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Abstract—With the progress in energy harvesting circuits
and the decrease in power requirements of processing, sensing,
and communication hardware, we have the potential of freeing
the Internet of Things devices from their batteries. However,
removing batteries introduces frequent power failures due to
the irregular power availability from the environment. This
situation leads devices to compute intermittently under transient
environmental power. Intermittent computing requires significant
microarchitectural modifications on existing processor designs
to ensure automatic computation progress despite the power
failures. For example, built-in nonvolatile memory components
should be integrated in processor architectures. Consequently,
different microarchitectural automatic backup strategies need to
be implemented. In this work, we introduce different processor
state backup strategies based on an interrupt-based software ap-
proach, which do not need modifications to the microarchitecture
of existing processors. Therefore, we present a systematic ap-
proach to emulate different processor architectures with varying
backup strategies under transient power. To justify our claims,
we make Ibex RISC-V core, a popular ultra-low-power processor
architecture, suitable for intermittent computing. This is the first
attempt to make a variety of existing and future ultra-low-power
processor architectures easily exploitable for transiently-powered
computing systems.

Index Terms—Batteryless IoT Devices, RISC-V, Transient pro-
cessing

I. INTRODUCTION

The Internet of Things (IoT) forms a network of devices
that can sense the environment through their sensors, perform
computation and communicate wirelessly to interact with
each other. IoT applications (e.g., smart homes and cities,
autonomous vehicles, wearables) support various tasks in our
daily lives to increase our comfort and efficiency. Most IoT de-
vices span tiny and battery-powered computing platforms [1].
The non-functional properties such as power consumption and
sustainability emerge as a crucial challenge standing in front of
the future IoT applications [2], [3]. Thanks to the progress in
energy harvesting circuits and the decrease in power require-
ments of processing, sensing, and communication hardware,
we have the potential of freeing the IoT devices from their
batteries [4]. However, removing batteries introduces frequent
power failures due to the irregular power availability from the
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environment, that are not experienced when the amount of
energy storage is not an issue [5].

Upon a power failure, the batteryless device starts operating
again only with the harvested energy into its tiny energy
reservoir (e.g., a capacitor). Therefore, the execution of the
software is interleaved with the energy harvesting intervals
during which the batteryless device is off [6].

Today’s batteryless platforms are composed of ultra-low-
power microcontrollers, e.g., MSP430FR5969 [7], whose
main architectural components, such as registers and main
memory, are volatile. These microcontrollers comprise non-
volatile secondary memory components, e.g., Ferroelectric
RAM (FRAM) [8], to store information that will persist upon
power failures. To mitigate the effects of unpredictable power
failures and enable progress of computation while preserving
memory consistency, several software-aided solutions have
been proposed [9], [10]. Generally speaking, these solutions
back up the volatile state of the processor into the nonvolatile
memory so that the computation can be recovered from where
it left upon reboot. Moreover, they ensure memory consistency,
so that the backed-up state in nonvolatile memory will not be
different from the volatile state or vice versa.

Batteryless platforms can also include nonvolatile proces-
sors (NVPs), which integrate built-in nonvolatile memory
components in their microarchitecture. Thanks to these built-
in nonvolatile logic components, NVPs automatically back up
the processor state to internal memory elements when a power
failure occurs, and restore the state when power becomes
available [11]. This type of execution makes backup operations
transparent to the programmer. Since backup and retention
operations are fast compared to the software-aided solutions
(e.g., on the order of a few microseconds [12], [13]), NVPs
reduce leakage power by allowing the system to shut down
when idle [14].

There is still a vast design space to explore new proces-
sors architectures and backup strategies targeting intermittent
computing platforms. For example, the Ibex RISC-V processor
core [15] is freely available and a good candidate for modern
ultra-low-power IoT computing applications, as demonstrated
in previous studies that compare and justify the suitability of
“Zero-riscy” (former name of the Ibex core) for low power IoT
applications [16]. In particular, one of the advantages of RISC-
V is its layered and modular ISA architecture [17], which gives
the flexibility to implement minimal instruction sets which
are customized to the specific application. This is especially
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beneficial in the context of heterogeneous architectures where
cores of different complexity can be selectively activated to
adapt for optimal power usage. At the same time, this proces-
sor has not been used by intermittent applications previously
since it does not include an integrated nonvolatile memory, and
therefore, it loses its state upon power failures. Researchers
do not have the necessary emulation environment to introduce
nonvolatile memory and processor backup strategies into this
processor design. Furthermore, it is difficult to test, verify
and benchmark different backup strategies under intermittent
power supply. Prior art used either numerical simulations or
ASIC implementations to evaluate different backup strategies
and NVPs. However, numerical simulations are not sufficient
to test the final system as a part of a real design with
several other hardware components. On the other hand, ASIC
implementations are expensive and are not available at the
earlier stages of system design.

Fig. 1. The system behavior during power failure (context backup to NV
memory) and power restore (context restore from NV memory and resume
execution)

In this work, we introduce different processor state backup
strategies based on an interrupt-based software approach,
which do not need modifications on the microarchitecture of
processors. Therefore, these strategies can be easily extended
to a wide variety of different processors. To implement and
evaluate our different backup policies, we used the non-volatile
simulation framework developed especially for intermittent
computing applications on off-the-shelf FPGAs [18]. We ex-
plore the effect of our backup strategies on the execution
performance of intermittent programs on the Ibex RISC-V
processor. More specifically, the main contributions of this
article are as follows:

1) Systematic Emulation. We present a systematic ap-
proach consisting of a transient processing architecture
to emulate processors with different backup strategies
under transient power. This is achieved by interfacing a
generic non-volatile memory to the processor bus, and
by integrating an Intermittency Emulator module which
provides power failure information on the basis of a
defined energy profile.

2) Development guideline to set optimal intermittent
policy. Based on the detailed analysis done on the
results obtained from various backup policies, we formu-
late guidelines for selecting useful parameters, possibly
changing and adapting over time (for a given trace),
which could help answer the question when to backup?.
These guidelines could be helpful in designing strategies
and maximizing the efficiency for a wide range of
applications in the future.

