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Higher-order motif analysis in hypergraphs
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A deluge of new data on real-world networks suggests that interactions among system units
are not limited to pairs, but often involve a higher number of nodes. To properly encode
higher-order interactions, richer mathematical frameworks such as hypergraphs are needed,
where hyperedges describe interactions among an arbitrary number of nodes. Here we
systematically investigate higher-order motifs, defined as small connected subgraphs in
which vertices may be linked by interactions of any order, and propose an efficient algorithm
to extract complete higher-order motif profiles from empirical data. We identify different
families of hypergraphs, characterized by distinct higher-order connectivity patterns at the
local scale. We also propose a set of measures to study the nested structure of hyperedges
and provide evidences of structural reinforcement, a mechanism that associates higher
strengths of higher-order interactions for the nodes that interact more at the pairwise level.
Our work highlights the informative power of higher-order motifs, providing a principled way
to extract higher-order fingerprints in hypergraphs at the network microscale.
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ver the last two decades, networks have emerged as a

powerful tool to analyze the complex topology of inter-

acting systems!. From social networks to the brain, sev-
eral systems have been represented as a collection of nodes and
links, encoding dyadic interactions among pairs of units. Yet,
growing empirical evidence is now suggesting that a large number
of such interactions are not limited to pairs, but rather occur in
larger groups®3. Examples include collaboration networks?,
human face-to-face interactions®, species interactions in complex
ecosystems®, cellular networks’” and structural and functional
brain networks®°.

To properly encode such higher-order interactions®3, richer
mathematical frameworks such as hypergraphs!® are needed,
where hyperedges describe interactions taking place among an
arbitrary number of nodes. To characterize these higher-order
systems?, computational tools from algebraic topology have been
proposed! 112, as well as generalization of common network
concepts, including centrality measures!3!4, directedness!>,
clustering!®!” and assortativity!8. An explicit treatment of
higher-order interactions, including their inference and
reconstruction!?, is necessary to understand network formation
mechanisms?0-23, fully capture the real community structure of
higher-order systems?4-26 and extract their statistically validated
higher-order backbone?’. Noticeably, taking into account higher-
order interactions might be crucial to understand the emergent
behavior of complex systems, as they have been found to pro-
foundly impact diffusion?82%, synchronization30-34, social3>-37
and evolutionary3® processes.

Networked systems may be differentiated by their preferential
patterns of connectivity at the microscale, encoding a character-
istic fingerprint often relevant for system functions. This may be
quantified by measuring network motifs, small connected sub-
graphs that appear in an observed network at a frequency that is
significantly higher than in a random-graph null model®. The
analysis of the motifs of a network revealed the emergence of
“superfamilies” of networks, i.e., clusters of networks that display
similar local structure. These clusters tend to group networks
from similar domains or networks that have evolved via similar
evolutionary processes??. In fact, motifs can be interpreted as
elementary computational circuits, with specific functionalities
that can be shared by similar networks. For example, transpor-
tation networks are designed to simplify the traffic flow, whereas
gene regulation and neuron networks are often thought to be
evolved to process information. These functional differences in
such systems are reflected in the emergence of different sig-
nificant motifs in the networks that describe them. In this regard,
studying motifs can also give new insights into the dynamics and
resilience of classes of networks*%4!, To explicitly uncover the
relation between the dynamical processes that unfold on a net-
work and its structural decomposition at the local scale, recently a
refined notion of process motifs has been proposed*?, introducing
a framework to assess the contribution of each motif to the
overall dynamical behavior of the system.

Network motifs have been used in a wide range of applications.
In biology, motifs have been extensively studied for the analysis of
transcription regulation networks (i.e., networks that control gene
expression). Studies show that diverse organisms from bacteria to
humans exhibit common regulation patterns, each with its very
own function in determining gene expression*3-47. Similarly,
motif analysis has been applied to show how complex and flexible
neural functions emerge from the composition of fundamental
circuits in brain networks*®. Moreover, motifs have also been
used as a feature for the identification of cancer®. Eventually, the
need to analyze biological datasets of ever-increasing size has
been a strong motivation for the development of more efficient
algorithms®. Besides biology, motifs have also been applied to

provide fingerprints of the local structures of social networks®!->2,
for the early detection of crisis-leading structural changes in
financial networks®® and to study the networks of direct and
indirect interactions across species in ecology®*>.

