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We study the phase-synchronization properties of systolic and diastolic arterial pressure in healthy
subjects. We find that delays in the oscillatory components of the time series depend on the
frequency bands that are considered, in particular we find a change of sign in the phase shift going
from the Very Low Frequency band to the High Frequency band. This behavior should reflect a
collective behavior of a system of nonlinear interacting elementary oscillators. We prove that some
models describing such systems, e.g. the Winfree and the Kuramoto models offer a clue to this
phenomenon. For these theoretical models there is a linear relationship between phase shifts and
the difference of natural frequencies of oscillators and a change of sign in the phase shift naturally
emerges.

PACS numbers: 05.10.-a,05.45.-a,87.19.Uv

I. INTRODUCTION

Time series of physiological origin very often display synchronous behavior. Most likely, this is the result of collective
behavior of a huge number of nonlinearly interacting elementary oscillators. Different examples of this phenomenon,
as well as models of it, can be found for example in [1]. In the present paper we address a further example, i.e.
the relation between diastolic (DAP) and systolic (SAP) blood pressure signals in healthy subjects. The analysis
of blood pressure fluctuations may provide significant information on the physiology and pathophysiology of the
autonomic control of the cardiovascular function [2], [3]. The synchronization of these signals is expected, though a
detailed study of its features is apparently still lacking. In a previous paper [4] it was noticed that DAP and SAP are
characterized by a phase lag in the very low frequency band (VLF). The analysis of [4] uses Fourier analysis, which is
not particularly useful when non-stationary effects play a relevant role. In the present work we address two questions
about the DAP/SAP relationship: Is the phase lag depending on the frequency band? Is the phase lag connected to
a causal relation between SAP and DAP? To address these questions, we measured DAP and SAP signal in a number
of healthy subject. Studying the mutual interdependency between the two time series, we conclude that there is not
a causal relationship between DAP and SAP time series, i.e. none of the two is driver for the other. Moreover, a
significant phase delay is found, for healthy subjects, in the VLF band and in the high frequency (HF) band. The
phase shift between DAP and SAP is positive in VLF band and negative in the HF band. This change of sign in the
phase shift has its origin in the regulatory mechanisms of blood circulation. A physiological interpretation of these
mechanisms is beyond the scope of our work; however the hypothesis that synchronization results from the collective
behavior of elementary nonlinear oscillators may offer a clue to its understanding. To exploit this idea we use below
two well known models of coupled oscillators, the Winfree model [5] and the Kuramoto model [6].
Winfree’s paper [5] on coupled oscillators provided one of the first tractable examples of a self-organizing system.

Winfree introduced an approximation that has become the standard approach to the study of ensembles of biological
oscillators: In the weak coupling limit, amplitude variations could be neglected and the oscillators could be described
only by their phases along their limit cycles. Winfree also discovered that systems of oscillators with randomly dis-
tributed frequencies exhibit a remarkable cooperative phenomenon, reminiscent of a thermodynamic phase transition,
as the variance of the frequencies is reduced. The oscillators remain incoherent, each running near its natural fre-
quency, until a certain threshold is crossed. Then the oscillators begin to synchronize spontaneously. Winfree model
was subsequently modified by Kuramoto who provided an analytically solvable version of it [6]. This field of study has
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been very active all along and the analysis of synchronization phenomena remains a thriving area of research, see [7]
for a review. Having in mind our experimental findings on the SAP/DAP relation, we first examine in Section II the
phase shift between coupled oscillators in these models, once synchronization has been reached. We observe that there
exists a simple linear dependence between phase shifts of synchronized oscillators and the difference between their
natural frequencies. This phenomenon, to our knowledge never noticed before, offers a simple mechanism to describe
the change of sign in the phase lag as the frequency band is changed. In Section III we describe the experimental
data and analyze them using the theoretical approach of Section II. Moreover we discuss the problem of the causal
relation between the DAP/SAP time series. Finally in Section IV we draw our conclusions.

