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ABSTRACT

Aims. We investigate the dynamics of a circumbinary disc that responds to the loss of mass and to the recoil velocity of the black hole
produced by the merger of a binary system of supermassive black holes.
Methods. We perform the first two-dimensional general relativistic hydrodynamics simulations of extended non-Keplerian discs and
employ a new technique to construct a “shock detector”, thus determining the precise location of the shocks produced in the accreting
disc by the recoiling black hole. In this way we can study how the properties of the system, such as the spin, mass and recoil velocity
of the black hole, affect the mass accretion rate and are imprinted on the electromagnetic emission from these sources.
Results. We argue that the estimates of the bremsstrahlung luminosity computed without properly taking into account the radiation
transfer yield cooling times that are unrealistically short. At the same time we show, through an approximation based on the relativistic
isothermal evolution, that the luminosity produced can reach a peak value above L � 1043 erg/s at about ∼30 d after the merger of
a binary with total mass M � 106 M� and persist for several days at values which are a factor of a few smaller. If confirmed by
more sophisticated calculations such a signal could indeed lead to an electromagnetic counterpart of the merger of binary black-hole
system.
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1. Introduction

Despite the fundamental role they play in gravitational-wave as-
tronomy, no undisputed observational evidence of the existence
of supermassive binary black holes (SMBBHs) systems has been
found yet. However, circumstantial evidence does exist for a
number of potential candidates. This is the case, for instance,
of the radio galaxy 0402+379, which shows a projected separa-
tion between the two black holes of 7.3 pc and a total mass of
∼1.5× 108 M� (Rodriguez et al. 2006). Similarly, the ultralumi-
nous infrared galaxy NGC 6240 shows two optical nuclei and is
thought to be in an early merger phase (Komossa et al. 2003).
Finally, potential candidates have been suggested in few other
cases where the two galaxies are more widely separated, like in
the pair IC 694/NGC 3690 hosting two active nuclei as revealed
by the presence of two distinct Kα lines in their X-ray spectra
(Ballo et al. 2004).

In addition, there is a large family of even more uncertain
SMBBH candidates, that are spatially unresolved and whose ul-
timate nature is, of course, a matter of strong debate. They in-
clude the class of X-shaped radio galaxies, in which the ob-
served changes in the orientation of the black hole spin axis
could be due to an ongoing merger with a second black hole
(Gopal-Krishna et al. 2003); or the class of double-double ra-
dio galaxies presenting a pair of double-lobed radio structures
that could be the remnants of a SMBBH merger event (Liu et al.
2003); or, finally, the class of sources showing periodicities in
the light curves, like in BL Lac Object OJ287 (Komossa 2006).
Quite recently, also the quasar SDSSJ0927 (at a redshift z ≈ 0.7)

has been identified as a promising SMBBH candidate, with a
mass for the primary black hole of M ≈ 2 × 109 M� and a semi-
major axis of 0.34 pc (Dotti et al. 2009).

A strong motivation for studying the merger of super-
massive binary black hole systems comes from the fact that
their gravitational signal will be detected by the planned Laser
Interferometric Space Antenna (LISA), whose optimum sensi-
tivity is placed in the range (10−4 ÷ 0.1) Hz. Considerable at-
tention has therefore been recently attracted by the possibility
of detecting also the electromagnetic (EM) counterpart of these
events through the emission coming from the circumbinary ac-
cretion disc that is expected to form when the binary is still
widely separated. Such a detection will not only act as a con-
firmation of the gravitational wave (GW) detection, but it will
also provide a new tool for testing a number of fundamental as-
trophysical issues (Haiman et al. 2009). More specifically, it will
offer the possibility of testing models of galaxy mergers and ac-
cretion discs perturbation, probing basic aspects of gravitational
physics, and allowing for the measurement of the Eddington ra-
tio and for the determination of cosmological parameter once
the redshift is known (Phinney 2009). In spite of the presence of
the disturbing effects due to weak-lensing errors, Kocsis et al.
(2006) have computed the average number of quasars in the
three-dimensional LISA error volume and have shown that for
mergers with masses in the range ∼4 × (105 ÷ 107) M� at red-
shift z ∼ 1, the error box may contain 1 quasar with a luminosity
LB ∼ (1010 ÷ 1011) L� (see also Kocsis et al. 2008; Kocsis &
Loeb 2008).
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As a product of this increased interest, a number of studies
have been recently carried out to investigate the properties of
these EM counterparts either during the stages that precede the
merger, or in those following it. As an example, recent work has
considered the interaction between the binary and a dense gas
cloud (Armitage & Natarajan 2002; van Meter et al. 2010; Bode
et al. 2009; Farris et al. 2010; Lodato et al. 2009; Chang et al.
2010) even though astrophysical considerations seem to suggest
that during the very final stages of the merger the SMBBH will
inspiral in a rather tenuous intergalactic medium. At the same
time, other scenarios not involving matter have also been con-
sidered. In these cases the SMBBH is considered to be inspi-
ralling in vacuum but in the presence of an external magnetic
field which is anchored to the circumbinary disc (Palenzuela
et al. 2009; Mösta et al. 2010). The extensive analysis of Mösta
et al. (2010), in particular, has shown that, even though the elec-
tromagnetic radiation in the lowest � = 2 and m = 2 multipole
accurately reflects the gravitational one, the energy emitted in
EM waves is 13 orders of magnitude smaller than the one emit-
ted in GW, thus making the direct detection of the two different
signals very unlikely. The situation changes in the post-merger
phase. In this case, in fact, the EM counterpart is supposed to be
mainly due to the radiation from the circumbinary accretion disc,
and, because of that, it will contain an imprint of any strong dy-
namical change produced on the disc by the merger event. There
are indeed two major such dynamical effects. The first one is the
abrupt reduction of the rest-mass of the binary, emitted away in
GWs, which is a function of the binary mass ratio, amounting
up to �10% for equal-mass spinning systems (Reisswig et al.
2009). The second one is the recoil velocity of the merged sys-
tem, resulting in a kick velocity of the resulting black hole with
respect to the hosting galaxy (see Bekenstein 1973; Redmount
& Rees 1989; for a first discussion of the process and Rezzolla
2009, for a recent review). Leaving aside possible problems due
to the actual value of the kicked velocity, which in some cases
could be even larger than the escape velocity, it is clear that both
events mentioned above can significantly affect the dynamics of
the circumbinary disc, mainly as they contribute to the forma-
tion and propagation of shocks, thus enhancing the possibility of
a strong EM counterpart.

After the first smooth-particle-hydrodynamics approach to
the dynamical evolution of circumbinary discs performed
by Artymowicz & Lubow (1994), several additional numeri-
cal investigations have been proposed in the very recent past.
MacFadyen & Milosavljević (2008), for example, performed
two dimensional hydrodynamical simulations and studied in
detail the evolution of the binary separation and of the disc ec-
centricity. By perturbing Keplerian orbits of collisionless test
particles, on the other hand, Lippai et al. (2008) found a clear
spiral shock pattern in the plane of the disc as a response to the
kick. By performing pseudo-Newtonian numerical simulations
of Keplerian discs O’Neill et al. (2009) have recently questioned
the contribution of the shocks to the expected bremsstrahlung
emissivity, while Megevand et al. (2009) showed that the in-
tensity of bremsstrahlung luminosity is not much affected by
the magnitude of the kick velocity, provided this is less than
the smallest orbital speed of the fluid. Although they represent
the first fully general relativistic calculations of this process, the
simulations of Megevand et al. (2009) used unrealistically small
discs which were also placed extremely close to the recoiling
black hole. As a considerable improvement over all the previ-
ous investigations, Corrales et al. (2010) have carried out a sys-
tematic study of the effects of the mass-loss and recoil over a
number of α-discs in Newtonian gravity and two-dimensions.

While confirming the existence of spiral shocks, they also pro-
vided a first realistic estimate of the resulting enhanced lumi-
nosity, which can be as large as few ×1043 erg/s when the disc is
assumed to be extremely efficient in radiating any local increase
of the temperature. Very interesting results have also been ob-
tained by Rossi et al. (2010), who estimated the maximum disc-
to-hole mass ratio that would be stable against fragmentation due
to self-gravity to be Md/M ∼ 6 × 10−4 for a supermassive black
hole with mass M = 106 M�. In addition, by performing three-
dimensional but Newtonian SPH simulations of geometrically
thin discs, they found that the emitted luminosity corresponding
to such small disc-to-hole mass ratios is unlikely to make the
EM counterpart visible via wide-area sky surveys.

