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Abstract
This review introduces the concept of thermal energy storage (TES) and phase change materials
(PCMs), with a special focus on organic solid-liquid PCMs, their confinement methods and their
thermal management (TM) applications al low-medium temperatures (0 ◦C–100 ◦C). It then
investigates the approach of embedding TES and TM functionalities in structural materials,
through the development of multifunctional polymer composites that could find applications
where weight saving and temperature management are equally important. The concept of
structural TES composite is presented through the description of three case studies about
thermoplastic structural or semi-structural composites containing a paraffinic PCM: (i) a
polyamide/glass laminate containing a microencapsulated or shape-stabilized paraffin; (ii) a
polyamide-based composite reinforced with discontinuous carbon fibers and containing paraffin
microcapsules, and (iii) a carbon fiber laminate with a reactive thermoplastic acrylic matrix and a
microencapsulated paraffin.

1. Thermal energy storage (TES)

The growing concerns about climate change, depletion of fossil fuels, and greenhouse gases emissions have
recently attracted the attention of researchers, industries, and governments on technologies aimed at
increasing efficiency in energy use. Since the routes of energy production based on fossil fuels have been
lately undoubtedly related to environmental pollution and global warming, the research in the last decades
has focused on sustainable and renewable energy sources, such solar, wind, and geothermal energy [1]. The
wide diffusion of such sources is hindered by two main obstacles, namely their high initial plant cost and
their intermittent nature. Although the first issue will be attenuated by technological development in the
next years, the most effective answer to the second issue—i.e. source intermittency—relies in boosting energy
storage technologies. The amount of solar energy varies on a daily and seasonal time scale, and the power
and consistency of geothermal and wind sources can be unpredictable; therefore, renewable energy
production plants must be supplemented with energy storage systems, to provide a significant and constant
energy output even in the off-peak periods [1, 2]. Energy storage systems can also increase the efficiency of
conventional energy sources, as they can help to decrease equipment sizes and initial and maintenance costs,
to boost plant flexibility and efficiency, and to reduce the necessity of emergency power generators that
would consume primary energy sources [3, 4].

Energy storage systems can be classified according to the intermediate energy form, which can be
chemical, electrical, electrochemical, mechanical, or thermal [1]. Among energy storage systems, particularly
interesting for some applications is thermal energy storage (TES), defined as the temporary storage of excess
heat that can be used where and when needed. TES technologies can reduce the mismatch between thermal
energy demand and availability, thereby contributing to a more efficient exploitation of intermittent energy
sources [5]. Compared to other energy storage systems, the storage of energy in the form of heat (or cold)
exhibits longer storage times and higher efficiency [1]. The cycle of a TES system, reported in figure 1,
comprises charging, storage and discharging steps.

TES technologies are currently employed for specific purposes in three main cases, namely (i) to store
waste/excess heat that can be released when needed, e.g. to recover waste industrial heat [6], or in solar
thermal power plants during peak periods [7]; (ii) to keep the temperature in a specific range, e.g. in
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Figure 1. Typical working cycle of a TES system, showing the charging, storage and discharging steps and the variation of stored
energy over time (adapted from [1]).

Table 1.Main performance parameters of sensible, latent and thermochemical heat TES technologies (adapted from [11]).

TES system Capacity (kWh t−1) Efficiency (%) Storage period (h, d, m) Cost (€ kWh−1)

Sensible heat 10–50 50–90 d/m 0.1–10
Latent heat 50–150 75–90 h/m 10–50
Thermochemical heat 120–250 75–100 h/d 8–100

buildings to store excess energy during the day and release it at nighttime [8], or for body temperature
regulation through smart thermoregulating garments [9]; (iii) to temporarily store heat and prevent a
temperature rise that would otherwise damage a component, as in the thermal management (TM) of
electronic devices [10].

In some applications the desired product is the stored and released thermal energy, as in the cases (i) and
(ii): these are generally referred to as examples of ‘thermal energy storage properly said’, and they normally
need energy storage systems with high thermal capacity, to store as much energy as possible. In other
applications, the excess heat is stored mainly to avoid a dangerous rise in temperature, as in case (iii): these
are examples of ‘TM’, and their main requirement is usually a well-defined energy storage rate. It is not easy
to distinguish between TES properly said and TM. Some other classifications categorize as TES properly said
only the case (i), while the other cases are examples of TM as they must keep temperature in an optimal
range. This review discusses about TES or TM without a strict distinction, although the case studies
presented in section 4 could be more suitably employed for TM applications.

1.1. Classification of TES technologies
The most common classification of TES technologies is based on the way of varying the internal energy of
the storage medium. Thermal energy can be stored and released through a temperature variation (sensible
heat TES, SH-TES), an endo/exothermic phase change (latent heat TES, LH-TES), or a thermochemical
reaction (thermochemical heat TES, TH-TES) [5]. The selection of a TES system over another depends on
several parameters, such as the required heat storage period (hours, months, days), economic considerations,
working temperature, available volume, as reported in table 1 [11]. The following paragraphs summarize the
characteristics and the governing equations of each of the three TES classes.

1.1.1. Sensible heat storage (SH-TES)
In SH-TES, energy is stored (and released) via an increase (or a decrease) in the temperature of the storage
medium. The enthalpy variation is proportional to the temperature difference, as represented in figure 2(a).
The energy stored in the system is defined by equation (1) as

∆E =
H2
∫
H1
mdH = m(H2 − H1) =

T2
∫
T1

mcdT = mc(T2 − T1) (1)

where∆E is the total amount of energy stored in the storage medium (J),m is the mass of the storage
medium, H1 and H2 the initial and final enthalpy values (J/g), c the specific heat capacity (J/(g · K)) and T1
and T2 the initial and final temperature (◦C) [12]. An analogous equation can be written for the energy
release, which results in the cooling of the storage medium. The effectiveness of a storage medium and the
total amount of stored/released energy depends on the available mass and volume, while a higher specific
heat capacity results in increased energy storage per unit mass [13]. The medium should also be non-toxic,
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Figure 2. Variation of enthalpy of the storage medium as a function of its temperature in (a) an SH-TES unit cycle and (b) a
LH-TES unit cycle (adapted from [1]).

not expensive, and should maintain long-term stability over repeated thermal cycles. Typical materials used
as sensible heat storage media are liquids such as water, oils or molten salts, or solids such as metals or
rocks [14–16].

1.1.2. Latent heat storage (LH-TES)
LH-TES involves the storage and release of heat through the phase transition of a phase change material
(PCM). The vast majority of LH-TES systems are based on the melting-solidification transition, while
evaporation-condensation phase changes are generally avoided, as the associated high volume variation
increases the complexity of the confinement unit [12]. The variation of enthalpy in a solid-to-liquid phase
transition is illustrated in figure 2(b). During an energy storage process, the medium initially behaves like an
SH-TES unit and absorbs sensible heat, which increases its temperature. This behavior continues until the
medium temperature reaches the phase change temperature (Tpc), which is maintained up to completion of
the phase transition. In this step, the absorbed energy is equal to the latent heat of phase change
∆Hpc = Hf − Hs. A further increase in absorbed energy brings a further increase in temperature: the slope
of the enthalpy-temperature curve depends on the specific heat capacity of the medium in the liquid state
and can be different from the slope between T1 and Tpc. The total enthalpy variation∆E (J) of such process
is defined by equation (2), as

∆E =
H2
∫
H1
mdH = m(H2 − H1) =

Tpc
∫
T1

mcsdT + m∆Hpc +
T2
∫
Tpc

mcLdT (2)

where∆Hpc is the latent heat of phase change, Tpc is the phase change temperature and cs and cL are the
specific heat capacity of the solid and liquid phase, respectively [12]. Generally, the absorbed latent heat is
considerably higher than the sensible heat, which implies that LH-TES systems normally require less material
usage, as they can store a high amount of energy in a smaller mass and volume.

1.1.3. Thermochemical heat storage (TH-TES)
Thermochemical heat storage refers to the techniques for storing and releasing heat through reversible
endo/exothermic thermochemical reactions, as represented in equation (3), as

S1 + heat ⇄ S2 + S3. (3)

During an endothermic reaction (charging), the storage medium (S1) absorbs heat from the surrounding
environment and it typically splits into two or more chemical substances (S2 and S3) which can be stored
individually for a long time: The reverse reaction represents the discharging process, and the reaction
between S2 and S3 releases the same amount of heat stored during the endothermic reaction. The total
exchanged heat depends on the reaction enthalpy and the quantity of material.

TH-TES materials can be further classified as chemical or sorption systems. In chemical systems, a
considerable amount of heat is generated from an exothermic synthesis reaction, and their working principle
is properly described by the model reaction reported in equation (3). In sorption systems, a gas (the sorbate)
reacts with a sorbent, which can be solid (absorption reactions) or liquid (adsorption reactions) [17].

The energy storage density of TH-TES materials is up to ten times higher than that of SH-TES media,
and approximately two times higher than that of the most common LH-TES systems [17], as illustrated in
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Figure 3. Comparison of specific energy storage density values of different sensible, latent and thermochemical TES media (data
from [17]).

figure 3. The considerable heat storage density and efficiency (low heat losses) are at the basis of the great
potential of TH-TES systems [18]. However, the full exploitation of this potential is only possible with an
efficient heat and mass transfer to and from the storage volume. Boosting transfer efficiency and coping with
slow reaction kinetics are the main issues to overcome for the scale-up and commercialization of TH-TES
systems [17, 19]. Hence, the technological maturity of TH-TES is lower than that of the other two classes
[20, 21].

2. Latent heat TES and phase change materials (PCMs)

LH-TES has become attractive over the other TES technologies for a wide number of applications, and this
stems from three main reasons. The first is that the PCMs exhibit a high energy density, which allow them to
store and release a considerable amount of heat per unit mass or volume. Therefore, LH-TES systems require
considerably less material compared to the traditional sensible heat storage systems, thereby increasing the
system flexibility and reducing the initial and maintenance plant costs [2, 22, 23].

The second advantage is that PCMs store and release heat at nearly constant temperature, i.e. their phase
change temperature (Tpc). During the energy storage phase, the PCM reaches the melting temperature and
maintains the temperature constant over the whole melting process, regardless of the applied heat flux or
small variations of the surrounding environment. Analogously, during heat release, the temperature is kept
constant until the crystallization is completed. This feature is attractive in all the TM applications, where the
temperature should be stably maintained in a certain range (e.g. indoor thermal regulation of buildings) or
under a critical value (e.g. cooling of electronic devices) [24, 25].

The third advantage is represented by the technological maturity of LH-TES systems, which often makes
LH-TES a preferred choice over thermochemical heat storage techniques [21]. Although TH-TES systems
exceed LH-TES in energy storage density, solid-liquid PCMs are generally easier to handle and exhibit a little
volume variation, thereby requiring smaller systems and less support equipment.

2.1. Selection and properties of a PCM
The number of PCMs available on the market is considerable and constantly growing. Hence, it is important
to identify the key properties that make a PCM the most suitable for a specific application [26].

The primary criterion for selecting a PCM is the phase change temperature, which must be below that of
the heat source but above that of the working environment. For LH-TES systems intended to avoid
overheating, the most suitable PCM is the one that has the melting point just slightly below the maximum
allowed temperature, as this reduces the melting rate and increases the TM window [27–29].

The phase change enthalpy is another very important property, as it represents the amount of energy that
a PCM can store and release per unit mass or volume. A high phase change enthalpy leads to smaller system
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Figure 4. Classification of solid-liquid phase change materials (adapted from [34]).

sizes, as less material is required to store a certain energy amount. PCMs with high melting enthalpy
generally feature also a high specific heat capacity, which is desirable as it boosts the sensible heat stored
before and after the melting temperature range, thereby enhancing the total exchanged heat [26, 30].

