Supplementary Material

FtsZ-Ring Regulation and Cell Division Are Mediated by Essential EzrA and Accessory Proteins ZapA and ZapJ in Streptococcus pneumoniae

Amilcar J. Pereza ${ }^{\text {a }}$, Jesus Bazan Villicana ${ }^{\text {a }}$, Ho-Ching T. Tsui ${ }^{\text {a }}$, Madeline L. Danforth ${ }^{\text {a }}$, Mattia Benedet $^{\text {b }}$, Orietta Massidda ${ }^{\text {b }}$, and Malcolm E. Winkler ${ }^{\text {ä\# }}$
${ }^{\text {an }}$ Department of Biology, Indiana University Bloomington, Bloomington, IN USA
${ }^{\text {b }}$ Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Italy
\#Corresponding author:
Malcolm E. Winkler
Department of Biology
Indiana University Bloomington
1001 E 3rd Street
Bloomington, Indiana USA 47405
Phone: 812-856-1318
E-mail: winklerm@indiana.edu
1. SUPPLEMENTARY TEXT: Complete Materials and Methods
2. SUPPLEMENTARY TABLES: Supplementary Tables 1-7
3. SUPPLEMENTARY REFERENCES
4. SUPPLEMENTARY FIGURES AND LEGENDS: Supplementary Figures 1-31

1. SUPPLEMENTARY TEXT

Complete Material and Methods

EzrA Structure Modeling

The amino acid sequence of $\operatorname{EzrA}(S p n)$ containing only the cytoplasmic portion (amino acids 30 -end) were entered into the phyre ${ }^{2}$ server under "normal modeling" (Kelley et al., 2015). The alignment of $\operatorname{EzrA}(S p n)$ with $\operatorname{EzrA}(B s u)$ (pdb accession number is 4UXV, "Cytoplasmic domain of bacterial cell division protein EzrA"). The resulting PDB model was visualized and aligned in PyMOL (The PyMOL Molecular Graphics System; Version 1.7.4.3; Schrödinger, LLC 2; www.pymol.org).

Bacterial Strains and Growth Conditions

Bacterial strains used in this study were derived from strain IU1824; unencapsulated derivative of serotype $2 S$. pneumoniae strain D39 containing an allele conferring Streptomycin resistance ($r p s L 1$) or IU1945 (streptomycin sensitive; $\left.r p s L^{+}\right)(($Lanie et al., 2007); Supplementary Table 1). Strains containing antibiotic resistance markers were constructed by transforming linear DNA amplicons synthesized by overlapping fusion PCR into competent pneumococcal cells as described previously (Tsui et al., 2010). Primers used for the generation of amplicons are listed in Supplementary Table 2. All constructs were confirmed by DNA sequencing of chromosomal regions corresponding to the amplicon region used for transformation. Bacteria were grown in plates containing trypticase soy agar II (modified; Beckton-Dickson) and $5 \%(\mathrm{v} / \mathrm{v})$ defribrinated sheep blood (TSAII-BA). Plates were incubated at $37^{\circ} \mathrm{C}$ in an atmosphere of $5 \% \mathrm{CO}_{2}$. For antibiotic selections, TASII-BA plates contained $250 \mu \mathrm{~g}$ kanamycin $\mathrm{ml}^{-1}, 150 \mu \mathrm{~g}$ spectinomycin $\mathrm{ml}^{-1}, 0.3 \mu \mathrm{~g}$ erythromycin $\mathrm{ml}^{-1}, 250 \mu \mathrm{~g}$ streptomycin ml^{-1}, or $0.25 \mu \mathrm{~g}$ tetracycline ml^{-1}. Strains were cultured statically in Becton-Dickinson brain heart infusion (BHI) broth at $37^{\circ} \mathrm{C}$ in an atmosphere of $5 \% \mathrm{CO}_{2}$, and growth was monitored by OD_{620} as described before (Land et al., 2013; Tsui et al., 2014). Bacteria were inoculated into BHI broth from frozen cultures or colonies, serially diluted into the same medium, and propagated for 1216 h . For growth experiments (non-depletion strains), overnight cultures that were still in exponential phase $\left(\mathrm{OD}_{620}=0.1-0.4\right)$ were diluted back to $\mathrm{OD}_{620} \approx 0.001-0.012$ to start final cultures, which lacked antibiotics in BHI broth at $37^{\circ} \mathrm{C}$ in an atmosphere of $5 \% \mathrm{CO}_{2}$. Cells were grown in $\mathrm{C}+\mathrm{Y} \mathrm{pH}$ 6.9-7.1 in an atmosphere of $5 \% \mathrm{CO}_{2}$ only when indicated in specific figure legends (Supplementary Figure 5, 14, and 27A).

Growth Merodiploid strains and Zn-Dependent Depletion

In all experiment that utilize ZnCl_{2} for Zn -dependent ectopic gene expression (including EzrA and FtsZ depletion and EzrA overexpression strains), indicated amounts of ZnCl_{2} were used alongside $1 / 10 \mathrm{MnSO}_{4}$ to prevent ZnCl_{2} toxicity in growth media and on TSAII-BA plates (Jacobsen et al., 2011; Tsui et al., 2014; Tsui et al., 2016). Depletion strains requiring ZnCl_{2} for growth were grown overnight in BHI broth in the presence of $0.5 \mathrm{mM} \mathrm{ZnCl}_{2}$ and $0.05 \mathrm{mM} \mathrm{MnSO}_{4}$ for EzrA depletion strains or $0.3 \mathrm{mM} \mathrm{ZnCl}_{2}$ and 0.03 mM MnSO 4 for FtsZ depletion strains. To deplete EzrA or FtsZ, cells grown to $\mathrm{OD}_{620} \approx 0.1-0.25$ in the presence of ZnCl_{2} and MnSO_{4}, were collected by centrifugation (5 min at $16,000 \times g$ at $25^{\circ} \mathrm{C}$), and re-suspended to appropriate OD_{620} in BHI with or without ZnCl_{2} and MnSO_{4}, such that cell density at the indicated collection time point(s) was between $\mathrm{OD}_{620} \approx 0.075-0.25$. The resuspension OD_{620} was 0.036 or 0.012 , for 1 h or $2-4 \mathrm{~h}$ collection time points, respectively. Cells were collected at appropriate time intervals and cell density for live
cell imaging, fixation for immunofluorescence microscopy (IFM), phase contrast microscopy, FDAA labelling, LIVE/DEAD staining, or western blotting experiments.

Cell Fixation and Adherence to Coverslips for Fluorescence Microscopy (Fm)

Cell fixation and adherence to coverslips was performed as described previously (Tsui et al., 2016). Briefly, after exponentially growing cells $\left(\mathrm{OD}_{622} \approx 0.075-0.25\right)$ had been washed in cold $\left(4^{\circ} \mathrm{C}\right) \mathrm{PBS}$ and pelleted, supernatant was removed and pellet was re-suspended in 1 mL of 4% paraformaldehyde (EMS; 157-4) and incubated for 15 min at room temperature, followed by 45 min on ice. Fixed cells were centrifuged (5 min at $16,000 \times g$ at $4^{\circ} \mathrm{C}$), and pellets were washed three times with cold $\left(4^{\circ} \mathrm{C}\right)$ PBS at $4^{\circ} \mathrm{C}$ as described above. After the third wash and centrifugation, cells were resuspended in $0.1-0.3 \mathrm{~mL}$ of cold $\left(4^{\circ} \mathrm{C}\right)$ GTE buffer (50 mM glucose, 1 mM EDTA, 20 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$), and stored in the dark at $4^{\circ} \mathrm{C}$ for up to 16 h . All samples that were fixed, with the exception of vertically oriented cells, were prepared on coverslips and were treated with methanol as described previously for direct imaging or processing for IFM (Tsui et al., 2016).

Characterization of Antibodies for IFM

Antibodies used and incubations used varied per experiment and have shown to be optimal for antibody labeling (Land et al., 2013; Tsui et al., 2014; Tsui et al., 2016) and are listed in Supplementary Table 5. DNA in nucleoids was stained using mounting media SlowFade gold antifade reagent with DAPI (Life Technologies, S36936). Control experiments showed no detectable antibody labelling in cells not expressing tagged proteins (IU1824 or IU1945) with the combinations of antibodies used, with exception of anti-FtsZ (data not shown). Labelling of strains containing single tagged-proteins were tested with the double labelling procedure (that contained both sets of primary and secondary antibodies) and produced signal in the expected fluorescence channel only (data not shown).

Analysis of 2D-Epifluorescence Microscopy (EFm) Images

Localization of FLAG-, Myc-, and HA-tagged proteins by IFM (Tsui et al., 2014) or localization of sfGFP, GFP, HT by single frame imaging of live cells was performed for exponentially growing cells as described before (Perez et al., 2019).

Following 2D-image acquisition of pneumococcal cells, images were aligned and cells were individually picked and were manually binned into four division stages (pre-, early-, mid-, and latedivisional) using a point-and-click IMA-GUI organized in MATLAB as reported previously (Land et al., 2013; Tsui et al., 2014).

Demographs showing protein fluorescence intensity as a function of cell length were generated by using Microbe J (version 5.11s) as described using previous parameters that allow for inclusion of stage 4 cells in the analysis (Perez et al., 2019). For these experiments only live cells were visualized that had been acquired by single frame imaging.

3D-SIM IFM

Samples were prepared as described previously (Land et al., 2013; Tsui et al., 2014) and 3D-SIM was performed using the OMX 3D-SIM super resolution system located in the Indiana University Bloomington Light Microscopy Center (LMIC). Exposure times and \%T settings for DAPI, Alexa-

488, and Alexa 568 images were $10-100 \mathrm{~ms}$ and 50%, 50 ms and $1-10 \%$, and 50 ms and $10-50 \%$ respectively.

TIRF Microscopy (TIRFm)

TIRFm was performed on cells grown in $\mathrm{C}+\mathrm{Y} \mathrm{pH} 6.9-7.1$ at $37^{\circ} \mathrm{C}$ and imaged on $\mathrm{C}+\mathrm{Y}$ agarose pads as described previously (Perez et al., 2019) with 1 frame aquired per second and with 45 ms exposure times. Strain numbers, relevant strain features, and laser power used (\% Transmission or $\% \mathrm{~T}$) for the indicated excitation laser wavelength are indicated; IU15768 (FtsZ-sfGFP EzrA-HT ${ }^{\mathrm{JF549}}$) $10 \% \mathrm{~T}$ at 488 nm and 50% T at 561 nm ; IU15699 (GFP-FtsA EzrA-HT ${ }^{\mathrm{JF} 549}$) 100\% T at 488 nm and $50 \% \mathrm{~T}$ at 561 nm ; IU9985 (FtsZ-sfGFP) 10\% T at 488 nm ; IU14131 ($\Delta z a p A$ FtsZ-sfGFP) $10 \% \mathrm{~T}$ at 488 nm . HaloTag proteins were labelled to saturation with 500 nM HT-JF549 ligand (Grimm et al., 2015).

3D-SIM of FDAA-Labeled Cells Expressing EzrA-sfGFP

To image vertically oriented cells of strain IU10254 (EzrA-sfGFP) we performed 3D-SIM on samples prepared similarly described in (Perez et al., 2021). Cells from overnight cultures were diluted to $\mathrm{OD}_{620} \approx 0.02$ in 2 mL of fresh BHI broth. At $\mathrm{OD}_{622} \approx 0.22,575 \mu \mathrm{~L}$ of cultures was centrifuged at $16,100 \times g$ for 5 min at room temperature, and pellets were resuspended in $250 \mu \mathrm{~L}$ of BHI broth containing TADA ($125 \mu \mathrm{M}$ final). Cells were incubated at $37^{\circ} \mathrm{C}$ for 5 min , chilled on dry ice for 20 s , and centrifuged for 2.5 mm at $16,100 \times g$ at $4^{\circ} \mathrm{C}$. Cell pellets were centrifuged and washed twice with $500 \mu \mathrm{~L}$ ice-cold PBS, then centrifuged a third time and resuspended in $500 \mu \mathrm{~L}$ of $4 \%(\mathrm{v} / \mathrm{v})$ paraformaldehyde and incubated in the dark for 15 min at room temperature, followed by 45 min on ice in the dark. Fixed cells were centrifuged, and pellets were resuspended in $100 \mu \mathrm{~L}$ of ice-cold GTE buffer (50 mM glucose, 20 mM Tris-HCl, pH 7.5, 1 mM EDTA). For imaging, cells were centrifuged for 5 min at $16,100 \times g$ at $4^{\circ} \mathrm{C}$ to remove the GTE buffer and centrifuged once more to remove residual GTE buffer with a P20 pipette. Excess liquid was allowed to evaporate for approximately 1 min before pellets were resuspended in $3.0 \mu \mathrm{~L}$ of Vectashield Hardset Antifade (Vector Laboratories, $\mathrm{H}-1400$) with vortexing $1.2 \mu \mathrm{~L}$ of resuspended cells was pipetted onto a 12 $\mathrm{mm} / 1.5$ round coverslip (EMS, 72230-01), and a microscope slide was carefully placed on top. The slide was incubated coverslip side down at room temperature in the dark for 15 min , and then viewed by 3-Dimensional Structured Illumination Microscopy (3D-SIM). Exposure time and \%T settings to acquire images were 5 ms and 50% for TADA and sfGFP.

Measurements of Cell Dimensions by Phase-Contrast Microscopy (PCm)

Live cells were used for PCm and cell length and width measurements. Cells were grown in BHI broth in the presence or absence of ZnCl_{2} and MnSO_{4} using Nikon NIS-Element AR software as described before (Land et al., 2013). For all strains, either stage one cells or daughters of stage four cells were analyzed. Length was defined as the long-axis of post divisional (daughters of stage 4 cells) or stage one cells, while width was parallel planes of daughter cells. Aspect ratio was determined by dividing length by width. The relative volume of cells was determined by dividing the width ${ }^{2} \mathrm{x}$ length of an individual cell by median width ${ }^{2} \mathrm{x}$ length value of wild-type strain (IU1945).

Western Blotting

Cell were obtained from exponentially growing cultures. Total cell lysates were prepared using SEDS (0.1% deoxycholate, $150 \mathrm{mM} \mathrm{NaCl}, 0.2 \%$ SDS, 15 mM EDTA pH 8.0) lysis buffer as
described previously (Beilharz et al., 2012; Cleverley et al., 2019). FLAG-, HA-, and Myc-tagged proteins were detected by western blot using 1:1000 dilution of anti-FLAG rabbit polyclonal antibody (Sigma, F7425), anti-HA rabbit polyclonal antibody (Invitrogen, 71-5500), anti-GFP rabbit (ThermoFisher \#A11122), or anti-Myc rabbit polyclonal antibody (Sigma, C3956) as primary antibodies for 1 hr incubations. Native untagged proteins were detected using anti-FtsZ at 1:10000 (Lara et al., 2005), anti-FtsA at 1:10000 (Lara et al., 2005), or anti-MreC at 1:5000 (Land and Winkler, 2011) as primary antibodies for 1 h incubations. Secondary incubations were performed using HRP Donkey anti-rabbit for 1 h at a 1:10000 ratio. Chemiluminescent signal in protein bands was detected and quantified using an IVIS imaging system as described previously (Wayne et al., 2010). Following imaging and data acquisition of immunoblot, India-ink was used to confirm equal amount of cell lysate loading throughout all lanes of the nitrocellulose membrane, briefly, $10 \mu \mathrm{~L}$ of india ink was added to 10 mL of PBST and allowed to incubate with used-nitrocellulose membrane overnight. The membrane was then washed with 6 mL of PBS for 5 min twice to remove excess india ink.

LIVE/DEAD Staining of ezrA and Other Mutants

Viability determinations were done using the LIVE/DEAD BacLight bacterial viability kit (Molecular Probes) as described before in (Sham et al., 2013; Wayne et al., 2012) with slight modifications. With this assay, a mixture of SYTO 9 and propidium iodide stains bacteria with intact cell membranes and bacteria with damaged membrane fluorescent green and red respectively. Briefly, strains (Supplementary Table 3 and Supplementary Figure 29) were grown at $37^{\circ} \mathrm{C}$ overnight and depletion or complementation occurred as described above in "Growth of Zn dependent Depletion and Merodiploid strains". At appropriate times indicated in respective figure legends, cells were collected by centrifugation at $16,100 \mathrm{x} g$ for 2 min at $25^{\circ} \mathrm{C}$. Cell pellets were resuspended in $50 \mu \mathrm{~L}$ of BHI broth by gentle pipetting to which $2 \mu \mathrm{~L}$ of a $1: 1(\mathrm{v} / \mathrm{v})$ mixture of Syto- 9 and propidium iodide was added, according to the manufacturer's instructions, by gentle pipetting. The staining mixture was incubated in the dark for 5 min at $25^{\circ} \mathrm{C}$, and cells were visualized by PCm and EFm as described previously (Wayne et al., 2012).

DAPI Staining for Nucleoid Content

DNA in nucleoids was stained using mounting media SlowFade gold anti-fade reagent with DAPI (Life Technologies, S36936) (Tsui et al., 2014; Perez et al., 2019). Briefly, cells were grown in BHI under appropriate conditions. At the indicated times, cells were fixed as described in "Cell fixation and cell adherence to coverslips for fluorescence microscopy." Immediately prior to imaging $3 \mu \mathrm{~L}$ of DAPI (Life Technologies, S36936) was added to the adhered cells, and coverslips were sealed onto glass slides and visualized immediately. Cells were then scored based on the presence or absence of DAPI staining to give values in Supplementary Table 4.

FDAA Pulse-Chase Labeling in Depletion Experiments

FDAAs HADA (7-hydroxycoumarin-3-carboxylic acid 3-amino-D-alanine), and TADA (tetramethylrhodamine 3-amino D-alanine) were synthesized as reported previously (Boersma et al., 2015; Perez et al., 2021). Cells from exponentially growing cultures were spun and re-suspended to an OD_{620} between $0.01-0.036$ in 2 or 3 mL of warmed BHI broth $(\pm \mathrm{Zn})$ containing $1.0 \mu \mathrm{~L}$ of 500 mM HADA (in dimethyl sulfoxide [DMSO]) to a final concentration of $250 \mu \mathrm{M}$. At appropriate time intervals $500 \mu \mathrm{~L}$ of cell were transferred to a 2.0 mL centrifuge tube, which were placed in an ice bath for 1 min to halt labeling and centrifuged for 5 min at $16,000 \mathrm{xg}$ at $4^{\circ} \mathrm{C}$. Supernatants were
discarded, and pellets were resuspended in $250 \mu \mathrm{~L}$ of warm $\mathrm{BHI}(-\mathrm{Zn})$ which contained pre-warmed TADA in DMSO to a final concentration of $500 \mu \mathrm{M}$. Cultures were placed back into an incubator and grown at $37^{\circ} \mathrm{C}$ for indicated time amounts in Supplementary Figure legends 12A, and 19A. Cultures were then placed in an ice bath for 1 min to halt labeling and centrifuged for 2.5 min at $16,000 \times g$ at $4^{\circ} \mathrm{C}$. Cultures were then centrifuged at $16,000 \times g$ for 2.5 min at $4^{\circ} \mathrm{C}$, supernatants discarded, and pellets were re-suspended in $250 \mu \mathrm{~L}$ of cold 1 X PBS. After the second wash and centrifugation, pellets were re-suspended in 1 mL of 4% paraformaldehyde (EMS; 157-4) for fixation as described above for "Cell Fixation and Cell Adherence to Coverslips for Fluorescence Microscopy."

Co-Immunoprecipitation (Co-IP) Assays

Co-IP experiments involving crosslinking steps were performed as described previously (Rued et al., 2017). Briefly, washed cell pellets of FLAG-tagged or control non FLAG-tagged strains grown in 400 mL BHI broth were crosslinked in 0.1% paraformaldehyde for 1 h at $37^{\circ} \mathrm{C}$, washed, resuspended in cold lysis buffer (50 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 1% Triton X100 (w/v)) with protease inhibitor (ThermoFisher Scientific), and shaken in a FastPrep homogenizer (MP Biomedical). 4 mg proteins and anti-FLAG magnetic beads (Sigma) were incubated for 2 h at $4^{\circ} \mathrm{C}$, washed, and complexes containing FLAG-tagged proteins were eluted with FLAG elution buffer containing 150 ng FLAG3 peptide/ $\mu \mathrm{L}$. Input sample and eluted sample were mixed with equal volumes of $2 \times$ Laemmli sample buffer (Bio-Rad) containing 5% (vol/vol) β mercaptoethanol (Sigma) and heated at $95^{\circ} \mathrm{C}$ for 1 h to break the cross-links. $5 \mu \mathrm{~L}$ or $20 \mu \mathrm{~L}$ of input samples or eluted samples were loaded into each lane of $4-15 \%$ precast protein gels (Bio-Rad) in Tris-glycine buffer. Transferred membranes were subjected to Western blotting using anti-FLAG (Sigma), anti-HA (ThermoFisher Scientific), anti-Myc (Sigma), anti-FtsZ, anti-FtsA, and anti-MreC as primary antibody as described above.

Co-IP experiments not involving crosslinking was performed in Figure 1C with strains IU10447 and IU5456 as described above with the omission of paraformaldehyde incubation.

Bacterial Two-Hybrid (B2H) Assays

The hybrid plasmids used in the B2H assays are listed in Supplementary Table 6. For cloning, the target genes were amplified by PCR from S. pneumoniae D39 chromosomal DNA using the primers listed in Supplementary Table 7. PCR fragments for $\operatorname{sep} F, m p g A$ (formerly $m g l t G(S p n)$, $\operatorname{rod} Z$, $\operatorname{rod} A$, ftsW, ftsQ/divIB, ftsL, ftsB/divIC, macP, ftsK, zapA, zapJ, and mreD were purified, digested with the appropriate restriction enzymes, and cloned into the corresponding sites of the pKT25/pUT18C or pKNT25/pUT18 vectors to generate plasmids encoding the corresponding hybrid proteins fused at their C-terminal ends of the T25/T18 fragments (sepF, mpgA, rodZ, rodA, ftsW, ftsQ/divIB, ftsL, $f t s B / d i v I C, \operatorname{macP}, f t s K, z a p A, z a p J$) or at their N-terminal ends the of the T25/T18 fragments (mreD), respectively. E. coli $\mathrm{DH} 5 \alpha$ or XL1-blue transformants were selected on LB agar plates containing ampicillin ($100 \mu \mathrm{~g} / \mathrm{ml}$) or kanamycin $(50 \mu \mathrm{~g} / \mathrm{mL})$ and 0.4% glucose to repress leaky expression (Karimova et al., 2005). The correct sequence of each construct was verified by double-strand sequencing using primers also listed in Supplementary Table 7. The hybrid plasmids pKT25-ftsA/pUT18C-ftsA, pKNT25-ftsZ/pUT18-ftsZ, pKNT25-gpsB/pUT18-gpsB, pKNT25-stkP/pUT18stkP, pKNT25-ezrA/pUT18-ezrA, pKT25-pbp1a/pUT18C-pbp1a, pKT25-pbp2a/pUT18C-pbp2a, pKT25-pbp2x/pUT18C-pbp2x, pKT25-pbp2b/pUT18C-pbp2b and pKT25-mreC/pUT18C-mreC were previously constructed and reported (Krupka et al., 2012; Rued et al., 2017; Cleverley et al.,
2019). The B2H plasmids pKNT25-locZ and pUT18-loc Z were kindly provided by K. Buriánková and P. Branny. Plasmid pairs pKNT25/pUT18 and pKT25-zip/pUT18C-zip were used as negative and positive controls, respectively. B2H assays were carried out as previously described (Rued et al., 2017; Cleverley et al., 2019). Briefly, each pair of plasmids was co-transformed into the E. coli cyastrain BTH101 and co-transformation mixtures were spotted directly onto LB agar plates supplemented with ampicillin ($100 \mu \mathrm{~g} / \mathrm{ml}$), kanamycin ($50 \mu \mathrm{~g} / \mathrm{mL}$) and X-Gal ($60 \mu \mathrm{~g} / \mathrm{ml}$), followed by incubation at $30^{\circ} \mathrm{C}$. Plates were inspected and photographed after 24 h and 40 h . All the B2H experiments were performed at least twice.