In this paper we present the results of two-dimensional rel-
ativistic numerical simulations of extended circumbinary discs
in the post-merger phase of the merger, when the disc reacts to
the mass loss of the central black hole and to the received kick
velocity. By accurately capturing the dynamics of the perturbed
disc in the relativistic regime, we investigate the dependence of
the accretion rate on the black-hole spin and on the kick veloc-
ity. At the same time, we introduce a new technique to locate the
shocks that are potentially produced by the recoil and can there-
fore assess under what conditions a spiral pattern can develop,
producing a variability in the accretion rate and, hence, in the
luminosity. Our “shock detector” is based on the analysis of the
initial states of the Riemann problem solved at each cell inter-
face and can therefore determine the location of the shock with
extreme precision, thus revealing that the previously proposed
criteria for the occurrence of the shock are often inaccurate.

To compare with the general-relativistic calculations per-
formed by Megevand et al. (2009), our initial models consider
small-size discs with an inner radius at r ∼ 40 M and an outer
one at r ∼ 120 M. In addition, however, we also study the dy-
namics of large-size discs with an inner radius at r ∼ 400 M and
an outer one at r ∼ 4700 M. These configurations have almost
Keplerian distributions of angular momentum and are therefore
closer to what is believed to be a realistic configuration for a cir-
cumbinary disc. Furthermore, because the mass in the discs is
always much smaller than the mass of the black hole (i.e. with a
mass ratio ∼10−3), we solve the equations of relativistic hydro-
dynamics in the fixed spacetime of the final black hole.

At first sight it may appear that the use of general-relativistic
hydrodynamics is unnecessary when simulating astrophysical
systems such as the ones considered here and especially for the
case of large-size discs. Such a view, however, does not take into
account that much of the dynamics in these EM counterparts
takes place near the black-hole horizon, where general relativis-
tic effects are not only large but essential for a correct physical
description. Moreover, we do not have any firm theoretical basis
to exclude small-size discs and for which the relativistic cor-
rections are non-negligible. Finally, even in a scenario in which
gravity could be approximated by the Newton law, we cannot
exclude the importance of special relativistic effects.

As all of the above mentioned investigations, also our ap-
proach suffers from the absence of a a fully consistent treatment
of the radiation transfer, thus allowing only for tentative con-
clusions about the energetics involved in circumbinary accretion
discs. However, we extend to the relativistic framework the strat-
egy reported in Corrales et al. (2010) of performing an isother-
mal evolution as a tool to extract luminosity curves more realistic
than those obtained from thermal bremsstrahlung, although it ex-
aggerates some features of the dynamics, such as the formation
of shocks.
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The paper is organized as follows. In Sect. 2 we pro-
vide the essential information about the numerical code adopted
in the simulations. Section 3 describes the physical properties
of the initial models, while Sect. 4 highlights the most relevant
diagnostic quantities used in the rest of the paper. Section 5 is de-
voted to the presentations of the results, and, finally, Sect. 6 con-
tains a summary of our work. We assume a signature {−,+,+,+}
for the space-time metric and we will use Greek letters (run-
ning from 0 to 3) for four-dimensional space-time tensor compo-
nents, while Latin letters (running from 1 to 3) will be employed
for three-dimensional spatial tensor components. Moreover, we
set c = G = 1 and we extend the geometric units by setting
mp/kB = 1, where mp is the mass of the proton, while kB is the
Boltzmann constant. In this way the temperature is a dimension-
less quantity.

2. Numerical methods

In the stationary spacetime of a Schwarzschild or Kerr black hole
we consider the time evolution of a perfect fluid described by the
usual energy momentum tensor

Tμν = ρh u μuν + pgμν, (1)

where uμ is the four velocity of the fluid, gμν is the space-time
metric tensor, ρ is the rest-mass density, h = 1 + ε + p/ρ the
specific enthalpy (including rest-mass energy contribution), ε the
specific internal energy, p the thermal pressure, related to ρ and
ε through the usual ideal-gas equation of state (EOS)

p = ρε(γ − 1), (2)

where γ is the (constant) adiabatic ratio of the gas. We solve the
corresponding equations of general relativistic non-dissipative
hydrodynamics through the ECHO code (Del Zanna et al. 2007).
Because the dynamics of the EM emission takes place on a
timescale which is of the order of the orbital one and because
the latter is much shorter than the viscous timescale1, the use of
inviscid hydrodynamics is indeed a very good approximation.
ECHO adopts a 3 + 1 split of spacetime in which the space-

time metric is decomposed according to

ds2 =−α2dt2 + γi j (dxi+ βidt)(dx j+ β jdt), (3)

where α is the lapse function, βi is the shift vector, and γi j is
the spatial metric tensor. The general-relativistic hydrodynami-
cal equations are written in the following conservative form

∂tU + ∂iF i = S, (4)

which is appropriate for numerical integration via standard high-
resolution shock-capturing (HRSC) methods developed for the
Euler equations. The conservative variables and the correspond-
ing fluxes in the i direction are respectively given by

U ≡ √γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
D

S j

U

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , F i ≡ √γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
αviD − βiD

αWi
j − βiS j

αS i − βiU

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (5)

1 We recall that in geometrically thin accretion discs the local viscous
timescale is given by tvis � r2/(α̃H2Ω), where α̃ is the standard alpha
parameter ad H is the half-thickness of the disc.

whereas the sources, in any stationary background metric, can
be written as

S ≡ √γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

1
2αWik∂ jγik + S i∂ jβ

i − U∂ jα

1
2 Wikβ j∂ jγik +Wi

j∂ jβ
i − S j∂ jα

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (6)

where only purely spatial quantities are present. We note that√
γ ≡ √−g/α is the determinant of the spatial metric. The rela-

tion between the evolved conservative variables (D, S j,U) and
the primitive variables is given by

D ≡ ρΓ, (7)

S i ≡ ρhΓ2vi, (8)

U ≡ ρhΓ2 − p, (9)

where Γ = (1− v2)−1/2 is the Lorentz factor of the bulk flow with
respect to the Eulerian observer associated to the 3 + 1 splitting
of the spacetime, and

Wi j ≡ ρhΓ2viv j + pγi j, (10)

is the fully spatial component of the energy-momentum tensor.
In our setup for two dimensional disc simulations we assume the
Kerr spacetime metric in Boyer-Lindquist coordinates (i.e. only
βφ � 0), with the limiting case of Schwarzschild metric for van-
ishing black-hole spins, and lay our coordinates in the equatorial
plane of the disc (i.e. θ = π/2). The radial numerical grid is dis-
cretised by choosing Nr points from rmin to rmax, non-uniformly
distributed according to the following scheme

ri = rmin + a1 tan (a2xi) (11)

xi = (r̃i − rmin)/(rmax − rmin) (12)

where a1 = (rmax − rmin)/a0, a2 = arctan a0, while r̃i are the co-
ordinate points of the uniform grid from rmin to rmax. In practice,
the free parameter a0 controls the extent to which the gridpoints
of the original uniform grid are concentrated towards rmin, and
we have chosen a0 = 5 in most of our simulations. The actual
value of Nr depends on the size of the disc, and it varies be-
tween Nr = 600 and Nr = 1200. Outflow boundary conditions
are adopted both at rmin and rmax. The azimuthal grid extends
from 0 to 2π, with periodic boundary conditions, and Nφ = 200.
All runs are performed with a Courant-Friedrichs-Lewy coeffi-
cient CFL = 1/2.

The set of hydrodynamics equations is discretised in time
with the method of lines and the evolution is performed
with a second-order modified Euler scheme. A fifth-order
finite-difference algorithm based on an upwind monotonicity
preserving filter is employed for spatial reconstruction of primi-
tive variables, whereas a two-wave HLL Riemann solver is used
to ensure the shock-capturing properties (see Del Zanna et al.
2007, for further details). The timestep is generically chosen to
be sufficiently small so that the second-order truncation error in
time is comparable with the fifth-order one in space.

As a final remark we note that as customary in HRSC
methods, we introduce a tenuous and static “atmosphere” in the
regions of the fluid outside the initial model for the disc and fol-
low the prescription detailed in Baiotti et al. (2005) for its evo-
lution. In practice we set to zero the velocity field and reset to a
pre-defined floor value the rest-mass density of any cell whose
density falls below the chosen threshold value. Such a threshold
is set to be 8 orders of magnitude below the maximum rest-mass
density and we have checked that essentially identical results
are obtained when changing this value of one or more orders of
magnitude.
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Table 1. Main properties of the initial models.

