 ⊙ x1 ⊕ . . .⊕ un ⊙ xn)

ϕ (u1 ⊕ . . .⊕ un)

)
= ϕ−1

(ϕ(u1 ⊙ x1) + . . .+ ϕ(un ⊙ xn)

ϕ(u1) + . . .+ ϕ(un)

)
= ϕ−1

(ϕ(u1) · ϕ(x1) + . . .+ ϕ(un) · ϕ(xn)

ϕ(u1) + . . .+ ϕ(un)

)
.

�

Notice that the weighted mean can be written as

Au(x ) = ϕ−1(w1 · ϕ(x1) + . . .+ wn · ϕ(xn)) for all x ∈ Sn (40)

where wi = ϕ(ui)/(ϕ(u1) + . . .+ ϕ(un)) ∈ (0, 1) for i = 1, . . . , n and w1 + . . .+
wn = 1. In particular, when u = e the weighted mean (38) reduces to the plain
mean

x̄ = ϕ−1
(ϕ(x1) + . . .+ ϕ(xn)

n

)
. (41)

In the case of continuous and thus strictly monotonic bijections ϕ, the
weighted mean Au is represented by a continuous strict weighted t-conorm
(resp. t-norm) over S ⊆ R when the bijection ϕ is strictly increasing (resp.
decreasing).
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Definition 8. Consider an open interval S ⊆ R and the semifield representa-
tion generated by the bijection ϕ : S ⊆ R → P. Given a bijection τ : P → R, we
define the generalized weighted mean Aτ

u : Sn → S associated with the priority
vector u ∈ Sn as

Aτ
u(x ) = ϕ−1

(
τ−1

(ϕ(u1) · τ(ϕ(x1)) + . . .+ ϕ(un) · τ(ϕ(xn))

ϕ(u1) + . . .+ ϕ(un)

))
for all x ∈ Sn .

(42)
The generalized weighted mean can be written as

Aτ
u(x ) = ϕ−1

(
τ−1(w1τ(ϕ(x1)) + . . .+ wnτ(ϕ(xn)))

)
for all x ∈ Sn (43)

where wi = ϕ(ui)/(ϕ(u1)+ . . .+ϕ(un)) ∈ (0, 1) for i = 1, . . . , n, with w1+ . . .+
wn = 1.

In particular, with the canonical bijection τ(x) = lnx we obtain the following
generalized weighted mean Bu : Sn → S associated with the priority vector
u ∈ Sn,

Bu(x ) = ϕ−1
((

ϕ(x1)
ϕ(u1) . . . ϕ(xn)

ϕ(un)
) 1

ϕ(u1)+...+ϕ(un)

)
= ϕ−1(ϕ(x1)

w1 . . . ϕ(xn)
wn) for all x ∈ Sn (44)

where wi = ϕ(ui)/(ϕ(u1) + . . .+ ϕ(un)) ∈ (0, 1) for i = 1, . . . , n and w1 + . . .+
wn = 1.

In the case of continuous and thus strictly monotonic bijections ϕ, the gener-
alized weighted mean Bu is represented by a continuous strict weighted uninorm
over S ⊆ R when the bijection ϕ is strictly monotonic, either increasing or de-
creasing. Notice that the bijections ϕ and 1/ϕ generate the same uninorm.

3.3. Equivalent representations on P
Consider the bijection

ϕ : P → P ϕ(c) = log2(c+ 1) c ∈ P ϕ−1(C) = 2C − 1 C ∈ P (45)

and therefore the two semifield operations take the form

a⊕ b = ϕ−1(ϕ(a) + ϕ(b))

= ϕ−1(log2(a+ 1) + log2(b+ 1))

= a+ b+ ab (46)

a⊙ b = ϕ−1(ϕ(a) · ϕ(b))
= ϕ−1(log2(a+ 1) · log2(b+ 1))

= (a+ 1)log2(b+1) − 1 (47)

for all a, b ∈ P. The identity element is

e = ϕ−1(1) = 21 − 1 = 1 (48)
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and the inverse of an element a ∈ S is

a−1 = ϕ−1
( 1

ϕ(a)

)
= ϕ−1

( 1

log2(a+ 1)

)
= 2

1
log2(a+1) − 1 . (49)

Consider now the bijection

ϕ : P → P ϕ(c) = 2c − 1 c ∈ P ϕ−1(C) = log2(C + 1) C ∈ P . (50)

Now the two semifield operations take the form

a⊕ b = ϕ−1(ϕ(a) + ϕ(b))

= ϕ−1(2a − 1 + 2b − 1)

= log2(2
a + 2b − 1) (51)

a⊙ b = ϕ−1(ϕ(a) · ϕ(b))
= ϕ−1((2a − 1) · (2b − 1))

= log2(2
ab − 2a − 2b + 2) (52)

for all a, b ∈ P. The identity element is

e = ϕ−1(1) = log2(1 + 1) = 1 (53)

and the inverse of an element a ∈ S is

a−1 = ϕ−1
( 1

ϕ(a)

)
= ϕ−1

( 1

2a − 1

)
= log2

2a

2a − 1
. (54)

In the next section we present four equivalent semifield representations of the
weighted mean on the real open interval domains S = (0,∞), S = (−∞,∞),
S = (−1, 1), and S = (0, 1).

