
IEEE Security and Privacy Magazine - Dept. Building Security In
Editor: Fabio Massacci, fabio.massacci@ieee.org

Technical Leverage:
dependencies mixed blessing

Fabio Massacci
University of Trento and Vrije Universiteit Amsterdam

Ivan Pashchenko
University of Trento

Abstract—If modern software is a jungle of dependencies, how do we measure opportunities and
risks of building your own software on somebody else software assets? Borrowing a concept
from the 2008 financial crisis, we propose technical leverage as a simple yet effective metric.

ONE YEAR AGO, Holger and Schroer captured
in this column [1] the current crisis faced by
software security quality control:

The classic application software
stack relied, at all levels, [. . . ] on home-
grown software developed by (often
large) companies that had their own
developers. [. . . ] In the modern stack,
coding [. . . ] is increasingly reduced to
only a small set of “glue code” or con-
figurations built to combine software
developed elsewhere, especially in the
open source community.

They presented two neat software stacks side
by side: a homegrown stack where everything is
developed by a company and subject to several
quality gates, and the modern stack where they
pointed to the components that are now likely to
be downloaded or integrated from the internet.

While a diagram of a software stack (Appli-
cation, WebServer, DB, OS etc.) is ‘technically
correct’, it gives a misleading impression of an or-

derly construction. The SolarWinds hack, recently
discussed in this magazine, shows that Figure 1
is a better description of modern reality [2], [3].

If our state of practice is the one pictured
there, how can we really measure our exposure?
The quest for security metrics has a long tradi-
tion [10] but none really got traction.

So, we want to propose a metric that is
not about security but it is about dependencies,
by adapting a concept from the 2008 financial
crisis: the more money you borrow from others,
the more you can leverage and multiply your
(limited) investment. Yet, if your lenders call back
their cash, then you are bankrupt in a fortnight,
as it happened to Lehman Brothers when their
exposure with a 30-to-1 leverage turned sour [8].

Learning from Finance?
Allman’s Technical debt [6] is a famous con-

cept borrowed from finance: the consequence of
a developer’s action (more precisely inaction to
fix) that may later require more maintenance.

To appear in IEEE Security & Privacy Magazine Published by the IEEE Computer Society © 2021 The Authors and IEEE 1



Building Security In

Figure 1. Technical leverage and the true nature of modern software

Table 1. Financial leverage vs Technical leverage
Financial leverage Technical leverage
A company finances a new project with the help of
borrowed money (debt)

Software developers reuse existing functionality from dependencies to
focus only on new features in their projects

Financial leverage decreases corporate income tax
liability and increases after-tax operating earning [4]

Using dependencies reduce time (i.e. cost) to develop new projects [5]
and may increase performance (e.g. numpy in Python)

Debts imply interest rates [4] and must be eventually
paid or refinanced, an observation absent in [6]

Dependencies must be monitored and updated (similarly to refinancing
one’s monetary debt) to avoid security vulnerabilities [7]

Financial leverage multiplies losses as well, which
might lead to a crisis [8]

If managing dependencies becomes too costly, developers might stop
updating them, implicitly accepting the risk of being exploited [9]

Yet, technical debt is inadequate to capture
problems with dependencies because poorly writ-
ten own code is the source of technical debts in a
project [11]. Dagstuhl Seminar 16162, the closest
proxy for an ‘academic concept standardization
meeting’, scoped technical debt to the “internal
system qualities” of a software project [12].

Let us review the arguments for the need of
a new concept, all stemming from the same fact:
dependency code belongs to third-party projects.

At first, developers do not directly fix bugs
in dependencies. In theory, they could, and they
could even join the other company or FOSS
project and help them fixing the code. Along the
same theory, your neighbor can help you washing
the dishes and, for the most complicated bugs,
can pay the college debts of your children. In
practice, developers wait for a new version of the
dependency fixing the bug (or the vulnerability)
and update the dependencies of their project to
this version. If the problem is in a transitive de-
pendency, they have to wait while all intermediate
dependencies are updated. In some cases, some
newer, fixed transitive dependencies cannot be
adopted as a direct dependency in the path is no
longer maintained [13].

A major concern of developers is that depen-
dency updates could introduce breaking changes
to the dependent projects [9]. Method signatures
could be changed and methods could be deleted.
Empirical analysis [14] has show that the chances
of a breaking update are 40-50%, a coin’s toss.

Using software dependencies is an opportu-
nity: one does not have to develop code, but
simply use the good code that is there. Resources
can be used elsewhere. Vulnerable dependencies
can also generate risks, like the Equifax breach1

that affected more than 147M people.