The interest of the research community in extracting finger-
prints at the network microscale of real-world systems has led to
considering richer frameworks for motif analysis®®, including
extensions to more general network models such as weighted>’,
temporal®® and multilayer>® networks. Weighted networks can be
characterized in terms of the intensity and coherence of the link
weights of their subgraphs®. Temporal networks can be studied
at both topological and temporal micro- and mesoscale by con-
sidering time-restricted patterns of interactions®-02. Statistically
over-expressed small multilayer subgraphs®® highlight the local
structure of multilayer networks such as the human brain®4.
Nevertheless, the methods, algorithms and tools proposed in lit-
erature so far mostly consider only patterns of pairwise interac-
tions, thus limiting our capabilities of characterizing the local
structure of systems that involve group interactions. Recently, Lee
et al.> made the first contribution to close this gap: at difference
with traditional motif analysis that focuses on patterns of inter-
actions among small sets of nodes, they investigated patterns
associated with connected hyperedges, in particular the 26 pos-
sible ways in which 3 connected hyperedges can overlap, allowing
to extract information on the design principles of hypergraphs.

In order to systematically study the local structure of higher-
order networks, here we investigate higher-order network motifs
by providing a general and scalable methodology that naturally
generalize to hypergraphs the seminal notion and analysis of
network motifs proposed by Milo et al.3 for traditional graphs.
Higher-order network motifs are defined as statistically over-
expressed connected subgraphs of a given number of nodes,
which can be connected by higher-order interactions of arbitrary
order. We propose a combinatorial characterization of these new
mathematical objects and develop an efficient algorithm to eval-
uate the statistical significance of each higher-order motif on
empirical data. We show that we are able to extract fingerprints at
the network microscale of higher-order real-world systems, and
highlight the emergence of families of systems that show a similar
higher-order local structure. Finally, we propose a set of measures
to investigate the nested structure of hyperedges (i.e., the collec-
tion of lower-order hyperedges defined on a subset of the nodes
of a hyperedge) and provide evidence of the phenomenon of
structural reinforcement, for which real-world group interactions
are stronger if they are supported by a rich nested structure of
pairwise interactions.

Results

Motif analysis has established itself as a fundamental tool in
network science to extract fingerprints of networks at the
microscale and to identify their structural and functional building
blocks. By directly extending the traditional definition of network
motifs, we can define higher-order network motifs as small
connected patterns of higher-order interactions that appear in an
observed hypergraph at a frequency that is significantly higher
than a suitably randomized system.

Similarly to what happens with traditional motifs, the steps
required to perform a higher-order motif analysis are (i) counting
the frequency of each higher-order motif in a network, (ii)
comparing the frequency of each motif with that observed in a
null model, and (iii) evaluating their over- or under-expression
using a statistical measure. Algorithms for counting traditional
motifs fail to capture information about group interactions, since
they do not consider patterns of hyperedges. A detailed descrip-
tion of our proposal for algorithms and tools able to extract and
evaluate higher-order motifs is reported in the Methods section.
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For our motif analysis of real-world higher-order systems, we
collected a number of freely available networked datasets. The
datasets!®00-82 come from a variety of domains: sociology
(proximity contacts, votes), technology (e-mails), biology (gene/
disease, drugs) and co-authorship. Each dataset has been manu-
ally tagged and associated to a specific domain. The description of
each dataset is reported in Supplementary Note 1. In some
datasets, higher-order structures are naturally encoded as
hyperedges (e.g., three authors collaborating on the same paper),
in others we infer higher-order structures from pairwise inter-
actions (e.g., for face-to-face interactions recorded over time, we
promote cliques of size k to hyperedges of order k if the corre-
sponding three dyadic encounters happened at the same time. We
note that the choice of the specific time-window for aggregation
does not affect our results, as presented in Supplementary Note 2.