4. The basic algebraic representations

In this section we discuss the semifield representations of the weighted mean
on the open interval domains S ⊆ R most commonly referred in the literature.
We begin with the multiplicative representation on S = (0,∞) = P, which cor-
responds to the canonical representation described in the previous section, and
we derive the equivalent representations over the domains S = R for the addi-
tive representation, S = (−1, 1) = B⋄ for the bounded additive representation,
and S = (0, 1) = B⋆ for the bounded multiplicative representation, as depicted
in Fig. 1. The associated bijections ϕ+, ϕ⋄, ϕ⋆ are defined and the full structure
of the corresponding representations is derived.
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Figure 1: Diagram of the basis algebraic representations.

4.1. Multiplicative representation

The multiplicative representation corresponds to the canonical representa-
tion whose domain is P = (0,∞). We briefly review the main aspects in order
to offer the reader a direct comparison with the alternative representations.

The two semifield operations take the form

a⊕ b = a+ b a⊙ b = a · b (55)

for all a, b ∈ R. In this representation equations of the form a ⊕ b = c and
a⊙ b = c take the form a+ b = c and a · b = c, respectively.

In the multiplicative representation the module s : P → P and the symmetric
ratio r : P× P → P are as follows,

s(x) =
1

2

(
x+

1

x

)
r(x, y) =

1

2

(x
y
+

y

x

)
(56)

and the weighted mean Au : Pn → P associated with the priority vector u ∈ Pn

is expressed as

Au(x ) =
u1x1 + . . .+ unxn

u1 + . . .+ un
= w1x1 + . . .+ wnxn for all x ∈ Pn (57)

where wi = ui/(u1 + . . . + un) ∈ (0, 1) for i = 1, . . . , n and w1 + . . . + wn = 1.
In particular we obtain the plain mean

x̄ =
x1 + . . .+ xn

n
. (58)

In the multiplicative representation the generalized weighted mean Bu :
Pn → P associated with the priority vector u ∈ Pn is

Bu(x ) = (xu1
1 . . . xun

n )
1

u1+...+un = xw1
1 . . . xwn

n for all x ∈ Pn (59)

where wi = ui/(u1 + . . .+ un) ∈ (0, 1) for i = 1, . . . , n, with w1 + . . .+ wn = 1.
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4.2. Additive representation

The additive representation, whose domain is S = (−∞,∞) = R, is gener-
ated by the bijection

ϕ+ : R → P ϕ+(c) = ec c ∈ R ϕ−1
+ (C) = lnC C ∈ P (60)

and therefore the two semifield operations take the form

a⊕ b = ϕ−1
+ (ϕ+(a) + ϕ+(b)) = ln(ea + eb) (61)

a⊙ b = ϕ−1
+ (ϕ+(a) · ϕ+(b)) = ln(ea · eb) = a+ b (62)

for all a, b ∈ R. The identity element is

e = ϕ−1
+ (1) = ln 1 = 0 (63)

and the inverse is

a−1 = ϕ−1
+

( 1

ϕ+(a)

)
= ϕ−1

+

(
e−a

)
= ln e−a = −a . (64)

In relation to the identity element e = 0, we obtain 0⊕ 0 = ln 2 and in general
⊕n0 = lnn. Clearly ⊙n0 = 0 by the identity element property.

In this representation equations of the form a⊕ b = c and a⊙ b = c take the
form ln(ea + eb) = c and a+ b = c, respectively.