A suitable PCM should also feature a high thermal conductivity both in the solid and in the liquid phase,
because this favors heat transfer from the source into the whole PCMmass [31, 32]. Other important
qualities are the density and density variation upon phase transitions, the physical and chemical stability over
many thermal cycles, the chemical compatibility with the container, the non-corrosiveness and non-toxicity.
Finally, the ideal PCM should exhibit congruent melting, negligible supercooling effect and completely
reversible melting/crystallization cycles (low hysteresis) [22, 33, 34].

The PCMs currently available on the market do not match all these criteria at once, but the recent
progresses in materials research and design are opening new possibilities for selecting the most suitable PCM
with enhanced performance.

2.2. Classification of PCMs
The PCMs are classified according to the type of phase transition they undergo in the TES process. As
reported in figure 4, PCMs can be subjected to a gas–liquid, solid-gas, solid-liquid or solid-solid transition.
The solid-liquid PCMs are by far the most widely used, because they are cheaper and more numerous than
the solid-solid PCMs and do not involve gas evolution, accompanied by a large volume variation unlike the
solid-gas PCMs [12, 35]. Therefore, this review will focus on solid-liquid PCMs, which can be classified as
organic PCMs, inorganic PCMs, and eutectic mixtures of organic and inorganic materials, according to the
generally accepted classification [12, 36].

2.2.1. Organic PCMs
Organic PCMs are the most widely used in the low-medium temperature range (0 ◦C–100 ◦C) and are
applied especially for the TM of buildings and electronic devices [24, 25]. They comprise oligomers or
polymers with a broad range of molecular weights, thus allowing a wide choice of the working temperature.
Moreover, organic PCMs are generally inexpensive and easy to handle, exhibit a relatively high energy
density, do not release volatile toxic substances, and are characterized by congruent melting and negligible
supercooling. On the other hand, one of the main disadvantages is represented by their low thermal
conductivity; this issue is addressed in different ways, namely by increasing the heat transfer area, by using
highly thermally conductive containers or by adding metallic or carbon-based micro/nano-fillers
[12, 37–39]. The second disadvantage of organic PCMs is related to their flammability, which is true
especially for paraffin-based PCMs and derives from their hydrocarbon nature [40, 41]. However, their flash
point is approx. 150 ◦C–200 ◦C, well above their typical operating temperature range, and it increases with
the molecular weight [42, 43]. Organic PCMs comprise paraffin waxes, poly(ethylene glycol)s (PEGs), and
fatty acids, but also other compounds such as ketones, esters, ethers, halogen derivatives, sulphur
compounds and oleochemical carbonates [44].

2.2.1.1. Paraffin waxes
Paraffin waxes are the most diffused organic PCMs and consist in saturated hydrocarbons (n-alkanes) with
chemical formula CnH2n+2. Paraffins embody all the aforementioned advantages of organic PCMs: they are
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generally cheaper and exhibit higher heat of fusion (200–240 J g−1) and specific heat capacity
(2.1–2.4 kJ (kg · K)−1) than other organic PCMs [45]. Paraffins have a remarkable thermal stability over
repeated thermal cycles (also after 1000–2000 cycles), a relatively low vapor pressure and an exiguous volume
change upon phase transition [46]. Paraffins are largely available on the market with a broad range of chain
lengths; those between C5 (pentane) and C15 (pentadecane) are liquid at room temperature, while those
containing a higher number of carbon atoms are solid with a waxy appearance. Commercial paraffinic PCMs
are mixtures of different hydrocarbons that do not exhibit phase segregation even after many thermal cycles,
and the formulation is designed to match a specific transition temperature while maximizing the phase
change enthalpy. Paraffins are resistant to chemical and environmental degradation, but they can manifest
slow oxidation when exposed to oxygen [2], which encourages the use of sealed containers.

2.2.1.2. Fatty acids
The second most popular organic solid-liquid PCM class is that of fatty acids, represented by the chemical
formula CH3(CH2)2nCOOH and classified as caprylic (C8), capric (C10), lauric (C12), myristyl (C14),
palmitic (C16) and stearic (C18) acid, according to the number of carbon atoms. These fatty acids show high
phase change enthalpies (45–210 J g−1) and a wide range of melting temperatures (17 ◦C–70 ◦C). Fatty acids
show high phase change enthalpies (45–210 J g−1) and a wide range of melting temperatures (−5 ◦C–70 ◦C)
but are up to three times more expensive than paraffins and mildly corrosive [47, 48]. Their most interesting
feature is that they can be produced from bio-sources and are biodegradable, and therefore they have been
the subject of extensive studies to replace paraffins for low/medium temperature applications, such as the
solar energy storage and TM of indoor environment [45, 49].

2.2.1.3. Poly(ethylene glycol)s (PEGs)
Known also as poly(ethylene oxide)s (PEOs), PEGs are composed of dimethylene ether chains
HO–(CH2–O–CH2–)n–CH2–CH2–OH and are soluble in water and in some organic solvents, thanks to the
amphiphilic nature of their chain combining hydrocarbon sequences and polar groups [44]. Also for this
class of organic PCMs, the melting temperature and enthalpy increase with the molecular weight; for
instance, PEG600 melts at 18.5 ◦C absorbing 121.1 J g−1, while PEG2000 melts at 61.2 ◦C absorbing
176.2 J g−1. PEGs are biodegradable and biocompatible and are also used in drug delivery systems [50]. This
feature has expanded the use of PEG as a PCM in applications inside the human body, e.g. to subtract heat
during the in-situ polymerization of acrylic bone cements and avoid overheating and damage to the
surrounding biological tissues [51].

2.2.2. Inorganic PCMs
Inorganic PCMs exhibit an enthalpy per unit mass similar to their organic counterpart, but since they have a
higher density, they can have a remarkably higher enthalpy per volume, thereby allowing the production of
more compact TES systems [8]. Moreover, the thermal conductivity of inorganic PCMs can be considerably
higher than that of their organic counterpart [24]. For these reasons, they are the preferred choice in the
medium-high temperature range (100 ◦C–1000 ◦C) and when there are no strict requirements on
non-corrosiveness. Inorganic PCMs comprise several classes of materials, such as salts, salt hydrates and
metal alloys [26].

2.2.2.1. Salts and salt hydrates
Salts and salt hydrates have similar molecular structure, but the crystalline lattice of salt hydrates is not so
closely packed and can easily host water molecules. Common salts and salt hydrates used as PCMs are
NaNO3, KNO3, KOH, MgCl2, NaCl, MgCl2 · 6H2O, CaCl2 · 6H2O, and Na2SO4 · 10H2O, also called
Glauber’s Salt [26, 52]. While salts undergo a proper melting/crystallization transition, for salt hydrates the
solid-liquid phase change is a dehydration-hydration process, in which the compound releases the
coordinated water molecules becoming an anhydrous salt (or a lower hydrate). The vapor pressure of
hydrated salts is considerably higher than that of the other solid-liquid PCMs and increases with the
hydration degree; this can cause water loss and a deterioration of the TES properties. Moreover, salt hydrates
often suffer from supercooling problems. Above the dehydration temperature, the anhydrous salt may
segregate and settle at the bottom of the container due to its higher density, which hinders and slows down
the rehydration process. This issue is usually tackled by stirring, by adding excess water to favor solubilization
of the whole mass of anhydrous salt, or by adding a thickening agent (e.g. borax, graphite) that reduces the
extent of phase separation and often acts as a nucleating agent [22, 27, 53]. The phase change temperature of
salts and salt hydrates ranges from 10 ◦C to 900 ◦C. However, for applications requiring a melting point up
to 70 ◦C–80 ◦C, organic PCMs are often preferred due to the lower cost, easier handling, lower vapor
pressure, superior long term stability, lower supercooling and lower tendency to incongruent melting [22].
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2.2.2.2. Metal alloys
Metals have not been extensively investigated as PCMs so far, but they are starting to attract attention thanks
to their considerable thermal conductivity and thermal stability. The most promising metallic PCMs are
cesium, gallium, indium, tin and bismuth for low-temperature applications, and zinc, magnesium, and
aluminum for applications at higher temperatures. Metallic PCMs cover a broad range of melting
temperatures, from 30 ◦C of neat gallium to 660 ◦C of aluminum. However, PCMs with a lower transition
temperature are not widely used due to their low phase change enthalpy. Conversely, high-melting metals
such as Al and Mg alloys also exhibit a considerable phase change enthalpy (350–520 J g−1) [7], which makes
them attractive for high-temperature solar heating applications, in replacement of inorganic salts that are
thermally unstable and prone to phase segregation [26].

2.2.3. Eutectic PCMs
Eutectic PCMs are mixtures of organic or inorganic compounds that melt and solidify congruently. They
present a sharp melting point and a high phase change enthalpy, and their properties can be tailored to meet
the requirements of a specific application. They are completely miscible in the molten state and freeze
forming an intimate mixture of crystals [27], which accounts for a phase transition without segregation. As
they are generally designed for a target application, they are usually more expensive than the other classes of
PCMs [5, 12].

2.3. Confinement techniques for organic PCMs
Since organic solid-liquid PCMs are the most widely used materials for TES at low-medium temperatures
(0 ◦C–100 ◦C), this review will be focused on this type of TES materials. Among the major drawbacks of
organic PCMs is the need for confinement, to avoid leakage above the melting temperature. Confinement
techniques can be divided into (i) encapsulation methods and (ii) shape-stabilization methods.

2.3.1. Encapsulation
Encapsulation methods involve a container that physically separates the PCM from the surrounding
environment, is stable in the whole working temperature range and accommodates the phase transition and
the associated volume change [54]. The containers can be of various sizes, shapes, and materials; one can talk
about macro-, micro- or nano-encapsulation.

Macro-encapsulation is the simplest method of confining a PCM, as it involves the use of a box or a tank,
made of a thermally conductive material (e.g. aluminum, stainless steel) that is chemically compatible with
the PCM, to prevent any undesired chemical reactions [5, 43]. The container should be properly sealed to
avoid the leakage also of the most fluid PCMs, and the design should always consider the volume expansion
and contraction during the phase change. When the PCM is used for TM of buildings, the macro-capsule can
be the concrete structure itself [55]. When there are no strict requirements on the strength, also thin flexible
plastic (e.g. polyethylene) bags can be used, as they accommodate the volume change and do not require an
ullage space [3].

On the other hand, micro- and nano-encapsulation feature microbeads with a polymeric or inorganic
shell and a PCM core [43]. This confinement technique, with capsules in the micron- or sub-micron-scale
range, offers two main advantages. The first is that a microencapsulated PCM is easy to handle and to embed
in other materials such as gypsum and concrete by simple mixing, and it can be also added to liquids to
produce PCM-enhanced heat transfer fluids [56]. The second advantage is represented by the augmented
specific surface area (SSA), which increases the heat transfer surface. The capsule shells must be stable over
many melting/solidification cycles and must not have any chemical interaction with the PCM.