Mass Spectrometry to Identify ZapJ (Spd_1350)

Co-IP with crosslinking was performed on strains IU1824 and IU10267 as described above with following changes. $50 \mu \mathrm{~L}$ (instead of $20 \mu \mathrm{~L}$) of the eluted sample was loaded onto an SDS-PAGE gel. Silver staining was performed as described by manufacturer's instructions (Pierce ${ }^{\mathrm{TM}}$ C\# 24612). The indicated bands in Figure 11A were cut from gels, destained, and submitted to the IUB Mass Spectrometry facility for Trypsin digests and Mass Spectrometry as described previously (Sham et al., 2011). Results from mass spectrometry indicated that Spd_1350 (ZapJ) peptides were not detected in ZapA^{+}control sample and were the most enriched peptides in the ZapA-FLAG sample compared to the ZapA^{+}control.

2. SUPPLEMENTARY TABLES

Supplementary Table 1. S. pneumoniae bacterial strains used in this study ${ }^{\text {abce }}$

Strain number	Genotype (description) ${ }^{\text {b }}$	Antibi otic resista nce ${ }^{\text {d }}$	Reference or source
IU1824	D39 4 cps rpsL1	Str ${ }^{\text {R }}$	$\begin{aligned} & \text { (Lanie } \text { et al., } \\ & 2007 \text {) } \end{aligned}$
IU1945	D39 $\Delta c p s$	None	$\begin{aligned} & \text { (Lanie et al., } \\ & 2007 \text {) } \\ & \hline \end{aligned}$
IU3116	D39 rpsL1 CEP $\because: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$	Kan ${ }^{\text {R }}$	$\begin{array}{\|l} \text { (Ramos- } \\ \text { Montanez et al., } \\ 2010 \text {) } \\ \hline \end{array}$
IU4352	D39 rpsL1 CEP : $\mathrm{P}_{\text {fcsK-ack }}{ }^{+}$	Str ${ }^{\text {R }}$	$\begin{array}{\|l\|} \hline \text { (Ramos- } \\ \text { Montanez et al., } \\ 2010 \text {) } \\ \hline \end{array}$
IU4355	$\begin{aligned} & \text { D39 rpsL1 } \Delta c p s ~ \Delta b g a A^{\prime}:: \mathrm{P}_{\mathrm{c}}-k a n t 1 \mathrm{t} 2-\mathrm{P}_{\text {fcsk }}-\sec A-\mathrm{L}- \\ & \text { FLAG }^{3} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \mathrm{Str}^{\mathrm{r}} \\ \mathrm{Kan}^{\mathrm{r}} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { (Tsui } \text { et al., } \\ \text { 2011) } \\ \hline \end{array}$
IU4368	D39 $\Delta c p s$ ftsZ-FLAG ${ }^{3}-\mathrm{P}_{\mathrm{c}}$-erm	Erm${ }^{\text {R }}$	$\begin{array}{\|l} \hline \text { (Tsui } \text { et al., } \\ \text { 2011) } \\ \hline \end{array}$
IU5122	D39 $\Delta c p s$ rpsL1 CEP $\because: \mathrm{P}_{c}-\left[k a n-r p s L^{+}\right]$(IU1824 transformed with CEP: $\because \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$from IU3116)	Kan ${ }^{\text {R }}$	This Study
IU5456	D39 Δ cps ezrA-L ${ }_{0}-\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm	Erm${ }^{\text {R }}$	$\begin{aligned} & \hline \text { (Rued et al., } \\ & 2016) \end{aligned}$

Supplementary Material

IU5544	D39 4 cps pbpla- $\mathrm{L}_{0}-\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm	Erm ${ }^{\text {R }}$	$\begin{aligned} & \text { (Land et al., } \\ & 2013 \text {) } \end{aligned}$
IU5557	D39 $\Delta c p s$ bgaA ${ }^{\prime}:$ kan-t1t2- $\mathrm{P}_{\text {cssK- }}$ ftsZ Z^{+}(IU1945 transformed with fusion amplicon bgaA' $:$:kan-t1t2$\mathrm{P}_{\text {fcsK }}-f t s Z^{+}$)	Kan ${ }^{\text {R }}$	This Study
IU5653	D39 $\Delta c p s$ divIVA- $\mathrm{L}_{0}-\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm (IU1945 transformed with fusion amplicon divIVA- $\mathrm{L}_{0}-\mathrm{FLAG}^{3}-$ P_{c}-erm)	Erm ${ }^{\text {R }}$	This Study
IU5781	D39 Δ cps bgaA' $:$:kan-t1t2- $\mathrm{P}_{\text {fcsK }}$-ezrA ${ }^{+}$(IU1945 transformed with fusion amplicon bgaA'::kan-tlt2$\mathrm{P}_{\text {fcsK-ezr }}{ }^{+}$)	Kan ${ }^{\text {R }}$	This Study
IU5795	D39 $\Delta c p s \Delta e z r A<>$ aad9//bgaA ${ }^{\prime}:$ kan-t1t2- $\mathrm{P}_{\text {fcsK }}-e z r A^{+}$ (IU5781 transformed with fusion amplicon, $\Delta e z r A<>a a d 9$; strains were plated and stored in the presence of $1 \% \mathrm{w} / \mathrm{v}$ fucose)	$\begin{aligned} & \mathrm{Kan}^{\mathrm{R}} \\ & \mathrm{Spc}^{\mathrm{R}} \end{aligned}$	This Study
IU6545	D39 Δ cps ezrA-HA-P ${ }_{c}$-erm (IU1945 transformed with fusion amplicon ezrA-HA-P P_{c}-erm)	Erm ${ }^{\text {R }}$	This Study
IU6565	D39 $\Delta c p s$ ftsZ-FLAG-Pc-erm (IU1945 transformed with fusion amplicon ftsZ-FLAG-Pc-erm)	Erm ${ }^{\text {R }}$	This Study
IU6570	D39 $\Delta c p s$ ftsZ-Myc-P P_{c}-erm	Erm ${ }^{\text {R }}$	$\begin{array}{\|l} \hline \text { (Land et al., } \\ 2013) \\ \hline \end{array}$
IU6810	D39 $\Delta c p s ~ e z r A-H A-\mathrm{P}_{\mathrm{c}}-k a n$	Kan ${ }^{\text {R }}$	(Rued et al., 2016)
IU6929	D39 $\Delta c p s p b p 2 x$-HA- $\mathrm{P}_{\mathrm{c}}-k a n$	Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Tsui et al., } \\ & 2014 \text {) } \end{aligned}$
IU6933	D39 $\Delta c p s p b p 2 b-H A-\mathrm{P}_{\mathrm{c}}-k a n$	Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Tsui et al., } \\ & 2014) \\ & \hline \end{aligned}$
IU6962	D39 $\Delta c p s ~ f t s Z-M y c-\mathrm{P}_{\mathrm{c}}-k a n$	Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Land et al., } \\ & \text { 2013) } \end{aligned}$
IU7054		Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU7070	D39 $\Delta c p s$ ftsZ-Myc- P_{c}-kan ezrA- $\mathrm{L}_{0}-\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm (IU6962 transformed with ezrA- $\mathrm{L}_{0}-\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm amplicon from IU5456)	$\begin{aligned} & \operatorname{Erm}^{R} \\ & \operatorname{Kan}^{R} \end{aligned}$	This Study
IU7223	D39 $\Delta c p s$ ezrA-HA-Pc-kan ftsZ-Myc-Pc-erm (IU6810 transformed with $f t s Z-\mathrm{Myc}-\mathrm{P}_{\mathrm{c}}$-erm amplicon from IU6570)	$\begin{aligned} & \operatorname{Erm}^{R} \\ & \operatorname{Kan}^{R} \end{aligned}$	This Study
IU7334	D39 Δ cps rpsL1 CEP $:: \mathrm{P}_{\text {fcsK }}-e z r A^{+}$(IU5122 transformed with fusion amplicon CEP $:: \mathrm{P}_{\text {fcsK }}-e z r A^{+}$)	$\mathrm{Str}^{\mathrm{R}}$	This Study
IU7351	D39 $\Delta c p s$ sepF-HA-Pc-kan (IU1945 transformed with fusion amplicon sepF-HA-P P_{c}-kan)	Kan ${ }^{\text {R }}$	This Study
IU7353	D39 Δ cps sep F-FLAG-P ${ }_{c}$-erm (IU1945 transformed with fusion amplicon sepF-FLAG-P- ${ }_{\mathrm{c}}$-erm)	Erm ${ }^{\text {R }}$	This Study
IU7438	D39 $\Delta c p s ~ s t k P-H A-\mathrm{P}_{\mathrm{c}}-k a n$	Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Tsui et al., } \\ & 2016 \text {) } \end{aligned}$

IU7614	D39 Δ cps rpsL1 ftsZ ${ }^{+}-\mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$	Kan ${ }^{\text {R }}$	$\begin{array}{\|l} \hline \text { (Tsui } \text { et al., } \\ 2016) \end{array}$
IU7654	D39 $\Delta c p s$ ftsK-FLAG ${ }^{2}$ - P_{c}-erm (IU1945 transformed with fusion amplicon $f t s K$ - $\mathrm{FLAG}^{2}-\mathrm{P}_{\mathrm{c}}$-erm)	Erm ${ }^{\text {R }}$	This Study
IU7655	D39 Δ cps ftsK-HA ${ }^{2}-\mathrm{P}_{\mathrm{c}}-k a n$ (IU1945 transformed with fusion amplicon fts $K-\mathrm{HA}^{2}-\mathrm{P}_{\mathrm{c}}-k a n$)	Kan ${ }^{\text {R }}$	This Study
IU7667	D39 Δ cps rpsL1 ftsZ-Myc	Str ${ }^{\text {R }}$	$\begin{aligned} & \hline \text { (Mura et al., } \\ & 2016 \text {) } \\ & \hline \end{aligned}$
IU7814 ${ }^{\text {d }}$	D39 $\Delta c p s \Delta f t s Z:: a a d 9 / / b g a A^{\prime}:: k a n-\mathrm{t11} 2-\mathrm{P}_{f t s A}-\mathrm{RBS}^{f t s A}-$ fts Z^{+}(IU7054 transformed with fusion amplicon $\Delta f t s Z:: a a d 9)$	$\begin{aligned} & \mathrm{Kan}^{\mathrm{R}} \\ & \mathrm{Spc}^{\mathrm{R}} \end{aligned}$	This Study
IU7933	D39 Δ cps rpsL1 $\Delta z a p A:: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$(IU1824 transformed with $\Delta z a p A:: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$amplicon from K743)	Kan ${ }^{\text {R }}$	This Study
IU8033	D39 Δ cps rpsL1 $\Delta\left[\right.$ zapA-spd_0370] $\because: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$ ftsZ-Myc markerless (IU7667 transformed with $\Delta\left[\right.$ zapA-spd_0370 $:: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$from K747)	Kan ${ }^{\text {R }}$	This Study
IU8035	D39 Δ cps rpsL1 Δ zapA markerless (IU7933 transformed with fusion amplicon $\triangle z a p A$ markerless)	Str ${ }^{\text {R }}$	This study
IU8122	D39 $\Delta c p s$ bgaA ${ }^{\prime}:: t e t-\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {fssA }}$-ftsZ ${ }^{+}$(IU1945 transformed with fusion amplicon bgaA ${ }^{\prime}:: t e t-\mathrm{P}_{\mathrm{Zn}}-$ $\mathrm{RBS}^{f t s A}-\mathrm{fts} \mathrm{Z}^{+}$)	Tet ${ }^{\text {R }}$	This Study
IU8124 ${ }^{\text {d }}$	D39 $\Delta c p s \Delta f t s Z:: a a d 9 / / b g a A^{\prime}:: t e t-\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {ftsA }}-$-ftsZ ${ }^{+}$ (IU7814 transformed with amplicon bgaA': :tet- $\mathrm{P}_{\mathrm{Zn}^{-}}$ $\mathrm{RBS}^{f t s A}-\mathrm{fts} \mathrm{Z}^{+}$from IU8122)	$\begin{aligned} & \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU8191	D39 Δ cps ezr $A-\mathrm{HA}-\mathrm{P}_{\mathrm{c}}-k a n$ bgaA ${ }^{\prime}::$ tet $-\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{f s A}-$ ftsZ-Myc (IU6810 transformed with fusion amplicon bgaA $\because:$ tet- $\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{f t s A}-$ ftsZ-Myc)	$\begin{aligned} & \hline \mathrm{Kan}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU8237 ${ }^{\text {d }}$	D39 Δ cps ezrA-HA-P ${ }_{c}$-kan $\Delta f t s Z:: a a d 9 / / b g a A^{\prime}::$ tet-$\mathrm{P}_{\mathrm{Zn}}-$ RBS $^{\text {fisA }}$-ftsZ-Myc (IU8191 transformed with $\Delta f t s Z:: a a d 9$ from IU7814)	$\begin{aligned} & \mathrm{Kan}^{\mathrm{R}} \\ & \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU8596	D39 Δ cps rpsL1 ftsZ-Myc sepF-HA-Pc-kan (IU7667 transformed with sepF-HA-Pc-kan from IU7351)	$\begin{aligned} & \mathrm{Kan}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \\ & \hline \end{aligned}$	This Study
IU8681	D39 $\Delta c p s ~ r p s L 1 ~ f t s Z-M y c ~ e z r A-L_{0}-\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { (Rued et al., } \\ 2016) \end{array}$
IU8793	D39 $\Delta c p s$ bgaA ${ }^{\prime}:$ tet $-\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {fsA }}$-ezr $A-\mathrm{L}_{0}-\mathrm{FLAG}^{3}$ (IU1945 was transformed with fusion amplicon bgaA'::tet- $\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{f s A}-e z r A-\mathrm{L}_{0}-\mathrm{FLAG}^{3}$)	Tet ${ }^{\text {R }}$	This Study
IU8795	D39 Acps bgaA'::tet- $\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {fisA }}$-ezrA (IU1945 transformed with fusion amplicon bgaA ${ }^{\prime}:: t e t-\mathrm{P}_{\mathrm{Zn}}-$ RBS $^{\text {fisA }}$-ezrA ${ }^{+}$)	Tet ${ }^{\text {R }}$	This Study
IU8799 ${ }^{\text {d }}$	D39 $\Delta c p s \Delta e z r A<>a a d 9 / / b g a A^{\prime}::$ tet $-\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {ftsA }}$-ezrA A^{+} (IU8795 transformed with $\Delta e z r A<>$ aad 9 amplicon from IU5795)	$\begin{aligned} & \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study

Supplementary Material

IU8810 ${ }^{\text {d }}$	D39 $\Delta c p s \Delta l y t A:: \mathrm{P}_{\mathrm{c}}$-erm $\Delta f t s Z:: a a d 9 / / b g a A^{\prime}::$ tet $-\mathrm{P}_{\mathrm{Zn}^{-}}$ RBS $^{f t s A}-f t s Z^{+}$(IU8124 transformed with $\Delta l y t A:: \mathrm{P}_{\mathrm{c}}$-erm amplicon from E42)	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU8845	D39 $\Delta c p s$ rpsL1 ftsZ-L2-gfp (IU7614 transformed with fusion amplicon ftsZ-L2-gfp)	Str ${ }^{\text {R }}$	This Study
IU8902	D39 $\Delta c p s$ rpsL1 ftsZ- $\mathrm{L}_{2}-g f p$ bgaA' : :tet- $\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {fts }}-$ ezrA A^{+}(IU8845 transformed with fusion amplicon bgaA' ::tet- $\mathrm{PZn}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {fsA }}$-ezr $\left.A^{+}\right)$	$\begin{aligned} & \mathrm{Str}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU8906	D39 $\Delta c p s$ rpsL1 bgaA' : :tet- $\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {fisA }}$-ezrA ${ }^{+}$(IU1824 transformed with fusion amplicon bgaA ${ }^{\prime}:$ tet $-\mathrm{P}_{\mathrm{Zn}}-$ RBS $^{f t s A}-e z r A^{+}$)	$\begin{aligned} & \operatorname{Str}^{R} \\ & \operatorname{Tet}^{R} \end{aligned}$	This Study
IU8908 ${ }^{\text {d }}$	D39 $\Delta c p s$ rpsL1 ftsZ-L2-gfp $\Delta e z r A<>a a d 9 / / b g a A^{\prime}::$ tet -$\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{f t s A}-e z r A^{+}(\mathrm{IU} 8902$ transformed $\Delta e z r A<>$ aad 9 amplicon from IU5795)	$\begin{aligned} & \hline \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \\ & \hline \end{aligned}$	This Study
IU9020	D39 $\Delta \mathrm{cps} r p s L 1 ~ g f p-\mathrm{L}_{1}-p b p 2 x$	Str ${ }^{\text {R }}$	$\begin{aligned} & \hline \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU9077		Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU9085	D39 $\Delta c p s \Delta m a p Z:: \mathrm{P}_{\mathrm{c}}$-erm (IU1945 transformed with fusion amplicon $\Delta m a p Z:: \mathrm{P}_{\mathrm{c}}$-erm)	Erm ${ }^{\text {R }}$	This Study
IU9086		Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU9090		$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { (Perez et al., } \\ 2019) \\ \hline \end{array}$
IU9092	D39 Δ cps rpsL1 ftsZ-Myc $\Delta m a p Z:: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$ (IU7667 transformed with $\Delta m a p Z:: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$ amplicon from IU9086)	Kan ${ }^{\text {R }}$	This Study
IU9094	D39 4 cps rpsL1 $\mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]-m a p Z ~$	Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU9097	D39 Δ cps rpsL1 ftsZ-L2-gfp $\Delta m a p Z:: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$	Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU9175	D39 dcps rpsL1 4 mapZ $^{\text {a }}$	Str ${ }^{\text {R }}$	(Boersma et al., 2015)
IU9182	D39 $\Delta c p s ~ r p s L 1 ~ g f p-\mathrm{L}_{1}-m a p Z$	Str ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU9207	D39 Δ cps ezrA-HA-P ${ }_{\mathrm{c}}-$ kan mapZ-L ${ }_{0}-\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm	$\begin{aligned} & \hline \operatorname{Kan}^{\mathrm{R}} \\ & \operatorname{Erm}^{\mathrm{R}} \end{aligned}$	$\begin{aligned} & \hline \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU9548 ${ }^{\text {d }}$	D39 $4 c p s \Delta m a p Z:: \mathrm{P}_{\mathrm{c}}$-erm $\Delta e z r A<>a a d 9 / / b g a A^{\prime}::$ tet-$\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{f t s A}-e z r A^{+}$(IU8799 transformed with $\Delta m a p Z:: \mathrm{P}_{\mathrm{c}}$-erm amplicon from IU9085)	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \\ & \hline \end{aligned}$	This Study
IU9550 ${ }^{\text {d }}$	D39 $\Delta c p s ~ \Delta s e p F:: \mathrm{P}_{\mathrm{c}}$-erm $\Delta e z r A<>a a d 9 / /$ bgaA ${ }^{\prime}:$:tet-$\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{f s A}$-ezrA ${ }^{+}$(IU8799 transformed with $\Delta s e p F:: \mathrm{P}_{\mathrm{c}}$-erm amplicon from E733)	$\begin{aligned} & \hline \operatorname{Erm}^{\mathrm{R}} \\ & \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU9552 ${ }^{\text {d }}$	D39 Δ cps $\Delta[$ zapA(spd_0369)-spd_0370]::Pc-erm $\Delta e z r A \gg a a d 9 / / b g a A^{\prime}$ ': $:$ tet $-\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {ftsA }}$-ezrA ${ }^{+}$(IU8799	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study

	transformed with $\Delta\left[\right.$ zapA(spd_0369)-spd_0370] $:: \mathrm{P}_{\mathrm{c}}$ erm amplicon from E747)		
IU9572 ${ }^{\text {d }}$	D39 $\Delta c p s \Delta e z r A<>a a d 9 / / b g a A^{\prime}::$ tet $-\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {ftsA }}$-ezrA-$\mathrm{L}_{0}-\mathrm{FLAG}^{3}$ (IU8793 was transformed with $\Delta e z r A<>$ aad 9 amplicon from IU5795)	$\begin{aligned} & \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU9651	transformed with $\Delta m a p Z$ amplicon from IU9175)	Str ${ }^{\text {R }}$	This Study
IU9683	D39 $\Delta c p s ~ h l p A-\mathrm{L}_{5}-s f g f p-\mathrm{Cm}$ (IU1945 transformed with $h l p A$ - L_{5}-sfgfp-Cm amplicon from JWV500)	Cm^{R}	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU9713	D39 $\Delta c p s$ rpsL1 ftsZ-Myc ezrA-HA-P ${ }_{c}$-kan (IU7667 transformed with ezrA-HA-Pc-kan amplicon from IU6810)	$\begin{aligned} & \mathrm{Kan}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	This Study
IU9723	D39 $\Delta c p s ~ r p s L 1 ~ f t s Z-M y c ~ e z r A-H A-\mathrm{P}_{\mathrm{c}}-k a n \Delta m a p Z$ (IU9651 transformed with ezrA-HA-P P_{c}-kan amplicon from IU6810)	$\begin{aligned} & \mathrm{Kan}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	This Study
IU9767		Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Mura et al., } \\ & 2016 \text {) } \\ & \hline \end{aligned}$
IU9805	D39 4 cps bgaA: $:$ kan-t1t2-P $\mathrm{Zn}_{\text {- }}$ SepF ${ }^{+}$	Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2020 \text {) } \end{aligned}$
IU9881	D39 dcps rpsL1 ftsZ-L2-gfp $\Delta m a p Z ~_{\text {a }}$	Str ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU9967	D39 $\Delta c p s ~ r p s L 1 ~ H A-f t s A ~$	Str ${ }^{\text {R }}$	$\begin{array}{\|l} \hline \text { (Rued et al., } \\ 2016) \\ \hline \end{array}$
IU9969	D39 Δ cps rpsL1 FLAG-ftsA	Str ${ }^{\text {R }}$	$\begin{aligned} & \text { (Mura et al., } \\ & 2016 \text {) } \\ & \hline \end{aligned}$
IU9985	D39 ccps rpsL1 ftsZ-L2-sfgfp $^{\text {a }}$	Str ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU10035	D39 $\Delta c p s ~ r p s L 1 ~ g f p-L 2-f t s A ~$	Str ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU10065	D39 $\Delta c p s$ rpsL1 zapA-L4-sfgfp (Strain IU7933 transformed with fusion amplicon zap A - $\mathrm{L}_{4}-s f g f p$)	Str ${ }^{\text {R }}$	This Study
IU10234	D39 $\Delta c p s ~ r p s L 1 ~ H A-f t s A-f t s Z-\mathrm{P}_{c}-\left[k a n-r p s L^{+}\right]$(IU9967 transformed with ftsZ-Pc-[kan-rpsL'] amplicon from IU7614).	Kan ${ }^{\text {R }}$	This Study
IU10236	D39 $\Delta c p s r p s L 1 ~ F L A G-f t s A-f t s Z-\mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$	Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Mura et al., } \\ & 2016 \text {) } \\ & \hline \end{aligned}$
IU10254	D39 $\Delta c p s ~ r p s L 1 ~ e z r A-\mathrm{L}_{0}-s f g f p$	Str ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU10265	D39 $\Delta c p s$ zapA-L4-FLAG (IU7933 transformed with fusion amplicon zap A-L4-FLAG)	Str ${ }^{\text {R }}$	This Study
IU10267	D39 Δ cps zapA- L_{4}-HA (IU7933 transformed with fusion amplicon zap A - $\mathrm{L}_{4}-\mathrm{HA}$)	Str ${ }^{\text {R }}$	This Study
IU10302	D39 $\Delta c p s ~ r p s L 1$ HA-ftsA ftsZ-Myc (IU10234 transformed with ftsZ-Myc amplicon from IU7667)	Str ${ }^{\text {R }}$	This Study
IU10304	D39 $\Delta c p s$ rpsL1 FLAG-ftsA ftsZ-Myc	Str ${ }^{\text {R }}$	$\begin{aligned} & \text { (Mura et al., } \\ & 2016 \text {) } \\ & \hline \end{aligned}$

