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Abstract— This paper proposes a feedback-feedforward con-
trol scheme that combines the benefits of an online active
sensing control strategy (the feedforward control component)
to maximize the information needed for correctly executing
the desired task, with a Lyapunov-based control strategy (the
feedback control component) that guarantees an asymptotic
convergence towards the task itself. To quantify the amount
of the collected information along the planned trajectories, the
smallest eigenvalue of the Constructability Gramian is adopted
as a metric and optimized, for generating the feedforward
control component, within a Lyapunov-based Model Predic-
tive Control framework (LMPC). The latter indeed allows to
systematically handle the closed-loop stability and robustness
properties of a Lyapunov-based nonlinear control law, and,
at the same time, to reduce the estimation uncertainty and,
thus, increase the task execution performance. To show the
effectiveness of our method, we consider three case studies
where a unicycle equipped with suitable onboard sensors has to
perform three classical tasks in mobile robotics: path following,
point-to-point motion, and trajectory tracking.

I. INTRODUCTION

Action selection is a crucial decision process for humans,
and depends on the state of both their body and the environ-
ment that, analogously to robots, sensors cannot provide di-
rectly. Because signals in humans sensory and motor systems
are affected by variability and/or noise, the brain dedicates
a lot of effort to efficiently combine collected information
(i.e., sensor inputs) and prior knowledge (i.e., the knowledge
base from life memories) [1]. In particular, humans appear to
adopt a strategy that is not a pure feedback, but includes also
a feedforward active sensing control component to reduce the
detrimental effects of uncertainty [2] and hence increase the
probability of task success w.r.t. passive sensing [3].

In robotics, action, and motion planning [4] are typically
used to accomplish a given task (e.g., reaching a particu-
lar configuration) with stability guarantees (e.g., Lyapunov
stability theory), and/or optimizing a cost of interest (e.g.,
control effort), under different constraints (e.g., on limited
Field-of-View sensors). However, as for humans, the success-
ful generation and execution of a motion plan substantially
depends on the accuracy of the reconstructed surroundings

This work has received funding from European Union’s Horizon 2020
Research an Innovation Program under Grant Agreement No. 101017274
(DARKO) and partially by the Italian Ministry of Education and Research
(MIUR) in the framework of the CrossLab project (Departments of Excel-
lence).

1 Research Center “E. Piaggio” and Dip. of In-
formation Engineering, University of Pisa, Italy.
paolo.salaris,lucia.pallottino@unipi.it
olga.napolitano@phd.unipi.it

2 Department of Industrial Engineering, University of Trento, Italy.
daniele.fontanelli@unitn.it

and (internal) state trajectories that, in a real scenario, are
not assumed directly measurable by on-board sensors but
estimated. Due to non-linearities, the quality of the sen-
sory information strongly depends on the actions chosen to
perform the task, as for humans. Similarly, an interesting
coupling also exists in robotics between perception and
action: generation of a motion/action plan should find a
balance between efficient/stable task execution and improved
estimation.

This paper hence proposes a feedback-feedforward strat-
egy for a robotic system where the feedforward component
aims at maximizing the information collected by the onboard
sensors (for correctly accomplishing a desired task) by using
an online active sensing control strategy [5], while the
feedback component guarantees an asymptotic convergence,
in the Lyapunov sense, towards the desired state/task (e.g.,
reaching a desired posture).

Active sensing control strategies are widely used in
robotics to reduce estimation uncertainty. In [6] authors sur-
veyed the fundamental components of robotic active learning
systems, while [7] uses active perception to improve the
quality of domain randomization-based pose estimation with
neural networks applied to 2D images. A task-oriented active
sensing scheme that minimizes the uncertainty in future task-
related actions is proposed in [8], whereas [9] proposes a
yaw-based trajectory control algorithm that jointly optimizes
aggressiveness and feature co-visibility for state estimation
improvement. In [10], instead, a perception-aware model pre-
dictive control framework for quadrotors has been proposed
to maximize the visibility of a point of interest and minimize
its velocity in the image plane. The authors of this paper have
already proposed active sensing control strategies [11], tak-
ing also into account measurements noise [12], intermittent
measurements [13] as well as in combination with shared
control [14]. However, we never consider the coupling of an
active sensing control strategies with a stabilizing feedback
control law for better accomplishing a task of interest. We
will show here that control inputs computed on the state
estimates generate an uncertainty on the time derivative of
the candidate Lyapunov function proportional to the state
estimation uncertainty, which is directly related to the active
sensing choices. To quantify the amount of the collected
information (and hence of the uncertainty) along the planned
trajectories, the Constructability Gramian (CG), quantifying
the level of constructibility of the current/future state, is used
as the guiding metric [11], [15].