Model J/M2 M Md/M q S � γ rin rout rc τc Tc |vφ |in
(M�) (M) (M) (M) (K) (km s−1)

S.00 0.00 1.0 × 106 2.0 × 10−3 − − 8.0 4/3 40.0 118.2 59.8 3.97 (h) 5.4 × 109 57 000
S.25 0.25 1.0 × 106 2.1 × 10−3 − − 8.0 4/3 40.0 120.0 60.0 4.00 (h) 5.6 × 109 57 000
S.50 0.50 1.0 × 106 2.2 × 10−3 − − 8.0 4/3 40.0 121.7 60.2 4.02 (h) 5.7 × 109 57 000
S.75 0.75 1.0 × 106 2.1 × 10−3 − − 8.0 4/3 40.0 123.5 60.4 4.04 (h) 5.8 × 109 57 000
S.99 0.99 1.0 × 106 2.1 × 10−3 − − 8.0 4/3 40.0 125.2 60.6 4.06 (h) 5.9 × 109 57 000

L.00 0.00 1.0 × 106 1.0 × 10−4 0.4950 1.037 − 4/3 984.6 403.6 4713.7 11.06 (d) 8.7 × 106 14 970
L.00.MA 0.00 1.0 × 106 1.0 × 10−4 0.4950 1.037 − 5/3 984.6 403.6 4713.7 11.06 (d) 1.4 × 107 14 970
L.90 0.90 1.0 × 106 1.0 × 10−4 0.4955 1.033 − 4/3 988.4 400.9 4760.0 11.13 (d) 7.8 × 106 15 030

Notes. From left to right the columns report the name of the model, the black hole spin parameter a, the mass of the black hole, the disc-to-hole
mass ratio, the power-law index q of the angular momentum distribution and the parameter S (only for models with non constant distribution of
the specific angular momentum), the constant value of the specific angular momentum � (only for models with constant distribution of the specific
angular momentum) the adiabatic index γ, the inner and the outer radius of the tours, rin and rout, the radius of the maximum rest-mass density rc,
the orbital period at the radius of maximum rest-mass density τc, the maximum temperature Tc, the orbital velocity |vφ | = (vφvφ)1/2 at rin.

3. Initial models

As initial models we adopt stationary and axisymmetric con-
figurations that are consistent solutions of the relativistic Euler
equations and describe a fluid in sub-Keplerian rotation around a
Kerr black hole of prescribed mass and spin (Abramowicz et al.
1978). The resulting discs are geometrically thick and they can
either have a constant or, more generally, a non-constant radial
distribution of the specific angular momentum �. In our simula-
tions we have considered both “small-size” models, for which
we adopt a constant distribution of �, and “large-size’’ models,
with a distribution of � that, on the equatorial plane, obeys a
power law

�(r, θ = π/2) = Srq, (13)

where S is chosen to be positive, thus providing a disc rotation
that is prograde with respect to the black hole rotation. A detailed
description of the equilibrium models for non-constant specific
angular momentum discs can be found Daigne & Font (2004).
In particular, we have chosen a value of S such that the resulting
thick discs possess two well defined Keplerian points, namely
the “cusp” (which is where matter can accrete onto the black
hole) and the “centre” (which is where the pressure has zero gra-
dient); cf. Table 1.

When the exponent q in (13) is chosen close to 1/2, the
rotation law tends to the Keplerian one, and the disc flattens
towards the equatorial plane. In these circumstances the verti-
cal structure of the disc can be essentially neglected and two-
dimensional simulations are therefore indicative of the full three-
dimensional dynamics. It is worth mentioning that discs with
a rotation law given by (13) have been the subject of a long-
standing debate about whether they are subject to the so called
“runaway instability” (Abramowicz et al. 1983), which would
lead to an exponentially rapid accretion onto the black hole (Font
& Daigne 2002b,a; Zanotti et al. 2003; Daigne & Font 2004;
Zanotti et al. 2005; Montero et al. 2007). Because the onset and
development of this instability depends on the response of the
torus to the increased mass of the black hole, simulating this
instability accurately requires also the evolution of the Einstein
equations. Recent calculations of this type have been performed
by Montero et al. (2010) and reveal that the tori are indeed sta-
ble irrespective of the angular momentum distribution, thus ex-
cluding any role of the runaway instability in the dynamics of
the discs simulated here. However, as we will further comment

in Sect. 5.1.1, other non-axisymmetric instabilities are possible
and have been indeed found.

Table 1 reports the main properties of the models chosen,
where the naming convention used allows to easily distinguish
the small-size models (S*) from the large-size ones (L*), and
where the number * in the name refers to the spin of the black
hole, thus ranging between 0.00 and 0.99. As already com-
mented in the Introduction, while the small-size models are par-
ticularly suitable for investigating any effect of the black hole
spin, the large-size models are those that are (astro)physically
more realistic. The inner radius of these large-size models is typ-
ically of a few hundreds of gravitational radii and represents the
size of the cavity produced by the torque of the SMBBH as esti-
mated from the expression deduced from Table 1 of Milosavljeć
& Phinney (2005)

rcavity �
⎛⎜⎜⎜⎜⎝ 117

α0.34
−1

⎞⎟⎟⎟⎟⎠ ( η−1

ṀEdd

)0.24 (
M

106 M�

)0.08

[4q/(1 + q)2]0.42, (14)

where α−1 ≡ α/0.1, η−1 ≡ η/0.1 (α̃ and β̃ being the effective
α̃-parameter of thin accretion discs and the radiative efficiency,
respectively), ṀEdd is the mass accretion rate in Eddington units
and q is the mass ratio between the two coalescing black holes.

By construction, the recoil velocities that can be studied in
our setup are those contained in the equatorial (i.e. (r, φ)) plane
and because it is much more advantageous to study the dynamics
of the disc in a reference frame comoving with the black hole,
we impose a net velocity field in addition to the equilibrium or-
bital one. In practice, at time t = 0 we perform a Lorentz boost
of the fluid velocity along the radial direction with φ = 0, thus
mimicking a recoil velocity of the black hole in radial direction
but with φ = π. We treat the imparted recoil velocity Vk es-
sentially as a free parameter ranging from Vk = 100 km s−1 to
Vk = 3000 km s−1, where the latter values are not realistic and
serve here only to appreciate the disc dynamics under extreme
conditions. We recall, in fact, that the recoil velocities in the or-
bital plane are expected to be <∼450 km s−1 (Koppitz et al. 2007;
Herrmann et al. 2007; Pollney et al. 2007).

In addition to the recoil, in some initial models we also con-
sider the effects of the mass lost to gravitational waves and which
we account by first computing the initial model in the gravita-
tional potential of the full black hole mass, and then evolving it
in the gravitational potential of the reduced mass. As a reference
value we consider a decrease in the mass of ∼3%, thus corre-
sponding to that obtained from the typical merger of equal-mass
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spinning black holes with spins anti-aligned with the orbital an-
gular momentum (see Reisswig et al. 2009, Fig. 11). Higher
values of the mass loss do not introduce qualitative changes in
the overall dynamics.

A final comment is devoted to the EOS of the initial model,
that we chose to be that of a polytrope p = κργ, with γ = 4/3 or
γ = 5/3. We recall that a peculiar property of these equilibrium
models is that the ratio p/ρ, and therefore the temperature T and
the sound speed cs, do not depend on the polytropic constant κ2,
which, on the other hand, determines the mass of the disc (see
Rezzolla et al. 2003b, Appendix B). As a result, the size of the
torus is fixed, also the temperature is uniquely determined and
cannot be rescaled further. The last column in Table 1 reports
such a temperature at the centre of the torus, rc, as estimated
from the ideal-gas EOS via the expression

T =
mp

kB

p
ρ
, (15)

where, we recall, kB is the Boltzmann constant and mp the rest-
mass of the proton. In geometric units and with mp/kB = 1 the
transformation of the temperature from the dimensionless values
to Kelvin degrees is given by

T = 1.088 × 1013

(
p
ρ

)
K. (16)

4. Methodology of the analysis

In what follows we discuss in detail the physical quantities com-
puted during the evolution either as representatives of the global
evolution or of the local one.

4.1. Global quantities

In addition to the local Eulerian fluid variables, during the evolu-
tion we also monitor a few global quantities that are very helpful
for interpreting the main properties of the dynamics. These are:
the rest-mass, the internal energy and the accretion rate at the
innermost radial point of the grid, each of which is computed as

Mdisc ≡ 2H
∫ √

γDdrdφ, (17)

Eint ≡ 2H
∫
ε
√
γDdrdφ, (18)

Ṁ(rmin) ≡ −2H
∫
α
√
γDvrdφ. (19)

Note that when computing the volume integral we consider the
discs to have half thickness H which is assumed to be constant
in radius, i.e. with H ∼ cs/Ω as in the standard thin disc approx-
imation, with cs the sound speed and Ω the orbital velocity.