Supplementary Material

IU10447	D39 Δ cps ezrA ${ }^{+}$- P_{c}-erm (IU1945 transformed with fusion amplicon ezrA ${ }^{+}-\mathrm{P}_{\mathrm{c}}$-erm)	Erm ${ }^{\text {R }}$	This Study
IU10449	D39 Δ cps rpsL1 ezrA-L0-gfp	Str ${ }^{\text {R }}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU10526	D39 $\Delta c p s$ rpsL1 ezrA- $\mathrm{L}_{0}-g f p$ $\Delta m a p Z:: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$ (IU10449 transformed with $\Delta m a p Z:: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$ amplicon from IU9086)	Kan ${ }^{\text {R }}$	This Study
IU10540	D39 $\Delta c p s ~ r p s L 1 ~ e z r A-\mathrm{L}_{0}-g f p ~ \Delta m a p Z ~(I U 10526 ~$ transformed with $\Delta m a p Z$ amplicon from IU9175)	Str ${ }^{\text {R }}$	This Study
IU10752	D39 $\Delta c p s$ ftsZ-Myc zapA-L4-FLAG (IU8033 transformed with amplicon zapA-L4-FLAG amplicon from IU10265)	Str ${ }^{\text {R }}$	This Study
IU10839 ${ }^{\text {d }}$	D39 $\Delta c p s ~ \Delta z a p A:: \mathrm{P}_{\mathrm{c}}$-erm $\Delta e z r A<>$ aad9//bgaA' ::tet-$\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {fisA }}$-ezrA (IU8799 transformed with $\Delta z a p A:: \mathrm{P}_{\mathrm{c}}$-erm amplicon from E743)	$\begin{aligned} & \text { Erm }^{R} \\ & \text { Spec }^{\mathrm{R}} \\ & \text { Tet }^{\mathrm{R}} \end{aligned}$	This Study
IU10843 ${ }^{\text {d }}$	D39 Δ cps $\Delta z a p A: \because \mathrm{P}_{\mathrm{c}}$-erm $\Delta f t s Z:: a a d 9 / / b g a A^{\prime} \because:$ tet $-\mathrm{P}_{\mathrm{Zn}}-$ $\mathrm{RBS}^{f s A}-f t s Z^{+}$(IU8124 transformed with $\Delta z a p A \because: \mathrm{P}_{\mathrm{c}^{-}}$ erm amplicon from E743)	$\begin{aligned} & \operatorname{Spc}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU10901 ${ }^{\text {d }}$	D39 $\Delta c p s$ ezrA(QND)- P_{c}-erm//bgaA' $::$ tet $-\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {fts }}-$ ezrA ${ }^{+}$(IU8799 transformed with fusion amplicon ezrA(QND)-P ${ }_{\mathrm{c}}$-erm)	$\begin{aligned} & \operatorname{Erm}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU10909 ${ }^{\text {d }}$	D39 Δ cps ezrA $\Delta \mathrm{QNR}-\mathrm{P}_{\mathrm{c}}$-erm//bgaA' $::$ tet $-\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{f t s A_{-}}$ ezrA ${ }^{+}$(IU8799 transformed with fusion amplicon ezrA $\Delta \mathrm{QNR}-\mathrm{P}_{\mathrm{c}}$-erm)	$\begin{aligned} & \operatorname{Erm}^{R} \\ & \operatorname{Tet}^{R} \end{aligned}$	This Study
IU11119	D39 $\Delta c p s ~ r p s L 1 ~ e z r A-L 0-s f g f p-\mathrm{P}_{\mathrm{c}}-c a t$	$\begin{aligned} & \hline \mathrm{Str}^{\mathrm{R}} \\ & \mathrm{Cm}^{\mathrm{R}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU11123 ${ }^{\text {d }}$	D39 Δ cps ezrA Δ TM- P_{c}-erm $/ /$ bgaA ${ }^{\prime}:$:tet $-\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {ftsA }}{ }_{-}$ ezrA (IU8799 transformed with fusion amplicon ezrA $\Delta \mathrm{TM}-\mathrm{P}_{\mathrm{c}}$-erm)	$\begin{aligned} & \operatorname{Erm}^{\mathrm{R}} \\ & \operatorname{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU11230	D39 $\Delta c p s$ rpsL1 FLAG-ftsA//bgaA ${ }^{\prime}::$ tet- $-\mathrm{P}_{\mathrm{Zn}}-f t s Z-\mathrm{Myc}$ (IU9969 transformed with amplicon from IU8191)	$\begin{aligned} & \operatorname{Str}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This study
IU11322	D39 $\Delta c p s$ rpsL1 zapA-L4-HA ftsZ-FLAG-Pc-erm (IU10267 transformed with amplicon ftsZ-FLAG-P ${ }_{c}{ }^{-}$ erm from IU6565)	$\begin{aligned} & E r m_{R}^{R} \\ & \operatorname{Str}^{R} \end{aligned}$	This Study
IU11356	D39 Δ cps rpsL1 FLAG-ftsA $\Delta f t s Z:: a a d 9 / / b g a A$ '::tet-$\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}_{\text {fts }-}-\mathrm{ftsZ}-\mathrm{Myc}^{+}$(IU11230 transformed with $\Delta f t s Z:: a a d 9$ amplicon from IU7814)	$\begin{aligned} & \mathrm{Spc}^{\mathrm{R}} \mathrm{St} \\ & \mathrm{r}^{\mathrm{R}} \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This study
IU11414	D39 $\Delta c p s$ rpsL1 ftsZ-Myc ezrA-HA-P ${ }_{c}$-kan divIVA- L_{0} -$\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm (IU9713 transformed with divIVA-L 0^{-} $\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm amplicon from IU5653)	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	This Study
IU11430	$\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm (IU9713 transformed with mapZ-L 0_{0} -$\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm amplicon from IU9090)	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	This Study
IU11476	D39 $\Delta c p s ~ r p s L 1$ FLAG-ftsA ftsZ-Myc ezrA-HA-P ${ }_{c}$-kan (IU10304 was transformed with ezrA-HA-Pc-kan amplicon from IU6810)	$\begin{aligned} & \mathrm{Kan}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	This Study

IU11558	D39 $\Delta c p s d i v I V A-\mathrm{Myc}-\mathrm{P}_{\mathrm{c}}-k a n$	Kan ${ }^{\text {R }}$	$\begin{aligned} & \text { (Rued et al., } \\ & 2016) \\ & \hline \end{aligned}$
IU11560	D39 $\Delta c p s p b p 2 a-\mathrm{HA}^{4}-\mathrm{P}_{\mathrm{c}}-\mathrm{kan}$	$\mathrm{Kan}^{\mathrm{R}}$	$\begin{aligned} & \hline \text { (Rued et al., } \\ & 2016) \\ & \hline \end{aligned}$
IU11610	D39 $\Delta c p s$ pbp2a- $\mathrm{HA}^{4}-\mathrm{P}_{\mathrm{c}}$-kan ezrA- $\mathrm{L}_{0}-\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm (IU11560 transformed with ezrA-L 0 - $\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm amplicon from IU5456)	$\begin{aligned} & \operatorname{Erm}^{R} \\ & \operatorname{Kan}^{R} \end{aligned}$	This Study
IU11664	D39 $\Delta c p s ~ r p s L 1 ~ f t s Z-M y c ~ e z r A-H A-P ~-~-k a n ~ f t s K-~$ $\mathrm{FLAG}^{2}-\mathrm{P}_{\mathrm{c}}$-erm (IU9713 was transformed with ftsK -$\mathrm{FLAG}^{2}-\mathrm{P}_{\mathrm{c}}$-erm amplicon from IU7654)	$\begin{aligned} & \operatorname{Erm}^{\mathrm{R}} \\ & \mathrm{Kan}^{\mathrm{R}} \end{aligned}$	This Study
IU11734	D39 $\Delta c p s ~ g p s B$-Myc-Pc-kan (IU1945 transformed with fusion amplicon $g p s B$-Myc- P_{c}-kan)	Kan ${ }^{\text {R }}$	This Study
IU11840	D39 $\Delta c p s$ rpsL1 zapA-L4-FLAG ezrA-HA-P P_{c}-erm (IU10265 transformed with strain amplicon ezrA-HA-P_{c}-erm from IU6545)	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	This Study
IU11939	D39 $\Delta c p s$ rpsL1 ezrA-HA-Pc-kan (IU1824 transformed with strain amplicon ezrA-HA-Pc-kan from IU6810)	$\begin{aligned} & \operatorname{Kan}^{R} \\ & \operatorname{Str}^{R} \end{aligned}$	This Study
IU11978	D39 $\Delta c p s$ gpsB-Myc- P_{c}-kan ezrA-L $\mathrm{L}_{0}-\mathrm{FLAG}^{3}$ - P_{c}-erm (IU11734 transformed with ezrA- $\mathrm{L}_{0}-\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm amplicon from IU5456)	$\begin{aligned} & \operatorname{Erm}^{R} \\ & \operatorname{Kan}^{R} \end{aligned}$	This Study
IU12069	D39 $\Delta c p s p b p 1 a-\mathrm{L}_{0}-\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}$-erm ezrA-HA- P_{c}-kan (IU5544 transformed with ezrA-HA-P-kan amplicon from IU6810)	$\begin{aligned} & \operatorname{Erm}^{R} \\ & \operatorname{Kan}^{R} \end{aligned}$	This Study
IU12076	D39 Δ cps sepF-FLAG-P P_{c}-erm ezrA-HA- P_{c}-kan (IU7353 transformed with ezrA-HA- $\mathrm{P}_{\mathrm{c}}-$-kan amplicon from IU6810)	$\begin{aligned} & \operatorname{Erm}^{\mathrm{R}} \\ & \mathrm{Kan}^{\mathrm{R}} \end{aligned}$	This Study
IU12077	D39 $\Delta c p s$ stkP-FLAG ${ }^{2}$ - P_{c}-erm ezrA-HA- $\mathrm{P}_{\mathrm{c}}-k a n$ (IU7434 transformed with ezrA-HA-Pc-kan amplicon from IU6810)	$\begin{aligned} & \operatorname{Erm}^{R} \\ & \operatorname{Kan}^{R} \end{aligned}$	This Study
IU12253	D39 $\Delta c p s$ rpsL1 zapA-L4-sfgfp- $\mathrm{P}_{\mathrm{c}}-a a d 9$ (IU1824 transformed with fusion amplicon zapA- $\mathrm{L}_{4}-s f g f p-\mathrm{P}_{\mathrm{c}}-$ aad9)	$\begin{aligned} & \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	This Study
IU13123	D39 Δ cps rpsL1 ezrA ${ }^{+} / / \mathrm{CEP}:: \mathrm{P}_{\mathrm{Zn}}-$ ezr $A^{+}(\mathrm{IU} 5122$ transformed with fusion amplicon CEP::t1t2:: $\mathrm{P}_{\mathrm{Zn}^{-}}$ ezrA ${ }^{+}$)	Str ${ }^{\text {R }}$	This Study
IU13189 ${ }^{\text {d }}$	D39 Δ cps ezrA(QND)- $\mathrm{L}_{0}-$ sfgfp- $\mathrm{P}_{\mathrm{c}}-c a t / / b g a A A^{\prime}:: t e t-\mathrm{P}_{\mathrm{Zn}}-$ ezrA ${ }^{+}$(IU8799 transformed with fusion amplicon $\left.e z r A(Q N D)-\mathrm{L}_{0}-s f g f p-\mathrm{P}_{\mathrm{c}}-c a t\right)$	$\begin{aligned} & \mathrm{Cm}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU13191 ${ }^{\text {d }}$	D39 $\Delta c p s$ ezrA($\Delta \mathrm{QNR})-\mathrm{L}_{0}-s f g f p-\mathrm{P}_{\mathrm{c}}-c a t / / b g a A ':: t e t-$ $\mathrm{P}_{\mathrm{Zn}}-e z r A^{+}$(IU8799 transformed with fusion amplicon $\left.\operatorname{ezr} A(\Delta \mathrm{QNR})-\mathrm{L}_{0}-s f g f p-\mathrm{P}_{\mathrm{c}}-c a t\right)$	$\begin{aligned} & \mathrm{Cm}^{\mathrm{R}} \\ & \operatorname{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU13194	D39 $\Delta c p s$ ezr $A-\mathrm{L}_{0}-$ sfgfp- $\mathrm{P}_{\mathrm{c}}-c a t / / b g a A^{\prime}::$ tet $-: \mathrm{P}_{\mathrm{Zn}}-$ ezr A^{+} (IU8795 transformed with ezr $A-\mathrm{L}_{0}-s f g f p-\mathrm{P}_{\mathrm{c}}-c a t$ from IU11119)	$\begin{aligned} & \mathrm{Cm}^{\mathrm{R}} \\ & \operatorname{Tet}^{\mathrm{R}} \end{aligned}$	This Study

Supplementary Material

IU13269 ${ }^{\text {d }}$	D39 $\Delta c p s$ ezrA($\Delta \mathrm{TM})-\mathrm{L}_{0}-s f g f p-\mathrm{P}_{\mathrm{c}}-c a t / / b g a A^{\prime} \because: \mathrm{P}_{\mathrm{Zn}^{-}}$ ezrA A^{+}(IU8799 transformed with fusion amplicon $\left.\operatorname{ezrA}(\triangle \mathrm{TM})-\mathrm{L}_{0}-s f g f p-\mathrm{P}_{\mathrm{c}}-c a t\right)$	$\begin{aligned} & \mathrm{Cm}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \end{aligned}$	This Study
IU13327	D39 Δ cps rpsLl ezrA ${ }^{+} / / \mathrm{CEP}:: \mathrm{P}_{\mathrm{Zn}}-e z r A^{+} / / b g a A^{\prime}::$ kan-t1t2- $\mathrm{P}_{\mathrm{Zn}}-$ ezr $^{+}$(IU13123 transformed with fusion amplicon bgaA ${ }^{\prime}:$ kan-t1t2- $\mathrm{P}_{\mathrm{Zn}}-e z r A^{+}$)	$\begin{aligned} & \mathrm{Kan}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	This Study
IU13406	D39 4 cps rpsL1 ftsZ-L5-cfp-erm	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Cm}^{\mathrm{R}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU13700	D39 $\Delta c p s$ rpsL1 ftsZ-cfp ezr $A^{+} / / \mathrm{CEP}:: \mathrm{P}_{\mathrm{Zn}}-$ ezrA ${ }^{+} / / b g a A^{\prime}:: \mathrm{P}_{\mathrm{Zn}}$-ezrA A^{+}(IU13327 transformed with ftsZ-L5-cfp-erm from IU13406)	$\begin{aligned} & \operatorname{Erm}^{\mathrm{R}} \\ & \mathrm{Kan}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	This Study
IU13822	D39 $\Delta c p s$ rpsL1 zapJ- L_{0}-sfgfp- P_{c}-cat (IU1824 transformed with fusion amplicon zap $J-L_{0}-s f g f p-\mathrm{P}_{\mathrm{c}^{-}}$ cat)	$\begin{aligned} & \mathrm{Str}^{\mathrm{R}} \\ & \mathrm{Cm}^{\mathrm{R}} \end{aligned}$	This Study
IU13922	D39 $\Delta c p s$ UzapJ(spd_1350): : $\mathrm{P}_{\mathrm{c}-}\left[k a n-r p s L^{+}\right]$(IU1945 transformed with fusion amplicon $\Delta z a p J\left(s p d _1350\right):: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$	Kan ${ }^{\text {R }}$	This Study
IU13924	D39 $\Delta c p s$ _zapJ(spd_1350):: P_{c}-erm (IU1945 transformed with fusion amplicon $4 z a p J(s p d=1350):: \mathrm{P}_{\mathrm{c}}$-erm $)$	Erm ${ }^{\text {R }}$	This Study
IU14109	D39 4cps rpsL1 4 zapA markerless ftsZ-P P_{c} [kan$r p s L+$] (IU8035 transformed with ftsZ-P ${ }_{\mathrm{c}}$-[kan-rpsL+] from IU7614)	Kan ${ }^{\text {R }}$	This Study
IU14131	transformed with amplicon ftsZ-L2-sfgfp from IU9985)	Str ${ }^{\text {R }}$	This Study
IU14153	D39 Δ cps rpsL1 ftsZ-L5-cfp-erm ezrA-mNeonGreen-P_{c}-cat (IU13406 transformed with ezrA-mNeonGreen-P_{c}-cat from IU14117)	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Cm}^{\mathrm{R}} \end{aligned}$	This Study
IU14224	D39 $\Delta c p s ~ r p s L 1 ~ f t s Z-L_{2}-s f g f p ~ b g a A^{\prime}::$ tet $-\mathrm{P}_{\mathrm{Zn}^{2}}-\mathrm{RBS}^{\text {fisA }}-$ $e z r A^{+}$(IU9985 transformed with bgaA': :tet- $\mathrm{P}_{\mathrm{Zn}^{-}}$ $\mathrm{RBS}^{\text {fsA }}$-ezrA ${ }^{+}$from IU8795)	$\begin{aligned} & \hline \operatorname{Str}^{R} \\ & \operatorname{Tet}^{R} \end{aligned}$	This Study
IU14404	D39 $\Delta c p s ~ r p s L 1 ~ e z r A-\mathrm{L}_{0}-h t-\mathrm{P}_{\mathrm{c}}$-erm	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { (Perez et al., } \\ & 2019) \\ & \hline \end{aligned}$
IU15012	D39 Δ cps rpsL1 $\Delta z a p J\left(s p d _1350\right):: \mathrm{P}_{c}-\left[k a n-r p s L^{+}\right]$ (IU1824 transformed with $\Delta z a p J\left(s p d _1350\right):: \mathrm{P}_{\mathrm{c}}-[k a n-$ $\left.r p s L^{+}\right]$from IU13922)	Kan ${ }^{\text {R }}$	This Study
IU15025	D39 Δ cps rpsL1 zapJ-L 0 -ht- P_{c}-erm (IU1824 transformed with fusion zap J - $\mathrm{L}_{0}-h t$ - P_{c}-erm)	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \\ & \hline \end{aligned}$	This Study
IU15029 ${ }^{\text {d }}$	D39 Δ cps $\Delta z a p J:: \mathrm{P}_{\mathrm{c}}$-erm Δ ezr $A<>$ aad9//bgaA': :tet-$\mathrm{P}_{\mathrm{Zn}^{-}}$ezr A^{+}(IU8799 was transformed with $\Delta z a p J:: \mathrm{P}_{\mathrm{c}^{-}}$ erm from IU13924)	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Tet}^{\mathrm{R}} \\ & \hline \end{aligned}$	This Study
IU15100	D39 $\Delta c p s$ rpsL1 $\Delta m a p Z:: \mathrm{P}_{\mathrm{c}}$-erm (IU1824 transformed with $\Delta m a p Z:: \mathrm{P}_{\mathrm{c}}$-erm from IU9085)	Erm ${ }^{\text {R }}$	This Study
IU15107	D39 Δ cps rpsL1 $\Delta z a p A ~ \Delta m a p Z:: \mathrm{P}_{\mathrm{c}}$-erm (IU8035 transformed with Δ map $Z:: \mathrm{P}_{\mathrm{c}}$-erm from IU9085)	Erm ${ }^{\text {R }}$	This Study

IU15110	D39 $\Delta c p s$ rpsL1 $\Delta z a p J\left(s p d _1350\right):: \mathrm{P}_{c}-\left[k a n-r p s L^{+}\right]$ $\Delta m a p Z:: \mathrm{P}_{\mathrm{c}}$-erm (IU15012 transformed with $\Delta m a p Z:: \mathrm{P}_{\mathrm{c}}$-erm from IU9085)	$\begin{aligned} & \operatorname{Kan}^{R} \\ & \operatorname{Erm}^{\mathrm{R}} \end{aligned}$	This Study
IU15116	D39 $\Delta c p s ~ r p s L 1 ~ z a p J-\mathrm{L}_{0}-h t-\mathrm{P}_{\mathrm{c}}$-erm zap $A-\mathrm{L}_{4}-$ sfgfp- $\mathrm{P}_{\mathrm{c}}-$ aad9 (IU15025 transformed with zapJ- L_{0}-ht- P_{c}-erm from IU12253)	$\begin{aligned} & \operatorname{Erm}^{\mathrm{R}} \\ & \mathrm{Spc}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	This Study
IU15699	D39 $\Delta c p s$ rpsL1 gfp- $\mathrm{L}_{2}-f t s A$ ezrA- $\mathrm{L}_{0}-h t-\mathrm{P}_{\mathrm{c}}$-erm (IU10035 transformed with ezrA-L L_{0}-ht- P_{c}-erm from IU14404)	$\begin{aligned} & \mathrm{Erm}^{\mathrm{R}} \\ & \mathrm{Str}^{\mathrm{R}} \end{aligned}$	This Study
IU15768	D39 $\Delta c p s ~ r p s L 1 ~ f t s Z-\mathrm{L}_{2}-s f g f p ~ e z r A-\mathrm{L}_{0}-h t-\mathrm{P}_{\mathrm{c}}$-erm (IU9985 transformed with ezrA- $\mathrm{L}_{0}-h t$ - P_{c}-erm from IU14404)	$\begin{aligned} & \mathrm{Str}^{\mathrm{R}} \\ & \mathrm{Erm}^{\mathrm{R}} \end{aligned}$	This Study
E42	D39 $\Delta c p s \Delta l y t A:: \mathrm{P}_{\mathrm{c}}$-erm (IU1945 transformed with fusion $\Delta l y t A:: \mathrm{P}_{\mathrm{c}}$-erm)	Erm${ }^{\text {R }}$	This Study
E733	D39 $\Delta c p s$ Δ sepF (spd_1477): : P_{c}-erm (IU1945 transformed with fusion amplicon sepF (spd 1477):: P_{c}-erm)	Erm${ }^{\text {R }}$	This Study
E743	D39 Δ cps $\Delta z a p A\left(s p d _0369\right):: \mathrm{P}_{c}$-erm (IU1945 transformed with fusion amplicon $\Delta z a p A\left(s p d _0369\right):: \mathrm{P}_{\mathrm{c}}$-erm $)$	Erm ${ }^{\text {R }}$	This Study
E745	D39 $\Delta c p s$ $\Delta s p d _0370:: \mathrm{P}_{\mathrm{c}}$-erm (IU1945 transformed with fusion amplicon $\Delta s p d _0370:: \mathrm{P}_{\mathrm{c}}$-erm	Erm ${ }^{\text {R }}$	This Study
E747	D39 $\Delta c p s \Delta\left[\right.$ zapA(spd_0369)-spd_0370]:: P_{c}-erm (IU1945 transformed with fusion amplicon $\Delta[$ zapAspd_0370]:: $\left.\mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]\right)$	Erm ${ }^{\text {R }}$	This Study
K743	D39 Δ cps $\Delta z a p A\left(s p d _0369\right):: \mathrm{P}_{c}-\left[k a n-r p s L^{+}\right]$(IU1945 transformed with fusion amplicon $\left.\Delta z a p A(s p d \quad 0369):: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]\right)$	Erm${ }^{\text {R }}$	This Study
K747	D39 $\Delta c p s \Delta\left[z a p A-s p d _0370\right]:: \mathrm{P}_{c}-\left[k a n-r p s L^{+}\right]$(IU1945 transformed with fusion amplicon Δ [zapAspd_0370]:: $\left.\mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]\right)$	Kan ${ }^{\text {R }}$	This Study
JWV500	$h l p A-\mathrm{L}_{5}-s f g f p-\mathrm{Cm}$	Cm^{R}	$\begin{aligned} & \text { (Kjos } \text { et al., } \\ & 2015) \\ & \hline \end{aligned}$