II. PHASE SHIFTS OF SYNCHRONIZED OSCILLATORS

A. Winfree model

The Winfree model is defined by the set of equations (i = 1, ...N)

θ̇i(t) = ωi +
1

N

N
∑

j=1

κP (θj)R(θi), (1)

It describes a set of N ≫ 1 coupled non linear oscillators, with coupling constant proportional to κ. θi(t) is the
phase of the i−th oscillator; {ωi} describes a set of natural frequencies taken randomly from a distribution g(ω).
P (θj) is the influence function of the j−th; R(θi) is the sensitivity function giving the response of the i−th oscillator.
We shall assume below : g(ω) = 1/2γ for γ ∈ [ω0 − γ, ω0 + γ], g(ω) = 0 otherwise. In the previous equation
P (θ) = 1 + cos θ, R(θ) = − sin θ. The phase diagram of the Winfree model has been recently discussed [8]. In
particular the long-time behavior of the system is characterized by a synchronous dynamics for κ and γ not very
large. For ω0 = 1 synchronization occurs for κ < 0.77 and γ < h(κ), where the function h(κ) can be found in Fig. 3
of Ref. [8]; in any case γ < 0.2. This means that all the oscillators are characterized by a common average frequency
(or rotation number) ρi = limt→∞ θi(t)/t. The Winfree model can describe different sets of pulse-coupled biological
oscillators, see e.g. [9, 10, 11].
We now wish to study the relation between the phase shift δθ of a pair of oscillators and the difference of their

natural frequencies δω. We have performed numerical simulations with N = 500 oscillators with different values of
κ and γ = 0.10 corresponding to the synchronization phase. We have considered times as large as t = 1, 000. As
expected there is no dependence on the initial conditions. On the contrary δθ is linearly related to δω as shown in Fig.
1, where we plot ρi versus ωi for various values of κ (on the left) and δθ versus δω (on the right). This dependence
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FIG. 1: On the left: the rotation number ρ plotted versus ω for γ = 0.10 and κ = 0.35, 0.45, 0.65 (from top to bottom). On
the right: δθ versus δω for the same values of γ and κ (larger slopes correspond to smaller values of κ).

can be understood as follows. As N → ∞, the sum over all oscillators in (1) can be replaced by an integral, yielding

v(θ, t, ω) = ω − σ(t) sin θ (2)
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where

σ(t) = κ

∫ 2π

0

∫ 1+γ

1−γ

(1 + cos θ) p (θ, t, ω) g(ω)dωdθ . (3)

Here p (θ, t, ω) denotes the density of oscillators with phase θ at time t. We consider the large t behavior to allow for
synchronization; moreover we take a temporal averaging over the common period T to get rid of local fluctuations.
We get

v = ω −
1

T

∫ t+T

t

dt σ(t) sin θ(t) (4)

and consider variations in ω:

0 = δω −
1

T

∫ t+T

t

dt σ(t) δθ(t) cos θ(t) . (5)

Since the oscillators are synchronized δθ(t) is time-independent for t large enough. Therefore

δω =
κδθ

T

∫ t+T

t

dt

∫

dω g(ω)

∫ 2π

0

dθ̂ (1 + cos θ̂) p(θ̂, t, ω) cos θ(t) =

=
κδθ

T

∫ t+T

t

dt cos θ(t) +
κδθ

2T

∫ t+T

t

dt

∫

dω g(ω)

∫ 2π

0

dθ̂ p(θ̂, t, ω) cos[θ̂ + θ(t)]+

+
κδθ

2T

∫ t+T

t

dt

∫

dωg(ω)

∫ 2π

0

dθ̂ p(θ̂, t, ω) cos[θ̂ − θ(t)] . (6)

The first two terms on the r.h.s. of (6) vanish since the integrand functions have zero temporal average. We get
therefore

δω =
κλ

2
δθ, (7)

which is the desired linear relation between δω and δθ. The factor λ is evaluated as follows:

λ =
1

T

∫ t+T

t

dt

∫ 1+γ

1−γ

dωg(ω)

∫ 2π

0

dθ̂ p
(

θ̂, t, ω
)

cos[θ̂ − θ(t)] =

=
1

N

N
∑

j=1

1

T

∫ t+T

t

dt cos[θj(t)− θ(t)] =
1

N

N
∑

j=1

cos[δθj ] =

=
4γ

κλ

∫ +1

−1

dy g̃

(

4γ y

κλ

)

cos

(

4γ y

κλ

)

. (8)

Here g̃(δθ) is probability distribution of δθ. It is related to the probability distribution of δω by (7). Both the δω
and the δθ distribution functions are derived from the ω density g(ω). If this density is flat, as assumed here, then
g̃ = g ⋆ g, i.e.

