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Abstract

We consider a set N = {1, ..., n} of interacting agents whose individual opinions
are denoted by xi, i ∈ N in some domain D ⊆ R. The interaction among
the agents is expressed by a symmetric interaction matrix with null diagonal
and off-diagonal coefficients in the open unit interval. The interacting network
structure is thus that of a complete graph with edge values in (0, 1).

In the Choquet framework, the interacting network structure is the basis for
the construction of a consensus capacity µ, where the capacity value µ(S) of a
coalition of agents S ⊆ N is defined to be proportional to the sum of the edge
interaction values contained in the subgraph associated to S. The capacity µ is
obtained in terms of its 2-additive Möbius transform mµ, and the corresponding
Shapley power and interaction indices are identified.

We then discuss two types of consensus dynamics, both of which refer signif-
icantly to the notion of context opinion. The second type converges simply the
plain mean, whereas the first type produces the Shapley mean as the asymptotic
consensual opinion. In this way it provides a dynamical realization of Shapley
aggregation.

Keywords: consensus reaching, linear dynamical models, network interaction,
Choquet capacities, Möbius transforms, Shapley power and interaction indices.

1 Introduction

In the study of multiagent opinion aggregation in linear dynamic models, the
central notions of interaction and consensus have been the subject of a great
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deal of investigation. Fundamental contributions in this research field have
been made by several authors, among which: Shapley [86] on cooperative game
theory; French [34] and Harary [63] on social power theory; DeGroot [22], Chat-
terjee [15], Chatterjee and Seneta [16], Berger [7], Kelly [65], and French [35] on
DeGroot’s consensus formation model; Sen [85] on models of choice and welfare;
Lehrer [66], Wagner [91, 92], Lehrer and Wagner [67], and Nurmi [83] on the
rational choice model; Anderson and Graesser [4], Anderson [2, 3], and Graesser
[61] on the information integration model; Davis [19, 20] on the social decision
scheme model; and Abelson [1], Taylor [88], Friedkin [36, 37, 38, 39, 40, 41],
Friedkin and Johnsen [42, 43, 44, 45], and Marsden and Friedkin [71, 72] on
social influence network theory.

In this paper we focus on the classical DeGroot approach to consensus dy-
namics and network interaction, and we describe how the Shapley aggregation of
individual opinions emerges naturally in the non-additive framework of Choquet
integration.

Consider a set N = {1, ..., n} of interacting agents whose individual opin-
ions are denoted by {xi ∈ D ⊆ R, i ∈ N}. The interaction structure on N is
expressed by the symmetric interaction matrix V = [vij , i, j ∈ N ], with inter-
action coefficients vij = vji ∈ (0, 1) for i 6= j and vii = 0, with i, j ∈ N . In other
words, the interaction matrix V is the adjacency matrix of a complete graph
in which: each node {i} encodes an individual opinion xi, and each edge {i, j}
encodes an interaction coefficient vij = vji, for all i 6= j ∈ N .

In the Choquet framework, the interaction structure of the set N of agents
is the basis for the construction of the following capacity µ : 2N −→ [0, 1].
Let S ⊆ N be a coalition of agents. The capacity value µ(S) of the coalition
S ⊆ N is defined to be proportional to the sum of the edge interaction values
contained in the subgraph associated to S, µ(S) =

∑
{i,j}⊆S vij/N , where the

normalization factor is given by N =
∑

{i,j}⊆N vij . We can also write N = v/2,

with v =
∑n

i,j=1 vij . The measure µ satisfies the boundary conditions µ(∅) = 0
and µ(N) = 1, and is monotonic. Moreover, it is superadditive, with null
singletons.

An important role is played in this paper by two equivalent representations of
the capacity µ, its Möbius transform mµ and the Shapley interaction represen-
tation, usually denoted Iµ. The Shapley power index Iµ({i}) = ϕµ(i) coincides
with vi/v with vi =

∑n
j=1 vij , and it is proportional to the average degree of

interaction between agent i and the remaining agents j 6= i ∈ N . On the other
hand, the Shapley interaction index Iµ({i, j}) = σµ(i, j) coincides with 2vij/v,
which is proportional to the interaction coefficient vij , with i 6= j ∈ N .

