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Abstract—This papers deals with the analysis of the delayed
SLAM problem from the perspective of the uncertainties involved
in the process. We consider an autonomous mobile robot moving
in an environment and equipped with noisy encoders, used for
the ego-motion reconstruction, and with a LIDAR for indoor
features detection. We adopt an Extended Kalman Filter (EKF)
based solution and we analyse the effect of the length of the
delayed measurement window on the system uncertainties. The
analysis covers the standard LIDAR measurements, but it is also
extended to range-only measurements. Mont Carlo simulation
results are provided on synthetic indoor environments for both
the cases.

Index Terms—Delayed Mapping, Extended Kalman Filter,
SLAM problem

I. INTRODUCTION

Autonomous systems applied to natural environments
as well as industrial robots have the necessity to
localise themselves in the operational space using on-
board or environmental sensing systems. To improve the
autonomous capabilities of such systems, no-knowledge is
given upfront about the environmental structure, which
asks for Simultaneous Localisation and Mapping (SLAM)
solutions [1], [2]. A solution to a SLAM problem allows
a mobile agent to estimate both the sensed environmental
features (thus generating a map) and the location of the
system (i.e., the localisation problem) with respect to the
reconstructed map contextually. Of course, this is a chicken
and egg problem that is prone to unbounded uncertainties
if additional constraints are not satisfied, i.e. loop closure
event [1].

A taxonomy of the different SLAM solutions can be
given in terms of the different sensors adopted. Probably
the most popular solutions rely on visual sensors [3], [4],
either monocular cameras, stereo cameras, RGB-D cameras or
combinations thereof (e.g., ORB-SLAMv2 [5]). Besides the
vision based approaches, one of the most adopted solutions
relies on LIDAR sensors, which are adopted for both 2D
solutions, such as the FastSLAM [6], or for three dimensional
cases, as in IMLS-SLAM [7].

In an effective solution to the SLAM problem, measurement
uncertainties play a fundamental role. In this respect,
researchers have focused on faulty or wrongly calibrated
odometers considering the mapping phase as an ad-hoc
optimisation problem, thus generating the so-called Interactive
SLAM [8], or proposing map representations that can correctly

express the uncertainty content and reduce localisation
drifts [9], or by explicitly solving the kidnapped robot
problem in the SLAM context using magnetic and radio
measurements [10]. Moreover, [11] discussed several ROS-
based solutions for visual SLAM and compare them in term of
computation time, efficiency and accuracy. Instead, [12] builds
their graph-based SLAM solution for drilling machines and
considering persistency in the system trajectories measured by
a magnetometer.

From a metrological perspective, the problem of relevance
is the characterisation of the uncertainties related to both
the processes involved (i.e. localisation and mapping) and
how they are combined in the final estimation problem (for
example, it is actually possible to determine the influence
quantities that affects the estimation problem at hand [13]).
In this case, the specific estimation algorithm adopted plays
a major role. Even though recently deep learning algorithms
are becoming more and more popular, especially for visual-
based solutions [14], standard Bayesian solutions, such as the
Extended Kalman Filters, are still playing the lion’s share [15].
The selection of the measurements to inject into the filter in
order to increase the overall performance is an investigated
problem. For example, [12] uses a two stage uncertainty
reduction of the mapped features by travelling two times along
the same trajectory, while [8] reformulate the mapping step
as an optimisation problem using multiple measurements of
the same quantities. This idea is well formalised in delayed
SLAM [2] where the features to be mapped are first filtered in
isolation and then added to the mapping process. The analysis
and characterisation of this process of general applicability is
the focus of this paper. In particular, we propose an analysis of
the delayed SLAM using LIDARs in terms of the number of
measurements needed before the injection of the features in
the mapping process. Moreover, we propose a very simple
approach that requires less computational burden and does
not involve any optimisation algorithm, as instead happens
with the widely known bundle adjustment [16]. Finally, we
analyse the range-only SLAM as a subset case of the LIDAR
measurements.