3) Intermittent RISC-V and ultra-low-power Cores. We

introduce the fundamental building blocks to exploit
and/or port ultra-low-power processor architectures as
an intermittent computing platform. The combination
of hardware (interrupt generator, intermittency emulator)
and software (interrupt handlers, save and restore strat-
egy algorithms) layers described in this paper demon-
strates how to make the Ibex RISC-V core suitable for
intermittent computing.

Figure 1 gives a high-level overview of the program execu-
tion flow during the backup/restore operations in the event of
power-failure. The blue plot shows the available ambient en-
ergy as a function of time. Upon crossing a defined threshold,
which depends on the particular policy, the processor saves its
state in the non-volatile memory before losing power. Once
sufficient energy is available again, the processor recovers the
state, and resumes its normal operation.

The remainder of this article is organized as follows.
Section II provides a brief overview of the current research
and related work relevant to NVP, and backup/restore ap-
proaches. We discuss the components that enable the transient
processing architecture and give brief implementation details
in Section III. The results obtained for three different backup
strategies are discussed, and their performance is compared
in Section IV. Then, in Section V, we analyze the effect
that the parameters that characterize the strategies have on
performance according to different time profiles of the avail-
able energy and discuss possible approaches to be taken for
each of the identified cases, including a mixed strategy when
the parameters change over time. Finally, we present our
conclusions and discuss future work in Section VI.

II. RELATED WORK

The evolution of transient processing from CMOS proces-
sors to NVP, mainly improving speed and energy efficiency
for backup/restore operations, is rooted in the advancements in
memory technologies (from Flash, FRAM, MRAM, RRAM,
TFET and NCFET) [19]. While in earlier designs the non-
volatile (NV) element was a central off-chip memory, requiring
sequential byte level transfer, emerging NVPs have embedded
NV flip flops (NVFF) and gates that could retain their states at
register level. Because of the large area overhead induced by
NVFF [20], selective backup policies to central NV-memory
is still employed, making use of advanced NV memory tech-
nologies [10], [21], [22], [23]. Moreover, backup optimization
algorithms have been proposed to switch between write-back
and write-through strategies to reduce the rollback induced by
backup failures, achieving a remarkable reduction of inrush
current [24].

The main design questions to be addressed while devel-
oping a central NV-memory/checkpoint-based failure resilient
system is what to backup and when to backup, with regard to
NV-system correctness [25]. Implementations of an interrupt-
driven checkpointing technique using FRAM-enabled TI mi-
crocontrollers was proposed for transiently powered computers
(TPCs) [23], [9]. Instead of tracking active registers in use,
they back up the entire general purpose register file dur-
ing checkpointing, even under Dynamic Frequency Scaling
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(DFS) [26]. Compile time checkpoint triggering implementa-
tions, e.g. [27], [28], [29], [30], [31], [32] introduce minimum
overhead for the programmer. For example, in [28], the trigger-
ing points are placed after each loop unroll and each function
return compares the input voltage (Vin) against a threshold
and performs a checkpoint if Vin is below the threshold. The
compiler and runtime system implementation achieves both
minimum overhead to the programmer and adaptive saving
for backup strategy. Another strategy has been implemented
in [27] that triggers checkpoints periodically using timers.
In [29], the live-range analysis technique has been utilized by
a specialized compiler that adaptively backs up only required
volatile data which is performed in a dynamic checkpoint
system. Inserting checkpoints during behavioral synthesis on
ASIC implementations [33] has also been proposed. Moreover,
checkpointing is usually implemented with high overhead in
applications with loops, because a large amount of data needs
backup during loop execution. In [34], authors reduce the
amount of checkpointing data by analyzing data locality and
shortening data lifetime in loops.

There have been previous studies conducted to evaluate the
performance of forward progress achieved by employing dif-
ferent backup policies for several processor architectures [11].
The proposed policies, like backup every cycle (BEC), on-
demand all backup (ODAB), and on-demand selective backup
(ODSB), are for non-pipelined processors. An in-order ex-
ecution with an N-stage pipeline architecture was studied
using ‘Shifted PC/Volatile FlipFlop (SPC/VFF)’ as well as
a ‘Non-Volatile FlipFlop (NVFF)’ [35], [11]. While a shifter
buffer placed between each pipeline stage is responsible for
probing the relevant program counter (PC) to save in the
event of a power failure (SPC/VFF), NVFF automatically
saves both the PC and the register file in each stage causing
more time and energy overhead. Policies involving backing-
up of more complex hardware units like the reorder buffer
(ROB), instruction queue (IQ), map table, branch history
buffer (BHT), branch target buffer (BTB), are proposed for
an out-of-order (OoO) execution setup [35].

To cater for the basic use case of an energy harvester based
low-power sensing application, we selected the integer-based
RISC-V processor core (Ibex) with 2-stage in-order process-
ing. It was found that the ODSB is the most energy-efficient
for a comparatively stable energy source and the SPC/VFF
performed well for pipelined in-order processors [11]. We
have selected a similar approach by selectively saving the
PC and minimal register file into the NV memory for an
informed event of a power failure. These metadata are taken
non-intrusively from the RISC-V core using an interrupt-based
software approach, resulting in no change in the microarchi-
tecture and the possibility to extend the same approach to a
wide variety of processors.

To implement and evaluate our different backup policies
and their performance, we have made use of the non-volatile
simulation framework developed especially for intermittent
computing applications on off-the-shelf FPGAs [18], [36] by
integrating the RISC-V core. The framework consists of an
Intermittency Emulator Module (IEMU) which gives informed
predictions of a possible power failure, and a NV-memory

module that helps emulate the behavior of a fast built-in NV-
memory.

The choice of the architecture and policy design is highly
influenced by the input power and its stability [11]. We have
conducted a detailed study for a highly fluctuating real input
trace [37], and formulated hypotheses for selecting useful
parameters (for a given trace) which could help answer the
question when to backup?. These observations could be helpful
in designing strategies and maximizing the efficiency for a
wide range of applications in the future.

