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2 Dipartimento di Matematica, Università di Trento, Via Sommarive 14, 38123 Povo (TN), Italy
3 Dipartimento di Matematica e Applicazioni, Università di Napoli, Via Cintia, Monte S. Angelo
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Abstract: In this paper, we prove that associated with a sub-static asymptotically flat manifold
endowed with a harmonic potential there is a one-parameter family {Fβ} of functions which are
monotone along the level-set flow of the potential. Such monotonicity holds up to the optimal threshold
β = n−2

n−1 and allows us to prove a geometric capacitary inequality where the capacity of the horizon plays
the same role as the ADM mass in the celebrated Riemannian Penrose Inequality.
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1. Introduction

In this paper, the object under investigation is a triple (M, g0, u) satisfying the following two
conditions:

(a) (M, g0) is a smooth, connected, noncompact, complete, asymptotically flat, n-dimensional
Riemannian manifold, with n ≥ 3, with one end, and with nonempty smooth compact boundary
∂M, which is a priori allowed to have several connected components.
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(b) u ∈ C∞(M) satisfies the system 
uRicg0 − D2

g0
u ≥ 0 in M,

∆g0u = 0 in M,

u = 0 on ∂M,

u→ 1 at∞,

(1.1)

where Ricg0 , Dg0 and ∆g0 are the Ricci tensor, the Levi–Civita connection, and the Laplace
operator of the metric g0, respectively.

If the equality holds in the first equation of (1.1), the triple (M, g0, u) is said static. For clarity, we
recall the definition to which we refer for asymptotically flat manifolds.

Definition 1.1. A smooth, connected, noncompact, n-dimensional Riemannian manifold (with or
without compact boundary) (N, h), with n ≥ 3, is said to be asymptotically flat if there exists a
compact subset K ⊂ N such that N \ K is a finite disjoint union of ends Nk with the following
properties. Every Nk is diffeomorphic to Rn minus a closed ball by a coordinate chart ψk and, if
h̃ := (ψk)∗h = h̃i jdxi ⊗ dx j, we have

h̃i j = δi j + O(|x|−p) , (1.2)

∂r h̃i j = O(|x|−(p+1) ) , (1.3)

∂r∂s h̃i j = O(|x|−(p+2) ) , (1.4)
Rh̃ ∈ L1(µ h̃) , (1.5)

for some p > (n − 2)/2. Here, δ is the Kronecker delta, and the coordinate charts ψk are called charts
at infinity.

Throughout the paper, we will refer to a triple (M, g0, u) that satisfies conditions (a) and (b) as to
a sub-static harmonic triple. A fundamental sub-static harmonic triple is the so called Schwarzschild
solution, which is given by

M =
[
(2m)

1
n−2 ,+∞

)
×Sn−1 , g0 =

dr ⊗ dr
1 − 2mr2−n + r2gSn−1 , u =

√
1 − 2mr2−n . (1.6)

It is well–known that both the metric g0 and the potential u, which a priori are well defined only in
M̊, extend smoothly up to the boundary and (M, g0) is called (spatial) Schwarzschild manifold. The
parameter m > 0 is the ADM mass mADM of the Schwarzschild manifold. We refer the reader to
Section 5 for the definition of the mADM associated with a general asymptotically flat manifold. Here,
we limit ourselves to recall that the decay conditions (1.2)–(1.5) guarantee that mADM is a geometric
invariant [4, 8].

Associated with a sub-static harmonic triple, specifically with the potential u ranging in [0, 1), let
us consider the following family of functions depending on the parameter β ≥ 0:

[0, 1) 3 t 7−→ Vβ(t) := (1 − t2)−β( n−1
n−2 )

∫
{u=t}

|Du|β+1 dσ.
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In [2] it was proven that if (M, g0, u) is a static triple, then, for every β ≥ 2, the function Vβ is strictly
nonincreasig unless (M, g0, u) is the Schwarzschild solution. The main purpose of this paper is to
extend this result to the sub-static case and to the optimal threshold β = n−2

n−1 . This is the content of
Theorem 3.1, where the monotonicity of the above family - equipped with a corresponding rigidity
statement - is expressed in terms of the functions Fβ(τ), where τ = 1+t2

1−t2 ≥ 1, to be consistent with [3]
and in light of the more advanced analysis contained therein. This generalisation suggests that our
approach is robust enough and likely to be exported to other contexts. In a similar way, S. Brendle
shows in [7] how some structure conditions for the metric are sufficient to prove an Alexandrov-type
theorem and how such structure generalises to the sub-static case.