The Shapley power indices ϕµ(i) with i ∈ N are thus natural weights for
the consensual aggregation of the n opinion values. Indeed, in our interacting
network model we obtain the Shapley mean Sµ(x ) =

∑
i∈N ϕµ(i)xi as the

consensual opinion with an appropriate definition of the convex linear dynamics.
Another relevant instance of the Shapley aggregation in our interactive net-

work model is as follows. Consider the context opinions x̄i =
∑

j∈N\{i} wij xj
where wij = vij/vi for i ∈ N , j ∈ N \{i} and

∑
j∈N\{i} wij = 1 for i ∈ N . Each

x̄i represents the context opinion as seen by agent i, i.e. the weighted average
opinion of the remaining agents. Notice that the context weights correspond
to a local normalization of the interaction coefficients between agent i and the
remaining agents.
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We will show that the context opinions x̄i, i ∈ N have an interesting prop-
erty: their Shapley mean value Sµ(x̄1, . . . , x̄n) =

∑
i∈N ϕµ(i) x̄i coincides with

the Shapley mean value of the original opinions xi, that is Sµ(x1, . . . , xn) =∑
i∈N ϕµ(i)xi.
The convex linear dynamics of our model follows the classical DeGroot’s

paradigm. Consider a general row stochastic matrix C = [cij , i, j ∈ N ] and the
associated convex linear dynamical law xi 7−→ x′i =

∑
j∈N cijxj , where cij ≥ 0

and
∑

j∈N cij = 1, with i, j ∈ N . In this linear dynamical law, the coefficient
cij represents the influential weight accorded by individual i to individual j,
with i, j ∈ N .

In each iteration the new opinion x′i of agent i ∈ N is a convex combination
of his/her present opinion xi and the present opinions xj ̸=i of the remaining
agents. The present opinions xj ̸=i are weighted with the coefficients cij , j 6= i,
which are the n − 1 degrees of freedom of the convex combination associated
with agent i ∈ N . As a result, the weight of the present opinion xi, i.e. the
coefficient cii, is constrained by cii = 1−

∑
j∈N\i cij , with i, j ∈ N .

In this paper the values of the interaction coefficients are assumed to be
constant in time and are given exogenously, as in DeGroot’s classical model of
consensus dynamics. Alternatively, the interaction coefficients can be computed
endogenously in terms of the individual opinions xi themselves. The endogenous
definition of the interaction coefficients can be done in various ways.
For instance, in the soft consensus model - see Fedrizzi, Fedrizzi, and Mar-
ques Pereira [28, 29], and Fedrizzi, Fedrizzi, Marques Pereira, and Brunelli
[30, 31] - the interaction coefficients vij , with i 6= j, are defined by filter-
ing the square difference values (xi − xj)

2 with a decreasing sigmoid function
σ(t) = 1/(1+eβ(t−α)). As a result, agents with similar opinions ((xi−xj)2 < α)
interact strongly, whereas agents with dissimilar opinions ((xi − xj)

2 > α) in-
teract weakly. A similar idea has inspired the more recent models of bounded
confidence, see Deffuant, Neau, Amblard, and Weisbuch [21], Dittmer [24], and
Hegselmann and Krause [62]. In the soft consensus model, therefore, the Shap-
ley power index ϕµ(i) reflects the local degree of consensus around agent i ∈ N
and is thus a natural endogenous weight for the consensual aggregation of the
n opinion values.

Recent reviews on network models of linear consensus dynamics can be found
in Jia, Mir Tabatabaei, Friedkin, and Bullo [64], Dong, Zha, Zhang, Kou, Fujita,
Chiclana, and Herrera-Viedma [25], Dong, Zhang, Kou, Ding, and Liang [26],
and Ureña, Kou, Dong, Chiclana, and Herrera-Viedma [90].

The paper is organized as follows. After the introductory notes, with ref-
erence to the classical literature on linear models of opinion formation and
consensus dynamics, we present in Section 2 a brief review of the basic facts
on the Choquet framework, including the fundamental notions on Choquet ca-
pacities, Möbius transforms and the Shapley (power and interaction) indices.
Then, in Section 3, we introduce the interactive network structure and the asso-
ciated consensus capacity, defined in terms of its 2-additive Möbius transform.
In Section 4 we discuss the general properties of the consensus dynamics and
we examine two particular cases, one of which obtains the Shapley mean as the
asymptotic consensual opinion. Finally, in Section 5, we describe an illustrative
example, followed by some conclusive remarks.
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2 Choquet capacities and Shapley indices

In this section we present a brief review of the basic notions on Choquet in-
tegration, focusing on the additive and 2-additive cases as described by their
Möbius representations. Comprehensive reviews of Choquet integration can be
found in Grabisch and Labreuche [53, 54], Grabisch, Kojadinovich, and Meyer
[50], plus also Wang and Klir [93], Grabisch, Nguyen and Walker [59], Grabisch,
Murofushi and Sugeno [58], Murofushi and Sugeno [82], Grabisch and Labreuche
[52]. For recent reviews of the 2-additive case see Miranda, Grabisch, and Gil
[77], and Mayag, Grabisch, and Labreuche [73, 74].

The Choquet integral is defined with respect to a general non-additive ca-
pacity and corresponds to a large class of aggregation functions, including the
classical weighted means - the additive capacity case - and the ordered weighted
means - the symmetric capacity case, see Yager [94] and Fodor, Marichal, and
Roubens [32].