In the additive representation the module s : R → R and the symmetric
ratio r : R× R → R are expressed, according to (33) and (34), as follows,

s(x) = ln
(ex + e−x

2

)
r(x, y) = ln

(ex−y + ey−x

2

)
(65)

and the weighted mean Au : Rn → R associated with the priority vector u ∈ Rn,
according to (38), takes the form

Au(x ) = ϕ−1
+

(ϕ+(u1) · ϕ+(x1) + . . .+ ϕ+(un) · ϕ+(xn)

ϕ+(u1) + . . .+ ϕ+(un)

)
= ln

(
w1e

x1 + . . .+ wne
xn

)
for all x ∈ Rn (66)

where wi = eui/(eu1 + . . .+eun) ∈ (0, 1) for i = 1, . . . , n with w1+ . . .+wn = 1.
In particular we obtain the plain mean

x̄ = ln
(ex1 + . . .+ exn

n

)
. (67)

In the additive representation the generalized weighted mean Bu : Rn → R
associated with the priority vector u ∈ Rn, according to (44), takes the form

Bu(x ) = ϕ−1
+

((
ϕ+(x1)

ϕ+(u1) . . . ϕ+(xn)
ϕ+(un)

) 1
ϕ+(u1)+...+ϕ+(un)

)
= w1x1 + . . .+ wnxn for all x ∈ Rn (68)

where wi = eui/(eu1 + . . .+eun) ∈ (0, 1) for i = 1, . . . , n, with w1+ . . .+wn = 1.
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4.3. Bounded additive representation

The bounded additive representation, whose domain is S = (−1, 1) = B⋄, is
generated by the bijection

ϕ⋄ : B⋄ → P ϕ⋄(c) =
1 + c

1− c
c ∈ B⋄ ϕ−1

⋄ (C) =
C − 1

C + 1
C ∈ P (69)

and therefore the two semifield operations take the form

a⊕ b = ϕ−1
⋄ (ϕ⋄(a) + ϕ⋄(b)) =

( 1+a
1−a + 1+b

1−b )− 1

( 1+a
1−a + 1+b

1−b ) + 1
=

1 + a+ b− 3a b

3− a− b− a b
(70)

a⊙ b = ϕ−1
⋄ (ϕ⋄(a) · ϕ⋄(b)) =

( 1+a
1−a · 1+b

1−b )− 1

( 1+a
1−a · 1+b

1−b ) + 1
=

a+ b

1 + a b
(71)

for all a, b ∈ B⋄. The identity element is

e = ϕ−1
⋄ (1) =

1− 1

1 + 1
= 0 (72)

and the inverse is

a−1 = ϕ−1
⋄

( 1

ϕ⋄(a)

)
= ϕ−1

⋄

(1− a

1 + a

)
=

1−a
1+a − 1
1−a
1+a + 1

= −a . (73)

In relation to the identity element e = 0, we obtain 0⊕ 0 = 1/3 and in general
⊕n0 = (n− 1)/(n+ 1). Clearly ⊙n0 = 0 by construction.

In this representation equations of the form a⊕ b = c and a⊙ b = c take the
form

1 + a+ b− 3a b

3− a− b− a b
= c

a+ b

1 + a b
= c (74)

respectively. Moreover, we obtain

(a⊕ b)⊕ c =
1− a b− a c− b c+ 2 a b c

2− a− b− c+ a b c
= a⊕ (b⊕ c) (75)

(a⊙ b)⊙ c =
a+ b+ c+ a b c

1 + a b+ a c+ b c
= a⊙ (b⊙ c) . (76)

In the bounded additive representation the module s : B⋄ → B⋄, according
to (33), is expressed as follows

s(x) = ϕ−1
⋄

(1
2

(
ϕ⋄(x) +

1

ϕ⋄(x)

))
=

1+x2

1−x2 − 1
1+x2

1−x2 + 1
= x2 for all x ∈ B⋄ . (77)
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Analogously, the symmetric ratio r : B⋄×B⋄ → B⋄, according to (34), takes the
form

r(x, y) = ϕ−1
⋄

(1
2

(ϕ⋄(x)

ϕ⋄(y)
+

ϕ⋄(y)

ϕ⋄(x)

))
=

(1+x)2(1−y)2+(1−x)2(1+y)2

2(1−x2)(1−y2) − 1

(1+x)2(1−y)2+(1−x)2(1+y)2

2(1−x2)(1−y2) + 1

=
( x− y

1− x y

)2

for all x, y ∈ B⋄ . (78)

In the bounded additive representation the weighted mean Au : Bn
⋄ → B⋄

associated with the priority vector u ∈ Bn
⋄ , according to (38), takes the form

Au(x ) = ϕ−1
⋄

(ϕ⋄(u1) · ϕ⋄(x1) + . . .+ ϕ⋄(un) · ϕ⋄(xn)

ϕ⋄(u1) + . . .+ ϕ⋄(un)

)
=

∑n
i=1 wi(1 + xi)/(1− xi)− 1∑n
i=1 wi(1 + xi)/(1− xi) + 1

for all x ∈ Bn
⋄ (79)

where wi ∈ (0, 1) for i = 1, . . . , n and w1 + . . .+ wn = 1, with

wi =
(1 + ui)/(1− ui)∑n
j=1(1 + uj)/(1− uj)

∈ (0, 1) i = 1, . . . , n .