Let us now be slightly more detailed on how our Theorem 3.1 is proved. We adopt the main
strategy proposed in [2], which essentially consists in obtaining the monotonicity as a consequence of
a fundamental integral identity derived in a suitable conformally-related setting (see Proposition 4.3).
A delicate point is justifying such identity in a region where critical points of the potential are present.
One of the main differences with [2] is that, whereas in the static case the analyticity of the potential
guarantees the local finiteness of the singular values, which made the argument simpler in many
occurrences, in the present sub-static setting the metric and in turn the potential are not a priori
analytic. Nevertheless, standard measure properties of the critical set of harmonic functions
(summarised in Theorem 2.3) are enough to obtain the fundamental integral identity, which in turn
implies the monotonicity of Fβ and, coupled with Sard’s Theorem, also its differentiability.

Observe that the difficulty in treating the critical points under the threshold β = 1 can be read off

directly from formulæ (3.2) and (4.4), the first one displaying the derivative of Fβ and the second one
expressing the mean curvature on a equipotential set in terms of the Hessian of the potential itself. In
fact, calling Φβ the conformal version of Fβ and looking at formula (4.25) containing the equivalent
characterisation of Φ′β derived from the integral identity (4.17), one realises that problems arise already
when β < 2.

Let us stress that the monotonicity is obtained from the nonnegativity of the right-hand side of
our fundamental integral identity. It is above the threshold β = n−2

n−1 that this is guaranteed, thanks
to the Refined Kato Inequality for harmonic functions. The optimality of such inequality reflects a
corresponding optimality of β = n−2

n−1 in our result. Moreover, let us remark that the (nonnegative)
right-hand side of (4.17) is obtained as the divergence of a suitable modification of a specific vector
filed with nonnegative divergence (see (4.18)), in the limit of a vanishing neighbourhood of the critical
set. The crucial point in the construction is to maintain the divergence of the modified vector field
nonnegative. It would be interesting to see whether a similar construction can be performed for other
families of metrics, including special solutions as rigid case.

A straightforward application of the monotonicity of Fβ is comparing Fβ(1) with Fβ(+∞), in turn
yielding a “capacitary version” of the Riemannian-Penrose inequality (Theorem 1.1 below). The
capacity comes naturally into play when computing Fβ(1) and Fβ(+∞), the latter value via the
asymptotic expansions of the metric and of the potential. We recall that the capacity Cap(∂M, g0) of
∂M is defined as

Cap(∂M, g0) :=
1

(n − 2)|Sn−1|
inf

{∫
M

|Dg0v|
2
g0

dµg0 : v ∈ Liploc(M), v ≥ 0, v = 0 on ∂M, v→ 1 at∞
}
.

Throughout the paper, we will use the short–hand notation C for the capacity. Comparing (1.6) with
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either (2.1) or (2.2), it is straightforward, in the case of the Schwarzschild solution, that mADM = C.
For a general sub-static harmonic triple, the following inequality holds.

Theorem 1.1 (Capacitary Riemannian Penrose Inequality). Let (M, g0, u) be a sub-static harmonic
triple with associated capacity C and suppose that ∂M is connected. Then

C ≥
1
2

(
|∂M|
|Sn−1|

)n−2
n−1

. (1.7)

Moreover, the equality in (1.7) holds if and only if (M, g0) is isometric to the Schwarzschild manifold
with mADM = C.

Whereas the above inequality has been obtained as a consequence of the monotonicity of Fβ, at
every fixed β ≥ n−2

n−1 , we remark that one could possibly push the above described analysis one step
forward, at the same time exploiting the full power of the optimality threshold. Indeed, we believe that
considering p-harmonic functions defined at the exterior of a bounded domain Ω lying in M, it may
be possible to derive, as done in [1] for the Euclidean case and in the simultaneous limit as β ↓ n−2

n−1
and p ↓ 1, a Minkowski-like inequality for ∂Ω (see [21] for a Minkowski-like inequality in the static,
asymptotically flat case and [5] for the nonnegative Ricci case).

Concerning the treatment of general sub-static metrics and the derivation of related geometric
inequalities, besides the already cited [7] we also would like to mention [19], where an integral
formula is obtained and applied to prove Hentze-Karcher-type inequalities. For the case of
asymptotically hyperbolic sub-static manifolds (specifically, for adS-Reissner-Nordström manifolds),
we refer the interested reader to [13] and [27].