General reviews of aggregation functions, including Choquet integration, can
be found in Fodor and Roubens [33], Marichal [68], Calvo, Mayor, and Mesiar
[13], Calvo, Kolesárova, Komorńıková, Mesiar [12], Beliakov, Pradera, and Calvo
[6], Torra and Narukawa [89], Mesiar, Kolesárová, Calvo, and Komorńıková [75],
Grabisch, Marichal, Mesiar, and Pap [55, 56], and Beliakov, Bustince, and Calvo
[5].

Consider a domain D ⊆ R and a finite set of interacting agents N =
{1, 2, . . . , n} whose individual opinions are denoted by {xi ∈ D ⊆ R, i ∈ N}.
Single agents are indexed by i, j ∈ N and the subsets S, T ⊆ N with cardinali-
ties s, t ≤ n are usually called coalitions.

The concepts of capacity and Choquet integral in the definitions below are
due to Choquet [17], Sugeno [87], Chateauneuf and Jaffray [14], Murofushi and
Sugeno [80, 81], Denneberg [23], Grabisch [46, 47], and Marichal [68].

Definition 1. A capacity on the set N is a set function µ : 2N −→ [0, 1] which
satisfies the following boundary and monotonicity conditions

(i) µ(∅) = 0, µ(N) = 1

(ii) S ⊆ T ⊆ N ⇒ µ(S) ≤ µ(T ).

Capacities are also known as fuzzy measures [87] or non-additive measures [23].
A capacity µ is said to be additive over N if µ(S ∪ T ) = µ(S) + µ(T ) for all

coalitions S, T ⊆ N , with S∩T = ∅. Alternatively, the capacity µ is subadditive
over N if µ(S ∪ T ) ≤ µ(S) + µ(T ) for all coalitions S, T ⊆ N with S ∩ T = ∅,
with at least two such coalitions for which µ is subadditive in the strict sense.
Analogously, the capacity µ is superadditive over N if µ(S ∪ T ) ≥ µ(S) + µ(T )
for all coalitions S, T ⊆ N with S ∩ T = ∅, with at least two such coalitions for
which µ is superadditive in the strict sense.

Definition 2. Let µ be a capacity on N . The Choquet integral Cµ : Dn −→ D
with respect to µ is defined as

Cµ(x) =
n∑

i=1

[µ(A(i))− µ(A(i+1))]x(i) x = (x1, . . . , xn) ∈ Dn (1)

where (·) indicates a permutation on N such that x(1) ≤ x(2) ≤ . . . ≤ x(n).
Moreover, A(i) = {(i), . . . , (n)} and A(n+1) = ∅.
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In the additive case, since

µ(A(i)) = µ({(i)}) + µ({(i+ 1)}) + . . .+ µ({(n)}) = µ({(i)}) + µ(A(i+1)) (2)

the Choquet integral reduces to a weighted mean,

Cµ(x ) =
n∑

i=1

[µ(A(i))− µ(A(i+1))]x(i) =

n∑
i=1

µ({(i)})x(i) =
n∑

i=1

µ({i})xi (3)

where the weights are given by wi = µ({i}), for i ∈ N , with
∑n

i=1 wi = 1.

Definition 3. Let µ be a capacity on N . The Shapley power index [86, 78, 79,
49, 68, 60, 51] of agent i ∈ N with respect to the capacity µ is defined as

ϕµ(i) =
∑

T⊆N\{i}

(n− 1− t)! t!

n!
[µ(T ∪ {i})− µ(T )] i ∈ N (4)

where t denotes the cardinality of coalition T ⊆ N .

The Shapley power index ϕµ(i) amounts to a weighted average of the marginal
contribution of agent i with respect to all coalitions T ⊆ N \ {i} and can be
interpreted as an effective importance weight. Moreover, it can be shown [86, 60]
that

ϕµ(i) ∈ [0, 1] ,
∑
i

ϕµ(i) = 1 i ∈ N . (5)

In the additive case, in particular, we have that ϕµ(i) = µ({i}), for i ∈ N .

Definition 4. A capacity µ can be equivalently represented by its Möbius trans-
form mµ [84, 14, 49, 68, 76, 57], which is defined as

mµ(T ) =
∑
S⊆T

(−1)t−sµ(S) T ⊆ N (6)

where s and t denote the cardinality of the coalitions S and T , respectively. Con-
versely, given the Möbius transform mµ, the associated capacity µ is obtained
as

µ(T ) =
∑
S⊆T

mµ(S) T ⊆ N . (7)

In the Möbius representation, the boundary conditions take the form

mµ(∅) = 0
∑
T⊆N

mµ(T ) = 1 (8)

and the monotonicity conditions can be expressed as follows [14, 76, 57]. For
each i ∈ N and each coalition T ⊆ N \ {i}, the corresponding monotonicity
condition is written as∑

S⊆T

mµ(S ∪ {i}) ≥ 0 T ⊆ N \ {i} i ∈ N . (9)

This form of the monotonicity conditions derives from the original monotonicity
conditions in Definition 1, expressed as µ(T ∪ {i})− µ(T ) ≥ 0 for all i ∈ N and
T ⊆ N \ {i}.