g̃(δθ) =
κλ

4γ
−

(

κλ

4γ

)2

|δθ| . (9)

In conclusion λ is given by solving the equation

4γ2

κ2
= λ sin2

(

2γ

κλ

)

. (10)

We notice that in (7) there is no dependence on ω0; this dependence is in the first two terms of (6) since they vanish
only in the large N , large t limit.
In Fig. 2 we report the slope δθ/δω as computed by (10), as a function of κ (with γ = 0.1) on the left and as a

function of γ (with κ = 0.45) on the right. This curve is independent of ω0. We also report results of the numerical
analysis for two values of ω0 These data show a small dependence on ω0 [12].
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FIG. 2: The slope
δθ

δω
in the Winfree model. On the left:

δθ

δω
as a function of κ for two values of ω0 and γ = 0.1. On the right:

δθ

δω
as a function of γ for two values of ω0 and κ = 0.45. The curves are independent of ω0.

B. Kuramoto model

The analysis of the Kuramoto model produces comparable results. The Kuramoto model is based on the set of
equations (i = 1, ...N)

θ̇i(t) = ωi +
κ

N

N
∑

j=1

sin(θi − θj) . (11)

The numerical results one gets are similar to those of fig. 1, with a linear dependence of δθ on δω and the rotational
frequency ρi = ω0 (we use the same distribution function g(ω) as before). The latter results follows from the fact
that the phases θi are dynamically pulled toward the the mean phase [7]. These results can be compared with an
analytical treatment by observing that, in this case, instead of (6) one gets

δω =
κδθ

T

∫ t+T

t

dt

∫

dωg(ω)

∫ 2π

0

dθ̂ p(θ̂, t, ω) cos[θ̂ − θ(t)] . (12)

Due to the absence of terms analogous to the first and second terms on the r.h.s. of (6), we expect a better agreement
between numerical simulations and analytical evaluation. From (12) we get, instead of (7):

δω = κλ δθ . (13)

with λ given by

2γ2

κ2
= λ

(

1− cos
2γ

κλ

)

. (14)

These results are reported in fig. 3 together with the results of the numerical simulations.

III. SYSTOLIC/DIASTOLIC ARTERIAL PRESSURE RELATION

A. Phase shifts from arterial pressure data

Let us consider two time series: xS(t) and xD(t), representing systolic and diastolic arterial pressure. Data are
from a population of 47 normal subjects (mean age+/-SD: 54+/-8 years) who underwent a 10 minutes supine resting
recording of ECG and noninvasive arterial blood pressure (by the Finapres device), in the laboratory for the assessment
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FIG. 3: The slope
δθ

δω
in the Kuramoto model. On the left:

δθ

δω
as a function of κ for two values of ω0 and γ = 0.1. On the

right:
δθ

δω
as a function of γ for two values of ω0 and κ = 0.45.

of Autonomic Nervous Sytem, S. Maugeri Foundation, Scientific Institute of Montescano, Italy. For each cardiac cycle,
corresponding values of SAP and DAP were computed and resampled at a frequency of 2 Hz using a cubic spline
interpolation. In Fig. 4 we report the time series of the systolic arterial pressure xS(t) for one of the subjects examined
in this study.
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FIG. 4: The time series xS(t) (on the left) and xD(t) (on the right) of the systolic and diastolic arterial pressures for one of
the subjects examined.

These data are analyzed by filtering in appropriate frequency bands. We consider here three bands: Very Low
Frequency (VLF) band: (0.01, 0.04) Hz; Low Frequency (LF) band: (0.04, 0.15) Hz; High Frequency (HF) band:
(0.15, 0.45) Hz. In a previous paper [4], using Fourier transform methods, occurrence of delays between SAP and
DAP was investigated, and it was found that DAP anticipates SAP in VLF (delay equal to 2.5 sec )and in LF (0.6
secs); no significant delay was found in HF. Here we enlarge the statistical population with respect to [4], and evaluate
the phases of signals by the analytic signal technique, which allows a better estimate. As well known SAP and DAP
are highly synchronized and our data confirm this expectation. We have used the Hilbert transform method that
allows to detect phase synchronization in noisy scalar signals [13]. To extract a phase from the signal one considers
the Hilbert transform of the original time series

y(t) =
1

π
P.V.