There are several physical, physical-chemical, and chemical techniques available to produce PCM
microcapsules (MCs) (table 2). Among all techniques, the most diffused, researched, and developed on
industrial scale is the in-situ polymerization, which includes interfacial, suspension and emulsion
polymerization [25, 57]. These techniques differ from each other mainly in terms of polarity and solubility of
the monomers and the initiator. In the interfacial polymerization, the polymeric shell wall is the result of the
polymerization of polar and non-polar monomers dissolved in the water and oil phase of an oil-in-water
emulsion, respectively. The shell growing at the interface of the two phases becomes a barrier to diffusion and
limits the reaction kinetics, thereby influencing the shell thickness and morphology. Common shell materials
are polyurea, urea-formaldehyde and melamine-formaldehyde. In suspension polymerization, all the
reactants are liposoluble and are dispersed in the water-based medium due to continuous agitation and
addition of surfactants. As the PCMmust be the oil phase, with this technique it is difficult to encapsulate
hydrophilic PCMs such as PEGs or salt hydrates. The shape and size of the resulting particles is strongly
influenced by the stirring speed, amount of stabilizer, fraction of the monomer phases and relative viscosity
of the droplets and the water medium. The emulsion polymerization is similar to the suspension
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Table 2. Advantages and disadvantages of the main microencapsulation methods (adapted from [57], with data from [60]).

Technique Advantages Disadvantages Particle size (µm) Encap. ratio (%)

Physical methods

Spray drying • Low cost • Particle
agglomeration

0.1–5000 38–63

• Easy to scale-up •High temperature
• Versatility • Uncoated particles

• Difficult control of
the particle size

Solvent evaporation • Low cost • Difficult to scale-up 5–1500

Physic-chemical methods

Coacervation • Versatility • Difficult to scale-up 2–1200 6–68
• Precise control of
the particle size

• Agglomeration

Sol-gel • Inorganic shell
with high thermal
conductivity

• Difficult to bring to
industrial level

• Complex reactions
involved

0.2–20 30–87

Chemical methods

Interfacial polymerization •Wide range of shell
materials

•Moderate cost
• Solvent handling

0.5–1000 15–88

Suspension polymerization • Already at
industrial level

• Versatility

2–4000 7–75

Emulsion polymerization 0.05–5 14–67

Figure 5. Encapsulation of an organic PCM via a sol-gel process starting from TEOS (adapted from [63]).

polymerization, but the main difference is the hydrophilic nature of the initiator, which is dissolved
in the water phase. Common shell materials for both these techniques are acrylic and styrenic polymers
such as poly(methyl methacrylate) (PMMA), polystyrene, and styrene-divinylbenzene copolymers
[58, 59].

Another interesting technique to prepare MCs is the sol-gel method, in which a solid shell forms through
the gelation of a colloidal suspension (the ‘sol’). This suspension, which is often more accurately a solution, is
prepared starting from a molecular precursor, such as a metal alkoxide [Mn−(OR)n] [61, 62]. Figure 5
illustrates the general sol-gel encapsulation route to obtain a silica (SiO2) shell starting from tetraethyl
orthosilicate (TEOS) as the molecular precursor.

The PCM is first dispersed in an aqueous medium with the help of surfactants to form a stable
oil-in-water (O/W) emulsion. The final micelle size and thus the capsule dimension are determined by the
amount of PCM, the polarity of the aqueous medium and the type and concentration of surfactant.
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Separately, TEOS is dissolved in a water medium, e.g. a water-ethanol solution, and the pH of the solution is
generally lowered to favor the hydrolysis reaction. Once hydrolysis is complete, the precursor solution is
added to the PCM emulsion. Here, a controlled condensation reaction of the precursor happens around the
PCM droplets, under basic conditions. The result of the condensation reaction is the formation of an
extended silica network around the PCM droplet. The main advantage of sol-gel techniques is the possibility
to form a ceramic (e.g. SiO2, TiO2, CaCO3) shell, which is generally stronger and stiffer and exhibits a higher
thermal conductivity than the polymeric shells [38]. On the other hand, pure metal oxides are usually brittle
and subjected to cracks. To mitigate their fragile behavior, the molecular precursor can be chosen that
contains a hydrocarbon side group, which will be present also in the final network, resulting in a hybrid
organo-ceramic material. For example, organosilica shells produced from methyltriethoxysilane
CH3Si(OCH3)3 (MTES) are less brittle and more flexible than those produced from TEOS, thanks to the side
methyl group that remains in the resulting network [64, 65].

2.3.2. Shape-stabilization
In the field of PCMs, the term ‘shape-stabilization’ is sometimes used as a synonym of ‘confinement’ and also
includes the microencapsulation techniques [66]. However, the vast majority of the dedicated literature
refers to ‘shape-stabilization’ to indicate all methods to prevent PCM leakage besides encapsulation.
Shape-stabilization techniques involve mixing the PCM with layered or porous materials, inorganic
nanofillers, or polymer matrices, to produce a compound without any manifest leakage or exudation even
when the PCM is in the molten state. Such techniques are generally simpler and cheaper than
microencapsulation, but the PCM is not completely isolated from the external environment and some
leakage may happen after several thermal cycles [67].

One of the simplest techniques to obtain a shape-stabilized PCM is the dispersion of nanoparticles, such
as carbon nanotubes (CNTs) [37], graphene oxide (GO) [68], expanded graphite (EG) [69, 70], expanded
graphite nanoplatelets (xGnPs) [71], nanoclays [53], metallic and metal oxide/nitride nanofillers [72], which
increase the mixture viscosity and prevent the leakage thanks to their high SSA [66]. The shape-stabilization
effect can be achieved by melt blending, vacuum impregnation or grafting of the PCM chains onto the
nanofillers. Moreover, the inclusion of carbon- or metal-based fillers can enhance the thermal conductivity,
thereby improving the energy storage rate and efficiency especially of in the case of organic PCMs [28].

An analogous effect of enhanced thermal conductivity can be achieved by shape-stabilizing the PCM
through a highly conductive foam, where the PCM can be accommodated within the interconnected
porosity. Such foams are generally metallic, ceramic, or carbon-based and are characterized by a high
porosity, interesting mechanical properties and thermochemical stability [33].

Blending organic PCMs with polymer matrices is another diffused technique to prevent leakage [12].
One of the most widely used strategies consists in combining paraffinic PCMs with polyolefins like
polyethylene (PE) and polypropylene (PP), due to their physical-mechanical properties and the chemical
compatibility with paraffins, but other commonly used polymers are acrylics, poly(vinyl chloride),
polyurethanes and elastomers as ethylene-propylene diene monomer (EPDM) rubbers [12, 73–75]. However,
in many cases the satisfactory heat storage properties are accompanied by a decreasing in the mechanical
performance after PCM addition [73], which is noticed especially above the PCMmelting transition. This
often leads to the conclusion that PCM-polymer blends are not suitable as load bearing materials [73].

2.4. Applications of PCMs for heat management
Due to their ability of store a large amount of heat at a nearly constant temperature, PCMs are interesting not
only for pure thermal storage applications, for example in solar-thermal power plants, but also for helping to
keep the temperature in an optimal range. Examples of PCMs applied for TM can be found in buildings [76],
smart textiles [77], electronic devices [78], anti-icing coatings [79], thermoregulating packaging [80], and
also biomedical applications [51]. The following sections report some of the most representative examples.

2.4.1. TM in buildings
In the last decades, energy consumption in buildings has dramatically increased due to population growth,
climate change, and raised demand for thermal comfort and indoor environmental quality [81]. Housing
and tertiary buildings account for the consumption more than 40% of the total primary energy and
approximatively 19% of the overall CO2 emissions [5, 81]. Considering the residential buildings, among the
energy end-uses, space heating and water heating are responsible for the largest portion of total energy
consumption, which is 57% in the U.S., 71% in China and 80% in the E.U [81]. Hence, it is important to
address and constantly improve the energy efficiency of buildings. One of the solutions implemented in the
last decades involves the use of PCMs in passive or active energy storage systems.
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2.4.1.1. Passive storage systems
Passive storage systems include the heating/cooling technologies without an active mechanical device and
with little or no external energy inputs. An example of passive storage system is represented by the inclusion
of PCMs in wallboards, ceilings or flooring materials, which can store excess energy during the day (peak
hours) to release it during the night (off-peak hours), helping to regulate the temperature also in extreme
weather conditions [12]. As the indoor thermal comfort is generally considered achieved in a temperature
interval between 18 ◦C and 25 ◦C, the selected PCMs also manifest phase transition in this range [82].

Even though the concept of using LH-TES in buildings has been known for decades, one of the first
systematic studies was performed in 1996 by Feldman and Banu [83], who fabricate PCM-enhanced
lab-scale gypsum wallboard samples. The PCM phase, represented by a mixture of fatty acids, was
introduced by impregnation (without further encapsulation or shape-stabilization), and it accounted for
approx. 25% of the total wallboard weight. The authors evaluated the total TES performance of a room lined
with such wallboards and concluded that, after the shooting off of the heating/cooling system, the room
temperature could be maintained in the thermal comfort range for several hours longer than a room with
traditional wallboards, without impairing the air quality [84].

Particularly attractive are the technologies that allow the storage of excessive solar thermal energy, in
order to release heat during the night or to reduce overheating due to solar radiation in the peak hours. An
example of this second case is provided by Wang and Zhao [85], who proposed a PCM-enhanced curtain to
reduce the solar heat gain through the windows and thus the energy required for cooling, especially useful for
modern glass-wall buildings. Numerical investigation demonstrated that the selection of the PCM with the
most appropriate melting temperature plays a key role in determining the curtain performance, and that the
heat gain of the indoor space can be reduced of up to 16.2% with a PCM layer of 5 mm.

When talking about structural or rigid building elements, there are several ways of integrating PCMs.
Besides the aforementioned direct impregnation, other techniques are mixing microencapsulated PCMs with
construction materials, and adding a macroencapsulated or variously stabilized PCM as a supplementary
layer [24]. One of the most recent studies implementing the first approach is that of Bao et al [30], who
developed a high performance PCM-enhanced cement composite for passive solar buildings. The PCM
phase is represented by a paraffin wax (Tm = 28 ◦C) microencapsulated in polymeric shells containing
graphite flakes, added during MC synthesis to enhance the thermal conductivity. Such microencapsulated
PCM was mixed with the cement matrix together with nanosilica and short carbon fibers, in order to
preserve the mechanical properties and further enhance the thermal conductivity. There are some studies in
which the PCM is added to construction materials not with the purpose of indoor TM, but for the thermal
protection of the material itself. As described in the recent review by Šavija et al [86], the insertion of a PCM
in concrete can limit temperature fluctuations and reduce the risk of thermally induced cracks.

2.4.1.2. Active storage systems
Active storage systems are used to store heat produced when the primary energy source is more abundant or
less expensive. In buildings, active storage systems based on PCMs store heat produced by heating systems
during the night, so that the energy peak is effectively reduced and shifted to nighttime when the cost of
electricity is lower. Lin et al [87] developed a floor heating technology integrated with shape-stabilized PCM
panels. Such panels, made of paraffin with a melting temperature of 52 ◦C (75 wt%) and PE as supporting
material, were placed under a wood floor onto electric heaters. Large-scale experiments proved that the
system was effective in increasing the indoor temperature and in keeping the temperature in an acceptable
range long after the heaters were switched off.

2.4.2. Smart textiles
The embedment of PCMs in textile fabrics leads to the production of smart textiles that help regulating the
body temperature and are particularly useful in situations of extreme weather conditions [88]. One of the
first examples of PCM-enhanced textiles was produced by NASA; nonadecane (= 32 ◦C) was added to
garment fabrics (e.g. in the space suits) to limit the impact of the extreme temperature changes to which the
astronauts are subjected during space missions [89]. Later, such smart thermoregulating textiles were
employed to enhance the thermal comfort of mountain outdoor clothing and apparel, but also of blankets,
mattresses and pillow cases [12].