II. BACKGROUND MATERIAL AND ADOPTED MODELS

The SLAM problem as considered in this paper is basically
an estimation problem using an Extended Kalman Filter
(EKF) where the quantities of interest are the vehicle pose



0 5 10 15
0

2

4

6

8

10
Mapped features
Path

𝑋"

𝑌"

𝑂"

𝑂%,' 𝑋%,'

𝑌%,'
𝛼),'

𝑑),'
𝑚)

Fig. 1. Vehicle trajectory, measurement example and mapped feature
positions.

and the feature positions. The moving platform is assumed
endowed with encoders on the rear wheels providing dead
reckoning-like information, while it make use of a LIDAR
to map static objects inside an indoor environment (i.e.,
basically walls). Each sensor is supposed to be affected by
uncertainties generated by white stochastic processes with
known characteristics. Even though the presented approach
can be applied to a generic platform moving indoor on an
horizontal plane using both ego-motion data and LIDAR
measurements, for the sake of the uncertainties derivation we
make explicit reference to a unicycle-like vehicle, a typical
system that can be found in many industrial and service
robotics applications.

A. Platform Model

The kinematic model of a unicycle-like robot is described
by the following first-order discrete-time equivalent equationsxk+1

yk+1

θk+1

 =

xkyk
θk

+

cos(θk)
sin(θk)

0

 v(t)Ts +

0
0
1

ω(t)Ts, (1)

where Ts is the sampling time considered, (xk, yk) are the
Cartesian planar coordinates of the mid-point of the rear
wheels axle at time kTs and expressed in the reference frame
〈W 〉 = {Ow, Xw, Yw, Zw} (see Figure 1), and θk is the
angle between the longitudinal axis of the robot and axis Xw.
Moreover, we assume, as customary for controlled robots, that
the linear velocity v(t) is constant in the sampling period
Ts, i.e. v(t) = vk = const for kTs ≤ t < (k + 1)Ts.
The same assumption holds for the angular velocity, i.e.
ω(t) = ωk = const. Thus, for SLAM purposes, the robot
state can be defined as sk = [xk, yk, θk]T , and hence (1) can
be defined as

sk+1 = sk + gv(sk)vk + gω(sk)ωk = sk + g(sk)uk, (2)

where uk = [vk, ωk]T are just the inputs to the system.

B. Measurement Models

The robot is equipped with two measurement devices, i.e.,
two incremental encoders installed on the rear wheels and a

LIDAR for environmental features detection. To characterise
the former, the angular velocities ωr(t) and ωl(t) of the right
and left rear wheels can be expressed as a function of the robot
input velocities v(t) and ω(t), i.e.

ωr(t) =
v(t)

r
+
lω(t)

2r
and ωl(t) =

v(t)

r
− lω(t)

2r
, (3)

where r is the wheels radius and l is the rear inter-axle length.
If ∆k = [ωr(t)Ts, ωl(t)Ts]

T denote the angular displacements
of the right and left wheels for kTs ≤ t < (k + 1)Ts
and measured by the encoders in a sampling period Ts,
we immediately have by inverting (3) and considering the
presence of the reading uncertainties εk = [εr,k, εl,k] the
following encoder model[

vkTs
ωkTs

]
=

[
r
2

r
2

r
l − rl

]
(∆k + εk) = E(∆k + εk). (4)

where we use the over-line symbols to denote measurement
results. The stochastic sequence εk is supposed to be white,
stationary and distributed according to N (0,Ξ), where E =
diag(σ2

r , σ
2
l ). Hence, the uncertainties on the forward and

angular velocities in uk can be derived from (4), i.e. the
uncertainty affecting the inputs uk is distributed according to
N (0, Q), where Q = EΞET .