∫ +∞

−∞

x(τ)

t− τ
dτ , (15)
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where P.V. denotes Cauchy principal value. Then one forms the analytic signal z(t) = x(t) + iy(t) = A(t)eiφ(t),

where A(t) =
√

x2(t) + y2(t) and φ(t) is the desired phase. To control the possible synchronization of two signals
x1(t), x2(t) the following procedure is applied: the phases φ1(t) and φ2(t) are computed and the so called generalized

phase differences Φn,m(t) = [mφ1(t) − nφ2(t)]mod2π, with n,m integers, are evaluated. In the present study only
1 : 1 synchronization has been examined and the two phases φ1(t), φ2(t) coincide with the phases of the time series
xD(t), xS(t). Phase synchronization is characterized by the appearance of peaks in the distribution of the phase
difference. To evaluate the phase shift we have considered time intervals characterized by a constant phase difference
between the two series:

δθ = θD(t)− θS(t) . (16)

We find δθ > 0 in the VLF band, i.e. in this band diastolic pressure anticipate systolic pressure. Our analysis confirm
the results of [4] with a different method. On the other hand in the HF band (in basal conditions) the phase shift
is negative δθ < 0, which means that in this band the systolic pressure signal anticipates the diastolic one. These
data are reported for all the 47 subjects in fig. 5 that shows on the left the VLF band and on the right the HF band
(we have not reported data in the intermediate region LF band, as they are compatible with δθ = 0). We estimated
1.76×10−6 to be the probability that the phase shifts in the VLF band are sampled from a distribution whose mean is
less than or equal to zero; analogously 3.0× 10−2 is the probability that the phase shifts in the HF band are sampled
from a distribution whose mean is greater than or equal to zero.
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FIG. 5: The phase shifts δθ for all the 47 subjects filtered in the VLF (on the left) and HF (on the right) bands.

On a physiological basis these results mean that the different sets of oscillators producing the time series have
different spectral properties. Leaving aside the task of a physiologically-based modelization we now show that the
results obtained in Section II can shed light on this phenomenon. For the present application we use the Winfree
model.

B. Interpretation of phase shifts between related oscillatory signals

We present here a schematic view of phase shifts δθ between the time series xS(t) and xD(t). This picture is only
qualitative and aims to reproduce the dependence of the sign of δθ on the filter in frequency power spectrum. As
such, the picture is not realistic and does not offer a physiologically-based model of the time series; nevertheless it can
shed light on oscillator dynamics underlying them. Let us assume that the two oscillatory signals xS(t) and xD(t) are
the result of the collective behavior of two sets of oscillators, sets SAP and DAP respectively. We assume that this
collective behavior produces a Systolic Arterial Pressure (SAP ) and Diastolic Arterial Pressure (DAP ) time series.
We assume that the oscillators in the set SAP have natural frequencies in the domain ω ∈ (a− γ, a)

⋃

(b, b+ γ), while
frequencies for the set DAP are in the domain ω ∈ (a, a + γ)

⋃

(b − γ, b). We also assume γ ≤ 1. We will use as
numerical values a = 1, b = 2 and γ = 0.1, see Fig.6.

On the other hand the two bands A: 1− γ < ω < 1 + γ, and B: 2− γ < ω < 2 + γ would model the VLF and HF
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FIG. 6: The two intervals of natural frequencies A and B. A is on the left and is centered around the value a = 1; B, on the
right, is centered around b = 2. We assume that oscillators with frequencies in the band SAP (resp. DAP) produce collectively
the signal xS(t) (resp. xD(t)), see text.

frequency bands.
Let us assume that the coupling among the oscillators having natural frequencies in the intervals A and B is

modelled by the Winfree model, i.e. by eq. (1). However we assume for the coupling