Ensuring Lyapunov stability with uncertainty is a chal-
lenging problem that can be tackled using authority-sharing



paradigms [16]. Instead, in this paper, the effective com-
bination of the feedback/feedforward components with un-
certainties is pursued adopting an iterative, finite-horizon
optimal control approach within the Lyapunov-based Model
Predictive Control (LMPC) technique [17, Chapter 2]. LMPC
technique is classically used to account for control input
bounds in combination with, e.g., measurements delays [18],
data losses [19], trajectory tracking performance require-
ments [20]. [21] presents a real-time solution for a unified
Nonlinear MPC and Control Lyapunov Function controller
with limited computational resources. Finally, [22] presents
an MPC approach for a class of nonlinear systems with
unbounded uncertainties guaranteeing stochastic stability.
However, none of the previous publications deals with
the intimate and fruitful connection between feedback and
feedforward components, which are here presented using
simulations on a unicycle vehicle engaged in three classical
tasks in robotics: path following, trajectory tracking and
point-to-point motion.

II. INFORMATION-AWARE LYAPUNOV-BASED
MPC

The components of the proposed feedback-feedforward
control scheme are detailed in this section and depicted
in Fig. 1: the Lyapunov-based feedback control law steers
the robot to the task accomplishment, while the feedforward
component maximizes the sensor information through active
sensing.

A. THE FEEDBACK COMPONENT

Let us consider a time-invariant, input affine nonlinear
system

q̇(t) = f(q(t)) + g(q(t))u(t) (1)

where q(t) ∈ Rn is the state of the system, u(t) ∈ Rm

its control input and f(·) and g(·) are the drift vector and
the control vector field, respectively. Let us then consider
a positive definite candidate of Lyapunov V (q(t)), with
V (0) = 0 and q(t) = 0 the desired equilibrium. The
Lyapunov-based Control Law u(t) = ufb(q(t)) (LCL in
Fig. 1) that makes q(t) = 0 asymptotically stable is derived
by imposing

V̇ (q(t)) = LfV (q(t)) + LgV (q(t))ufb(q(t))) ≤ 0, (2)

with L the Lie derivative, and then applying, if needed, the
LaSalle-Krasowski principle.

The above control design implicitly assumes that the state
of the nonlinear system q(t) is completely known. However,
in a real scenario, the state of the system is usually unknown,
and only an estimate q̂(t) is made available by an observer
(e.g., an EKF) which exploits sensory data. As a conse-
quence, the control inputs ûfb(q̂(t)) are computed on the
state estimates, which of course are affected by uncertainties.
For this reason, the time derivative of V becomes,

V̇ (q(t), q̂(t)) = LfV (q(t)) + LgV (q(t))ûfb(q̂(t)). (3)

By adding and subtracting LgV (q(t))ufb(q(t)) in (3),

V̇ (q, q̂) = −LgV (q)(ufb(q)− ufb(q̂) + V̇ (q). (4)

Since an EKF will be adopted as an observer for the state
estimation, we can assume that up to the first order

q̂ = q + εq , with E {εq} = 0 (5)

where E {·} is the expectation operator and, assuming that εq
is the estimation error and P its covariance matrix returned
by the EKF, we have P = E

{
εqε

T
q

}
. It then follows that the

effects of the uncertainties on the control law are described
by the Taylor expansion around εq = E {εq} = 0

ûfb(q̂) = ufb(q) + δu(εq) =

= ufb(q) +
∂ûfb(q̂)

∂εq

∣∣∣∣
εq=0

εq +O(ε2q),
(6)

where O(εq) are all the terms of order greater or equal to
two. We can now determine the first two moments of the
random variable (4) assuming the following first order Taylor
approximation

δu(εq) ≈
∂ûfb(q̂)

∂εq

∣∣∣∣
εq=0

εq = Dεq, (7)

which yields (up to the first order approximation)

E
{
V̇ (q, q̂)

}
= V̇ (q),

E
{(

V̇ (q, q̂)− E
{
V̇ (q, q̂)

})2
}

=

= (−LgV (q))DPDT (−LgV (q))T .

