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Advances in isolating, controlling and entangling quantum systems are transform-

ing what was once a curious feature of quantum mechanics into a vehicle for disrup-

tive scientific and technological progress. Pursuing the vision articulated by Feyn-

man, a concerted effort across many areas of research and development is introduc-

ing prototypical digital quantum devices into the computing ecosystem available to

domain scientists. Through interactions with these early quantum devices, the ab-

stract vision of exploring classically-intractable quantum systems is evolving toward

becoming a tangible reality. Beyond catalyzing these technological advances, entan-

glement is enabling parallel progress as a diagnostic for quantum correlations and

as an organizational tool, both guiding improved understanding of quantum many-

body systems and quantum field theories defining and emerging from the Standard

Model. From the perspective of three domain science theorists, this article compiles

thoughts about the interface on entanglement, complexity, and quantum simulation

in an effort to contextualize recent NISQ-era progress with the scientific objectives

of nuclear and high-energy physics.
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I. INTRODUCTION

Quantum computation, simulation, and communication utilize the coherence and inherent
non-locality of entanglement in quantum mechanics to store, transmit, encrypt and process
quantum information with the fundamental particles and forces of nature described by the
Standard Model (SM). Advances in understanding, creating and manipulating entangle-
ment and coherence in the laboratory, through broad-based collaborative research programs
at universities, national laboratories and technology companies, have recently led to first
demonstrations of a quantum advantage 1 using superconducting quantum devices [1–3].
This remarkable milestone in computing, heralds a paradigm-shifting change in how we
manipulate and engage with information. Its accomplishment was a tour de force in the
design and fabrication of materials, in quantum algorithms, software and circuitry, in en-
gineering systems controls and device fabrication, and in the integration and isolation of
classical and quantum mechanical systems. It ushers in the second impact era of quantum
mechanics—after revolutionizing our understanding of the subatomic world, now the con-
trolled and coherent manipulation of entangled quantum states offers to revolutionize broad
scientific applications from computing, simulation and theoretical developments to sensing
and experiment.

First highlighted in the famous EPR paper in 1935 [4], Bell’s 1964 work [5] provided in-
equalities to quantitatively probe entanglement, a distinctive attribute of quantum mechan-
ics. The first experimental confirmation of violations of classical predictions in correlations
between observables, in a way consistent with quantum mechanics and the nonlocality of
entanglement, was performed in 1972 by Clauser and Freedman [6] using atomic transitions.
Since that time, remarkable experiments probing entanglement, and more generally quan-
tum mechanics, have been performed e.g., Refs. [7, 8]. This growing literature has closed
loop holes in the interpretation of the early experiments and continues to inspire remarkable
theoretical progress. The meticulous design and formidable experimental prowess applied to
these works have firmly established that the subatomic rules governing our universe are at
least as complex as quantum mechanics, and have been instrumental in reaching the present
state of quantum information and quantum computing.

In the early 1980’s, Feynman and others [9–16] recognized that simulations of all but
the simplest features of complex quantum systems lie beyond the capabilities of classical
computation, and ultimately require simulations using quantum systems themselves i.e.,
quantum computers, sparking extensive activity in the area of quantum information [17] 2.
Precisely controlled systems of cold-atoms, trapped-ions, annealers, optical, SRF and su-
perconducting qubit devices, and related programming languages, are becoming available
to scientists to begin exploring analog, digital and hybrid simulations of simple quantum
many-body (QMB) systems and quantum field theories (QFTs). These devices fall into the
category of Noisy Intermediate Scale Quantum (NISQ) devices [19]. They are of modest
size and of “OK” fidelity. Their quantum registers are not well isolated from the environ-
ment, operations applied to the registers are imperfect, and they operate more like quantum
experiments with associated systematic errors to be quantified than, say, a laptop. There
are limited (or no) protocols or redundancies included in the hardware or software to cor-
rect for errors introduced into the wavefunction due to imperfect isolation and operation,

1 A quantum advantage has been achieved for a particular calculation when the measured time to solution

(with a given precision) on a quantum device is less than that achievable with the most capable classical

computers.
2 See Ref. [18] for a recent discussion of the origins of quantum computing.
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such as phase-flips or spin-flips, i.e. there is no intrinsic error-correction and the devices
are not fault tolerant e.g., Ref. [20]. While quantum annealing devices 3 are now operating
with thousands of qubits [21], systems that implement a universal quantum gate set e.g.,
Ref. [25, 26], such as trapped ion, superconducting qubit, Rydberg atom systems and more,
are currently in the tens of qubits range, and are expected to scale to hundreds in the next
few years. Rather than relying upon software error correction with large physical-to-logical
qubit ratios, there are also major research efforts focused on non-Abelian anyons to provide
topological robustness [27], including by Microsoft [28] and the Quantum Science Center at
Oak Ridge National Laboratory [29]. While it is understood that high-precision calculations
at scale of direct comparison to experiment are not expected during the NISQ era, which
is expected to extend over the next several years, there are good motivations to pursue a
quantum advantage for observables that scale poorly with classical computation, such as
real-time evolution, the structure of finite density systems and key aspects of entangled sys-
tems [30]. Activities are starting toward better understanding the complexity (in the formal
computer science meaning of this word) of important problems in the SM, to determine
those that may be efficiently addressed with quantum simulation.

The potential of quantum computing for scientific applications is becoming widely appre-
ciated. For an ideal quantum computer with an n-qubit quantum register, the dimensionality
of its Hilbert-space is d = 2n. For n = 299, d ∼ 1090, a number larger than the number of
atoms in our universe, ∼ 1086. The exponential growth of the number of states with the
number of qubits parallels, for obvious reasons, the growth of the number of states required
to describe A-body systems. States in a Hilbert space are accessed through unitary oper-
ations among the qubits, and while exponential time is required to access all states [31],
physically relevant states for a local Hamiltonian are generally accessible through time evo-
lution in polynomial time from other such states. Though a quantum advantage remains to
be obtained for a scientific application, there is a threshold in A beyond which quantum sim-
ulations become the only known avenue with the potential to achieve the requisite precision.
This threshold depends upon the system, the process to be computed, the desired precision,
and the efficiency of classical algorithms and implementations on high-performance comput-
ing (HPC) systems. As such, one expects to see different quantum advantage thresholds
for e.g., lattice gauge theory (LGT), nuclear structure and reactions, and coherent neutrino
evolution.

Nuclear and high-energy physics research is focused on the nature of a diverse array of
fundamental and emergent QFTs and QMB systems, defined by unique interactions and
properties. The SM [32–37] and beyond, constructed around global and local symmetries
and associated particle content, underlies the properties and dynamics of these complex
systems. Analytic and computational techniques in QMB systems and QFTs developed
during the 20th-Century, proved central to establishing the SM, in providing predictions for
processes beyond experimental reach, and in defining and using low-energy effective field the-
ories (EFTs) and phenomenological models to describe an array of phenomena in strongly
interacting, correlated systems of mesons, nucleons and hyperons. Classes of computa-
tions projected to require beyond exascale classical resources have been identified [38, 39],
with common attributes including finite density, real-time non-equilibrium dynamics, in-
elasticities, the need for large Hilbert spaces, quantum coherence and other intrinsically
quantum features. This circa 2016 recognition is daunting if only a classical HPC path for-

3 Quantum annealers, such as the D-Wave systems [21], utilize quantum tunneling to adiabatically relax to

the ground state, or nearby states, of systems mapped onto a spin model [22] e.g., Refs. [23, 24].



5

ward were possible, but exciting in light of the coinciding events of early quantum devices
becoming more widely accessible and the first QFT simulation performed on a quantum
device [40]. Soon after superconducting quantum devices became available to scientists via
the cloud [41, 42], the first calculation of the deuteron binding energy [43] was accomplished
by a multi-disciplinary team at Oak Ridge National Laboratory, and similar computations
of light nuclei with EFT interactions soon followed [44–48].

Our article is framed from the perspective of quantum simulation of SM quantities, though
is relevant for quantum systems more broadly through communications protocols, sensing,
error correction, and generic large-scale quantum computation. Beginning with the ac-
knowledgement that nonlocality of information is fueling the quantum revolution, Section II
illustrates the polycephalic form of entanglement at the interface—including weaving an
organizational fabric between QMBs and QFTs and the quantum devices that will simu-
late them, and illuminating hierarchies in low-energy EFTs and their phases. Predictive
capabilities for the SM in the first era of quantum mechanics advanced, in part, through
the construction of effective interactions and EFTs, providing classically tractable leading
order calculations that can be systematically improved with perturbation theory e.g., per-
turbative quantum chromodynamics (QCD). While most EFTs have been built around local
interactions and vanishing entanglement, the prospect of capable quantum computers moti-
vates applying this mindset toward devising quantumly tractable leading order calculations
that naturally incorporate entanglement for quantum simulation at-scale. Where possible,
the practical utility of such organizations is to extend the scientific reach of bounded-error
quantum simulation, mitigating näıve asymptotic complexity classifications, as discussed
in Section IV. Progress over the last few decades has established an extensive toolbox of
quantum protocols that can be used, adapted and improved for quantum simulations of
SM quantities. In Sections V and VI, we present an overview of relevant algorithms and
techniques, progress that has been made in their application to SM simulations, and three
SM areas that are being pursued with available quantum devices.

II. ENTANGLEMENT IN QUANTUM FEW-BODY, MANY-BODY, AND

FIELD THEORIES

Beyond purist motivations of understanding the non-local correlations within our fun-
damental descriptions of nature, studying the structure of entanglement within the SM
is expected to provide guidance both in the formulation of theoretical frameworks and in
the design of associated quantum or classical simulations. Because entanglement is a basis-
dependent property, sensitive to the way in which a physical system is mapped onto quantum
degrees of freedom, a detailed understanding of the entanglement properties expressed in
subatomic interactions with natural bases will inform every level of quantum simulation,
from initial decisions of the quantum description to the specifications for architectural co-
design.

A. Identifying and Characterizing Entanglement

A necessary and sufficient condition for identifying quantum entanglement can be ex-
pressed in terms of the separability of the density matrix describing the union of two or
more Hilbert spaces H = ∪iHi. For the specific case of H = HA ∪ HB, the two Hilbert
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spaces may be e.g., spatial regions of a field, separate momentum scales, valence and sea
quantum number contributions, or a spatial region of a nucleon and its complement with a
size set by the probing momentum transfer. If the density matrix can be written as a clas-
sical mixture of separable density matrices, ρA∪B =

∑
i pi ρA,i ⊗ ρB,i with pi ≥ 0, then the

system is separable and not entangled. If the density matrix cannot be written in this way,
the system is entangled. The existence of entangled states, flouting attempts to describe
their correlations classically, is culpable for the exponential growth of Hilbert spaces (and
thus classical computational resources) required to describe QMB systems. To date, every
theoretical attempt to evade this exponential state space required by non-classical correla-
tions has been ruled out by experiment, the most famous example being that of nature’s
consistent response, through the violation of Bell’s inequalities, that a local hidden variable
description is inconsistent with observation.

While experiment indicates that a complete evasion of the exponential growth of Hilbert
space is not likely to provide a successful description of nature, it is possible to systematically
delay the onset of this burdensome scaling. The language of one concrete and powerful
example [49] contains at its heart the pure-state Schmidt decomposition,

|Ψ〉 =

χm∑
k=1

λk|ΨA,k〉 ⊗ |ΨB,k〉 , (1)

the expansion of a pure quantum state in terms of the separate eigenvectors of its A- and B-

space reduced density matrices. For pure states, the two density matrix spectra, ~λ, will have
equal non-zero eigenvalues of number limited by the dimensionality of the smaller Hilbert
space, χm. Only for χm = 1, in which local pure states remain, is the state separable across
the chosen bipartition. Entanglement-motivated approximations to the state in Eq. (1) can
be achieved by introducing a truncation χ ≤ χm, with a viable and affable entanglement
measure identified as χ’s logarithm. Despite the opacity of entanglement structure when
an n-qubit state is written in the computational basis, |Ψ〉 =

∑
ψ~b |b1〉 ⊗ · · · ⊗ |bn〉 with

bi ∈ {0, 1}, an entanglement-driven hierarchical structure of the wavefunction can be exposed
through a series of sequential Schmidt decompositions [50, 51],

ψ~b = Γ(b1)
α1
λα1Γ

(b2)
α1α2

λα2 · · ·λαn−1Γ
(bn)
αn−1

. (2)

Here, the Γ’s are tensors of maximal dimension χ characterizing the single-qubit Hilbert
space and the λ’s are locally-contracted vectors with a dimensionality of χ at the biparti-
tion. These λ-vectors, serving as entanglement conduits between local qubit Hilbert spaces,
may be truncated, leading to a family of systematically improvable approximations to |ψ〉
with reduced entanglement. Rather than the 2n complex numbers capturing the exact
wavefunction, the truncated description requires a memory that scales ∼ χ2n, linearly in
the number of qubits but exponentially in the entanglement measure mentioned above. Ef-
ficiently representing low-entanglement quantum states by truncating their local Schmidt
decompositions underpins the robust technology of tensor networks [49], continuing to pro-
vide leading capabilities in low spatial dimensions and for short time evolutions where local
bipartite entanglement is naturally constrained.

Though the clear separability criterion above seems at first simple and innocuous, deter-
mining whether a particular density matrix can be transformed into a separable mixture is,
in general, a difficult and open area of research. In particular, there is no known necessary
and sufficient criterion for separability that is also efficiently computable as the dimension-
ality and/or number of Hilbert spaces becomes large. Unfortunately, large in the previous
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sentence happens to be around three qubits, a pair of three-state qutrits, or the presence of
a four-state qudit. It may be no surprise that describing the complex non-local correlations
that quantum systems are capable of expressing is not easily achieved through a single ob-
servable or criterion. Rather, analogous to the Bayesian approach to data analysis through
classical probabilities as a “dialogue with the data” [52], the exploration and characterization
of entanglement in quantum mechanical systems often requires a collection of entanglement
criteria, each one perhaps being necessary or sufficient, whose combination of fragmented
information may be synthesized into more complete logical conclusions.

For example, a quantum generalization of the Shannon entropy leads to the entanglement
entropy, S = −Tr[ρA log ρA], used to explore the entanglement of bipartite states that are
globally pure. The entanglement entropy is calculated in terms of the reduced density ma-
trix, ρA = TrBρA∪B, and is symmetric with respect to the system A,B that is chosen to be
traced over. Because entanglement entropy heralds the presence of entanglement by alerting
us to mixedness in reduced density matrices (pure states exhibit S = 0), the interpretation
of this entropy becomes ineffectual when the global state is already mixed. For the language
of mixed states, one may turn to conditional entropy and mutual information that combine
otherwise-ambiguous marginal distributions into more informative relative entropies. The
important caveats continue as such mutual information criteria are sensitive to classical
correlations in addition to quantum correlations; it is possible to find a non-zero mutual in-
formation for a classically mixed unentangled state, and thus non-zero mutual information is
necessary though insufficient for detecting entanglement. To address this, one may look yet
further to the family of positive transformations, those that retain positive eigenvalues of the
density matrix. By acting locally (subsystem) with such a transformation, any emergence
of a negative eigenvalue must herald inseparability. A common positive transformation to
consider, due to its relatively amiable computability, is the transpose [53–58]. Physically, the
partial transpose implements a local momentum inversion that will produce a valid, positive
density matrix if the two regions distinguished by the transpose are unentangled. Though
the presence of negative eigenvalues, non-zero negativity, is unperturbed by classical corre-
lations, negativity is sufficient for detecting inseparability, but it is not necessary [57–60].
Aptly named, the multitude of entanglement or separability witnesses [61], will individually
fail to identify the properties they are designed to observe in a subset of Hilbert space;
their strength, however, often lies in collaboration among multiple witnesses and deductive
reasoning. Following Murphy’s law, and in the spirit of EFTs, it is usually a safe default to
assume: if states of particular entanglement properties can exist (e.g., positive under partial
transposition but inseparable), they do.