Combinatorial analysis of higher-order motifs. The number of
possible patterns of pairwise undirected interactions involving
three connected nodes is only two; however, it grows to six when
considering also higher-order interactions (Fig. 1a). Finding an
analytical form encoding the dependence of the number of
higher-order motifs on the motif order k is a challenging task due
to the constraints related to the computation of all possible
combinations of higher-order interactions among k nodes.
However, we are able to compute upper and lower bounds for this
number. We denote with m the number of all the possible non-
isomorphic connected hypergraphs of k vertices (we recall that
two hypergraphs are isomorphic if they are identical modulo
relabeling of the vertices). To compute an upper bound on m, we
can count the number of labeled hypergraphs ignoring the con-
straint on being non-isomorphic and connected. There are

k . oo . .
i)posmble hyperedges of size i over k vertices. We are inter-

ested only in the hyperedges with cardinality at least 2; therefore,

k

there are Z:'(:z( 1.) = 2K —k —1 possible hyperedges. When

creating a labeled hypergraph we can either include each hyper-
edge or not, this yields a total number of possible labeled
hypergraphs equal to 22F1 o compute the lower bound of m,
we construct connected hypergraphs on k vertices as follows.
First, we pick any chain of edges and put all the edges in the
hypergraph. This uses k — 1 edges and makes sure the hypergraph
is connected. There are (2K — k — 1) — (k — 1) = 2k — 2k potential
edges left over. Each of those edges can be added or not to the

vV ¥
V

a

hypergraph, yielding at least 22~ connected hypergraphs.

However, we have to count only non-isomorphic copies, and have
so far counted labeled graphs. For each unlabeled graph, there are

at most k! ways of labeling the vertices. So the number of non-
K
isomorphic connected hypergraph is at least ZZT,M Figure 1b

shows the upper and lower bounds on the growth of the possible
higher-order motifs as a function of the order, as well as the exact
count for small orders, showing that this function has a super-
exponential growth. The combinatorial explosion of higher-order
motifs makes their storing and indexing in memory (required
steps for counting their occurrences in empirical hypergraphs
and evaluating their over- or under-expression) intractable for
high orders. Given these combinatorial difficulties, in the fol-
lowing, we focus on the analysis of the higher-order motifs of
order 3 and 4.

Motifs of order 3. The over- and under-expression measures of
each higher-order motif (abundance with respect to a null model,
see Methods) in a hypergraph are concatenated in a significance
profile (SP, see Methods) that constitutes a fingerprint of the local
structure of the network. In this section, we characterize the local
connectivity of empirical networks at the smallest scale, with
higher-order motifs of order 3.

After having computed the SPs of all the datasets, a first
question one could ask is how hypergraphs from different
domains differ on average in their SPs. We compute the SPs of a
domain by grouping and averaging the SPs of all networks that
belong to it (more information about the disagreggated SPs can
be found in Supplementary Note 4). The analysis of the higher-
order profiles of order 3 of each domain highlights the relative
structural importance of certain patterns of higher-order inter-
actions (Fig. 2a). The pairwise triangle II appears to be a highly
over-expressed motif in all the domains, whereas the greatest
differences across domains emerge from motifs that involve a
3-hyperedge and at least one dyadic edge. In the social and
technological domains, the motif VI made by a 3-hyperedge and a
triangle of dyadic edges is highly over-expressed, suggesting that
entities interacting in groups also tend to interact individually. In
co-authorship networks, the most over-expressed motifs are IV
and V, which involve a 3-hyperedge and one or two dyadic edges,
indicating that in these domains there might be a hierarchical
structure that prevents all nodes from interacting equally in pairs,
as in the case of a research leader that co-authors papers with
students and postdocs while the latter do not co-author papers
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Fig. 1 Combinatorics of higher-order motifs. a Enumeration of all the six possible patterns of higher-order interactions involving three nodes. Green
shaded triangles represent higher-order interactions, whereas black lines represent pairwise interactions. b Upper and lower bounds on the number of
higher-order motifs as a function of the order (gray shaded area). The black line represents the exact count for small orders.
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Fig. 2 A higher-order fingerprint for hypergraphs at the network microscale. a Significance profiles (SP) of hypergraphs from higher-order motifs of order
3 (labeled I-VI). A is the abundance of each motif relative to random networks. Over-expressed higher-order motifs are associated to specific
functionalities of the system. To simplify the plot, we averaged and grouped higher-order motif profiles of networks from the same domain. For each
domain, we represent the mean of the respective higher-order motif profiles with a solid line and the standard error of the mean with a shaded area.
b Correlation matrix of the investigated datasets computed on the SPs. SPs of networks from similar domains display a positive correlation. We identify two
large higher-order families of hypergraphs, characterized by distinct higher-order connectivity patterns at the local scale. Each row of the correlation matrix
is labeled with different colors depending on the domain of the respective dataset: red for the social domain, orange for e-mails, purple for the co-
authorship domain and blue for the biological domain. Moreover, we show the clustering tree computed by applying a hierarchical clustering algorithm on
the significance profiles, considering correlation as a measure of similarity. The clustering tree highlights the hierarchical organization of the emerged
clusters. In the correlation matrix, red squares represent high positive correlation while blue squares represent high negative correlation.