(8)

From (8), it is clear that the stability of the equilibrium
depends on the state estimation uncertainty and its propa-
gation through the control inputs. Therefore, the use of an
appropriate feedforward control component that steers the
robots along the most informative trajectories to reduce the
estimation uncertainty, has a positive impact on the task
execution stability.

B. THE FEEDFORWARD COMPONENT

The MPC synthesizes a constrained optimal control se-
quence over a finite prediction horizon capable of handling
control and state constraints as well as other optimization
targets. The cost function to be minimized is typically a
quadratic cost function involving penalties on the system
states and control actions. MPC usually optimizes over a
family of piecewise constant inputs with a fixed sampling
time. Once the optimization problem is solved, only the first
step of the control sequence is applied in a receding horizon
fashion. Closed-loop stability is a common optimization
constraint, e.g., inherited from a Lyapunov-based approach.
In such a case, the MPC can be modified so that Lyapunov-
based stability is enforced by design in the so called
Lyapunov-based Model Predictive Control (LMPC) [17,
Chapter 2] approach, whose classical formulation applies
to affine control systems, as described as in the following
Problem 1.



Fig. 1. Feedback-feedforward control scheme that determines at
runtime the feedforward control action that maximizes the infor-
mation collected through sensors along the future path taking into
account the feedback control action that guarantees the asymptotic
convergence toward the desired task.

Problem 1 (LMPC) Given the prediction horizon L, the
control input u(t), the predicted trajectory of the nominal
system q̃ subjected to u(t) and with initial state q(tk) at
time tk, find, ∀t ∈ [tk, tk+L], the optimal sequence

u∗ = min
u∈S(∆)

J[tk, tk+L](q̃(t),u(t)) (9)

s.t.

1) ˙̃q(t) = f(q̃(t)) + g(q̃(t))u(t) (10)
2) q̃(tk) = q(tk) (11)
3) u ≤ u(t) ≤ ū (12)
4) LgV (q(tk))u(tk) ≤ LgV (q(tk))ufb(q(tk)) (13)

where S(∆) is the family of piece-wise constant functions
with sampling period ∆, J[tk, tk+L](q̃(t),u(t)) is the cost in-
dex to be minimized, (10) is the nominal model of the system,
which is used to predict the state evolution starting from the
initial state (11), and (12) are the control constraints. Finally,
(13) is the Lyapunov stability constraint guaranteeing that
the time derivative of V (q), computed at time tk with u(tk)
the first step of the control strategy , is smaller than or equal
to the value obtained if ufb(q) would have been in a sample-
and-hold fashion.

With respect to the ideal Problem 1 we have to deal with
two major issues. First, only an estimate of the state q̂(tk) is
available at time tk, hence it should be used in place of the
actual initial state q(tk) = q̃(tk), implying that u(tk) turns
to û(tk). Second, the proposed feedback-feedforward control
scheme assumes that the first step of the MPC synthesized
control law fed to the system is given by û(tk) = ûff (tk)+
ûfb(tk) (see Fig. 1). By substituting in (13), the stability
constraint boils down to

LgV (q(tk))(ûff (tk) + ûfb(tk)) ≤ LgV (q(tk))ûfb(tk)
(14)

Furthermore, in the standard formulation of the LMPC,
the cost function (9) usually is a weighted sum of the
state and the control input [17, Chapter 2]. Instead, in this
active sensing setting, the cost function introduced in [11] is
adopted, which is subsumed in the following.