In addition to entanglement witnesses that conclusively herald but inconclusively exclude
entanglement or separability, is a category of measures regarding entanglement more fun-
damentally as a resource for quantum information protocols. Examples of such measures
are the entanglement of formation [62, 63] or the distillable entanglement [64, 65], quan-
tifying the asymptotic ratio of maximally entangled resource states necessary to produce
an ensemble of the state or the ratio capable of being distilled back from a given ensemble
through local operations, respectively. While operational measures provide welcomed clear
physical interpretations, they are commonly computationally prohibitive. It is thus common
to combine heralding measures with operational measures, e.g., the logarithmic negativity is
an upper bound to the distillable entanglement [55, 66]. Consistent with the above creation
of entanglement measures in a collaborative array connected to e.g., operational communi-
cations protocols, it is likely that developing the dialogue for exploring the entanglement
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of QMB and QFT systems will entail the creation of an extended array of entanglement
measures, inspired by the natural symmetries and entanglement fluctuating interactions of
the subatomic world.

B. The Role of Entanglement

Though the landscape for quantifying the structure of entanglement in QMB and QFT
systems can seem daunting and precarious at times, this connection has already begun and
will continue to provide novel perspectives of entanglement...

1. ...as an organizational principle:

The successes of tensor network methods in the simulation of low dimensional quantum
lattice models [49] arise from the use of an entanglement-centric computational framework.
By forming a basis of variational states truncated by the entanglement entropy crossing
any bipartition of the space, the exponential computational demands associated with the
inclusion of entangled states can be systematically mitigated and included only as necessary
e.g., at long times in dynamical scattering simulations [67]. These successes motivate the
formation of other structural hierarchies guided by entanglement.

The success of nuclear shell-models is due, in part, to the wavefunction of many nu-
clei being close to a tensor product of a valence model-space wavefunction with that of an
inert closed-shell core. Inspired by the advances arising upon incorporation of non-local
correlations into classical computational methods, modern nuclear structure calculations,
using phenomenological and QCD-based chiral nuclear forces combined with sophisticated
nuclear many-body numerical algorithms and codes, are now investigating the role of en-
tanglement as an organizational principle. Around 2015, the role of two-orbital mutual
information for organizing bases of nucleon orbitals in medium mass nuclei [68] was ex-
amined. Extensive work by Gorton and Johnson in 2018 [69] examined the entanglement
entropy in light, medium and heavy nuclei using the BIGSTICK code [70]. Inspired by this
work and the multidimensional structure of entanglement, a detailed exploration of Helium
nuclei using configuration-interaction calculations for a range of single particle bases of var-
ious complexities, studied the single-orbital entanglement entropy, mutual information and
two-orbital negativity [71]. Starting from matrix elements in a harmonic oscillator basis
derived from chiral interactions, and self-consistently evolved to include two-body correla-
tions in identifying a single particle basis, the localized entanglement within a nucleus was
observed to become manifest in such a natural basis e.g., decoupling the two-neutron halo
of 6He from its 4He core at the level of fundamental quantum correlations [71]. These works
show that entanglement observables are capable of providing insight into otherwise-obscure
structures that may be leveraged for a computational advantage in exploiting future hybrid
quantum-classical architectures. Subspaces with large entanglement are amenable to quan-
tum computation, and integrated with other such subspaces using classical computation (as
the quantum correlations between subspaces is small, by construction).

Complementary to the role of entanglement as an organizational principle is the role
of entanglement fluctuations in constraining the forms of dynamical interactions or in illu-
minating a hierarchy among operators. For example, in high energy scattering processes
at tree-level in QED, a ubiquity of maximally entangled helicity states at particular final
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scattering angles was observed [72]. Promoting this observation to an organizational princi-
ple led to the intriguing realization that demanding maximally entangled final states to be
achievable in QED and weak interactions produces, in the space of theoretical deformations
to these fundamental vertices, a potential landscape that appears to be extremized by the
SM. The capability of an entanglement extremization principle to constrain the structure of
interactions, similar to more familiar rotational symmetries and gauge invariance, inspires
further investigation into the role of quantum correlations in the theoretical description of
fundamental interactions.

An exploration of low-energy elastic, s-wave scattering of 2- and 3-flavor nuclei through
the strong interaction has demonstrated another connection between emergent symmetries
and entanglement structure [73]. Rather than the capability to produce maximally entangled
final states, this work quantified the operational entanglement power [74, 75] of the S-
matrix, finding that the presence of spin-flavor symmetries coincide with parameter regimes
of diminished entanglement fluctuations. When symmetry in this system is heightened e.g.,
through Wigner’s SU(4) symmetry, the singlet/triplet phase shifts vanishing/residing at
unitarity, or at a kinematical π/2 phase shift difference where spin spaces are exchanged
(SWAP operator [73, 76]), the entanglement power of the S matrix becomes suppressed.
Promoting this observation to an organizational principle led to an entanglement motivation
for the emergent SU(16) symmetry calculated in Lattice QCD at heavy pion mass [77] by
establishing a conjecture [73] that the dynamical suppression of entanglement fluctuations
may drive emergent symmetries. This observation has the potential to inform the hierarchy
of local operators used to design EFTs of nuclei and hypernuclei, extending beyond those
from large-Nc alone.

While central to quantum communication, studies of entanglement and separability in
Gaussian systems also describe the nonlocality in harmonic chains [78–84] or in the free
lattice field theories directly relevant to high-energy and nuclear physics. More generally,
entanglement studies in field theories have spanned the areas of conformal field theories
(CFTs) [85–90] and near CFTs such as pQCD [91–94], AdS/CFT and gravity-dualities [95–
98], lattice simulations [99, 100], the SM [72] and low-energy EFTs [73, 101, 102]. Aiming
to understand the microscopic mechanism that incorporates entanglement into EFT con-
struction, through perhaps a small expansion parameter or generation of a mass scale,
the exponential decay of distillable entanglement between disjoint regions in the massless
non-interacting scalar field vacuum can be studied [82, 99, 100]. In doing so, a dimension-
independent UV-IR connection indicating that the entanglement or inseparability at long
distances is governed by the high momentum modes of the field is found [80, 100]. Extending
a result of quantum information to the realm of field theories, the observation that Gaussian
states provide minimal-entanglement approximations [103] opens the possibility that such
features will persist in the presence of interactions, though further exploration is required.
Being a framework built upon an expansion in local operators with inherent decoupling
upon the appearance of a separation of scales, EFTs may require novel methods in order to
incorporate the fundamental features of non-localities.

2. ...as an order parameter for symmetry breaking:

A beneficial interaction has developed in recent years between quantum information,
condensed matter, and SM physics. One influential direction of progress has been in the
utilization of entanglement structures to identify phase transitions, provide sensitivity to
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probe symmetries or non-perturbative phenomena such confinement, and classify states of
matter, particularly those exhibiting non-trivial topology [104, 105]. Because separability
reflects correlations between Hilbert spaces on all length scales, entanglement measures
offer valuable non-local probes of quantum mechanical structure complementary to the local
observables commonly leveraged in EFTs.

As an example in the nucleon, the scale-dependent breaking of chiral symmetry, as the
valence sector interacts with the parton sea, can be tracked by observing entanglement
entropy [101]. Specifically, by analyzing contributions to the nucleon state vector on a null-
plane, where the internal helicity degrees of freedom can be separated from kinematical
contributions, quantum correlations arising in the presence of collective excitations perturb-
ing the separable large-Nc descriptions are an indicator of chiral symmetry breaking. As
high-energy sea partons are incorporated into the nucleon description, the entanglement
between the valence sector and the sea increases. This entanglement saturates near its max-
imum value, blurring the distinction of the valence spin that dominates only for a low-energy
parton sea and suggesting a fundamental understanding of the small valence contributions to
the nucleon spin. In the chiral multiplet basis, it was shown explicitly that chiral symmetry
is broken only when the nucleon state is entangled, and therefore entanglement is an order
parameter for chiral symmetry breaking.

In the SM beyond the nucleon, early quantum simulations of neutrino flavor dynam-
ics are beginning to highlight the role played by dynamical phase transitions in collective
neutrino oscillations [106, 107], coinciding with a modification in the structure of entangle-
ment. Notably, these first explorations were made possible by exploiting the capabilities
of tensor networks to efficiently compress many-body states with low levels of bipartite
entanglement [50]. These systems will be discussed further in Section VI.

3. ...as insight into the structure of hadrons:

From heavy quark effective theory (HQET) [108], to the large-Nc expansion, to parton
distribution functions (PDFs), coherent quantum effects are often successfully incorporated
by expanding around a basis that is effectively classical. The successes of nuclear structure
and reaction calculations, with basis states of (color-singlet) nucleon degrees of freedom and
a hierarchy of multi-nucleon interactions, have been a testament to the nucleon’s role as
a fundamental building block in the finely-tuned transition from quarks and gluons to the
predominantly classical world of macroscopic physics, i.e., nuclei have more structure than
would be expected of a quark-gluon droplet. This perspective supports the sensibility of
beginning with factorizable or tensor-product structures at leading order and systematically
incorporating entanglement effects at sub-leading orders e.g., suppressed by inverse pow-
ers of a heavy quark mass, number of colors, or parton momenta. It is the experimental
accessibility and control of sub-leading quantum coherent effects that is likely to become
emblematic of 21st century explorations.

In the last decade, increased attention has been placed on the factorization treatment
of PDFs in non-Abelian gauge theories [109–117]. This investigation has been guided by
observed correlations and asymmetries that elude description when transverse momentum
PDFs are assumed independent (factorizable) for each final state hadron. In a phenomenon
that has become known as color entanglement, two-gluon process provide the opportunity for
a coherent exchange of color degrees of freedom. This coherent exchange produces quantum
mechanical correlations between hadronic Hilbert spaces, and thus an inseparability in the
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PDFs that characterize them.
From another perspective, entanglement can be considered inherent to hadronic structure

produced either dynamically or through the enforcement of symmetries [93, 94, 118–127]. For
example, spatial entanglement between regions of a proton delineated by the volume probed
in deep inelastic scattering [119] can be considered. In small Bjorken x regimes expected to be
accessible with the Electron Ion Collider (EIC), entanglement entropy is predicted to become
maximal and naturally governed by a simple logarithm of the gluon distribution. Further
evidence for partonic entanglement arising from the color-singlet structure of hadrons is
expected to be accessible in LHC proton-proton collisions [93]. A deeper understanding
of the role of quantum correlations in hadronic structure is expected as quantum coherent
effects become more accessible to experiment.

4. ...as a source of local thermalization:

Connected to its natural role of delocalizing quantum information, the generation of en-
tanglement has been linked to the local emergence of statistical mechanics in unitarily evolv-
ing closed quantum systems (see e.g., Refs. [128–134]). Recent experimental demonstration
in a Bose-Einstein condensate of Rubidium atoms in a 2D optical lattice has supported
this connection as local observables became statistically governed while the global quantum
state remained pure [135]. More generally, the role of coherent evolutions has been linked
to the achievement of statistical distributions more rapidly than would be expected through
semi-classical approaches alone [136–140]. In the sense that non-local correlations provide
a mechanism of quantum mechanical mixing in addition to scattering events, the timescale
of collisions need not limit the time scale of locally emergent thermalization. A natural
application of this phenomenon is in complex, non-equilibrium systems, such as heavy-ion
collisions, where thermalization timescales appear to be much shorter than näıvely expected
by cross section analysis. Early studies in this direction suggest that entanglement may be
providing mechanisms of thermalization necessary to describe experimental observations of
deep inelastic scattering and heavy-ion collisions [91, 92, 119, 141–147], probing mixed-state
subsystems of globally entangled states.

5. ...as an indicator of geometry:

Connections between geometry and entanglement are plentiful: from area laws in low-
energy states of 1-dim gapped Hamiltonians [148, 149] and the role of geodesics guiding
complexity in the design of unitary quantum circuits [150], to classifications of correlations
through entanglement polytopes [151, 152] and potentially the form of spacetime itself [153].
Holographic perspectives on the over-completeness of degrees of freedom in field theory
descriptions [154, 155] have led to concrete examples of bulk theories of quantum gravity in
hyperbolically curved space being exactly dual to a boundary CFT in one dimension lower,
known broadly as the AdS/CFT correspondence [95]. Extending the Bekenstein-Hawking
formula [156, 157], connecting the entropy of a black hole to the surface area of its event
horizon, to the framework of holographic dualities has produced an intriguing conjecture,
the Ryu-Takayanagi formula [96–98], connecting the entanglement entropy of a region in
CFT to the surface area of its associated geodesic in the dual gravitational bulk. Beyond
opportunities for tractable explorations in quantum gravity, such connections illuminate
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the dispersion of information into higher-dimensional embeddings—a common strategy in
subatomic physics, though not usually described in this language.

One notable recent exploration connecting holographic dualities to geometry and entan-
glement for nuclei [102] has done so through the S-matrix formulation of scattering, with
explicit examples in the s-wave nucleon-nucleon system. Rather than the EFT action, this
approach focuses upon trajectories of the S-matrix on an abstract surface defined by unitar-
ity. The entanglement power [74, 75], providing a quantification of operator entanglement,
serves as a measure of distance to non-entangling subspaces and as a source of non-trivial
curvature to S-matrix trajectories. Regarding the role of entanglement and symmetry com-
plementary to the hierarchy of local operators allows this formulation to address non-local
interactions, corresponding to deviations into the bulk from inelastic effects, with a novel
perspective reminiscent of holographic dualities.

6. ...as guidance to quantum simulation design:

While the impact of the entanglement-guided style of thinking is expected to apply to
quantum simulation design for QMB systems broadly, most concrete examples have been
demonstrated in the simulation of quantum fields. In the theoretical planning for the quan-
tum simulation of the scalar field, it is straightforward to realize that the entanglement
structure of the vacuum state of the free field is trivial if represented in a basis of momen-
tum modes—a collection of tensor product oscillators and the starting point for perturbative
calculations in the language of Feynman diagrams. Considering further the entanglement
structure that will dynamically grow upon the incorporation of local self-interactions in-
dicates the production of entanglement between any momentum-conserving collections of
mode oscillators. For any representation of momentum oscillators mapped onto physical
quantum degrees of freedom for computational implementation, the self interactions neces-
sarily produce momentum-space entanglement [158, 159] that requires interactions in the
Hamiltonian that are beyond nearest neighbor 4. Motivated by a desire to mitigate the
entanglement structure demands on quantum hardware, a variety of bases for digitizing the
scalar field upon a spatial lattice or with single particle states have also been explored [159–
165], focusing on the necessary entangling operators for the preparation of low-energy states
and the time evolution of the field. It is expected that developing intuition in the entan-
glement structure of dynamical fields will guide the design of quantum simulations of more
complex fields, including those with non-Abelian gauge symmetries (see Section V A 3).

Classical tensor network methods [49] or strategies for reorganizing unitary quantum cir-
cuits [166] provide viable paths for incorporating simple area-law or symmetry-embedded
entanglement at lower computational cost, incorporating additional entanglement pertur-
batively for the approximate initialization of entangled quantum states. Distinct from the
conduit-style treatment of entanglement in classical tensor networks, truncating in entangle-
ment traversing all possible bipartitions of the space, one can imagine leveraging correlation
structures to truncate instead in the size or non-locality of entangling operators utilized in
quantum simulation. For example, guided by the knowledge of exponentially localized spatial
correlations in the ground states of massive fields, preparation circuits can be constructed in
which the relevance of long-distance quantum gates are exponentially suppressed [167, 168].