In particular, with u1 = · · · = un = 0 ∈ B⋄, we obtain the plain mean

x̄ =

∑n
i=1(1 + xi)/(1− xi)− n∑n
i=1(1 + xi)/(1− xi) + n

. (80)

In the bounded additive representation the generalized weighted mean Bu :
Bn
⋄ → B⋄ associated with the priority vector u ∈ Bn

⋄ , according to (44), takes
the form

Bu(x ) = ϕ−1
⋄

((
ϕ⋄(x1)

ϕ⋄(u1) . . . ϕ⋄(xn)
ϕ⋄(un)

) 1
ϕ⋄(u1)+...+ϕ⋄(un)

)
=

∏n
i=1(1 + xi)

wi −
∏n

i=1(1− xi)
wi∏n

i=1(1 + xi)wi +
∏n

i=1(1− xi)wi
for all x ∈ Bn

⋄ (81)

where wi ∈ (0, 1) for i = 1, . . . , n and w1 + . . .+ wn = 1, with

wi =
(1 + ui)/(1− ui)∑n
j=1(1 + uj)/(1− uj)

∈ (0, 1) i = 1, . . . , n .

4.4. Bounded multiplicative representation

The bounded multiplicative representation (also called fuzzy representation),
whose domain is S = (0, 1) = B⋆, is generated by the bijection

ϕ⋆ : B⋆ → P ϕ⋆(c) =
c

1− c
c ∈ B⋆ ϕ−1

⋆ (C) =
C

1 + C
C ∈ P (82)
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and therefore the two semifield operations take the form

a⊕ b = ϕ−1
⋆ (ϕ⋆(a) + ϕ⋆(b)) =

a
1−a + b

1−b

1 + ( a
1−a + b

1−b )
=

a+ b− 2 a b

1− a b
(83)

a⊙ b = ϕ−1
⋆ (ϕ⋆(a) · ϕ⋆(b)) =

a
1−a · b

1−b

1 + ( a
1−a · b

1−b )
=

a b

a b+ (1− a)(1− b)
(84)

for all a, b ∈ B⋆. The identity element is

e = ϕ−1
⋆ (1) =

1

1 + 1
=

1

2
(85)

and the inverse is

a−1 = ϕ−1
⋆

( 1

ϕ⋆(a)

)
= ϕ−1

⋆

(1− a

a

)
=

1−a
a

1 + 1−a
a

= 1− a . (86)

In relation to the identity element e = 1/2, we obtain 1/2 ⊕ 1/2 = 2/3 and in
general ⊕n1/2 = n/(n+ 1). Clearly ⊙n1/2 = 1/2 by construction.

In this representation equations of the form a⊕ b = c and a⊙ b = c take the
form

a+ b− 2 a b

1− a b
= c

a b

a b+ (1− a)(1− b)
= c (87)

respectively. Moreover, we obtain

(a⊕ b)⊕ c =
a+ b+ c− 2 a b− 2 a c− 2 b c+ 3 a b c

1− a b− a c− b c+ 2 a b c
= a⊕ (b⊕ c) (88)

(a⊙ b)⊙ c =
a b c

a b c+ (1− a)(1− b)(1− c)
= a⊙ (b⊙ c) . (89)

In the bounded multiplicative representation the module s : B⋆ → B⋆, ac-
cording to (33), is expressed as follows

s(x) = ϕ−1
⋆

(1
2

(
ϕ⋆(x) +

1

ϕ⋆(x)

))
=

2x2−2x+1
2x(1−x)

1 + 2x2−2x+1
2x(1−x)

= 1− 2x(1− x) for all x ∈ B⋆ . (90)

Analogously, the symmetric ratio r : B⋆×B⋆ → B⋆, according to (34), takes the
form

r(x, y) = ϕ−1
⋆

(1
2

(ϕ⋆(x)

ϕ⋆(y)
+

ϕ⋆(y)

ϕ⋆(x)

))
=

x2(1−y)2+(1−x)2y2

2xy(1−x)(1−y)

1 + x2(1−y)2+(1−x)2y2

2xy(1−x)(1−y)

=
x2 (1− y)2 + (1− x)2 y2

(x (1− y) + (1− x) y)2
. (91)
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In the bounded multiplicative representation the weighted mean Au : Bn
⋆ →

B⋆ associated with the priority vector u ∈ Bn
⋆ , according to (38), takes the form

Au(x ) = ϕ−1
⋆

(ϕ⋆(u1) · ϕ⋆(x1) + . . .+ ϕ⋆(un) · ϕ⋆(xn)

ϕ⋆(u1) + . . .+ ϕ⋆(un)

)
=

∑n
i=1 wi xi/(1− xi)∑n

i=1 wi xi/(1− xi) + 1
for all x ∈ Bn

⋆ (92)

where wi ∈ (0, 1) for i = 1, . . . , n and w1 + . . .+ wn = 1, with

wi =
ui/(1− ui)∑n

j=1 uj/(1− uj)
∈ (0, 1) i = 1, . . . , n .