We remark that our results are not based on the Positive Mass Theorem. By contrast, we observe
that using this celebrated result, more precisely a consequence of it contained in [17, Theorem 1.5],
one can prove the following uniqueness statement. We refer the reader to Definition 1.1 for the notation
and terminology.

Theorem 1.2 (Uniqueness Theorem for sub-static harmonic triples). Let (M, g0, u) be a sub-static
harmonic triple with associated capacity C. Suppose that there is a chart at infinity such that

Rg̃0 = O(|x|−q) , (1.8)

for some q > n. Then (M, g0) is the Schwarzschild manifold with associated ADM mass given by C.

It remains an open question to see whether it is possible to remove the assumption on the decay of
Rg̃0 and get the same conclusion.

The paper is organised as follows. In Section 2, we recall and discuss some preparatory material,
namely the asymptotic expansions of the metric and of the potential, and classical measure properties
of the critical set of the potential, with a close look on related integral quantities. In Section 3, we prove
the Monotonicity and Outer Rigidity Theorem 3.1, and the consequent Capacitary Riemannian Penrose
Inequality contained in Theorem 1.1. To do this, we use from Section 4 some corresponding results
obtained in a suitable conformally-related setting. The biggest technical effort is contained in such
section. In the Appendix we also provide an alternative proof of the monotonicity of our monotone
quantities. Finally, Section 5 is devoted to the proof of Theorem 1.2.
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2. Preliminaries

Let (M, g0, u) be a sub-static harmonic triple. We observe, as a first consequence of system (1.1),
that the scalar curvature Rg0 is nonnegative. Since u satisfies the last three conditions of system (1.1),
by the Maximum Principle we have

M̊ = M \ ∂M = {0 < u < 1} .

Also, by the forth condition in (1.1), each level set of u is compact. Moreover, from the Hopf Lemma,
it follows that |Dg0u|g0 > 0 on ∂M. In particular, zero is a regular value of u. Furthermore, from the first
two conditions in (1.1) restricted to ∂M it is easy to deduce that D2

g0
u ≡ 0 on ∂M. In turn, the function

|Dg0u|g0 attains a positive constant value on each connected component of ∂M, and the boundary ∂M is
a totally geodesic hypersurface in M.

We now deal with the asymptotic behaviour of the potential u at ∞. By Theorem 2.2 below, this is
given by:

u = 1 −
C

|x|n−2 + o2(|x|2−n) as |x| → +∞ , (2.1)

being

C =
1

(n − 2)|Sn−1|

∫
∂M

|Dg0u|g0dσg0 . (2.2)

Here, σg0 is the canonical measure on the boundary ∂M seen as a Riemannian submanifold of (M, g0),
and we have used the standard notation o2, which means that, in any chart at infinity ψ, denoted by ũ
the function u ◦ ψ−1, the following conditions hold true.

ũ = 1 − C|x|2−n + o(|x|2−n) , (2.3)
∂ĩu = (n − 2)C |x|−n xi + o(|x|1−n) , (2.4)

∂i∂ j̃u = −(n − 2)C |x|−n−2(n xi x j − |x|2δi j) + o(|x|−n) . (2.5)

Let us remark that we can always suppose, without loss of generality, that the considered chart at
infinity admits a diffeomorphic extension to the closure of the coordinate domain. We will make this
implicit assumption throughout the paper, so that ∂K (see Definition 1.1) is a connected hypersurface
of M and the quantities related to the metric can be pushed–forward in Rn outside an open ball and be
smooth here. We also observe that formula (2.2) is nothing but an equivalent characterisation of the
capacity of ∂M.

2.1. Asymptotic expansions

Let (N, h) be a smooth, connected, noncompact, complete, asymptotically flat, n-dimensional
Riemannian manifold, with n ≥ 3, with one end and with nonempty smooth compact boundary ∂N.
We adopt the following notation.