4 Note that while genuine n-point Green’s functions cannot be reduced into 2-point contributions e.g., 3-

and 4-nucleon forces cannot be represented by 2-nucleon forces, any unitary operator can be decomposed

into nearest-neighbor two-qubit entangling operations.
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This approach is analogous to that used in the Approximate Quantum Fourier Transform
(AQFT) [169]. When mapping such fields to quantum architectures through a position-space
distribution of qubits, the locality of correlations in the simulated field becomes manifest in
the hardware implementation—interactions performed experimentally also enjoy exponen-
tial localization. The above examples provide inspiration for the synergy expected between
fundamental studies of the structure of entanglement in QFT or QMB systems and the
design of their efficient simulation using quantum devices.

7. ...as a harbinger of computational complexity:

Absent in the above discussions is the role of entanglement in distinguishing computa-
tional complexity or in allowing for a parametric reduction in the temporal and/or spatial
resources demanded by a calculation. While quantum speed-ups have a dependence upon the
presence of sufficiently scaling entanglement that follows practically by definition (see e.g.,
Refs. [50, 170–172] for more precise elaboration), the desired statement that entanglement is
the source of quantum advantage is perhaps misleadingly broad—some categories of highly
entangled states can be efficiently represented and simulated by classical computational
architectures, occasionally challenging the succinct identification of quantum advantages.

The canonical counterexample to the desired simplified understanding equating entan-
glement and computational complexity is the stabilizer formalism [173, 174], Si|ψS〉 = |ψS〉,
describing quantum states |ψS〉 that are stabilized in the +1 eigensector of a commuting set

of stabilizers, ~S. The 2n elements of ~S can be parameterized in the basis of tensor product
(extended) Pauli operators, P = ±σ1⊗σ2⊗· · ·⊗σn with σi ∈ {I, X, Y, Z}, and uniquely iden-

tify the vector |ψS〉. For example, the three-qubit (n = 3) state |GHZ〉 = |000〉+|111〉√
2

can be

described by a set of 8 stabilizers, ~S = {I3, XXX,ZIZ,ZZI, IZZ,−XY Y,−Y XY,−Y Y X}.
At first, this appears to be an exacerbation of memory requirements. However, lever-
aging the group structure of the stabilizers, S can be captured by its n generators e.g.,
GS = {XXX,ZZI, ZIZ}. Constructing a classical binary basis assigning two classical bits
(with values 0,1,2,3) to each qubit Hilbert space to distinguish the four possible Pauli op-
erators, along with an additional bit for the sign of each generator leads to the classical
storage of GS in (2n+1)n classical bits. Applying a quantum circuit, U , to a stabilizer state
can be achieved by simply transforming each of the generators in GS as gi → g′i = UgiU

†.
The crucial feature of the stabilizer formalism that enables its classical efficiency throughout
computation is that each transformed generator g′i remains a single tensor product of Pauli
operators, UPU † = P ′, if the circuit is in the Clifford subgroup U ∈ {H,S,CNOT} (which
also generates the Pauli operators) 5. Thus, any circuit acting on a stabilizer state that
is comprised of {H,S,CNOT, X, Y, Z} gates is efficiently classically simulatable [173, 174].
This includes the creation of highly entangled states e.g., GHZ states and their n-qubit
extensions, as well as non-trivial quantum protocols e.g., quantum teleportation. Of course,
to produce universal quantum computation one requires additionally the quarter phase T -
gate [176, 177], understood in this context to proliferate tensor product Pauli operators,
TPT † =

∑
P ′, and thus forces one to abandon the classically efficient representation. It

is for this reason that T -gate count can be a meaningful quantity characterizing simulation
complexity, providing a source of departure from a classically efficient computational strat-
egy. Furthermore, though the state space of the stabilizer formalism is highly restricted

5 {H,S,CNOT} are the Hadamard, S-phase, and controlled-NOT gates, as discussed in Ref. [175].
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(e.g., any non-zero amplitude must have the same value and all measurements must be ei-
ther deterministic or exhibit a random 50% probability) and will not capture the elaborate
wavefunctions of SM systems, the formalism is an important and accessible language for the
exploration of quantum error correction codes [173]. The high degrees of structure and sym-
metry presented by stabilizer states e.g., measurement constraints or restrictions to a finite
octahedron of points on the Bloch sphere, further support the above discussion that sym-
metry is important when pursuing a connection between entanglement and computational
complexity. As a constructive example of the Gottesman-Knill theorem (see Ref. [178]),
this formalism demonstrates that there exists a subset of quantum computation that is en-
capsulated within the complexity of classical computation and yet includes the production
of states highly entangled in the computational basis. From a complementary perspective,
as mentioned above, the organizational structure of tensor networks suggests a necessary
condition that entanglement grows more rapidly than logarithmically with the system size
in order to support exponential computational advantages [50, 172]. Thus, to truly under-
stand the role of experimentally controlled entanglement in expanding the accessibility of
non-equilibrium properties and dynamics in QMB and QFT systems, it will be necessary,
as demonstrated in the growing literature on entanglement measures, to push well beyond
binary classifications of separability to understand how to work with, rather than against,
the complex and subtle structure of entanglement.

One of the challenges we face, as theorists at the interface, comes from the fact that
much of our QFT tool-set developed in the 20th-Century is based around the locality of
interactions and the enormous success of the operator product expansion in understanding
high-momentum processes used to establish the SM. Our experience with systematically
improvable calculation frameworks for non-local quantities is limited, one example of which
is the inclusion of QED in finite-volume lattice QCD+QED calculations, see e.g., Refs. [179–
183]. This points to a necessity of learning new ways to think about our calculations,
including developing intuition about the inclusion and organization of non-localities and
entanglement. Einstein is quoted to have said “To raise new questions, new possibilities,
to regard old problems from a new angle, requires creative imagination and marks real
advance in science.” From this new angle of quantum information, the necessary creative
imagination can be sourced naturally from the reality of nature at the microscopic scale.
Celebrating the versatile impact that such non-perturbative inspiration can provide, it is
likely that the new perspectives developed in the process of exploring quantum simulation
will provide valuable insights throughout existing techniques and algorithms, both quantum
and classical e.g., Ref. [184].

III. THE VISION OF QUANTUM SIMULATION

As the rules of quantum mechanics remain unchanged over vast energy scales, the precise
control of atomic-scale quantum devices is expected to provide naturally matched complexity
for expressing quantum systems from QCD to chemistry. This notion of intersimulatability
is fundamentally connected with the concept of universality of a computational device: a
universal computer is capable of efficiently simulating the behavior of a different computer
belonging to the same class, or one contained therein. As such, important aspects of QFT
and QMB systems are anticipated to become accessible when incorporating quantum degrees
of freedom directly into computational architectures.
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A. “Gedanken” Scaling of Quantum Resources

Feynman introduced the concept of a universal quantum simulator as a computational
device constructed with quantum mechanical degrees of freedom (such as spins) that would
be capable of simulating the behavior of compatible different quantum systems [13, 15]. The
question that remained open was how many classes of universal quantum simulators are there
or, in other words, what controls the intersimulatability of different quantum systems? To
make this question more concrete, a physical quantum system can be approximately encoded
in a finite number of discrete degrees of freedom to be representable with a finite number
of computing elements. The efficiency of a simulation is then determined by the scaling of
required resources with increasing system size. In particular, efficient computational strate-
gies are those with resources increasing at most as a polynomial in the size of the system.
The physical intuition followed by Feynman was that a quantum simulator constructed with
locally-interacting quantum degrees of freedom should be able to efficiently simulate the
behavior of a large class of other quantum systems also described by locally-interacting
quantum degrees of freedom. This intuition was finally proved correct by Lloyd [185], who
was able to show that, indeed, mutual locality allows mutual simulation. The key insight
was to configure the quantum computer to approximately simulate the dynamics over short
time-intervals while controlling the total error accumulated during the entire evolution. The
simulation strategy can accommodate fermion statistics, and requires a compute time that is
appealingly proportional to the total time of the internal simulation. Prior to this milestone
result, Shor’s algorithm for factoring [186] was the main candidate shown to provide a future
quantum advantage, näıvely quite distant from Feynman’s initial vision.

Efficient simulation strategies on universal quantum computers have been formulated for
a variety of SM systems from quantum chemistry [187, 188] to fermion-lattice models [189–
191], including pionless EFT [192–194] on a lattice [46], and some relativistic QFTs [159, 160,
195–197]. Once again, physical intuition suggests that to simulate a quantum system with n
degrees of freedom interacting locally for a time T , one would need a quantum device with
O(n) degrees of freedom and perform O(T ) time steps, for a total of O(nT ) operations. For a
system on a lattice, this is equivalent to the expectation that the time needed for simulation
would be independent of the volume of the system. First suggested in Ref. [159], this
idea was ultimately shown to be correct with a further proof that the strategy has optimal
asymptotic scaling with the number of operations [198]. The main caveat is that, in order for
the simulation time to be independent of the volume, the degrees of freedom in the quantum
simulator should be organized on a lattice with the same dimensionality as the simulated
system, e.g., a 2-dim array of spins interacting locally will not in general be sufficient to
simulate a 3-dim system with local interactions in time O(T ) that is independent of n. The
introduction of fermions usually leads to geometrically non-local interactions and, in general,
simulation run times for quantum algorithms are expected to scale as O(poly(n)T ), still an
exponential speed-up with respect to classical simulation strategies.

B. Quantum Algorithm Development: “Gedanken” to Reality

The first proposal for a universal quantum simulation algorithm in Ref. [185] used the
Lie-Trotter [199] approximation for the time evolution operator, which requires a number
of operations scaling as O(T 2/ε) (per measurement) in order to ensure a maximum error ε
in a simulation of time T . Higher order Suzuki-type integrators [200] enjoy a better scaling
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O(5kT 1+ 1
k /ε

1
k ) with k ∈ N the approximation order. Due to the exponentially increasing

prefactor, these approximations are typically used only with k = 1, 2 (e.g., Ref. [201] for
a more detailed discussion). More recently, alternative approaches to simulating real-time
evolution with a reduced dependence on ε have been proposed, enabled by increased qubit
overhead. Important examples are techniques based on the linear combination of unitaries
(LCU) [202] and the Taylor expansion [203, 204], which achieve an exponential improve-

ment in the error scaling as O(T log2(1/ε)
log log(1/ε)

), and also techniques based on Qubitization and

Quantum Signal Processing (QSP) [205, 206], which are able to achieve the optimal scaling
O(cTT + cε log(1/ε)). Better than O(T ) scaling is forbidden by the no-fast-forward theorem
unless some of the structural properties of the Hamiltonian are used in the design of the
simulation scheme [207, 208], i.e. codesign. It is important to point out that we do not
expect to be able to implement generic unitary transformations [209] and that being able to
construct a qubit or qudit Hamiltonian describing a physical system is a necessary but not
sufficient condition for the existence of an efficient simulation strategy (see, e.g., Ref. [210]).

Besides second quantization schemes, an alternative mapping can be obtained using first
quantization language where the particle’s statistics are included by explicit symmetriza-
tion [211, 212]. The main advantage of working in this basis presents itself in situations
where the number of particles η in the system is conserved and discretization over a large
number of fermionic modes N is required—in second quantization the required number of
qubits is at least n = N (using e.g., the JW or BK mappings described in Sec. V A 1 below),
while in first quantization this can be reduced exponentially to n = O(η log(N)) instead [213]
when N � η � 1. This reduction in Hilbert space complexity is typically accompanied by
an increase in time complexity and, for some important situations, the two descriptions have
comparable simulation performance (see, e.g., Ref. [214]). Analogous symmetry or conserved
quantity projections are also under development in simulations of gauge field theories (see
Section V A 3), and are found to increase classical preprocessing requirements.

More recently, growing interest in reducing the number of quantum gates required for
realistic simulations has led to an increasing appreciation of the potential benefits of in-
cluding stochastic components to simulation algorithms. Notable ideas in this direction
are, for example, randomizing the order of exponentials in the Trotter expansion of the
evolution operator, resulting in effective higher-order integrators [215], and utilizing the
fully stochastic compilation of Trotter evolution with the quantum stochastic drift protocol
(QDRIFT) [216] and its extensions [217–219]. Further developments toward realistic simu-
lations have leveraged EFT renormalization group (RG) ideas to prioritize the low energy
subspace in dynamical simulations [220].

Due to the finite gate fidelities of real quantum devices, an inverse relationship exists
between the number of qubits in a time-evolved system and the number of Trotter steps
feasible within the “gate fidelity coherence time”. As discussed by Martonosi and Roet-
teler [221], different algorithms for simulations with different target objectives will perform
optimally on different architectures. In particular, the scaling of the number of gates with
increasing system size for a given algorithm will determine performance on near-term de-
vices with given error rates. The important connection between gate errors and number of
qubits for pursuing computation has led to the exploration of more holistic metrics than
qubit number or error rate alone e.g., the quantum volume [222]. This metric characterizes
the performance of “square” circuits e.g., if a 5 qubit depth 5 circuit provides reliable results
(so defined from a random quantum circuit), but a 6-qubit, depth 6 circuit does not, then
the quantum volume is 25 = 32.
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FIG. 1. Schematic representation of simulation configurations defined in terms of their logical

(right panel) and physical (left panel) resource requirements on the device used for implementation.

See the text for further discussions of this diagram and example problems belonging to each region.

For this diagram, NISQ devices are considered without error correction. This figure is inspired by

those of Refs. [221, 223].

In light of the possibility of using error correction schemes to encode quantum information
in a redundant way allowing for a direct reduction of the effective error rate afflicting a
given simulation, it’s important to realize that quantum algorithms requiring seemingly very
different logical quantum resources could be implemented successfully on the same general
purpose quantum machine. In order to illustrate this point, we show in the right hand panel
of Figure 1 three indicative configurations of computational problems (denoted with labels
A,B and C) requiring different logical resources. The gray region indicates instead the regime
in logical resources we expect to be available in the near term NISQ era: a few hundred to
a thousand logical qubits and a few thousand logical operations. By means of encoding, the
problem classes defined at the logical level can be mapped to wide regions in terms of physical
resources. Provided the error rate in the physical device is smaller than the threshold for
error correction (indicated with a dashed blue line on the left panel of Figure 1), it is possible
to trade a larger number of physical qubits for lower error rates. As a concrete example,
the configurations of problems denoted as A in Figure 1 could be implemented successfully
on both a small quantum device with O(102) physical qubits and very small error rates
O(10−12) or equivalently on a large quantum device with O(105) physical qubits and much
larger error rates O(10−4). Due to the formidable engineering challenges in reducing the
limiting noise level to arbitrarily low levels, a commonly adopted strategy in the pursuit of
universal quantum computing devices e.g., as discussed by technology companies [223], is to
first achieve error rates a few order of magnitude below the error correction threshold, and
then develop larger qubit arrays that will enable scalable fault tolerance. A representative
path for this hardware development is shown as the dotted black line in Figure 1.
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While estimates of classical computing resources are well established in many areas, such
activities for quantum computing are just beginning. Research teams have undertaken
extended periods of resource estimation and coordinated algorithm development tied to
present-day simulation capabilities e.g., Refs. [187, 188, 224, 225], to reduce naive quantum
resource requirements from, in some cases, billions of device-years to a handful of device-
days. One of the common standards for performance measures and resource estimation is
the Hubbard model and other spin systems with “simple” interactions, e.g., Ref. [201]. At
this point is important to highlight the fact that problem instances depicted in both panels
of Figure 1 are necessarily narrowly defined problems with clearly stated observables and
target precision goals, examples of problems belonging to the 3 configurations depicted are:

• configuration A: computing the ground-state fermion condensate in the Lattice
Schwinger model with N = 16 − 64 lattice sites and a electric field cutoff Λ = 2 − 8
using an optimized scheme without amplitude estimation [196]

• configuration B: estimating the frequency dependent, inclusive response function with
resolutions ∆ω = 10− 100 MeV, at one value of the momentum transfer for a system
of A = O(50) nucleons described using Lattice EFT [226] with a minimal basis defined
on a 103 lattice [46]

• configuration C: minimal instance of a problem in financial derivative pricing showing
a quantum advantage [227]. The estimate is that a gate depth of 54×106 on 8K logical
qubits will be required.