${ }^{\text {a }}$ Strains were constructed as described in Materials and Methods and above.
${ }^{\text {b }}$ Primers used to synthesize fusion amplicons are listed in Supplementary Table 2.
${ }^{c}$ Linkers and tags are annotated as described below. FLAG-tagged (FLAG), c-Myc-tagged (Myc), and HA-tagged (HA) fusions were made to the carboxyl-end of all tagged proteins. The amino acid sequences of the FLAG, Myc, and HA epitope tags are DYKDDDDK (Hopp et al., 1988, Wayne et al., 2010), EQKLISEEDL (Evan et al., 1985), and YPYDVPDYA (Wilson et al., 1984), respectively. FLAG ${ }^{\mathrm{n}}$ indicates n tandem sequences of the FLAG epitope, DYKDDDDK. L_{0} for to a 10-amino-acid spacer linker (GSAGSAAGSG) (Waldo et al., 1999; Wayne et al., 2010)). L1 linker sequence in $g f p-\mathrm{L}_{1}-m a p Z$ is LEGSG (Fleurie et al., 2014). The DNA template for $g f p$ is $\mathrm{pUC} 57-g f p(S p)$ (Martin et al., 2010), which was codon optimized for S. pneumoniae and contains aa substitution (A206K) to prevent GFP dimerization. L2-linker sequence in $f t s Z-L_{2}-g f p$ is KLDIEFLQ (Fleurie et al., 2014). Superfolder GFP ($s f g f p$) is from (Kjos et al., 2015). rfp referred to as mKate2 and is a far red
monomeric fluorescent protein with codon optimized for S. pneumoniae (Beilharz et al., 2015). L4 sequence in ZapA tagged proteins is RSIAT (Pazos et al., 2013). Ls sequence in HlpA tagged proteins is GSGSGGEAAAKGS (Kjos et al., 2015). HaloTag ($h t$) is codon optimized for S. pneumoniae (Perez et al., 2019). FtsZ-L5-CFP-erm is from (van Raaphorst et al., 2017).
${ }^{\mathrm{d}}$ The indicated strains were constructed and grown in the presence of $0.3 \mathrm{mM} \mathrm{ZnCl}{ }_{2}$ and 0.03 $\mathrm{mM} \mathrm{MnSO}_{4}$ (for f ts Z conditional mutants) or $0.5 \mathrm{mM} \mathrm{ZnCl}_{2}$ and $0.05 \mathrm{mM} \mathrm{MnSO}_{4}$ (for ezrA conditional mutants).
${ }^{\mathrm{e}}$ Antibiotic resistance markers: Erm ${ }^{\mathrm{R}}$, erythromycin; Kan $^{\mathrm{R}}$, kanamycin; $\mathrm{Spc}^{\mathrm{R}}$, spectinomycin; $\operatorname{Str}^{\mathrm{R}}$, streptomycin; Cm^{R}, chloramphenicol; $\mathrm{Tet}^{\mathrm{R}}$, tetracycline.

Supplementary Table 2 Oligonucleotide primers used to construct S. pneumoniae strains in this study

Primer	Sequence (5' to 3')	Template ${ }^{\text {a }}$	Amplicon Product
For construction of IU5557 (bgaA ${ }^{\prime}:$: $k a n-t 112-\mathrm{P}_{\text {fcsK-fts }} \mathrm{f}^{+}$)			
TT657	CGCCCCAAGTTCATCACCAATGACATCAAC	IU4888 ${ }^{\text {a }}$	bgaA'- $\mathrm{P}_{\mathrm{c}}-k a n-$$\mathrm{t} 1 \mathrm{t} 2-\mathrm{P}_{f c s k}$
TT201	CAGCTGTATCAAATGAAAATGTCATTTTTCTT CTCTCTTCGTCCTTGATTAACTT		
TT202	ATCAAGGACGAAGAGAGAAGAAAAATGACA TTTTCATTTGATACAGCTGCTG	D39	$f t s Z^{+}$
TT203	ACTGGTTTATGAGAAAGTAAGTTCTTTTATTA ACGATTTTTGAAAAATGGAGGTGTATC		
TT396	CCTCCATTTTTCAAAAATCGTTAGAAGAACTT ACTTTCTCATAAACCAGTTGCTG	D39	bgaA ${ }^{\prime}$
CS121	GCTTTCTTGAGGCAATTCACTTGGTGC		
SC219	TAACCGTCCAGTTATTATTAAGTAAGTGAGG AATAGAATGCCAATTACATCATTAG	D39	divIVA
TT244	CGGAGCCAGCGGAACCCTTCTGGTTCTTCAT ACATTGGGCC		
TT245	CCAATGTATGAAGAACCAGAAGGGTTCCGCT GGCTCCGC	IU5456	$\begin{aligned} & \mathrm{L}_{0}-\mathrm{FLAG}^{3}-\mathrm{P}_{\mathrm{c}}- \\ & \text { erm } \end{aligned}$
TT246	TGTCGGATGCACTGGAGCTATTATTTCCTCCC GTTAAATAATAGATAACTATTAAAA		
TT247	TTATCTATTATTTAACGGGAGGAAATAATAG CTCCAGTGCATCCGACAGG	D39	3' flanking downstream of divIVA
TT248	TTCAGCAAGGGCTGACTCAGATGACCATGA		
TT657	CGCCCCAAGTTCATCACCAATGACATCAAC	IU4888 ${ }^{\text {a }}$	bgaA'-kan- t1t2- $\mathrm{P}_{\text {csk }}$
AL307	CCATTAGACATTTTTCTTCTCTCTTCGT CCTTG		
AL306	GAAGAGAGAAGAAAAATGTCTAATGGACAA C	D39	$e z r A^{+}$
AL309b	GAGAAAGTAAGTTCTTTTATTAAAAACGAAT CGTTTCACGTGTTTTCTC		
AL308b	GAAACGATTCGTTTTTAATAAAAGAACTTAC TT TCTCATAAACCAGTTGC	D39	bgat ${ }^{\prime}$
CS121	GCTTTCTTGAGGCAATTCACTTGGTGC		
For construction of IU5795 ((ezras $<>$ aad9 $)^{\text {h }}$			
AL295	CCCAAATCCACAGTTTGAAGGACAAACG	D39	5' upstream of ezrA
AL318	CCTCCTCACATCAAACTCCTTTTTTACTTGAA AC		
AL319	GGAGTTTGATGTGAGGAGGATATATTTG	IU4888 ${ }^{\text {a }}$	aad9 replaces ORF of ezrA
AL321	CTTTTTCTTTTATAATTTTTTTAATCTG		
AL320	GATTAAAAAAATTATAAAAGAAAAAGATTTT ATTG	D39	downstream of ezrA

TT330	GAGGAGTTCGGACTCGACTCTCTCCTTCAAG AA		
For construction of IU6545 (ezrA-HA-P ${ }_{\text {c }}$-erm)			
TT192	ATCGTGTTCCAGCCTTGGTTACGACGCTTT	IU1690	5' ezrA-HA
SV005	CCCGGTTAAGCATAATCTGGAACATCATATG GATAAAAACGAATCGTTTCACGTGTTTTC		
SV006	GATTCGTTTTTATCCATATGATGTTCCAGATT ATGCTTAACCGGGCCCAAAATTTGTTTG	IU5456	3' HA-Pc-erm downstream of ezrA
AL297	GGACCTACTCCTATTGGAGCCCAAC		
For construction of IU6565 (ftsZ-FLAG-Pc-erm)			
TT165	AGTGGTGCCGATATGGTCTTCATCACTGCT	IU4368 ${ }^{\text {c }}$	5' fragment containing ftsZ-FLAG
TT369	AAATTTTGGGCCCGGTTATTTATCATCATCAT CTTTATAATCACGATTTTTG		
TT370	CACCTCCATTTTTCAAAAATCGTGATTATAAA GATGATGATGATAAATAACCGGG	IU4368 ${ }^{\text {c }}$	3' fragment FLAG-Pc-erm + downstream
TT166	TCATTGGGAGAGCCGGTTCCTGTGAAGAAT		
For construction of IU7054 (bgaA': kan-t1t2-P $_{\text {fisa }}-\mathrm{RBS}^{\text {fitA }}-\mathrm{fts} Z^{+}$)			
P146	TGGCCATTCATCGCTGGTCGTGCTGAAAT	IU6397	bgaA'::kan- $\mathrm{t} 1 \mathrm{t} 2-\mathrm{P}_{\text {fisA }}$
TT393	CAGCTGTATCAAATGAAAATGTCATTACATC GCTTCCTCTCTATCTTCCAAGT		
TT394	GGAAGATAGAGAGGAAGCGATGTAATGACA TTTTCATTTGATACAGCTGCTG	IU5557	3' flanking containing fts $Z^{+}-b g a A$,
CS121	GCTTTCTTGAGGCAATTCACTTGGTGC		
For construction of IU7334 (CEP:: $\mathbf{P}_{\text {fcsK}}{ }_{\text {ezzr }}{ }^{+}$)			
KW116	CCGGTAGTGGGAAAACAACTATTGGTCGTGC	IU4352	CEP $\mathrm{P}_{\text {fcsk }}$
TT221	CATTAAATAAATTAGTTGTCCATTAGACATTT TTCTTCTCTCTTCGTCCTTGATTAACTT		
TT222	ATCAAGGACGAAGAGAGAAGAAAAATGTCT AATGGACAACTAATTTATTTAATGGTTG	D39	$e z r A^{+}$
TT450	GAACACCTTCTCAGCGTTCTTTTTAAAAACGA ATCGTTTCACGTGTTTT		
TT451	CACGTGAAACGATTCGTTTTTAAAAAGAACG CTGAGAAGGTGTTCTTTTT	IU4352	CEP downstream
KW123	GGCTTCTTGTTCAAATTTTCCCATTTGATTCT C		
For construction of IU7351 (sepF-HA-P ${ }_{\text {c }}$-kan)			
TT469	GAGAGAGGAACTGCTGGAAATCTTGCCAGA	D39	$y \operatorname{lmE}$ '-sep F
TT470	GCATAATCTGGAACATCATATGGATATCGTA CTCTATTTCGCTTCATATCAAAACC		
TT471	TGATATGAAGCGAAATAGAGTACGATATCCA TATGATGTTCCAGATTATGCTTAAC	IU6933	HA-P ${ }_{c}-k a n$
TT472	ACGAATTAAAAAAATCATTACTAAAACAATT CATCCAGTAAAATATAATATTTTATTTTC		
TT473	ATTTTACTGGATGAATTGTTTTAGTAATGATT TTTTTAATTCGTATGATTTATAATGCAG	D39	3' downstream of sepF
P1478	GTTCCTCCAGCGAAACAGGTATACGACC		

For construction of IU7353 (sepF -FLAG-P ${ }_{\text {c }}$-erm)			
TT469	GAGAGAGGAACTGCTGGAAATCTTGCCAGA	D39	$y l m E^{\prime}$-sep F
TT476	CGGTTATTTATCATCATCATCTTTATAATCTC GTACTCTATTTCGCTTCATATCAAAACC		
TT477	TGATATGAAGCGAAATAGAGTACGAGATTAT AAAGATGATGATGATAAATAACCGGG	IU5544	FLAG-P--erm
TT480	TCATACGAATTAAAAAAATCATTATTATTTCC TCCCGTTAAATAATAGATAACTATTAAA		
TT481	CTATTATTTAACGGGAGGAAATAATAATGAT TTTTTTAATTCGTATGATTTATAATGCAG	D39	3' downstream of sepF
P1478	GTTCCTCCAGCGAAACAGGTATACGACC		
For construction of IU7654 (ftsK-FLAG ${ }^{2}$-Pc-erm)			
TT597	GATTCCAGTCGTGACCAATCCACGCAAAG	D39	5' flanking containing fts $K-$ FLAG 2
TT605	TATAATCTTTATCATCATCATCTTTATAATCT TGTTGTAACACTTTTCGAGGTTTGGTAC		
TT606	CTCGAAAAGTGTTACAACAAGATTATAAAGA TGATGATGATAAAGATTATAAAGATGATG	IU5544	$\begin{aligned} & \text { Middle } \\ & \text { FLAG }^{2}-\mathrm{P}_{\mathrm{c}} \text {-erm } \end{aligned}$
TT607	CTTGGAAAGAAGCTATTTTTTTATTTCCTCCC GTTAAATAATAGATAACTATTAAAAATA		
TT608	TTATCTATTATTTAACGGGAGGAAATAAAAA AATAGCTTCTTTCCAAGTTTGGAG	D39	3' flanking downstream of ftsK
TT598	CGCCTCAACATCGACCAAGCCTTTCTTATC		
For construction of IU7655 (ftsK-HA ${ }^{\mathbf{2}-\mathrm{P} \text { c-kan) }}$			
TT597	GATTCCAGTCGTGACCAATCCACGCAAAG	D39	5' flanking containing with fts K - HA^{2}
TT603	GCATAATCTGGAACATCATATGGATATTGTT GTAACACTTTTCGAGGTTTGGTAC		
TT604	AAACCTCGAAAAGTGTTACAACAATATCCAT ATGATGTTCCAGATTATGCTTATCCATAT	IU7426 ${ }^{\text {d }}$	$\begin{aligned} & \text { Middle } \mathrm{HA}^{2} \text { - } \\ & \mathrm{P}_{\mathrm{c}} \text {-kan } \end{aligned}$
TT601	AACTTGGAAAGAAGCTATTTTTCTAAAACAA TTCATCCAGTAAAATATAATATTTTATTT		
TT602	AATATTATATTTTACTGGATGAATTGTTTTAG AAAAATAGCTTCTTTCCAAGTTTGGAGG	D39	3' flanking downstream of ftsK
TT598	CGCCTCAACATCGACCAAGCCTTTCTTATC		
For construction of IU7814 (4 ftsZ:: aad9) ${ }^{\text {h }}$			
AL366	GGCATGATGGGGGTTCGCCTTGAAATGCG	D39	5' upstream of ftsZ
TT204	CGTATGTATTCAAATATATCCTCCTCACAATT TATTTTTCCTCTTTATTCGTCAAACATG		
TT205	TTGACGAATAAAGAGGAAAAATAAATTGTGA GGAGGATATATTTGAATACATACGAACA	$\mathrm{IU} 4888{ }^{\text {b }}$	Middle-aad9 + extra 9 bp of 3 mreD
TT206	CTCGACTGGAGAAACGACTGAATGTCGTTCT TATAATTTTTTTAATCTGTTATTTAAA		
TT207	ACAGATTAAAAAAATTATAAGAACGACATTC AGTCGTTTCTCCAGTCGAGCG	D39	$\begin{array}{\|l} \hline \begin{array}{l} \text { 87bp 3' ftsZ + } \\ \text { stop + } \\ \text { downstream } \end{array} \\ \hline \end{array}$
TT166	TCATTGGGAGAGCCGGTTCCTGTGAAGAAT		
For construction of IU8035 (4zapA markerless)			
P1488	TGGAAGCTGATAACCCAGTTCTCGTCCCAGA T	D39	

Supplementary Material

AJP18	TCTGTTCTTGCTTACAAGTCACAAGGGTTAAC GATTTTTTCCCGAATGTAAA		Upstream of zapA $+5^{\prime} 60$ bp of zapA
AJP19	TTCGGGAAAAAATCGTTAACCCTTGTGACTT GTAAGCAAGAACAGAGCAA	D39	$\begin{array}{\|l} \hline 3^{\prime} 45 \text { bp of } \\ \text { zapA }+ \text { stop }+ \\ \text { downstream } \\ \hline \end{array}$
P1489	TTATCTGCTTTGGCAGTCGGAGCCAGTTGT		
TT657	CGCCCCAAGTTCATCACCAATGACATCAAC	IU3966 ${ }^{\text {e }}$	$\begin{aligned} & \text { bgaA }:: \text { tet }-\mathrm{P}_{\mathrm{Zn}}- \\ & \mathrm{RBS}^{\text {fis } A} \end{aligned}$
AJP32	ACATCGCTTCCTCTCTATCTTCCTTGTTATAA TAGATTTATGAACACCTTGTTCATTATC		
AJP33	AACAAGGTGTTCATAAATCTATTATAACAAG GAAGATAGAGAGGAAGCGATGTAATGA	IU7054	$\begin{aligned} & \mathrm{RBS}^{f t s A}-f t s Z^{+}- \\ & \text {bgaA }^{\prime} \end{aligned}$
CS121	GCTTTCTTGAGGCAATTCACTTGGTGC		
TT657	CGCCCCAAGTTCATCACCAATGACATCAAC	IU3966 ${ }^{\text {e }}$	$\begin{aligned} & \text { bgaA }:: \text { tet }-\mathrm{P}_{\mathrm{Zn}}- \\ & \mathrm{RBS}^{\text {fis } A} \end{aligned}$
AJP32	ACATCGCTTCCTCTCTATCTTCCTTGTTATAA TAGATTTATGAACACCTTGTTCATTATC		
TT394	GGAAGATAGAGAGGAAGCGATGTAATGACA TTTTCATTTGATACAGCTGCTG	IU7667	$\begin{aligned} & \mathrm{RBS}^{f s s A}-f t s Z- \\ & \text { Мyс } \end{aligned}$
AJP34	AACTGGTTTATGAGAAAGTAAGTTCTTTTAA AGATCTTCTTCAGAAATAAGTTTTTGTTC		
AJP35	AAAAACTTATTTCTGAAGAAGATCTTTAAAA GAACTTACTTTCTCATAAACCAGTTGCTG	D39	3' fragment containing bgaA ${ }^{\prime}$
CS121	GCTTTCTTGAGGCAATTCACTTGGTGC		
TT657	CGCCCCAAGTTCATCACCAATGACATCAAC	IU3966 ${ }^{\text {e }}$	$\begin{aligned} & \text { bgaA'::tet }-\mathrm{P}_{\mathrm{Zn}}- \\ & \mathrm{RBS}^{\text {fis } A} \end{aligned}$
AJP32	ACATCGCTTCCTCTCTATCTTCCTTGTTATAA TAGATTTATGAACACCTTGTTCATTATC		
AJP37	AAGGAAGATAGAGAGGAAGCGATGTAATGT CTAATGGACAACTAATTTATTTAATGGT	D39	$\mathrm{RBS}^{\text {ftsA }}$-ezr $A-\mathrm{L}$
AJP08	CGGAGCCAGCGGAACCAAAACGAATCGTTTC ACGTGTTTTCT		
AJP09	ACACGTGAAACGATTCGTTTTGGTTCCGCTG GCTCCGCT	IU4355	L-FLAG ${ }^{3}$ at bgaA
CS121	GCTTTCTTGAGGCAATTCACTTGGTGC		
For construction of IU8795, IU8902 and IU8906 (bgaA' ${ }^{\text {: }}$ tet- $\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}^{\text {fist }}$-ezrA ${ }^{+}$)			
TT657	CGCCCCAAGTTCATCACCAATGACATCAAC	IU3966 ${ }^{\text {e }}$	$\begin{aligned} & \text { bgaA }:: \text { tet }-\mathrm{P}_{\mathrm{Zn}}- \\ & \mathrm{RBS}^{\text {fsi } A} \end{aligned}$
AJP32	ACATCGCTTCCTCTCTATCTTCCTTGTTATAA TAGATTTATGAACACCTTGTTCATTATC		
AJP37	AAGGAAGATAGAGAGGAAGCGATGTAATGT CTAATGGACAACTAATTTATTTAATGGT	IU5795	$\begin{aligned} & \mathrm{RBS}^{f t s A}-e z r A^{+}- \\ & \text {bgaA } \end{aligned}$
CS121	GCTTTCTTGAGGCAATTCACTTGGTGC		
For construction of IU8845 (ftsZ-L2-gfp markerless)			
TT165	AGTGGTGCCGATATGGTCTTCATCACTGCT	D39	3' ftsZ
TT695	CATCTGCAGGAACTCGATGTCTAGTTTACGA TTTTTGAAAAATGGAGGTGTATCC		

TT693	AAACTAGACATCGAGTTCCTGCAGATGATTT CTAAAGGTGAAGAATTGTTTACAGG	pUC57-	
TT694	TTACTTAACGATTTTTGAAAAATGTTATTTAT ACAATTCATCCATACCATGTGTAATACC	$g f p(S p)^{\mathrm{f}}$	2-g
TT696	CATGGTATGGATGAATTGTATAAATAACATT TTTCAAAAATCGTTAAGTAAATGAATGTA	D39	3' downstream
TT166	TCATTGGGAGAGCCGGTTCCTGTGAAGAAT		
For construction of IU9085 (\triangle mapZ: $\mathrm{P}_{\mathbf{c}}$-erm)			
P1523	GAGGTCTCTATTCTCAAAGATGTGGCAACTG TC	D39	Upstream of mapZ and 5, 57 bp of mapZ
P1524	CATTATCCATTAAAAATCAAACGGATCCTAA TCAAATTGCGGTTCTTGAGCTTCT		
$\begin{aligned} & \text { Kan } \\ & \text { rpsL } \\ & \text { forward } \end{aligned}$	TAGGATCCGTTTGATTTTTAATGGATAATG	P_{c}-erm $^{\mathrm{g}}$	P_{c}-erm
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
P1525	TCCAAAAGCATAAGGAAAGGGGCCCTGTAA GACAGGCTACTTTGTCGGAAATGGC	D39	3' 60 bp of map Z and downstream
P1526	AATTGCATATCACCGTACTCAATACCATTGTG		
For construction of IU10065 (zapA-L4-sfgfp)			
P1488	TGGAAGCTGATAACCCAGTTCTCGTCCCAGA T	D39	5' fragment of zapA
TT812	AACAGCTCTTCTCCTTTTGTAGCAATAGAACG TAAGGAATCCTCAATCTTGCTCTGTTCT		
TT813	CAAGATTGAGGATTCCTTACGTTCTATTGCTA CAAAAGGAGAAGAGCTGTTCACAGGTGT	IU9683	$s f g f p$ middle fragment
TT799	TTATAAAGCTCATCCATGCCGTGAGTGATA		
TT815	TCACTCACGGCATGGATGAGCTTTATAAATG ATTTCATTCCTTCTTCTATTGGTCTTGGT	D39	3' fragment downstream of zapA
For construction of IU10265 (zapA-L4-FLAG)			
P1488	TGGAAGCTGATAACCCAGTTCTCGTCCCAGA T	IU10065	5' upstream of zapA including L4-FLAG
TT840	AAATCATTTATCATCATCATCTTTATAATCTG TAGCAATAGAACGTAAGGAATCCTCAAT		
TT841	TGCTACAGATTATAAAGATGATGATGATAAA TGATTTCATTCCTTCTTCTATTGGTCTTG	IU10065	L4-FLAG + downstream of zapA
P1489	TTATCTGCTTTGGCAGTCGGAGCCAGTTGT		
For construction of IU10267 (zapA-L4-HA)			
P1488	TGGAAGCTGATAACCCAGTTCTCGTCCCAGA T	IU10065	5' upstream of zapA including L4-HA
TT842	TTTAAGCATAATCTGGAACATCATATGGATA TGTAGCAATAGAACGTAAGGAATCCTCAA		
TT843	TATCCATATGATGTTCCAGATTATGCTTAAAT GATTTCATTCCTTCTTCTATTGGTCTTG	IU10065	3' downstream of zapA