III. TRANSIENT NV PROCESSING ARCHITECTURE

In this section, we present the transient processing archi-
tecture which includes the Intermittent RISC-V core setup,
enabling the Systematic Emulation of different backup poli-
cies, and helping low-power sensing applications (running
on energy harvesters) manage unstable power conditions and
reliably resume their operations after a power shortage. The
general system architecture of the transient processing, shown
in Figure 2, can be divided into three main parts: (i) the
transient processing core, (ii) the memory setup, and (iii)
the intermittent setup. The processing core supports transient

Fig. 2. The general architecture of transients RISC-V processing

operation by saving critical state (program counter, status reg-
isters, register file, etc.) to the non-volatile memory NV REG.
The processor that we have used is the Ibex (RV32IMC)
RISC-V processor core [15]. The intermittent setup is used to
emulate the power availability of real working hardware. This
unit, which is designed as a separate module, is implemented
together with the core and integrated directly through the inter-
rupt line. Finally, the memory setup consists of the NV REG
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as well as the SRAM (static RAM for program and data),
helping in program execution and backup/restore operations.
The memories interface directly to the core through the address
and data buses, and are activated by an appropriate address
decoder. The entire system was integrated and implemented
in mixed SystemVerilog/VHDL languages in Vivado and the
results were simulated for verification. In the rest of this
section, we provide the discussion of these parts in detail.

A. Intermittent setup
The intermittent behavior of the system is evaluated through

three different strategies for a specified input voltage trace.
The voltage trace is common to all strategies and is stored in
a ROM (Read-Only memory) inside the IEMU. The IEMU
periodically reads the values from the trace memory, and
delivers status information to the rest of the circuit, to emulate
the way the actual hardware behaves. There is a total of 1569
values in the ROM. Each value is retained for 2500 clock
cycles, or 50 ms, bringing the total simulation time to 75 s.
The IEMU works by comparing the trace voltage level to some
thresholds. When the voltage falls below the hard threshold (or
reset threshold), the IEMU activates a RESET signal, which is
connected to all hardware components except the non-volatile
memory NV REG. The reset signal causes the components to
lose their state, effectively emulating a power down cycle. The
hard threshold of the IEMU is set to 2800 mV in all the cases,
as transistor logic will not work below this voltage level. Other
thresholds can be used with different strategies, as discussed
below.

1) Threshold-based strategy: In the threshold-based strat-
egy, a second threshold value is selected in the IEMU as a
soft threshold, resting above the reset threshold. At any given
time, the IEMU will give information about the status of the
comparison between the current voltage level (from ROM)
and the soft threshold. An interrupt is generated if the current
voltage level falls below the soft threshold. By servicing the
interrupt, the core can initiate a save operation to back up its
internal state to non-volatile memory before the system loses
power completely.

2) Periodic strategy: Unlike the threshold-based strategy,
the periodic strategy does not rely on the input voltage trace to
generate an interrupt to the core. Instead, an external dedicated
counter is employed to generate the interrupt to the core
periodically. The counter period can be tuned according to
the voltage trace to yield maximum performance from this
strategy.

3) Milestone-based strategy: The Milestone-based strategy
does not rely on external interrupts to the core for a non-
volatile save operation. Rather, the interrupt service routine
is transformed into a regular function which can be called
from within main() each time a number Nf of typical read-
compute-transmit iterations of the code have been executed.
The most frequent rate corresponds to saving the state at every
code iteration (milestone = 1).

B. Memory setup
The processing core is connected to a memory mapped

system as shown in Figure 2. The initial 64 kB of the

address space is reserved for the SRAM which is the primary
memory area into which program and data are stored when
the processor is running. The peripherals, such as the sensors
and the UART, are connected to the core through ports which
are memory mapped, so that reading and writing from the
application code is performed by a direct access to the address
space assigned to their configuration and status registers.

The next 16 memory locations after the 64 kB are reserved
for non-volatile (NV) memory, or NV REG. For this, we have
made use of a non-volatile simulation framework developed
especially for intermittent computing applications on off-
the-shelf FPGAs [18]. This FPGA-based framework, named
NORM (Non-volatile memORy eMulator), is developed to
emulate and verify the behavior of any intermittent computing
system that exploits fast non-volatile memories.

The NV REG is directly connected to the processor address
and data bus, just like the SRAM and other peripherals. The
address decoder (represented as “1:2” in Figure 2) determines
when to activate the non-volatile memory. The address decoder
switches between SRAM and NV REG based on the address
requested by the core (memory mask based address decoding).
All the memory units connected to the core respect the
Ibex Load-Store unit protocol specification [38] for memory
transactions. The initial 12 words of the 16-bit wide NV
memory locations we currently use are represented in Table I.

TABLE I
THE NV MEMORY LAYOUT

dirty bit PC general purpose regs. Control and status registers
(0/1) mepc a0 a1 a2 a3 a4 a5 a6 a7 mie mstatus

The first word stores the dirty bit, which indicates whether
the NV memory contains saved data or not. This is useful
in determining whether a resume operation needs to be per-
formed. The following word, called PC, contains the address
of the instruction from where the code is to be resumed after a
successful restore. The next consecutive eight locations store
the state of the general purpose register (a0-a7), followed by
the CSR register states required for interrupt services. The
amount of non-volatile memory dedicated to storing general
purpose register values can easily be expanded, according to
the requirements of the application (i.e., how many registers
are required to correctly resume the program execution). Here
we limit the exposition to eight registers for simplicity, as the
example periodic sensor reading application that we use for
evaluation does not need to save more data. As discussed in
the previous sections, saving to NV memory is performed by
the interrupt service routine or by the main program, while
the restore operation is carried out by the start-up code.

The NV REG takes 120 µs to read/write one memory
location. Instead, the SRAM has a 100 µs delay between data
read/write request from the core until successful completion
acknowledgment. We can emulate the delay of NV REG to
take a larger value depending upon the specification, in which
case the results obtained will also vary accordingly.

C. Transient RISC-V (Ibex) core
Ibex is one of the popular open source 32-bit RISC-V

CPU core (2-stage pipeline), suitable for low power embedded
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control applications [15]. The parameters of the version of the
Ibex core used in this paper are summarized in Table II. The
core is operated at 50 kHz which is similar to a real-world low-
power processing frequency of a sensor. The features exploited
for saving processor states are the fast interrupt, the general
purpose register file and certain CSRs (to enable interrupts and
to read PC value when the core is interrupted).