With rapidly increasing focus on developing quantum algorithms to address scientific ap-
plications, and on dedicated and general purpose hardware, benchmarks and estimates of
quantum resources requirements are expected to evolve rapidly. In some instances, the esti-
mated resources will increase as our knowledge improves and näıvety recedes, but reductions
in resource requirements for quantum advantages in scientific applications are anticipated
as methodologies become more sophisticated and devices advance.

The flexibility enabled by error correction mappings inspires the viability of engineering
universal quantum devices able to tackle a variety of problems with widely different compu-
tational requirements at the logical level. For our three problem configurations, for example,
a quantum device characterized by the yellow pentagon in the left panel on Figure 1 would
be able to execute instances from all three configurations by using various levels of error
correction. On the other hand, we expect near term applications in the NISQ era to use
little or no error correction and the gray region of logical resources in the right panel of
Figure 1 will be mapped, almost unaltered, onto the physical resources. One complemen-
tary route to early success in obtaining a quantum advantage for a problem of scientific
interest is the adoption of ideas of codesign to develop special purpose architectures tailored
to specific problems 6. Codesign of special purpose machines has the potential of drastically
impacting the mapping between logical computational resources and physical ones displayed
in Figure 1. For instance, it could be possible to design a quantum device with the physical
properties denoted by the yellow star in Figure 1, which would be able to perform simula-
tions of problems belonging to configuration A more efficiently but unable to tackle problems
belonging to other configurations.

6 In the development of high-performance classical computing in the US, the QCDSP and QCDOC systems [228]

were specifically codesigned for lattice QCD, with on-chip memory and low-latency communication fabric.

These systems constituted the precursor to IBM’s successful Blue-Gene series of HPC systems. There

were parallel developments in Europe, with the APE machines [229].
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The arrival of heterogeneous classical architectures led to an extended period of time
during which scientific applications were ported from CPU-only to CPU-GPU hybrids, and
now, most of the performance resides on the GPUs and not CPUs. We anticipate the same
sort of transition in the introduction of QPUs into heterogeneous computing [230]. Even
assuming that there is a polynomial speed up to parts of the calculations, there is benefit in
identifying parts of calculations that would be accelerated by a QPU. In particular, compu-
tations of highly entangled subsystems could be performed on QPUs, while the classically
efficient elements of the computational workflow, and re-assembly of the results from the
QPUs, could be performed with classical computers. Analogous to the widespread adoption
of GPU frameworks in scientific computing aided by the standardization of the hardware
interface, standardization at both the low-level API and abstracted hardware-specific com-
pilers will provide portability and high-level approaches to quantum algorithmic design. A
variety of different framework and standards are currently being explored e.g., Cirq [231],
Qiskit [232], Qiskit Pulse [233], OpenQASM [234], xacc [235], Q# [236].

Systematic uncertainty quantification generally requires an ensemble of simulations with
strategically chosen input parameters such that extrapolation to asymptotic configurations
beyond the capability of a single simulation configuration (a hero run) can be achieved. This
ensemble maps out a surface in parameter space that enables extrapolations and interpola-
tions to reliably estimate observables of interest and their uncertainties e.g., Ref. [237–239],
injecting another layer of analysis to resource estimation. As is the case for classical cal-
culations and experimental design, designing an optimal manifold of simulations to achieve
the desired precision in observables requires planning and simulations of the simulations 7.

Part of designing the simulation workflow involves identifying and optimally interleav-
ing such calibrations with the physics simulations. While it is obvious that the nature
of the calibration is hardware dependent, they will also depend upon the structure of the
quantum circuits being executed. Simultaneous adoption of a suite of error mitigation pro-
tocols [43, 237–240] has been used to assess the reliability of the extraction of physical
quantities and their sensitivity to the specific noise properties of the device being utilized,
e.g. Ref. [46]. As NISQ-devices currently resemble experiments more than classical comput-
ers, device calibrations that are temporally correlated (integrated) with physics calculations
are valuable to in vivo monitor and subsequently identify physics data accumulated during
periods in which the device is performing within specified parameters. An example of such
“cuts” is provided in Ref. [166], where calibration circuits that measured the in-medium fi-
delity of a Hadamard gate were included to provide contextualized performance information
in initializing symmetric wavefunctions.

Another important aspect of workflow depends upon the (user defined) partitioning of
the simulation into classical and quantum components, dependent on the performance of the
QPU relative to the CPU+GPU, and the efficiency of communication between them. The
current state of the NISQ ecosystem mandates that scientific applications must include a di-
verse range of integrated controls and diagnostics of the quantum hardware, both accessible
and inaccessible to the users. In addition to making available the first cloud-accessible quan-
tum computers, IBM Q Experience [41] provides regular calibration data for each of their
superconducting quantum systems, built-in functionality for some error mitigation protocols,
and access to pulse-shaping for gate optimization through their Qiskit [232] programming
environment—demonstrating a successful path (and potential template) for co-design col-

7 While hero runs are not the pure focus of simulation, they may be the relevant mode of operation for

other quantum applications.
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laborations with universities and national laboratories toward scientific applications.

IV. COMPLEXITY CLASSES IN CONTEXT: ASYMPTOPIA VERSUS

REALITY

A. Asymptopia: The Utopia of Infinite Resources

No discussion of quantum resources would be complete without considering complexity
classes in the formal sense of computer science, see e.g., Refs. [241–244]. The scaling of
computational resources required to determine a given observable with increasing system
size for asymptotically large systems and resources defines the complexity class within which
the observable resides. For instance, the P class (PTIME) contains all problems that re-
quire computational time scaling as a polynomial of systems size (on a deterministic Turing
machine), and is loosely defined by the set of problems that can be solved efficiently. In
some cases, the assignment of problems to complexity classes depends on the performance
of known algorithms, though not all classifications provide constructive guidance. Because
classical complexity classes, defined with respect to Turing machines (deterministic or non-
deterministic), do not capture the scaling of problems addressed with quantum devices,
additional quantum complexity classes have been introduced. For example, BQP is the
complexity class containing problems with solutions of bounded-error requiring polynomial-
scaling time using quantum resources. Since a quantum circuit can simulate a classical one,
both P, and it’s probabilistic generalization BPP, are contained in BQP. Jordan, Krovi,
Lee and Preskill [245] have shown that scattering within interacting scalar QFT with exter-
nal classical sources lies within BQP-complete, indicating that all problems in BQP can
be mapped to scattering in scalar QFT with polynomial-scaling time to solution, and fur-
ther that the scattering problem itself is in BQP and thus efficiently simulatable quantum
mechanically.

While it would have been convenient if all scientifically interesting problems were in BPP
or BQP, the unfortunate fact 8 is that they are likely not. Many important problems lie
in NP (nondeterministic polynomial time), requiring beyond polynomial resources to solve
(assuming P 6= NP) but only P resources to verify solutions. The quantum generalization
of NP with polynomially intractable problems is denoted by QMA, and problems belonging
to this class are not expected to be solved efficiently even with a quantum computer (unless
BQP=QMA). Similar to the NP-completeness of finding the ground state energy of a
classical Ising spin glass due to an exponentially vanishing gap to the first excited state
(see e.g., Ref. [246–248]), the problem of determining the ground state energy of a k-body
Hamiltonian is QMA-complete for k ≥ 2 [249]. A k-body Hamiltonian (often referred to as
a k-local Hamiltonian in the computer science literature, though no sense of spatial locality is
intended 9) is defined as an operator that admits a decomposition into a polynomial number
of terms acting individually at most on k-qubits. Interestingly, the 2-body Hamiltonian
problem was shown to be QMA-complete [249] also when restricted to spatially local
interactions on a 2D grid. These results show that it will not be possible to solve efficiently for
ground-state energies of even simple Hamiltonians in general, similar to the NP-hardness
of a general solution to the sign problem in Quantum Monte Carlo methods [248].

8 This fact may be rather fortunate if this complexity is essential to support life.
9 The most interesting aspects of k-localcs (as defined by computer scientists) systems to physicists are

likely the k-nonlocalphys attributes induced by entanglement.
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It is important to point out that membership to a particular complexity class is a state-
ment about the worst-case instance of a particular problem, and does not necessarily reflect
the average- or best-case. A great example of this dichotomy between average case com-
plexity and worst-case complexity is the Minesweeper game: in this game, players are given
a 2D lattice with L2 sites containing M mines. When a site without a mine is uncovered,
the site is assigned a numerical value corresponding to the number of neighboring mines.
The goal is to uncover all sites not containing mines using inference from an initial set of
uncovered sites. This problem has been shown to be NP-complete [250] (or more precisely
co-NP-complete [251]) and therefore extremely hard to win in the worst case scenario. For
those who have played Minesweeper, this result may clash with practical experience, in
which the game can often be solved very quickly. An important structural property of the
Minesweeper game is the mine density ρ = M/L2, and it was recently argued that a com-
plexity phase transition occurs once the mine density exceeds a critical value ρc [252]. At
small mine density, the game is typically easy and inference can be carried out locally on
the lattice. As the critical mine density is approached, successful inference of the mine’s
location requires consideration of lattice patches approaching the full volume of the lattice,
causing solutions to become expensive to find. This “frustration effect” shows up in certain
regimes of a class of NP-complete problems, for which a prototypical example is the phase
transition in random k-SAT problems [253]. This discussion draws obvious analogies with
chiral symmetry breaking, confinement, and the QCD phase diagram, where transitions are
accompanied by the delocalization of natural degrees of freedom capturing the microscopic
properties of quarks and gluons.

B. Bounded Error: Uncertainties and Approximate Simulations

To effectively connect quantum simulations of SM observables to experiment, a complete
quantification of uncertainties is required. Lattice QCD calculations have established well-
defined uncertainty quantification methodologies (for a review, see Ref. [254]), in addition to
demonstrating the benefits of independent teams of researchers and code developments, and
comparable access to independent computing environments. Lattice QCD is a low-energy
EFT of QCD that can faithfully reproduce low-energy QCD observables. Such simulations
involve discretizing volumes of spacetime, introducing a lattice spacing, and bounding a
spatial extent in each of the four spacetime directions. Therefore, observables will neces-
sarily deviate from their QCD value. In addition, as simulations only involve dimensionless
quantities, an overall length scale is required to be determined, along with input values for
the quark masses. This is typically achieved by making comparisons with a small number of
precisely known experimental quantities, such as hadron masses. Such tunings are imperfect
and iterative, and introduce further deviations from QCD values. EFTs, such as p-regime
chiral perturbation theory (χPT), play an essential role in post-computational processing
of simulation results to make reliable predictions of QCD with fully quantified uncertain-
ties (see, e.g., Ref. [255] for mesons and Ref. [256] for nuclei and multi-nucleon scattering
systems). For small enough lattice spacings, compared with the QCD scale and external
kinematics, the Symanzik action [257, 258] includes the structure of the gauge-invariant op-
erators that may be introduced into the simulation (dependent upon the nature of the field
discretization) to compensate for the finite lattice spacing in each direction, or alternately
dictate the nature of the power-series in the lattice-spacing(s). While the quark-mass de-
pendence of a number of low-energy observables is known from χPT, or HQET, calculations
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are typically performed in the neighbourhood of the physical point (or the mass points of
interest) and interpolations are performed to mitigate tuning errors. On top of systematic
errors, there are statistical errors and the range of behaviors of observables with sampling.
The extraction of energies and observables requires sufficient statistics (sampling of gauge
configurations) to recover correlation functions with sufficient precision to be able to fit
relevant quantities with controlled estimates of mean values, statistical uncertainties and
systematic errors.

For quantum simulations, there are further systematic errors associated with the quantum
hardware and the qubit representation of the simulated system. Mapping bosons onto a finite
Hilbert space introduces digitization errors and field truncation errors, to be quantified
and/or mitigated. There are errors associated with state-preparation (similar to source
structure in Euclidean space, which may inform quantum simulations), and measurement,
and both are at early stages of being understood and quantified. Other sources of error that
must be quantified are device noise and field pixelation (operator smearing) on quantum
correlations (i.e., the structure of entanglement between separated regions of a latticized
field, e.g. Ref. [99, 100]). The systematic and statistical uncertainties associated with a
quantum simulation (determined by the device, algorithms and theoretical framework) can
be written as,

ε(t) ∼ εth. + εa + εL + εθ + εM + εMeas. + εops. + εdigital + εΛ + εTrotter + εNoise , (3)

where {εth., εa, εL, εθ, εM , εMeas., εops.}, associated with the theory, lattice spacing, volumes,
parameter tuning, scale setting, measurements and operator structures, are familiar (but
some will be handled differently) from classical simulations. The εdigital, εΛ, εTrotter, εNoise

associated with field digitization and mappings, truncations in field space, Trotterized time
evolution, and device noise, are further sources of uncertainties that need to be quantified.

The statistical behavior of an observable, and how it is constructed from ensemble mea-
surements, is another important feature of algorithmic design. With direct access to the
wavefunction of a system not practical (tomography scaling exponentially with system size),
optimizing observable estimators is essential for efficient use of quantum simulation (as it
is classically). Cancellations between contributions to expectation values can create sign
problems at the measurement stage of a calculation, exacerbating the number of circuit exe-
cutions required to achieve a given precision e.g., Ref. [259]. Because the statistical structure
of the measurements is mapping (basis) dependent, it is possible that circuit design and algo-
rithms with less favorable asymptotic scaling may provide compensating enhanced statistical
convergence.

C. Reality: Hacking Bounded-Error Quantum Simulations

The complexity classes of SM observables will determine the observables that can be
computed with arbitrary precision using combinations of classical and quantum resources.
However, if they lie outside P or BQP, it does not mean that significant progress, and
potentially all of the required progress, cannot be made in addressing important problems,
gaining significant physical insights and even proposing new experiments. Explicitly, some
observables formally in P may scale with a sufficiently high-order polynomial that they are
unreachable with the requisite precision for foreseeable computers, while some in NP or
QMA may scale benignly for small or modest system sizes, enabling computations with
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“sufficient” precision to have near-term or long-term impact. The impact of any given
simulation is limited by its precision, not only of the computation, but also of the theory
input into the simulation. Scientific simulations have progressed organically with simula-
tion providing results of precision ε(t) (where the superscript t denotes total uncertainty at
the time of the simulation). Once ε(t) is specified, there is freedom to define approximate
(perturbatively-close) theoretical inputs and tolerances of the computation, to furnish a re-
sult that lies within ε(t) of the true result. So, for bounded-error simulations, with a target
tolerance ε(t), as is the case with quantum devices, the input theory (model or EFT) can
deviate from the target theory, provided that the induced errors are ≤ ε(t). This builds
upon the recognition that only a subset of possible quantum observables are required to be
simulated e.g., low-energy scattering amplitudes and not amplitudes up to the Planck scale,
which leads to the employment of EFTs and phenomenological models 10.