P1489	TTATCTGCTTTGGCAGTCGGAGCCAGTTGT		$\begin{aligned} & \text { including } \mathrm{L}_{4}- \\ & \text { HA } \end{aligned}$
For construction of IU10447 (ezrA-Pc-erm)			
TT192	ATCGTGTTCCAGCCTTGGTTACGACGCTTT	D39	3' ezrA ${ }^{+}$
AJP134	AACAAATTTTGGGCCCGGTTAAAAACGAATC GTTTCACGTGTTTTCT		
AJP135	AACACGTGAAACGATTCGTTTTTAACCGGGC CCAAAATTTGTTTGATTT	IU6545	P_{c}-erm and downstream of ezrA
TT330	GAGGAGTTCGGACTCGACTCTCTCCTTCAAG AA		
For construction of IU10901 (ezrA(QND)-Pcerm)			
AL295	CCCAAATCCACAGTTTGAAGGACAAACG	D39	5' fragment with ezrA(R515D)
AJP142	GTTCATCAAATGAGCGATAATCGTTAGAATA TTGCAAGAGTT		
AJP143	TCTTGCAATATTCTAACGATTATCGCTCATTT GATGAACGC	IU10447	ezrA(R515D)- P_{c}-erm and downstream
TT330	GAGGAGTTCGGACTCGACTCTCTCCTTCAAG AA		
For construction of IU10909 (ezrADQNR-Pc-erm)			
AL295	CCCAAATCCACAGTTTGAAGGACAAACG	D39	5' ezrA
AJP112	ATGCGTTCATCAAATGAGCGGAGTTGCTCTG TCAAAGTTGCATATTGTA		
AJP113	TATGCAACTTTGACAGAGCAACTCCGCTCAT TTGATGAACGCATTCA	IU10447	ezrA Δ QNR- $\mathrm{P}_{\mathrm{c}}-$ erm + downstream
TT330	GAGGAGTTCGGACTCGACTCTCTCCTTCAAG AA		
For construction of IU11123 (ezrADTM-P>-erm)			
AL295	CCCAAATCCACAGTTTGAAGGACAAACG	gDNA	Upstream ezrA
AJP204	CTCTAATCTCCCCTCGTTTCGCTTCATATCAA ACTCCTTTTTTACTTGAAACAATCGTAA		
AJP205	ATTGTTTCAAGTAAAAAAGGAGTTTGATATG AAGCGAAACGAGGGGAGATTAGAGGCGCT	IU10447	$\begin{aligned} & \text { ezrA } \Delta \mathrm{TM}(\Delta 2- \\ & 28 \text { aa)-P-erm } \\ & + \text { downstream } \end{aligned}$
TT330	GAGGAGTTCGGACTCGACTCTCTCCTTCAAG AA		
For construction of IU12253 (zapA-L4-sfgfp-Pc-aad9)			
P1488	TGGAAGCTGATAACCCAGTTCTCGTCCCAGA T	IU10065	$z a p A-\mathrm{L}_{4}-s f g f p$ fragment
TT934	ATCACATTATCCATTAAAAATCAAACGGATC CTATCATTTATAAAGCTCATCCATGCCGT		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	$\mathrm{P}_{\mathrm{c}}-a a d 9$ common cassette	Middle $\mathrm{P}_{\mathrm{c}}{ }^{-}$ aad9 fragment
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
TT935	AAACGTCCAAAAGCATAAGGAAAGGGGCCC ATGATTTCATTCCTTCTTCTATTGGTCTTG	IU10065	downstream of zapA
P1489	TTATCTGCTTTGGCAGTCGGAGCCAGTTGT		

For construction of IU13123 (CEP:: $\mathrm{Pzn}_{\text {In }}$ ezrA ${ }^{+}$)			
KW116	CCGGTAGTGGGAAAACAACTATTGGTCGTG C	IU7334	5' fragment containing CEP::
JQ145	CCGTATCAGCAAAACCAAAAAAGCCATCTA GTAGAAACGCAAAAAGGCCATCCGTCAGGA		
JQ146	TCCTGACGGATGGCCTTTTTGCGTTTCTACT AGATGGCTTTTTTGGTTTTGCTGATACGG	IU9805	$\mathrm{P}_{\mathrm{Zn}}-\mathrm{RBS}(f t s A)$
AJP32	ACATCGCTTCCTCTCTATCTTCCTTGTTATAA TAGATTTATGAACACCTTGTTCATTATC		
AJP37	AAGGAAGATAGAGAGGAAGCGATGTAATGT CTAATGGACAACTAATTTATTTAATGGT	IU7334	$\begin{aligned} & \text { RBS }(f t s A)- \\ & e z r A^{+}-\mathrm{CEP} \end{aligned}$
KW123	GGCTTCTTGTTCAAATTTTCCCATTTGATTCT C		
For construction of IU13189 (ezrA(QND)-L L_{0}-sfgfp- P_{c}-cat)			
AJP153	CCCAAATCCACAGTTTGAAGGACAAACG	IU10901	5' fragment
TT193	CGGAGCCAGCGGAACCAAAACGAATCGTTT CACGTGTTTTC		
AL351	CGATTCGTTTTGGTTCCGCTGGCTCCGCTGC	IU11119	3' fragment
TT330	GAGGAGTTCGGACTCGACTCTCTCCTTCAAG AA		
For construction of IU13191 (ezrA($\mathbf{~}$ (QNR)-L0-sfgfp-Pc-cat)			
AJP153	CCCAAATCCACAGTTTGAAGGACAAACG	IU10909	5' fragment with deletion of nt encoding aa510-516
TT193	CGGAGCCAGCGGAACCAAAACGAATCGTTT CACGTGTTTTC		
AL351	CGATTCGTTTTGGTTCCGCTGGCTCCGCTGC	IU11119	3' fragment containing $\mathrm{L}_{0}-$ $s f g f p-\mathrm{P}_{\mathrm{c}}-c a t$
TT330	GAGGAGTTCGGACTCGACTCTCTCCTTCAAG AA		
For construction of IU13269 (ezrA(Δ TM)-Lo-sfgfp-P ${ }_{\text {c }}$-cat)			
AJP153	CCCAAATCCACAGTTTGAAGGACAAACG	IU11123	$\operatorname{ezr} A(\Delta \mathrm{TM}, \text { aa }$$2-28)$
TT193	CGGAGCCAGCGGAACCAAAACGAATCGTTT CACGTGTTTTC		
AL351	CGATTCGTTTTGGTTCCGCTGGCTCCGCTGC	IU11119	3' fragment containing L_{0} $s f g f p-\mathrm{P}_{\mathrm{c}}$-cat
TT330	$\begin{aligned} & \text { GAGGAGTTCGGACTCGACTCTCTCCTTCAAG } \\ & \text { AA } \end{aligned}$		
For construction of IU13327 (bgaA: ${ }^{\text {a }}$ (anT1T2-PZn-ezrA ${ }^{+}$)			
TT657	CGCCCCAAGTTCATCACCAATGACATCAAC	IU9805	bgaA::kanT1T 2- P_{Zn}-rbsfts A
AJP32	ACATCGCTTCCTCTCTATCTTCCTTGTTATAA TAGATTTATGAACACCTTGTTCATTATC		
AJP37	AAGGAAGATAGAGAGGAAGCGATGTAATGT CTAATGGACAACTAATTTATTTAATGGT	IU8795	rbsfts A-ezr A^{+}- bgaA
CS121	GCTTTCTTGAGGCAATTCACTTGGTGC		
For construction of IU13822 (zapJ-Lo-sfgfp-P $\boldsymbol{P}_{\boldsymbol{c}}$-cat)			
AJP329	TGCCCAGTTACAACAGATGCGAGACCAT	D39	5' spd_1350
AJP331	CGGAGCCAGCGGAACCTTCTGTCATTCTGGT CAGATTCAACTCT		

Supplementary Material

AJP332	TTGAATCTGACCAGAATGACAGAAGGTTCC GCTGGCTCCGCT	$\begin{aligned} & \mathrm{IU} 11121 \\ & \text { ezrA-} \mathrm{L}_{0}- \\ & \text { sfGFP- }{ }_{\mathrm{c}}- \\ & \text { cat } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L}_{0}-S f G F P-\mathrm{P}_{\mathrm{c}^{-}} \\ & c a t \end{aligned}$
Kan rpsL rev	GGGCCCCTTTCCTTATGCTTTTG		
AJP333	GCATAAGGAAAGGGGCCCTAGGGGAGAAA ACATGTCAAAGACATATC	D39	3' downstream spd_1350
AJP330	GTCCACGGAAATGAACGGTGAAGGTTGAA		
For construction of IU13922 (4zapJ(spd_1350) ::Pa-[kan-rpsL ${ }^{+}$]			
AJP329	TGCCCAGTTACAACAGATGCGAGACCAT	D39	$\begin{aligned} & \text { 5' upstream } \\ & \text { spd_1350 } \\ & +60 \mathrm{nt} \end{aligned}$
AJP342	CCATTAAAAATCAAACGGATCCTATGGCATT TCAGTCAACATGACCTC		
Kan rpsL for	TAGGATCCGTTTGATTTTTAATGGATAATG	$\begin{aligned} & \text { Pc-[kan- } \\ & \text { rpsL } \left.L^{+}\right] \\ & \text {cassette } \end{aligned}$	Pc--[kan$\left.r p s L^{+}\right]$
Kan rpsL rev	GGGCCCCTTTCCTTATGCTTTTG		
AJP343	GCATAAGGAAAGGGGCCCCAAACAGAACAA GAACGTCGGGTT	D39	3' downstream spd_1350+60nt
AJP330	GTCCACGGAAATGAACGGTGAAGGTTGAA		
For construction of IU13924 (4zapJ(spd_1350) : PPc-erm)			
AJP329	TGCCCAGTTACAACAGATGCGAGACCAT	D39	5' upstream spd_1350 +60 nt
AJP342	CCATTAAAAATCAAACGGATCCTATGGCATT TCAGTCAACATGACCTC		
Kan rpsL for	TAGGATCCGTTTGATTTTTAATGGATAATG	Pc-erm cassette	Pc-erm middle
Kan rpsL rev	GGGCCCCTTTCCTTATGCTTTTG		
AJP343	GCATAAGGAAAGGGGCCCCAAACAGAACAA GAACGTCGGGTT	D39	3' downstream spd_1350+60nt
AJP330	GTCCACGGAAATGAACGGTGAAGGTTGAA		
For construction of IU15025 (zapJ-L0-ht-Pc-erm)			
AJP329	TGCCCAGTTACAACAGATGCGAGACCAT	D39	5' fragment
AJP331	CGGAGCCAGCGGAACCTTCTGTCATTCTGGT CAGATTCAACTCT		
AJP332	TTGAATCTGACCAGAATGACAGAAGGTTCC GCTGGCTCCGCT	IU14404	Middle containing L_{0} $h t$ - P_{c}-erm
AJP344	GTCTTTGACATGTTTTCTCCCCTATTTCCTCC CGTTAAATAATAGATAACTATTAAAAA		
AJP345	AGTTATCTATTATTTAACGGGAGGAAATAGG GGAGAAAACATGTCAAAGACATATC	D39	3' fragment
AJP330	GTCCACGGAAATGAACGGTGAAGGTTGAA		
For construction of E42 ($\Delta l y t A:: \mathrm{P}_{\mathrm{c}}$-erm)			
P166	CCTTTGCCCTTCTTCCTATGACCGCTAT	D39	Upstream of $l y t A+60 \mathrm{bp}$ of lytA
P168	CATTATCCATTAAAAATCAAACGGATCCTAA TATGGTTGCACGCCGACTTGAGGC		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P_{c}-erm cassette ${ }^{g}$	P_{c}-erm

Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
P169	CAAAAGCATAAGGAAAGGGGCCCCTGGCAG ACAGGCCAGAATTCACAGTAGAG	D39	60 bp of 3' lytA and downstream
P167	CCTCAACCATCCTATACAGTGAAGATGGGA		
For construction of E733 ($\mathbf{\Delta s e p}$ F(spd_1477):: $\mathrm{P}_{\mathbf{c}}$-erm)			
P1477	ACTACCGTGAGACAGTGAAACCAGCTCATT C	D39	Upstream of sepF +60 bp of sepF
P1479	CATTATCCATTAAAAATCAAACGGATCCTAT GAATCCTCATCCTCCGTAAAATAATCTAT		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	$\mathrm{P}_{\mathrm{c}} \text {-erm }$ cassette ${ }^{\mathrm{g}}$	P_{c}-erm
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
P1480	CAAAAGCATAAGGAAAGGGGCCCCCAGATG AAGATCAACAGGGTGAGTT	D39	60 bp of 3 ' sepF and downstream
P1478	GTTCCTCCAGCGAAACAGGTATACGACCAA		
For construction of E743 ($\Delta z a p$ A (spd_0369) : P c-erm)			
P1488	TGGAAGCTGATAACCCAGTTCTCGTCCCAGA T	D39	Upstream of zap $A+5$, 60 bp of zapA
P1490	CATTATCCATTAAAAATCAAACGGATCCTAG GTTAACGATTTTTTCCCGAATGTAAA		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P_{c}-erm cassette ${ }^{\mathrm{g}}$	P_{c}-erm
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
P1491	CAAAAGCATAAGGAAAGGGGCCCCTTGTGAC TTGTAAGCAAGAACAGAGCA	D39	$\begin{array}{\|l} \hline 3^{\prime} 45 \text { bp of } \\ \text { zapA }+ \\ \text { downstream } \\ \hline \end{array}$
P1489	TTATCTGCTTTGGCAGTCGGAGCCAGTTGT		
For construction of E745 (Δ spd_0370:: P c-erm)			
P1492	GTGAGAGAAGGAGTGCCTGGTGCTGGATTT	D39	Upstream of spd_0370 + 5' 60 bp of spd 0370
P1494	CATTATCCATTAAAAATCAAACGGATCCTAT CTCCGATAGCCGATATAAAATCCCC		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	$\begin{array}{\|l} \mathrm{P}_{\mathrm{c}} \text {-erm } \\ \text { cassette }^{\mathrm{g}} \end{array}$	P_{c}-erm
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
P1495	CAAAAGCATAAGGAAAGGGGCCCAGCATAC CGATAACAACCAGTTGGC	D39	$\begin{array}{\|l\|} \hline 3 ' 57 \mathrm{bp} \text { of } \\ \text { spd_0370 and } \\ \text { downstream } \\ \hline \end{array}$
P1493	TGCTCGCAGACTAGCAATTTCTTCGCTCAGTT		
For construction of E747 $\mathbf{\Delta}[$ zapA(spd_0369)-spd_0370]::Pc-erm			

Supplementary Material

P1488	TGGAAGCTGATAACCCAGTTCTCGTCCCAGA T	D39	Upstream of zapA + 5' 60 bp of zap A
P1490	CATTATCCATTAAAAATCAAACGGATCCTAG GTTAACGATTTTTTCCCGAATGTAAA		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	$\mathrm{P}_{\mathrm{c}} \text {-erm }$$\text { cassette }{ }^{\mathrm{g}}$	P_{c}-erm
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
P1495	CAAAAGCATAAGGAAAGGGGCCCAGCATAC CGATAACAACCAGTTGGC	D39	3' 57 bp of spd_0370 and downstream
P1493	TGCTCGCAGACTAGCAATTTCTTCGCTCAGTT		
For construction of K743 (4zapA (spd_0369): :Pc-[kan-rpsL ${ }^{+}$]			
P1488	TGGAAGCTGATAACCCAGTTCTCGTCCCAGA T	D39	Upstream of zapA + 5' 60 bp of zap A
P1490	CATTATCCATTAAAAATCAAACGGATCCTAG GTTAACGATTTTTTCCCGAATGTAAA		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	$\begin{aligned} & \mathrm{P}_{\mathrm{c}}-\text { kan }^{-} \\ & \text {rpsL }^{+} \\ & \text {cassette }^{g} \end{aligned}$	$\mathrm{P}_{\mathrm{c}}-k a n-r p s L^{+}$
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
P1491	CAAAAGCATAAGGAAAGGGGCCCCTTGTGAC TTGTAAGCAAGAACAGAGCA	D39	$\begin{array}{\|l} \hline 3^{\prime} 45 \text { bp of } \\ \text { zapA }+ \\ \text { downstream } \\ \hline \end{array}$
P1489	TTATCTGCTTTGGCAGTCGGAGCCAGTTGT		
For construction of K747 $\Delta\left[\right.$ zapA(spd_0369)-spd_0370]: $\left.\mathrm{P}_{\text {c- }-[k a n-r p s ~}^{\text {L }}{ }^{+}\right]$			
P1488	TGGAAGCTGATAACCCAGTTCTCGTCCCAGA T	D39	Upstream of zap $A+5^{\prime} 60$ bp of zapA
P1490	CATTATCCATTAAAAATCAAACGGATCCTAG GTTAACGATTTTTTCCCGAATGTAAA		
$\begin{aligned} & \hline \text { Kan } \\ & \text { rpsL } \\ & \text { forward } \end{aligned}$	TAGGATCCGTTTGATTTTTAATGGATAATG	$\begin{aligned} & \mathrm{P}_{\mathrm{c}}-\text { kan- } \\ & \text { rpsL+ } \\ & \text { cassetteg } \end{aligned}$	$\mathrm{P}_{\mathrm{c}}-k a n-r p s L^{+}$
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
P1495	CAAAAGCATAAGGAAAGGGGCCCAGCATAC CGATAACAACCAGTTGGC	D39	$\begin{array}{\|l} \hline \text { 3' } 57 \mathrm{bp} \text { of } \\ \text { spd_0370 and } \\ \text { downstream } \end{array}$
P1493	TGCTCGCAGACTAGCAATTTCTTCGCTCAGTT		

${ }^{\text {a }}$ Genomic DNA of indicated S. pneumoniae strains was used as templates for PCR reactions. Strain genotypes are listed in Supplementary Table 1, unless noted below.
${ }^{\mathrm{b}} \mathrm{IU} 4888$ (D39 $\left.\Delta c p s ~ \Delta g p s B<>a a d 9 / / b g a A^{\prime}:: \mathrm{P}_{f c s K}-g p s B^{+}\right)($Land et al., 2013)
${ }^{\text {cIU }} 6397$ (D39 rpsL1 $\Delta p h o U 2$ bgaA' $:: k a n-t 1 t 2-\mathrm{P}_{f t s A-p h o U 2+}$) (Zheng et al., 2016)
${ }^{\mathrm{d}}$ IU7426 (D39 $\left.\Delta c p s ~ p b p 2 b-\mathrm{HA}^{4}-\mathrm{P}_{\mathrm{c}}-k a n\right)$ (Tsui et al., 2014)
${ }^{\text {e}}$ IU3966 (D39 bgaA' ::tet-PZn-GFP-divIVA). Amplicon was templated from pJWV25 (Eberhardt et al., 2009).
${ }^{\mathrm{f}} \mathrm{p} U C 57-g f p(S p)$ (Martin et al., 2010)
${ }^{\mathrm{g}} \mathrm{P}_{\mathrm{c}}$-erm and P_{c}-kan-rpsL ${ }^{+}$cassettes are described in (Tsui et al., 2011).
${ }^{\mathrm{h}}$ Amplicons from IU7814 or IU5795 containing $\Delta f t s Z:$:aad9 or $\Delta e z r A \gg$ aad 9 were used for transformation experiments to test for essentiality. These alleles were amplified with the respective outside primers.

Supplementary Table 3. Percent live cells during EzrA depletion determined by Live/Dead staining

Strain and condition ${ }^{\mathrm{a}}$		Percent live $^{\mathrm{b}}$	n^{c}
D39 $\Delta c p s$	-Zn	$96.0 \pm 0.5 \%$	188
D39 $\Delta c p s \Delta e z r A / / \mathrm{P}_{\mathrm{Zn}}-e z r A^{+}$	+Zn 2 h	$92.8 \pm 6.2 \%$	189
	-Zn 2 h	$89.6 \pm 9.5 \%$	261
	-Zn 3 h	$93.0 \pm 0.4 \%$	212
	-Zn 7 h	$96.7 \pm 1.4 \%$	210

${ }^{\text {a }} \mathrm{D} 39 \Delta c p s$ (IU1945), D39 $\Delta c p s \Delta e z r A / / \mathrm{P}_{\mathrm{Zn}}-e z r A^{+}$(IU8799), were grown in the presence $(+\mathrm{Zn})$, or absence of $(-\mathrm{Zn})$ supplemented $\mathrm{ZnCl}_{2} / \mathrm{MnSO}_{4}$ for the indicated amount of time, as described in Materials and Methods. For viewing at 7 h time point, initial OD_{620} was ≈ 0.002. Live/Dead staining occurred as described in Materials and Methods.
bPercent survival is determined by total cells stained as "live" divided by "live+dead," averaged from two separate experiments \pm SEM.
${ }^{\mathrm{c}} \mathrm{n}=$ number of cells analyzed. Data is from two biological replicates in which n is between 80-161 cells per replicate. Cells were analyzed from at least 4 separate fields per experiment. Cells which showed no labeling ($>2 \%$) were excluded from the analysis.

Supplementary Table 4. Percent anucleate cells determined by DAPI staining

Strain and condition ${ }^{\text {a }}$		Percent anucleate $^{\mathrm{b}}$	${ }^{\mathrm{c}} \mathrm{n}=$
D39 $\Delta c p s$	-Zn	0	400
D39 $\Delta c p s \Delta e z r A / / \mathrm{P}_{\mathrm{Zn}}-e z r A^{+}$	+Zn 2 hr	$0.25 \pm 0.25 \%$	400
	-Zn 4 hr	$3.25 \pm 0.75 \%$	400
D39 $\Delta c p s \Delta m a p Z:: \mathrm{P}_{\mathrm{c}}-\left[k a n-r p s L^{+}\right]$	-Zn	$0.5 \pm 0 \%$	400

${ }^{\mathrm{a}} \mathrm{D} 39 \Delta c p s$ (IU1945), D39 $\Delta c p s \Delta e z r A / / \mathrm{P}_{\mathrm{Zn}}-e z r A^{+}$(IU8799), D39 $\Delta c p s \Delta m a p Z:: \mathrm{P}_{\mathrm{c}}-[k a n-$ $r p s L^{+}$] (IU9711), were grown in the presence $(+\mathrm{Zn})$ or absence $(-\mathrm{Zn})$ of $0.5 \mathrm{mM} \mathrm{ZnCl}_{2}$ and 0.05 mM MnSO_{4} for the indicated amount of time. Depletion and fixation for DAPI staining were performed as described in Materials and Methods.
${ }^{\mathrm{b}}$ Percent anucleate was determined by the presence of DAPI labeling in the cell. \pm indicated the SEM.
${ }^{c} \mathrm{n}=$ number of cells analyzed. Data were obtained from biological replicates in which n is 200 pre-divisional cells or daughters of post-divisional cells per replicate. Cells were analyzed from at least 2 separate fields per experiment.