As customary, the LIDAR detects a set of points pi ∈ R2

in the plane and expressed in the reference frame of the robot
〈Lk〉 = {Ol,k, Xl,k, Yl,k, Zl,k}, whose origin Ol,k is assumed
placed in the mid-point of the wheel axle of the vehicle, thus
having coordinates Ol,k = [xk, yk]T in 〈W 〉 at time kTs, as
depicted in Figure 1 (i.e., the origin Ol,k trivially undergoes
the same motion of the vehicle). Due to the specific sensing
system adopted, all the measured quantities pi are expressed
in polar coordinates, i.e. with a distance and an angle in 〈Lk〉.
Since we are assuming to measure static objects in an indoor
environment, e.g. walls, from these collection of points we
can derive segments using a Hough transform solution [17]
and from the intersections of those segments we can identify
corners in the environment, which are regarded as the features
to be mapped. The mapped corners are generically denoted
with mi = [xi, yi]

T , i ∈ N, and expressed in the frame 〈W 〉,
hence the map containing j features is defined as the vector
Mj,k = [mT

1,k, . . . ,m
T
j,k]T . Each feature is related to the robot

state sk by the following polar coordinates representation in
〈Lk〉di,k =

√
(xk − xi)2 + (yk − yi)2 + d̃i,k

αi,k = θk − arctan
yi − yk
xi − xk

+ α̃i,k
⇒

zi,k =

[
di,k
αi,k

]
=

[
di,k
αi,k

]
+

[
d̃i,k
α̃i,k

]
= h(sk,mi) + ρi,k,

(5)

where the uncertainties ρi,k = [d̃i,k, α̃i,k]T are generated by a
white, stationary stochastic process and ρi,k ∼ N (0, R) with
R = diag(σ2

d, σ
2
α), which is considered to be not dependent on

the particular corner detected, as typical for LIDAR sensors.
Moreover, due to the corner detection algorithm considered,



we assume that the uncertainties ρi,k are equivalent to the
LIDAR acquisition noise.

C. Delayed Mapping

This section describes the Bayesian estimator, i.e. an
Extended Kalman Filter (EKF), adopted for the application
of the delayed SLAM. The standard EKF relies on the models
introduced so far and can be synthesised in the following
Prediction and Update steps:
• Prediction: denoting with p̂k = [ŝTk ,M̂T

j,k]T the
estimation vector comprising the vehicle state and the
mapped entities (we adopt the ·̂ notation to identify
estimated quantities), we have:

p̂−k+1 = p̂k +G(p̂k)uk,

P−k+1 = AkPkA
T
k +G(p̂k)QG(p̂k)T ,

(6)

where the matrix G(p̂k) = [g(sk)T , 0, . . . , 0]T is based
on (2) and on the fact that the corner features are static
in 〈W 〉 and Ak =

(
I + ∂G(p̂k)uk

∂p̂k

)
;

• Update:

Kk+1 = P−k+1H
T
k+1

(
Hk+1P

−
k+1H

T
k+1 +R

)−1
,

p̂k+1 = p̂−k+1 +Kk+1(zk+1 − h(p̂−k+1)),

Pk+1 = (I −Kk+1Hk+1)P−k+1,

(7)

where Kk+1 is the Kalman gain, zk+1 = [zT1,k, . . . , z
T
l,k]T

is the vector collecting the 2l measurements about the j
mapped features (notice that not all the mapped corners
could be measured at time kTs, hence l ≤ j and that each
zi,k comprises two measurement quantities), h(p̂−k+1)
are the corresponding measurement models in (5) and

Hk+1 =
∂h(p̂−k+1)

∂p̂−k+1

is the Jacobian matrix of the system
measurements.

Given the choice of p̂k, it turns useful to partition the
covariance matrix Pk with respect to the vehicle and the map
quantities, i.e.