5

Author’s Accepted Manuscript Soft Computing DOI http://dx.doi.org/10.1007/s00500-019-04512-3



According to the decomposition of the capacity µ in (7), the Shapley power
indices as in (4) can also be expressed in terms of the Möbius transform [49, 68],

ϕµ(i) =
∑

T⊆N\{i}

mµ(T ∪ {i})
t+ 1

i ∈ N . (10)

Analogously, the Choquet integral as in Definition 2 can be expressed in
terms of the Möbius transform in the following way [49, 68],

Cµ(x ) =
∑
T⊆N

mµ(T ) min
i∈T

(xi) . (11)

Defining a capacity µ on a set N of n elements requires 2n − 2 real coeffi-
cients, corresponding to the capacity values µ(T ) for T ⊆ N . In order to control
exponential complexity, Grabisch [48] introduced the concept of k-additive ca-
pacities, see also Grabisch [49], and Miranda and Grabisch [76, 57].
In particular, the 2-additive case - see Miranda, Grabisch, and Gil [77], and
Mayag, Grabisch, and Labreuche [73, 74] - provides a good trade-off between
the range of the model and its complexity: only n(n+ 1)/2 real coefficients are
required to define a 2-additive capacity.

The Choquet integral with respect to a 2-additive capacity is a rich and
effective modelling tool, see for instance Berrah and Clivillé [8], Clivillé, Berrah,
and Maurice [18], Berrah, Maurice, and Montmain [9], Marques Pereira, Ribeiro,
and Serra [70], and Bortot and Marques Pereira [10, 11].

Definition 5. A capacity µ is said to be k-additive [48] if its Möbius transform
satisfies mµ(T ) = 0 for all T ⊆ N with t > k, and there exists at least one
coalition T ⊆ N with t = k such that mµ(T ) 6= 0.

In particular, in the 1-additive (or simply additive) case, the decomposition
formula (7) takes the simple form

µ(T ) =
∑
i∈T

mµ({i}) T ⊆ N , (12)

and the boundary and monotonicity conditions (8), (9) reduce to

mµ(∅) = 0
∑
i∈N

mµ({i}) = 1 (13)

mµ({i}) ≥ 0 i ∈ N . (14)

Moreover, for additive capacities, the Shapley power indices in (10) are simply

ϕµ(i) = mµ({i}) i ∈ N (15)

and the Choquet integral in (11) reduces to

Cµ(x ) =
∑
i∈N

mµ({i})xi. (16)

In the 2-additive case, the decomposition formula (7) takes the form

µ(T ) =
∑
i∈T

mµ({i}) +
∑

{i, j}⊆T

mµ({i, j}) T ⊆ N . (17)
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The graph interpretation of this definition, with singletons {i} corresponding to
nodes and pairs {i, j} corresponding to edges between nodes, is the following:
the value of the 2-additive capacity µ on a coalition T is given by the sum of
the nodes and edges contained in the subgraph associated with the coalition T ,
For 2-additive capacities the boundary and monotonicity conditions (8), (9)
reduce to

mµ(∅) = 0
∑
i∈N

mµ({i}) +
∑

{i, j}⊆N

mµ({i, j}) = 1 (18)

mµ({i}) ≥ 0 mµ({i}) +
∑
j∈T

mµ({i, j}) ≥ 0 i ∈ N T ⊆ N \ {i} .

(19)
Moreover, the Shapley power indices in (10) are given by

ϕµ(i) = mµ({i}) +
1

2

∑
j∈N\{i}

mµ({i, j}) i ∈ N (20)

and the Choquet integral in (11) reduces to

Cµ(x ) =
∑
i∈N

mµ({i})xi +
∑

{i, j}⊆N

mµ({i, j}) min(xi, xj) . (21)

An equivalent representation of the capacity µ and its Möbius transform mµ

is the so-called Shapley interaction representation.

Definition 6. Let µ be a capacity on N and mµ its Möbius transform. The
Shapley interaction representation [79, 49, 68, 60, 76, 57] of the capacity µ is
defined in terms of the Möbius transform mµ in the following way,

Iµ(S) =
∑

T⊆N\S

mµ(T ∪ S)
t+ 1

S ⊆ N . (22)

For coalitions of cardinality one and two, we have that (see also Eq. (10))

Iµ({i}) =
∑

T⊆N\{i}

mµ(T ∪ {i})
t+ 1

= ϕµ(i)

Iµ({i, j}) =
∑

T⊆N\{i,j}

mµ(T ∪ {i, j})
t+ 1

i, j ∈ N . (23)

In the additive case, in particular, we have

Iµ({i}) = mµ({i}) = ϕµ(i) Iµ({i, j}) = 0 i, j ∈ N (24)

and, in the 2-additive case,

Iµ({i}) = mµ({i}) +
1

2

∑
j∈N\i

mµ({i, j}) = ϕµ(i) (25)

Iµ({i, j}) = mµ({i, j}) = σµ(i, j) i, j ∈ N . (26)

Notice that, in the context of 2-additive capacities, the values mµ({i, j}) corre-
spond precisely to the Shapley interaction indices σµ(i, j) between the various
agents.