In particular, with u1 = · · · = un = 1/2 ∈ B⋆, we obtain the plain mean

x̄ =

∑n
i=1 xi/(1− xi)∑n

i=1 xi/(1− xi) + n
. (93)

In the bounded multiplicative representation the generalized weighted mean
Bu : Bn

⋆ → B⋆ associated with the priority vector u ∈ Bn
⋆ , according to (44),

takes the form

Bu(x ) = ϕ−1
⋆

((
ϕ⋆(x1)

ϕ⋆(u1) . . . ϕ⋆(xn)
ϕ⋆(un)

) 1
ϕ⋆(u1)+...+ϕ⋆(un)

)
=

∏n
i=1 x

wi
i∏n

i=1 x
wi
i +

∏n
i=1(1− xi)wi

for all x ∈ Bn
⋆ (94)

where wi ∈ (0, 1) for i = 1, . . . , n and w1 + . . .+ wn = 1, with

wi =
ui/(1− ui)∑n

j=1 uj/(1− uj)
∈ (0, 1) i = 1, . . . , n .

4.5. Changing the bijection

Naturally the algebraic form of addition and multiplication in a given rep-
resentation on an open interval S ⊆ R depends significantly on the bijection
ϕ : S ⊆ R → P. For instance, taking S = (0, 1) as in the bounded multiplicative
representation but considering a different bijection,

ϕ : (0, 1) → P ϕ(c) =

√
c

1− c
c ∈ (0, 1) ϕ−1(C) =

C2

1 + C2
C ∈ P (95)

the algebraic form of multiplication remains unchanged, but that of addition
changes,

a⊕ b = ϕ−1(ϕ(a) + ϕ(b)) =
a+ b− 2 a b+ 2

√
a b (1− a)(1− b)

1− a b+ 2
√

a b (1− a)(1− b)
(96)
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a⊙ b = ϕ−1(ϕ(a) · ϕ(b)) = a b

a b+ (1− a)(1− b)
(97)

where a, b ∈ (0, 1). Both the identity and the inverse remain unchanged,

e = ϕ−1(1) =
1

2
a−1 = ϕ−1

( 1

ϕ(a)

)
= 1− a . (98)

Another example, with the same domain S = (0, 1), considers the bijection

ϕ : (0, 1) → P ϕ(c) =
t c

1− c
c ∈ (0, 1) ϕ−1(C) =

C

t+ C
C ∈ P (99)

where t ∈ P. In this case the algebraic form of addition remains unchanged, but
that of multiplication changes,

a⊕ b = ϕ−1(ϕ(a) + ϕ(b)) =
a+ b− 2 a b

1− a b
(100)

a⊙ b = ϕ−1(ϕ(a) · ϕ(b)) = a b t

a b t+ (1− a)(1− b)
(101)

where a, b ∈ (0, 1). Both the identity and the inverse change,

e = ϕ−1(1) =
1

1 + t
a−1 = ϕ−1

( 1

ϕ(a)

)
=

1− a

1− a+ a t2
. (102)

Analogous considerations can be made in relation to the semifiels represen-
tations on the various open intervals discussed in this section. In each case the
representation is generated by a bijection traditionally referred in the literature,
but different choices are possible.

5. Pairwise comparison matrices

In a large class of multicriteria aggregation models defined on open interval
domains S ⊆ R equipped with semifield structures generated by bijections ϕ :
S ⊆ R → P, the priority vector u = (u1, . . . , un) ∈ Sn associated with n criteria
is derived from a pairwise comparison matrix A = [aij ∈ S] between criteria,
with i, j = 1, . . . , n.

Definition 9. Given a semifield (S,⊕,⊙), a matrix A = [aij ∈ S] is said to be
reciprocal if

aij = a−1
ji i, j = 1, . . . , n . (103)

Notice that diagonal elements of a reciprocal matrix are equal to the identity e.

• In the multiplicative representation on P the reciprocity of the pairwise
comparison matrix A = [aij ] is expressed as aij = 1/aji with i, j =
1, . . . , n. In both the additive representation on R and the bounded additive
representation on B⋄ reciprocity is expressed as aij = −aji with i, j =
1, . . . , n. In the bounded multiplicative representation on B⋆ reciprocity is
expressed as aij = 1− aji with i, j = 1, . . . , n.
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Definition 10. Given a semifield (S,⊕,⊙), a reciprocal matrix A = [aij ∈ S]
is said to be consistent if

aik ⊙ akj = aij i, j, k = 1, . . . , n . (104)

Notice that consistency implies reciprocity, with i = j = 1, . . . , n.