• B and BR a generic open ball and the open ball of radius R > 0 centred in the origin of (Rn, de),
respectively;
• | · | the euclidean norm of Rn;
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• |Sn−1| the hypersurface area of the unit sphere inside Rn with the canonical metric;
• De and ∆e the Levi–Civita connection and the Laplace operator of (Rn, gRn), respectively;
• Dh and ∆h the Levi–Civita connection and the Laplace operator of (N, h), respectively;
• σe the canonical measure on a Riemannian submanifold of (Rn, gRn);
• σh the canonical measure on a Riemannian submanifold of (N, h);
• | · |e the norm induced by gRn on the tangent spaces to the manifold Rn;
• | · |h the norm induced by h on the tangent spaces to the manifold N.
• If ψ is a chart at infinity of (N, h) according to Definition 1.1, we denote by h̃ the push–forward

metric ψ∗h of h by ψ, having coordinate expression h̃i j(x) dxi ⊗ dx j. In this context, Dh̃ and ∆h̃

denote the Levi–Civita connection and the Laplace operator of h̃, respectively, while σh̃ is the
canonical measure on a Riemannian submanifold of (Rn \ B, h̃) and | · |̃h is the norm induced by h̃
on the tangent spaces. Moreover, Rich̃ and Rh̃ are the Ricci tensor and the scalar curvature of h̃,
respectively.

Proposition 2.1. Let ψ be a chart at infinity of N (according to Definition 1.1). The decays

h̃i j − δi j = O2(|x|−p) , (2.6)
(Rmh̃)l

i jk = O(|x|−(p+2)) , (2.7)

(Rich̃)i j = O(|x|−(p+2)) , (2.8)
Rh̃ = O(|x|−(p+2)) , (2.9)

hold true for some p > n−2
2 . Moreover,

|νi
h̃
− νi

e| = O(|x|−p) , (2.10)

dσh̃ = (1 + O(|x|−p) dσe , (2.11)

where νe is the ∞–pointing unit normal with respect to the Euclidean metric and σe the associated
canonical measure on ∂BR , while ν h̃ is the ∞–pointing unit normal with respect to h̃ and σh̃ the
associated canonical measure on ∂BR .

Proof. From h̃ikh̃k j = δi
j it is easy to get

∂ĩhkl = −h̃kr h̃ls ∂ĩhrs

∂i∂ j̃hkl = h̃ka h̃rb h̃ls (∂ĩhab) (∂ j̃hrs) + h̃la h̃sb h̃kr (∂ĩhab) (∂ j̃hrs) − h̃kr h̃ls ∂i∂ j̃hrs .

These formulae coupled with (1.2), (1.3) and (1.4) give (2.6). Decay (2.7) is another direct consequence
of Definition 1.1, keeping in mind that

(Rmh̃)l
i jk = ∂iΓ

l
jk − ∂ jΓ

l
ik + Γs

jkΓ
l
is − Γs

ikΓ
l
js ,

Γk
i j =

h̃kl

2
[∂ĩhl j + ∂ j̃hli − ∂l̃hi j] . (2.12)

Decays (2.8)–(2.9) are obtained by contractions of the Riemannian tensor. Now, observe that

ν h̃ =
h̃i j xi ∂

∂x j√
h̃lk xl xk

,
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and that

|νi
e − ν

i
h̃
| =

∣∣∣∣∣∣ xi

|x|
−

h̃i j x j√
h̃lkxlxk

∣∣∣∣∣∣ =

∣∣∣∣∣∣(δi j − h̃i j)
x j√

h̃lkxlxk
+ xi

(
1
|x|
−

1√
h̃lkxlxk

) ∣∣∣∣∣∣
≤ C

∑
j

|δi j − h̃i j| +

∣∣∣∣ (̃hlk − δlk) xlxk
∣∣∣∣√

h̃lkxlxk
( √

h̃lkxlxk + |x|
) . (2.13)

Observe also that
h̃i j(x)viv j ≥ C−1viv jδi j , (2.14)

for some C > 0, for any x ∈ Rn \ B. Since trivially |xkxl| ≤ |x|2, from (2.13) and (2.14), coupled
with (2.6), we get decay (2.10). Concerning decay (2.11), recall first that, using a coordinate chart
(y1, . . . , yn−1) on ∂BR, we have that dσh̃ =

√
det h̃∂BR dy1 . . . dyn−1 with h̃∂BR = h̃∂BR

αβ dyα ⊗ dyβ, where
h̃∂BR
αβ = h̃

( ∂
∂yα ,

∂
∂yβ

)
. Now, using the specific local parametrization x = x(y1, . . . , yn−1) of ∂BR, given by the

inverse of stereographic projection from its north pole with the diffeomorphism p ∈ Sn−1 → Rp ∈ ∂BR,
we have that

h̃
( ∂

∂yα
,
∂

∂yβ
)
(x(y)) = h̃i j(x(y))