TABLE II
MAIN IBEX RISC-V CORE FEATURES

Feature Ibex specific feature

Pipeline 2-stage in-order pipeline (IF - Instruction fetch, ID/EX -
Instruction Decode and Execute)

Enabled
features

RV32IMC (M - Integer multiplication and division, I - Base
Integer Instruction Set version 2.1, C - Compressed Instruc-
tions)

Disabled
features

Instruction Cache, PMP (Physical memory protection), RV32B
(Bit manipulation), Branch-target*, Branch-predict (static) and
Write-back stage (third pipeline, experimental)

Memory

Single-port SRAM with 1 cycle read/write delay, 32 bit words.
The Ibex core is directly connected to this memory through
the address and data bus, where all the data and instructions
are stored

No. of registers 32 general purpose registers (32-bit)
Register file FPGA optimized register file (using RAM32M primitives)

Many features in the RISC-V specification are optional, and Ibex can be
parameterized [15] to enable or disable some of them. *Branch-target: when
enabled a separate simultaneous ALU instance is used for branch target
calculation, to reduce stall from 2cc to 1cc (Branch taken).

The general program startup flow and the associated in-
terrupt/NV save logic is illustrated in Figure 3. The main
fragments of code corresponding to the various phases are also
shown for completeness in Listing 1, 2 and 3. The core runs

interrupt

dirty-bit

Restore regs. (a0-a7)

Restore (mie, 
mstatus) regs.

Clear dirty-bit/Invalidate 
NV memory

Restore mepc to 
PC and jump to PC

Clear _bss section

Jump to main()

Enable interrupts
(mie, mstatus)
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Fig. 3. The general program startup flow (with and without NV restore) and
interrupt/NV save logic. mie: Machine Interrupt Enable; mstatus: Machine
Status (containing global interrupt enable); PC: Program Counter; (a0-a7):
part of General purpose regs.; mepc: Machine Exception Program Counter
(containing ’PC value before interrupt’ or instruction address from which
the program is to be resumed); bss: Block starting symbol (containing
unassigned statically allocated variables in program); dirty-bit: bit indicating
whether to restore or not.

a sample C application that performs basic operations, such

int main(int argc, char **argv) {
/* mie fast interrupt enable */
asm volatile("csrw 0x304, %0\n" : : "r"(0x00010000));
/* enable global interrupt, mstatus register */
asm volatile("csrw 0x300, %0\n" : : "r"(0x8));
while (1) {
/* logic to calculate Exponentially weighted moving

average (ema) after reading from sensor and
writing results back to radio (memory-mapped
location) */

current_sensor_reading = *sensor_mem_address;
ema = (SMOOTHING_FACTOR * current_sensor_reading) +

((1 - SMOOTHING_FACTOR) * ema);
ema = ema >> 2;

*radio_transmit_mem_address = ema;
/* sleep for 0.5s (code omitted for brevity) */

}
}

Listing 1. The application program startup code and data acquisition loop
in main.c. The SMOOTHING FACTOR determines the decay rate of the
exponentially weighted moving average.

as reading sensor values from a memory mapped location,
calculating its exponentially weighted moving average, and
writing the output to a memory mapped UART for transmitting
over the radio. This program, denoted as program.vmem in
Figure 2, is loaded in memory at the processor startup. The
sampling rate of the application is set to 2 Hz, which implies
each value is read from the sensor, computation is performed
and results transmitted every 0.5 seconds continuously, and
includes a delay before each iteration.

After entering main() (shown in Listing 1, and as a light-
green shaded box in Figure 3), the code writes the value
‘0x00010000’ to the control register mie (0x304, Machine
Interrupt Enable register) to enable the first fast interrupt signal
(out of available 15 signals) and sets the global interrupt
enable by writing 0x08 to mstatus (0x300, Machine Status
register). This will enable the Ibex core to receive and service
the fast interrupts given for the periodic and threshold based
strategies. After compiling the program, we observe that 8
general purpose registers (a0-a7 (x10 - x17)) are used in the
disassembled code for reading/computation and writing the
results.

The application therefore also registers a dedicated
interrupt service routine (shown in Listing 2 and
as a light-blue shaded box in Figure 3), marked as
__attribute__((interrupt)), whose main function
is to write the dirty bit (the bit indicating the NV region
has valid data), the current PC (‘Program counter before
interrupt’ whose value is taken from the mepc register of
the RISC-V processor in case of an interrupt, otherwise the
function return address is stored in case of a milestone-based
strategy), the content of a0-a7 and the state of the mie and
mstatus control registers onto the NV region in that order,
according to the memory layout outlined above.

Along with the application and the interrupt service routine,
the program includes a startup code (shown in Listing 3, and
as a set of light-orange shaded boxes in Figure 3) executed
every time the core is powered up (either at the beginning,
or when execution has to be resumed). The runtime startup
code, crt0.S, is used to load the compiled C program into
memory, since we are not using any OS or standard C-library

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on April 22,2022 at 10:31:31 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3169108, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

/* The interrupt handler for NV save */
void fast_irq_handler_nv_write(void)

__attribute__((interrupt));
void fast_irq_handler_nv_write(void) {
/* save registers (a0-a7) which are used in disassembled

code (only a0 shown here) */
__asm__ volatile("li t3, 0x10008");
__asm__ volatile("sw a0, 0(t3)");

/* read mstatus reg. and save the global interrupt
enable bit */

volatile uint32_t *nv_location_pointer = (uint32_t *)
0x00010028;

__asm__ volatile("csrr %0, 0x300;" : "=r"( temp ) );

*(nv_location_pointer) = (temp & 0x80) >> 4;
/* read and save mie reg. for fast interrupt enable */
__asm__ volatile("csrr %0, 0x304;" : "=r"(

*(nv_location_pointer+1) ) );
/* read and save PC before interrut from mepc reg.*/
nv_location_pointer = (uint32_t *) 0x00010004;
__asm__ volatile("csrr %0, mepc;" :

"=r"(*(nv_location_pointer) ));
/* set dirty bit flag to indicate valid NV state */
nv_location_pointer = (uint32_t *) 0x00010000;

*nv_location_pointer = (uint32_t) 1;
}

Listing 2. Interrupt handler code in main.c

main_entry:
/* jump to main program entry point (argc = argv = 0) */
addi x10, x0, 0
addi x11, x0, 0
/* If dirty bit is set jump to dummy_main */
li x1, 0x00010000
lw x1, 0(x1)
bnez x1, dummy_main
/* Normal program startup without restore, so clear BSS

*/
la x26, _bss_start
la x27, _bss_end
bge x26, x27, zero_loop_end

zero_loop:
sw x0, 0(x26)
addi x26, x26, 4
ble x26, x27, zero_loop

zero_loop_end:
jal x1, main
jal x0, both

dummy_main:
/* restore registers x10-x17 (a0-a7)*/
li x1, 0x00010008
lw x28, 0(x1)
mv a0 ,x28
/* restore mstatus register (for global interrupt) */
lw x28, 32(x1)
csrw 0x300, x28
/* restore mie register (for fast interrupt) */
lw x28, 36(x1)
csrw 0x304, x28
/* clear dirty bit/ Invalidate NV reg */
sw x0, -8(x1)
/* restore mepc and resume execution */
lw x28, -4(x1)
jalr x1, 0(x28)

Listing 3. The C program startup code in crt0.S (minimal version)

environment (bare-metal C program in this case). The script
defines and initializes the interrupt vector tables, defines the
reset handler which clears all the registers, clears the BSS
section, initializes the stack section, and so on.