Leveraging lower-complexity leading order interactions has enabled classical simulations
to make significant progress in addressing problems formally beyond the reach of classical
computing. The SM has many examples of QMB and QFT systems that are amenable to
such perturbative expansions centered on lower-complexity leading orders:

• Density Functional Theory (DFT) is a highly successful framework for nuclear struc-
ture and reactions (see e.g., Ref. [260]). The foundational result upon which DFT
is based is the Hoenenberg-Kohn theorem [261], which states that the problem of
determining the ground state energy of QMB or QFT systems can be replaced by
an equivalent optimization problem over one-body density matrices ρ using an ap-
propriate functional F [ρ] as a cost function. Central to the accuracy of the method
is the availability of accurate approximations to the functional F since, once this is
available, the optimization can be usually carried out efficiently in P. At first glance,
this seems at odds with the observation that estimating ground state energies of even
simple 2-body Hamiltonians is QMA-complete. Indeed, it is possible to show that,
even though a DFT calculation is usually tractable once the functional F is known,
finding an accurate functional is a QMA-complete problem [262]. However, with
the guidance of physical understanding and experiment, approximate functionals of
sufficient quality to reproduce observables like binding energies within a given accu-
racy can often be found—nature hacking complexity. The QMA classification in this
case is thus a statement about the intrinsic difficulty of designing functionals capable
of arbitrary precision in general.

• Low-energy nuclear forces approximately manifest Wigner’s emergent SU(4) spin-
flavor symmetry [263, 264] (which also emerges from large-Nc considerations [265],
vanishing entanglement power considerations [73], and from lattice QCD calcula-
tions [77]). Quantum Monte Carlo simulations of multi-nucleon system ground states,
e.g., using the pionless EFT, generally exhibit a sign problem. Because the sign prob-
lem vanishes in the limit of SU(4) symmetry, successful hybrid schemes exist involving
“pre-conditioning” systems with the SU(4) symmetric interactions followed by imple-
mentation of the full interaction, mitigate the impact of the sign problem [266]. This
process identifies a leading order part of the QMA calculation that is in BPP, and
perturbatively estimates the full result to fixed precision.

10 An implicit distinction in motivations for developing simulations of arbitrary Hamiltonians and domain

science applications.
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• Nuclear structure has been tremendously impacted by Green’s Function Monte Carlo
(GFMC) calculations of light nuclei (see Ref. [267] for a review). Despite requiring
exponentially increasing resources with baryon number, for an extended period of
time, GFMC was able to provide accurate results for system sizes not reachable with
polynomially-scaling algorithms, such as Coupled Cluster. This balance of practical
computational power has almost entirely reversed in recent years due to the adoption
of low-resolution interactions (derived from chiral-EFT [192, 193, 268–273]) and RG
techniques [192, 193, 274] (see, e.g., Ref. [275] for a recent review).

• Current lattice QCD calculations indicate that:

– Computing the mass of the pion to a given precision can be accomplished effi-
ciently at scale, consistent with residing in BPP

– The exponentially degrading signal-to-noise at late times in nucleon and multi-
baryon correlation functions [276–278] (a sign problem) currently suggests [248]
that the Quantum Monte Carlo computation of the binding energy of nuclei lies
outside of P and BPP.

Through its connection to the Hubbard model, finding the ground state of the pio-
nless EFT is among the hardest problems in QMA [262, 279], and therefore, it is
likely that lattice QCD calculations of nuclei lie in QMA or beyond in PSPACE.
However, calculations of energies and properties of smaller nuclei, which have been
demonstrated [280], permit the bounded-error extraction of counterterms in nuclear
EFTs [281–284]. These results may be then used to compute the energies, properties,
and low-energy dynamics of somewhat larger nuclei [256] (for reviews on this subject,
e.g., Ref. [278, 285–289]).

• Heavy-quark systems (exhibiting heavy-quark symmetry for mQ →∞) are comprised
of one or more heavy quarks, Q, and light degrees of freedom. Leading order wave-
functions of Ql-mesons are a tensor product, |Ql〉 ∼ |Q〉⊗ |l〉. The higher-order 1/mQ

contributions to observables can subsequently be included in perturbation theory from
this wavefunction. Powerful theorems, such as the Adellmolo-Gatto theorem [290] and
Luke’s theorem [291], ensure that leading order results in the symmetry breaking pa-
rameters are known without model dependence, and that symmetry breaking in cer-
tain matrix elements is suppressed by two powers of the breaking parameter. Further,
any model dependence or parameters that need to be computed elsewhere enter at
higher orders in the perturbative expansion(s), and associated uncertainties are thus
parametrically smaller than leading order.

• The parton model characterizes hadronic structure and processes at high momentum
transfer. The scale invariance of QCD in this regime, due to asymptotic freedom at
short distances, allows many QCD processes to factorize at leading order in pQCD,
providing a foundation for the systematic inclusion of higher order corrections. In
such situations, classical computing has been proven effective in computing higher-
order matrix elements with the required precision to advance experimental programs.

For quantum simulations, this hacking of bounded-error complexity classes through pertur-
bative changes to the theory is only now beginning. For example, precision first principles
calculations of fragmentation lie beyond the reach of classical computing. It is also expected
to lie outside of BQP, due to final state complexities, but perturbatively addressable with
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simulations that lie within BQP. The use of Soft-Collinear EFT (SCET) [292–294] may en-
able simulations within desired error bounds (though this remains to be demonstrated) [295].
For such hacks to be successful, problems should be broken up into a large part that resides
within BQP and can be performed efficiently on a quantum device, and a perturbative part
(containing the terms that place the problem outside of BQP).

D. Bottom Line: Enhancing Leading Order Complexity

Remarkable progress has been made toward understanding nature through the SM even
for problems that reside in complexity classes formally beyond the capability of classical or
quantum computers. This progress has been enabled, to a large degree, by points of en-
hanced symmetry exhibiting reduced complexity. In such instances, nature has been “kind”
to us by providing Hamiltonians that can be separated into “large” and “small” parts for
the observables of interest. This separation has been enabled by the identification of approx-
imate symmetries of the systems, with the “large” part(s) invariant under the symmetries,
and the “small” part(s) breaking the symmetries. Generally, and in hindsight, these symme-
tries are identified by eliminating entanglement and identifying perturbatively close tensor-
product states. However, examples of expanding about leading-order entangled states are
known [192–194], resulting from a non-trivial fixed-point in RG flow. For classical comput-
ing, the challenge has been to find symmetries that place leading order approximations into
P or BPP with a controlled perturbative expansion that sufficiently converges. For quan-
tum computing, the leading order symmetries need not eliminate entanglement. Instead,
incorporation of quantum devices will allow the advantage of addressing important QMA-
complete SM applications from the standpoint of leading order approximations residing in
BQP. A nice example of this strategy can be found in low-energy nuclear structure where
nucleon-nucleon correlations can be self-consistently included into a more effective single
nucleon basis [71], perhaps distilling the leading-order consequences of entanglement from
a QMA-complete problem into one that is in BQP. Broadly, identification of the leading
order entangled systems of enhanced symmetry presents an exciting challenge.

At this early stage of development of quantum simulation, asymptotic scaling does not
conclusively determine the reach of present day or near-term calculations, including beyond
the NISQ-era into the period where error-correction becomes routine. While a better un-
derstanding of the formal asymptotic scaling of classical and quantum resources required to
address challenges facing the SM is important, it will not be the sole consideration in iden-
tifying goals for near-term quantum simulation, as important progress may be achievable,
possibly even with demonstrations of quantum advantages, for problems that lie outside
BQP.

V. QUANTUM TECHNIQUES AND THE STANDARD MODEL

A. Mapping Quantum Fields to Quantum Degrees of Freedom

The mapping one chooses to represent a quantum system of interest with quantum com-
putational degrees of freedom will dramatically impact the quantum resources required. In
particular, the representation will affect the cost of all steps in a quantum simulation from
the entanglement structures created in initial state preparation, to the interactions needed to
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perform time evolutions, to the distribution of information desired to be probed in the final
measurement procedure. It is expected that the basis-dependent property of entanglement
may guide the development of intuition in mapping fields onto quantum degrees of freedom
(see Section II B 6). Furthermore, exploring the repercussions of various representations
informs theoretical flexibility to codesign simulations.

A basic question to consider in quantum simulation design (that has begun to be ad-
dressed in the application to fields) is Where is the Line, referring to the flexible partition-
ing of computational responsibility between the quantum device and the large-scale classical
resources to which it will be symbiotically married. One category of explorations shifting
this line has been in state preparation e.g., through the use of quantum devices to optimize
the design of interpolating operators for classical LGTs [296], through the use of classical
snapshots of a volume set by the correlation length scale to inform state preparation on
quantum volumes capturing many correlation length scales [167, 168], or through purely
quantum techniques inspired by the structure of classical tensor network design [297]. A
second category of explorations shifting the line is in the basic representation of the field.
The influential papers of Jordan, Lee, and Preskill (JLP) illustrated an efficient approach
for expressing real-time dynamics of scattering events quantum mechanically [159, 160].
With polynomial resources in particle number, energy, precision, and volume, a microscopic
description of interacting scalar field theory represented by local qubit degrees of freedom
was shown to produce final state probability distributions that reflect, to systematically
controlled precision, the exact probability distributions that would be experimentally ob-
served. Further inspiring the use of quantum devices for this purpose, recent quantification
of computational complexity in tensor network simulation of inelastic false-vacuum bubble
scattering illustrated a growth of entanglement at high energies and multiple scatterings [67],
clearly connecting quantum effects to the voracious consumption of classical computational
resources in scattering processes. As algorithms for the quantum implementation of mi-
croscopic time evolution operators continue to progress, a complementary perspective from
EFT descriptions is under development [295, 298, 299], utilizing quantum devices to address
non-perturbative physics isolated in EFT descriptions of gauge field dynamics e.g., of parton
showers, high multiplicity final states, or soft functions of SCET. As a reliable methodology
for systematically isolating energy regimes, the demonstrated synergy between EFTs and mi-
croscopic quantum simulations of fields is expected to reduce quantum resource requirements
by multiple orders of magnitude and offer a clear route for integration of quantum devices
into existing computational frameworks of experimental impact. Conveniently, the dynami-
cal techniques developing for the microscopic simulation of gauge theories are closely related
(often identical) to those leveraged for the calculation of real-time non-perturbative matrix
elements within EFT descriptions. As such, explorations considering different quantum-
classical partition lines may be explored in parallel, to mutual benefit, without concern of
obsolescence dependent on the trajectory of quantum hardware development.

1. Fermions (quarks, neutrinos, electrons, nucleons)

A standard approach for the mapping of fermion degrees of freedom onto qubits is the
Jordan-Wigner (JW) transformation [300], which associates one qubit with each fermionic
mode in the system. Fermi statistics are enforced by mapping the creation/annihilation
mode operators of the fermions into products of Pauli matrices acting on multiple spins [301,
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302],

c†i =
i−1∏
k=0

Zkσ
+
i ci =

i−1∏
k=0

Zkσ
−
i , (4)

where the labelling underscores a global ordering of the fermionic modes. In this notation,
Zj is the Pauli-Z matrix acting on the qubit representing the jth fermionic mode, while
σ±j = (Xj ± iYj)/2 act as bosonic creation/annihilation operators.

Due to the underlying 1-dim structure in the JW transformation, even for locally interact-
ing systems in more than 1-dim, the resulting qubit Hamiltonian will typically contain long
range interactions acting non-trivially on O(n) qubits, which prevents the use of algorithms
that are optimal only for local theories e.g., Ref. [198]. This problem of induced non-locality
caused by the mapping of fermions has received a considerable attention. An alternative
approach is the Bravyi-Kitaev (BK) mapping [303, 304] which, similar to JW, requires the
same number of qubits as fermion modes, but reduces the induced non-locality exponen-
tially to O(log(n)). There are also various mappings employing additional auxiliary-qubits
with the goal of reducing this non-locality by exploiting the connectivity of the underlying
Hamiltonian [305–309]. Notably, some fermion mappings might present different advantages
than the locality of the resulting spin interactions e.g., the ternary tree construction from
Ref. [310] allows for an efficient extraction of k-qubit fermionic density matrices, while the
BK-superfast transformation [303, 311] has useful error-correcting properties [312] but re-
quires additional auxiliary qubits. Finally, it is important to point out that the presence of
long strings of Pauli operators in JW mappings do not necessarily increase the computational
cost in some situations e.g., fermionic swap networks [190].

2. Scalar Fields (The BQP-Complete “Gold Standard”)

Encoding continuous quantum fields, such as scalar and gauge fields, into quantum simu-
lations presents different challenges and opportunities than the inclusion of fermions. Wave-
functions can be encoded in the amplitudes of states in a Hilbert space i.e., the states provide
a binary representation of the digitized argument of the wavefunction while their amplitudes
provide the corresponding value of the wavefunction. To be concrete, let us consider scalar
fields as their mapping onto qubits is the best understood scenario in the context of QFT.

The objective of any such mapping is that observables of the continuum field theory are
recovered in the limit of vanishing discretization of spacetime and of the field. The pioneering
work of JLP [159, 160] established a mapping that mirrors that of classical lattice scalar field
theory, but with the continuous field values at each spatial lattice site replaced by a quantum
register of nQ, describing 2nQ values of the field. For a lattice of spatial extent L in each direc-
tion, the total number of qubits for such a simulation is n = nQL

3. In the JLP basis, states in

the computational Hilbert space correspond to eigenstates of the field operator φ̂|φ〉 = φ|φ〉
at each lattice site. After rescaling the Hamiltonian, a (symmetric [164]) mapping can be
defined in terms of the maximum value of the field, φ(k) = φmax (−1 + 2k/(2nQ − 1)), where
k = 0, 1, ...2nQ − 1. A simulation of high-fidelity requires that, at some level of precision,
the support of the field wavefunction at each site, ψ(φ(x)), is contained within site registers,
requiring an iterative tuning of the actual mapping based upon low-resource simulations for
the interacting QFT, or direct evaluation for the non-interacting theory. At this point, a
connection can be made with the Nyquist-Shannon sampling theorem. With uniform sam-
pling of φ(x) in both field and field conjugate momentum spaces over the regions of support,



28

the digitized representation of φ and static/dynamical observables can be computed with
precision improving exponentially with increasing number of states at each site [159–164].
This translates into a qubit requirement scaling as nQ ∼ log log (1/ε), where ε is the upper
limit of tolerable systematic error. The systematic errors remaining from the spatial dis-
cretization that are encountered in classical lattice field theory simulations are also present,
requiring n ∼ log (1/ε). One of the enjoyable features of this position-space mapping is
that on-site and nearest-neighbor interactions are required for simulation, and only a small
number of “layers” of unitary operations are required for a complete step in Trotterized
time-evolution [159, 160]. Instead of eigenstates of φ̂ to define the field at each site, states
digitizing Hermite polynomials [161–163] or directly associated with eigenstates of a har-
monic oscillator could be used [164]. The oscillators could be tuned to optimize support of
ψ(φ(x)) with low-resource simulations, and the dimensionality of the space could be used
to define the lowest 2nQ levels of the truncated oscillator.