Let us consider a general nonlinear system

q̇(t) = f(q(t),u(t))

z(t) = h(q(t)) + ν
(15)

where z(t) ∈ IRp are the output of the system and ν ∼
N (0,R(t)) is a normally-distributed Gaussian output noise
with zero mean and covariance matrix R(t). A suitable
metric for quantifying the amount of the acquired infor-
mation is the aforementioned CG that quantifies the ability
of estimating the current state q(t) from knowledge of
the system outputs z(t̄) and inputs u(t̄) with t̄ ∈ [t0, t]
and hence the amount of information collected through the
onboard sensors about q(t). The CG is defined as

Gc(t0, tf ) ≜
∫ tf

t0

ΦT (τ, tf )H
T (τ)W c(τ)H(τ)Φ(τ, tf ) dτ

(16)
where tf > t0, H(τ) = ∂h(q(τ))

∂q(τ) , and W c(τ) ∈ Rp×p

is a symmetric positive definite weight matrix (a design
parameter), that may be used for, e.g., accounting for out-
puts with different units and different uncertainties. Matrix
Φ(t, tf ) ∈ Rn×n, also known as sensitivity matrix, is defined
as Φ(t, tf ) = ∂q(t)

∂qf
and obeys the following differential

equation with final conditions at tf

Φ̇(t, tf ) =
∂f(q(t),u(t))

∂q(t)
Φ(t, tf ) , Φ(tf , tf ) = I. (17)

The link between the CG and the optimal estimation error
covariance matrix P (obtained here with the EKF), reported
in [11], turns to be instrumental for a practical implemen-
tation of the feedback-feedforward control scheme. More
precisely, let us consider the continuous Riccati equation

Ṗ
−1

(t)=−P−1(t)A(t)−AT (t)P−1(t)+HT (t)R−1H(t),
(18)

with A(t) = ∂f(q,u)
∂q , i.e., the state-dependent linearized

dynamic matrix of (15) around a nominal trajectory. It is
possible to show that the solution of (18) is

P−1(t) = ΦT (t0, t)P
−1
0 Φ(t0, t) + Gc(t0, t) = Gc(−∞, t) .

(19)
The first term of (19) represents the contribution of the a
priori information P−1(t0) = P−1

0 but shifted at time t
by Φ(t0, t). The second term is instead the contribution of
the information actually collected during the interval [t0, t]
and encoded by the CG in (16) with W c(t) = R−1(t) and
tf = t. Hence, Gc(−∞, t) represents the current knowledge,
given by the already collected information about the current
q(t) in the interval [t0, t] plus any other additional a priori
information available at time t0, and it is directly available
from the EKF. When planning the future maneuvers for
[t, tf ], one has

Gc(−∞, tf ) = ΦT (t, tf )Gc(−∞, t)Φ(t, tf ) + Gc(t, tf )
(20)

where the first term represent bow the current knowledge
is projected at the final time tf by means of the operator
ΦT (t, tf ) while the second one quantify the information yet



to be collected in the interval [t, tf ] and correctly represented
by CG.

In this work, as in [11], we will use the differential
approximation of the smallest eigenvalue of the CG given
by

∥Gc(−∞, tf )∥µ = µ

√√√√ n∑
i=1

λµ
i (Gc(−∞, tf )) (21)

where µ << −1 and λi(A) stands for “the i-th smallest
eigenvalue of A”.

As a consequence, the Information-aware LMPC problem
to be solved at runtime for the feedback-feedforward control
scheme reported in Fig. 1 reads as follows:

Problem 2 (Information-aware LMPC) With the same
meaning of the parameters of Problem 1, find the optimal
sequence, ∀t ∈ [tk, tk+L], of the feedforward control com-
ponents

u∗
ff = min

uff∈S(∆)
−∥Gc(−∞, tk+L)∥µ

s.t.

1)
˙̂
q̃(t) = f(ˆ̃q(t)) + g(ˆ̃q(t))(uff (t) + ufb(ˆ̃q(t)))

2) ˆ̃q(tk) = q̂(tk)

3) u− ufb(ˆ̃q(t)) ≤ uff (t) ≤ ū− ufb(ˆ̃q(t))

4) LgV (q̂(tk))ûff (tk) ≤ 0

Notice that, Condition 4) of Problem 2 derives directly
from (14), which is the explicit equivalent form of Condition
4) of Problem 1 when u(tk) = uff (tk) + ufb(tk) is
considered.