There are five main ways to embed a PCM in a synthetic textile: (a) mixing the PCM with the melt/wet
spun polymer in the form of core filament; (b) producing core-sheath fibers, in which the core is composed
by the PCM and the shell is the supporting polymer; (c) introducing PCMMCs in the melt/wet spun
polymer; (d) applying microencapsulated PCMs on fabrics using suitable binders or coating materials;
(e) adding a PCM-enriched inner layer (e.g. polyurethane foam containing PCMMCs) [77]. Among these
techniques, the first three methods are often preferred as they result in versatile multifunctional polymer
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fibers with the PCM phase stably confined into the surrounding polymer, which reduces the risk of removal
during washing [90].

The embedment of PCMs in polymeric fibers is of interest to produce not only smart textiles, but also
multifunctional polymer filaments that can be co-woven with continuous reinforcing glass or carbon fibers,
to produce a multifunctional yarn containing the matrix, the reinforcement and the PCM. This is an
interesting route that can be explored to fabricate thermoplastic composites with TES properties.

2.4.3. TM of electronic devices
Electronic devices are well known to be sensitive to temperature, since their performance and lifetime span
depend strictly on their maintenance in a precise temperature range, with a particular attention to avoid
overheating. As the electronic components are being equipped with increasingly sophisticated electronics
while their dimensions have decreased, the risk of overheating has also grown, and without a proper TM
system the heat generation and the associated temperature rise may deteriorate the performance, bring
critical components to failure and decrease the user-device interaction comfort [78]. Overheating is among
the most common causes of failure of electronic components, as approximately 55% of failures can be related
to high temperature problems or poor TM [91]. It has been shown that a decrease of 1 ◦C can decrease the
failure rate of up to 4%, and an increase of 10 ◦C–20 ◦C can double the failure probability [91].

An effective TM system must also comply with the weight and size limitations, as these design parameters
are increasingly important for electronic components that must be carried around, such as portable and
wearable electronic devices, but also batteries and circuitry for electric vehicles (EVs). Hence, PCMs are
becoming an attractive alternative to more bulky solutions such as the natural or forced convection (active
cooling), also because electronic devices do not normally need to operate continuously for long periods [10].
When the device is in a heat peak and its temperature starts rising, the PCMmelts and absorbs excess heat,
thereby preventing an excessive temperature burst (passive cooling). When the temperature starts decreasing
again, the PCM crystallizes and releases the heat back to the environment.

Pioneering experimental work of investigation on using PCMs on mobile electronic devices was carried
out in 2004 by Tan and Tso [92], who assessed the efficacy of a passive cooling unit based on n-eicosane
(Tm = 37 ◦C) for the TM small hand-held personal computers (personal digital assistants). The PCM was
contained in an aluminum case and placed under the heaters simulating the heat generation units of such a
device, i.e. the processor and other integrated circuit packaging. The authors concluded that the PCM units
were indispensable to keep the working temperature of the device under an acceptable threshold of 50 ◦C
and that the efficacy of the heat storage unit depended not only on the amount of PCM but also on its
orientation, which determined the heat flux distribution in the whole device. The same concept was
developed by Tomizawa et al [93], who developed a passive cooling unit for mobile phones containing a
commercial microencapsulated paraffin with a melting temperature of 32 ◦C. The PCM was mixed with PE
and molded as a sheet, which contributed to slow down the temperature increase, and this effect was more
evident with thick sheets.

PCMs can be also employed for the TM of EV batteries, to support or replace the traditional cooling
systems based on liquid/air circulation [27, 94]. The first attempts to integrate PCMs in automotive field date
back to the early 2000s, when Al Hallaj and Selman [95] proposed a battery pack in which each cylindrical
Li-ion cell was wrapped with a PCM layer with a melting temperature in the range 30 ◦C–60 ◦C. The authors
demonstrated experimentally and numerically that the total temperature fluctuation was considerably lower
with the PCM.

Successive approaches tried to address the low thermal conductivity of PCMs and the need for improving
the thermal uniformity inside the battery pack. The most promising solutions involved metal or graphite
foams as shape-stabilizers and thermal conductivity enhancers [96]. More recently, Zou et al [97] studied the
introduction of various carbon based nanofillers (e.g. EG, CNTs, graphene) in a paraffin wax, to produce a
shape-stabilized PCM to be employed in a 38120-type LiFeO4 battery pack. They found that this composite
PCM was able to reduce not only the maximum operating temperature, but also the temperature oscillations.

3. Multifunctional composites

A material can be labelled as multifunctional if it features a set of properties that make it capable of
sustaining different types of stimuli at the same time and ready to perform different functions when
required. Multifunctional materials combine properties chosen among the structural mechanical properties,
like stiffness, strength and toughness, and the non-structural properties, like sensoring functions, optical and
magnetic properties, self-healing, thermal/electrical conductivity or insulation, corrosion resistance,
tribological properties, and energy harvesting and storage [98–100].

11



Multifunct. Mater. 3 (2020) 042001 G Fredi et al

Figure 6. Classification of composite materials according to the geometry of the reinforcement (adapted from [101]).

Composite materials are particularly suitable to be designed as multifunctional, as they gather in one
material the properties of multiple phases. Composites consist of two or more distinct materials or phases
with remarkably different mechanical and/or physical properties, and therefore the properties of the
resulting material are noticeably different from those of each constituent, and the composition is properly
tailored to obtain the property set that best suits the specific application [101, 102].

Many natural and synthetic materials that perform multiple functions are polymer-matrix composites.
They combine outstanding polymer-related properties, like toughness and low density, with the specific
properties of the discontinuous phase(s), which can provide stiffness and strength but also several
non-structural functions [103]. The following Sections present a general introduction on structural polymer
composites and decline the concept of multifunctionality in the combination of structural and TES
properties.

3.1. Structural polymer composites
Composite materials pervade our world. Besides being the most widespread material type among biological
materials, composites have been produced and used by mankind for thousands of years. However, it is only
in the last century, with the advent of high-strength synthetic fibers and the enormous advances in polymer
chemistry and technology, that composite materials can offer a performance comparable or even superior to
those of well-established structural materials [104].

Composites are generally constituted by a continuous phase, thematrix, and one or more discontinuous
phases, the fillers, which are generally stronger and stiffer than the matrix and therefore can be also called
reinforcements or reinforcing agents [105]. Composite materials can be classified according to the matrix
material as polymer matrix composites (PMCs), ceramic matrix composites (CMCs) and metal matrix
composites (MMCs). Each of these classes has a particular set of properties and specific application fields, as
the matrix has a strong influence on several mechanical properties of the composite, such as transverse
modulus and strength and the properties in shear and in compression, as well as on the maximum service
temperature [101].

Polymer matrix composites are the most widely used in structural and semi-structural applications at
low-medium temperatures (0 ◦C–250 ◦C), due to their lightness and high specific stiffness and strength.
They combine a polymer matrix with one or more fillers, commonly added to improve stiffness, strength,
toughness, and high-temperature performance. As the mechanism of property improvement strongly
depends on the filler geometry, composites are generally classified according to the reinforcement type,
shape, and size. The reinforcement can be in the form of fibers or particles, as observable from the commonly
accepted classification reported in figure 6. Continuous carbon, glass, or aramid fibers are the reinforcements
of election when high-end mechanical performance is required, while discontinuous fibers are generally use
as a reinforcement for semi-structural purposes, as the properties of discontinuous-fiber polymer
composites fill the property (and cost) gap between continuous fiber composites and unreinforced plastics.

The polymer matrix can be either a thermoplastic or a thermosetting polymer. Although the vast
majority of high performance composites have a thermosetting (e.g. epoxy) matrix [104], thermoplastic
composites have received considerable attention in the last decades due to their undeniable advantages.
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Thermoplastics are generally tougher than thermosets, and therefore they are more damage tolerant and
have a greater low-velocity impact resistance [106]. Moreover, they are fully reacted, and thus they present a
low risk of chemical hazard for the worker, who is not exposed to low-molecular-weight components or
by-products. Additionally, thermoplastics do not require refrigeration and have an infinite shelf life. The
shaping and consolidation time for thermoplastics is shorter than that of the thermosets, as it takes minutes
instead of hours. Nevertheless, thermoplastic require high processing temperatures, in the range of
250 ◦C–450 ◦C, considerably higher than the curing temperatures for thermosets (120 ◦C–175 ◦C), which
demands for presses and tooling materials that can withstand this temperature regime [106]. Due to the
possibility of being remelted, thermoplastics can be joined via techniques as resistance welding or ultrasonic
welding. They can also be post-thermoformed, which is very attractive as it suggests the possibility of
producing continuous-fiber-reinforced flat boards to be subsequently cut and thermoformed into the
desired shape. However, since traditional continuous carbon, glass or aramidic fibers have very little
extensibility, this can be achieved only with very simple geometries, and also the defect healing via remelting
can hardly be practiced without fiber distortion [101].

The main advantages of structural polymer-matrix composites are (i) the possibility to be tailored for
optimum strength and stiffness in the different loading directions, and (ii) the combination of low density
and high strength and modulus. This latter aspect results in higher specific (i.e. normalized by density)
mechanical properties than those of comparable aerospace metal alloys, which in turn allows designing
lightweight structures, thereby leading to improved performance and fuel savings, especially in the
automotive and aerospace industries. Other advantages of structural composites compared to lightweight
metal alloys are the high fatigue life and the corrosion resistance [104]. Due to these features, structural
composite materials are mainly applied in construction and transportation fields, but their application is
expanding also in marine goods, sports equipment, and infrastructures.

On the other hand, among the main disadvantages of composite materials are the expensiveness of raw
materials, fabrication, and assembly, as well as the higher sensitivity to temperature and moisture. Moreover,
composite laminates exhibit poor strength in the out-of-plane direction where the matrix carries the primary
load, but this aspect can be mitigated by orienting the reinforcement properly. Composites are also more
susceptible than metals to impact damage, are prone to suffer from delamination, and can be challenging
to repair.

3.2. Multifunctionality of polymer composites
Multifunctional materials combining structural and non-structural functions have enormous potential to
impact future structural performance by reducing weight, volume, cost, and energy consumption while
enhancing efficiency, versatility, and safety. Since they expand design possibilities and increase the material
added value, they are attracting increasing interest from the industrial and academic point of view. New
combinations of properties are being embedded in the next-generation of multifunctional materials, which
can find applications in the automotive and aerospace industries, but also in civil engineering and in
medicine [98]. However, the combination of properties of a multifunctional material should act
synergistically and not parasitically. If the addition of self-sensing and self-healing capabilities to a structural
material impairs its stiffness and strength excessively, the combination of properties in this material will not
bring benefits at the system level [99].

When designing a multifunctional material, multifunctionality should be considered from the very early
stages of the design process. Unlike natural materials, whose properties are the result of a locally random
evolution process, in the synthetic engineering materials the design must start from the functions and then
proceed in a specific direction. This is important because multifunctionality could be expressed at different
dimension scales (at the level of the phase, the material or the structure), which must be taken into account
during the design of the material and the prediction of final properties of the final component [103].

Composite materials achieve multifunctionality by gathering in one material the properties of multiple
phases and at different dimension scales (from continuous fibers to nanometric fillers) [98]. Most of the
recent developments in multifunctional materials tend to be polymer-matrix structural composites featuring
one or more additional non-structural functions [107–114]. This strategy allows large weight savings at the
system level, through the elimination or reduction in the number of multiple monofunctional constituents,
and it gives better results than the conventional approach of optimizing weight and geometry of each
individual subsystem [99].

3.3. Structural and semi-structural TES composites
Designing polymer composites as multifunctional can further expand the weight saving possibilities pursued
when composites are selected as structural materials. The scientific literature reports multiple examples of
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multifunctional composites combining structural properties and a wide range of non-structural functions,
which respond to a broad variety of needs in the most diverse applications.