The direct use of spin systems for mapping fields onto quantum registers leverages the
fact that the minimal requirement for a legitimate mapping is recovering the correct con-
tinuum physics in the limit of vanishing discretization and digitization. In particular, the
approach to the continuum limit is generally mapping dependent. For scalar field theory
(with on-site wavefunctions that have bounded support in field and conjugate-momentum
space, up to exponentially small corrections), the Nyquist-Shannon sampling theorem pro-
vides double-exponential convergence, with respect to an increasing number of qubits per
site, of field digitization. This supplements the single-exponential convergence of simulating
the field with conventional lattice systematic uncertainties. An alternate spin-system moti-
vated mapping with one or two qubits per site makes implicit use of a space-spin RG-blocking
to recover the space and field continuum limits. By mixing space-space and field-space, the
convergence of this latter mapping is expected to be single-exponential. As discussed pre-
viously, this anticipated RG-flow is at the heart of QLMs [313, 314]. Identifying efficient
mappings for NISQ and beyond quantum simulations is an important line of investigation,
and is already starting to provide some interesting results, e.g., Ref. [315]. Classical sim-
ulations of a 1-dim Heisenberg comb with two qubits at each lattice site suggest that the
continuum limit of the asymptotically free nonlinear O(3) sigma model could emerge, and
that NISQ devices may have utility in further demonstrations [316, 317].

3. Abelian and Non-Abelian Gauge Fields: Toward Lattice QCD

A main target of quantum simulation is QCD, and in particular the observables that
cannot be accessed with sufficient precision using classical computing [30]. The simulation
of gauge theories requires the incorporation of abstract spaces and local symmetries at lat-
tice sites and the links between them (a thorough review of quantum simulation of LGTs
can be found in Ref. [318]). It is well understood how to address the internal symmetries
and different forms of inter-site couplings for classical simulations, and also for quantum
simulation using lattice Hamiltonians, but conclusive determinations of optimal field repre-
sentations and algorithms for implementation on quantum devices continue to be developed
(for a recent review, see e.g., Ref. [319]), in parallel with ongoing developments in the devices
themselves. The wisdom gained and algorithms explored in the process of simulating scalar
field theory are expected to be valuable in developing simulations of, e.g., SU(N) Yang-Mills
gauge theories, QCD and O(N) models.

In the case of gauge-field theories, the action-angle variables are one convenient path
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for mapping the Hamiltonian to a discrete Hilbert space. While one can digitize directly
the angle variables in a way analogous to the scalar field in a curved higher-dimensional
space, for instance, using discrete subgroups of SU(N) [320–323], making a somewhat direct
connection to path integral Monte Carlo methods in Euclidean space, the action variables
alternatively correspond to irreducible representations of the gauge group and provide a
convenient means to define the Hamiltonian and states associated with the link operator, i.e.
eigenstates of the electric operator. The Kogut-Susskind Hamiltonian [324, 325], formulated
in terms of the Casimir and plaquette operators acting on a lattice of links defined in
the electric basis, is such a construction for SU(N) gauge field theories, and has been the
focus of much recent work. First examined in the context of SU(3) quantum simulation
by Byrnes and Yamamoto [195], tensors defining the irreps of each local SU(N) can be
mapped to the states in local Hilbert spaces i.e., tensor indices mapped to quantum registers
localized on each link. For a given lattice spacing (coupling), the dimensionality of the local
Hilbert space can be increased to achieve the desired precision in calculating observables
of interest, with decreasing lattice spacing demanding an increasing number of irreps of
SU(3) on each link in the electric basis. After exploiting the local gauge symmetry to
integrate over the abstract space at each site [326–328], Yang-Mills theory can be written
entirely in terms of wavefunctions of link variables defined by a basis of integers, (p, q),
that define the number of upper and lower indices of each irrep of SU(3). Truncation
of each index register at some maximum value, Λp,q, causes the SU(3) lattice to become
defined by connected pairs of (Λp,q + 1)-dimensional Hilbert spaces with nearest neighbor
connectivity [328]. Such requirements point naturally to considering qudits, as opposed to
qubits, assigned to each link. Most architectures currently being pursued for qubit design
aim to isolate two-level quantum systems from higher-dimensional spaces, allowing natural
access to qudit structures in e.g., trapped-ions [329, 330], photonics [331], ultra-cold atoms
and molecules [332], and SRF cavities [333, 334]. Whether providing intermediate theoretical
organization or asymptotic scaling advantages [335], it appears that codesign of such systems
for application to QCD, using a mapping of the Kogut-Susskind Hamiltonian with integrated
local gauge spaces, may be an interesting path forward.

Beyond this originally considered multiplet basis of electric irreps, a cornucopia of bases
and strategies for quantum simulation with local non-Abelian gauge symmetry continues
to be developed—an abundance crucial for the hardware-software codesign necessary to
efficiently interface with rapidly developing quantum technologies and crucial for assessing
the effects of systematics when calculations extend beyond the reach of classical confirmation.
One alternate formulation of non-Abelian LGT amenable for quantum simulation (though
not originally designed for this application) is quantum link models (QLMs) [314, 336–
341], with a number of concrete proposals for implementation on quantum devices e.g.,
Refs. [342–345]. The idea of QLMs is that the intrinsic building blocks of the lattice are few-
spin systems with appropriate symmetry and commutation relations. While the link Hilbert
spaces are never extended as a function of the coupling, making them attractive for near term
quantum simulation [316, 317, 344, 346–350], effective degrees of freedom of a continuous
field at each spatial site in a corresponding Kogut-Susskind lattice may be interpreted as
distributed across a coupling-dependent volume of the lattice. Though their approach to the
continuum and the associated systematic errors remain to be quantified within simulations,
RG-flow of QLMs is expected to recover the predictions of QCD if they reside in the same
universality class and with appropriate simulation tunings to the critical point. Progress
has been made more broadly using spin systems as sandboxes for exploring algorithms and
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techniques to facilitate quantum simulations of field theories. While ground state preparation
is of considerable interest for spin systems, they also admit scattering of wavepackets or
kinks, and allow for detailed studies of the evolution of entanglement and energy density
e.g., [67, 351–353]. Spin systems also provide a laboratory for building “particle detectors”
within simulations. Recent work using trapped ion and superconducting qubits systems has
shown that measuring time delays in wavepacket scattering between interacting and non-
interacting theories can be used to extract elastic phase shifts even with NISQ devices, a
step toward calculating S-matrix elements from real-time dynamics [353]. Interestingly, the
entanglement entropy is found to increase through multiple elastic collisions; adding a cubic
interaction enabled the production of ballistic particles during kink collisions, providing
parallels with fragmentation in hadronic collisions [67]. Studies of confinement between
magnetic domain walls have been carried out in spin models, where it has been shown that
confinement suppresses information propagation [351], with obvious impacts beyond the SM.

Another approach for reducing the near-term qubit requirements for representing gauge
fields in 1-dim, and the approach used in the first quantum simulation of the Schwinger
model [40], is to integrate out the gauge field, trading non-local interactions for only fermionic
degrees of freedom. This simplification expresses the lattice only through its fermionic de-
grees of freedom, alleviating the necessity of digitizing the continuous manifold of the lo-
cal gauge field. While the purely-fermionic formulation is only available in 1-dim (where
the gauge field is non-dynamical) [319], it has been demonstrated that a formulation in
terms of purely bosonic degrees of freedom is both possible and likely to be experimen-
tally fruitful [354–356]. There are also harmonic-oscillator-inspired formulations of gauge
theories that may be amenable to quantum simulation including orbifold lattices [357] and
Schwinger bosons [358, 359]. The latter of these formulations has evolved into the loop-
string-hadron (LSH) formulation [360, 361] utilizing fundamentally gauge invariant degrees
of freedom to analytically trade non-Abelian Gauss law constraints for Abelian ones, a
feature that is likely to be advantageous in experimental connections e.g., cold atom quan-
tum simulators have demonstrated reliable expression of local Abelian symmetries [362–
365]. Also underway are explorations utilizing the light front formalism [366–369], or using
measurement-based techniques and quantum sensors to extract correlation functions and
the generating functional [370–372]. Furthermore, there are hybrid proposals that natu-
rally map the gauge symmetry onto a fundamental conservation of angular momentum in
the architecture of ultracold atoms [373, 374], or that map the bosonic modes of the gauge
field to local phonon modes in the architecture of trapped ions [375]. Beyond the basic
realization that quantum devices will always be embedded in large classical ecosystems for
device operation, error correction, and optimal use of quantum resources, such works illu-
minate the potential of hybrid and heterogeneous architectures as potentially advantageous
for simulations of LGTs.

In addition to the quantum resources required for performance of time evolution on
idealized quantum hardware, the choice of basis or field representation can dramatically
affect the ratio of gauge-invariant to gauge-variant Hilbert space, modifying the sensitivity
that a calculation will have to inevitable errors and noise experienced by the quantum device.
For example, gauge field integration available in (1+1)-dim removes all gauge-variant space
from the computational Hilbert space of the hardware [40], while the local group integrations
of the multiplet basis or transformations to gauge-invariant degrees of freedom with Abelian
constraints in the LSH formulation both dramatically reduce, but do not completely remove,
the gauge violating Hilbert space. Beyond simple dimensionality, mappings can vary in their
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available techniques for error mitigation. In particular, paralleling analyses of quantum
error correction codes, the array of gauge field quantum representations will exhibit varying
“code distances”, or error separations between gauge-invariant states through the gauge-
variant volume, determining the ability to reliably correct gauge-violating errors if they are
detected [376]. Of particular interest in this direction has been the dynamical generation
or protection of gauge invariance from coherent sources of error [350, 377–383] through the
introduction of low-body potential terms, creating effective Hamiltonians with the desired
gauge invariance emerging robustly. Optimizing theoretical and software strategies for the
simulation of gauge theories in the high-dimensional landscape of state preparation, time
evolution, and measurement resources, robustness to quantum noise, and isolation of the
gauge invariant space will be an active process in perpetual communication with progress
in experiment and device design.

B. Quantum Fields for Quantum Information

As a purist motivation for focusing on the quantum simulation of fields, it is expected
that the quantum mechanical complexity at play in atomic scale and larger systems will be
commensurate with that in subatomic and smaller systems. Thus, precision control of the
former may enable efficient calculation of emergent properties of the latter, in particular
with resources that no longer scale exponentially with volume. A concrete example of this
commensurate scaling can be seen in the identification of vacuum-to-vacuum matrix elements
in a self-interacting scalar field with classical external sources to be a BQP-complete
problem [245]. In this direction, the relevance of fields for quantum simulation is not limited
to relativistic fields describing the dynamics of the building blocks of the SM, but also applies
to non-relativistic systems, such as EFT descriptions of low-energy physics. From a less-
purist perspective, the variety of qubit arrays that are being developed in laboratories around
the world e.g., 2-dim arrays of implanted atoms in instrumented silicon substrates, ultracold
atoms in optical lattices, ion lattices, superconducting circuit ladders and arrays of Josephson
junctions, are the closest physical systems to latticized quantum fields that have been created
to date. As such, the BQP-completeness of the scalar field [245] potentially indicates a
natural language for quantum computation—any problem (physics or beyond) that can be
efficiently calculated on a quantum device can be efficiently mapped to a scattering problem
in scalar field theory, which itself is efficient to implement on a quantum device [159, 160].
One step further lies the connection with quantum error detection/correction, where the
quantum information used to compute is embedded in topological excitations of a gauge field
or a bulk holographic dual [384, 385], both providing a redundancy to enable robustness to
local environmental perturbations. So, whether one is interested in fundamental simulations
of nature or large-scale quantum computations more broadly, the QFT language provides a
natural framework.

Typically considered to be in the realm of condensed matter, quantum spin liquids repre-
sent an important connection between research areas, bringing together QFTs, spin models
and the distribution and protection of quantum information (for a review, see Ref. [386]).
While there are a number of candidate systems to provide logical qubits and quantum mem-
ories, as reviewed in Ref. [387], Kitaev’s Toric Code [27] (and subsequent surface codes
exploring alternate boundary conditions [388–391]) represents perhaps the first and clearest
connection between these areas of research. In its simplest form, a 2-dim system of spin-1

2
spins defining the links of a square lattice is subject to a Hamiltonian with vertex operators
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(stars), plaquette operators, and periodic boundary conditions. The ground state of the
system is topologically ordered and consequently highly entangled, supporting two logical
qubits defined by the action of Wilson-loop operators in the two directions. These topolog-
ical states are robust against errors (local perturbations) below some threshold, which can
be corrected by measuring n− 4 independent stabilizers (commuting star and plaquette op-
erators) and using decoders to determine an effective set of operations to restore the system.
Reducing the number of independent stabilizers allows an increased dimension of the code
space at the expense of error robustness. The quasi-particle picture is a convenient way to
understand the behavior of these systems and errors. Localized errors create quasi-particles
in the system and error correction corresponds to annihilating quasi particles, returning the
systems back into the code space (ideally without inadvertently producing a logical error).
Excitations above these ground states are (non-local) pairs of electric charges and pairs of
magnetic vortices. The anyonic nature of these excitations and their braiding points to the
high-degree of underlying entanglement of the ground state(s), and as such, local operations
are unable to resolve which state of the (logical) ground-state space the system is in. An
auxillary spin can be included at each lattice vertex to transform this system into a Z2

LGT, of similar form as the Kogut-Susskind Hamiltonian for SU(N) LGTs (for a review,
see Ref. [392]), and generalizing in detail to SU(N) gauge theories [393]. The Toric Code
is also established in 3-dim and 4-dim using hypercubic (and other) Euclidean space lattice
geometries. A major challenge to the execution of circuits on logical qubits is the required
action of gates across the physical qubits defining the logical qubits. This development is
mature for the Toric Code, see e.g., Refs. [390, 394], and also for other encodings, such as
color codes [395].

Interestingly from an SM physics perspective, higher-dimension SU(N) LGTs, due to the
phenomena of confinement manifest in non-Abelian gauge theories, have utility in defining
logical qubits due to their innate mechanisms to localize qubit errors within “hadrons” [396,
397] (a similar effect can be induced by Anderson localization [398]). Unlike the Toric code,
where electric charges and magnetic vortices are unconfined and error correction requires
multiple rounds of stabilizer measurements, confinement keeps SU(N) Gauss-law-violating
vertex charges induced by qubit errors from propagating “too far” from each other, restrict-
ing them to approximately within the confinement volume. A possible exception to this is
in instances where multiple color-singlet “hadrons” can be formed from the SU(N) charges
and wrap “around the world”, an effect that is suppressed at small lattice spacings and is
assessed to be topologically benign due to confinement. As a result of this connection, the
techniques and technology that continue to be developed for classical LGTs are likely to be
of direct impact upon logical qubits and error-correcting protocols, e.g., Ref. [399, 400].