In addition to (17)–(19) we also compute a few more diag-
nostic quantities that, on the contrary, rely on simplified assump-
tions reflecting the fact that the implementation does not account
for processes such as radiation transfer and viscous dissipation.
In particular, we compute the bremsstrahlung emissivity of the
electron-proton collision as (Rybicki & Lightman 1986)

εBR � 2.0 × 10−27T 1/2Z2
i neni erg cm−3 s−1 (20)

� 7.14 × 1020T 1/2ρ2
cgs erg cm−3 s−1, (21)

2 The argument consists in proving that the function Ψ ≡ κ(n + 1)Θ,
where γ = 1 + 1/n and ρ = Θn, does not depend on κ. From this it
follows that p/ρ = κΘ does not depend on κ either.

where ne and ni � ne are the number densities of electrons and
ions (protons), respectively, while T is the equilibrium tempera-
ture of both electrons and protons. The bremsstrahlung luminos-
ity is then obtained after performing the volume integral

LBR � 3 × 1078
∫ (

T 1/2ρ2Γ
√
γd3x

) ( M�
M

)
erg/s, (22)

where the large multiplicative factor comes from the fact that
both T and ρ in (22) are expressed in geometrized units.

4.2. A relativistic “shock detector”

An obvious expectation, which has been confirmed by all of the
numerical simulations to date, is that the as the recoiling black
hole will move in the plane of the accretion disc it will introduce
spiral shocks which will move outwards on a timescale which is
comparable with the orbital one. Because determining the accu-
rate position of the shocks is important to correlate the latter to
the EM emission, a number of suggestions have been made in the
literature, which have a varying degree of precision. In particu-
lar, Lippai et al. (2008); O’Neill et al. (2009); Megevand et al.
(2009), all just looked at density and/or pressure gradients to
infer the propagation of a spiral caustic and, therefore, of a pos-
sible shock (we note that in the collisionless particles treatment
of Lippai et al. (2008), the existence of a shock is purely indica-
tive as no shocks can be produced in this approximation). On the
other hand, Rossi et al. (2010) used the introduction of an arti-
ficial viscosity, which is itself related to local density increases,
to identify the location of shocks. Finally, Corrales et al. (2010)
used a shock detector present in the FLASH code, which marks a
given region as a shocked one if ∇ · u < 0 and if the pressure dif-
ference between the monitored zone and at least one of its neigh-
bors exceeds the difference expected from the Rankine-Hugoniot
jump condition for a shock of a pre-specified minimum Mach
number. While more robust than those considered by the other
authors, also this prescription is a delicate one as we will discuss
in Sect. 5.1.1.

All of the methods mentioned above contain rather empirical
criteria and can fail to detect shocks unless they are very strong.
To improve the determination of the location of the shock, even
when the latter are arbitrarily weak, we have devised a relativis-
tic “shock detector” which exploits an idea discussed in all its
details in Rezzolla & Zanotti (2002) and Rezzolla et al. (2003c),
and which consists essentially in the possibility of predicting the
outcome of the wave pattern in a Riemann problem. (We note
that a similar detector can be prescribed also for non-relativistic
flows; the interested reader can find a detailed discussion in
Sect. 100 of Landau & Lifshitz 2004.)

To illustrate the logic of our shock detector let us suppose
that along a given direction, say the x-direction, two adjacent
fluid elements 1 and 2 manifest a jump in the hydrodynamical
quantities, such as pressure, density and velocity, thus repro-
ducing the typical conditions of a local Riemann problem. In
the absence of magnetic fields, the time evolution of a Riemann
problem consists in the propagation along opposite directions of
two nonlinear waves, either rarefactions or shocks, separated by
a third wave, the contact discontinuity. As a result, a shock front
will be produced if the wave pattern generated by the Riemann
problem contains at least one shock wave, while the other wave
can be a rarefaction wave. As shown by Rezzolla & Zanotti
(2002), there is a simple criterion for predicting the occurrence
of a wave pattern containing a shock wave and this amounts to
the requirement that the relative velocity between the two states
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1 and 2 (i.e. between two adjacent fluid cells) is larger than a
threshold value

v12 > (ṽ12)SR , (23)

where (ṽ12)SR is a function of the thermodynamic states of 1 and
2, while v12 ≡ (v1−v2)/(1−v1v2) is the special relativistic expres-
sion for the relative velocity. When there are nonzero velocities
in the direction tangential to the discontinuity front, the analytic
form of (ṽ12)SR is given by (Rezzolla et al. 2003c)

(̃v12)SR ≡ tanh

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∫ p2

p1

√
h2 +A2

1(1 − c2
s )

(h2 +A2
1)ρ cs

dp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (24)

whereA1 ≡ h1W1v
y
1 while cs is the sound speed. If, on the con-

trary, the relative velocity v12 is smaller than (ṽ12)SR , then no
shock wave can be produced and the wave pattern of the cor-
responding Riemann problem consists of two rarefaction waves
propagating in opposite directions.

With this idea in mind we have constructed a sensitive shock
detector to locate the regions of the disc which are producing a
spiral shock. In practice we first select the direction along which
we want to monitor the propagation of shock waves. Secondly,
since (23) and (24) have been derived in a flat spacetime, we
project the velocity field v j in a local tetrad in Boyer-Lindquist
coordinates so as to obtain the new components v ĵ

vr̂ =
√
grrv

r, (25)

vφ̂ =
√
gφφv

φ. (26)

Thirdly, we calculate vx̂ and vŷ from vr̂ and vφ̂ through a simple
rotation. Finally, we compute the integral (24) in terms of the
hatted Cartesian components and compare the result with v12.

Note that the integral (24) effectively provides the minimum
value for the occurrence of a wave pattern containing a single
shock wave. In the limit of (̃v12)SR → v12, in fact, the pressure
jump across the shock wave becomes vanishingly small and a
single rarefaction wave joining p1 and p2 propagates in the di-
rection opposite to that of the vanishing shock wave. Therefore,
when computing (24) we are actually integrating inside the rar-
efaction wave, that is notoriously a self-similar solution and
hence isentropic. This means that in evaluating (24) we can use
the isentropic expression for the sound speed

cs =

√
γ(γ − 1)p

(γ − 1)ρ + γp
, (27)

where the density ρ is given in terms of p from p = p1(ρ/ρ1)γ.
The procedure described above is completely general and

can be proposed as an efficient shock detector for numerical rel-
ativistic hydrodynamics. However, two subtleties should also to
be taken into account. The first subtlety is that, for more compli-
cated spacetimes or coordinates systems, the flat-spacetime pro-
jection (25)–(26) should be replaced by the more general form

vî = Mî
jv

j, (28)

with Mî
j given by (Pons et al. 1998)

Mî
j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
γ11

−γ12γ22+γ
13γ23

γ11 √γ22

−γ13
√
γ22γ33−(γ23)2

γ11 √γ22

0
√
γ22 0

0 γ23√
γ22

√
γ22γ33−(γ23)2

√
γ22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (29)

The second subtlety concerns the fact that, because the shock
detector validates the inequality (23), it can be arbitrarily sen-
sitive. Although this certainly represents an advantage, one of-
ten wishes to disregard the whole class of weak shocks, for
which the contribution to the entropy jump is of higher order and
Δs ∝ (Δp)3 (Thorne 1973). In these cases the weakest shocks
can be filtered out by making the condition (23) somewhat more
restrictive and require therefore that a shock is detected if

v12 > ṽ12 = (ṽ12)SR + χ
[
(ṽ12)2S − (ṽ12)SR

]
(30)

where

(̃vx12)2S =
(p1 − p2)(1 − vx2V̄s)

(V̄s − vx2){h2ρ2(Γ2)2[1 − (vx2)2] + p1 − p2} , (31)

with V̄s being the velocity of the shock wave propagating to-
wards state 2 (see Rezzolla et al. 2003c, for the explicit expres-
sion). Because (ṽ12)2S ≥ (ṽ12)SR , any value of χ between 0 and 1
will effectively raise the threshold for the detection of the shocks,
filtering out the weakest ones; the shocks encountered in the sim-
ulations reported here were all rather weak and we have there-
fore always used χ = 0. The whole procedure is repeated for
as many directions as the dimensions of the problem. Finally,
a prescription of the relativistic shock detector as adapted for
Newtonian fluids is presented in Appendix A.

5. Results

5.1. Small-size models

Although the small-size models are not astrophysically very re-
alistic as they presume the existence of small tori in equilibrium
near the recoiling black hole, they serve to set a comparison
with the other general-relativistic calculations of Megevand et al.
(2009), where similar tori were considered. In addition, by be-
ing so close to the black hole, they are helpful in capturing those
features of the dynamics that are most influenced by the regions
of strong gravity. However, because of their limited extensions
and high densities/temperatures (as an example, the model S.00
has ρc = 3.38 × 10−3 g/cm3 and Tc = 7.9 × 108 K) they will
not be used to draw any conclusion on the emitted luminosity,
which will be instead discussed in more detail when analyzing
the large-size models in Sect. 5.2.