∂xi

∂yα
(y)

∂x j

∂yβ
(y)

=
(̃
hi j(x(y)) ± δi j

) ∂xi

∂yα
(y)

∂x j

∂yβ
(y) =

4R2

(|y|2 + 1)2

(
δαβ + O(R−p)

)
,

because∣∣∣∣ (̃hi j(x(y)) − δi j
) ∂xi

∂yα
(y)

∂x j

∂yβ
(y)

∣∣∣∣ ≤∑
i, j

∣∣∣̃hi j(x(y)) − δi j

∣∣∣ ∣∣∣∣ ∂
∂yα

∣∣∣∣
e

∣∣∣∣ ∂
∂yβ

∣∣∣∣
e

=
4R2

(|y|2 + 1)2 O(R−p) .

Hence, on ∂BR,

dσh̃ =
( 2R
|y|2 + 1

)n−1
√

det
(
δαβ + O(R−p)

)
dy1 . . . dyn−1 =

(
1 + O(R−p)

)
dσe ,

where in the last identity we have used the Leibniz formula for the determinant and Taylor–expanded
the square root. �

The following result is well–known. For completeness, we provide the statement, along with its
proof, which is an extension of [20, Lemma A.2.] to every n ≥ 3.

Theorem 2.2. Let (N, h) be a smooth, connected, noncompact, complete, asymptotically flat,
n-dimensional Riemannian manifold, with n ≥ 3, with one end, and with nonempty smooth compact
boundary ∂N. If v ∈ C∞(N) is the solution to

∆hv = 0 in N ,

v = 1 on ∂N ,

v→ 0 at∞ .

(2.15)

then

v =
C

|x|n−2 + o2(|x|2−n) as |x| → ∞ , with C =
1

(n − 2)|Sn−1|

∫
∂N

|Dhv |h dσh . (2.16)
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We remark that the asymptotic behaviour of the potential u at∞, given by formula (2.1), is a simply
consequence of the above theorem observing that u = 1 − v when (N, h) = (M, g0).

Proof. Step 1: Construction of a barrier function. Let ψ be a chart at infinity for N. From now on by
C we will denote some positive constant, which may change from line to line. By Definition 1.1, there
exist p > (n − 2)/2 and R1 ≥ 1 such that

Rn \ BR1 ⊆ R
n \ B

|̃hi j − δi j| ≤ C|x|−p |∂kh̃i j| ≤ C|x|−(p+1) |∂k∂l̃hi j| ≤ C|x|−(p+2) (2.17)

for every x ∈ Rn\BR1 . By (2.6), the same conditions as in (2.17) are satisfied by h̃i j(x) for all x ∈ Rn\BR1 .
Then, for every f ∈ C∞(Rn \ BR1), writing

∆h̃ f = δi j∂i∂ j f + σi j∂i∂ j f + b j∂ j f , (2.18)

where
σi j := h̃i j − δi j , b j := −h̃klΓ

j
kl =

1
2

h̃kl h̃i j ∂ĩhlk − h̃ki h̃l j ∂ĩhkl ,

we have that
|σi j| ≤ C|x|−p , |b j| ≤ C|x|−(p+1) , |∂lb j| ≤ C|x|−(p+2) (2.19)

in Rn \ BR1 . For a fixed 0 < ε < p and for a > 0 to be chosen later, consider the function

φa = a
(

1
|x|n−2 −

1
|x|n−2+ε

)
.

By direct computation one can check that

∂ jφa = −a
(
n − 2
|x|n

−
n − 2 + ε

|x|n+ε

)
x j

∂i∂ jφa = a
[
n (n − 2)
|x|n+2 −

(n + ε)(n − 2 + ε)
|x|n+2+ε

]
xi x j − a

[
n − 2
|x|n

−
n − 2 + ε

|x|n+ε

]
δi j ,

and in turn that
|∂iφa| ≤ a C|x|1−n and |∂i∂ jφa| ≤ a C|x|−n .