• In the multiplicative representation on P we have aik akj = aij for all
i, j, k = 1, . . . , n. In an equivalent representation generated by the bi-
jection ϕ : S ⊆ R → P we obtain aij = ϕ−1(ϕ(aik)ϕ(akj)) for all
i, j, k = 1, . . . , n. Accordingly, in the additive representation on R we
have aik+akj = aij , in the bounded additive representation on B⋄ we have

aik + akj
1 + aik akj

= aij i, j, k = 1, . . . , n (105)

and in the bounded multiplicative representation on B⋆ we have

aik akj
aik akj + (1− aik)(1− akj)

= aij i, j, k = 1, . . . , n . (106)

Definition 11. Given a semifield (S,⊕,⊙), a reciprocal matrix A = [aij ∈ S]
is said to be anti-consistent if ai1 ⊙ ai2 ⊙ . . .⊙ ain = e, for i = 1, . . . , n.

In order to discuss the priority vector u = (u1, . . . , un) ∈ Sn associated with
a reciprocal matrix A = [aij ∈ S] we must require that the group (S,⊙) be
divisible with unique roots. This means that the nth root y = ⊙1/nx ∈ S exists
unique for all elements x ∈ S. In other words, for every x ∈ S there exists a
unique y ∈ S such that x = ⊙ny.

In the context of divisibility with unique roots, we have ⊙1/ne = e and
the equation ⊙na = e has the unique solution a = e. Moreover it holds that
⊙1/n(xy) = (⊙1/nx) ⊙ (⊙1/ny), since the nth power of the right hand side is
equal to xy, plus the fact that the nth root is unique.

• In the multiplicative representation on P unique divisibility holds and
⊙1/nx = x1/n. In the equivalent representation generated by a bijection
ϕ : S ⊆ R → P we obtain ⊙1/nx = ϕ−1(ϕ(x)1/n). Accordingly, in the ad-
ditive representation on R we have ⊙1/nx = x/n, in the bounded additive
representation on B⋄ we have

⊙1/nx =
x1/n − (1− x)1/n

x1/n + (1− x)1/n
(107)

and in the bounded multiplicative representation on B⋆ we have

⊙1/nx =
x1/n

x1/n + (1− x)1/n
. (108)
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The priority vector u associated with a reciprocal matrix A is defined in
terms of the multiplicative group structure of S, as in Crawford and Williams
[21], Barzilai et al. [3], and Barzilai and Golany [4].

Definition 12. Given a semifield (S,⊕,⊙) and a reciprocal matrix A = [aij ∈
S], the priority vector u = (u1, . . . , un) ∈ Sn associated with a reciprocal matrix
A = [aij ∈ S] is defined as

ui = ⊙1/n(ai1 ⊙ ai2 ⊙ . . .⊙ ain) i = 1, . . . , n (109)

with u1 ⊙ . . .⊙ un = e due to the reciprocity of the matrix A.

• In themultiplicative representation on P the priority vector u = (u1, . . . , un)
associated with a reciprocal matrix A = [aij ] is

ui = (ai1ai2 . . . ain)
1/n i = 1, . . . , n . (110)

In the equivalent representation generated by a bijection ϕ : S ⊆ R → P,
the priority vector u = (u1, . . . , un) ∈ Sn associated with a reciprocal
matrix A = [aij ∈ S] is given by

ui = ϕ−1
(
(ϕ(ai1)ϕ(ai2) . . . ϕ(ain))

1/n
)

i = 1, . . . , n . (111)

In this way we obtain the form of the priority vector in the various equiv-
alent representations on S = R, B⋄, B⋆. In the additive representation on
R the priority vector u = (u1, . . . , un) associated with a reciprocal matrix
A = [aij ] is

ui = ln
(
(eai1eai2 . . . eain)1/n

)
= (ai1 + ai2 + . . .+ ain)/n i = 1, . . . , n .