5.1.1. Shock Dynamics

The different panels in the left column of Fig. 1 show the
rest-mass density at three different times (i.e. t = 6.07, 47.90
and 99.46 h) for model S.00 and a recoiling velocity Vk =
300 km s−1. Although the imparted velocity is rather small (but
close to the maximum possible in the orbital plane), the disc un-
dergoes large variations in size and density, with a shock front
that expands from the inner parts of the disc in an initially ax-
isymmetric manner. This is essentially due to the reduction in the
black-hole mass and which moves all of the equilibrium orbits
to larger radii. As the influence area of the black hole becomes
larger and the orbital velocities become comparable with that of
the recoil, the disc develops shocks with the characteristic spiral
structure discussed also in previous works (Lippai et al. 2008;
Corrales et al. 2010; Rossi et al. 2010) and that transports an-
gular momentum outwards. This is shown by the panels in the
right column of Fig. 1, which report the location of the shocks as
obtained with the procedure illustrated in Sect. 4.2. More specif-
ically, they show the quantity S d ≡ max{0, vx12 − ṽx12, v

y
12 − ṽy12},
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Fig. 1. Rest-mass density distributions (left columns) and shock structure (right columns) and at three different times (i.e. t = 6.07, 47.90 and
99.46 h) for model S.00 and a recoiling velocity Vk = 300 km s−1. Note that the last panel refers to almost 25 orbital revolutions. The rest-
mass density is plotted on logarithmic scale and in cgs units, while the shock structure is obtained by plotting the quantity S d (see beginning of
Sect. 5.1.1 for a definition); shock waves can form in regions where S d > 0. Note that is very hard to locate a shock by simply looking at the
density distribution.
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Fig. 2. Sound speed normalized to the kick velocity cs/Vk (left panel) and relativistic Mach numberM (right panel) at t = 99.46 h for model S.00
when subject to a recoil of Vk = 300 km s−1. Note that Vk ≥ cs is not a good criterion for the localization of the shock (cf. left panel) and that no
obvious correlation is present between the supersonicity of the flow and the appearance of the shock (cf. right panel).

whereby any positive value of S d marks a shocked region. Note
that the region very close to the black-hole horizon, namely
at radii smaller than ∼10 M, is always a highly shocked one.
Furthermore, as the evolution proceeds and the disc expands first
in response to the mass loss and subsequently to the shocks,
very little (if any) of the computational domain is filled by at-
mosphere, thus removing de-facto any role it can play in the dy-
namics of the disc.

Figure 2 provides additional information about the dynamics
of the disc by showing the local sound speed normalized to the
kick velocity, and the relativistic Mach number, the latter com-
puted as M ≡ Γv/Γscs, where Γs ≡ 1/

√
1 − c2

s is the Lorentz
factor of the sound speed (Konigl 1980). Our results shows that
the criterion suggested by Corrales et al. (2010) for the occur-
rence of shocks, namely Vk ≥ cs, can be rather misleading in the
relativistic context. Indeed, as shown by the snapshots at time
t = 99.46 h in Fig. 1, and which refers to almost 25 orbital rev-
olutions, a clear spiral shock forms even if the sound speed is
more than 30 times larger than the kick velocity. Indeed, the left
panel of Fig. 2 seems to suggest that if any, cs/Vk � 1 is possibly
a reasonable necessary condition for the approximate location of
the shock. In addition, the correlation between the occurrence of
a shock and the local sound speed is very weak and this is appar-
ent in the right panel of Fig. 2, where it is clear that the flow is
highly supersonic in the inner regions of the disc and mildly sub-
sonic in the outer regions. Yet, the spiral-shock structure extends
continuously across the whole disc. We also note that although
the precise morphology of the spiral shocks will depend on the
spin of the black hole, this dependence is only very weak and all
the considerations made above for model S.00 hold true quali-
tatively also for spinning black holes.

It is finally worth remarking that the shocks formed here
are very mild and not relativistic. Even for Vk = 3000 km s−1,
the shock velocity maintains a typical value Vs ∼ 0.15 and the
velocity jump at the shocks is also rather limited, producing a
v/Δv ∼ 30. This means, for instance, that such shocks are un-
able of accelerating electrons through the classical mechanism
of Bell (1978).

5.1.2. Mass loss and quasi-periodic dynamics

The dynamics of the disc can change considerably if the black
hole is assumed to be recoiling with negligible velocity in the
orbital plane and only mass loss is taken into account. By con-
sidering mass losses in the range 1−10%, O’Neill et al. (2009)
showed that shocks can form even in the absence of a recoil ve-
locity, provided that the mass loss is larger than the half thick-
ness of the disc. The perturbation induced by the mass loss is
spherically symmetric and it causes the disc to expand as each
fluid element will want to move to the larger radii corresponding
to the equilibrium orbit for the given initial angular momentum.
Together with this expansion, however, restoring forces will also
induce the disc to contract in the effective-potential well of the
black hole with the characteristic frequency of the lowest or-
der p-mode, and which is not too different from the epicyclic
frequency at the disc centre (Rezzolla et al. 2003b). We recall
that the restoring force responsible for the appearance of such
p modes is a combination of pressure gradients, centrifugal and
gravitational forces, with the last two playing the dominant roles
for the discs considered here (Kato 2001; Rezzolla et al. 2003b).

The oscillating behavior induced by the sudden change of
the potential well and the subsequent development of the insta-
bility is shown in Fig. 3, where the top panel reports the time
evolution of a typical global quantity, i.e. the internal energy,
when normalized to its initial value. Interestingly, the remark-
able periodicity that characterizes the dynamics is the same as
found by Zanotti et al. (2003) when studying global modes of
oscillation of thick discs around black holes. The corresponding
power spectrum is shown in the bottom panel of Fig. 3, obtained
through a FFT of the time series for t <∼ 3 d reveals the presence
of a fundamental mode of oscillations at f ∼ 4.17× 10−5 Hz and
of two overtones. The first overtone is at o1 ∼ 6.28 × 10−5 Hz,
while the second one, very close to twice the fundamental fre-
quency, o2 ∼ 8.37 × 10−5 Hz ∼ 2 f , is produced by nonlinear
coupling of the fundamental mode with itself (see Zanotti et al.
2005). Collectively, these modes of oscillations provide a se-
ries of modes in the same ratio of the integer numbers 2:3:4
observed in the QPOs of low-mass X-ray binaries containing
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Fig. 3. Time evolution of the internal energy when normalized to the its
initial value (top panel) and the corresponding power spectrum (bottom
panel) in a model with Vk = 0 and with a mass loss of 1% the initial
mass of the black hole.

a black hole (see Remillard & McClintock 2006, for a recent
review) and for which a simple model based on basic p-mode
oscillations of a small accretion torus orbiting close to the black
hole was recently proposed (Rezzolla et al. 2003a), and which
remains one of the most convincing explanations of the observed
phenomenology (Schnittman & Rezzolla 2006).

It is difficult not to note that the harmonic behaviour shown
in the top panel of Fig. 3 is lost at t � 3 d and that the inter-
nal energy increases monotonically after that. This is due to the
onset of a non-axisymmetric instability which produces spiral
arms that rapidly spread to cover the whole disc. An instabil-
ity of this type was not pointed out by Megevand et al. (2009)
although they have used similar models and we believe that
this is probably because their simulations were interrupted after
∼11 h (or ∼6 orbital periods as measured at the point of max-
imum rest mass density), which is too early for the develop-
ment of the instability. On the other hand, such type of insta-
bilities in non-Keplerian discs have been discussed by a number
of authors, starting from the pioneering work by Papaloizou &
Pringle (1984). A detailed comparison between the linear pertur-
bative analysis of these instabilities and two-dimensional numer-
ical simulations in a Schwarzschild spacetime was already pro-
posed more than twenty years ago by Blaes & Hawley (1988),
who found the development of the same spiral structures, which
transport both mass and angular momentum outwards even in
the absence of mass loss3. While we cannot concentrate here
on a detailed discussion of these instabilities, it is sufficient to
remark that a spiral-shock pattern and all of the associated phe-
nomenology, can be generated even when the recoil velocity is
zero.

Overall, the dynamics observed for model S.00 suggests
that transient oscillating phenomena may exist in the post-
merger phase of SMBBH. In this case, the occurrence of QPOs
in the accretion and thus in the luminosity of potential EM

3 We have verified that the spiral arms do indeed develop also in the
absence of a mass loss or of a recoil and that also in this case the insta-
bility takes place after ∼4 d.

Fig. 4. Mass accretion rate measured at r = rmin for different values of
the black hole spin-parameter in the small-size models, i.e. S.00–S.99.
Shown in the inset as a function of the black-hole spin is the stationary
accretion rate reached after 5 d.

counterparts, followed then by the development of non-
axisymmetric instabilities would be a unique and convincing sig-
nature that a SMBBH merger with small recoil velocities has
taken place.