Therefore, by (2.18) and (2.19), we obtain that

∆h̃φa = a
[
− (n − 2 + ε)ε|x|−(n+ε) + O(|x|−(n+p))

]
,

and hence there exists R2 > R1 independent of a such that ∆h̃φa < 0 in Rn \ BR2 , for every a > 0. We

now choose a > 0 so that φa = 1 on ∂BR2 , that is a =
[

1
Rn−2

2
− 1

Rn−2+ε
2

]−1
. Since φa is h̃–superharmonic in

Rn \ BR2 and since ṽ := v ◦ ψ−1 < 1 on ∂BR2 , by the Maximum Principle

ṽ ≤ φa in Rn \ BR2 . (2.20)

Step 2: Asymptotic expansion of v. Note that from (2.20) one gets in particular that ṽ ≤ C|x|2−n. We
now apply Shauder’s Interior estimates ( [12, Lemma 6.20]) to ∆h̃̃v = 0 in Rn \ BR2 , where the operator
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∆h̃ is defined as in (2.18) and its coefficients satisfy the estimates in (2.19). Recalling that the Hölder
norms are weighted by the (Euclidean) distance de( · , ∂BR2) from ∂BR2 and since de(x, ∂BR2) ' |x| when
|x| >> 1, from such estimates we get

|∂ĩv(x)| ≤ C|x|1−n |∂i∂ j̃v(x)| ≤ C|x|−n (2.21)

in Rn \ BR2 (up to a bigger R2). Combining (2.19) and (2.21), the equation ∆h̃̃v = 0 can be equivalent
written as ∆ẽv = f where

| f (x)| ≤ C|x|−(n+p) . (2.22)

We consider a smooth extension of ṽ on Rn, still denoted by ṽ, which is zero in a ball centred in the
origin, and the smooth extension of f given by ∆ẽv, still denoted by f . By a classical representation
formula and due to (2.22), the function

w(x) = −
1

n(n − 2)ωn

∫
Rn

f (y)
|x − y|n−2 dy ,

is well–defined and fulfils ∆ew = f on Rn. Now, one can rewrite w in Rn \ {O} as

w(x) = −
1

n(n − 2)ωn

1
|x|n−2

∫
Rn

f (y) dy +
1

n(n − 2)ωn

1
|x|n−2

∫
Rn\B |x|

2
(O)

f (y) dy

−
1

n(n − 2)ωn

∫
B |x|

2
(x)

f (y)
|x − y|n−2 dy −

1
n(n − 2)ωn

∫
Rn\

(
B |x|

2
(x)∪B |x|

2
(O)

) f (y)
|x − y|n−2 dy

−
1

n(n − 2)ωn

∫
B |x|

2
(O)

[
1

|x − y|n−2 −
1
|x|n−2

]
f (y) dy ,

and show that each summand can be bounded by C|x|−(n−2+γ), where γ = min{1, p} if p , 1 and
γ ∈ (1/2, 1) if p = 1, except the first one. Therefore, we have that

w(x) = −
1

n(n − 2)ωn

1
|x|n−2

∫
Rn

f (y) dy + z(x) , |z(x)| ≤ C|x|−(n−2+γ) ,

in Rn\{O}. Since the function ṽ−w is harmonic and bounded on Rn, then it is constant and this constant
is zero, using the fact that ṽ − w→ 0 for |x| → ∞. Hence

ṽ =
C

|x|n−2 + z(x) (2.23)

in Rn \ BR2 . We observe that

∆h̃z = ∆h̃

(̃
v −

C

|x|n−2

)
= −C

(
σi j∂i∂ j

1
|x|n−2 + bk∂k

1
|x|n−2

)
=: −Cẑ ,
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and that
|ẑ(x)| ≤ C|x|−(n+γ) , |∂kẑ(x)| ≤ C|x|−(n+γ+1) .

Therefore, applying Shauder’s Interior estimates to ∆h̃z = −Cẑ in Rn \ BR2 , we get

|z(x)| ≤ C|x|−(n−2+γ) |∂iz(x)| ≤ C|x|−(n−1+γ) |∂i∂ jz(x)| ≤ C|x|−(n+γ) (2.24)

in Rn \ BR2 (up to a bigger R2). From (2.23) and (2.24) we obtain in particular (2.16).