7
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3 The consensus capacity

Consider a set N = {1, ..., n} of interacting agents whose individual opinions
are denoted by {xi ∈ D ⊆ R, i ∈ N}. The interaction among the agents
is expressed by the symmetric interaction matrix V = [vij , i, j ∈ N ], with
interaction coefficients vij = vji ∈ (0, 1) for i 6= j, and vii = 0. For convenience,
we introduce the following notation,

vi =

n∑
j=1

vij , i ∈ N and v =

n∑
i=1

vi =

n∑
i,j=1

vij . (27)

The interaction matrix V is the adjacency matrix of a complete graph in which
each node {i} represents an individual agent and encodes the corresponding
opinion xi. Moreover, each edge {i, j} represents the interaction between two
individual agents and encodes the corresponding interaction coefficient vij , as
illustrated in Fig. 1.

i

k

j
ijv

jkv

ikv

Figure 1: Graph representation of the interaction matrix V.

In general, for any capacity µ, we have mµ({i}) = µ({i}), and therefore
0 ≤ mµ({i}) ≤ 1. Moreover, see [76, 57], we have −1 ≤ mµ({i, j}) ≤ 1,
subject to the monotonicity conditions. In the case of 2-additive capacities, the
monotonicity conditions (19) are

mµ({i}) ≥ 0 mµ({i}) +
∑
j∈T

mµ({i, j}) ≥ 0 i ∈ N T ⊆ N \ ({i})

where the second group of inequalities means that the non negative valuemµ({i})
associated with node i ∈ N must dominate the absolute value of the sum of all
negative edges around the node.

Consider now a class of 2-additive capacities for which the Möbius value
associated with each node is zero, mµ({i}) = 0, and every edge of the graph is
associated with a positive Möbius value, mµ({i, j}) > 0. All capacities in this
class are strictly superadditive, that is, µ(S∪T ) > µ(S)+µ(T ) for all coalitions
S, T ⊆ N with S ∩ T = ∅.

On the basis of the graph representation of the setN of interacting agents, we
now define the consensus capacity in terms of its Möbius transform, associating
the null value to each node and a positive value to each edge.

8
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Definition 7. The consensus capacity µ : 2N −→ [0, 1] expressed in terms of
its Möbius transform is defined as follows. The Möbius transform is primarily
defined sa

mµ({i}) = 0 mµ({i, j}) = 2vij/v mµ(T ) = 0 t ≥ (28)

and the associated 2-additive consensus capacity µ in our model is thus given by

µ(T ) =
∑
i∈T

mµ({i}) +
∑

{i, j}⊆T

mµ({i, j}) =
∑

{i, j}⊆T

2vij/v T ⊆ N . (29)

The consensus capacity µ satisfies the boundary conditions µ(∅) = 0 and µ(N) =
1. Moreover, it is strictly monotonic, with null singletons, and it is strictly
superadditive.

The individual share of the value µ(T ) of a coalition T ⊆ N is given by

µ̃(T ) = µ(T )/t (30)

where t denotes the cardinality of the coalition T ⊆ N , and is related in an
interesting way with the average edge value ν(T ) within T , given by

ν(T ) = µ(T )/
1

2
t(t− 1) . (31)

It follows that

µ̃(T ) =
1

2
(t− 1)ν(T ) . (32)

Notice that, given two coalitions S ⊆ T ⊆ N , it is always the case that the
value µ(T ) of the larger coalition is greater or equal than the value µ(S) of the
smaller coalition, but it might not be the case that the individual share µ̃(T )
in the larger coalition is also greater or equal than the individual share µ̃(S)
in the smaller coalition. In other words, the question of whether or not it is
worthwhile to form a larger coalition depends crucially on the way the average
edge value changes, even though there is an overall bias to extend the coalition
given by the dependency on the cardinality.