One of the main function of the script includes the logic
for restoring the processor state from the NV memory and
continuing the execution from the last save. This is done by
reading the initial location of the NV memory address after a

reset, to check if the dirty bit is set. The execution is continued
from the previously saved PC value if the bit is set, after all the
saved values from the NV memory are restored into a0-a7 and
the control and status registers. After reading it successfully,
the routine also resets the dirty bit to indicate that the NV
region does not contain any valid data (the bit will be set
again after saving a new state). If the dirty bit is not set, then
the program proceeds to execute from the start of main(),
after clearing the BSS section, ensuring normal program flow
after reset.

Fig. 4. NV save for threshold-based strategy (reset=2800mv and soft-
threshold=2900mV). The signal names are as follows. CLK: Clock; RESET:
Reset; mepc q: mepc reg. value; data out: power trace value from ROM;
threshold compared[1:0]: [hard-threshold-crossed, soft-threshold-crossed]
the bit position (*-threshold-crossed) in this array is set if the corresponding
threshold is crossed by the input trace; fast irq i: threshold based interrupt
signal; threshold value[1:0]: [hard-threshold, soft-threshold]; instr addr:
currently executing instruction address; reset emulator N: to simulate
RESET/Power-down signal when input voltage trace crosses hard-threshold;
NVRE busy: NV reg. is busy; NVRE busy sig: same as NVRE busy but
drops one cycle earlier; NVRE en: NV reg. enabled.

The output of the simulation for NV save is shown in
Figure 4. It shows the threshold-based interrupt generated in
fast_irq_i signal when the data from ROM (data_out)
changes from 2917 to 2838. This causes mepc_q to capture
the instruction address 0x000001c4 (PC value when the
core got interrupted) followed by the NV-write represented
by the NVRE_en, NVRE_busy signals. The core contin-
ues its normal execution after the NV write. Similarly in
Figure 5, when the core boots up after a power failure
(reset_emulator_N), the state stored in the NV memory
(NVRE_*) is restored and the core continues its execution from
0x000001c4 in instr_addr.

Fig. 5. NV restore for threshold-based strategy (reset=2800mv and soft-
threshold=2900mV). See the caption of Figure 4 for an explanation of
the signal names. For the extra signals: NVRE we: NV reg. write enable;
NVRE addr: NV reg. address.
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IV. EVALUATION

We have set up and collected data from all the three
strategies and analyze and present the results in this section.
Figure 6 shows the input voltage trace we used to obtain
the results. This voltage trace is taken from [37], and it
represents the harvested RF energy collected by walking
around within about eight feet of an RFID reader. Out of all
other available traces [39], we selected this trace in particular
because it covers all the possible combinations of SAVE-
RESTORE processor states of interest and therefore gives us
a comprehensive result.

Fig. 6. The input voltage profile and threshold limits

We have chosen the hard-threshold limit (RESET voltage)
as 2800 mV, below which a RESET signal is generated from
the IEMU, and the Ibex core is reset. As we can see from the
voltage trace, there are a total of 16 power-ON intervals {at
650, 550, 700, 1300, 1250, 1450, 2100, 1300, 1150, 100, 700,
2250, 2550, 900, 550, 50 ms respectively} during which the
voltage crosses the hard threshold and the system powers up.

In the rest of this section, we analyze the behavior of the
system upon each of the 16 power-on intervals. We color code
the outcome of the save and restore operations according to the
scheme outlined in Table III, going from dark grey for a double
fail (both the save and the restore operation do not succeed)
to white for a double success. This gives an intuitive and clear

TABLE III
RESTORE-SAVE STATUS COLOR CODES

Restore-Fail, Save-Fail (RF SF)
Restore-Fail, Save-Success (RF SS)
Restore-Success, Save-Fail (RS SF)

Restore-Success, Save-Success (RS SS)

visualization of the strategy performance as a function of its
operating parameters. Furthermore, we discuss the impact of
the strategy in terms of CPU overhead.

A. Threshold-based strategy

Three soft-threshold values above the hard-threshold (or-
ange line), as shown in Figure 6, are selected to conduct the
threshold-based NV strategy (3000, 3200, 3400 mv, respec-
tively). Table IV gives the result of the threshold-based strategy
in terms of correctness for various selected soft thresholds.

Since during the 1st interval there is no pre-existing saved
value in the NV memory to be restored, we conventionally
assume the outcome to be RF SS. In all cases except for
the 2900 mV threshold, the values computed are successfully

TABLE IV
CORRECTNESS OF THRESHOLD BASED STRATEGY

Threshold Power-ON intervals
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2900
3000
3200
3400

saved and restored consecutively during the next boot cycles
until interval 10. Intervals 10 and 16 (with power-on duration
100 and 50 ms, respectively) have a shorter power-ON interval
compared to the others, and thus do not provide enough time
to save the result to NV memory after receiving an interrupt.
Also, in the case of 2900 (intervals 11 and 12) and 3000
(interval 11), the NV save fails because of the same reason.
Observe in particular that even though the 3400 mV threshold
is higher than 3200, it fails to save in interval 15, because the
voltage trace does not reach the level 3400 before falling back
below the reset level, thus not issuing the save operation (see
Figure 6). This means that simply selecting a higher threshold
does not necessarily guarantee better performance, but rather it
highly depends on the actual voltage trace under consideration.