III. SIMULATION RESULTS

To prove the effectiveness of our approach, we test it
on a unicycle vehicle that performs three classical tasks
in mobile robotics: path following, point-to-point motion,
and trajectory tracking. Moreover, we compare the results
applying the proposed Information-aware LMPC (dubbed I-
LMPC), i.e., feedback-feedforward controls obtained by the
solutions of Problem 2, with: 1) the results obtained by
directly applying the feedback ûfb(t) only (LCL) 2) the
results obtained by using the classical LMPC, that is, by
applying the solution of Problem 2 where the cost function
defined by (21) is replaced by a task-oriented cost function
defined as follows:∫ tk+L

tk

∥q̃(τ)− qTask∥Qc
+ ∥u(τ) − uTask(τ)∥Rc dτ (22)

where (qTask,uTask) are the desired state and control inputs
that steer the vehicle once the task is executed.

To this end, we perform 100 simulations for each task and
each control approach randomizing on the initial estimated
configurations q̂0 that are generated according to the initial
estimation covariance matrix P 0 related to the initial state
estimation. Moreover, we carry out a statistical analysis in
terms of estimation error and task error by using a Wilcoxon
rank sum test with a significance level of 5%. The task

error is obtained by computing the difference between the
current configuration of the robot and the one it would
assume if the task was correctly executed. We assume a
normally distributed Gaussian output noise with zero mean
and covariance matrix, R = 0.3I while the actuation/process
noise is considered negligible. Finally, the sampling time is
∆ = 50 ms for all the tasks, while the prediction horizon
L, which is equal to the control horizon, is equal to 30,
15 and 20 time steps for the path following, the point-to-
point and the trajectory tracking, respectively. These values
are chosen as a trade-off between the computation time
and the possibility of correctly executing the task. All the
optimization problems are solved using the CasADi tool [23]
in Python and adopting the direct single shooting method
with the ma57 ipopt solver.

A. Path following

The objective is to determine a Lyapunov based con-
trol law such that the vehicle is asymptotically stabilized,
w.l.o.g. on the straight line y = 0. This goal can be achieved
if, at the end, y ≡ 0 and θ ≡ 0. Note that for this task, the
dynamic of y and θ are not influenced by the one of x. As a
consequence, we consider the following reduced kinematic
model of the unicycle vehicle,{

ẏ = v̄ sin θ,

θ̇ = ω,

where q = [y θ]T is the state of the robot and u = [v̄ ω]T

the control inputs (with v̄ ̸= 0 assumed constant). Let us
hence consider the following Lyapunov candidate function
V (q) = 1

2 (y
2+ θ2). By choosing ωfb(q) = −y sin θ

θ v̄−Kθθ

we obtain V̇ (q) = −Kθθ
2 ≤ 0, and hence, by using the

Krasowski-Lasalle principle it is easy to show the G.A.S. of
the equilibrium.

Since the state of the robot is unknown, the control inputs
have to be computed by using q̂(t) instead of q(t). As
a consequence, after some algebra and following the step
described in II-A, the first two moments in (8) become

E
{
V̇ (q, q̂)

}
= −Kθθ

2 + θE {δu(εq)} = −Kθθ
2,

E
{(

V̇ (q, q̂)− E
{
V̇ (q, q̂)

})2
}

= θ2DPDT .

Moreover, the stability constraint of the LMPC (14) for this
task becomes

θ ωff ≤ 0. (23)

Notice that, for this case, qTask and uTask are equal to zero
in (22).

In the simulations, the unicycle is equipped with a sensor
that measures the range from the path, i.e., h(t) = y(t).
Notice that, the straight line y = 0 is an unobservable
path with this output (θ is not observable). We choose
T = 18 sand the initial configuration is q0 = [5 m, π rad]T

and P 0 = diag([0.52, 0.22]). To conclude, v̄ = 1 m/s,
Kθ = 2 and −7 ≤ ωfb + ωff ≤ 7.