Pk =

[
Ps,k Psm,k
PTsm,k Pm,k

]
, (8)

where Ps,k ∈ R3×3 is the covariance matrix of the vehicle
state sk, Pm,k ∈ R2j×2j is the covariance matrix of the
mapped features uncertainties given the j mapped entities,
and Psm,k ∈ R3×2j is the covariance matrix between the
robot and the mapped features. Notice that Ps,k and Pm,k
are the covariances of the marginals of the jointly Gaussian
state p̂q . In a delayed mapping algorithm, a new corner feature
mj+1 it is not added immediately when it is detected but,
instead, n consecutive measurements are stored together with
the vehicle positions from which they are detected. Hence,
two auxiliary vectors Ŝn,j,k = [ŝTk , ŝ

T
k−1, . . . , ŝ

T
k−n−1]T

and Zi,n,k = [zTi,k, z
T
i,k−1 . . . , z

T
i,k−n−1]T are stored while

the EKF executes. After the n consecutive measures are
collected, usually an optimisation technique, such as bundle
adjustment [16], is applied to reduce the uncertainty and
the new feature is added to the filter state, which is then

augmented. The objective of this paper is to make evident
the effect of n and to propose a simple method to combine
together the delayed measurements.

III. UNCERTAINTY ANALYSIS

To shading alight on the number of measurements n needed
before injecting in the EKF the new sensed feature, say mi, we
first define how the measurements in (5), which are collected in
the LIDAR frame 〈Lk〉, are transformed in the fixed reference
frame 〈W 〉. Since the origin Ol,k undergoes the same motion
of the vehicles, the rigid transformation between 〈Lk〉 and
〈W 〉 will be a function of ŝTk as follows (see Figure 1)

mi,q =

[
di,q cos(αi,q + θ̂q) + x̂q
di,q sin(αi,q + θ̂q) + ŷq

]
= f(bq). (9)

In order to determine the uncertainties involved in this
transformation, we first define the vector bq = [ŝTq , z

T
i,q]

T

containing all the measured and estimated quantities involved
in (9) at the generic time qTs, q = k−n−1, . . . , k. By recalling
the fact that the EKF is an unbiased estimator and that the
uncertainties ρi,q in (5) are zero-mean, we have immediately
that E {bq} = [sTq , di,q, αi,q]

T , i.e the actual values (we use
E {·} to denote the expected value). Therefore, the vector
b̃q = bq−E {bq} defines the set of estimation and measurement
uncertainties. We can use a first order Taylor approximation
of (9) with respect to the mean E {bq} to determine the
uncertainties acting on mi,q , i.e.

mi,q ≈ f(E {bq}) +
∂f(bq)

∂bq

∣∣∣∣
bq=E{bq}

(bq − E {bq}) =

=mi,q +
[
Ms
i,q Mh

i,q

]
b̃q = mi,q + m̃i,q.

(10)

where

Ms
i,q =

[
1 0 −di,q sin(αi,q + θq)
0 1 di,q cos(αi,q + θq)

]
,

Mh
i,q =

[
cos(αi,q + θq) −di,q sin(αi,q + θq)
sin(αi,q + θq) di,q cos(αi,q + θq)

]
.

(11)

As a consequence of (10), we have that E {mi,q} = mi,q .
Moreover, to compute the covariance matrix of m̃i,q , we
first compute Bq = E

{
b̃q b̃

T
q

}
= diag(Ps,q, R), where Ps,q

is defined in (8), while R is the covariance matrix of the
measurement uncertainties in (5). Notice that Bq is block
diagonal since the i-th new feature has not yet been added
to the EKF. Therefore

Fi,q = E
{
m̃i,qm̃

T
i,q

}
=
[
Ms
i,q Mh

i,q

]
Bq

[
Ms
i,q
T

Mh
i,q
T

]
. (12)

It is worthwhile to note that m̃i,q and m̃i,q+a, ∀a ∈ Z, are
correlated due to the presence of the state estimates ŝq and
ŝq+a, which are correlated by the recursive nature of the EKF
and whose covariance matrix is Ps,q,q+a. In particular,

E
{
m̃i,qm̃

T
i,q+a

}
=
[
Ms
i,q Mh

i,q

][Ps,q,q+a 0
0 0

][
Ms
i,q+a

T

Mh
i,q+a

T

]
=

= Ms
i,qPs,q,q+aM

s
i,q+a

T = Fi,q,q+a.
(13)