From Table IV it is clear that the soft threshold 3200 mV
yields the highest performance with 87.5% in terms of cor-
rectness (the percentage is calculated by taking all the Save-
Success intervals out of the total 16 intervals), although
3400 mV (performance = 81.25%) is a higher threshold than
3200 (all Save-Success cases are considered to be Success).
The 3000 mV threshold has similar results as 3400 (81.25%).
Notice that lowering the soft threshold near the hard threshold
(performance of 2900 = 56.25%) gives sub-optimal results
compared to the others.

Table V records the actual CPU overhead (calculated from
the number of clock cycles utilized) caused by the NV save/re-
store operations for different soft thresholds. The 3200 mV

TABLE V
CPU OVERHEAD FOR THRESHOLD-BASED STRATEGY

A (mV) B (ms) C (ms) D (%) E (ms) F (%)
3000 64.4 17550 0.367 1212 5.3135
3200 73.1 17550 0.416 1212 6.0313
3400 69.08 17550 0.394 1212 5.6996

A - Soft threshold, B - Total SAVE /RESTORE duration, C - Total
power-ON duration (above 2800 mV), D - Percentage, E - Total
powered-ON duration except delay (nop), F - Percentage (excluding delay).

threshold has a slightly higher overhead (last column) com-
pared to the other thresholds, since the increased number of
RS SS regions contribute additional cycles for NV operations
(see Table IV). This clearly indicates the direct correlation
between higher performance (in terms of correctness) and CPU
overhead.

B. Periodic strategy

The performance of the periodic strategy depends on the
relation between the period with which data is saved to NV
memory and the time interval between the power down events,
which we call the power-ON interval.
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Figure 7 shows for each of the 16 power-ON intervals (hor-
izontal axis) their corresponding duration in seconds (vertical
axis). The average duration of the power-ON interval is equal

Fig. 7. Power-ON intervals of input voltage profile (x-axis = interval index,
y-axis = power-ON interval in seconds)

to 1096.87 ms, while the shortest interval is the 16th, with
a time duration equal to 50 ms. In terms of clock cycles,
the average corresponds to 54844 clock cycles, while 50 ms
are equal to 2500 clock cycles. To evaluate the strategy, we
consider periods between the shortest and the average interval.
The results are shown in Table VI. In this case, as expected, the

TABLE VI
CORRECTNESS OF PERIODIC STRATEGY

Clock
cycles

Power-ON intervals
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

54844
35000
20000
3000
2500

lower the period, the higher the correctness rate. In particular,
the average period achieves only 50% correctness, while
choosing the shortest period is almost guaranteed to provide
the correct data (100% correctness). Clearly, the problem with
choosing the average period is that all the power-ON intervals
whose duration is higher than the average (interval 1, 2, 3,
10, 11, 14, 15 and 16) fail to save the data in time to the NV
memory since the processor does not receive an interrupt from
the counter before reset. Similarly, for 20000 cc (400 ms), the
intervals 10 and 16 have periods shorter than 400 ms and thus
fail to save their state before reset. Therefore, it is interesting to
note that combining information about the power-ON intervals
and tuning the periodic interrupt generator accordingly, we can
more or less achieve a predictable performance in terms of
correctness.

In terms of overhead, we measured a drastic increase in the
overall CPU usage from Table VII (column F) when the period
of the counter is decreased. The average power-ON interval
(54844 cc) gives us a negligibly low 3.4% overhead compared
to the worst-case 67% of the shortest power-ON interval
(2500 cc). The trade-off between performance (correctness)
vs. overhead is clearly visible here.

TABLE VII
CPU OVERHEAD FOR PERIODIC STRATEGY

A (cc) B (ms) C (ms) D (%) E (ms) F (%)
2500 812.2 17550 4.628 1212 67.013
3000 807.5 17550 4.60 1212 66.625
20000 115.22 17550 0.656 1212 9.51
54844 41.96 17550 0.239 1212 3.462

A - Period for counter generated interrupts (Clk cycles), B - Total SAVE
/RESTORE duration, C - Total power-ON duration (above 2800 mV), D -
Percentage, E - Total powered-ON duration except delay (nop), F -
Percentage (excluding delay).

C. Milestone-based strategy

With a milestone-based strategy, data is saved only after
it has been computed. Besides saving after every computing
iteration, we also experiment with saving the data after 2 or
3 iterations. The results are shown in Table VIII.

TABLE VIII
CORRECTNESS OF MILESTONE BASED STRATEGY

No. of
iterations
before a
milestone

.

Power-ON intervals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2 2 1 2 2 2 2 4 2 2 0 2 4 5 2 1 1
3 2 2 2 3 2 3 4 3 2 1 2 5 6 1 2 1

The first column indicates the number of times the code has
been executed before saving its state to the NV region. Also,
note that the numbers in each interval cell for milestone 2
and 3 indicate the number of code iterations that the interval
successfully executed. In the case of milestone 2, the dirty
bit of the NV memory is set only in even iterations. It is
cleared in all other cases. Similarly, for milestone 3, when the
iteration reaches 3 or a multiple of 3 we set the dirty bit to
indicate a valid state in NV memory (i.e., the data we saved
after this into the NV memory will be the latest/correct state).
Otherwise, the dirty bit is invalidated.

Since the program counter value saved to the NV region
will always be the address of the milestone function call (after
output computation and just before the 0.5 s delay loop), after
a successful restore, the delay loop will always be executed
first. This is the reason why in intervals 10 (milestone 1 and
2) and 16 (milestone 1), we do not have enough time to exit
out of the 0.5 s delay, to calculate/transmit a new value and
then save that into NV. This is also the reason that milestone 1
has a reduced performance of 87.5% , which would have been
close to 100% otherwise. In the case of milestone 2 and 3, the
save is failing just because the number of iterations is not a
multiple of the milestone in that interval as shown. Milestone
2 has a performance of 68.75%, and milestone 3 has the worst
performance of 25%.

Table IX shows the overhead for this strategy. The additional
overhead of clearing the dirty bit after every iteration (if the
iteration is not a multiple of the milestone) in case of higher
milestones is also accounted for. Similar to the previous strate-
gies, the total CPU utilization increases with lower milestones,
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TABLE IX
CPU OVERHEAD FOR MILESTONE BASED STRATEGY

A B (ms) C (ms) D (%) E (ms) F (%)
1 98.4 17550 0.561 1212 8.085
2 64.02 17550 0.364 1212 5.28
3 37.74 17550 0.215 1212 3.11

A - Milestones per calculation, B - Total SAVE /RESTORE duration, C -
Total power-ON duration (above 2800 mV), D - Percentage, E - Total
powered-ON duration except delay (nop), F - Percentage (excluding delay).

and the very frequent save operations contribute much towards
the increase.