Fig. 2 shows the mean values with their standard devi-
ation of both the estimation errors and the task execution



performances. For the LCL and the LMPC, the estimation
errors do not converge to zero (see Figure 2(a)) and hence
the task is not correctly executed. In addition, for the I-
LMPC case, the uncertainty is smaller than the other two
cases most of the time. Notice that, as soon as the vehicle
approaches the desired path (i.e., approximately after 13 s
of simulation, see Figure 2(c)), the smallest eigenvalue of
P−1 reduces, confirming that the straight line y = 0 is an
unobservable path. Moreover, the Wilcoxon test confirms that
there are statistical differences for all cases, and that our
approach provides the most informative trajectories. Fig. 3
shows the trajectories corresponding to one sample out of the
100 performed. Notice that the LCL and LMPC trajectories
are similar, and the real robot reaches the path and stays there
for a while before diverging indefinitely from it. Instead, by
using the I-LMPC solution, the vehicle follows a completely
different path and correctly executes the task remains on the
path for much longer. The average computation time for each
iteration, together with its standard deviation is 20 ± 1 ms
for LMPC and 40 ± 2 ms for I-LMPC. Moreover, the task
success rate is 6% for LCL, 5% for LMPC and up to 60%
for I-LMPC which, as a consequence, outperforms the other
methods of comparison. For the sake of space, we only show
the trajectories corresponding to the path following task.
Please, refer to the accompanying multimedia material for
further details and simulations.

B. Point-to-point motion

The objective is the stabilization of an equilibrium point
(w.l.o.g. the origin in our case), in the state space of the vehi-
cle whose kinematics is expressed in polar coordinates [23]:

ρ̇ = −ρ cosαw

ϕ̇ = sinαw

α̇ = sinαw − ω

where ξ = [ρ, ϕ, α]T , w = v/ρ where v is the forward
velocity and ω is the angular velocity. Let us consider now
the following positive definite Lyapunov candidate V (ξ) =
1
2 (λ1ρ

2 + λ2ϕ
2 + α2) with λ1 and λ2 positive parameters,

and by choosing{
wfb(ξ) = k1 cosα, with k1 > 0

ωfb(ξ) = k1
sinα
α cosα(α+ λ2ϕ) + k2α, with k2 > 0

we obtain V̇ (ξ) = −λ1k1ρ
2 cos2 α−k2α

2 which is negative
semi-definite. Nevertheless, by using the Krasowski-Lasalle
principle, we are able to conclude on the G.A.S. of the origin.

Since the state of the robot is unknown, also in this case,
the control inputs have to be computed by using ξ̂(t) instead
of ξ(t). After some algebra, the first two moments of V̇ (ξ, ξ̂)
are

E
{
V̇ (ξ, ξ̂)

}
= −λ1k1ρ

2 cos2 α− k2α
2,

E
{(

V̇ (ξ, ξ̂)− E
{
V̇ (ξ, ξ̂)

})2
}

= D̄PD̄
T

(24)

(a) The value of the mean RMS with standard deviation at the final time
are 7.84±5.54 for LCL, 10.4±6.46 for LMPC and 0.57±0.66 for I-LMPC.

(b) The value of the mean RMS with standard deviation at the final time
are 6.85±4.76 for LCL, 9.02±5.56 for LMPC and 0.36±0.43 for I-LMPC.

(c) The smallest eigenvalue of the inverse of the estimation covariance
matrix of the EKF.

Fig. 2. Statistical results in terms of average value and standard deviations
for the path following task. The results obtained for the LCL are plotted in
red, for the LMPC in green, for the proposed I-LMPC in blue.



(a) LCL. (b) LMPC. (c) I-LMPC.

Fig. 3. Robot real/estimated trajectories on the plane of motion for the path following task. The trajectories correspond to one of the 100 simulations.
The real robot trajectory from the real robot configuration q(t0) = [0, 5, 3.14]T is plotted in blue, the estimated robot trajectory from the estimated
configuration q̂0 = [0, 5.64, 3.61]T is in red and the desired straight line path in black

with D̄ = −
[
−λ1ρ

2 cosα+ λ2ϕ sinα+ α sinα −α
]
D

and D = [Dw Dω]
T . To conclude, for this task, the stability

constraint (14) to be included in the LMPC is:

(−λ1ρ
2 cosα+λ2ϕ sinα+α sinα)wff −αωff ≤ 0 . (25)

Notice that, also for this case, qTask and uTask are equal to
zero in (22).