5.1.3. Accretion rates

As originally pointed out by Kozlowski et al. (1978), in non-
Keplerian discs no viscosity is needed in order to support accre-
tion in the vicinity of the cusp. Figure 4 reports the baryon mass
accretion rate measured at r = rmin for different values of the
black hole spin-parameter in the small-size models, i.e. S.00–
S.99, and provides further support to the interpretation of the
shock dynamics discussed above. In particular, it is easy to real-
ize that because of the sudden mass loss and hence of the reduced
gravitational attraction, the disc reacts to the excess of angular
momentum by expanding. This effect only lasts for a couple of
orbital periods after the merger and leads to the large decrease in
mass accretion rate shown in Fig. 4 for t � 0.6 d.

Subsequently, as the effect of the kick velocity extends to re-
gions of the flow with smaller orbital velocities and becomes
dominant, non-axisymmetric density structures form and the
perturbed disc starts filling the low density central cavity while
increasing the accretion rate. This is reflected by the the large
increase in the mass accretion rate shown in Fig. 4 for t � 0.6 d,
which is essentially independent of the black-hole spin.

Since our treatment does not include the compensating ef-
fect of the radiation drag exerted by the photons on the ac-
creting matter, the accretion rate increases undisturbed reach-
ing values that are ∼6 orders of magnitude above the Eddington
limit. After about 6 orbital periods (≈1 d) Ṁ saturates and after
∼5 d all of the models have lost ∼32% of their mass. Figure 4
also shows that the spin of the black hole has little influence
on the dynamics of the disc, although not as little as inferred
from Fig. 13 of Megevand et al. (2009). In particular, we have
found that after ∼3 d the accretion rate slightly decreases when
increasing the spin-parameter (see the inset of Fig. 4), so that
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Fig. 5. Mass accretion rate measured at r = rmin for the small-size model
S.00 and different values of the recoil velocity. Shown in the inset as
a function of the recoil velocity is the relative baryon mass accreted
after 3 d.

Ṁ|a=0 ∼ 2.5 Ṁ|a=0.99 after ∼5 d of evolution. Interestingly, this
dependence of the accretion rate on the spin of the black hole is
rather generic and has been found also in other simulations (not
reported here) where no perturbation on the flow is introduced.

Of course, the effect of an increasingly large kick velocity
on the disc dynamics is much more pronounced in this case, as
it emerges from Fig. 5, which reports the accretion rate for dif-
ferent values of Vk. As already found by Megevand et al. (2009),
larger recoil velocities tend to anticipate the occurrence of the
burst in the accretion rate and, simultaneously, produce larger
absolute values of Ṁ at the burst. After the initial burst, how-
ever, and no later than∼2 days, the accretion rates become nearly
independent of the recoil velocity. The differences in Ṁ are il-
lustrated in the inset of Fig. 5 which shows the relative baryon
mass accreted after 3 d and which shows a variation of ∼50% at
most. It is also interesting to note that there is no clear imprint
of the spiral shock dynamics onto the accretion rate. This is due
to the fact that the spiral shocks essentially redistribute angular
momentum and thus modify the disc structure and dynamics far
from the black hole.

5.2. Large-size model

We next switch to discussing the dynamics of the large-size
model L.00 for different values of the recoil velocity. We re-
call that there are at least two different reasons to consider this
second class of models. The first one is that they reflect the ex-
pectations of a circumbinary disc: they are quasi-Keplerian, ex-
tended and at a large distance from the binary. The second one
is that by having a lower density, i.e. ρc = 1.38 × 10−10 g/cm3,
and hence a lower temperature, i.e. Tc = 8.7 × 106 K, they lead
to much more reasonable values of the recoil-enhanced luminos-
ity. In what follows we briefly review the overall dynamics and
then concentrate on how to compute a realistic estimate for the
luminosity.

5.2.1. Shock dynamics

The overall dynamics of the large-size models is qualita-
tively similar to that of the smaller counterparts but with three
important differences. The first one is a much weaker depen-
dence of the dynamics on the recoil velocity. This is essentially
due to the fact that the inner edge of the discs is so far from the
recoiling black hole that only extremely large (and unrealistic)
values of the recoil velocity induce a significant modification of
the orbital velocity. This is shown in Fig. 6, which reports in the
left column the rest-mass density after 60 and 180 d for a re-
coil velocity Vk = 500 km s−1 applied to model L.00. The right
column shows instead the corresponding shock structure with
the same notation used in Fig. 1 and highlights that a clear spi-
ral structure is lost already after 180 d, which now corresponds
to almost 18 orbital periods. Note that the temperature distri-
bution is inversionally proportional to that of the density (not
shown in Fig. 6) and that the central region is filled only with
the atmosphere fluid and thus appears as white in the left col-
umn. However, several small shocks are produced in this cavity
and these are clearly revealed by the shock detector images on
the right column which reports the central region as dark; this is
just an artifact that does not have a dynamical impact. The be-
haviour in Fig. 6 should also be contrasted with the spiral-shock
structure of model S.00, which instead persisted intact after al-
most 25 orbital periods (cf. bottom right panel of Fig. 1). This
behaviour and the rapid disappearance of the spiral shock struc-
ture is further pronounced as the recoil velocity is increased to
Vk = 1000 km s−1 (not shown here).

The second difference is that for sufficiently large recoils,
namely for Vk ≥ 2000 km s−1, the initial cavity between the
black hole horizon and the inner edge of the disc can be filled
rapidly by infalling material. This is evident when looking at
Fig. 7, which reports the rest-mass density and shock structure
after 60 and 180 d for a recoil velocity Vk = 3000 km s−1 ap-
plied to model L.00. When contrasted with Fig. 6, which has the
same spatial extent, it is easy to notice that already after ∼60 d,
or ∼5 orbital revolutions, the central cavity is filled with high-
density material, some of which extends right onto the black
hole. Similarly to what already seen for smaller recoils, also the
right column of Fig. 7 shows that in this case the spiral structure
is not present, although spatially extended shocks are formed
both in the inner regions and in the outer parts of the disc. Note
that the velocity jump at the shocks is again rather small, be-
ing at most Δv ∼ 2.5 × 10−4, hence insufficient to accelerate
particles through the various acceleration mechanisms involving
shock waves.

Interestingly, because the black hole is moving at very large
velocities in an ambient fluid which also has a non-negligible an-
gular momentum, a low-density region which resembles a horn-
shaped “cavity” is produced in the downstream part of the flow
when Vk = 3000 km s−1 at t = 180 d after the merger. This cav-
ity is shown in Fig. 8 and its orientation is directly related to the
direction of the recoil velocity. A simple change of sign in the
recoil velocity, in fact, would rotate the cavity of 180 degrees
around the black hole (not shown in Fig. 8). The formation of
such a cavity is noticeable also in the simulations of Rossi et al.
(2010), where however it is not discussed. The cavity leads to
quasi-periodic variation of the accretion rate as clumps of matter
in the downstream of the flow enter the cavity and streams onto
the black hole (cf. the oscillations of Ṁ in Fig. 9 after t ∼ 200 d
for VK = 3000 km s−1). The generation of this flow pattern has an
interest of its own, being a non-trivial variant of the Bondi-Hoyle
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Fig. 6. Left column: rest-mass density after 60 and 180 d for a recoil velocity Vk = 500 km s−1 applied to model L.00. The scale is logarithmic
and expressed in cgs units. Right column: shock structure as presented in Fig. 1 for the same panels in the left column. Once again we remark
that is very hard to locate a shock by simply looking at the density distribution, especially when they are very weak (here we have used χ = 0 in
Eq. (30)). Note also that the temperature distribution is inversionally proportional to that of the density (not shown here).

accretion flow onto a moving black hole and will be investigated
with greater detail in a distinct work.

The third and final difference is really a combination of the
phenomenology discussed above as it manifests itself in terms
of the accretion rate. This is shown in Fig. 9, which reports the
mass accretion rate at r = rmin for different values of the kick
velocity in the large-size model L.00. As already discussed with
Fig. 5 for the small-size models, also in these larger discs the ac-
cretion rate shows a rapid increase when the black hole “meets”
the disc, reaching values Ṁ � 10 M�/yr, that are well above
the Eddington one because of the absence of the radiation-drag
contribution. Differently from the smaller discs, however, the lag
between the merger and the increase of the accretion rate is not
linear but rather increases nonlinearly as the recoil velocity is
decreased. This is clearly shown in Fig. 9, where the accretion
rate jumps to high values after ∼35, d for Vk = 3000 km s−1,
after ∼100, d for Vk = 2000 km s−1 and after almost one year,
i.e. ∼330, d for Vk = 1000 km s−1. The reason for this nonlin-
ear response of the disc has to be found in the fact that for

smaller recoil velocities the time required by the black hole to
cross the initial cavity τcross will be much larger than the typical
orbital revolution time. As an example, for Vk = 1000 km s−1

the timescale ratio is τcross/τc ∼ 33, so that the disc will have
sufficient time to readjust itself to the new gravitational field and
thus redistribute its orbital angular momentum. In practice the
inner edge of the disc will move to larger radii as a result of the
mass loss and of the varied potential, thus delaying nonlinearly
the contact with the black hole and thus the steep increase in the
accretion rate.