V. DISCUSSION

Given the results outlined in the previous section, we pro-
ceed now to analyze the impact that the different parameters
have on the performance of each individual strategy. There are
three main performance indicators to consider when selecting
an NV save strategy: (i) the desired level of correctness when
restoring the data, (ii) the average power-ON interval duration
of the voltage trace, and (iii) the CPU overhead introduced due
to the extra NV save/restore operations which can be tolerated.

The best strategy, and the choice of parameters, clearly
depends on the shape of the voltage trace over time, and
on the processor performance. In the rest of the section, we
consider different shapes which we represent in the form of a
“terrain”, as they remind of a hilly landscape. Figure 8 shows
an example.

Fig. 8. Single terrain of input voltage trace. (x-axis = time, y-axis = voltage)

The dark blue area lies below the reset threshold, while
the light blue area is above. The line GD represents the soft
threshold value defined, which would be used as a reference
voltage for carrying out NV operations. We identify several
parameters that characterize both the trace and the processor
execution:

• α - the time required from a power on event to the start
of execution of the main() function;

• β – available time to execute the main() code before
crossing the ‘closing’ threshold (From Figure 8, point
D is the ‘closing’ threshold, because after D the trace
continues to stay below the soft threshold and eventually
goes below the reset threshold);

• δ - available time left between the soft threshold (NV
write) and reset;

• TSTARTUP = minimum time required to startup the
main() code after reset (in our case this would be 201 cc

and the corresponding power required would be the area
under the curve BC);

• TSINGLE EXEC = minimum time required to execute a
single output after reaching the main() code, this would
be 72 cc;

• TNV SAVE = minimum time required for NV write after
an interrupt is received, this would be 117 cc;

In our implementation, α = TSTARTUP . Below, we con-
sider each performance indicator.

A. Correctness

To achieve close to 100% correctness while restoring a
saved state, we should always ensure that the last operation to
be carried out should be an NV save before power down. We
consider two cases:

1) case I: δ ≥ TNV SAVE : Here we assume that the shape
of the voltage trace always provides enough time (δ) for the
processor to perform a save operation when the trace falls
below the first (soft) threshold and before it falls below the
reset threshold. The best strategy depends on the time duration
that the trace spends between the two thresholds.

• case I.a: ∃γ, 0 ≤ γ < TSINGLE EXEC , such that δ =
(TNV SAVE + γ). In this case, as shown in Figure 9,
the processor has enough time to perform the NV save
operation, but does not have enough time to complete
another sensor read and computation cycle before power
down.

Fig. 9. (case I.a) where δ = TNV SAVE + γ

Saving after crossing the threshold (point G) therefore
saves the correct state. When this is the case, the
threshold-based strategy is to be preferred compared to,
for instance, the milestone-based strategy with milestone
= 1. In fact, the threshold-based strategy saves the state
only when necessary, and always when necessary, achiev-
ing full correctness with minimal overhead.

• case I.b: ∃N,N ≥ 1, such that δ � (TNV SAVE +N ×
TSINGLE EXEC ). In this case, shown in Figure 10, the
voltage trace remains between the two thresholds for a
long time before falling under the reset threshold. In a
threshold-based strategy, the state is saved upon crossing
the first threshold. The processor, then, has time to exe-
cute several sensor read and computation cycles, without
another interrupt begin generated. The threshold-based
strategy thus results in losing all the N values computed
after the NV save. Employing a milestone-based strategy
(setting milestone = 1 for best case results) will be more
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Fig. 10. (case I.b) where δ � (TNV SAVE +N × TSINGLE EXEC )

effective to preserve all the values. Making use of the
periodic strategy (with period = TSINGLE EXEC ) will
be equally effective as milestone based, but with added
power overhead due to the interrupt generating counter
peripheral.

2) case II: δ < TNV SAVE : For this case, we assume that
the time δ available between the crossing of the first threshold
and the reset level is not sufficient for saving the state of the
processor. In this case, clearly, the threshold-based strategy is
not usable, as it will always result in an incorrect restore. We,
therefore, consider the amount of time between the resume of
program execution and the next power down β + δ, assuming
this is sufficient for at least one execution and one save.

• case II.a: β + δ ≥ (TSINGLE EXEC + TNV SAVE ). The
limit case, shown in Figure 11, is when there is time
exactly for one execution of the application iteration, and
one NV save operation. Then, selecting the milestone

Fig. 11. (case II.a) where β + δ ≥ (TSINGLE EXEC + TNV SAVE )

based (with milestone = 1, for best case) instead of the
periodic strategy (as mentioned in case I.b) will always
ensure that the immediate output generated is saved after
each iteration of the code.

• case II.b: β + δ � (TSINGLE EXEC + TNV SAVE ). In
this second case, there is ample time between power up
and power down to execute several iterations, as shown
in Figure 12.

Fig. 12. (case II.b) where β + δ � (TSINGLE EXEC + TNV SAVE )

Because power down is infrequent compared to the iter-
ation, opting for a periodic strategy, with a period equal
to the power-ON interval, will be more efficient, both
in terms of reduced CPU overhead and reduced power
consumption for the NV save, instead of a milestone-
based strategy. This can be seen in Table VI, with 2500
clock cycles.

B. Average power-ON interval

The length of the power-ON interval, as we have seen,
affects the effectiveness of each strategy. We summarize the
impact below.

1) Periodic strategy: Choosing a period which is equal
to the average power-ON interval (54844 clock cycles from
Table VI) yields a corresponding average performance. In
our specific case study, this results in a 50% effectiveness
(all Save-Success cases are considered to be Success) in
terms of correctness. A shorter period increases performance,
up to the minimum power-ON interval (2500 clock cycles
from Table VI), yielding a 100% effectiveness in terms of
correctness. At the same time, the overhead increases due to
the execution of potentially unnecessary save operations. The
power-ON interval is therefore the base metric to use to tune
the period of the interrupt generating counter with respect to
the requirements.