Step 3: Characterization of C. First of all we remark that 0 < v < 1 on N̊, v : N → (0, 1] is proper, and,
from the Hopf Lemma, |Dhv|h > 0 on ∂N. In particular, 1 is a regular value of v. Let K be the compact
set on the complement of which the chart ψ is defined. For every R > R2, applying the Divergence
Theorem to the function v on K ∪ {|ψ| < R} we obtain that

0 =

∫
K∪{|ψ|<R}

∆hv dµh =

∫
∂N

h(Dhv, νh) dσh +

∫
{|ψ|=R}

h(Dhv, νh) dσh ,

where νh is the outward unit normal vector field with respect to h along ∂N and {|ψ| = R}. Then, it
follows that∫

∂N

|Dhv|h dσh =

∫
∂N

h(Dhv, νh) dσh = −

∫
{|ψ|=R}

h(Dhv, νh) dσh = −

∫
∂BR

h̃
(
Dh̃̃v, ν h̃

)
dσh̃ ,

where ṽ = v ◦ ψ−1. Now, thanks to (1.2), (2.6), (2.10) and (2.11), which are true for γ too, and also by
identity (2.23) and the second in (2.24), and keeping in mind that |∂ĩv| ≤ C|x|1−n, we have that∫

∂BR

h̃
(
Dh̃̃v, ν h̃

)
dσh̃ =

∫
∂BR

gRn

(
Dẽv, νe

)
dσe + O(R−γ)

=

∫
∂BR

gRn

(
De

(
C|x|2−n + z

)
,

x
|x|

)
dσe + O(R−γ)

=

∫
∂BR

gRn

(
De

(
C|x|2−n

)
,

x
|x|

)
dσe + O(R−γ)

= −C(n − 2)|Sn−1| + O(R−γ).

Hence ∫
∂N

|Dhv|h dσh = − lim
R→∞

∫
∂BR

h̃
(
Dh̃̃v, ν h̃

)
dσh̃ = C(n − 2)|Sn−1| .

�

2.2. Measure of and integration on the level sets of the potential

Let (N, h) and ι : S ↪→ N be respectively a m–dimensional Riemannian manifold and a
s–dimensional Riemannian submanifold of N. Let k be a positive real number. We set
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B(S ) the smallest σ–algebra containing all open sets of S ;
(S ,Λ(S ), µι∗h) the canonical space of measure on the Riemannian manifold (S , ι∗h)
(see [14, Section 3.4]);
H k

S the k-dimensional Hausdorff measure on (S , dS ), being dS the distance function of S ;
H k

S ;N the k-dimensional Hausdorff measure on (S , dS ;N) where dS ;N is the distance function of N
restricted to S × S ;
H k

N S the k-dimensional Hausdorff measure of N restricted to S .

By definition of the Hausdorff measure and by [26, Proposition 12.7],H k
S ;N ,H k

N S andH k
S coincide

on B(S ), and by [26, Proposition 12.6] and by [25, Proposition 2.17], H s
S and µι∗h coincide on Λ(S ).

The same results still hold when N is a manifold with boundary.

For the ease of the reader, we collect in the next theorem some results about the measure of the level
sets of the potential u and

Crit(u) := {|Dg0u|g0 = 0},

which are well–known in the Euclidean setting (see, e.g., [15, 16]).

Theorem 2.3. Let (M, g0, u) be a sub-static harmonic triple. Then the following statements hold true.

(i) For every t ∈ [0, 1), the level set {u = t} is compact and has finite (n − 1)–Hausdorff measure in
M;

(ii) Crit(u) is a compact subset of M and its Hausdorff dimension in M is less than or equal to (n−2);
(iii) The set of the critical values of u has zero Lebesgue measure, and for every t ∈ [0, 1) regular

value of u there exists εt > 0 such that (t − εt, t + εt) ∩ [0, 1) does not contain any critical value of
u.

Proof. Each level set of u is compact, due to the forth condition in (1.1), while the compactness of
Crit(u) follows by (2.4). Now, consider the nontrivial case where Crit(u) , ∅ and let p be a point of
a critical level set {u = t}. Take a chart (Up, ψp) centred at the point p with ψp(Up) = B1. Setting
g̃0 = (ψp)∗g0 = g̃0;i jdxi ⊗ dx j, there exists C > 0 such that

C−1viv jδi j ≤ g̃0;i j(x)viv j ≤ Cviv jδi j, (2.25)

for each (v1, . . . , vn) ∈ Rn and for each x ∈ B 1
2

. The same condition is satisfied by the coefficients g̃ i j
0 .

In particular, setting ũ = u ◦ ψ−1
p , we have that

{|Dg̃0 ũ|̃g0 = 0} ∩ B 1
2

= {|Deũ|e = 0} ∩ B 1
2
.