Ideally, the i-th new feature estimate m̂i to be injected in the
EKF state after n steps can be obtained by a Weighted Least
Squares (WLS) solution

m̂i=(ITn−1F
−1
i In−1)−1ITn−1F

−1
i

[
mT
i,k . . . mT

i,k−n−1
]T
,

where the indirect measurements mi,q are given by (9), In−1 is
a matrix having n−1 identity matrices of dimension 2 stacked
one after the other one and Fi has on the diagonal the matrices
Fi,q in (12), q = k−n−1, . . . , k, and off-diagonal the matrices
Fi,q,q+a in (13), a = −n, . . . ,−1. Moreover the uncertainties
on m̂i are zero-mean (due to (5)) and with covariance matrix

E
{
m̃im̃

T
i

}
= (ITn−1F

−1
i In−1)−1, (14)

which is lower than the single indirect measurements
uncertainties Fi,q , q = k − n − 1, . . . , k, in (12) due to the
property of the EKF and of the WLS. However, in order to
numerically compute Fi the actual values of the state sq and
of the measurements h(sq,mi) in (5) are needed, which are
of course unknown. One shortcut that appears feasible and
effective is to actually consider Fi as an identity matrix, which
amounts to compute

m̂i =
1

n

n−1∑
l=0

mi,k−l. (15)

Adopting the sample mean simplifies the computation and
still exhibits a filtering behaviour, nonetheless neglecting the
covariances and assuming all the measurements are equally
uncertain leads to an uncertainty for this estimator that have
a covariance matrix worse than (14). To account for this
effect, we precautionary assume the uncertainty equal to the
measurements uncertainty, hence E

{
m̃im̃

T
i

}
= F̂i,k in (12)

evaluated using the EKF estimates ŝk and the measurements
zi,k available at time kTs.

Once the estimates are available, the i-th feature is injected
in the EKF at time kTs with the following updates:

p̂k = [ŝTk ,M̂T
j,k]T → [ŝTk ,M̂T

j,k, m̂
T
i,k]T = [ŝTk ,M̂T

j+1,k]T ,

Pk →
[

Pk Psm,i,k
PTsm,i,k F̂i,k

]
,

(16)
where

Psm,i,k = E
{
p̃k b̃

T
k

}[(M̂s
i,k)T

(M̂h
i,k)T

]
=

[
Ps,k
PTsm,k

]
(M̂s

i,k)T , (17)

where M̂s
i,k is evaluated using the EKF estimates ŝk and

the measurements zi,k available at time kTs. Since the EKF
uses the mapped features to bound the uncertainties on ŝk,
the number of steps n used to lower down the uncertainties
on the new features will be a function of the measurement
uncertainties acting on the encoders εk and on the LIDAR
ρi,k, as shown in Section IV.

A. Range-only SLAM

We will here derive the solution when only the ranging
measurements di,k in (5) are available. In this case, the
analysis follows the trilateration (or multilateration) idea
followed in localisation problems [18].

1) One delayed step: n = 1: We first notice that
considering just one ranging measurement, the feature can be
located in a circumference with radius di,k and centred in the
robot position, which is reflected by rewriting di,k in (5) in
terms of its square and then solve with respect to xi, i.e.

xi = x̂k −
√
d
2

i,k − (ŷk − yi)2 = f(bk), (18)

where E {bk} = [sTk , di,k, yi]
T . We first notice that yi is

limited by the constraint on the positiveness of the argument
of the square root in (18), which yields immediately that
yi ∼ U(ŷk − di,k, ŷk + di,k), i.e. a uniformly distributed
random variable with mean value E {yi} = ŷk and variance
σ2
yi