The vehicle is equipped with a sensor that provides range
measurements w.r.t. two markers located in (0,±2). The ini-
tial robot configuration is q̄0 = [5.1 m, −2.94 rad, 0.2 rad]
and P 0 = diag([0.72, 0.252, 0.32]). Moreover, T = 6 s,
k1 = k2 = 1.8 and λ1 = 1 and λ2 = 0.5. Finally,
0 ≤ wfb + wff ≤ 2 and −3 ≤ ωfb + ωff ≤ 3.
In Fig. 4, the estimation errors and the task execution perfor-
mances are shown. In Fig. 4(a), the estimation errors for the
LMPC do not converge to zero even if it does not diverge as
for the path following case. Moreover, from Fig. 4(b) the task
error for the state variable ϕ converges to zero only if the
I-LMPC is used. As a consequence, the use of an active sens-
ing control strategy as a feedforward component guarantees
the best execution of the task. Fig. 4(c) shows the trend of the
smallest eigenvalue of P−1 where the estimation uncertainty
is consistently reduced with the proposed I-LMPC. Finally,
the Wilcoxon test shows statistical differences, confirming
that the use of the proposed I-LMPC allows guaranteeing
the best performance in terms of task execution. The average
computation time for iteration with standard deviation is
8± 2 ms for LMPC and 17± 9 ms for I-LMPC.

C. Trajectory tracking

The objective is to design a Lyapunov-based control law
that allow the unicycle to track a leader unicycle that starting
from an initial configuration ql = [xl, yl, θl]

T moves on a
desired trajectory with linear and angular velocity, vl and wl,
respectively.

Let us hence consider the kinematic of the tracking error
e = [x− xl, y − yl, θ − θl]

T ,

ė =

ė1ė2
ė3

 =

v + e2ω − vl cos e3
−e1ω + vl sin e3

ω − ωl

 (26)

and the following positive definite Lyapunov candidate
V (e) = 1

2 (e
2
1+e22)+K(1−cos e3) with K > 0. By choosing

the following control law{
vfb(e) = vl cos e3 −Kλ1e1

ωfb(e) = ωl − e2
K vl − λ2 sin e3

with λ1, λ2,K > 0, we obtain V̇ (e) = −λ1e
2
1 −

Kλ2 sin
2 e3 ≤ 0 and then by using the Krasowski-Lasalle

principle, the G.A.S. of the equilibrium e ≡ 0 can be
demonstrated.

However, again, since the control law is computed by
using the estimated state, the first two moments of V̇ (e, ê)
are

E
{
V̇ (e, ê)

}
= −λ1e

2
1 − λ2K sin2 e3,

E
{(

V̇ (e, ê)− E
{
V̇ (e, ê)

})2
}

=
(
−
[
e1 K sin e3

])
DPDT

(
−
[
e1 K sin e3

])T
(27)

with D = [Dv Dω]
T . For this task, the Lyapunov con-

straint (14) becomes:

e1vfb +K sin e3 ωfb ≤ 0 . (28)

Notice that, for this case, qTask = ql and uTask = [vl , ωl]
T

in (22).
The vehicle exploits the range measurements w.r.t. two

markers located in (0, 2) and (0, 0). The initial configuration
of the leader unicycle is ql0 = [−1m, 0m, 0rad]T , and
moves with vl = 0.5 m/s and ωl = 0.5 rad/s. The initial
configuration of the real robot is q0 = [−1m, 1m, 0rad]T

and P 0 = diag([0.22, 0.22, 0.12]). Moreover, T = 30 s,
K = 0.8 and λ1 = λ2 = 0.6. Finally, 0 ≤ vfb + v ≤ 3
and −3 ≤ ωfb + ω ≤ 3. In Fig. 5(a), the estimation
errors converge for all the cases. Notice that, even if the
estimation errors are comparable, by using the LMPC the
real robot performs the task quite better reaching the leader
first with the smallest task error. However, in Fig. 5(c) the
estimation uncertainty for the I-LMPC is the smallest one as
the smallest eigenvalue of P−1 is the largest for the most of
the simulation time. Coming to the uncertainties evaluation,
the Wilcoxon test shows that the trajectories obtained with
our methodology are statistically more informative than the
others, and hence the I-LMPC can be considered more
reliable than both the LCL and the LMPC.



(a) The value of the mean RMS with standard deviation at the final time are
2.98±1.52 for LCL, 0.4±0.42 for LMPC and 0.001±0.001 for I-LMPC.