without the former. A similar motif is also found to be over-
expressed in biological systems. Moreover, SPs allow also to
analyze anti-motifs, i.e., motifs that are highly under-expressed.
An anti-motif in the social and technological domains is III, the
3-hyperedge without any dyadic interaction, indicating that it is
unlikely that an interaction in the group is not followed or
preceded by any pairwise interaction. The biological and co-
authorship domain do not display any anti-motif.

Another interesting question is whether the domain categor-
ization naturally emerges from individually clustering the SPs of
all the empirical hypergraphs. We perform a hierarchical cluster
analysis considering the pairwise correlation between the
distributions of the occurrences of the higher-order motifs for
each dataset as (the inverse of) a distance (Fig. 2b). The analysis
shows the emergence of two main clusters, i.e., families of higher-
order networks that share similar patterns of higher-order
interactions at the microscale. The clusters, here inferred in a
purely data-driven manner, reproduce the partitions of domains
displayed in Fig. 2a (social and technological datasets in a cluster,
biological and co-authorship ones in the other), offering a more
nuanced view on the similarity across datasets.

Motifs of order 4. In the previous section, we have systematically
investigated the smallest higher-order motifs. The number of
possible patterns of higher-order interactions involving 4 nodes is
significantly higher than the corresponding with 3 nodes, as it
grows from 6 to 171. Despite the difficulties associated to this
increase, analyzing higher-order motifs of order 4 provides more
nuanced information about the local structure of networks
compared to 3-motifs.

In Fig. 3a, we group together similar domains based on the
analysis in the previous section showing the average of their SPs

with the higher-order motifs of order 4. The order of motifs along
the x-axis maximizes the visual difference in SPs across clusters.
On the left end of the x-axis, we find motifs that are highly over-
expressed in the Bio/Co-auth domain, while they are under-
expressed in the Socio/Tech domain. Conversely, on the right end
of the x-axis, we find motifs that are over-expressed in the Socio/
Tech domain, while not characteristic for the other domain. This
observation suggests that both the extremes of the x-axis carry
information about the structural differences among the clusters.

The richer structural information captured by the higher-order
motifs of order 4 compared to their counterparts of order 3 is
highlighted in the clustering analysis (Fig. 3b). When focusing on
the two main clusters, the results are comparable with the
previous cluster analysis. However, a richer hierarchical intra-
cluster organization naturally emerges, as well as a better
separation between the two clusters (See Supplementary Note 3).