Supplementary Table 5. Antibody labeling conditions used for IFM in this study ${ }^{\text {a }}$

Strain No.	Proteins detected	Primary antibody			Secondary antibody		
		Antibody	Temp	Time	Antibody	Temp	Time
$\begin{aligned} & \hline \text { IU7223 } \\ & \text { IU8237 } \\ & \text { IU9713 } \\ & \text { IU9723 } \end{aligned}$	$\begin{aligned} & \hline \text { EzrA-HA } \\ & \text { FtsZ-Myc } \end{aligned}$	Rabbit anti-HA Mouse anti-Myc	$24^{\circ} \mathrm{C}$	1 h	488 anti-Rabbit 568 anti-Mouse	$24^{\circ} \mathrm{C}$	1 h
IU8596	$\begin{aligned} & \hline \text { SepF-HA } \\ & \text { FtsZ-Myc } \end{aligned}$	Rabbit anti-HA Mouse anti-Myc	$24^{\circ} \mathrm{C}$	1 h	488 anti-Rabbit 568 anti-Mouse	$24^{\circ} \mathrm{C}$	1 h
IU8681	$\begin{gathered} \text { EzrA- } \\ \text { FLAG }^{3} \\ \text { FtsZ-Myc } \end{gathered}$		$24^{\circ} \mathrm{C}$	1 h	488 anti-Rabbit 568 anti-Mouse	$24^{\circ} \mathrm{C}$	1 h
$\begin{aligned} & \hline \text { IU1945 } \\ & \text { IU8799 } \\ & \hline \end{aligned}$	FtsZ	Rabbit anti-FtsZ	$37^{\circ} \mathrm{C}$	1 h	488 anti-Rabbit	$24^{\circ} \mathrm{C}$	1 h
IU10752	$\begin{gathered} \text { ZapA- } \\ \text { FLAG } \\ \text { FtsZ-Myc } \end{gathered}$	Rabbit anti-FLAG Mouse anti-Myc	$24^{\circ} \mathrm{C}$	1 h	488 anti-Rabbit 568 anti-Mouse	$24^{\circ} \mathrm{C}$	1 h

310

311

312
${ }^{\text {a }}$ IFM protocol is described in Materials and Methods.

Supplementary Table 6. Plasmids expressing S. pneumoniae proteins used in B2H assays in this study

Name	Relevant characteristics	Two-hybrid construct	Source/ reference
pKT25 fts A (pMKV24)	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-ftsA	FtsA-T25	Krupka et al., 2012
pUT18C fts A (pMKV19)	$a m p \mathrm{P}_{\text {lac }}$-cya(T18)-ftsA	FtsA-T18	Krupka et al., 2012
pKNT25_ftsZ	kan $\mathrm{P}_{\text {lac }}$-ftsZ-cya(T25)	FtsZ-T25	Rued et al., 2017
pUT18_ftsZ	amp $\mathrm{P}_{\text {lac-ftsZ-cya(T18) }}$	FtsZ-T18	Rued et al., 2017
pKNT25_ezrA	kan $\mathrm{P}_{\text {lac }}$-ezrA-cya(T25)	EzrA-T25	Rued et al., 2017
pUT18_ezrA	amp $\mathrm{P}_{\text {lac }}$-ezrA -cya(T18)	EzrA-T18	Rued et al., 2017
pKNT25_stkP	kan $\mathrm{P}_{\text {lac }}$-stkP-cya(T25)	StkP-T25	Rued et al., 2017
pUT18_stkP	amp $\mathrm{P}_{\text {lac }}$-stkP-cya(T18)	StkP-T18	Rued et al., 2017
pKNT25_divIVA	kan $\mathrm{P}_{\text {lac }}$-divIVA-cya(T25)	DivIVA-T25	Rued et al., 2017
pUT18_divIVA	amp $\mathrm{P}_{\text {lac }}$-divIVAcya(T18)	DivIVA-T18	Rued et al., 2017
pKNT25_gps B	kan $\mathrm{P}_{\text {lac }}$-gpsB-cya(T25)	GpsB-T25	Rued et al., 2017
pUT18_gps B	amp $\mathrm{P}_{\text {lac }}$-gpsB-cya(T18)	GpsB-T18	Rued et al., 2017
pFC113	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-mreC	T25-MreC	Cleverley et al., 2019
pFC114	amp $\mathrm{P}_{\text {lac }}$-cya(T18)-mreC	T18-MreC	Cleverley et al., 2019
pFC115	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-pbp2a	T25-PBP2a	Cleverley et al., 2019
pFC116	amp $\mathrm{P}_{\text {lac }}$-cya(T18)-pbp2a	T18-PBP2a	Cleverley et al., 2019
pFC123	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-pbp1a	T25-PBP1a	Cleverley et al., 2019
pFC124	$a m p \mathrm{P}_{\text {lac }}$-cya(T18)-pbpla	T18-PBP1a	Cleverley et al., 2019
pFC125	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-pbp2b	T25-PBP2b	Cleverley et al., 2019
pFC126	$a m p \mathrm{P}_{\text {lac }}$-cya(T18)-pbp2b	T18-PBP2b	Cleverley et al., 2019
pFC127	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-pbp2x	T25-PBP2x	Cleverley et al., 2019
pFC128	$a m p \mathrm{P}_{\text {lac }}$-cya(T18)-pbp2x	T18-PBP2x	Cleverley et al., 2019
pFC141	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-rodZ	T25-RodZ	This work
pFC142	amp $\mathrm{P}_{\text {lac }}$-cya(T18)-rodZ	T18-RodZ	This work

Supplementary Material

Name	Relevant characteristics	Two-hybrid construct	Source/ reference
pMBM147	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-mpgA	T25-MpgA (formerly MltG(Spn))	This work
pMBM148	amp $\mathrm{P}_{\text {lac }}$-cya(T18)-mpg A	T18-MpgA	This work
pMBM149	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-sepF	T25-SepF	This work
pMBM150	amp $\mathrm{P}_{\text {lac }}$-cya(T18)-sepF	T18-SepF	This work
pMBM151	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-rodA	T25-RodA	This work
pMBM152	amp $\mathrm{P}_{\text {lac }}$-cya(T18)-rodA	T18-RodA	This work
pMBM153	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-ftsW	T25-FtsW	This work
pMBM154	amp $\mathrm{P}_{\text {lac }}$-cya(T18)-ftsW	T18-FtsW	This work
pMBM155	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-ftsL	T25-FtsL	This work
pMBM156	amp $\mathrm{P}_{\text {lac }}$-cya(T18)-ftsL	T18-FtsL	This work
pMBM157	$\begin{aligned} & \text { kan } \mathrm{P}_{\text {lac }} \text {-cya(T25)- } \\ & \text { ftsQ/divIB } \end{aligned}$	T25-FtsQ	This work
pMBM158	$\begin{aligned} & \operatorname{amp} \mathrm{P}_{\text {lac }}-c y a(T 18)-\text { fts } Q- \\ & d i v I B \end{aligned}$	T18-FtsQ	This work
pMBM159	kan $\mathrm{P}_{\text {lac }}$-cya(T25)ftsB/divIC	T25-FtsB	This work
pMBM160	$\operatorname{amp} \mathrm{P}_{\text {lac }}$-cya(T18)-ftsBdivIC	T18-FtsB	This work
pBKM161	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-macP	T25-MacP	B. Kupeska unpublished
pBKM162	amp $\mathrm{P}_{\text {lac }}$-cya(T18)-macP	T18-MacP	B. Kupeska unpublished
pDDM169	kan $\mathrm{P}_{\text {lac }}$-mreD-cya(T25)	MreD-T25	This work
pDDM170	amp $\mathrm{P}_{\text {lac-mreD-cya(T18) }}$	MreD-T18	This work
pAZM183	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-zapA	T25-ZapA	This work
pAZM184	kan $\mathrm{P}_{\text {lac }}$-cya(T18)-zapA	T18-ZapA	This work
pAZM185	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-zapJ	T25-ZapJ	This work
pAZM186	kan $\mathrm{P}_{\text {lac }}$-cya(T18)-zapJ	T18-ZapJ	This work

Name	Relevant characteristics	Two-hybrid construct	Source/ reference
pAZM187	kan $\mathrm{P}_{\text {lac }}$-cya(T25)-ftsK	T25-FtsK	This work
pAZM188	kan $\mathrm{P}_{\text {lac-cya(T18)-ftsK }}$	T18-FtsK	This work
pKNT25_mapZ/locZ	kan $\mathrm{P}_{\text {lac }}$-mapZ-cya(T25)	MapZ-T25	K. Buriánková unpublished
pUT18_mapZ/locZ	amp $\mathrm{P}_{\text {lac-mapZ-cya(T18) }}$	MapZ-T18	K. Buriánková unpublished

Supplementary Table 7. Oligonucleotide primers used to construct and verify plasmids used for B2H assays in this study

Primers used for cloning into B2H assay plasmids		
Primer name	Sequence ($5 \rightarrow 3$)	Template ${ }^{\text {a }}$
Construction of T25/T18-fusions to S. pneumoniae rodZ		
pKT25/pUT18C_rodZ_BF	CGGGATCCTATGAGAAAAAAAACA ATTGGAGAGG	
pKT25/pUT18C_rodZ_ER	CGGAATTCTTAATTTTTAGTAAAGG TTACAGTGA	
Construction of T25/T18-fusions to S. pneumoniae mpgA		
pKT25/pUT18C_mpgA_XF	GCTCTAGAGATGAGTGAAAAGTCA AGAGAAGAAGAG	
pKT25/pUT18C_mpgA_BR	CGGGATCCTTAGTTTAATTTGCTGTT GACATGT	
Construction of T25/T18-fusions to S. pneumoniae sepF		
pKT25/pUT18C_sepF_XF	GCTCTAGAGATGTCTTTAAAAGATA GATTCGATAG	
pKT25/pUT18C_sepF_BR	CGGGATCCTTATCGTACTCTATTTCG CTTCAT	
Construction of T25/T18-fusions to S. pneumoniae rodA		
pKT25/pUT18C_rodA_BF	GCGGATCCCATGAAACGTTCTCTCG ACTCTAGA	
pKT25/pUT18C_rodA_ER	CGGAATTCTTATTTAATTTGTTTTAA TACAACCTTTTTC	
Construction of T25/T18-fusion to S. pneumoniae fisW		
pKT25/pUT18C_ftsW_XF	GCTCTAGAGATGAAGATTAGTAAGA GGCACTTAT	
pKT25/pUT18C_ftsW_BR	CGGGATCCCTACTTCAACAGAAGGT TCATTG	
Construction of T25/T18-fusion to S. pneumoniae fts Q		
pKT25/pUT18C_ftsQ/divIB_XF	GCTCTAGAGATGTCAAAAGATAAG AAAAATGAGG	
pKT25/pUT18C_ftsQ/divIB_BR	CGGGATCCCTAGCGACGCGATGAAC GCT	,

| Construction of T25/T18-fusion to \boldsymbol{S}. pneumoniae ftsL | | |
| :--- | :--- | :--- |$]$.

Primers used for verification and sequencing (5' $\rightarrow \mathbf{3} \mathbf{3}^{\prime}$)	
pKT25_579F	GTTCGCCATTATGCCGCATC
pKT25_802R	GGATGTGCTGCAAGGCGATT
pUT18C_484F	GATGTACTGGAAACGGTGC
pUT18C_660R	CTTAACTATGCGGCATCAGAGC
pKNT25/pUT18_49F	CGCAATTAATGTGAGTTAGC
pKNT25_328R	TTGATGCCATCGAGTACG
pUT18_304R	CGAGCGATTTTCCACAACAA
$m p g A _794 F ~$	GTAACCTGCTTTCAAGTCGG
$m p g A _813 \mathrm{R}$	GGTTTTCAACCATTCTGGCG
fts $W_{-} 596 \mathrm{~F}$	CGCCAGAATGGTTGAAAACC
fts $W_{-} 615 \mathrm{R}$	GACTGCTGTAACAGGAGTTG
rodA_603F	CAACTCCTGTTACAGCAGTC
$r o d A _622 \mathrm{R}$	GCAGATTAAGTCTAACTATTGG
$f t s Q_{-} 585 \mathrm{~F}$	CCAATAGTTAGACTTAATCTGC
$f t s Q _606 \mathrm{R}$	TATCTTTCCGAGAACTATGG
ftsK_1139F	CCATAGTTCTCGGAAAGATA
$f t s K _1158 \mathrm{R}$	

3. SUPPLEMENTARY REFERENCES

Beilharz, K., Novakova, L., Fadda, D., Branny, P., Massidda, O., \& Veening, J. W. (2012). Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc Natl Acad Sci USA, 109(15), E905-913. https://doi.org/10.1073/pnas.1119172109
Boersma, M. J., Kuru, E., Rittichier, J. T., VanNieuwenhze, M. S., Brun, Y. V., \& Winkler, M. E. (2015). Minimal Peptidoglycan (PG) Turnover in Wild-Type and PG Hydrolase and Cell Division Mutants of Streptococcus pneumoniae D39 Growing Planktonically and in HostRelevant Biofilms. J Bacteriol, 197(21), 3472-3485. https://doi.org/10.1128/jb.00541-15
Cleverley, R. M., Barrett, J. R., Baslé, A., Bui, N. K., Hewitt, L., Solovyova, A., Xu, Z. Q., Daniel, R. A., Dixon, N. E., Harry, E. J., Oakley, A. J., Vollmer, W., \& Lewis, R. J. (2014). Structure and function of a spectrin-like regulator of bacterial cytokinesis. Nat Comm,5, 5421. https://doi.org/10.1038/ncomms6421
Cleverley, R. M., Rutter, Z. J., Rismondo, J., Corona, F., Tsui, H. T., Alatawi, F. A., Daniel, R. A., Halbedel, S., Massidda, O., Winkler, M. E., \& Lewis, R. J. (2019). The cell cycle regulator GpsB functions as cytosolic adaptor for multiple cell wall enzymes. Nat Comm, 10(1), 261. https://doi.org/10.1038/s41467-018-08056-2
Dam, P., Olman, V., Harris, K., Su, Z., \& Xu, Y. (2007). Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res, 35(1), 288-298. https://doi.org/10.1093/nar/gkl1018
Eberhardt, A., Wu, L. J., Errington, J., Vollmer, W., \& Veening, J. W. (2009). Cellular localization of choline-utilization proteins in Streptococcus pneumoniae using novel fluorescent reporter systems. Mol Microbiol, 74(2), 395-408. https://doi.org/10.1111/j.1365-2958.2009.06872.x
Grimm, J. B., English, B. P., Chen, J., Slaughter, J. P., Zhang, Z., Revyakin, A., Patel, R., Macklin, J. J., Normanno, D., Singer, R. H., Lionnet, T., \& Lavis, L. D. (2015). A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Meth, 12(3), 244-250.
Haeusser, D. P., Garza, A. C., Buscher, A. Z., \& Levin, P. A. (2007). The division inhibitor EzrA contains a seven-residue patch required for maintaining the dynamic nature of the medial FtsZ ring. J Bacteriol, 189(24), 9001-9010. https://doi.org/10.1128/jb.01172-07
Karp, P. D., Billington, R., Caspi, R., Fulcher, C. A., Latendresse, M., Kothari, A., Keseler, I. M., Krummenacker, M., Midford, P. E., Ong, Q., Ong, W. K., Paley, S. M., \& Subhraveti, P. (2019). The BioCyc collection of microbial genomes and metabolic pathways. Brief bioinform, 20(4), 1085-1093. https://doi.org/10.1093/bib/bbx085
Karimova, G., Dautin, N., \& Ladant, D. (2005). Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol, 187(7), 2233-2243. https://doi.org/10.1128/JB.187.7.2233-2243.2005
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., \& Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis [Protocol]. Nat. Protocols, 10(6), 845-858. https://doi.org/10.1038/nprot.2015.053
Kjos, M., Aprianto, R., Fernandes, V. E., Andrew, P. W., van Strijp, J. A., Nijland, R., \& Veening, J. W. (2015). Bright fluorescent Streptococcus pneumoniae for live-cell imaging of host-pathogen interactions. J Bacteriol, 197(5), 807-818. https://doi.org/10.1128/jb.02221-14
Krupka, M., Rivas, G., Rico, A. I., \& Vicente, M. (2012). Key role of two terminal domains in the bidirectional polymerization of FtsA protein. J Biol Chem , 287(10), 7756-7765. https://doi.org/10.1074/jbc.M111.311563
Land, A. D., \& Winkler, M. E. (2011). The requirement for pneumococcal MreC and MreD is relieved by inactivation of the gene encoding PBP1a. J Bacteriol, 193(16), 4166-4179. https://doi.org/10.1128/jb.05245-11

Land, A. D., Luo, Q., \& Levin, P. A. (2014). Functional domain analysis of the cell division inhibitor EzrA. PLoS One, 9(7), e102616. https://doi.org/10.1371/journal.pone. 0102616
Land, A. D., Tsui, H. C., Kocaoglu, O., Vella, S. A., Shaw, S. L., Keen, S. K., Sham, L. T., Carlson, E. E., \& Winkler, M. E. (2013). Requirement of essential Pbp2x and GpsB for septal ring closure in Streptococcus pneumoniae D39. Mol Microbiol, 90(5), 939-955. https://doi.org/10.1111/mmi. 12408
Lanie, J. A., Ng, W. L., Kazmierczak, K. M., Andrzejewski, T. M., Davidsen, T. M., Wayne, K. J., Tettelin, H., Glass, J. I., \& Winkler, M. E. (2007). Genome sequence of Avery's virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol, 189(1), 38-51. https://doi.org/10.1128/jb.01148-06
Lara, B., Rico, A. I., Petruzzelli, S., Santona, A., Dumas, J., Biton, J., Vicente, M., Mingorance, J., \& Massidda, O. (2005). Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol Microbiol, 55(3), 699-711. https://doi.org/10.1111/j.13652958.2004.04432.x

Letunic, I., Doerks, T., \& Bork, P. (2015). SMART: recent updates, new developments and status in 2015. Nucleic Acids Res, 43(Database issue), D257-260. https://doi.org/10.1093/nar/gku949

Mao, F., Dam, P., Chou, J., Olman, V., \& Xu, Y. (2009). DOOR: a database for prokaryotic operons. Nucleic Acids Res, 37(Database issue), D459-463. https://doi.org/10.1093/nar/gkn757
Mao, X., Ma, Q., Zhou, C., Chen, X., Zhang, H., Yang, J., Mao, F., Lai, W., \& Xu, Y. (2014). DOOR 2.0: presenting operons and their functions through dynamic and integrated views. Nucleic Acids Res, 42(Database issue), D654-659. https://doi.org/10.1093/nar/gkt1048
Martin, B., Granadel, C., Campo, N., Henard, V., Prudhomme, M., \& Claverys, J. P. (2010). Expression and maintenance of ComD-ComE, the two-component signal-transduction system that controls competence of Streptococcus pneumoniae. Mol Microbiol, 75(6), 1513-1528. https://doi.org/10.1111/j.1365-2958.2010.07071.x
Mura, A., Fadda, D., Perez, A. J., Danforth, M. L., Musu, D., Rico, A. I., Krupka, M., Denapaite, D., Tsui, H. T., Winkler, M. E., Branny, P., Vicente, M., Margolin, W., \& Massidda, O. (2016). Roles of the essential protein FtsA in cell growth and division in Streptococcus pneumoniae. J Bacteriol. https://doi.org/10.1128/jb.00608-16
Pazos, M., Natale, P., Margolin, W., \& Vicente, M. (2013). Interactions among the early Escherichia coli divisome proteins revealed by bimolecular fluorescence complementation. Environ Microbiol, 15(12), 3282-3291. https://doi.org/10.1111/1462-2920.12225
Perez, A. J., Boersma, M. J., Bruce, K. E., Lamanna, M. M., Shaw, S. L., Tsui, H. T., Taguchi, A., Carlson, E. E., VanNieuwenhze, M. S., \& Winkler, M. E. (2021). Organization of peptidoglycan synthesis in nodes and separate rings at different stages of cell division of Streptococcus pneumoniae. Mol Microbiol, 115(6),1152-1169. https://doi: 10.1111/mmi.14659
Perez, A. J., Cesbron, Y., Shaw, S. L., Bazan Villicana, J., Tsui, H. T., Boersma, M. J., Ye, Z. A., Tovpeko, Y., Dekker, C., Holden, S., \& Winkler, M. E. (2019). Movement dynamics of divisome proteins and PBP2x:FtsW in cells of Streptococcus pneumoniae. Proc Natl Acad Sci U S A, 116(8), 3211-3220. https://doi.org/10.1073/pnas. 1816018116
Ponting, C. P., Schultz, J., Milpetz, F., \& Bork, P. (1999). SMART: identification and annotation of domains from signalling and extracellular protein sequences. Nucleic Acids Res, 27(1), 229232.

Ramos-Montañez, S., Kazmierczak, K. M., Hentchel, K. L., \& Winkler, M. E. (2010). Instability of ackA (acetate kinase) mutations and their effects on acetyl phosphate and ATP amounts in

Streptococcus pneumoniae D39. J Bacteriol, 192(24), 6390-6400. https://doi.org/10.1128/JB.00995-10
Rued, B. E., Zheng, J. J., Mura, A., Tsui, H. T., Boersma, M. J., Mazny, J. L., Corona, F., Perez, A. J., Fadda, D., Doubravova, L., Buriankova, K., Branny, P., Massidda, O., \& Winkler, M. E. (2017). Suppression and Synthetic-Lethal Genetic Relationships of $\Delta g p s B$ Mutations Indicate That GpsB Mediates Protein Phosphorylation and Penicillin-Binding Protein Interactions in Streptococcus pneumoniae D39. Mol Microbiol. https://doi.org/10.1111/mmi. 13613
Richards, V. P., Palmer, S. R., Pavinski Bitar, P. D., Qin, X., Weinstock, G. M., Highlander, S. K., Town, C. D., Burne, R. A., \& Stanhope, M. J. (2014). Phylogenomics and the dynamic genome evolution of the genus Streptococcus. Gen Biol Evol, 6(4), 741-753.
Sham, L. T., Barendt, S. M., Kopecky, K. E., \& Winkler, M. E. (2011). Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. Proc Natl Acad Sci USA, 108(45), E1061-E1069. https://doi.org/10.1073/pnas. 1108323108
Sham, L. T., Jensen, K. R., Bruce, K. E., \& Winkler, M. E. (2013). Involvement of FtsE ATPase and FtsX extracellular loops 1 and 2 in FtsEX-PcsB complex function in cell division of Streptococcus pneumoniae D39. mBio, 4(4). https://doi.org/10.1128/mBio.00431-13
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., \& Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol, 7, 539.

Schultz, J., Milpetz, F., Bork, P., \& Ponting, C. P. (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A, 95(11), 58575864.