An interesting field in which multifunctionality of polymer composites can be exploited, although not yet
thoroughly investigated, is that of structural composites with TES capability. As explained in section 2.4,
among the applications of TES materials are (i) the heat storage for temperature control, for example in the
buildings industry, or to produce smart textiles for body temperature regulation, and (ii) the temporary
storage of heat to prevent overheating, as in the cooling systems for electronic devices.

When a TES material is used for TM, it is usually only an extra component added to the main structure
of a device. However, the resulting increase in weight and volume may be unacceptable for some applications
where weight and volume reduction are crucial design parameters. In this case, it would be useful to have a
multifunctional material that combines good mechanical properties and the heat storage/management
function. With such materials it would be possible to build part of the structure with the ‘thermal battery’
material, or, in other words, to design a structure that is part of the TM system. This approach is similar to
that developed for an outstanding application of multifunctionality, i.e. the structural batteries, which are
devices that can carry mechanical load and store electrochemical energy simultaneously.

According to the authors’ opinion, these structural or semi-structural lightweight TES composites would
be attractive in four main applications:

(a) In the transportations field, the considerable application of polymer composites in replacement of tra-
ditional materials could complicate the TM in the indoor vehicle environment, due to their different
(generally lower) thermal conductivity and heat capacity. This could result in an increasing difficulty in
maintaining the indoor temperature in the human thermal comfort range. This issue could be addressed
by introducing a TES system able to store and release thermal energy in the temperature range around
the human comfort temperature (18 ◦C–25 ◦C), and the overall performance-to-weight ratio would
be maximized if this TES material is part of the structural or semi-structural components themselves.
Moreover, a PCM-basedmaterial would decrease the energy consumption related to the air conditioning
system and the thermal conditioning system of batteries and powertrain, which are the main auxiliary
energy consumers in EVs [115]. This concept could be extended to other temperature ranges, whichmay
be interesting for the transportation of food, biomedical items, or other perishable goods.

(b) In the field of portable electronics, there is an increasing tendency of enhancing the performance, power
and functionalities of the devices while reducing weight and volume. This trend brings issues in the
thermal regulation, especially in the peak power operations. Passive cooling systems based on PCMs are
attracting attention due to their capacity of maintaining the temperature under a certain threshold value
and of contrasting the momentaneous but rapid heat generation during peak power operations [10].
However, in all the solutions implemented so far, the PCM is contained in an additional module, while
it would be advantageous to embed it directly inside the structural components such as the phone or
laptop cases. This concept can be useful for the TM of all the electronic devices that must be carried
around and need TM; this group comprises not only mobile phones and laptops, but also the batter-
ies of EVs [116]. Another interesting application in the electronics field would be the production of
PCM-enhanced circuit boards, traditionally made of glass fiber (GF) reinforced epoxy resin.

(c) Among the main drawbacks of polymer-matrix composites, compared to metals or ceramics, are the
lower thermal resistance and the loss of mechanical properties with increasing temperature. This can
be detrimental for some applications where the composite material is subjected to external heating in
service, as in the case of luxury car chassis entirelymade in carbon fiber composite. Local overheating and
loss of properties could be also determined by dynamic loading and lack of heat dissipation, which can
bring to premature failure by fatigue [117]. This effect, critical especially for thermoplastic composites,
could be limited by adding a PCM, which absorbs excess heat and avoids temperature rise. This concept
has been proven effective byCasado et al [118], who inserted a hydrated salt with a transition temperature
of 50 ◦C in a polyamide-based composite reinforced with GFs. In this case, however, the PCM was not
employed as an additional filler, but it was added in the gaps of the flanged plate made of the glass-
reinforced polyamide. Much more capillary would be the action of the PCM if it were dispersed in the
whole composite mass, or at least in those parts more subjected to fatigue damage.

(d) One of the main problems of outdoor infrastructures operating in cold environments is the forma-
tion and accretion of ice. Critical structures such as transmission lines, wind-driven power generators,
off-shore oil rigs, and means of transportation like aircrafts and ships can be damaged by the excessive
weight of the ice layer and the stresses induced by freeze-thaw cycles [119]. The solutions implemented
so far rely on heating methods, mechanical methods, or the circulation of de-icing fluids underneath the
surface, which are effective but extremely energy-consuming [120]. More recently, slippery or superhy-
drophobic coatings have been developed that prevent ice adhesion or reduce ice shear strength, but they
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generally have low resistance to mechanical abrasion and poor durability to the outdoor weather agents.
For the structures built in polymer composites, e.g. the wind turbine blades, an effective alternative could
be the introduction of a PCM with phase transition at approx. 0 ◦C in the whole composite thickness
or only in the outermost layers [79]. The heat released during crystallization of the PCM would help in
decreasing the ice accretion rate, while reducing the need for heating through an external energy supply.

In all these applications, PCMs are the ideal TES materials, as they work at a nearly constant temperature
and exhibit a high enthalpy per unit mass, thus being suitable for applications where weight saving is a key
factor. It is therefore fundamental to understand how the PCM addition influences the mechanical properties
of the host composite and how this effect varies below and above the PCM phase change.

So far, this investigation has been carried out to some extent only on construction materials like concrete
and gypsum, in which a PCM phase is added to enhance the TM of indoor environments while reducing the
energy consumption for indoor heating/cooling. The majority of TES systems integrated in walls or flooring
materials are represented by organic PCMs with a phase transition temperature in the range 18 ◦C–25 ◦C,
microencapsulated in polymeric shells. The characterization of such PCM-enhanced construction materials
generally evidences that an increase in the PCM content brings an increase in TM properties and a decrease
in power consumption. On the other hand, PCM addition determines a lowering of compressive and flexural
properties, due to the introduction of a less mechanically strong phase. Therefore, the authors of the revised
papers generally conclude that it is important to select the PCM that determines the smallest decrease in
mechanical properties while providing the highest TES capability, and that it is fundamental to identify the
optimal PCM content to obtain a material with the most suitable property set for a specific application [121].

The open scientific literature provides some examples of polymers containing a PCM. Organic PCMs are
usually introduced into polymer matrices in three ways: (i) without further stabilization (formation of a
blend) [73, 122–124], (ii) as PCMMCs [125–128], or (iii) shape-stabilized with layered materials or
nanofillers, which are generally carbonaceous or ceramic [129–131]. On the other hand, very few cases are
reported of PCM-enhanced polymers employable as structural materials. Excluding the field of construction
materials, there is a surprisingly limited number of publications about materials designed to combine
structural and TES functions. One of the first reported examples is that presented by Wirtz et al [132], who
developed a sandwich structure made of a graphitic foam impregnated with paraffin (Tm= 56 ◦C) as the
core and carbon/epoxy laminates as the skin, intended for the TM of electronic devices. The graphitic foam
had the twofold function of immobilizing the molten paraffin and enhancing the thermal conductivity, while
the carbon/epoxy skins increased the flexural stiffness. The literature reports several other studies on carbon
foams as shape-stabilizers for organic PCMs, but they are generally employed only to enhance the thermal
conductivity, and little attention is given to the mechanical performance [133–135].

More recently, a research group at RMIT University (Melbourne, Australia) developed a woven GF/epoxy
laminate containing paraffin MCs and investigated the impact of the PCM on the mechanical and thermal
properties of the host laminate [136–138]. An increase in the PCM weight fraction determined a decrease in
the tensile, flexural and compressive properties, due to the intervention of additional damaging mechanisms
as delamination, matrix cracking, and fiber/matrix debonding, and the authors indicated the weak interfacial
adhesion between the capsules and the matrix as one of the causes for the decrease in mechanical
performance. On the other hand, the mild processing conditions allowed retaining most of the initial PCM
enthalpy, but thermogravimetric analysis (TGA) showed that a fraction of the capsules was damaged during
processing. Nevertheless, these results were promising for the development of such structural TES
polymer-matrix composites, which exhibited a phase change enthalpy of up to 40 J g−1.

Our group has recently expanded the investigation of structural and semi-structural TES composites, by
considering and comparing several combinations of polymer matrices, reinforcements and PCMs. The
research work has seen the production and characterization of epoxy/carbon composites containing paraffin
stabilized with CNTs or microencapsulated paraffin [139–145], polyamide composites enhanced with a
microencapsulated paraffinic PCM and reinforced with continuous or discontinuous fibers [146–150], and a
fully biodegradable laminate based on thermoplastic starch, ultra-thin wood laminae and PEG [151].

4. Thermoplastic composites for TES

Thermoplastic composites have received considerable attention in the last decades, due to some advantages
over their thermosetting counterpart, as explained in section 3.1 [104, 106]. Even though the use of
thermoplastic composites can be advantageous for some applications, a very exiguous number of examples
have been reported in the literature that deal with thermoplastic structural or semi-structural composites
containing organic PCMs. The advantages and drawbacks of producing such composites are discussed
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Figure 7.Melt flow index (MFI) of the PA/PCM blends as a function of the nominal PCM content (at 230 ◦C and 2.16 kg; single
tests at 5 kg and 10 kg are also indicated) (adapted from [146]).

through the presentation of three case studies, which illustrate the materials selection, sample preparation,
and results of the characterization.

4.1. Case study 1: polyamide/GF laminates containing paraffinic PCMs
The first case study deals with the introduction of two powder-like paraffinic PCMs in polyamide12(PA12)/
GF bidirectional laminates [146]. The work aimed at comparing the performance of two PCMs with similar
phase change enthalpy (≈200 J g−1) and temperature (≈43 ◦C) when embedded in a traditional
thermoplastic matrix reinforced with continuous GFs and at studying the properties of these laminates as a
function of the PCM content. The main difference between the two employed PCMs is the confinement
technique. The first PCM is the microencapsulated paraffin MPCM43D produced by Microtek Laboratories
Inc. (Dayton, OH, US), with an average capsule diameter of 20 µm, from now on called MC. The second is a
paraffinic PCM shape-stabilized with CNTs, prepared by adding CNTs to melted paraffin in a weight content
of 15 wt%. The paraffin-CNT mixture was then cryogenically grinded under liquid nitrogen and then sieved
with a 300 µmmetallic sieve to obtain a micrometric powder that can be easily mixed with a polymer matrix,
with an average powder size of 53± 30 µm, from now on called ParCNT.

PA12 was melt compounded with either MC or ParCNT in different weight percentages (15–60 wt%),
and the blends were hot-pressed to produce thin films for the subsequent fabrication of the laminates via
film stacking. Five laminates were prepared: the neat PA-GF laminate without PCM, two laminates in which
the matrix contained 30 wt% and 60 wt% of MC (PA-MC30-GF and PA-MC60-GF), and two laminates
containing the same initial fractions of ParCNT (PA-ParCNT30-GF and PA-ParCNT60-GF).

One of the most important parameters during the production process of such laminates is the viscosity of
the matrix, which should be low enough to allow a complete fiber wetting. The viscosity of the PA/PCM
blends increases with the PCM content, as shown by a sensible decrease in the melt flow index (MFI)
(figure 7). For the samples with MCs, the MFI decreases with an increase in the MC content and reaches a
minimum of 5.2 g/10 min, but a more dramatic decrease is observed for the samples with ParCNT. For the
highest concentrations, the measurements could be performed only with a mass of 5 or 10 kg, and the
resulting MFI values were very low (0.7 g/10 min). This is probably due to the increasing content of CNTs,
which are well known to heavily increase the viscosity of molten polymers [152]. This implies that, although
both PCMs types decrease the fluidity of the PA, the effect of the MC is less intense than that of the ParCNT,
and that it is unlikely to obtain a defect-free composite at elevated ParCNT contents.