Finally, we characterize the Socio/Tech and the Bio/Co-auth
clusters by means of their most over-expressed, and therefore
most representative, higher-order motifs of order 4 (Fig. 3c). The
Socio/Tech domain shows an over-expression of structures
involving more lower-order nested relations (e.g., dyadic links),
while the Bio/Co-auth domain displays a preference toward less
relations but of higher-order. This pattern might be caused by
the fact that people interacting in groups are likely to interact
also in single pairs, therefore it is plausible that group
interactions in the Socio/Tech domain are supported by a large
number of lower-level interactions. On the other hand, people
tend to write papers in large groups and tend to maintain the
same research group over time, with few additions or removals.
Therefore, patterns involving only dyadic relations are penalized.
For a more in-depth description of the most over- and under-
expressed higher-order motifs of order 4, we refer to Supple-
mentary Note 5.
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Fig. 3 Analyzing the local structure of hypergraphs via higher-order motifs of order 4. a Significance Profiles (SP) of hypergraphs from higher-order
motifs of order 4. A is the abundance of each motif relative to random networks. SPs are much more complex due to the increase in the number of
considered patterns of higher-order interactions. We group and average the SPs of networks from the same higher-order family (i.e., Socio/Tech and bio/
Co-auth) and sort the motifs on the x-axis based on their ability to discriminate the two higher-order families. Distinct characteristic higher-order motifs of
order 4 are associated with the two classes of networks. The shaded area represents the standard error of the mean. If the shaded area is not visible, it is of
the same size as the line thickness. b Correlation matrix of the investigated datasets computed on SPs of order 4. The matrix provides richer information
than its equivalent at order 3 on the local structure of networks: the two big clusters emerge again but are better separated, and display a richer intra-
cluster hierarchical structure. Each row of the correlation matrix is labeled with different colors depending on the domain of the respective dataset: red for
the social domain, orange for e-mails, purple for the co-authorship domain and blue for the biological domain. Moreover, we show the clustering tree
computed by applying a hierarchical clustering algorithm on the significance profiles, considering correlation as a measure of similarity. With respect to the
analysis with higher-order motifs of order 3, the clustering tree highlights a better separation between the two big clusters, as well as a richer intra-cluster
hierarchical organization. In the correlation matrix, red squares represent a high correlation while blue squares represent a low correlation. € The six most
representative higher-order motifs from the two clusters. Purple shaded triangles and orange shaded squares represent respectively higher-order
interactions of size 3 and 4, whereas black lines represent pairwise interactions.

Nested organization of higher-order interactions. We now turn
our attention to characterize the nested structure of large higher-
order hyperedges. We define the nested structure of a large
hyperedge h as the collection of hyperedges existing on a subset of
the nodes of h, and extract statistics on the nested structure of
hyperedges of any size. The advantage of this approach is that it
still provides information about the local structure of sub-
modules of a network, while its computational complexity is only
linear in the number of hyperedges in the hypergraph.

First, we consider the average number of edges in the nested
structures of hyperedges of different sizes (Fig. 4a). The networks
are grouped according to their domain. While biological and co-
authorship networks do not display evident differences in the
number of nested edges with the growth of the hyperedge size,
social and technological networks show a clear growing trend
with a change of slope after orders 5 and 6.

In order to complement this information, we looked at how the
mean size of the nested edges changes with the growth of the size
of the analyzed hyperedges (Fig. 4b). In this case, all the domains
show a growing trend, with biological and co-authorship
networks displaying a faster growth. Thus, while social and
technological networks tend to have more edges in the nested
structure of their large hyperedges, they tend to be of small size.
Biological and co-authorship networks, instead, shows an
opposite behavior. All in all, this suggests that, in agreement

with our previous findings, also at higher scales Socio/Tech
network motifs are systematically more nested.

Higher-order motifs and reinforcement. In order to understand
if and how the occurrence of nested dyadic interactions affects the
strength of group interactions, we investigate how much the
weight of each hyperedge (i.e., the number of times each group
interaction occurs) is correlated with the number of nested
pairwise links. We find that a positive trend emerges, indicating
the existence of a correlation between a rich nested pairwise
structure and the weight of a hyperedge (Fig. 5a). We dubbed this
phenomenon, similar to the one highlighted in ref. > for multi-
layer networks, as higher-order structural reinforcement.
Moreover, we used the metadata about personal relationships
between students recorded in the High School dataset from
SocioPatterns to understand if similar reinforcing behavior is
observed in the presence of friendship interactions between
individuals. Friendship data have been collected in two ways,
from Facebook accounts and through a questionnaire. In the first
case, two students are always reciprocally friends, while in the
second case a friendship can be unreciprocated. In Fig. 5b, we
analyze the relationship between the average number of friends
(both on Facebook and by questionnaire) and the topology of the
different motifs in the proximity hypergraph. Our results show
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that the higher the number of pairwise interactions between
students that interact in hyperedges of size three, the higher will
be the number of friends in the group, further suggesting the
existence of reinforcement mechanisms.