κ → κij = κH [2γ − |ωi − ωj|] , (17)

where H is the Heaviside function. By this choice there is no interaction between oscillators in the two bands, though
a weak coupling would not alter the qualitative picture. We consider one value of κ (κ = 0.65 in this case). The
two sets of oscillators, one centered around the natural frequency ω0 = 1 (Set A) and the other around ω0 = 2 (Set
B) become synchronized around two synchronization frequencies, ωV LF = 0.62 Hz e ωV LF = 1.88 Hz see Fig.7 (left
side). Correspondingly, on the right, we have two lines showing a linear dependence between δω and δθ. The two lines
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FIG. 7: On the left: The oscillators of set A, with frequencies centered around a = 1 become synchronized with a frequency
around ωV LF = 0.62 Hz; those of set B (frequencies around b = 2) have a synchronization frequency ωHF = 1.88 Hz. On the
right: The phase shift δθ between any pair of oscillators as a function of the difference δω between the natural frequencies of
the oscillators in the pairs. The partially overlapping lines refer to the two sets of oscillators A and B, which shows a weak
dependence of the slope on the natural frequencies. Numerical results refer to N = 1000 oscillators, with κ = 0.65.

are almost completely superimposed, which shows a weak dependence on the average natural frequencies of the two
sets. The interesting result however is related to our definition of VLF and HF bands. The VLF band is the result
of the collective behavior of oscillators in the set A. For them ωD > ωS and therefore, on the basis of the results of
Section II, δθ = θD(t) − θS(t) > 0. On the other hand in the HF band, ωS > ωD and therefore δθ < 0. This simple
mechanism implies the effect of a change of sign between the two phases when one goes from the very low frequency
to the high frequency.
One might wonder if our data also show a casual dependence between the two time series. To address this issue we

have considered the index S(X |Y ) that measures the nonlinear interdependency between two time series X and Y , as
described in [14]. More precisely, from the time series x and y, one reconstructs delay vectors xn = (xn, ..., xn−(m−1)τ )
and yn = (yn, ..., yn−(m−1)τ ), where n = 1, ..., N is the time index, m is the embedding dimension, and τ denotes the
time lag. Let rn,j and sn,j , j = 1, ..., k denote the time indices of the k nearest neighbors of xn and yn, respectively.
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For each xn, the mean squared Euclidean distance to its k neighbors is defined as

R(k)
n (X) =

1

k

k
∑

j=1

(xn − xrn,j
)2, (18)

while the Y-conditioned mean squared Euclidean distance is defined by replacing the nearest neighbors by the equal
time partners of the closest neighbors of yn,

R(k)
n (X|Y) =

1

k

k
∑

j=1

(xn − xsn,j
)2. (19)

The interdependence measure is then defined as

S(X|Y) =
1

N

N
∑

n=1

R
(k)
n (X)

R
(k)
n (X|Y)

. (20)

S(X |Y ) is an asymmetric quantity and the degree of asymmetry is connected to causal relationship between the two
time series, in other words if S(X |Y ) is much greater than S(Y |X) then we may conclude that Y is driving X. On
the other hand each of these values measures by its size the degree of interdependency, S = 0 (resp. S = 1) meaning
minimal (resp. maximal) interdependency . We evaluated these indexes both on the SAP and DAP time series xS(t),
xD(t) and on their phases θS(t), θD(t). In both cases the asymmetry was not significant, which means that there is
no causal relationship between SAP and DAP time series; however the results obtained with the phases are always
much greater than those obtained with the full signals. Quantitatively, the average values for the HF band are:
S(xD|xS) = 4.8× 10−3, S(xS |xD) = 4.6× 10−3, which shows a very small asymmetry and, at the same time, a very
small interdependency. As to the phases, we get S(θD|θS) = 0.899, S(θS |θD) = 0.901, which on the contrary shows a
larger interdependency. Similar results are obtained in VLF and LF bands. Besides showing the absence of a causal
relation, these results confirm that in these systems of oscillators the main source of information on the underlying
structures resides in the dynamics of the phases.

IV. CONCLUSIONS

Our results represent an original analysis of the relation between systolic/diastolic blood pressure, which completes
previous studies [4]. The measured delays between the oscillatory components of systolic and diastolic blood pressure
time series, show a change of sign going from low to high frequencies.We have addressed it within the paradigm of
coupled nonlinear synchronous oscillators. We have shown, using Winfree and Kuramoto models, that once synchro-
nization is achieved, the phase delay between oscillators is determined by the underlying structure and we have found
a linear relationship between oscillator phase shifts and the difference of their natural frequencies. We then used
these results to describe our findings, that confirm that changes in the modulating factors of arterial pressure affect
differently the systolic and diastolic pressure values [3].
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