Technical Leverage
Here we just illustrated the key idea to spur

the discussion in the community and refer to our
conference paper [15] for technical details. Inter-
ested practitioners can also find an online demo
for computing the proposed metrics for real-world
FOSS software libraries: https://techleverage.eu/

We introduce the notion of technical leverage
to assess the dependence on third-party function-
alities. In finance it is the ratio between debt
(other people’s money in various form) and equity
(one’s own money). Similarly, in software it is

1https://epic.org/privacy/data-breach/equifax/

2 To appear in IEEE Security & Privacy Magazine

https://techleverage.eu/
https://epic.org/privacy/data-breach/equifax/


the ratio λ between other’s people code (direct
dependencies `dir, transitive dependencies `trans,
possibly the baseline of programming language
libraries `std) and one’s own code `own.

λ =
`dir + `trans + `std

`own

(1)

If one compares programs in the same ecosys-
tem, the programming language/platform (e.g.
Java and Maven) is the same across libraries
so `std = const. To compare libraries across
different ecosystems (e.g. Python vs C libraries)
the difference can be significant. Further, some
libraries can be more mature than others and split-
ting leverage by type might be needed. Also in
finance one distinguishes between different type
of debts for a finer analysis. Table 1 compares
financial and technical leverage.

Technical Leverage in Java/Maven
To understand the level of technical leverage

in a FOSS ecosystem, we have measured it in
some industry-relevant Java FOSS libraries corre-
sponding to 10905 library instances (e.g. includ-
ing widely used libraries such as org.slf4j:slf4j-api
and org.apache.httpcomponents:httpclient).

Figure 2 we show only the technical leverage
on direct dependencies, as the most critical met-
ric, since developers typically react to the issues
connected with their own code or their direct de-
pendencies [9]. Transitive dependencies are also
known to introduce security vulnerabilities [7] but
are too complex to discuss them here.

Small-medium libraries with a code base less
than 100K lines of code hare heavily leveraged:
most library instances use a large code base of
direct dependencies that is up to 10 000 times
larger than their own size and 50% of small-
medium libraries rely on 14.7 times bigger code
base of their direct dependencies. We are not
far from the money making 30-to-1 business of
Lehman Brothers.

From the selected library sample, 50% of big
libraries have direct technical leverage less than
half (0.48) of their own size. So big libraries
mostly come with their own code base.

From a developer perspective, we can show
that technical leverage actually pays off : more
leverage only add a modest delay of four days to
the interval between releases. This is a good price

to pay for shipping an application with almost 15x
the code that you developed [15].

The interesting question from a security per-
spective is which are the risks? The answer is the
same: we are not much farther from the abyss
than Lehman Brothers

From the perspective of a user of a lever-
aged library, we can show that technical leverage
brings way more risks: a more than average lever-
aged library has +60% chances of eventually in-
cluding one (or usually more) vulnerabilities [15].

Figure 3 shows the number of vulnerabili-
ties present in a library on the X axis and on
the Y axis the distribution of the leverage of
libraries having that number of vulnerabilities. A
pattern is clear: with the exception of the very
large number of vulnerabilities, corresponding to
vulnerabilities present in very large libraries with
over 100KLoC, as leverage increase so does the
number of vulnerabilities.

What’s next?
Technical leverage is a relatively simple met-

rics to capture the dependence of a software
library on third-party code. It shows we are very
close to the leverage of Lehman Brothers: we
mostly ship code that is not ours. This is both
a great opportunity and a huge risk.

Indeed, this metric shows that we have a
major problem as a community, a classical moral
hazard: those reaping the benefit of technical
leverage (a library’s developers) are not the same
people exposed to the corresponding risk (the
users of the library). A different regulatory regime
for software liability might be needed.

Additional details and security metrics to
measure the nature and directions of changes
when a library is updated are in the confer-
ence paper [15] and on the website: https://
techleverage.eu/. Let us know what you think.

Acknowledgement
This work was supported in part by

the European Commission by grants
num. 830929 (H2020-CyberSec4Europe –
https://cybersec4europe.eu) and num. 952647
(H2020-AssureMOSS – https://assuremoss.eu).
Artwork in Figure 1 by Anna Formilan -
https://annaformilan.com.

May/June 2021 3

https://techleverage.eu/
https://techleverage.eu/
https://cybersec4europe.eu
https://assuremoss.eu
https://annaformilan.com


Building Security In

Developers of small software libraries (with own size smaller than 100K lines of code) typically ship more code than their own direct
leverage > 1). For the majority, their own code is only a small fraction of the overall codebase (less than 6%, corresponding to a
median direct leverage of 15). In other words, they ship mostly somebody else code. The direct leverage of large libraries (> 100K
lines of code) is much smaller than the size of their own code and hardly exceed 2, i.e. there is at least 33% of own code.