2) Threshold-based strategy: The duration of the power-
ON interval is substantially uncorrelated with the specific
variations of the voltage on the additional thresholds. As a
consequence, it is difficult to predict the performance of a
threshold-based strategy on the basis of this metric. Neverthe-
less, if the voltage profile is somewhat regular and/or periodic,
then one could select more relevant thresholds based on the
average power-ON interval, especially if the slope of the trace
is taken into account to derive the timing parameters discussed
before.

3) Milestone-based strategy: If N is the number of code
iterations (within a power interval) that can be successfully
executed after starting up the main() code (without consid-
ering the time required for NV saves), then the equation that
relates a power-ON interval and Nf can be written as:

power-ON interval = α+ ∆+

N

(
TSINGLE EXEC +

TNV SAVE

Nf

)
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Here N and Nf are variables, which should be tuned to get
the right hand side almost equal to the left hand side. The
value of ∆ will be the remaining time left between the final
reset and last successful save operation.

Best-case results in terms of correctness can be easily
achieved (guaranteed) by setting Nf = 1, causing however
worst case CPU overhead. So, for optimum performance (in
terms of energy usage) our aim should be to maximize Nf ,
satisfying the condition ∆ < TSINGLE EXEC .

Fig. 13. The cyclic-like scheduling model for finding optimum Nf for
milestone based strategy

As there are many power-ON intervals (with varying pe-
riods), we could find a common Nf that applies to all of
them (given the voltage profile is somewhat regular and/or
periodic). This common Nf will ensure the latest state is
saved into NV for all the terrains before reset. The idea is
that we find the GCD (Greatest Common Divisor) of all the
intervals I = (power ON interval) − α and schedule our
jobs (consisting of code iterations and NV saves) within each
GCD (minor cycle) time-slot as show in Figure 13. This cyclic-
scheduling, like NV saves, requires code iterations to fit inside
(fine grained programs) each minor cycle, and there might
be a possibility for the unused time between code iterations
and NV save in each minor cycle. A much less complex
implementation with almost the same results can be achieved
by periodic strategy with the period set as a minor cycle (when
an interrupt arrives, preemption is possible in this case).

C. CPU overhead

We have already discussed the impact of the different
strategies in terms of CPU overhead. Nevertheless, when the
threshold-based strategy is adopted, certain specific voltage
trace shapes may have a large impact on performance, and
that should be accounted for. One example is shown Figure 14,
where the voltage level crosses the NV save threshold multiple
times between power up and power down (i.e., within a β
interval).

In this case, the threshold-based strategy introduces much
higher CPU overhead. The worst case is achieved when the
crossing frequency is approximately equal to TNV SAVE , as
the NV save would happen back-to-back. Even if the trace
satisfies case I.a, we could go for periodic/milestone based
strategies in case of frequent crossings.

Similarly, under the same trace, a periodic strategy with
period close to TNV SAVE would also result in maximum CPU
overhead, as is also the case for a milestone-based strategy
with Nf = 1.

Fig. 14. Multiple threshold crossing within a single terrain. (x-axis = time,
y-axis= voltage)

D. Development Guideline

When historic power traces are available, we present a
guideline to set the optimal intermittent policy according to
power-ON pulses as shown in Figure 15. A mixed strategy
could be employed for various δ seen across different period
of time in a day.

Fig. 15. Power-ON pulses modeled for each individual cases.

As we have seen in Section IV, the CPU overhead of the
threshold-based strategy compares favorably to others for the
same performance. So threshold-based saves are preferable
when feasible. Case I.a is the ideal case, where threshold-
based NV-save fits perfectly into the power-trace immediately
after the soft threshold is crossed. The extra time left after
NV-save in case I.b can be tackled either by adaptively
reducing the soft-threshold (if possible), so that the NV-save
is further pushed just before reset or adopt a cyclic schedule
approach for the remaining time after save (i.e., schedule the
group of power-ON pulses with case I.b characteristics with
minor− cycle = GCD(δ− TNV SAVE ) ). Similarly, in case
II, an adaptive increase in threshold (as shown for case II.b
in Figure 15) for the specific time-of-day can be employed to
get enough δ for NV save. If this is not feasible, the schedule
based approach for either milestone/periodic is the best option
(i.e., schedule the group of power-ON pulses with case II
characteristics with minor − cycle = GCD(β + δ)).

Here, we only considered the voltage trace characteristics
and clock cycles used by the core to conduct our study. As
an alternative, the actual power consumption by the core and
other logic should be accounted for a more precise policy.
A compiler-based run-time environment (or a plugin) could
be integrated into LLVM/GCC, automatically inserting the
save-restore code. This would ensure minimum programmer
overhead and capture the registers for dynamically saving,
based on live analysis.
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VI. CONCLUSIONS

Thanks to the progress in energy harvesting circuits and
the decrease in processing power requirements, many IoT
devices will work batteryless in an intermittent manner, using
the sole energy converted from the environment. Intermittent
computing requires significant microarchitectural modifica-
tions on existing processor designs to ensure computation
progress despite the power failures automatically. We pre-
sented a systematic approach to emulate different processor
architectures under the Intermittent Computing domain. We
wrapped the Ibex RISC-V core to be suitable for transient
computing applications as a demonstration. Moreover, this
paper presented different processor state backup strategies
based on an interrupt-based software approach, which do not
require modifications to the microarchitecture of existing pro-
cessors. We compared the performance with irregular power
and provided comprehensive development guidelines using an
extensive set of measurements and tests with a typical IoT
application used as a benchmark.

As of now, our backup strategies consider the voltage trace
characteristics and the number of clock cycles to perform a
backup operation. As an alternative, the actual power con-
sumption of the processor and other logic elements can be
considered to implement a more precise policy.

There are a number of standard benchmarks specific to
the Ibex RV32IMC core [40], but these are oriented towards
performance evaluation (like the CoreMark) and do not ac-
count for possible intermittent behavior. Therefore we have
developed a specific application to validate our approach
(shown as the data acquisition loop in Listing 1), which is
representative of typical implementations. As future work, we
will use real traces from different energy harvester setups (i.e.,
thermogenerators, piezoelectrics, micro-photovoltaic, etc.) and
analyze how optimal policies change according to different
scenarios and benchmarks.
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