Proposition 1. The Shapley power indices and the Shapley interaction indices
associated with the consensus capacity µ are

Iµ({i}) = vi/v = ϕµ(i) (33)

Iµ({i, j}) = 2 vij/v = σµ(i, j) (34)

Proof : It follows immediately from equations (25) and (26)

Iµ({i}) = mµ(i) +
1

2

∑
j∈N\{i}

mµ({i, j})

=
1

2

∑
j∈N\{i}

2vij/v = vi/v = ϕµ(i) (35)

Iµ({i, j}) = mµ({i, j}) = 2 vij/v = σµ(i, j) (36)

where i ∈ N and j ∈ N \ {i}. 2

9
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Apart from the normalization factor 2/v, the Shapley interaction index σµ(i, j)
coincides with the interaction coefficient vij , while the Shapley power index
ϕµ(i) is proportional to the average degree of interaction between agent i and
the remaining agents, which is given by∑

j∈N\{i}

vij/(n− 1) = vi/(n− 1) i ∈ N . (37)

Therefore, the Shapley power index ϕµ(i) reflects the local degree of interaction
around agent i and is thus a natural weight for the consensual aggregation of
the n opinion values. In other words, the Shapley mean Sµ(x ) =

∑
i∈N ϕµ(i) xi

is a natural linear aggregation function.
In the Choquet framework, there are also two natural non-linear aggrega-

tion functions, the Choquet integral Cµ(x ) and the associated ordered weighted
averaging function Bµ(x ), which corresponds to the Choquet integral with re-
spect to the symmetrized capacity, see Yager [94], and Fodor, Marichal, and
Roubens [32]. We will briefly comment on the Ordered Weighted Averaging
(OWA) functions in relation with the illustrative example discussed in the final
part of the paper. Comprehensive reviews of OWA functions can be found in
Yager and Kacprzyk [95], Yager, Kacprzyk and Beliakov [96], and Emrouznejad
and Marra [27].

4 The consensus dynamics

We now examine the consensus dynamics in our network model and discuss the
convergence to a consensual opinion in relation with Shapley mean Sµ.

Definition 8. On the basis of the individual opinions xi ∈ D ⊆ R, i ∈ N , the
context opinions are defined as

x̄i =
∑

j∈N\{i}

wij xj , i ∈ N (38)

where wij = vij/vi, j ∈ N \ {i} and
∑

j∈N\{i} wij = 1 for i ∈ N .

Each x̄i represents the context opinion as seen by agent i ∈ N , i.e. the weighted
average opinion of the remaining agents. Moreover, the context weights cor-
respond to a local normalization of the interaction coefficients between agent
i ∈ N and the remaining agents.
The context opinions x̄i, i ∈ N have the following interesting property.

Proposition 2. The Shapley mean of the context opinions,

Sµ(x̄1, . . . , x̄n) =
∑
i∈N

ϕµ(i) x̄i (39)

coincides with the Shapley mean of the individual opinions xi, that is,

Sµ(x1, . . . , xn) =
∑
i∈N

ϕµ(i) xi . (40)
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Proof : From (33) and Definition 8 we have

Sµ(x̄1, . . . , x̄n) =

n∑
i=1

ϕµ(i) x̄i

=

n∑
i=1

[vi
v

( n∑
j=1

vij
vi

xj

)]
=

n∑
i=1

n∑
j=1

vij
v
xj =

n∑
j=1

vj
v
xj

=

n∑
j=1

ϕµ(j) xj = Sµ(x1, . . . , xn) (41)

which proves the result. 2

Consider now a general row stochastic matrix C = [cij , i, j ∈ N ], with
cij ≥ 0 and

∑
j∈N cij = 1, for i ∈ N . Moreover, consider the associated convex

linear dynamical law

x 7−→ x ′ = Cx xi 7−→ x′i =
∑
j∈N

cij xj (42)

where C ≥ 0, C1 = 1 and 1 = (1 ... 1). In this linear dynamical law, the
coefficient cij represents the influential weight accorded by agent i to agent j,
with i, j ∈ N .
In each iteration, the new opinion x′i of agent i ∈ N is a convex combination of
his/her present opinion xi and the present opinions xj ̸=i of the remaining agents.
The present opinions xj ̸=i are weighted with the coefficients cij with j 6= i, which
are the n−1 degrees of freedom of the convex combination associated with agent
i ∈ N . As a result, the weight of the present opinion xi, i.e. the coefficient cii,
is constrained to be one minus the sum of the remaining coefficients,

x′i = cii xi +
∑

j∈N\{i}

cij xj , i ∈ N (43)

cii = 1−
∑

j∈N\{i}

cij , i ∈ N . (44)

In our interactive network model, we assume that

cij = ε
vij
ρi

, i ∈ N , j ∈ N \ {i} cii = 1− ε
vi
ρi
, i ∈ N (45)

where ε ∈ [0, 1] and ρi ≥ vi for i ∈ N . Note that the matrix C is not symmetric.
The influential weight that agent i accords to agent j is cij = ε vij/ρi, whereas
conversely we have cji = ε vji/ρj . Due to interaction symmetry, we obtain
cij/cji = ρj/ρi, which means that the values ρi for i ∈ N control the ratio
of the reciprocal influential weights between agents i and j, with i, j ∈ N .
Moreover, the self-influential weight cii assigned by agent i ∈ N to him/herself
is related to the value ρi by (1− cii) ρi = εvi with i ∈ N .
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The associated linear dynamical law can then be written as

x′i =
(
1− ε

vi
ρi

)
xi + ε

∑
j∈N\{i}

vij
ρi

xj

=
(
1− ε

vi
ρi

)
xi + ε

vi
ρi
x̄i , i ∈ N (46)

where x̄i denotes the context opinion around agent i ∈ N .