As a final remark we note that all of the phenomenology dis-
cussed here for the model L.00 has been found also for a large-
size model around a rapidly spinning black hole, namely L.90.
Because the overall differences are minute and of the order of
few percent at most, they will not be discussed here. The reasons
behind these similarities are rather obvious: the large-size discs
have inner radii that are too far from the black hole to be sen-
sitive to the spin-induced corrections which decay much more
rapidly and as 1/r3.
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Fig. 7. The same as in Fig. 6 but for a recoil velocity Vk = 3000 km s−1. Note that the spiral-shock structure is never present and that the inner
cavity is rapidly filled by accreting gas. In addition, an oblique shock comprising a low-density region is formed in the inner parts of the flow.

5.2.2. EM luminosities

Because of the relatively high temperature of the gas and of
the generation of a shock pattern, thermal bremsstrahlung is
thought to be an efficient emission mechanism through which
circumbinary discs may become visible in the electromagnetic
spectrum (Megevand et al. 2009; Corrales et al. 2010; Bode et al.
2009; Anderson et al. 2010). However, thermal-bremsstrahlung
emission from circumbinary is affected by a serious problem
which has been so far underestimated or not sufficiently em-
phasized. This has to do with the fact that bremsstrahlung cool-
ing time is too short (Corrales et al. 2010) or, stated differently,
that the internal energy budget of the emitting gas is not large
enough to allow for the bremsstrahlung emission to last but for a
few seconds. This can be easily estimated as tcool = Eint/LBR,
with Eint and LBR obtained from (18) and (22), respectively.
For the large model L.00 we have Eint ∼ 3.4 × 1050 erg and
LBR ∼ 2.8 × 1049 erg/s at time t = 0 and this estimate re-
mains of the same order of magnitude during the evolution. This
yields to tcool � 12 s. The situation is even worse if we con-
sider the transition to the relativistic regime. In this case, in fact,

not only the bremsstrahlung emissivity is increased by a factor4

∝ [1 + 4.4T/(1010 K)] (Rybicki & Lightman 1986), but also
the collisions between particles of the same species start con-
tributing significantly to the bremsstrahlung emission (Svensson
1982) through radiation in moments other than the electric
dipole (which is strictly zero for particles of the same species,
Krolik 1999).

Of course, there are also other factors that can work in favour
of a bremsstrahlung emission and which we have not taken
into account. A first one is that we have neglected the thermal
bremsstrahlung absorption, which is likely to enhance signifi-
cantly the bremsstrahlung cooling time by acting as a source of
additional internal energy. Moreover, it is also possible that the
spiral shock originating from the very central region dissipates
considerably as it propagates outwards, hence confining the
bulk of the bremsstrahlung luminosity from within a very small

4 It should be remarked, however, that when the electron become rel-
ativistic, i.e. for T ≥ 5.9 × 109 K, other emission mechanisms, such as
inverse Compton or synchrotron (if a magnetic field is also present), are
generally more efficient.
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Fig. 8. Magnification of the central region of the rest-mass density in
model L.00 after 180 d and for a recoil velocity Vk = 3000 km s−1.
Note that the colormap is slightly different from the one in Fig. 7 to
highlight the presence of a cavity.

Fig. 9. Mass accretion rate at r = rmin for different values of the kick
velocity in the large-size model L.00.

portion of the disc (we recall that the bremsstrahlung luminosity
is proportional to the volume integral over the emitting source).
Overall, while we cannot rule out thermal bremsstrahlung as an
emission mechanism from the circumbinary disc, it is also ev-
ident to us that the luminosity estimates made so far without a
proper treatment of radiation transfer are excessively optimistic.

A second possible estimate of the luminosity is given by the
accretion-powered luminosity, Lacc = ηṀc2, where η is the ra-
diative efficiency. However, lacking any treatment of the radia-
tion pressure effects, such an estimate would only provide mis-
leading conclusions and therefore we will note use it hereafter.

A third and possibly more accurate estimate of the lumi-
nosity can be made by assuming that all the changes in the

temperature that are due to a local compression will be dissi-
pated as radiation. This idea, proposed in Newtonian physics
by Corrales et al. (2010), can be summarized and implemented
in a general relativistic context as detailed below.

Consider the evolution of the disc with an equation of
state p(T ) = ρkbT/mp and a specific internal energy given by
ε(T ) = kbT/[(γ − 1)mp] = 3

2 p/ρ, where the last equality has
been obtained for γ = 5/3. In general, there is no necessity to
evolve the energy equation in an isothermal evolution since the
energy can be computed directly from the temperature and the
latter is constant by construction. However, the internal energy
can be nevertheless evolved in time with the only aim of com-
puting the difference ρ[ε − ε(T )], which is then assumed to be
radiated instantaneously. The relativistic equation for the evolu-
tion of the total internal energy density e ≡ ρ(1 + ε) is (Anile
1990)

uμ∇μe + (e + p)Θ = 0, (32)

where Θ ≡ ∇μuμ is the expansion of the fluid. The continuity
equation ∇μ(ρuμ) = 0 can then be used to rewrite Eq. (32) as

∂t(
√
γWρε) + ∂i[

√
γρεW(αvi − βi)] =

−p∂t(
√
γW) − p∂i(α

√
γui) . (33)

One aspect to note is that Eq. (33) is not written in a conserva-
tive form because of the derivatives on the right hand side acting
on the flow variables. While this is not ideal within our formula-
tion of the hydrodynamics equations, the modifications are min-
imal. Indeed, since the Lorentz factor does not change signifi-
cantly during the evolution, it is reasonable to neglect the term
∝∂t(
√
γW), while the spatial derivatives of the term ∂i(α

√
γui)

can be treated with standard finite-difference methods without a
significant loss of accuracy across the discontinuities.

In practice we have assumed an initial temperature for the
disc which is uniform in space and set it to be T0 =

1
2 Tc,

where Tc is the maximum temperature at the center of the disc
(cf. Table 1). An estimate of the luminosity is then trivially com-
puted by performing at each timestep a volume integration of
the difference ρ[ε − ε(T )] and by dividing it by the simula-
tion timestep. Finally, we reset the specific internal energy to
ε = ε(T0), so as to guarantee that the evolution is effectively
isothermal.

The top panel of Fig. 10 shows the luminosity computed in
this way for model L.00with a polytropic index γ = 4/3 and for
different values of the recoil velocity. Following Corrales et al.
(2010), the values reported have been computed by neglecting
the negative contributions to the luminosity that are produced in
regions experiencing rarefactions. Because when accounted for
these negative contributions typically yield values that are one
order of magnitude smaller, the values in Fig. 10 should be taken
as upper limits to the emitted luminosity (see Corrales et al.
2010). Clearly, the evolution of the emitted energy has a peak
that is larger for stronger recoils and that appears at t ∼ 33, 18,
and 7 d after the merger for Vk = 300, 1000 and 3000 km s−1,
respectively. While the peaks are the consequence of the strong
shocks that are produced in the inner parts of the disc as the latter
approaches the black hole, the asymptotic values of the isother-
mal luminosity are instead produced by the local compressions
in the disc. As such, the peaks in the luminosity are not related to
the encounter of the black hole with the disc and therefore they
are not correlated with the increase in the mass accretion rate,
which in general takes place at later times (cf. right panel of
Fig. 11). The bottom panel of Fig. 10, on the other hand, shows
a comparison of Lisot for model L.00 when computed with a
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Fig. 10. Top panel: luminosity computed in the isothermal evolution
Lisot for different values of the kick velocity for model L.00 and for
a polytropic index γ = 4/3. Note the presence of a peak at about ∼20 d
after the merger, of a binary with total mass M � 106 M� and of a
persistent luminosity for several days at values which are a factor of a
few smaller. Bottom panel: comparison of Lisot for model L.00 when
computed with a polytropic index γ = 4/3 (thick lines) or γ = 5/3 (thin
lines). The comparison is made for two reference recoil velocities and
shows that the results are very similar, although a stiffer EOS leads to
slightly larger luminosities.

polytropic index γ = 4/3 (thick lines) or γ = 5/3 (thin lines).
The comparison is made for two reference recoil velocities of
Vk = 300 km s−1 and Vk = 1000 km s−1 and it shows that the
results are very similar, although a stiffer EOS leads to slightly
larger luminosities.