(112)
In the bounded additive representation on B⋄ the priority vector u =
(u1, . . . , un) associated with a reciprocal matrix A = [aij ] is

ui =

(
1+ai1

1−ai1

1+ai2

1−ai2
. . . 1+ain

1−ain

)1/n

− 1(
1+ai1

1−ai1

1+ai2

1−ai2
. . . 1+ain

1−ain

)1/n

+ 1

=
α
1/n
i − β

1/n
i

α
1/n
i + β

1/n
i

i = 1, . . . , n

(113)
where αi = (1+ai1)(1+ai2) . . . (1+ain) and βi = (1−ai1)(1−ai2) . . . (1−
ain) with i = 1, . . . , n. Finally, in the bounded multiplicative representation
on B⋆ the priority vector u = (u1, . . . , un) associated with a reciprocal
matrix A = [aij ] is

ui =

(
ai1

(1−ai1)
ai2

(1−ai2)
. . . ain

(1−ain)

)1/n

1 +
(

ai1

(1−ai1)
ai2

(1−ai2)
. . . ain

(1−ain)

)1/n
=

α
1/n
i

α
1/n
i + β

1/n
i

i = 1, . . . , n

(114)
where αi = (ai1ai2 . . . ain) and βi = (1 − ai1)(1 − ai2) . . . (1 − ain) with
i = 1, . . . , n.
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Definition 13. Given a semifield (S,⊕,⊙), the consistent matrix Â = [ âij ∈
S] associated with a reciprocal matrix A = [aij ∈ S] is defined as

âij = ui ÷ uj i, j = 1, . . . , n (115)

where u = (u1, . . . , un) ∈ Sn is the priority vector associated with A, as in

(109). On the other hand, the anti-consistent matrix Ã = [ ãij ∈ S] associated
with A is defined as

ãij = aij ÷ (ui ÷ uj) i, j = 1, . . . , n . (116)

We obtain the consistency decomposition formula

aij = âij ⊙ ãij i, j = 1, . . . , n . (117)

It is straightforward to show that both Â and Ã are reciprocal,

âji = uj ⊙ u−1
i = (ui ⊙ u−1

j )−1 = (âij)
−1 (118)

ãji = aji ⊙ (âji)
−1 = (aij)

−1 ⊙ âij = (aij ⊙ (âij)
−1)−1 = (ãij)

−1 . (119)

Moreover, Â is consistent,

âij = ui ÷ uj = (ui ÷ uk)⊙ (uk ÷ uj) = âik ⊙ âkj (120)

and Ã is anti-consistent,

ãi1 ⊙ . . .⊙ ãin = (ai1 ⊙ . . .⊙ ain)÷ ((ui ÷ u1)⊙ . . .⊙ (ui ÷ un)) (121)

= un
i ÷ (un

i ÷ (u1 ⊙ . . .⊙ un)) = u1 ⊙ . . .⊙ un = e

for i = 1, . . . , n. The anti-consistent matrix associated with a reciprocal matrix
has been introduced by Barzilai [2] under the name totally inconsistent matrix.

• In the multiplicative representation on P the decomposition formula(117)
reduces to aij = âij · ãij . Analogously, in the additive representation on R
we have aij = âij + ãij In the bounded additive representation on B⋄ the
decomposition formula is written as

aij =
âij + ãij
1 + âij ãij

i, j = 1, . . . , n (122)

and in the bounded multiplicative representation on B⋆ it is written as

aij =
âij ãij

âij ãij + (1− âij)(1− ãij)
i, j = 1, . . . , n . (123)

Proposition 6. Consider a semifield (S,⊕,⊙). A reciprocal matrix A = [aij ∈
S] is consistent if and only if it coincides with its associated consistent matrix

Â = [ âij ∈ S], and A is anti-consistent if and only if it coincides with its

associated anti-consistent matrix Ã = [ ãij ∈ S].
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Proof : The first part of the proposition is a classical result which we indicate
here only for the sake of completeness. Consistency means that aij = aik ÷ ajk
for i, j, k = 1, . . . , n. Therefore, on the basis of the general definition (115),

âij = ui ÷ uj (124)

= ⊙1/n(ai1 ⊙ ai2 ⊙ . . .⊙ ain)÷⊙1/n(aj1 ⊙ aj2 ⊙ . . .⊙ ajn)

= ⊙1/n((ai1 ÷ aj1)⊙ . . .⊙ (ain ÷ ajn))

= ⊙1/n(aij ⊙ . . .⊙ aij) = aij i, j = 1, . . . , n .

The second part of the proposition follows from the fact that anti-consistency
means ui = e for i = 1, . . . , n and therefore âij = e for i, j = 1, . . . , n. For this
reason, ãij = aij ÷ âij = aij for i, j = 1, . . . , n. �

Corollary 1. Consider a semifield (S,⊕,⊙). A reciprocal matrix A = [aij ∈ S]
is both consistent and anti-consistent if and only if aij = e, for i, j = 1, . . . , n.