= E {(yi − ŷk)} =
d2i,k
3 . It then follows that, following

the same steps in (10) the first order linearised relation in (18)
boils down to

xi ≈ xi +
[
1 −2ỹk√

d2i,k−ỹ
2
k

0
−2di,k√
d2i,k−ỹ

2
k

2ỹk√
d2i,k−ỹ

2
k

]
b̃k =

= xi +Mi,k b̃k,

and E
{
b̃k b̃

T
k

}
= diag(Ps,k, σ

2
d,
d2i,k
3 ). As a consequence, the

variance of xi will be σ2
xi

= Mi,kE
{
b̃k b̃

T
k

}
MT
i,k. Therefore,

the state of the EKF will be updated with (16), where

F̂i,k =

 σ̂2
xi

2ỹk√
d
2
i,k−ỹ2k

σ̂2
yi

2ỹk√
d
2
i,k−ỹ2k

σ̂2
yi

σ̂2
yi

 ,
where σ̂2

xi
and σ̂2

yi
are computed using ŝk, di,k, as in

the previous case, plus a randomly generated value for ỹk
generated according to Ps,k. Finally, the value injected in the
EKF will be m̂i,k whose xi,k is given by (18) and yi,k is a
randomly generated number from U(ŷk−di,k, ŷk+di,k), while
the covariance matrix is updated according to (16) and (17).

2) Two delayed steps: n = 2: Considering two consecutive
ranging measurements taken from two different locations at
time kTs and (k− 1)Ts (i.e. vk−1Ts 6= 0 in (4)), the problem
may be intractable. Indeed, using the fact that two ranging
measurements from two distinct locations corresponds to the
intersection of two circles, we end-up with two different
hypothesis for m̂i, which actually violates the unimodal
assumption of the EKF. A possible way to circumvent the
problem is to take two consecutive measures as for n = 1 and
then average them. The rest of the analysis is then similar to
the previous case.

3) More than two delayed steps: n ≥ 3: In this case, we
can apply trilateration (n = 3) or multilateration (n > 3) to
have an estimate of m̂i before it is injected in the EKF. Indeed,



by writing the difference of the squares of the distances in (5)
we immediately have

d
2

i,k − d
2

i,k−1 − x̂2k + x̂2k−1 − ŷ2k + ŷ2k−1
d
2

i,k − d
2

i,k−2 − x̂2k + x̂2k−2 − ŷ2k + ŷ2k−2
...

d
2

i,k − d
2

i,k−n−1 − x̂2k + x̂2k−n−1 − ŷ2k + ŷ2k−n−1

 =

=−2


x̂k − x̂k−1 ŷk − ŷk−1
x̂k − x̂k−2 ŷk − ŷk−2

...
x̂k − x̂k−n−1 ŷk − ŷk−n−1

mi⇒Di,k,n=Ck,nmi.

Therefore, we have immediately a Least Squares (LS) solution

mi = (CTk,nCk,n)−1CTk,nDi,k,n, (19)

which is the closed form solution for a number of steps n ≥ 3
and plays the role of (9). In the interest of space, we are
omitting the explicit form of the solution that can be obtained
following the same steps depicted for the range and bearing
case. However, we can notice that the LS solution is feasible
if and only if ωq 6= 0, q = k − n − 1, . . . , k − 1, i.e. the
landmark is observed from positions with different orientations
θk [19], otherwise the rows of Ck,n are linearly dependent
(in such a case, the solution with one-delayed step is still
feasible and the only feasible). Moreover, even if the rows
are linearly independent, due to encoder uncertainties εk (4),
the matrix CTk,nCk,n in (19) may be close to singularity and,
hence, generating high estimation uncertainties: in this case,
we expect that a higher number of delayed steps n may be
beneficial to increase the accuracy.

IV. SIMULATION RESULTS

Fifty different simulations have been carried out for each
test case to show the effect of the delayed mapping steps n on
the vehicle and feature uncertainties. In the presented results
we have considered a sampling time Ts = 100 ms. For the
ego-motion estimation, we have considered a typical robotic
vehicle having the wheels radius r = 5 cm, the inter-axle
length l = 30 cm and the uncertainties on the wheel encoder
readings generating εk in (4) of σr = σl = 0.002 rad, as
reported in [20]. For the LIDAR characterisation, we have
considered a maximum range reading of 15 m and the angle
swept by the sensor to be limited to ±π/2 rad, with the zero
angle oriented with the robot forward direction (i.e. the axis
Xl,k in Figure 1). Moreover, the sensor reading uncertainties
in (5) are respectively σd = 2 cm and σα = 0.7 mrad, as the
worst case situation reported in [21] for commercial LIDARs.