Proposition 3. For ε ∈ (0, 1), the row stochastic transition matrix C is posi-
tive. It follows (Perron’s theorem) that it has a simple maximal unit eigenvalue
and a unique normalized positive eigenvector ψ = (ψ1, . . . , ψn), ψ

T = ψTC,
with

ψi =
ρi∑

j∈N ρj
, i ∈ N

∑
i∈N

ψi = 1 . (47)

Proof : It suffices to prove that∑
i∈N

ρi cij = ρj , j ∈ N (48)

which is obtained as follows,∑
i∈N

ρi cij = ρj cjj +
∑

i∈N\{j}

ρi cij

= ρj

(
1− ε

vj
ρj

)
+ ε

∑
i∈N\{j}

ρi
vij
ρi

= ρj − εvj + εvj

= ρj , j ∈ N (49)

where we have used the fact that vij = vji for i, j ∈ N . 2

Proposition 4. For ε ∈ (0, 1), the convex linear dynamical law x 7−→ x′ = Cx
leaves ψTx invariant and converges to the consensual solution x̄1 = (ψTx)1.
In other words, the opinions xi converge asymptotically to the consensual opin-
ion x̄ =

∑
i∈N ψixi =

∑
i∈N ρi xi/

∑
j∈N ρj.

Proof : The invariance of ψTx is immediate,

ψTx ′ = ψT (Cx ) = (ψTC)x = ψTx (50)

and the convergence follows from the positivity of the transition matrix C, see
DeGroot [22] and references therein. 2

We are interested in the following two different instances of the dynamical
law above. In the first case (homogeneous dynamics), the free coefficients cij ,
with j 6= i, are assumed to be proportional to a local normalization of the cor-
responding interaction coefficients vij , with j 6= i. More specifically, they are
assumed to be proportional to vij/vi, with j 6= i. In the second case (inhomo-
geneous dynamics), on the other hand, the free coefficients cij , with j 6= i, are
assumed to be simply proportional to the corresponding interaction coefficients
vij , with j 6= i.
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Definition 9. In relation with the general form of the linear dynamical law
(43)-(45), the homogeneous dynamics corresponds to the choice ρi = vi for
i ∈ N , and therefore the transition coefficients are

cij = εvij/vi i 6= j , cii = 1− ε ε ∈ [0, 1] (51)

with
∑

j∈N\{i} cij = ε and
∑

j∈N cij = 1 for i ∈ N .

The dynamical law can be written as

xi 7−→ x′i = (1− ε)xi + ε x̄i , i ∈ N ε ∈ [0, 1] . (52)

For ε ∈ (0, 1), the row stochastic transition matrix C is positive, and in the
case ε = 1 it is positive outside the main diagonal. In any case the matrix C
is non negative and irreducible. It follows (Frobenius’ theorem) that it has a
simple maximal unit eigenvalue and a unique normalized positive eigenvector
φ = (φ1, . . . , φn), φ

TC = φT with

φi =
1

2

∑
j∈N\{i}

2 vij/v = ϕµ(i) , i ∈ N
∑
i∈N

φi = 1 . (53)

Moreover, this dynamical law leaves φTx invariant (the Shapley mean) and,
given that C2 is positive (see note), it converges to the consensual solution
x̄1 = (φTx )1. In other words, the opinions xi converge asymptotically to
their Shapley mean

∑
i∈N φixi =

∑
i∈N xiϕµ(i).

Note The sole exception is the case ε = 1 for n = 2. In this case, the iterations
of the dynamics simply exchange the opinions x1 and x2, and thus no consensus
is ever reached.

Definition 10. In relation with the general form of the linear dynamical law
(43)-(45), the inhomogeneous dynamics corresponds to the choice ρi = n−1 = ρ
for i ∈ N , and therefore the transition coefficients are

cij = εvij/(n− 1) i 6= j , cii = 1− εvi/(n− 1) ε ∈ [0, 1] (54)

with
∑

j∈N\{i} cij = εvi/(n− 1) and
∑

j∈N cij = 1 for i ∈ N .

The dynamical law can be written as

xi 7−→ x′i = [1− εvi/(n− 1)]xi + [εvi/(n− 1)] x̄i , i ∈ N ε ∈ [0, 1] . (55)

For ε ∈ (0, 1) and ε = 1, the row stochastic transition matrix C is positive
and thus irreducible. It follows (Perron’s theorem) that it has a simple maximal
unit eigenvalue and a unique normalized positive eigenvector ψ = (ψ1, . . . , ψn),
ψTC = ψT , with

ψi = 1/n , i ∈ N
∑
i∈N

ψi = 1 . (56)

Moreover, this dynamical law leaves ψTx invariant and, given thatC is positive,
it converges to the consensual solution x̄1 = (ψTx )1. In other words, the opin-
ions xi converge asymptotically to their plain mean

∑
i∈N ψixi =

∑
i∈N xi/n.
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5 An illustrative example

In this section we present an illustrative example of the consensual dynamics.
We consider a network of four interacting agents whose initial individual opin-
ions are assumed to be x (t = 0) = {1, 2,−3, 4}. For the homogeneous dynamics
case we consider ε = 0.06, whereas for the inhomogeneous dynamics we consider
ε = 0.35.