Another lattice system that has been developed to define logical qubits is the 2-dim hon-
eycomb lattice with spin-1

2
spins at each vertex and with link-direction-dependent couplings

between spins [401]. This system can be written in terms of Majorana fermions with both
gapped and gapless phases. Imposing a magnetic field on the gapless phase induces a gap
and non-trivial topological structures with chiral edge states carrying Chern numbers. Edge
states, and their deep connection to topological structure are commonly used to simulate chi-
ral fermions in LGT calculations—domain wall fermions employ a 5th dimension to isolate
a fermion of definite chirality at the domain wall on the 4-dim boundary [402, 403].
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C. Preparing Wavefunctions: Ground States and Finite-Density

While efficient non-dynamical approaches to state preparation can be determined for
systems with sufficient structure, the ability to simulate the real-time dynamics of a quantum
system is commonly a useful resource in studying static properties, e.g., the ground-state
energy density. There are three main classes of approaches to attain this goal: adiabatic state
preparation, the use of energy filters, and variational approaches. Using adiabatic evolution,
it is possible to drive a quantum state from the ground-state of an initial Hamiltonian Hi

to the ground-state of a final Hamiltonian Hf of interest [22, 404]. Given a procedure to
initialize a quantum-computer in the ground-state of Hi, an appropriate adiabatic path
can be designed to produce a final state after time evolution with a large overlap onto
the target ground state. The scale for the evolution time T is set by the smallest energy
gap ∆E between the instantaneous ground-state and first excited state throughout the
adiabatic path. Several strategies have been proposed to optimize the efficiency of this
scheme, ranging from explicit coupling to an external “bath” of degrees of freedom [405–
407], gap amplification techniques [408], and specially designed adiabatic paths that leverage
previous knowledge of the excitation spectrum to avoid closing gaps during the adiabatic
evolution (e.g., Refs. [189, 409]). This method has been applied to lattice field theory
simulations [159, 160] and applications to the nuclear many-body problem have recently
started to be developed [409].

Quantum Phase Estimation (QPE) [211, 410, 411] or it’s more recent variants [412, 413],
is a candidate technique for computing ground-state properties with a quantum computer
at scale. This versatile approach can be used to measure the eigenvalues of the Hamilto-
nian operator H by exploiting the ability to simulate real-time evolution under the operator
U(t) = exp(−itH) to implement an energy filter of resolution δH = O(1/T ), with T the
longest time interval required for the algorithm. For sufficiently long propagation times
T the probability to measure the ground-state energy when performing QPE on an ini-
tial trial state |ΨT 〉 is proportional to it’s overlap |〈Φ0|ΨT 〉|2 with the ground-state [414].
It is therefore crucial to be able to initialize the quantum device in a high-overlap trial
state |ΨT 〉, while keeping the complexity of this initialization low for ease in simulating
the real-time dynamics of QPE within the limited coherence time of the devices. These
trial states are typically obtained using the variational approaches described below, but
both adiabatic state preparation or a preliminary coarse energy filter could be employed.
Similar to the calculation of dynamical response functions, polynomial expansion methods
using Qubitization/QSP can be employed to define alternative unitary operators to use in
place of U(t) [415] or directly to implement more efficient energy filters for ground-state
projection [416]. Recent proposals for ground-state preparation algorithms like the Rodeo
algorithm [417] or simulated imaginary-time propagation [418] also belong to the class of
energy filters, though their resource scalings are currently less understood.

Variational approaches address the ground-state preparation problem through an (in
general non-convex) optimization. This is achieved by constructing quantum states using a
fixed quantum circuit with free parameters and using an appropriate variational principle
to find a good approximation of the ground-state by optimization. Typically the expecta-
tion value of the energy is used as a cost function in the optimization e.g., the Variational
Quantum Eigensolver (VQE) [419–421], which directly optimizes over the parameters of
a general unitary operator. Alternatively, the Quantum Approximate Optimization Algo-
rithm (QAOA) [422] mimicks the adiabatic state preparation described above, but optimizes
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a parametrization of the adiabatic path with the goal of reducing the dependence on energy
gaps in the spectrum. Other cost functions have also been considered e.g., the action generat-
ing imaginary time evolution [423] or few-body correlations [424]. The two main advantages
of variational approaches are the relatively small number of quantum operations required
(at least for simple parametrizations) and the inherent robustness to miscalibration of the
quantum device and to noise. An intuitive way to understand this last feature is to realize
that the various noise sources will effectively shift the location of the global minimum for
a given parametrization, but this effect may be partially compensated by the optimization
procedure [425]. Variational algorithms are heuristic in nature. On one hand, it would be
classically hard to simulate the measurement statistics given a sufficiently complex circuit
structure. On the other hand however, finding the optimal parameters using non-convex
optimization is in general NP-hard and we do not expect to be able to reach the globally
optimal set of parameters for all instances of the problem [426]. The NP-hardness of these
variational algorithms is a natural occurrence not necessarily specific to quantum algorithms
e.g., the corresponding NP-hardness of finding the optimal mean-field solution using the
Hartree-Fock method [262], and it does not necessarily imply a limitation in the applicability
of variational algorithms in practice (see Sec. IV), NP-hardness is a statement about the
behavior in worst-case instances and is not necessarily indicative of the average complexity,
especially if additional structure is present in the problem.

Given their versatility, limited use of quantum resources and resilience to device noise,
Variational Quantum Algorithms (VQA) are a flourishing area of research (see Ref. [427]
for a recent review). VQA will likely be important as a stepping stone towards preparing
high-accuracy trial states to be used as initial conditions for more sophisticated quantum
algorithms. This is similar to the use of Variational Monte Carlo as a precursor to more
accurate, and expensive, GFMC calculations of nuclei (see Ref. [267] for a review). In
addition to such compounding applications, another possible use of VQA is as components
for Quantum Machine Learning [428] tasks (possibly coupled to classical neural networks
e.g., Ref. [429]), such as characterizing the output states generated by a quantum algorithm
or even directly as a way to perform inference on classical data (for a recent review of
applications to SM problems, see Ref. [430]). Presently, it is not clear if an exponential
advantage could be obtained for the latter task (see, e.g., Refs. [431, 432]).

A dominant component of the cost in variational techniques comes from the number
of repetitions required to estimate the cost function (and/or it’s gradient) used for VQE,
and considerable effort has been devoted in the recent past to design approaches to reduce
this cost. These include optimization of commuting sets of operators that can be measured
simultaneously and techniques using information from short-time dynamical evolution [48,
259, 421, 433–438]. One last class of techniques developed recently for efficient estimation of
general expectation values uses random sampling before measurement to drastically reduce
the number of measurements required for convergence [439, 440]. For example, by informing
a ’classical shadow’ [441, 442] using the results of random measurements, the expectation
value of M distinct observables can be estimated using only O(log(M)) measurements on a
quantum device.

D. Probing Quantum Systems in Real Time: Scattering and Inelasticities

Extracting reliable dynamical information from QFTs and QMB systems is an extremely
challenging task due to sign problems that generically plague real-time path integrals. This
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difficulty is particularly impactful in the SM since the vast majority of experimental informa-
tion is obtained through scattering processes. Progress continues to be made in developing
more efficient implementations of time evolution for QFTs and QMB systems, as outlined in
Section III, but there is a further level of sophistication that is required in designing time-
dependent calculations performed on a device to optimally address the physics problems at
hand.

A common approach to evaluate scattering cross sections in the linear response regime
using classical computing is to first compute Euclidean-time correlation functions, readily
available from imaginary-time path integrals, and then attempt a numerical inversion to real-
time. This process is ill-posed, in the sense that small errors in the Euclidean correlators
can lead to large errors in the result of the inversion, and various heuristic approaches
have been proposed to extract dynamical properties with minimal bias (see e.g., Refs. [443–
445]). A similar approach popular in few-body nuclear physics is to attempt a numerical
inversion of integral transforms that are better behaved than the Laplace transform e.g.,
the Lorentz [446] or the Sumudu integral transforms [447], with the goal of simplifying the
inversion procedure. As we will see further below, similar ideas will play an important role
in proposed quantum algorithms for real-time dynamics.

Using the efficient simulation strategies presented in the previous section, quantum com-
puters are expected to be able to simulate efficiently the real-time dynamics of systems
with local interactions. As perhaps the most straightforward application of these ideas,
direct simulations of Hamiltonian dynamics starting from a reference state have recently
appeared e.g., the probability of pair production and chiral dynamics in the Schwinger
model [40, 448, 449], the three-body contact density in a simple model for the triton [46],
the time-dependent Coulomb excitation of the deuteron colliding with an heavy-ion [450],
the spin dynamics of a pair of nucleons interacting through a tensor interaction [333] and
the entanglement and flavor evolution in collective neutrino oscillations [451, 452].

Particularly important for comparison with experiments is the calculation of scattering
cross sections in the linear response regime, where the interaction between system and
probe is well approximated by a single vertex. Apart from kinematical factors, the full
energy dependence of the cross-section is contained in the the response function R(ω) =
FT [〈O(0)O(t)〉]. In this expression FT denotes the Fourier transform and 〈O(0)O(t)〉 is
the real-time two-point function of the vertex operator O evaluated on the ground state of
the target. A direct calculation of this two point function is possible in both digital quantum
devices [302] and more general quantum simulators [453]. In practice, the Fourier transform
is performed using the two-point function signal up to a maximum time T , leading to a
resolution in the frequency domain ∆ω = O(1/T ). Since the dominant cost of the digital
algorithm is the implementation of the real-time evolution operator for a total time T , the
final cost of these types of approaches scale as O(1/∆ω). This agrees well with the no-
fast-forward theorem mentioned above, and doesn’t exclude the possibility of an important
speed up if structural information of the system’s Hamiltonian is used in the design of the
algorithm. It is important to remember that the Minkowski-space correlation functions
extracted from any finite volume quantum computation need to be properly extrapolated to
the continuum. Contrary to their Euclidean time counterparts, e.g. Refs. [454–456], these
real-time correlators have been shown to pose additional challenges in this extrapolation for
certain kinematical regimes, and practical strategies for mitigating the problem have been
proposed [457].

A more direct approach to scattering matrix elements, inspired by the integral transform
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techniques used in few-body nuclear theory, can be formulated to work directly in the fre-
quency domain avoiding the approximation of the Fourier transform in both the UV and
IR [458]. The main idea is to apply an approximate projector into a frequency band, in the
same spirit as the Lorentz Integral Transform method of Ref. [446], followed by a direct mea-
surement of the population in that band to reveal the response function strength. Besides a
better control of the frequency-space errors, this type of approach opens the way for charac-
terization of semi-exclusive information about the final state of the reaction since, after the
application of the energy filter, the register of qubits representing the target is mapped to
the set of final states. This is an important step towards a more complete characterization
of semi-exclusive cross sections e.g., those required to extract neutrino parameters from long
baseline experiments like DUNE, and first estimates of the quantum resources required for
this goal have appeared [46], suggesting further improvements are needed for near term ap-
plications on real devices. The scheme can be generalized by considering different frequency
projectors constructed either using the real-time unitary operator (see e.g., Refs. [459, 460])
or more general expansions in orthogonal polynomials [461, 462], which allow for superior
scaling with the target precision.

VI. STANDARD MODEL APPLICATIONS: SELECT IMPLEMENTATIONS ON

DIGITAL QUANTUM HARDWARE

For the purposes of the following discussions, we consider energy scales higher than those
relevant to chemistry and lower than (roughly) the TeV scale. As a result, we will not
present the significant number of impressive results that have been obtained for molecular
ground state energies and reactions, nor results related to quantum gravity, holography,
baryogenesis, or other physics beyond the SM. Rather than duplicating the comprehensive
set of reviews that contextualize the now-extensive literature, we present three broadly
defined areas of SM research that are beginning to be addressed with NISQ simulations, and
which are likely to form the backbone of SM quantum simulation research.

A. Lattice Gauge Field Theory Dynamics

The close connection between spin models that can be used to define logical qubits and
LGTs (see Section V B) might suggest that we dedicate much of this section to discussing
results related to the Toric code, quantum spin liquids [386] and related systems. Instead,
we focus on hardware implementations explicitly targeting the SM. The first digital quan-
tum simulation of real-time dynamics in a LGT [40] not only demonstrated the progress
that had been achieved in the control and manipulation of quantum hardware, but provided
tangible inspiration that the vision of digital quantum simulation for microscopic descrip-
tions of nature was becoming a reality. Complementary to larger U(1) simulations on analog
quantum devices and classical simulations, e.g., Refs. [463–467], this digital experiment [40]
was performed on four trapped calcium ions representing the fermionic degrees of freedom
at two spatial sites of latticized 1+1 dim quantum electrodynamics (QED), also known as
the lattice Schwinger model. First proposed in Ref. [468], this work showed the dynamical
generation of e+e− pairs emerging from the trivial vacuum under time evolution, as shown
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FIG. 2. The real-time evolution of 1+1 dim QED and Yang-Mills gauge theories on small lattices.

The right-side panels show results obtained for the Schwinger model: (top) the vector current

after a θ-quench obtained using IBM’s classical simulators (2020) [449], and pair-production on a

four-site (staggered) lattice obtained using (middle) Innsbruck’s trapped ion systems (2016) [40],

and (bottom) IBM’s quantum devices (2018) [448]. The lower-left panels show, for two-plaquette

systems in SU(2), (right) the time dependence of the local electric energy obtained using IBM’s

quantum devices (2019) [327], and (left) the strong-coupling vacuum persistence probability ob-

tained using D-wave’s quantum annealing systems (2021) [469]. The upper-left panel shows the

electric energy of two plaquettes of SU(3) obtained using IBM’s quantum devices (2021) [328]. [

(right-top): Reprinted figure with permission from Dmitri E. Kharzeev, Physical Review Research, 2, 023342, 2020. Copyright

(2020) by the American Physical Society. (right-middle): Reprinted with permission from Christine Muschik. (lower-left-left):

Reprinted with permission from Randy Lewis. ]

in Figure 2 11. Encouragingly, even with the ∼ 50 quantum gates necessary for each step in
the time evolution, control and coherence was demonstrated up to four Trotter steps with
a survival probability in the physical, zero-charge subspace (six of the 24 fermionic configu-
rations) of greater than 70%, allowing for error-mitigating post-selection while maintaining
sufficient statistics. As a theory in one spatial dimension, the Schwinger model is a system
where a number of dynamical attributes can be addressed with precision using modern an-
alytical and numerical tools, such as tensor networks, e.g., Refs. [326, 463, 464, 470–472].
However, continuing to perform quantum simulations of this and similar theories aids the
benchmarking of quantum devices, and the development of algorithmic techniques.

While 1+1 dim QED is not of direct interest to fundamental physics, it shares attributes
with QCD, such as charge screening, a fermion condensate and a spectrum of composite

11 In each figure panel of this section, icons from Ref. [166] are assigned to indicate the type of compute

device that generated the results, i.e. a classical computer without a noise model, a classical com-

puter using a noise model, or a quantum device. These icons and their descriptions can be found at

https://iqus.uw.edu/resources/icons/.

https://iqus.uw.edu/resources/icons/
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particles (“hadrons”), including two-body and three-body bound states (“nuclei”). Of par-
ticular note, it has non-trivial topological structure through a θ-term, proportional to the
electric field at non-zero coupling, and also a chiral chemical potential [449]. Early studies
of the impact of time-dependent θ(t) and θ-quenches have been undertaken using classical
simulations of quantum devices [449, 473] (see also related work with quantum link mod-
els [474]), shown in Figure 2. However, in contrast to 3-dim gauge theories, the U(1) gauge
field of the Schwinger model, like any gauge field in 1+1 dim, is not dynamical; constrained
by Gauss’s law at each lattice site, it is dependent only on the boundary conditions, which
conveniently allows an entirely fermionic representation. Since its first implementation, an
array of simulations and proposals for simulations (e.g., Refs. [318, 356, 362, 448, 475–477])
of U(1) gauge theories using different types of quantum devices have been established, see
Figure 2. Though the long-range interactions arising from the non-dynamical gauge field are
amenable to trapped ion implementation [40, 468, 478], the utilization of superconductors
inspired the exploration of an alternate approach of classical pre-processing for global and
local symmetry projections [448]. This early example served to emphasize the extent to
which the design of a digital quantum simulation of LGTs must consider the physics of the
underlying quantum device for near-term progress.