(b) The value of the mean RMS with standard deviation at the final time
are 2.91±0.95 for LCL, 0.84±0.43 for LMPC and 0±0 for I-LMPC.

(c) The smallest eigenvalue of the inverse of the estimation covariance
matrix of the EKF.

Fig. 4. Statistical results in terms of average value and standard deviations
for the point-to-point task. The results obtained for the LCL are plotted in
red, for the LMPC in green, for the proposed I-LMPC in blue.

(a) The value of the mean RMS with standard deviation at the final time are
0.001±0.00 for LCL, 0.01±0.003 for LMPC and 0.01±0.003 for I-LMPC.

(b) The value of the mean RMS with standard deviation at the final time are
0.021±0.01 for LCL, 0.01±0.003 for LMPC and 0.03±0.02 for I-LMPC.

(c) The smallest eigenvalue of the inverse of the estimation covariance
matrix of the EKF.

Fig. 5. Statistical results in terms of average value and standard deviations
for the trajectory tracking task. Statistical results in terms of average value
and standard deviations for the path following. The results obtained for the
LCL are plotted in red, for the LMPC in green, for the proposed I-LMPC
in blue.



For this test case the average computation time for iteration
with standard deviation is 6± 1 ms for LMPC and 9± 1 ms
for I-LMPC.

IV. CONCLUSIONS AND FUTURE WORKS

This paper proposed a feedback-feedforward Information-
aware LMPC control scheme that combines the benefits of
an online active sensing control strategy and a Lyapunov-
based control strategy. The smallest eigenvalue of the Con-
structability Gramian was adopted to quantify the richness
of the acquired information. We showed in simulations on
a unicycle vehicle that our methodology guarantees better
estimation performance, and hence a better task execution in
general. It is worthwhile to note that the I-LMPC generates
predicted trajectories that are apparently less task-oriented
than those obtained for the LCL and LMPC. This is because
the Lyapunov constraint is imposed for the next control step,
while the remaining steps maximize only the information
acquired along the path. Hence, by considering the Lyapunov
constraint applied for longer time intervals, we can ensure
better stability properties and have more task-oriented tra-
jectories, a promising direction that will be explored in next
investigations. Our methodology also presents oscillations
in the control inputs, due to the negative effects of the
measurement noise, and some sharp maneuvers, due to the
persistent requirement of information maximization. The
latter aspect will be solved in future works by considering
an adaptive cost index that disconnects the feedforward part
when the estimation uncertainty is below a desired threshold.
Moreover, additional future works will deal with the exten-
sion of our methodology to more complex Lyapunov control
techniques, as e.g., adaptive control as well as more complex
robots (e.g., quadrotors) in real time on a real experiment,
also considering the degrading effects of actuation noise. We
also plan to use our method as a risk-aware control scheme
where the feedforward component maximize the information
on the surrounding risks while the feedback component is
used for the task execution in a risky environment.

REFERENCES

[1] A. A. Faisal and D. M. Wolpert, “Near optimal combination of sensory
and motor uncertainty in time during a naturalistic perception-action
task,” Journal of Neurophysiology, vol. 101, no. 4, pp. 1901–1912,
2009.

[2] S.-H. Yeo, D. Franklin, and D. Wolpert, “When optimal feedback
control is not enough: Feedforward strategies are required for optimal
control with active sensing,” PLoS computational biology, vol. 2, no. 3,
p. e1005190, 2016.

[3] J. J. Gibson, The senses considered as perceptual systems. Boston,
MA: Houghton Mifflin, 1966.

[4] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[5] R. Bajcsy, Y. Aloimonos, and J. Tsotsos, “Revisiting active percep-
tion,” Autonomous Robots, vol. 42, no. 2, pp. 177–196, 2018.

[6] A. T. Taylor, T. A. Berrueta, and T. D. Murphey, “Active learning in
robotics: A review of control principles,” Mechatronics, vol. 77, p.
102576, 2021.

[7] X. Ren, J. Luo, E. Solowjow, J. A. Ojea, A. Gupta, A. Tamar, and
P. Abbeel, “Domain randomization for active pose estimation,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 7228–7234.

[8] T. Greigarn, M. S. Branicky, and M. C. Çavuşoglu, “Task-oriented
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