In the simulations, the robot is supposed to start in position
s0 = [3 m, 3 m, 0 rad]T (which is known as for any SLAM
problem) and moving in synthetic indoor environments (an
example is shown in Figure 1 with the followed path and
the mapped features). The estimation uncertainty on the robot
pose s̃k and on the landmark positions m̃i along a sample
trajectory are easily visible in Figure 2 for n = 1, i.e. no
delayed mapping and standard SLAM approach. The distance

(a) (b)
Fig. 2. (a) Robot pose estimation error and (b) mapped features estimation
errors (i.e. distance error of each landmark

√
m̃Ti m̃i, ∀i) for n = 1.

Fig. 3. RMSE for the robot pose error s̃k versus the number of steps of the
delayed mapping n in nominal conditions (solid line) and with an increase
of 100 times of the encoder uncertainties (dashed line).

error of each landmark, i.e.
√
m̃T
i m̃i, ∀i, is reported. For a

quantitative analysis of the effects of the delayed SLAM when
the simple proposed average approach in (15) is considered,
we report in Figure 3 the Root Mean Squared Error (RMSE)
plot of the vehicle pose as a function of the number of
steps n adopted. It turns out that averaging with at least
two measurements (i.e. n = 2) contributes in the reduction
of the uncertainty (solid line in Figure 3). Of course, if
the uncertainties on the ego-motion increases (dashed line),
averaging has a detrimental effect since in (15) the robot state
estimates ŝk have an increasing non-negligible uncertainty. To
further evaluate the solution and provide a clear clue about the
role of the measurement uncertainties, we report in Figure 4
the RMSE of the vehicle pose when the range uncertainties
is ten times higher (i.e. σd = 20 cm) or when the angle
uncertainty is ten (i.e. σα = 7 mrad, solid line) to one hundred
times (i.e. σα = 70 mrad, dashed line) higher than the nominal
values. From these results, it is evident that the ranging error
has a higher effect than the angle error on the state estimation
uncertainties s̃k, while using a delayed approach in this case
worsen the performances, i.e. the chosen averaging approach
is worse that then linearised EKF. Instead, for the angle error,
the delayed mapping plays a beneficial effect (Figure 4-b) that
becomes more evident as the uncertainty σα increases.

For what concern the range-only delayed mapping SLAM,
we report in Figure 5 the RMSE results for both the robot



(a) (b)
Fig. 4. (a) RMSE for higher range error (i.e. σd = 20 cm). (b) RMSE for
higher angular error (i.e. σα = 7 mrad)). Both graphs are expressed as a
function of the number of steps n in the delayed mapping.

(a) (b)
Fig. 5. (a) Localisation RMSE and mapping RMSE (b) for the range-only
case. Both graphs are expressed as a function of the number of steps n in the
delayed mapping SLAM.

localisation and the landmark estimates as a function of n ≥ 3,
i.e. when trilateration becomes feasible. As can be seen from
the picture, it is evident how a larger n benefits both the robot
localisation and the feature mapping. This is clearly dictated
by the role of the uncertainties in (19) that can make the matrix
CTk,nCk,n close to singularity when n is small.

V. CONCLUSIONS

An uncertainty driven analysis of the delayed SLAM for
a robot moving in an indoor environments and equipped
with a LIDAR sensor is provided in this paper. The
theoretical analysis, provided in terms of range and bearing
and range-only measurements, is tested in simulations using
a synthetic indoor environment and exposing the effects of
the delayed window length n on the localisation and mapping
uncertainties. Extensions of this work will be provided in
the next future by including the analysis for bearing-only
measurements, i.e. considering only the angle measurements
in (5) and by providing an analysis about the role of the
uncertainties εk in (4) in the matrix CTk,nCk,n reported
in (19) against numerical errors. Moreover, we will explore
the applicability of the multiple-model EKF with likelihood
weighting to deal with multimodality of the estimates and we
will provide an actual implementation on a robotic system.
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