This is evident from the optical microscope micrographs (figure 8) and the data of volume composition
of the prepared laminates (table 3). The MC-containing laminates are of good quality, as they contain few
matrix-rich zones and the fibers are properly wetted, but the interlaminar region is thicker than that of the
neat PA-GF laminate (not shown), due to the concentration of the MC phase in this region rather than
among the fibers of the same yarn. The concentration of the PCM in the interlaminar region is observable
also on the ParCNT-containing laminates, but for these laminates the quality appears worse; especially in the
laminate PA-ParCNT60-GF, the fibers are not properly wetted, and the fabric weaving seems distorted. The
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Table 3. Volume compositions of the PA/PCM/GF laminates and results of the DSC tests (data from [146]).

Sample ϑf (vol%) ϑm (vol%) ϑv (vol%) Tm (
◦C) ∆Hm (J g

−) ∆Hrel
m (%) Tc (

◦C) ∆Hc (J g
−)

MC – – 43.5 200.1 100 30.0 200.0
ParCNT – – 42.6 205.5 100 33.5 206.0
PA-GF 53.4 44.5 2.1 – – – – –
PA-MC30-GF 55.5 42.2 2.3 43.9 6.5 44.2 25.2 3.1
PA-MC60-GF 53.2 44.3 2.5 46.3 17.1 52.7 23.2 13.8
PA-ParCNT30-GF 50.5 47.7 1.8 43.0 5.3 31.9 39.7 2.0
PA-ParCNT60-GF 32.4 57.8 9.8 43.5 8.4 15.8 31.3 5.6

ϑf = volume fraction of fibers; ϑm = volume fraction of matrix (PA/PCM system); ϑv = volume fraction of voids; Tm =melting

temperature of the PCM (◦C);∆Hm = PCMmelting enthalpy (J/g);∆Hrel
m = relative PCMmelting enthalpy (%); Tc= crystallization

temperature of the PCM (◦C);∆Hc = PCM crystallization enthalpy (J/g).

Figure 8. Optical microscope micrographs of the polished cross sections of the PA/PCM/GF laminates. (a) PA-MC30-GF;
(b) PA-MC60-GF; (c) PA-ParCNT30-GF; (d) PA-ParCNT60-GF.

worse quality of this laminate is observable also from the lower fiber volume fraction and the considerably
higher porosity (table 3), while all the other laminates show approx. the same fiber content (50–55 vol%) and
void volume fraction (≈2 vol%).

The most important test to assess the TES capability is differential scanning calorimetry (DSC), which
allows the measurement of the total heat exchanged during the phase change of the PCM and the temperature
interval in which it occurs. The DSC thermograms of the first heating scan, reported in figure 9, show two
endothermic peaks, the first at approx. 40 ◦C, related to the melting of the PCM, and the second at approx.
180 ◦C associated to the melting of the PA phase. The melting and crystallization enthalpy of the PCMs in
the prepared composites are evaluated by calculating the area of the endothermal and exothermal peak,
respectively. In order to evaluate the TES efficacy of composites, the results could be compared to those of the
two neat investigated PCMs (MC and ParCNT), which show a transition enthalpy of approx. 200 J g−1 either
in heating or in cooling. As reported in table 3, the phase change enthalpy of the laminates is remarkably
lower than expected by considering their nominal PCMmass fraction. This is evident from the values of
relative melting and crystallization enthalpy (∆Hrel

m ,∆Hrel
c ), calculated through equations (4a) and (5b) as

∆Hrel
m =

∆Hm
ωPCM · ∆Hneat

m

(4)

∆Hrel
c =

∆Hc
ωPCM · ∆Hneat

c

, (5)

where and∆Hc are the melting and crystallization enthalpy values of the PCMmeasured on the
polymer/PCMmixtures and on the reinforced composites, ωPCM is the nominal weight fraction of PCM in
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Figure 9. DSC thermograms (first heating scan) of the laminates PA/PCM/GF (10 ◦C min−1; N2) (data from [146]).

Table 4.Main results of the mechanical investigation of the PA/PCM/GF laminates (tensile tests and short-beam shear tests) (data from
[146]).

Sample E (GPa) σb (MPa) εb (%) ILSS (MPa)

PA-GF 13.1± 0.3 160± 29 2.7± 0.3 11.2± 1.7
PA-MC30-GF 12.7± 0.9 124± 18 3.0± 0.4 9.8± 1.7
PA-MC60-GF 13.3± 0.7 114± 10 3.0± 0.7 9.4± 2.1
PA-ParCNT30-GF 9.9± 0.4 92± 9 3.5± 0.1 6.7± 0.3
PA-ParCNT60-GF 6.5± 0.1 56± 15 3.5± 1.1 5.5± 1.8
E= elastic modulus (GPa); σb = stress at break, corresponding also to the maximum stress σMAX (MPa); εb = strain at break,

corresponding also to the strain at the maximum stress (%); ILSS= interlaminar shear strength.

the sample and ∆Hneat
m and ∆Hneat

c are the melting and crystallization enthalpy values of the neat PCM. A
relative phase change enthalpy close to 100% suggests that the PCM content still present in the composite
after processing is close to the nominal (initial) fraction, and that the PCM preserves its capability of melting
and crystallizing also when embedded in a composite. Conversely, a low relative phase change enthalpy
indicates that the PCM degrades or leaks out of the composite during processing, due to high temperatures
and pressures applied or to a poor shape-stabilization. Both these phenomena occur in these composites, for
which the processing conditions applied during melt compounding and hot-pressing cause a partial
degradation of the PCMs. The composites with ParCNT present a much greater decrease in ∆Hrel

m , which
does not even show a trend with the ParCNT content. This suggests that the degradation of ParCNT during
the process is greater than that of MC, which support the observation that a microencapsulated PCM can be
more easily incorporated in a glass fiber/PA12 laminate than a shape-stabilized one, due to the generally
higher thermal stability.

For the mechanical properties, table 4 shows the values of tensile elastic modulus, strength, and strain at
break, as well as the interlaminar shear strength (ILSS). The stress at break decreases upon PCM addition,
and this effect is more evident for the laminates with ParCNT, in which also the elastic modulus is lower than
that of the neat PA-GF laminate. Conversely, the elastic moduli of the laminates with MC are not significantly
different from that of PA-GF, which suggests that the stiffness is mainly determined by the elastic properties
of the reinforcement, and the matrix fulfils its load-transfer role properly. Also the strain at break is not
negatively affected by the PCM addition. Therefore, it can be concluded that the addition of PCMMCs
influences the mechanical properties of the host laminate only marginally, while a sensible decrease in the
mechanical performance can be appreciated with ParCNT addition. In previous works, the elastic modulus
of MCs was evaluated as 28 MPa [153, 154], while the modulus, strength and strain at break of ParCNT are
approx. 1.5 GPa, 5.5 MPa, and 0.7% [139].

A similar observation can be made for the ILSS. The laminates with MC do not perform significantly
differently from the laminate without PCM, while the ILSS of the of the laminates with ParCNT sharply
decreases with an increase in the PCM content. This can be attributed to the noticeable porosity and the
lower mechanical properties of the matrices with ParCNT. In conclusion, the microencapsulated PCM is
more suitable to produce laminates in combination with PA and GF, since it exercises a lower influence on
the matrix viscosity, has a greater thermal stability, and impacts the mechanical properties of the laminates
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marginally. However, due to the processing-related PCM degradation, the losses in TES capability
are massive.

Two strategies can be adopted to try to produce thermoplastic composites while limiting the PCM
degradation, which are presented in sections 4.2 and Par. 4.3, respectively. The first strategy consists in
employing discontinuous fibers instead of a continuous fiber fabric. In this way, the composites can be
produced by melt compounding followed by a single hot-pressing step, which allows avoiding one processing
step necessary for the production of GF laminates. The second strategy involves a reactive thermoplastic
resin, which is provided as a low viscosity precursor and can be processed at room temperature similarly to a
thermosetting resin, thereby drastically reducing the risk of thermo-mechanical degradation. As this second
strategy nowadays is not implementable with traditional thermoplastics, an additional approach can be
considered that involves the production of commingled yarns containing PCM-enhanced thermoplastic
filaments and continuous reinforcing fibers. This strategy not only allows the production of a component
made of traditional thermoplastic laminate in fewer processing steps, but it also shifts the multifunctionality
from the composite level to the yarn level. This approach was investigated by our group through the
production of PP filaments containing paraffin MCs [155].

4.2. Case study 2: PCMMCs in semi-structural carbon/polyamide composites
The present case study deals with the preparation of discontinuous-fiber composites having the same PA12
matrix and the same microencapsulated PCM described in section 4.1, but reinforced with discontinuous
carbon fibers of two different lengths, i.e. 6 mm and 100 µm and denoted as carbon fibers ‘long’ (CFL) and
carbon fibers ‘short’ (CFS), respectively. PA was mixed with MC and either CFL or CFS in different weight
concentrations, and the composites were prepared by melt compounding and hot-pressing. The samples are
denoted as PA-MCx-CFLy or PA-MCx-CFSy, where x is the nominal MC weight fraction with respect to the
total PA-MC mass and y is the weight fraction of either CLF or CFS with respect to the total mass of the
composite.

Figure 10 shows the scanning electron microscopy (SEM) micrographs of the cryofracture surface of
some selected compositions. The processing parameters successfully produce a homogeneous distribution of
both the carbon fibers and the MCs in the matrix. The core–shell structure of this PCM is clearly observable
especially in that acquired at higher magnification (figure 10(b)). The MC indicated with a dashed blue
arrow shows both the thin polymer shell and the paraffinic core. The irregular morphology and the voids of
the core indicate a certain aptitude of the capsules to accommodate the volume variation during the phase
change and avoid the shell rupture [57]. In other cases (solid red arrow), the shell is still partly observable,
but the core has been almost completely removed. The adhesion between the shell and the PA matrix is fairly
good, even though some debonding is observable. The same considerations can be made for the samples
containing both capsules and fibers, as appreciable from the micrograph of the sample PA-MC50-CFL20
(figures 10(c)–(d)). However, the fracture surface of this sample looks irregular, which may indicate the
presence of voids and defects within the composite. This could stem from the considerably high amount of
fillers (MC and CFL) and the high viscosity during compounding, which could have prevented a proper
molding of the composite during the hot-pressing step.

The results of the DSC analysis are shown in figure 11, which reports representative thermograms of the
first heating scan and the cooling scan for some selected compositions, i.e. the samples PA-MCx-CFS20. The
main results of the DSC analysis of all the samples are summarized in table 5. As found for the PA-based
samples described in section 4.1, the melting and crystallization peaks of MC are found at approx. 43 ◦C on
heating and 30 ◦C on cooling, respectively, while the signals at higher temperature are related to the phase
transition of PA. The melting/crystallization temperatures of the PCM (Tm, Tc), regarded also in this case as
the peak temperatures of the endo/exothermic signals, do not vary significantly with the carbon fiber
content, and the phase change enthalpy (∆Hm,∆Hc) increases with the weight fraction of MC. The value of,
calculated through equation (4a), is generally below 100%, and it decreases as the MC content increases.
However, these values are mostly higher than those calculated for the samples presented in section 4.1, which
highlights that applying milder processing conditions and avoiding one hot-pressing step is helpful to
preserve shell integrity and minimize PCM degradation.

Nevertheless, some degradation and leakage are still present, as indicated by values of∆Hrel
m lower than

100%. The decrease in∆Hrel
m is more evident with at higher MC and carbon fiber fraction. This is linked to

the higher melt viscosity and the consequently higher shear stresses to which the capsules are subjected
during compounding, which damages the thin capsule shell and causes the leakage and degradation of the
paraffinic core. Additionally,∆Hrel

m is lower for samples containing CFL compared to those with CFS, which
can be related to the higher viscosity and higher shear stresses obtained while compounding mixtures
containing CFL.