First considerations have been made in determining the Schwinger Model’s asymptotic
scaling [196], and further detailed studies continue to provide important information, e.g.,
Refs. [350, 375, 376, 381, 382, 478–481], including detecting and correcting violations of
Gauss’s law and mitigating the effects of evolution into gauge-variant parts of the hardware
Hilbert space. While these and future studies reveal important aspects that will be encoun-
tered going forward, the fact that the gauge field is not dynamical limits the implications
for simulations of the SM. Formalisms for simulating QED in higher dimensions have been
put in place for a number of systems, e.g., Refs. [356, 362, 364, 475, 482–495], but remain
to be executed on a quantum device.

The last several years has seen a number of exciting developments in establishing frame-
works for simulations of non-Abelian gauge theories, starting with the pioneering work
of Byrnes and Yamamoto [195]. That work builds upon the Kogut-Susskind Hamilto-
nian [324] for SU(N) Yang-Mills and first suggestions for implementation by Zohar, Cirac
and Reznik [374], which in turn built upon an extensive literature on Hamiltonian formu-
lations of Yang-Mills gauge theories and QCD, e.g., Refs. [496–500]. While there are a
number of formulations of non-Abelian gauge theories for hardware implementation (see
Section V A 3), the real-time dynamics (on small lattices) of only one construction has so far
been simulated on quantum devices, using IBM’s quantum systems [327, 328] and a D-wave
annealing device [469], as shown in Figure 2. The local gauge invariance at each lattice site
has been exploited to implement the non-Abelian constraints explicitly by integrating over
the gauge group [327, 328, 501]. This reduces the dimensionality of the hardware Hilbert
space to capture only the irrep of each link, and introduces controlled-plaquette operators.
Simulations that have been performed on quantum devices have employed global bases for
one and two plaquettes. With the knowledge gained from these small systems, performing
simulations with more than two plaquettes in higher dimensions is a priority (for a recent
review see Ref. [502]).
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B. Structure and Reactions of Nuclei

Nuclear structure and reactions reside in an important low-energy sector of the SM, with
precision targets expected to become achievable with future quantum simulation capabili-
ties. As illustrated in Figure 3, the first ground-state calculation of a nuclear system was
a VQE simulation of the deuteron using a harmonic oscillator basis [43] with the supercon-
ducting quantum devices of IBM and Rigetti. Extensions of the approach soon followed
with implementations of the same model on trapped-ion quantum computers [45], explo-
rations of different mode-to-qubit encodings using the Gray code [48], and calculations of
the energies of larger systems with A ≤ 4 [44]. These latter calculations, in large Hilbert
spaces containing up to 68 states, were made possible by the use of an all-optical quantum
device called a Quantum Frequency Processor (QFP), which allows for an entire calcula-
tion to be formulated using a single d-dim qudit whose state is manipulated using standard
quantum-optics elements. The depth achievable with these devices is unfortunately limited
by photon loss and, more generally, the qudit encoding employed requires resources scaling
exponentially with the number of orbitals. However, specialized photonic systems like the
QFP may have a role in the global ecosystem of quantum technologies for SM physics. The
use of variational approaches based on imaginary-time evolution like QITE was also studied
recently in Ref. [47]. This class of techniques, at least in principle, could be helpful not just
as a way of preparing approximations to ground-states (by working at low temperatures) but
also open the possibility of studying finite temperature properties in systems like neutron
star matter.

Particularly interesting is the possibility to study real-time properties of nuclear systems
in thermal equilibrium e.g., transport coefficients in strongly correlated nuclear matter. In
general, these calculations will require knowledge of Minkowski-space correlation functions,
which are not easily available with classical methods. It would have been “nice” if Euclidean
time correlations functions could be readily obtained from Monte Carlo simulations and
analytically continued to real time (see e.g., Ref. [504]). As discussed in Sec. V D, this
procedure is in general ill-posed for finite precision correlators (e.g., those extracted from
MC sampling), but nevertheless in some situations it is possible to gain considerable insight
into transport properties by analyzing features of the Euclidean correlation functions (see
e.g., Ref. [505]). However, a large-scale, high-fidelity quantum computer is expected to be
able to evaluate real-time correlators accurately. Depending on the particular problem at
hand, it could also be advantageous to work directly in frequency space using well-behaved
integral kernels e.g., the Fejer [458] or Gaussian [461]. Similar in spirit are approaches to
extract Green’s functions from a quantum simulation [506], which uses the expectation values
F (t) = 〈Ψ|e−iHt|Ψ〉 evaluated over a range of times to approximate g(ω, η) = 〈Ψ| 1

ω−H+iη
|Ψ〉,

which in the limit η → 0 gives the exact Green’s function. This Green’s function algorithm
was investigated through a simple model of the φ→ 2χ decay of a (fictitious) heavy scalar φ
into two lighter scalar particles χ using one of IBM’s superconducting quantum devices [506],
as shown in Figure 3. Variational approaches with reduced computational cost have also
been proposed recently [507], possibly opening the way to exploration of more realistic
simulation on near term devices.

Another advantage of frequency space methods is their ability to provide access to in-
formation about the possible final states of a nuclear reaction, thus opening the way to a
better characterization of semi-exclusive scattering cross sections. This capability will be
important in situations where reliable theoretical predictions for the properties of final states
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FIG. 3. Ground state energies of light nuclei from quantum simulations. Lower-left panels show

results for the deuteron addressed with (right) VQE on superconducting qubits [43] (top) VQE

on trapped ions [45] and (left) QITE simulation on IBM’s quantum devices [47]. Three remaining

panels show VQE results for the triton, 3He, and 4He using a quantum frequency processor [44].

[ (lower-left-right): Reprinted figure with permission from Eugene Dumitrescu, Physical Review Letters, 120, 210501, 2018.

Copyright (2018) by the American Physical Society. (lower-left-left): Reprinted figure with permission from Raphael Pooser,

[503]. (lower-left-top): Reprinted figure with permission from Raphael Pooser, Physical Review A, 100, 062319, 2019. Copyright

(2019) by the American Physical Society. ]

is required as input to achieve the physics goals of an experiment. An example of this is
long-baseline neutrino oscillation detectors, e.g., DUNE, which are designed to constrain
neutrino properties like masses, mixing-angles and the CP-violating phase in the lepton sec-
tor. Even though these parameters are captured by the inclusive scattering of neutrinos off
nuclei in the detector (followed possibly by a particle shower), the strong energy dependence
of the inclusive cross section, together with the wide range of neutrino energies in the beam,
requires an explicit reconstruction of the incoming neutrino energy on an event-by-event
basis (using information from the observed final states). For Argon based detectors like
DUNE, it is possible to reconstruct the trajectories of charged particles, and in principle
reconstruct the kinematic parameters of the reaction. In practice, however, additional the-
oretical input is required in order to properly take into account the possible presence of
neutral particles in the final state. The dominant quantum resource required for the quan-
tum simulation of these processes is connected with the implementation of the energy filters
used to approximately project into intervals of the excitation energy. A first estimation of
the quantum resources required to perform a simulation with possible impact on the physics
goals of DUNE was carried out recently [46], using leading-order pionless EFT on a lattice
as a minimal choice for realistic nuclear interactions. These results suggest that, at least for
the Fejer kernel, a minimally realistic simulation of scattering from 40Ar will require O(108)
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FIG. 4. Progress in addressing reaction dynamics using quantum devices: (lower left) the mag-

nitude of the extracted Green’s function for heavy scalar decay [506], (upper-right) the np ↔ dγ

transition probability and the success probability of the algorithm [508] , (lower-right) the bare

and mitigated probabilities of observing three site-localized nucleons as a function of time in a

simplified model of scattering with linear response [46], and (center) the spectral density of the

neutron-neutron spin-space persistence probability extracted from time evolution [333]. [ (lower-left):

Reprinted figure with permission from Anthony Ciavarella, Physical Review D, 102, 094505, 2020. Copyright (2020) by the

American Physical Society. (center): Reprinted figure with permission from Sofia Quaglioni, Physical Review A, 101, 062307,

2020. Copyright (2020) by the American Physical Society. ]

one- and two-qubit operations. Using recent improvements in both integral kernels [461] and
more efficient representations of the real-time evolution operator for similar models [214],
this estimate could be reduced below O(106), leaving realistic studies of nuclear scattering
out of reach for NISQ devices.

Thinking beyond the universal gate set towards custom-designed operators, SRF-cavity
quantum devices, under development at Lawrence Livermore National Laboratory (LLNL),
Fermi National Accelerator Laboratory (FNAL) and elsewhere, are superconducting quan-
tum devices capable of operating high dimensional Hilbert spaces per cavity. Time-ordered
radio-frequency signals are introduced into the cavities to accomplish unitary transforma-
tions between the many transmon-coupled states supported in high-Q cavities, describing
the time evolution of the QMB system of interest. Classical simulations performed to sup-
port the LLNL cavity devices show that entangled spin systems, relevant to low-energy
nuclear physics, can be efficiently evolved in time with high fidelity [333]. Figure 4 shows
the classically-simulated frequency-space evolution of the exact neutron-neutron spin per-
sistence probability during time evolution.

Beyond the preparation of a good approximation |Ψ0〉 to the ground state of the target
nucleus, techniques working directly in frequency space [458] require one more non-trivial
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step: applying the vertex operator Ô describing the interaction between probe and target
while maintaining a normalized state |ΦO〉 ∝ Ô|Ψ0〉. The main complication in this step is

that the vertex operator Ô is Hermitian but not necessarily unitary. A detailed comparison
of two approaches to carry out this step has been made [508] using a schematic representation
of the np↔ dγ reactions. The first method [458] proposed using real time evolution under

the action of the vertex operator Ô controlled by the state of an additional ancilla qubit,
while the second method [202] is based on the general linear combination of unitaries (LCU)
scheme, developed predominantly for fault tolerant quantum devices (as in general it requires
control logic and large ancilla registers). Results obtained in Ref. [508] and shown in Figure 4,
indicate that the computational cost of LCU can be substantially reduced by a careful
choice of operator basis and by optimizing the implementation with respect to the limited
connectivity available in the device. The net result is that the LCU-based state preparation
is expected to outperform the more memory efficient time-dependent algorithm in both the
fidelity and success probability in most cases.

C. Collective Neutrino Oscillations

Neutrinos initially produced in a flavor eigenstate can experience flavor oscillations, with
frequencies determined by its energy and the mass-squared gaps between mass eigenstates.
The flavor evolution of a neutrino “cloud” can be modified substantially through weak inter-
action with a background e.g., the MSW effect generated by interactions with a background
of leptons [509, 510]. In astrophysical settings with large neutrino densities e.g., core-collapse
supernovae and the early universe, neutral-current neutrino-neutrino interactions can be-
come important and modify substantially the transport of flavor in these environments.
Neutrino-neutrino interactions can lead to collective neutrino oscillations, and these modes
can have important effects on the dynamics of extreme astrophysical environments and the
early universe [511, 512]. Considering only the leading order neutrino-neutrino interactions
in forward scattering, and neglecting momentum-changing interactions suppressed as G2

F ,
the dynamics act only on the flavor degrees of freedom, which can be represented by a collec-
tion of SU(Nf ) spins. In this framework, the neutrino momenta are fixed and only the spin
(flavor) polarization evolves in time. In the simplified approximation with Nf = 2 flavors,
the model Hamiltonian is equivalent to an all-to-all Heisenberg model with an interaction
strength proportional to the neutrino density [513].

In general, solving for the exact real-time dynamics of these models is out of reach to di-
rect methods based on exact diagonalization. In highly symmetric homogeneous situations,
the neutrino Hamiltonian becomes integrable and the Bethe ansatz can be used [513, 514].
For more general conditions, mean field approximations are usually employed (see e.g.,
Refs. [515, 516] for recent reviews). Due to the widespread use of mean-field simulation
techniques, understanding the accuracy of this approximation in capturing the dominant
effects in collective oscillations is therefore essential [136, 517–519]. Due to the complex-
ity of the calculations, however, the systems sizes that can be explored with these direct
approaches is limited to O(10), making it difficult to understand extrapolations to the
thermodynamic limit. One venue where quantum technologies can help in breaking this
computational barrier is in simulations of the flavor dynamics. First explorations of this
possibility with superconducting qubit devices on small systems with up to Nν = 4 neutrino
amplitudes have been performed [451, 452]. One of the main bottlenecks for efficient imple-
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FIG. 5. Highlights of recent works on collective neutrino oscillations: (upper-left) maximum entan-

glement entropy in a system of Nν = 96 neutrinos for various energy asymmetries computed using

MPS [107], (upper-right) single-qubit entanglement entropy extracted from a real-time simulation

of Nν = 4 neutrinos using IBM’s quantum devices [452], (lower-right) evolution of entanglement

entropy for the most energetic neutrino in systems of size Nν = 2 − 9 [518], (lower-left) flavor

survival probability extracted from simulations of Nν = 4 neutrinos [451]. [ Background image from

NASA shows SN 1987A (in the center): Link: NASA Credits: NASA, ESA, R. Kirshner (Harvard-Smithsonian Center for

Astrophysics and Gordon and Betty Moore Foundation), and M. Mutchler and R. Avila (STScI). (lower-left): Reprinted figure

with permission Raphael Pooser. (lower-right): Reprinted figure with permission from Calvin Johnson , Physical Review D,

100, 083001, 2019. Copyright (2019) by the American Physical Society. ]

mentations of these models is the need to implement the all-to-all pairwise interactions on
devices with limited connectivity. A general procedure to side-step this problem has been
proposed [452] by means of a swap-network construction that can be implemented efficiently
even on devices with linear nearest-neighbor connectivity. The detectable difference from
the mean field approximation may result from non-trivial evolution of entanglement and
different techniques to reliably extract information about different entanglement measures
from a digital quantum simulation have been presented in Ref. [452]. A complementary
approach is to exploit the long-range nature of interactions in trapped-ion systems [520] to
carry out analog simulations of flavor evolution, by generalizing earlier work on dynamical
phase transitions in Ising models [521].

First explorations of employing an MPS ansatz for the many-body neutrino wave func-
tions have been carried out [106, 107]. These calculations show that, at least for conditions
with a high degree of symmetry, the bipartite entanglement in a neutrino cloud starting as
a product state grows slowly with system size as ≈ log(Nν). This allows for controllable
simulations of more than a hundred neutrino amplitudes and the identification of a link
between the appearance of instabilities in the flavor evolution and the presence of a dynam-

https://www.nasa.gov/feature/goddard/2017/the-dawn-of-a-new-era-for-supernova-1987a
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ical phase transition in the underlying spin model [107]. This connection has the potential
of providing a general framework to understand the conditions leading to collective oscilla-
tion phenomena without resorting to a mean-field approximation. A particularly exciting
prospect of using MPS-based techniques for studies on collective neutrino oscillations is the
ability to detect the presence of configurations capable of generating substantial levels of
entanglement by checking the convergence of the calculations. The identification of these
special conditions, if they exist, will allow a focusing of quantum resources on the simulation
of these instances, which will be out of the reach of tensor-network-based methods.

VII. CLOSING

This article has highlighted a few key aspects of integrating Standard Model research
and advances in quantum information, inspired by rapid improvements in the control of
entanglement and coherence in the laboratory leading to the first quantum devices available
for computation. The heightened appreciation of non-local correlations and distributed
quantum information, in particular the multifaceted role of entanglement throughout the
Standard Model, is anticipated to broadly inspire new paradigms of calculation design,
accelerate the development of scalable quantum technologies, and propel aspects of nuclear
and high-energy research through the 21st Century. While capturing only an incomplete
slice of research at the interface, it is hoped that the reflections within this article will
stimulate further discussions throughout the diverse and growing quantum community.
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