Proof : Consider the general decomposition formula aij = âij ⊙ ãij for i, j =
1, . . . , n. If the matrix A is consistent, then aij = âij and thus ãij = e. On the
other hand, if the matrix A is anti-consistent, then aij = ãij and thus âij = e.
Therefore if A is both consistent and anti-consistent, then âij = ãij = e and
thus aij = e for i, j = 1, . . . , n. Conversely, if aij = e for i, j = 1, . . . , n it is
straightforward to show that also âij = ãij = e and thus A is both consistent
and anti-consistent. �

Given a reciprocal matrix A = [aij ∈ S], the module of each single element
of the associated anti-consistent matrix, s(ãij) = r(aij , âij) with i, j = 1, . . . , n,
can be regarded as a local measure of inconsistency - see Bortot and Marques
Pereira [7] - in the sense that it reduces to the identity, s(ãij) = e, wherever the
matrix A is locally consistent, aij = âij for some i, j = 1, . . . , n.

Finally, consider a hierarchical multicriteria decision model of the AHP type,
with semifield domain (S,⊕,⊙). The priority values of the various criteria are
expressed by the priority vector u = (u1, . . . , un) ∈ Sn associated with the
reciprocal pairwise comparison matrix A = [aij ∈ S] between criteria. In the
same way, the vector x = (x1, . . . , xn) ∈ Sn contains the priority values of a
given alternative with respect to the various criteria. In our general framework,
the aggregated priority value of the given alternative is obtained by the weighted
mean Au(x ) ∈ S or the generalized weighted mean Bu(x ) ∈ S, whatever the
particular representation considered.

6. Concluding remarks

We have introduced a general framework for the algebraic representation of
the weighted mean over open interval domains S ⊆ R endowed with semifield
structures isomorphic to that of P = (0,∞). The algebraic framework considers
the case in which priorities and values refer to a common aggregation domain,
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and provides a natural description of weighted mean aggregation, in both the
arithmetic and the geometric forms.

In either case the weighted mean necessarily involves two operations, addi-
tion (abelian semigroup) and multiplication (abelian group), which generalize
the role of addition and multiplication in P = (0,∞).

We have considered open interval domains S ⊆ R whose semifield struc-
tures are generated by bijections ϕ : S ⊆ R → P. Continuous and thus strictly
monotonic bijections play a central role. In such case the additive semifield
structure is represented by continuous strict triangular conorms/norms and the
multiplicative semifield structure is represented by continuous strict uninorms.
In turn, the weighted mean is represented by continuous strict weighted trian-
gular conorms/norms or by continuous strict weighted uninorms, depending on
its arithmetic or geometric character.

We have described the general semifield representation of the weighted mean
and we have examined it in detail in the case of four basic algebraic represen-
tations on S = (0,∞) = P, S = (−∞,∞) = R, S = (0, 1), S = (−1, 1). Then,
extending the work by Cavallo, D’Apuzzo, and Squillante on the basic represen-
tations of pairwise comparison matrices and their associated priority vectors, we
have discussed the general representation of the notion of anti-consistency in-
troduced by Barzilai, as opposed to the classical notion of consistency. The two
complementary notions are combined in the consistency decomposition formula.

A final note regards the representation of the generalized weighted means
Aτ

u as in (42), which might provide interesting material for future investigation,
beyond the arithmetic and geometric instances examined here.

Acknowledgments

The authors dedicate this paper to the memory of János Fodor, whose kind and
knowledgeable advice has always been enlightening, particularly in this work.

References

[1] J. Barzilai, Deriving weights from pairwise comparison matrices, The Jour-
nal of the Operational Research Society 48 (12) (1997) 1226-1232.

[2] J. Barzilai, Consistency measures for pairwise comparison matrices, Journal
of Multi-Criteria Decision Analysis 7 (3) (1998) 123-132.

[3] J. Barzilai, W. D. Cook, B. Golany, Consistent weights for judgements
matrices of the relative importance of alternatives, Operations Research
Letters 6 (3) (1987) 131-134.

[4] J. Barzilai, B. Golany, Deriving weights from pairwise comparison matrices:
the additive case, Operations Research Letters 9 (6) (1990) 407-410.

[5] J. Barzilai, B. Golany, AHP rank reversal, normalization and aggregation
rules, INFOR 32 (2) (1994) 57-64.

26

Author’s Accepted Manuscript Fuzzy Sets and Systems DOI http://dx.doi.org/10.1016/j.fss.2016.07.007



[6] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for
Practitioners, Studies in Fuzziness and Soft Computing, Vol. 221, Springer,
Heidelberg, 2007.

[7] S. Bortot, R. A. Marques Pereira, Inconsistency and non-additive capaci-
ties: the Analytic Hierarchy Process in the framework of Choquet integra-
tion, Fuzzy Sets and Systems 213 (2013) 6-26.

[8] M. Brunelli, Introduction to the Analytic Hierarchy Process, SpringerBriefs
in Operations Research, Springer, Heidelberg, 2015.
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