19



Multifunct. Mater. 3 (2020) 042001 G Fredi et al

Figure 10. SEM micrographs of the cryofracture surface of some selected compositions: (a, b) PA-MC50; (c, d) PA-MC50-CFL20.

Table 5. Results of the DSC tests on the samples PA-MCx-CFL and PA-MCx-CFS (data from [148]).

Sample Tm (
◦C) ∆Hm (J/g) ∆Hrel

m (%) Tc (
◦C) ∆Hc (J/g)

MC 44.1 220.1 100 30.2 208.2
PA-MC20 46.2 44.5 101.1 26.7 38.1
PA-MC40 47.3 91.8 104.3 26.4 84.1
PA-MC50 49.9 100.8 91.6 25.3 93.8
PA-MC60 47.8 116.6 88.3 24.1 108.9
PA-MC20-CFL20 45.5 33.0 93.8 31.5 27.9
PA-MC40-CFL20 45.8 28.9 41.1 31.4 23.8
PA-MC50-CFL20 46.6 46.9 53.3 26.1 40.9
PA-MC60-CFL20 45.8 44.5 42.1 30.2 37.6
PA-MC20-CFS20 45 33.3 94.6 31.7 28.8
PA-MC40-CFS20 48.1 58.8 83.5 25.2 54.3
PA-MC50-CFS20 47.5 60.4 61.0 26.6 57.7
PA-MC60-CFS20 44.8 54.6 51.7 24.5 51.4

Tm =melting temperature of the PCM (◦C);∆Hm = PCMmelting enthalpy (J/g);∆Hrel
m = relative PCMmelting enthalpy (%);

Tc = crystallization temperature of the PCM (◦C);∆Hc = PCM crystallization enthalpy (J/g).

This agrees with the results of the dynamic rheological tests, performed with a parallel plate rotational
rheometer (figure 12). The viscosity increases upon filler addition, but the MC increase the viscosity
significantly only at very high concentrations. On the other hand, the samples containing both MC and
carbon fibers show more clearly phenomena such as the viscosity increase, the yield stress rise at low shear
rates and the anticipation of the shear thinning region. Moreover, the viscosity is higher for the samples
containing CFL than for those containing the same amount of CFS. This suggests that the CFL produce a
higher viscosity rise also in the melt compounding process, thereby intensifying the shear stress, MC damage
and paraffin degradation. This is in good agreement with DSC results, which highlight a higher PCM
experimental weight fraction and enthalpy in the samples containing CFS. However, the difference in the
measured viscosity seems too small to justify such discrepancies in the DSC results. It should be considered,
though, that the samples analyzed by dynamic shear rheometry have been subjected to melt compounding
and hot pressing, which can significantly shorten the fiber length. As fibers with a higher aspect ratio are
generally more influent on the polymer melt viscosity, it is reasonable to hypothesize that the shear stresses in
the melt compounder are higher at the beginning of the compounding stage, which causes an even more
extensive MC damage.

The greater PCM degradation in CFL-containing composites can be also appreciated from TGA. As
observable from figure 13, the addition of carbon fibers delays the beginning of thermal degradation of the
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Figure 11. DSC thermograms (heating scan and cooling scan) of the samples PA-MCx-CFS20 (10 ◦C min−1; N2
flow= 100 ml min−1) (data from [148]).

neat PA, whilst the addition of MC shifts the thermograms to lower temperatures. The mass loss associated
to MC degradation, between 200 ◦C and 400 ◦C, is less than expected by considering the nominal MC weight
fraction. This is in good agreement with the DSC results, where the phase change enthalpy is less than
expected due to some leakage and degradation of PCM. This effect is more evident for the CFL-containing
samples than for the samples reinforced with CFS, which agrees with the results of the rheological tests and
confirms that the greater increase in viscosity induced by CFL is responsible for the greater capsule breakage
and paraffin degradation.

Another interesting parameter of composites containing a PCM is thermal conductivity. A greater
thermal conductivity helps homogenizing the temperature of the whole composite mass during heating or
cooling, thereby improving the heat exchange efficiency. Figure 14 shows the values of thermal conductivity
of some selected compositions determined through laser flash analysis (LFA). As expected, the introduction
of carbon fibers increases the thermal conductivity. For the samples containing carbon fibers and MC, the
thermal conductivity shows a maximum at 40 ◦C, while approaching the melting temperature of the PCM.
This phenomenon, observed elsewhere in the literature [72], is more evident for the samples containing CFS;
this suggests that the effective PCM content is higher for these samples compared to the CFL-reinforced ones,
which is consistent with the DSC and TGA results.

Finally, figure 15 shows the effect of CFS, CFL and MC on the tensile elastic modulus and strength of the
prepared composites. The introduction of MC decreases the elastic modulus, while the addition of the
carbon fibers increases it. This effect is more evident for CFL than for CFS, because the greater load transfer
length determines a higher stiffening and reinforcing capability, as thoroughly reported in the literature
[156, 157]. Similar considerations can be made for σMAX, which decreases with an increase in the MC
content and increase with the carbon fiber concentration.

In conclusion, the processing conditions applied for the production of these discontinuous-fiber
composites were milder than those employed to produce the continuous-fiber laminates described in
section 4.1, which reduces the degradation of the PCM and results in a higher final relative phase change
enthalpy. However, also for these composites the paraffin degradation is not negligible and is more evident
for samples reinforced with longer fibers, which cause a higher increase in viscosity. For the mechanical
properties, also in this case quasi-static tensile tests highlight a decrease in elastic modulus and maximum
stress upon PCM addition, while carbon fibers positively contribute to increase the elastic modulus.

4.3. Case study 3: reactive thermoplastic resin as a matrix for multifunctional carbon-fiber laminates
This case study presents a different approach to produce thermoplastic laminates containing a PCM. This
approach aims at preserving the integrity of paraffin MCs by avoiding the high-temperature processing of
highly viscous molten polymers [158, 159]. It is made possible by adopting the newly developed
thermoplastic resin Elium® (Arkema, Lacq, France), provided as a low-viscosity liquid and processable as a
thermosetting resin.

This technique is nowadays applicable only to some selected polymer formulations and not to the
majority of the most common thermoplastic polymer matrices. Nevertheless, it is a powerful and effective
method that is worth investigating to produce post-thermoformable PCM-enhanced composites containing
continuous reinforcing fibers.

21



Multifunct. Mater. 3 (2020) 042001 G Fredi et al

Figure 12. Results of the dynamic rheological test. Values of viscosity as a function of the applied frequency for some
representative compositions (parallel plate; gap 1.5 mm; diameter 8 mm; 190 ◦C; N2) (adapted from [148]).

These composites were prepared at room temperature, by mixing the reactive resin precursor (EL) with
the paraffin MCs presented in sections 4.1 and 4.2 in different weight fractions (0 wt%, 20 wt%, 30 wt% and
40 wt%), and by using the mixtures as matrices to prepare laminates through hand-layup and vacuum
bagging techniques. The prepared laminates were labeled EL-CF, EL-MC20-CF, EL-MC30-CF and
EL-MC40-CF, according to the nominal MC weight fraction in the matrix. The OMmicrographs of the
polished cross sections of the laminates are presented in figure 16. As for the laminates presented in
section 4.1, the MC phase is preferentially located in the interlaminar region, due to the different dimensions
of carbon fibers (average diameter 7 µm) and MCs (average diameter 20 µm). Moreover, the MC
concentration in the interlaminar region does not increase considerably with the MC content, but what is
evidently seen increasing is the thickness of the interlaminar region, and thus that of the whole laminate.
This indicates that the increase in MC content causes a rise in viscosity of the EL/MC mixture, which flows
out of the CF fabric slower and with more difficulty, thereby causing a final higher matrix weight (and
volume) faction. Therefore, the fiber volume fraction (ϑf) decrease with increasing initial MC content. This
is appreciable from quantitative data of fiber volume fraction (table 6), calculated with TGA, DSC, and
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Figure 13. TGA thermograms of the samples (a) PA-MCx-CFL20; (b) PA-MCx-CFS20 (10 ◦C min−1; N2 flow= 15 ml min−1)
(adapted from [148]).

density measurements (the details of the calculations are reported in [158]). Conversely, the volume fraction
of voids (ϑv) generally increases with the MC content.

The decrease in ϑf is the main reason for the decrease in mechanical performance, as observable from the
data of flexural modulus, stress and strain at break reported in figure 17. The elastic modulus decreases with
an increase in the MC content, but this is mainly due to the decreasing fiber volume fraction. The flexural
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Figure 14. Results of the LFA test on the samples PA, PA-CFL20, PA-MCx-CFL20 and PA-MCx-CFS20. Thermal conductivity as a
function of temperature (data from [148]).

Table 6. Results of the DSC tests and volume composition of the samples EL-MCx-CF (data from [158]).

Sample ϑv (vol%) ϑf (vol%) ϑMC (vol%) Tg (
◦C) Tm (

◦C) ∆Hm (J/g) Tc (
◦C) ∆Hc (J/g) ωMC (wt%)

MC – – 1 – 45.0 208.2 29.8 208.2 100
EL 1.6± 2.1 56.7± 1.6 0 101.0 – – – – –
EL-MC20-CF 2.2± 1.3 35.6± 0.6 20.95± 0.19 102.5 46.6 30.2 27.5 31.6 14.5
EL-MC30-CF 1.2± 3.2 27.4± 1.9 30.41± 0.07 99.6 45.3 45.9 29.5 45.6 22.1
EL-MC40-CF 5.2± 2.4 25.0± 1.2 40.93± 0.04 98.6 46.4 66.8 27.4 65.6 32.1

Tg = glass transition temperature of the PCM (◦C); Tm =melting temperature of the PCM (◦C);∆Hm = PCMmelting enthalpy (J/g);

Tc= crystallization temperature of the PCM (◦C);∆Hc = PCM crystallization enthalpy (J/g); ωMC = experimental weight fraction of

microcapsules (wt%); ϑv = voids volume fraction (vol%); ϑf = fiber volume fraction (vol%); ϑMC =MC volume fraction (vol%).

strength follows the same trend, and this is probably due to the presence of additional failure mechanisms
such as delamination and failure in the zone subjected to compression, as appreciable from a comparison
between the load-displacement curves (reported in [158]). While the neat EL-CF laminate is subjected to a
sudden failure after the maximum load, the laminates containing MC are subjected to a progressive failure
and present a drop-plateau sequence after the maximum load. The damage was observed starting either in
the mid-upper zone, subjected to compression, or in the interlaminar zone. This failure mode, commonly
reported for woven fabric composites [160], is typical of materials with a tensile in-plane strength
considerably higher than the ILSS, which is likely the case for these laminates.

Conversely, the thermal and TES properties strongly increase with the MC content. The DSC
thermograms (figure 18) show the PCMmelting peak in the heating scan at approx. 45 ◦C and the
crystallization peak in the cooling scan at approx. 30 ◦C, as observed for the previously reported Case
Studies. The position of these peaks is not remarkably affected by the MC content, and the same is true for
the glass transition temperature of the EL matrix, located at approx. 100 ◦C. On the other hand, the phase
change enthalpy increases with the MC amount, as observable from the intensity increase of the melting and
crystallization peaks. The developed enthalpy reaches 66.8 J g−1 for the sample EL-MC40-CF, which is
remarkably higher than that measured on other thermoplastic composites with the same initial MC fraction.
This indicates that the processing conditions of this reactive thermoplastic resin are suitable to avoid damage
to the MCs and retain the heat storage ability of the paraffinic core, unlike the traditional thermoplastic
matrices presented so far.