Discussion
The framework of network motifs is widely recognized as a
fundamental tool for the analysis of complex networks. Able to
highlight local structural characteristics of networks and influence
their dynamics, motifs can be considered the fundamental
building blocks of networks, and have produced applications in a
number of fields such as biology and social network analysis.
Modeling complex systems by means of hypergraphs have
recently emerged as a fundamental tool in Network Science,
prompting the question of how to identify and assess network
motifs in the presence of higher-order interactions. With the aim of
extracting the local fingerprint of hypergraphs, in this work we
introduced the notion of higher-order network motifs, which are

small, possibly overlapping patterns of higher-order interactions
that are statistically over-expressed with respect to a null model.
We proposed a combinatorial characterization of higher-order
network motifs, as well as an efficient algorithm to evaluate their
statistical significance on empirical data. These tools allowed us to
extract fingerprints of a variety of real-world systems by focusing
on their characteristic patterns of higher-order interactions among
small groups of nodes, showing the emergence of families of
hypergraphs characterized by similar local structures. Moreover, we
proposed a set of measures to study the nested structure of
hyperedges and provided evidence of a structural reinforcement
mechanism that associates stronger weights of higher-order inter-
actions to groups of nodes that interact more at the pairwise level.

Similarly to the case of traditional pairwise network motifs, we
believe that higher-order network motifs can pave the way to
applications in a number of domains, pushed by the growing
awareness of the relevance of the higher-order nature of interac-
tions in many real-world systems. Given the possible applications
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of this framework in data-intensive domains, a limitation of our
proposed approach is its scalability. In this work, indeed we pro-
posed an algorithm that allows us to perform an exhaustive search,
and for this reason, focuses on higher-order network motifs of size
3 and 4. However, we believe that there is room for different
approaches, which sacrifices exhaustiveness but could allow us to
gain deep insights on motifs of greater size. As the first step in this
direction, we looked at the nested structure of patterns of hyper-
edges of larger orders. In addition to this, we believe that the
development of sampling methods for the statistical evaluation of
higher-order network motifs will be critical for more widespread
real-world applications. All in all, our work highlights the infor-
mative power of higher-order motifs, providing an initial approach
to extract higher-order fingerprints in hypergraphs at the network
microscale.

Methods

A higher-order motif analysis involves three steps: (i) counting the frequency of

each target higher-order motif in an observed network, (ii) comparing them with
those of a null model, and (iii) establish the over- or under-expression of certain
sub-hypergraph patterns.

Here, we propose an exact algorithm to count the frequency of each higher-order
motif of order k in a hypergraph. The first fundamental sub-task to solve efficiently
is the hypergraph isomorphism problem (i.e., establishing the equivalence under
relabeling of two hypergraphs). In fact, for each occurrence of a connected sub-
hypergraph with k nodes, we need to update the frequency of the respective higher-
order motif of order k. This problem can be solved efficiently by enumerating and
indexing all the higher-order motifs of order k with all the respective relabelings,
allowing to update and count occurrences of patterns of sub-hypergraphs in
constant time via a hash map. Since we are interested only in patterns of size 3 and
4, this is doable. In fact, the number of possible non-isomorphic patterns of higher-
order interactions involving 4 nodes is 171, a number that makes all the relabelings
storable in memory.

To enumerate sub-hypergraphs of size k we use an algorithm that proceeds in a
hierarchical way. It first iterates over all the hyperedges of size k, which are able to
directly induce a motif, ie., a hyperedge of size k gives all the nodes to construct a
motif of order k. Then it iteratively considers hyperedges of lower orders until it
reaches the traditional dyadic links. Since hyperedges of order lower than k are not
able to directly induce a motif, the algorithm proceeds in a way similar to%3 and
selects the remaining nodes by considering the neighborhood of the sub-hypergraph.
Once selected k nodes, to efficiently construct their induced sub-hypergraph, we
iterate over the power set of the k nodes (which corresponds to 2 possible hyper-
edges) and keep only the hyperedges that exist in the original hypergraph.

As a null model, we use the configuration model proposed by Chodrow?!. We
sample from the configuration model n =100 times and compute the frequencies
of the higher-order motifs in each sample. To validate the over- and under-
expression of certain patterns, we use the abundance A; of each motif i relative to

random networks proposed in%’,
_ Nreal; — (Nrand;) )
™ Nreal, + (Nrand,) + €

Following?0, we set ¢ = 4.
We define the SP of a network as the vector of A; normalized to length 1,

A,

SP = \/__?’_ATZ @)

Data availability
The datasets analyzed in this paper are available at https://github.com/FraLotito/higher-
order-motifs.

Code availability
The code for higher-order motif analysis is available at https://github.com/FraLotito/
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