Tsui, H. C., Boersma, M. J., Vella, S. A., Kocaoglu, O., Kuru, E., Peceny, J. K., Carlson, E. E., VanNieuwenhze, M. S., Brun, Y. V., Shaw, S. L., \& Winkler, M. E. (2014). Pbp2x localizes separately from Pbp 2 b and other peptidoglycan synthesis proteins during later stages of cell division of Streptococcus pneumoniae D39. Mol Microbiol, 94(1), 21-40. https://doi.org/10.1111/mmi. 12745
Tsui, H. C., Keen, S. K., Sham, L. T., Wayne, K. J., \& Winkler, M. E. (2011). Dynamic distribution of the SecA and SecY translocase subunits and septal localization of the HtrA surface chaperone/protease during Streptococcus pneumoniae D39 cell division. mBio, 2(5), e0020211.

Tsui, H. C., Mukherjee, D., Ray, V. A., Sham, L. T., Feig, A. L., \& Winkler, M. E. (2010). Identification and characterization of noncoding small RNAs in Streptococcus pneumoniae serotype 2 strain D39. J Bacteriol, 192(1), 264-279. https://doi.org/10.1128/jb.01204-09
Tsui, H. T., Zheng, J. J., Magallon, A. N., Ryan, J. D., Yunck, R., Rued, B. E., Bernhardt, T. G., \& Winkler, M. E. (2016). Suppression of a Deletion Mutation in the Gene Encoding Essential PBP2b Reveals a New Lytic Transglycosylase Involved in Peripheral Peptidoglycan Synthesis in Streptococcus pneumoniae D39. Mol Microbiol. https://doi.org/10.1111/mmi. 13366
van Raaphorst, R., Kjos, M., \& Veening, J. W. (2017). Chromosome segregation drives division site selection in Streptococcus pneumoniae. Proc Natl Acad Sci U S A, 114(29), E5959-E5968. https://doi.org/10.1073/pnas. 1620608114
Wayne, K. J., Li, S., Kazmierczak, K. M., Tsui, H. C., \& Winkler, M. E. (2012). Involvement of WalK (VicK) phosphatase activity in setting WalR (VicR) response regulator phosphorylation level and limiting cross-talk in Streptococcus pneumoniae D39 cells. Mol Microbiol, 86(3), 645-660. https://doi.org/10.1111/mmi. 12006

Wayne, K. J., Sham, L. T., Tsui, H. C., Gutu, A. D., Barendt, S. M., Keen, S. K., \& Winkler, M. E. (2010). Localization and cellular amounts of the WalRKJ (VicRKX) two-component regulatory system proteins in serotype 2 Streptococcus pneumoniae. J Bacteriol, 192(17), 4388-4394. https://doi.org/10.1128/jb.00578-10
Zheng, J. J., Sinha, D., Wayne, K. J., \& Winkler, M. E. (2016). Physiological Roles of the Dual Phosphate Transporter Systems in Low and High Phosphate Conditions and in Capsule Maintenance of Streptococcus pneumoniae D39. Front Cell Infect Microbiol, 6, 63. https://doi.org/10.3389/fcimb.2016.00063
4. SUPPLEMENTARY FIGURES AND LEGENDS

O PG hydrolytic remodeling enzymes

Supplementary Figure 1

Supplementary Figure 1. Schematic summary of cell division and peptidoglycan (PG) synthesis in S. pneumoniae (Spn) and genetic arrangement, protein topology, and 3D-overlayed structure with $\operatorname{EzrA}(B s u)$ for $\operatorname{EzrA}(S p n)$ (A) Schematic drawing of the cell cycle of S. pneumoniae focusing on PG synthesis and FtsZ-ring localization throughout a cell cycle. (B) Schematic diagram of genes surrounding ezrA in the S. pneumoniae D39 chromosome. The genes encode the following proteins: spd_0708 (uncharacterized putative protein); spd_0709, gyrB (DNA gyrase subunit-B); spd_0710 (ezrA), and spd_0711 (uncharacterized putative protein IS30 element). Genes of same color are predicted to be in the same operon using DOOR analysis (Dam et al., 2007; Mao et al., 2009; Mao et al., 2014). Genetic arrangement of spd_0708-0710, but not necessarily the predicted operons, are conserved in all streptococci species tested (S. pyogenes M1 GAS, S. thermophilus LMG 18311, S. parasanguinis FW213). (C) 2D-analysis of $\operatorname{EzrA}(S p n)$ protein secondary structure using SMART tool (Letunic et al., 2015; Ponting et al., 1999; Schultz et al., 1998). $\operatorname{EzrA}(S p n)$ is predicted to have 4 coiled-coiled regions as well as the designated QNR motif at the C-terminus. (D) EzrA(Spn) 3D-structure lacking the first 29 (transmembrane) residues was predicted using phyre ${ }^{2}$ software then threaded onto the known crystal structure of $\operatorname{EzrA}(B s u)$ (Cleverley et al., 2014). $\operatorname{EzrA}(B s u)$ is predicted to have 5 spectrin repeats, whose location is surrounding the red numbers (Spectrin repeats 1-5). The essential QNR motif (amino acids 510-516) is shown at the top right corner in orange, then rotated 180° in the box to the left. (E) Model for the intracellular organization of EzrA dimers in B. subtilis.

$\Delta \operatorname{mapZ}$ (IU9723)

B I. IU9713; mapZ ${ }^{+}$

Stage $1 / n=67 \quad 2 / n=49 \quad 3 / n=6$

II. IU9723; $\Delta m a p Z$

Stage $1 / n=122 \quad 2 / n=49 \quad 3 / n=48 \quad 4 / n=24$

C

Supplementary Figure 2. Co-localization of FtsZ- and EzrA-rings in wild-type or $\Delta m a p Z S p n$ mutants. (A) 2D Representative phase and fluorescence images of strain IU9713 (ftsZ-Myc ezrA-HA) and IU9723 (Δ mapZ ftsZ-Myc ezrA-HA) grown in BHI to mid exponential phase $\left(\mathrm{OD}_{620} \approx 0.1-0.2\right)$ prepared for IFM as described in Materials and Methods. Data were obtained from two independent biological replicates. (B) Averaged images with fluorescence intensity traces showing FtsZ and EzrA localization in wild-type or $\Delta m a p Z$ cells. Cells were binned into division stages 1-4, and images from the indicated number of cells (n) from at least two independent biological replicates were averaged using IMA-GUI program as described in Materials and Methods. For stage 1-4 cells, the Z- and EzrA-band were placed so that the shorter distance to the pole was on the right half of the chart, resulting in fluorescence intensity distributions being biased toward one cell half. Row 1 , cell shapes determined from phasecontrast images; row 2, nucleoid locations from DAPI labeling; row 3, EzrA locations from IFM; row 4, FtsZ locations from IFM; row 5, normalized mean fluorescence intensity distributions along the horizontal cell axis for each channel (black, phase image; blue, DNA; green, EzrA; red, FtsZ). Data were obtained from two independent biological replicates. (C) Scatter plot of the paired widths from the same cells of FtsZ and EzrA fluorescent immunolabeled regions at the actively dividing septa of strain IU7223 at division stages 1-3. Width measurements and plotting were done using IMA-GUI program (see Materials and Methods). Statistical analysis was performed as described previously (Tsui et al., 2014) where ** and ${ }^{* * *}$ indicate $\mathrm{P}<0.01$ and $\mathrm{P}<0.001$ respectively. Septal widths of stage 4 cells were not analyzed, because FtsZ or EzrA may have been missing from old sites of septation.

Supplementary Figure 3. Representative 3D-SIM IFM and DAPI images obtained of Spn strain IU7223 (FtsZ-Myc EzrA-HA) at different division stages. DNA (DAPI stained image) is false-colored white or blue in columns 1 or 5 , respectively. FtsZ and EzrA are pseudo-colored as red and green, respectively. The first row of each panel represents images captured in the XY plane, while second row images were obtained by rotating a section of the cell around the X or Y axis. Individual rotated daughter and/or septal rings are indicated by the corresponding arrows of the non-rotated cells.

FtsZ-Myc EzrA-HA $\Delta m a p Z$

Early Division

Supplementary Figure 4. Representative 3D-SIM IFM and DAPI images obtained from Spn strain IU9723 (Δ mapZ FtsZ-Myc EzrA-HA) in early or late divisional cells (panels on left or right, specifically). DNA (DAPI stained image) is false-colored white or blue in columns 1 or 5, respectively. FtsZ and EzrA are pseudo-colored as red and green, respectively. The first row of each panel represents images captured in the XY plane, while second row images were obtained by rotating the cell around the X or Y axis.

FtsZ-sfGFP EzrA-HT

GFP-FtsA
EzrA-HT

Supplementary Figure 5. Dual-TIRFm showing kymographs of nascent or early equatorial ring planes from time lapse experiments performed to show FtsZ with EzrA or FtsA with EzrA dynamics in Spn. Experiments were performed with strains IU15768 or IU15699 (See Supplementary Table 1 for complete genotypes). Kymographs were obtained from 180 frames, acquired at 1 frame/s intervals. Both strains were labeled with 500 nM HT-JF549 to label EzrA-HT. Scale bar is shown as the horizontal yellow bar ($3^{\text {rd }}$ set of kymographs from the left) and indicates $1 \mu \mathrm{~m}$ in size. Magenta drawn lines going vertical are regions where EzrA is present with a lack of FtsZ or FtsA observed.

Kymographs are representative of 2 biological experiments in which greater than 5 nascent or 5 equatorial ring planes were analyzed.
A.

2D-EFm: EzrA-L-sfGFP FDAA (5 min pulse)

B.

Band widths at midcell

C. 3D-SIM EzrA-L-sfGFP FDAA pulse

Stage 1 (vertical)

Stage 2 (vertical)

Supplementary Figure 6. Organization of EzrA and PG synthesis during the cell cycle of Spn. Pneumococcal strain expressing EzrA-sfGFP as the only source of EzrA in the cell (IU10254; ezrA-sfgfp) were grown exponentially and pulse-labeled with TADA for 5 min and as described in Materials and Methods. For 3D-data, a total of between 5-10 cells per stage were analyzed. EzrA is green while FDAA labeling (TADA) is pseudo-colored red. (A) 2D-analysis of EzrA-sfGFP and FDAA labeling using IMA-GUI program as described in Materials and Methods and previously (Tsui et al., 2014). (B) Width measurement of EzrA-sfGFP rings and FDAA-rings from cells in 2D-fields. Measurements and plotting occurred as described previously (Tsui et al., 2014) (C) 3D-SIM representative images of EzrA-sfGFP rings and FDAA labeling of vertically-oriented cells.

Supplementary Figure 7. Depletion of EzrA is different ways shows EzrA is essential for Spn cell growth. Pneumococcal cells were depleted of EzrA (IU8799; $\Delta e z r A / / b g a A:: \mathrm{P}_{\mathrm{Zn}}$-ezrA ${ }^{+}$) and compared to IU1945 $\left(e z r A^{+}\right)$. Shown are representative experiments from two or more biological replicates. (A) Growth curves showing induction using different amounts of $\mathrm{ZnCl}_{2} / \mathrm{MnSO}_{4}$ increases growth rate and final cell density yield. (B) Growth curves showing EzrA is required for wild-type like cell growth and final cell density in BHI broth by changing the cell density at the initiation of depletion. (C) Depletion of EzrA-FLAG ${ }^{3}$ in IU9572 occurs similarly to depletion of EzrA ${ }^{+}$in IU8799.

Pre-divisional cells

Supplementary Figure 8. EzrA($S p n$) depletion results in shape and size aberrances. Box-andwhiskers plots (whiskers, 5 and 95 percentile) showing quantification of lengths, widths, aspect ratio (Length/Width), and relative volumes (W ${ }^{2} \mathrm{x}$ L) of EzrA depletion strain (IU8799; $\Delta e z r A / / b g a A:: \mathrm{P}_{\mathrm{Zn}}$-ezr A^{+}) compared to that of wild-type (IU1945; ezr A^{+}). Length was defined as the longer side of stage 1 cells or half of the longest axis of stage 4 cells such that the measurement is that of the daughter-cell, individually. The Width was defined as the shorter axis of stage 1 cells or at equatorial-parallel planes of stage 4 daughter cells. Volumes are relative to the median volume of wild-type cells (IU1945). The red dotted line in "Aspect ratio" and "Relative volume" indicated the median of wild-type cells. P values were obtained by one-way ANOVA analysis between WT and other samples (GraphPad Prism, nonparametric Kruskal-Wallis test). ($\mathrm{P}<0.05$ indicated by ${ }^{*}, \mathrm{P}<0.001$ indicated by ${ }^{* * *}$). P values are for comparison against IU1945 (ezrA $\left.{ }^{+}\right)$.

A

 TM
 (aa 5-26)

EzrA(Spn)

s. pneumoniae

QNR motif

C
bgaA: $: \mathrm{P}_{\mathrm{Zn}^{-}}-\mathrm{ezrA}{ }^{+}$
ezrA-L- ezrA ${ }^{\text {QND_ }}$ ezrA ${ }^{\triangle Q N R}$ _ ezrA ${ }^{\Delta T M}$-LezrA $^{+} \quad$ sfgfp \quad L-sfgfp \quad L-sfgfp $\frac{\text { sfgfp }}{}$

D
bgaA: $: \mathrm{P}_{\mathrm{Zn}}-e z r A^{+}$
$+0.5 \mathrm{mM} \mathrm{Zn}, 3.5 \mathrm{~h} \quad-\mathrm{Zn} 4 \mathrm{~h}$

Supplementary Figure 9. The transmembrane domain and QNR motif of $\operatorname{EzrA}(S p n)$ are required for protein function and midcell localization. (A) 2Dstructure of EzrA showing the amino acids composing the transmembrane (TM) domain and the QNR motif and schematic showing different effects of EzrA domain mutants as reported in (Haeusser et al., 2007; Land et al., 2014). In S. pneumoniae, deletion of the QNR motif or TM domain is lethal. (B) Depletion of ectopic EzrA ${ }^{+}$in $\triangle e z r A$, ezr $A \Delta \mathrm{QNR}$, or ezr $A \Delta \mathrm{TM}$ mutant backgrounds. Strains used IU1945, IU8799, IU10909, IU11123. (C) Western blots detecting EzrA-sfGFP variants (using anti-GFP) or MreC loading control (using anti-MreC) as described in Materials and Methods. $3 \mu \mathrm{~g}$ of cell lysate was loaded per lane. (D) Localization of EzrA-sfGFP variants in cells grown in the presence of $\mathrm{Zn}\left(0.5 \mathrm{mM} \mathrm{ZnCl}{ }_{2}\right.$ and $0.05 \mathrm{mM} \mathrm{MnSO} 4)$ or depleted of $\mathrm{Zn}(-\mathrm{Zn})$. Cells were imaged at $\mathrm{T}=4 \mathrm{~h}$. The strains used are indicated in the figure. The fluorescence intensity of $\operatorname{EzrA}(\Delta T M)$-sfGFP was enhanced 2 X to show localization of this protein as it demonstrated less fluorescence intensity in comparison to all other fusions shown here.

Supplementary Figure 10. Chromosome segregation defects upon EzrA(Spn) depletion. Exponentially growing cells (IU1945 or IU8799) were fixed and stained with DAPI as described in Materials and Methods. Pre-divisional or post-divisional cells were identified based on phase contrast microscopy then overlaid with DAPI and scored as nucleate (containing DAPI staining) or anucleate (lacking DAPI staining). Arrows point to anucleate cells.

Supplementary Figure 11. Depletion of EzrA(Spn) in a strain expressing FtsZ-
GFP. Growth and FtsZ-GFP localization was compared in IU8845 (FtsZ-GFP parent) or IU8908 (FtsZ-GFP in EzrA depletion background), in cells grown in BHI broth at $37^{\circ} \mathrm{C}$, see Supplementary Table 1 for full genotypes. (A) Growth curve (B) Quantitation of FtsZ-ring or aberrances in pre-divisional cells. (C) Representative images of WT or EzrA depleted cells expressing FtsZ-GFP. Experiment was performed twice with similar results.

$$
\mathrm{t}=2 \mathrm{hr}
$$

B

IU8799; $\Delta e z r A / / P_{\mathrm{Zn}^{-}}-$IrA $^{+}$

Supplementary Figure 12

Supplementary Figure 12. 2D-EFm of FDAA labeled EzrA-depleted (Spn) cells shows aberrant or absence of FDAA-rings in equators of future dividing cells. (A) Schematic of FDAA labeling procedure. IU8799 ($\triangle e z r A / / b g a A:: \mathrm{P}_{\mathrm{Zn}^{-}}-e z r A^{+}$) was grown exponentially, and depleted of EzrA by shifting cells to BHI broth lacking ZnCl_{2} and MnSO_{4} as described in Materials and Methods. Pre-labeling with FDAA HADA (pseudo-colored blue), pulse labeling with FDAA TADA (pseudo-colored red), fixation, and imaging were performed as described in Materials and Methods with the indicated procedures at different time points. (B) EzrA depletion showing 2D representative images of FDAA labeling in EzrA depleted strain (at 1 h) with 5 minute short pulse labeling time. (C) EzrA depletion showing 2D representative images of FDAA-labeled EzrA-complemented or -depleted cells (at 2 or 3 h) with respective short pulse labeling time indicated by values in the fifth row. Long pulse is pseudo colored green to shown better contrast. Scale bars are $1 \mu \mathrm{~m}$.

C $\Delta e z r A / / P_{\mathrm{Zn}_{n}}-$ ezrA ${ }^{+}(-\mathrm{Zn} 3 \mathrm{~h} ; \mathrm{n}=40$ cells $)$

Supplementary Figure 13. Representative 3D-SIM images of FDAA pulse-chase labeled Spn cells show EzrA depletion in strain IU8799 (Δ ezrA//bgaA $:: \mathrm{P}_{\mathrm{Zn}}$-ezrA ${ }^{+}$) leads to major aberrances in new FDAA insertion locations. EzrA depleted cells were obtained at appropriate time points and chase labeled with TADA as indicated in Supplementary Figure 12A and in Materials and Methods. Red indicates new chase-labeling while cyan indicates pulse cell wall labeling as described in Materials and Methods. At least 30 cell were analyzed in each case (A)

Complemented EzrA strain shows normal midcell FDAA labeling and FDAA-ring labeling at equators of future dividing daughter cells (bottom rows rotated 45° around the Y -axis). (B) EzrA depletion at 2 h . Top, FDAA-rings are placed at cell pole (left daughter cell) or at midcell (right daughter cell) (bottom row rotated 45° around the Y-axis). Bottom, FDAA labeling displays aberrant ring-like structures (left cell) or dispersed pattern (right cell) (bottom row rotated 90° around the X -axis) (C) EzrA depletion at 3 h . Top, foci of new-red and old-blue labeling (bottom row rotated 90 around the Y -axis). Bottom, FDAA-rings are placed in perpendicular planes of adjacent cells (bottom row rotated 90° around the X -axis).
ftsZ-sfgfp ezrA ${ }^{+}$

ftsZ-sfgfp ezrA ${ }^{+} / / \mathrm{P}_{\mathrm{Zn}^{-}}$-ezrA ${ }^{+}$

no

Supplementary Figure 14. Overexpression of EzrA leads to extra Z-rings in S. pneumoniae. FtsZ-sfGFP was localized in IU9985 (ftsZ-sfgfp ezr A^{+}) or ezrA merodiploid strain IU14224 (ftsZ-sfgfp ezrA ${ }^{+} / / \mathrm{P}_{\mathrm{Zn}}$ eezr $^{+}$) cultured in $\mathrm{C}+\mathrm{Y}(\mathrm{pH} 6.9-7.1)$ media in a 5\% CO_{2} incubator at $37^{\circ} \mathrm{C}$. Cells were grown from $\mathrm{OD}_{620} \approx 0.003$ without supplemented ZnCl_{2} (no Zn) or supplemented with $\mathrm{ZnCl}_{2}\left(0.5 \mathrm{mM} \mathrm{ZnCl}{ }_{2} \text { or } 0.25 \mathrm{mM} \mathrm{ZnCl}\right)_{2}$) and MnSO_{4} (see Materials and Methods) for 4 hours prior to imaging. Images are representative of two independent biological replicates. Arrows point to cells with extra Z-rings.

B

Supplementary Figure 15. Bactericidal effect of FtsZ(Spn) depletion and enlarged spherical cell morphology due to FtsZ-depletion. (A) Growth curve in BHI broth and corresponding quantification of $\mathrm{CFU} / \mathrm{mL}$ of FtsZ complemented or depleted cultures. Samples were obtained at $\mathrm{T}=0,1,2,3,4$, and 7 h from the WT (black line), FtsZ complemented (filled lines) or FtsZ depleted cultures (dotted lines) serially diluted where appropriate, and $5 \mu \mathrm{~L}$ of serial dilutions were spotted on blood-agar plates supplemented with $0.3 \mathrm{mM} \mathrm{ZnCl}_{2}$ and $0.03 \mathrm{mM} \mathrm{MnSO}_{4}$, and analyzed for CFU. Strains used were IU1945 (black circles), E43 ($\Delta l y t A$ control; black diamonds), IU8124 (blue circles), and IU8810 (pink diamonds). Experiment was performed twice with similar results. (B) Box-and-whiskers plots (whiskers, 5 and 95 percentile) of cell lengths, widths, aspect ratio (Length/Width), and relative volumes ($\mathrm{W}^{2} \times \mathrm{L}$) of FtsZ depletion strain (IU8124; $\Delta f t s Z / / \mathrm{P}_{\mathrm{Zn}^{\prime}}-f t s Z^{+}$) compared to that of wild-type (IU1945; $f t s Z^{+}$). Volumes are relative to the median volume of wild-type cells (IU1945). P values were obtained by one-way ANOVA analysis (GraphPad Prism, nonparametric Kruskal-Wallis test). ($\mathrm{P}<0.05$ indicated by *, $\mathrm{P}<0.001$ indicated by ${ }^{* * *}$). P values are for comparison against IU1945 (ftsZ ${ }^{+}$).

Supplementary Figure 16. Localization of EzrA and FtsZ in FtsZ-depleted Spn cells shown by IFM. Strain IU7223 (ftsZ-Myc ezrA-HA) and IU8237 (ezrA-HA $\Delta f t s Z / / \mathrm{P}_{\text {Zn }}$-ftsZ-Myc) grown in BHI to mid exponential phase $\left(\mathrm{OD}_{620} \approx 0.1-0.2\right)$ and depleted of FtsZ-Myc where appropriate as described in Materials and Methods. Samples were processed for IFM with DAPI labeling of DNA as described in Materials and Methods. Texas red channel was manually increased to show FtsZMyc localization during FtsZ-Myc depletion at 1 and 2 h . Dotted boxes are indicative of additional cells that were added to show a greater number of cells in a montage format.

EzrA-HA $\Delta f t s Z / / P_{Z n}-f t s Z-M y c$

$+\mathrm{Zn} 2 \mathrm{~h}$

FtsZ

Cell
orientation

No Zn 2 h

DAPI FtsZ

FtsZ

EzrA

Merge

Cell
orientation

Supplementary Figure 17. 3D-SIM IFM shows EzrA becomes diffuse and aberrant when FtsZ(Spn) is depleted. FtsZ depletion strain IU8237 (ezrA-HA $\left.\Delta f t s Z / / b g a A:: \mathrm{P}_{\mathrm{Zn}}-f t s Z-\mathrm{Myc}\right)$, was grown exponentially, and was depleted (or complemented) of FtsZ-Myc by shifting cells to BHI broth not supplemented with additional ZnCl_{2} and MnSO_{4} as described in Materials and Methods. Cells were obtained at indicated time intervals and prepared for IFM as described in Materials and Methods. Experiments were performed twice with similar results. Top panel is representative of strain supplemented with ZnCl_{2}. bottom two panels are FtsZ depleted cells at $\mathrm{T}=2 \mathrm{~h}$. "Cell orientations" are estimated cell outlines based on DAPI staining.