This is at the basis of the improved TM performance evidenced through a test with a thermal camera.
This test was performed by heating the laminates in an oven at 70 ◦C and letting them cool to room
temperature while measuring their surface temperature with an infrared thermal camera. Figure 19 reports
the values of temperature as a function of time during the cooling stage. In the MC-enhanced laminates, the
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Figure 15. Results of the tensile tests. Elastic modulus and maximum stress as a function of the nominal (initial) MC volume
fraction for the composites with a carbon fiber content of 0 wt% and 20 wt% (data from [148]).

temperature trend shows plateau-like regions caused by the latent heat released during PCM crystallization,
which increases the time to reach room temperature considerably.

Finally, the prepared laminates were subjected to an in-depth characterization trough
dynamic-mechanical analysis (DMA). Three testing modes were investigated, namely single-frequency scans,
multifrequency scans and heating-cooling cycles. The trends of the storage modulus E ′ and the loss modulus
E ′ ′ acquired during single-frequency scans are illustrated in figure 20. To facilitate the comparison, the
values of E ′ of each laminate have been normalized to the value at 0 ◦C. The storage modulus of all laminates
shows a marked decrease at the glass transition of the EL matrix, where E ′ ′ shows a peak. The laminates
containing MC shows an additional transition at the PCMmelting temperature, and the drop of is more
evident at high MC contents. Interestingly, the correlation between the drop amplitude and the MC weight
fraction or the melting enthalpy is linear, with R2 values higher than 0.98. Another DMA parameter that
correlates linearly with the melting enthalpy is the area under the tanδ peak (reported in [159]). This implies
that the DSC test allows one to predict, to a certain extent, the trend of the viscoelastic properties of the
composite in the temperature range around the PCM phase change.

As structural TES composites must withstand repeated thermal cycles around the phase change
temperature of the PCM, DMA tests were performed not only on heating, but also on cooling, between
−40 ◦C and 60 ◦C. This is not a common approach as no other studies can be found in the literature that
analyze the trend of viscoelastic parameters of PCM-enhanced polymers on cooling, to the best of the
authors’ knowledge. Figure 21 illustrates the trends of E ′ during a heating-cooling-heating scan performed at
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Figure 16. Optical microscope micrographs of the polished cross section of the laminates (a) EL-CF; (b) EL-MC20-CF;
(c) EL-MC30-CF; (d) EL-MC40-CF; (e) and (f) EL-MC30-CF, higher magnification.

Figure 17. Results of the three-point bending tests on the samples EL-MCx-CF as a function of the nominal MC content in the
matrix (data from [158]).

3 ◦C min−1 on the three prepared MC-containing laminates. The absolute values of E ′ decrease with an
increase in the MC weight fraction, which was expected from the decreasing values of the elastic modulus
(figure 17). The decreasing step of E ′ at the PCMmelting is almost completely recovered on cooling, as it
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Figure 18. DSC thermograms of the samples EL-MCx-CF (10 ◦C min−1; N2 flow= 100 ml min−1) (data from [158]).

Figure 19. Thermal camera tests on the samples EL-MCx-CF. Temperature as a function of time during cooling to room
temperature (in-plane dimensions 90× 120 mm2) (adapted from [158]).

reaches 90%–95% of the initial value. The recovery happens with a certain hysteresis, as the crystallization is
found at lower temperatures than the melting, as also observed in DSC tests, due to reasons related both to
thermal inertia and to the thermodynamics of crystallization. The trends of E ′ ′ and tanδ (reported in [159])
also show that the peak on cooling (crystallization) is found approx. 30 ◦C lower than the melting peak.
From these findings, DMA test appears as a powerful technique to evaluate material stiffness during phase
transition of PCM, especially combined with DSC analysis (for a better comparison, the same rate of
heating/cooling is suggested).

Finally, multifrequency DMA analysis was performed to assess the effect of frequency on the PCM
melting and the glass transition of the EL resin. Figure 22 presents the results of the sample EL-MC30-CF.
The shift of the signals towards higher temperature with increasing frequency is observable not only at the
glass transition of the EL resin, as commonly observed in polymer composites, but also at the PCMmelting.
For this transition, the frequency sensitivity is higher below the peak temperature than above it, as after the
peak temperature the curves are almost overlapped. This suggests that when the core is completely molten
the dependence of the signals on frequency weakens considerably.
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Figure 20. Results of the DMA tests on the samples EL-MCx-CF. The reported values represent the peak temperatures.
(a) normalized storage modulus E ′ (solid lines) and loss modulus E ′ ′ (dashed lines) (single cantilever; 1 Hz; 3 ◦C min−1)
(adapted from [158] and [159]).

Figure 21. DMA heating (1)-cooling (2)-heating (3) scans on the samples EL-MCx-CF: values of E′ in the temperature range
around the phase change temperature of the PCM (single cantilever; 1 Hz; 3 ◦C min−1) (adapted from [158] and [159]).

5. Conclusions and future perspectives

This review introduced the main concepts of TES and summarized the most widely used PCMs, with a
special focus on organic solid-liquid PCMs and their TM applications at low and medium temperatures
(0 ◦C–100 ◦C). It then explored the approach of embedding TES and TM functionalities in structural and
semistructural materials, through the development of multifunctional polymer composites that could find
applications where weight saving and temperature management are equally important, such as in the
transportation and portable electronic fields. Moreover, PCMs embedded in polymer composites could also
be useful to produce anti-icing structures for wind blades, to thermally protect the composite itself, whose
mechanical properties could degrade with a temperature increase.

The concept of structural TES composites was elucidated in the second part of the review, dedicated to
the presentation of three case studies. The characterization of the glass/polyamide laminates (section 4.1)
evidenced that the MCs are more suitable than CNT-stabilized paraffin (ParCNT) to be compounded with a
traditional thermoplastic matrix, due to their higher thermal resistance. However, the melt-compounding
and the two hot-pressing operations damage the MC shells considerably, thereby causing paraffin leakage
and degradation and diminishing the total final phase change enthalpy. A remarkable improvement of the
final TES properties was obtained by reinforcing the PA-based composites with discontinuous carbon fibers,
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Figure 22. Representative DMA multifrequency thermograms of the sample EL-MC30-CF (single cantilever; 0.3-1-3-10-30 Hz;
0.3 ◦C min−1) (adapted from [158] and [159]).

as described in section 4.2. This was possible because this strategy allows avoiding one of the two
hot-pressing steps, but this approach is only applicable to discontinuous fiber composites. Further increases
in the mechanical and TES properties were achieved by using a reactive thermoplastic matrix, as reported in
section 4.3. Such resin allows mild conditions in all the processing steps, which do not cause PCM
degradation.

Future work should focus on finding shape-stabilizing agents that also enhance the thermal degradation
resistance of the PCM and the thermal conductivity of the composite, since the use of an appropriate
shape-stabilizing filler could be a powerful and low-cost alternative to microencapsulation. Moreover, a
deeper investigation should be carried out to study and optimize the mechanical and physical properties of
the MCs, such as the size, mechanical strength and stiffness of the shell, and adhesion with the surrounding
matrix. Furthermore, DMA proved to be a promising tool to investigate the effect of the PCMmelting and
crystallization on the properties of the host composite, in combination with DSC, and therefore it would be
worth exploring the use of this test more in depth. Moreover, it will be fundamental to investigate the
quasi-static mechanical properties of the PCM-containing composites above the melting temperature of the
PCMs for a better definition of the overall performance in the working temperature range. A key factor will
be the proper definition of an adequate balance between the increase in TES properties and the decrease in
mechanical properties, especially in the thermal transition interval.
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materials based on high-density polyethylene filled with microencapsulated paraffin wax Energy Convers. Manage. 87 400–9

[127] Su J-F, Zhao Y-H, Wang X-Y, Dong H and Wang S B 2012 Effect of interface debonding on the thermal conductivity of
microencapsulated-paraffin filled epoxy matrix composites Composites A 43 325–32

[128] Su J-F, Wang X-Y, Huang Z, Zhao Y-H and Yuan X-Y 2011 Thermal conductivity of microPCMs-filled epoxy matrix composites
Colloid. Polym. Sci. 289 1535–42

[129] Sobolciak P, Mrlík M, Al-Maadeed M A and Krupa I 2015 Calorimetric and dynamic mechanical behavior of phase change
materials based on paraffin wax supported by expanded graphite Thermochim. Acta 617 111–9

[130] Sobolciak P, Karkri M, Al-Maaded M A and Krupa I 2016 Thermal characterization of phase change materials based on linear
low-density polyethylene, paraffin wax and expanded graphite Renew. Energy 88 372–82

[131] WuW, WuW and Wang S 2019 Form-stable and thermally induced flexible composite phase change material for thermal energy
storage and thermal management applications Appl. Energy 236 10–21

[132] Wirtz R, Fuchs A, Narla V, Shen Y, Zhao T and Jiang Y 2003 A multi-functional graphite/epoxy-based thermal energy storage
composite for temperature control of sensors and electronics University of Nevada, Reno Reno, Nevada, USA pp 1–9

[133] Mesalhy O, Lafdi K and Elgafy A 2006 Carbon foam matrices saturated with PCM for thermal protection purposes Carbon
44 2080–8

[134] Zhong Y, Guo Q, Li S, Shi J and Liu L 2010 Heat transfer enhancement of paraffin wax using graphite foam for thermal energy
storage Sol. Energy Mater. Sol. Cells 94 1011–4

[135] Jana P, Fierro V, Pizzi A and Celzard A 2015 Thermal conductivity improvement of composite carbon foams based on
tannin-based disordered carbon matrix and graphite fillersMater. Des. 83 635–43

[136] Yoo S, Kandare E, Shanks R, Al-Maadeed M A and Afaghi Khatibi A 2016 Thermophysical properties of multifunctional glass
fibre reinforced polymer composites incorporating phase change materials Thermochim. Acta 642 25–31

[137] Yoo S, Kandare E, Mahendrarajah G, Al-Maadeed M A and Khatibi A A 2017 Mechanical and thermal characterisation of
multifunctional composites incorporating phase change materials J. Compos. Mater. 51 2631–42

[138] Yoo S, Kandare E, Shanks R and Khatibi A A 2017 Viscoelastic characterization of multifunctional composites incorporated with
microencapsulated phase change materials Int. Conf. of Materials Processing and Characterization (ICPMC) Elsevier

[139] Fredi G, Dorigato A, Fambri L and Pegoretti A 2017 Wax confinement with carbon nanotubes for phase changing epoxy blends
Polymers 9 405/1–16

[140] Fredi G, Dorigato A, Fambri L and Pegoretti A 2018 Multifunctional epoxy/carbon fiber laminates for thermal energy storage and
release Compos. Sci. Technol. 158 101–11

[141] Fredi G, Dorigato A, Fambri L and Pegoretti A 2019 Thermal energy storage with polymer composites American Society for
Composites 2019 - Thirty-Fourth Technical Conf. Atlanta, GA, US ed K Kalaitzidou (https://doi.org/10.12783/asc34/31370)

[142] Fredi G, Dorigato A, Fambri L and Pegoretti A 2020 Effect of phase change microcapsules on the thermo-mechanical, fracture
and heat storage properties of unidirectional carbon/epoxy laminates Polym. Test. 91 106747/1–16

[143] Fredi G, Simon F, Sychev D, Melnyk I, Janke A, Scheffler C and Zimmerer C 2020 Bioinspired polydopamine coating as an
adhesion enhancer between paraffin microcapsules and an epoxy matrix ACS Omega 5 19639–53

[144] Dorigato A, Fredi G and Pegoretti A 2019 Application of the thermal energy storage concept to novel epoxy/short carbon fiber
composites J. Appl. Polym. Sci. 136 47434/1–9
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