Overall, our estimates of the luminosity computed within
the isothermal evolution approximation confirm those by
Corrales et al. (2010) even though the temperature of our large
size model is one order of magnitude larger than that reported in
Fig. 7 of Corrales et al. (2010). While we believe that these esti-
mates of the luminosity are the most reasonable ones that can be
obtained with a code that is intrinsically unable to account for
radiation losses, we should also stress that the isothermal evo-
lution by itself provides a less reliable description of the over-
all dynamics. This is evident, for example, from Fig. 11, whose
left panel offers a comparison of the rest-mass density profiles
along φ = 0 as obtained with the standard evolution of the en-
ergy equation (red solid line) and with the isothermal evolution
(blue dashed line) for the large-size model L.00 and a recoil of
Vk = 1000 km s−1. Note that the isothermal evolution tends to in-
crease the density gradients, especially during the initial phases,
which is also when the peak in the luminosity appears in the
light curves. Also shown in the right panel of Fig. 11 is the mass
accretion rate at r = rmin for the isothermal evolution and dif-
ferent values of the kick velocity. This panel shows that since
the discs are more sensitives to compressions, their response to
the recoil is different and, in particular, takes place earlier than
in the full-evolution case (cf. with Fig. 9). Furthermore, with the
exception of the very large kick, the mass accretion rate does not
show a very large jump, but rather a first small jump followed
by smooth increase to the final asymptotic behaviour which is
reached at times comparable to those of the full evolution. This

is clearly the case for Vk = 1000 km s−1 and is due to the fact that
accretion starts earlier for this matter whose energy has been de-
creased by the radiative losses.

In conclusion, and in spite of the caveats made above, we
believe that luminosities as large as few L � 1043 erg/s should
be expected at about ∼30 d after the merger of a binary with total
mass M � 106 M� and that these luminosities should persist for
several days to values which are a factor of a few smaller.

6. Conclusions

We have presented the results of two-dimensional general rela-
tivistic numerical simulations of small and extended circumbi-
nary discs in the post-merger phase of the merger, when the disc
reacts to the mass loss of the central black hole and to its re-
coil velocity. Our analysis benefitted from being able to capture
accurately the dynamics of the perturbed disc in the relativis-
tic regime, thus allowing us to investigate the dependence of the
accretion rate on the black-hole spin and on the kick velocity.
Furthermore, by considering discs that are quasi-Keplerian, ex-
tended and at a large distance from the binary, we were able to
consider realistic scenarios even in the general relativistic frame-
work.

Another important aspect of our work is the use of a novel
and accurate technique to construct a “shock detector” and hence
to determine where, within the flow, the shocks produced by the
recoil are located. This, in turn, has allowed us to assess un-
der what conditions a spiral-shock pattern can develop, produce
a variability in the accretion rate and, hence, in the luminos-
ity. Our relativistic shock detector (for which we also present
a Newtonian equivalent in Appendix A) is based on the analysis
of the initial states of the Riemann problem solved at each cell
interface and can therefore determine the location of the shock
with the same resolution as that of the spatial grid, revealing that
the previously proposed criteria for the occurrence of the shock
are often inaccurate.

Overall, we can confirm within a general relativistic regime
many of the results found previously in Newtonian or pseudo-
Newtonian gravity. More specifically, we find that for discs
that are sufficiently small and close to the black-hole, a regular
spiral-shock develops as a result of the recoiling black hole. The
strength, shape and persistence of the shocks, however, depend
sensitively on both the size of the tori and on the intensity of the
recoil. As a result, while the spiral shock is stable over many or-
bital periods in the case of small discs subject to small recoils, it
never develops or is rapidly destroyed in discs that are large and
subject to large recoil velocities. It is worth noting that the typi-
cal velocity jumps at the shocks are Δv <∼ 2.5 × 10−4, even with
a kick velocity Vk = 3000 km s−1. It is therefore possible that
such shocks may be damped by dissipative viscous processes or
radiative losses.

Besides the interesting shock properties described above, we
also found that the disc dynamics is only very weakly dependent
on the black-hole spin. The latter influences only the small-size
tori by modifying the accretion rate and by leading to smaller
accreted masses per unit time for more rapidly spinning black
holes. Finally, we found that even in the limit of a vanishing
kick velocity and as long as a mass loss is present, the disc
goes through a phase of regular oscillations characterized by
the excitation of the p modes of the disc; this is then followed
by the appearance of a spiral-shock pattern generated by non-
axisymmetric instabilities affecting the disc. This opens the door
to the possibility that quasi-periodic oscillations are observed in
the post-merger phase of SMBBH.
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Fig. 11. Left panel: comparison of the rest-mass density along the φ = 0 direction as obtained with the standard evolution of the energy equation
(red solid line) and with the isothermal evolution (blue dashed line), at two different times as shown in the two panels. The data refers to model
L.00 with a recoil of 1000 km s−1. Right panel: mass accretion rate at r = rmin for the isothermal evolution and different values of the kick velocity
in the large-size model L.00. This panel should be compared with Fig. 9 and which refers to an evolution of the energy equation.

Computing the EM counterpart to the merger event repre-
sents of course a fundamental aspect of our investigation. In
contrast with other works, however, we have questioned the es-
timates of the bremsstrahlung luminosity when computed with-
out properly taking into account the radiation transfer. The en-
ergetic reservoir available for the EM emission is, in fact, too
small to yield but unrealistically short cooling times. While we
cannot rule out thermal bremsstrahlung as the main EM emission
mechanism, we believe that the bremsstrahlung-luminosity esti-
mates made so far without a proper treatment of radiation trans-
fer are excessively optimistic. A somewhat realistic estimates
of the emitted luminosity can be obtained by assuming that the
internal-energy enhancements due to local compressions in the
perturbed disc are immediately radiated away, i.e. by consider-
ing an “isothermal” evolution like the one recently investigated
in Newtonian physics by Corrales et al. (2010). In this case, and
despite the fact that the isothermal evolution tends enhance the
compressibility of the fluid, we find that the energy emitted can
reach a peak value above L � 1043 erg/s at about ∼30 d after
the merger of a binary with total mass M � 106 M� and persist
for several days at values which are a factor of a few smaller. If
confirmed by more sophisticated calculations such a signal could
represent an interesting EM counterpart of the merger of binary
black-hole system.

As a final remark we note that while a rather robust picture
is emerging from the collective work done so far on the post-
merger dynamics of the circumbinary disc around a SMBBH,
much remains to be done to compute realistically the resulting
EM emission. Important improvements to the treatment consid-
ered here must include the presence of a magnetic field, a proper
treatment of the radiation transfer and the extension to three-
dimensional calculations. All of these will be the focus of our
future work on this subject.
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Appendix A: Newtonian version of the shock
detector

In this Appendix we provide the basic expressions that allow
to build the Newtonian version of the relativistic shock detector
described in Sect. 4.2. The logic, of course, is exactly the same
and it consists of the following steps.

1. First choose the direction, say the x-direction, along which
to monitor the generation of shock waves.

2. Given any two adjacent cells, label with 1 the cell with higher
pressure and with 2 the other one.

3. Compute the relative velocity v12 = v1 − v2 along the x-
direction and compare it with the value (see Landau &
Lifshitz 2004, Sect. 100)

(̃v12)SR

∣∣∣∣∣∣
Newt

= − 2
γ − 1

cs(p1)

⎡⎢⎢⎢⎢⎢⎣1 − (
p2

p1

)(γ−1)/2γ⎤⎥⎥⎥⎥⎥⎦ , (A.1)

where γ is the adiabatic index of the gas and cs(p1) is the
sound speed in the state 1. It is interesting to note that in
the Newtonian case the tangential velocities do not affect
the actual value of the threshold (̃v12)SR , which, therefore,
maintains the same expression as for one-dimensional flows.
Indeed, the fact that in the relativistic regime the threshold
given by (24) does depend on the tangential velocities is at
the origin of the appearance of new relativistic effects dis-
cussed in Rezzolla & Zanotti (2002).

4. A shock is therefore detected if

v12 > (̃v12)SR

∣∣∣∣∣∣
Newt

. (A.2)

The procedure is repeated for as many directions as the dimen-
sions of the problem. As commented in the main text, we note
here too that it may be necessary at times to filter-out the small-
est shocks and therefore make the condition for shock detection
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more stringent. In analogy with Eq. (30), the following condition
can then be implemented

v12 > ṽ12 = (ṽ12)SR

∣∣∣∣∣∣
Newt

+ χ

[
(ṽ12)2S

∣∣∣∣∣∣
Newt

− (ṽ12)SR

∣∣∣∣∣∣
Newt

]
, (A.3)

where (see Landau & Lifshitz 2004, Sect. 100)

(ṽ12)2S

∣∣∣∣∣∣
Newt

= (p1 − p2)

√
2

ρ2
[
(γ + 1)p1 + (γ − 1)p2

] , (A.4)

and where the parameter χ ∈ [0, 1] needs to be tuned to the
desired level of accuracy.
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