The interaction coefficients vij , i, j ∈ N are expressed by the following
symmetric interaction matrix,

V =


0 1/16 6/16 4/16

0 2/16 2/16
0 1/16

0


We consider the functions Aµ(x (t)), Bµ(x (t)), Sµ(x (t)) which aggregate

the individual opinions at time t = 0, 1, 2, . . . Given the individual opinions
x (t) = (x1(t), . . . , xn(t)), we define A(t) = Aµ(x (t)) as the plain mean of the
opinions xi(t) with weights wi = 1/n.
Moreover, we define B(t) = Bµ(x (t)) as the OWA mean of the opinions xi(t)
with weights wi = 2(n − i)/n(n − 1). These weights correspond to the OWA
weights associated with a symmetric 2-additive capacity with null singletons,
see for instance Bortot and Marques Pereira [11].
Finally, we define S(t) = Sµ(x (t)) as the Shapley mean of the opinions xi(t)
with weights wi = ϕµ(i).

In Fig. 2 we present the time evolution of the individual opinions xi(t),
i = 1, . . . , 4 and the time evolution of the aggregated opinions A(t), B(t), S(t)
in the homogeneous dynamics case.
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Homogeneous dynamics

(a) Individual opinions xi(t), i = 1, . . . , 4

0 20 40 60 80 100

time t

0.6

0.7

0.8

0.9

1

1.1
Homogeneous dynamics

(b) Aggregated opinions A(t), B(t), S(t)

Figure 2: Homogeneous dynamics

As we can see, the simulation results are consistent with Proposition 4.
The homogeneous dynamical law leaves invariant the Shapley mean and the
opinions xi, i ∈ N converge to the consensual Shapley mean. Regarding the
time evolution of the aggregated opinions A(t) and B(t), we observe that they
also converge to the consensual opinion, the Shapley mean.
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In Fig. 3 we present the time evolution of the individual opinions xi(t),
i = 1, . . . , 4 and the time evolution of the aggregated opinions A(t), B(t), S(t)
in the inhomogeneous dynamics case.
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(a) Individual opinions xi(t), i = 1, . . . , 4
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(b) Aggregated opinions A(t), B(t), S(t)

Figure 3: Inhomogeneous dynamics

As expected, according to Proposition 4, the inhomogeneous dynamical law
leaves invariant the plain mean and the individual opinions converge to the
consensual plain mean. Regarding the time evolution of the aggregated opinions
B(t) and S(t), we observe that they converge to the plain mean as well.

6 Concluding remarks

Summarizing, we have introduced an interactive network structure for a set of
agents N = {1, ..., n} whose opinions are denoted by {xi ∈ D ⊆ R, i ∈ N}.

The interaction among the agents is expressed by the symmetric interaction
matrix V = [vij , i, j ∈ N ], with interaction coefficients vij = vji ∈ (0, 1) for
i 6= j, and vii = 0. In the Choquet framework, we have defined the associated
consensus capacity in terms of its 2-additive Möbius transform, and we have
identified the corresponding Shapley power and interaction indices.

We have considered a general row stochastic matrix C = [cij , i, j ∈ N ], with
cij ≥ 0 and

∑
j∈N cij = 1, for i ∈ N . The associated convex linear dynamical

law is expressed by x 7−→ x ′ = Cx where C ≥ 0, C1 = 1 and 1 = (1 ... 1), as
in the classical consensus reaching model introduced by DeGroot. In this linear
dynamical law, the coefficient cij represents the influential weight accorded by
agent i to agent j, with i, j ∈ N .

We have then discussed two instances of consensus dynamics, both of which
refer significantly to the notion of context opinion.

The first case produces the Shapley mean as the asymptotic consensual opin-
ion. In this way it provides a dynamical realization of the Shapley aggregation
and connects naturally with the Choquet framework discussed earlier.

The second case produces the plain mean as the asymptotic consensual opin-
ion and is thus less interesting. However, in an extended version with time
dependent interaction coefficients, it corresponds to the purely consensual com-
ponent of the non-linear dynamics in the soft consensus model (see e.g. [28]).
In its complete form, the non-linear dynamics of the soft consensus model also
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takes into account the agents’ initial opinions and in this sense it corresponds to
an extended version of the linear social influence network dynamics introduced
by Friedkin and Johnsen [44, 45].
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