Supplementary Figure 18. Localization of FtsA and FtsZ in FtsZ-depleted $S p n$ cells shown by IFM. Phase-contrast and 2D IFM images of representative fields of IU10304 (FLAG-

FtsA_FtsZ-Myc) and IU11356 (FLAG-ftsA $\Delta f t s Z / / \mathrm{P}_{\text {Zn }} f t s Z-\mathrm{Myc}$) cells grown in the presence of $\mathrm{Zn}(+\mathrm{Zn} ; 0.3 \mathrm{mM} \mathrm{ZnCl} 2+0.03 \mathrm{mM} \mathrm{MnSO} 4)$) or depleted of ZnCl_{2} for the indicated amount of time (at $\mathrm{T}=1$ or $\mathrm{T}=2 \mathrm{~h}$). Data were representative of two independent biological replicates.

Supplementary Figure 19. FtsZ(Spn) is required for recruitment of FDAA labeling to equators of future dividing daughter cells. FDAA labeling in FtsZ complimented at 2 h or depleted strains (at 1, 2, or 3 h). FtsZ depletions and processing by cell fixation for microscopy occurred as described in Materials and Methods. (A) Schematic of labeling procedure during FtsZ depletion. IU8124 ($\Delta f t s Z / / b g a A:: \mathrm{P}_{\mathrm{Zn}}-f t s Z^{+}$) was grown exponentially, and depleted of FtsZ by shifting cells to BHI broth lacking ZnCl_{2} and MnSO_{4} as described in Materials and Methods. Pre-labeling with FDAA HADA (pseudo-colored blue), pulse labeling with FDAA TADA (pseudo-colored red), fixation, and 3D-SIM were performed as described in Materials and Methods as indicated in the scheme. (B) Quantification of FDAA-ring structures in FtsZ-depleted pre-divisional or post-divisional cells which were processed for FDAA labeling. Cells were classified as containing FDAA-ring or FDAA diffuse. 40 cells were sorted per biological replicate. Error bars are the SEM from two independent biological replicates. (C) Representative 3D-SIM images of FDAA labeled cells described in (B).
Each panel represents a different field of cells. Arrow points to old sites of division of stage 4 cells. More than 20 cells were analyzed via 3D-SIM per condition.

Supplementary Figure 20. 2D representative images of FDAA labeled FtsZ-depleted Spn cells. IU8124 ($\Delta f t s Z / / b g a A:: \mathrm{P}_{\mathrm{Zn}}-f t s Z^{+}$) was grown exponentially in BHI broth in the presence of $0.3 \mathrm{mM} \mathrm{ZnCl} / 2.03 \mathrm{mM} \mathrm{MnSO}_{4}$, and was depleted of FtsZ by shifting cells to BHI broth with FDAA-HADA lacking ZnCl_{2} and MnSO_{4} for the indicated amount of time as described in Supplementary Figure 19A. The respective short pulse labeling (FDAATADA) times are indicated by values in the third row. Long pulse (FDAA-HADA) is pseudo colored green to shown better contrast. Arrows point to sites of PG syntheses between daughter cells that failed to properly localize to equatorial rings. More than 100 cells were analyzed for each condition (column).

*MpgA was formerly MItG(Spn)

Supplementary Figure 21. $\operatorname{EzrA}(S p n)$ interacts with different cell elongation and division proteins and with itself by B2H assays. EzrA interacts with FtsZ, FtsA, SepF, MapZ, StkP, GpsB, MacP, aPBP1a, aPBP2a, RodA, MreC, MreD, RodZ, MpgA (formerly MltG(Spn), DivIVA, FtsQ, FtsL, and FtsK, but apparent interactions were not detected between EzrA and FtsB, ZapA, or ZapJ. Weaker signals of interactions are detected between EzrA and bPBP2x, FtsW and bPBP2b. EzrA self-interactions are also shown. T25 or T18 fusions are expressed from lowor high-copy plasmids, respectively. Plasmid pairs pKNT25/pUT18 and pKT25-zip/pUT18C-zip were used as negative (-ve) and positive (+ve) controls. B2H assays were performed as described in the Material and Methods. The agar plates were photographed after 40 h at $30^{\circ} \mathrm{C}$. B2H assays were performed at least twice with similar results.

B. Immunostaining using anti-FtsA or anti-FtsZ

C. Immunostaining using anti-HA

Supplementary Figure 22. Co-IP western blot membranes immunostained for bPBP2B-HA, EzrA-HA, aPBP2a-HA ${ }^{4}$, FtsZ, FtsA (prey proteins) and bPBP2xFLAG 3, EzrA-FLAG 3 (bait proteins) show a lack of association between three PBPs (bPBP2x, bPBP2b, aPBP2a) and FtsZ, FtsA, or EzrA. (A) Immunostaining using anti-FLAG to show the presence of EzrA-FLAG ${ }^{3}$ and ${ }^{\text {bPBP2x-FLAG }}{ }^{3}$. (B) Immunostaining using anti-FtsZ show relatively equal amount of FtsZ in the input fractions, while FtsZ and FtsA are eluted in the presence of EzrA-FLAG ${ }^{3}$ but not bPBP2x-FLAG ${ }^{3}$. (C) Immunostaining using anti-HA show lack of association detected between EzrA with bPBP2b, bPBP2x with EzrA, and EzrA with aPBP2a. See Table 2 and Table 3 for quantitation and strain numbers.
A. Co-IP using anti-FLAG (control) Immunostaining with anti-FLAG EzrA-HA

Samples in (A) and (B) contain EzrA-HA as prey
C. Immunostaining using anti-FtsA
D. Immunostaining using anti-FtsZ

Supplementary Figure 23. Co-IP western blot membranes immunostained for EzrA-HA, FtsZ, FtsA (prey proteins) and aPBP1a-FLAG ${ }^{3}$, SepF-FLAG, and StkP-FLAG (bait proteins) show complex associations. (A) Immunostaining using anti-FLAG to show the presence of aPBP1a-FLAG ${ }^{3}$. (B) Immunostaining using anti-HA show relatively equal amount of EzrA-HA in the input fractions, while EzrA-HA is eluted in the presence aPBP1a-FLAG ${ }^{3}$. (C) Immunostaining using anti-FtsA show relatively equal amount of FtsA in the input fractions, while FtsA is eluted in the presence SepF-FLAG and StkPFLAG^{2}, (D) Immunostaining using anti-FtsZ show relatively equal amount of FtsZ in the input fractions, while a lack of FtsZ pulled down in any eluted fraction. See Table 2 and Table 3 for quantitation and strain numbers.
A. Immunostaining with anti-Myc All strains express FtsZ-Myc

B.

Probed with antiFLAG to show presence of FLAG tagged bait proteins

Supplementary Figure 24

Supplementary Figure 24. Co-IP western blot membranes immunostained for FtsZ-Myc, FtsZ, FtsA and EzrA-HA (prey proteins) and StkP-FLAG², bPBP2xFLAG 2, aPBP1a-FLAG ${ }^{3}$ SepF-FLAG, and MapZ-FLAG ${ }^{3}$ (bait proteins) show complex associations. (A) Immunostaining using anti-Myc show relatively equal amount of FtsZ-Myc in the input fractions, while FtsZ-Myc is eluted in all fractions with the exception of no bait negative control. (B) (Left membrane) Immunostaining using anti-FLAG show the presence of bait proteins. (Right membrane) Immunostaining using anti-HA show relatively equal amount of EzrAHA in the input fractions, while EzrA-HA is eluted in the presence all proteins although to different extents. Immunostaining with anti-FtsA from eluted fractions shows different amount of FtsA eluted from each fraction. The red boxes are examples of uniform size regions that were chosen to calculate "Mean ratios" in Table 2 and Table 3. See Table 2 and Table 3 for quantitation and strain numbers used in these experiments.

A Eluted co-IP samples

Supplementary Figure 25. Co-Immunoprecipitation experiments reveal ZapA forms complexes with FtsZ, FtsA, and EzrA. Co-IP experiments were performed as described in the Materials and Methods. Data is representative of two independent biological replicates. Predicted molecular weights (MW) of proteins are; ZapA-FLAG (10kDa), FtsZ (45kDa), FtsA (46kDa), and EzrA (65kDa). (A) Blots where EzrA-HA is used as the prey. Lane 1 has non FLAG-tagged ZapA ${ }^{+}$strain as no bait negative control. Lane 2 uses ZapA-FLAG as the bait. Top panel, blot was probed with anti-FtsA primary antibody. Middle panel, blot was probed with anti-FtsZ primary antibody. Bottom panel, blot was probed with anti-HA primary antibody to detect prey EzrA-HA. (B) Blots where ZapA-HA is used as the prey. Lane 1 has untagged FLAG strain as no bait. Lane 2 uses FtsZ-FLAG as the bait. Lane 3 uses EzrA-FLAG ${ }^{3}$ as the bait. Top panel, blot was probed with anti-FtsA primary antibody. Middle panel, blot was probed with anti-FtsZ primary antibody. Bottom panel, blot was probed with anti-HA primary antibody to detect prey ZapA-HA. (C) Western blot results for the inputs for Co-IP experiments demonstrating relatively similar loading of cell lysates. Top panels indicate use of anti-FtsA primary antibody. Bottom panels indicate use of anti-FtsZ primary antibody. (D) Schematic of detected interactions. Direction of arrows indicate the ability of the protein when used as the bait to pulldown the prey protein in a complex (bait \rightarrow prey). For computed mean ratios of proteins detected see Table 3.

A

B

3D-SIM IFM ZapA-L-FLAG FtsZ-Myc

Supplementary Figure 26

Supplementary Figure 26. 3D-Organization of Spn ZapA-, FtsZ-, and EzrA-rings assessed by 2D-ring diameter measurements and 3D-SIM IFM. Strains IU8681 (ftsZ-Myc ezrA-FLAG ${ }^{3}$) and strain IU10752 (ftsZ-Myc zapA-FLAG) were grown to midexponential phase in BHI broth at $37^{\circ} \mathrm{C}$ and processed for dual-protein IFM with DAPI labeling as described in Materials and Methods. (A) Scatter plot of the paired widths from the same cells of FtsZ and EzrA (left plot) or FtsZ and ZapA (right plot) fluorescent immunolabeled regions at the actively dividing septa of strain IU8681 or IU10752 at division stages 1-3 (averaged cells are shown in Figure 10B). Width measurements and plotting were done using IMA-GUI program (see Materials and Methods). Statistical analysis was performed as described previously (Tsui et al., 2014) where ${ }^{* *}$ indicates $\mathrm{P}<0.01$ and ${ }^{* * *}$ indicates $\mathrm{P}<0.001$. Septal widths of stage 4 cells were not analyzed, because FtsZ or EzrA may have been missing from old sites of septation. (B) Representative 3D-SIM IFM and DAPI images obtained of strain IU10752 at different division stages ($\mathrm{n}=5$ per stage). Each panel is a different cell in which FtsZ, ZapA, and DAPI are localized. DNA (DAPI-stained image) is pseudocolored white (i, ii, iv) or blue (ii, v). ZapA and FtsZ are pseudocolored green and red, respectively. The first row of each image represents images captured in the $x y$ plane, while second-row images were obtained by rotating a section of the cell around the x or y axis, to illustrate the z-plane (i) Stage 1 cell showing ZapA and FtsZ-ring septal colocalization. (ii) Stage 2 cell showing ZapA and FtsZ-rings septal colocalization. (iii) Stage 3 cell showing ZapA concentrated at the septum of the cell while sparse at equators of two future dividing daughter cells. FtsZ is both at the septum and at equators of two future dividing daughter cells. Bottom panels are the right daughter cell rotated 90 degrees along the Y -axis. (iv) Late-divisional cells showing that daughter cells contain concentrated FtsZ-rings at equators of future dividing cells but sparse amounts of ZapA. A concentrated dot of ZapA at the former actively dividing septum can be seen whereas FtsZ shows a sparse dot. Bottom panels show bottom daughter cell rotated 90 degrees along Y -axis. Scale bar $=1 \mu \mathrm{~m}$. Arrows indicate equatorial ring plane that was chosen for rotation, shown in the second row of the corresponding cell.

FtsZ-L-sfGFP

Supplementary Figure 27

Supplementary Figure 27. Deletion of zapA(Spn) does not affect FtsZ treadmilling velocity or growth curve when combined with FtsZ-depletion, but $\Delta z a p A$ or $\Delta z a p J$ does show synthetic defects when combined with $\Delta m a p Z$. (A) Histogram displaying FtsZsfGFP treadmilling velocities obtained by TIRFm and kymograph analysis. Black line depicts control strain zapA ${ }^{+}$(IU9985); red line depicts Δ zapA markerless strain (IU14131). Values were obtained from two independent biological replicates. (B) Representative growth curve of FtsZ complemented or depleted cells in zapA ${ }^{+}$or $\Delta z a p A$ backgrounds. Black line indicates growth of WT (IU1945). FtsZ depletion was performed in parent cells (IU8124 $\Delta f t s Z / / \mathrm{P}_{\mathrm{Zn}}$-ftsZ ${ }^{+}$) or Δ zapA mutants IU10843 (Δ zapA $\Delta f t s Z / / \mathrm{P}_{\mathrm{Zn}}-f t s Z^{+}$) with the indicated amount of ZnCl_{2}. Shown are growth curve of WT cells (IU1945) or $\Delta z a p A$ mutants (E743). Experiment was performed twice with similar results. (C) Representative growth curve of Wild-type cells (IU1824), $\Delta m a p Z$
 representative from two or more independent biological replicates.

A

C

D

EzrA depletion $-{ }^{-}+\mathbf{Z n}$ EzrA depletion $-\sim+\mathrm{Zn}$ strain only $\quad-\quad-\mathrm{Zn} \quad$ with Δ zapA $\quad->-\mathrm{Zn}$
EzrA depletion $-\mathbf{Z n}$ EzrA depletion $-\mathrm{m}+\mathrm{Zn}$ with $\Delta \operatorname{mapZ} \quad- \pm \cdot-\mathrm{Zn} \quad$ with Δ sepF $\quad-\Theta \cdot-\mathrm{Zn}-$

Supplementary Figure 28. Late divisome arrival of $\operatorname{SepF}(S p n)$ relative to FtsZ and synthetic defects of Z-ring regulators when combined with EzrA-depletion. (A-C) IFM was performed with IU8596 (SepF-HA FtsZ-Myc) from cells grown in BHI broth. Data are from two independent biological replicates. (A) 2D-cell averages of IU8596. (B) Paired widths of SepF-HA vs FtsZ-Myc as described in (Tsui et al., 2016). (C) Representative 3D-SIM images of IU8596. Arrows indicate corresponding daughter ring that was analysed by rotation. (D) Combined defects in growth curve of EzrA depletion with putative Z-ring regulator mutants, $\Delta z a p A$ and Δ sepF, but not Δ mapZ. Growth curve of EzrA complemented or depleted cells in Z-ring regulator backgrounds. EzrA depletion was performed in parent strain (IU8799 $\Delta e z r A / / b g a A:: \mathrm{P}_{\mathrm{Zn}}-$ ezrA ${ }^{+}$), $\Delta m a p Z$ mutants IU9548 (Δ mapZ $\Delta e z r A / / b g a A:: \mathrm{P}_{\mathrm{Zn}^{-}}$ezrA ${ }^{+}$), $\Delta z a p A$ mutants IU9550 (Δ zapA $\Delta e z r A / / b g a A:: \mathrm{P}_{\mathrm{Zn}}$ ezrA ${ }^{+}$), and Δ sepF mutants IU9552 (Δ sep F $\left.\Delta e z r A / / b g a A:: \mathrm{P}_{\mathrm{Zn}}-e z r A^{+}\right)$from starting $\mathrm{OD}_{620} \approx 0.01$.

IU9550
(EzrA depletion with 4sepF)

IU9548
(EzrA depletion with $\Delta \mathrm{mapZ}$)

IU9552
(EzrA depletion with 4zapA)

Supplementary Figure 29. Live/Dead staining of EzrA-depleted (Spn)cells in different genetic backgrounds. Shown are representative micrographs of cells depleted for EzrA for the indicated amount of time (4 or 8 h) and labeled with live dead staining. Green indicates live cells whereas red indicates dead cells. Cells were labeled as described in Materials and Methods and strain numbers correspond to genotypes listed in Supplementary Table 1.

A

Supplementary Figure 30. Genetic loci of $\operatorname{zap} J(S p n)$ and cellular localization of ZapJ. (A)
Genetic arrangement of spd_1350 in S. pneumoniae D39 chromosome. (B) Representative images of 2D PCm and EFm of strain IU13822 (zapJ-sfgfp) grown in BHI broth at $37^{\circ} \mathrm{C}$. Scale bars are 1 $\mu \mathrm{m}$. (C) Demograph of ZapJ-sfGFP localization. Cells were grown in BHI broth at $37^{\circ} \mathrm{C}(\mathrm{n}=985)$. Data were obtained from two or more independent biological replicates.
5. pneumoniae s.mitis
5. oralis
S. sanguinis
S. cristatus
S. anginosus
s. constellatus s. consteliatu S.bovis s.suis
s. thermophiles S. thermop
s. downei s. criceti S. pyogenes 5. pyoglactiae s. mutans s.ratti s. equinus es
--MKQERFPLVSDDEVMLTEMPVMNLYDESDLISNIKGEYRDKNYLEWAPIAEEKPVK-PIEKQ -MREERFPL

 --MTNTKFPITADDETMLTEMPHMNLYDELDLISNIKGDYQDRNYLEWMPIVDSNRHAPIAASQA---I------RRPLQKQSAFKDFKKPIDKKDPAIRY--AEQAREEARADLKKKRSA --MTNTKFPIIADDEIMLTEMPHMNLYDELDLISNIKGDYQDRNYLEWMPIAKPENPAHATPSQT---V------SKARKKQAPVTDFKKPIDKKDPAIRY--AEQAREEARADLRKKRSA --MKEKSFPLISDDEVMLSEMPRMNLYDESDLISNINGDYVDKNYLEWEPIVKKIADSQVKEGK--AYQATSAIPSDEVAKPAPKSY--AELAREEARADLKKKRSA -MKEKTFPLISDDEIMLSEMPRMNLYDESDLISNINGDYVDKNYLEWEPIVKKIADSQVKEGK MHRQRRQFPL IPDGESCLQEPISMRLYENEDL ITNTRGPYQDKDYNDFFL NHDFL SAKPHKR-------RRPLQKQSAFKDFAP
 MARKNRQFPLVADDESVITAAPQMHLYDNEDL INNIHGDYQDKTFQDQPDNDNSTVTAS-KR_-_,

 MIRHEKRFPLVADDEVLVGENPIMSLYDESDLISNIRGPYOEKEF-SWSTDSORVASAKPVAOTEDELLPPLFEAKPSHYSRKERLOOLTKTKPSPVKTO--GOLAREOAREDLKKKRSA
5. pneumoniae
s.mitis
5. oralis
S. sanguinis
S. cristatus
S. constellatus s.salivarius s . thermophiles s. downei s. criceti 5. pyogenes S. agalactiae 5. mutans S. matti
S. bovis
s. equinus
s.suis
 -QKENPGEFVKYSQKLTQSHYILAEEVHSIPTKNEE-VSAPAPKKNNYDFLKKSQIYNK

 YLRQEAQSTKSTNIRSLAAKPKVENKPSFEATVEAVAVTTDKEPVMTSILGAPVSAIKRTLAPNGKHSKIHHLANRLKQDTYILAEVAPTYQQPSNP-SR-KNVKKNSYDFLKRSQVYNY FISKEAK-IQSK-------TNFQRREKISQSQIMSTPAKPTLFFN---GKTANSSEDLPGNELARFSKNLHQDHYILAELPKVYKEPSNP-SQ-QRVKKNNYDFLKRSQIYNQ FIAKEAK-IQSK---------------TNFQRREKISQSQIMSTPAKPTLFFN---GKTANSSEDLPGNELARFSKNLHQDHYILAELPKVYKEPSNP-SQ-QRVKKNNYDFLKRSQIYNQ FIAKEAK-LPSK----------------VNFQRREAAGT--TTKSANSKPTLFFN---GRMAGADQDLPNNELARFSKNLHQDHYILAELPRVYKEPKNP-ST-KQSQKNSYDFLKRSQIYNQ

 KSKQTE-QERRVAQELNLTRMTE--KNQQKE-QERQVAQELNLTRITE-

Mitis DRAKEEQLKHSKAQELNLTGLDSE-----
GKKREKHNKHKKAQELDITKLSSDAQGQ
KELQSQ-RERRIAQELNLTRLEEK----KELQSQ-RERRIAQELNLTRLEEK----KELQNQ-RERRIAQELNLTRLEEK----TEAREIH-REHRIAQELNLTHLEDAN---TERQIH-REHRIAQELNLTHLEDAN---DEIRQQ-RTHQLAKELNLMVDDE

B

S. agalactiae 2603V/R (GCF_000007265.1)	SAG1616	hypothetical protein	murC NaG1818 Rearet
S. mitis B6 (GCF_000027165.1)	smi_1503	hypothetical protein	
S. mutans UA159 (GCF_000007465.2)	SMU_1732c	hypothetical protein	
S. pneumoniae D39	SPD_RS07100	hypothetical protein	spd1347 spd1348 murC spd1350
S. pneumoniae R6 (GCF_000007045.1)	spr1374	hypothetical protein	
S. pyogenes SF370 (GCF_000006785.2)	SPy_0343	hypothetical protein	
			-

Supplementary Figure 31

Supplementary Figure 31. ZapJ is conserved in Streptococci. (A) Alignment of ZapJ homologs from S. pneumoniae D39 to other bacterial species. S.pneumoniae ZapJ residues (accession number WP_000808215.1) were aligned with corresponding residues of ZapJ homologs from other streptococcal species including S. mitis (YP_003446605.1), S. oralis (WP_000806743.1), S. sanguinis (WP_011837373.1), S. cristatus (WP_005591897.1), S. anginosus (WP_003023604.1), S. constellatus (WP_006268547.1), S. salivarius (WP_101772179.1), S. thermophilus (WP_011225424.1), S. downei (EFQ56587.1), S. cricetti (EFQ56587.1), S. pyogenes (WP_002985931.1), S. agalactiae (WP_001079334.1), S. mutans (WP_002262544.1), S. ratti (WP_003087037.1), S. bovis (WP_003066174.1), S. equinus (WP_004233035.1), S. suis (ABP90687.1), Species are color-coded depending on group type. Streptococcal species were chosen from each of 8 streptococci groups (Richards et al. 2014), one ungrouped streptococcal species (S. suis), and three outgroup species. Alignment was made using Clustal Omega with default parameters (Sievers et al., 2011). Species name is on left, amino acid sequence is in middle, protein length on right. Black bars designate tracts of conserved residues that may be regions of conserved function. Asterisks, identical residues; colons, conserved residues; periods, semi-conserved residues. (B) Screenshot of different zapJ genes (dark purple) encoding ZapJ orthologs in different streptococci species obtained from BioCyc website (Karp et al 2019; https://biocyc.org/). zapJ orthologs were not found in genomes of bacteria other than streptococci. The follow organisms genomes were checked but no orthologue was found: B. subtilis 168, C. glutamicum ATCC 13032, S. aureus NCTC 8325, S. coelicolor A3(2), T. denticola ATCC 35405 (GCF_000008185.1), L. lactis IL1403, E. faecalis OG1RF. murC is annotated as SPD_RS07095 in the Spn D39 genome under BioCyc.