Figure 2. The direct leverage in comparison to the own size of a library

Direct leverage equal to 4 allows visual separation between the libraries exposed to high number of vulnerabilities vs libraries exposed
to a small number of security vulnerabilities in our library sample. The only exceptions are the handful of libraries at the extreme
right. They are libraries with large own code base ≥ 100K LoCs which are always affected by security vulnerabilities (mostly in
their own code base) just because of their size.

Figure 3. Max direct leverage per library vs Number of vulnerabilities in a library version

REFERENCES
1. H. Mack and T. Schroer, “Security midlife crisis: Building

security in a new world,” IEEE Security & Privacy,

vol. 18, no. 04, pp. 72–74, jul 2020.

2. M. Pittenger, “Open source security analysis: The state

of open source security in commercial applications,”

Black Duck Software, Tech. Rep., 2016.

3. J. Hejderup, “In dependencies we trust: How vulnerable

are dependencies in software modules?” Ph.D. disser-

tation, TU Delft, Computer Science, 2015.

4. A. Kraus and R. H. Litzenberger, “A state-preference

model of optimal financial leverage,” J Finance, vol. 28,

no. 4, pp. 911–922, 1973.

5. M. T. Baldassarre, A. Bianchi, D. Caivano, and G. Vis-

aggio, “An industrial case study on reuse oriented de-

velopment,” in Proc. of ICSME’05. IEEE, 2005, pp.

283–292.

6. E. Allman, “Managing technical debt,” Commun. ACM,

vol. 55, no. 5, 2012.

7. R. G. Kula, D. M. German, A. Ouni, T. Ishio, and

K. Inoue, “Do developers update their library dependen-

cies?” Emp. Soft. Eng. Journ., May 2017.

8. K. Berman and J. Knight, “Lehman’s three big mistakes,”

Harvard Business Review, September 2009.

9. I. Pashchenko, D. Vu, and F. Massacci, “A qualitative

study of dependency management and its security im-

plications,” in Proc. of CCS’20. ACM, 2020.

10. A. Jaquith, Security metrics: replacing fear, uncertainty,

and doubt. Pearson Education, 2007.

11. A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou,

and P. Avgeriou, “The financial aspect of managing

technical debt: A systematic literature review,” Inf. and

Softw. Tech. Journ., vol. 64, pp. 52–73, 2015.

12. P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Sea-

man, “Managing technical debt in software engineering

(dagstuhl seminar 16162),” in Dagstuhl Reports, vol. 6,

no. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik, 2016.

13. I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and

F. Massacci, “Vuln4real: A methodology for counting

actually vulnerable dependencies,” TSE, 2020.

14. J. Huang, N. Borges, S. Bugiel, and M. Backes, “Up-to-

crash: Evaluating third-party library updatability on an-

droid,” in 2019 IEEE European Symposium on Security

and Privacy (EuroS&P). IEEE, 2019, pp. 15–30.

15. F. Massacci and I. Pashchenko, “Technical leverage in

a software ecosystem: Development opportunities and

security risks,” in Proc. of ICSE’21, 2021.

4 To appear in IEEE Security & Privacy Magazine



Fabio Massacci is currently with University of Trento,
38123 Trento, Italy and Vrije Universiteit of Am-
sterdam, 1081 HV Amsterdam, The Netherlands.
MSc’93, PhD’98. He is interested in foundational and
experimental approaches to security. In 2015 he re-
ceived the 10 years Most Influential Paper Awards
by IEEE Requirements Engineering Conference for
his work on security in socio-technical systems. He is
currently the coordinator of the H2020 AssureMOSS
project on the security of multi-party open source soft-
ware. He is member of the ACM, American Economic
Association, IEEE, and Society for Risk Analysis.
Contact him at fabio.massacci@ieee.org.

Ivan Pashchenko is currently with University of
Trento, Italy. MSc’12, PhD’19. He is interested in
open-source software security, software verification,
and machine learning for security. In 2017 he was
awarded a Silver medal for the second place at the
ACM/Microsoft Student Research competition in the
graduate category. He is the UniTrento main con-
tact in “Continuous analysis and correction of secure
code” work package for the H2020 AssureMOSS
project. He is member of the ACM. Contact him at
ivan.pashchenko@unitn.it.

May/June 2021 5


	Learning from Finance?
	Technical Leverage
	Technical Leverage in Java/Maven
	What's next?
	Acknowledgement
	REFERENCES
	Biographies
	Fabio Massacci
	Ivan Pashchenko