We observe that ∆g̃0v = ai j∂i∂ jv + bi∂iv = 0 is an elliptic partial differential equation with coefficient
C∞ in B 1

2
. We recall that if v is a C∞–solution of the above equation and if v vanishes to infinite order

at a point x0 ∈ B 1
2
, i.e., for every k > 0

lim
r→0

1
rk

∫
Br(x0)

v2 dx = 0 ,

Mathematics in Engineering Volume 4, Issue 2, 1–40.



12

then v is identically zero in B 1
2

(see [11, Theorem 1.2]). Applying this fact to ũ − t, one can argue that
ũ − t has finite order of vanishing at O. Then, by using [16, Theorem 1.7], there exists 0 < ρ < 1

2 such
that

Hn−1(Bρ ∩ {̃u = t}) < ∞ .

Since ũ is nonconstant in B 1
2

and by the structure and regularity of ∆g̃0 , [15, Theorem 1.1] yields

Hn−2(Bρ ∩ {|Deũ|e = 0}) < ∞ .

Hence, since the restriction of ψp to ψ−1
p (B1/2) is bilipschitz due to (2.25) and since the measures

H k
ψ−1

p (B1/2)
and H k

M ψ−1
p (B1/2) coincide on borel sets, statements (i) and (ii) are true locally. In turn,

by compactness of {u = t} and Crit(u), they are true globally. To prove (iii), observe that by Sard’s
Theorem, the set of the critical values of u has zero Lebesgue measure. Now, suppose by contradiction
that there exists t ∈ [0, 1) regular value such that, for all m ≥ m with 1

m < 1 − t, the interval (t −
1
m , t + 1

m ) ∩ [0, 1) contains critical values. Hence there is a sequence {tm}m≥m of critical values such
that tm → t. In particular, there exists a sequence {pm}m≥m of critical points contained in the set
{0 ≤ u ≤ t + 1

m } and such that u(pm) = tm. Then, by compactness and up to a subsequence, pm → p.
In turn, 0 = |Dg0u|g0(pm) → |Dg0u|g0(p) and tm = u(pm) → u(p). Hence |Dg0u|g0(p) = 0 and u(p) = t,
which is absurd. This concludes the proof of (iii). �

Remark 2.1. It is useful to observe that:

(i) for every t ∈ (0, 1), the set {u ≥ t} is connected;
(ii) for every t ≈ 1, the level set {u = t} is regular and diffeomorphic to Sn−1;

(iii) For every t ∈ (0, 1), {u ≥ t} = {u > t} and {0 ≤ u ≤ t} = {0 < u < t}.

We check (ii) first. We start by observing that due to (2.1) |Dg0u|g0 , 0 in {u ≥ t0}, for some
0 < t0 < 1. This fact establishes a diffemorphism between {u ≥ t0} and {u = t0} × [t0, 1) and tells us at
the same time that the level sets {u = t} are pairwise diffeomorphic, for every t ≥ t0. It is thus sufficient
to show that {u = t0} is connected. Suppose by contradiction that this is not the case. Without loss of
generality we can assume that {u = t0} can be decomposed into the disjoint union of two connected
sets C1 and C2, indeed the same argument works a fortiori if the connected components are more than
two. Now, note that by definition of asymptotically flat manifold, there exists a compact set K ⊂ M
such that M \ K̊ is diffeomorphic to Rn \ B̊ by a chart at infinity ψ, where B is a suitable ball, and we
can suppose, up to a bigger t0, that {u ≥ t0} ⊆ M \ K̊. Now, in view of the asymptotic expansion of u,
there exist two positive constants A < B such that

A
|x|n−2 ≤ 1 − u ≤

B
|x|n−2 .

In particular, setting R0 = [B/(1 − t0)]1/(n−2), we have that

{|x| > R0} ⊆ {u ≥ t0} '
{
C1 × [t0, 1)

}
t

{
C2 × [t0, 1)

}
.

At the same time, we have that {|x| > R0} is connected and each Ci × [t0, 1) is a closed set of M, so that
indeed {|x| > R0} ⊆ Ci × [t0, 1), for some i ∈ {1, 2}.Therefore, we have that{

C1 × [t0, 1)
}
t

{
C2 × [t0, 1)

}
= {u ≥ t0} ⊆ M \ K̊
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=
[
(M \ K̊) ∩ {|x| ≤ R0}

]
t

[
(M \ K̊) ∩ {|x| > R0}

]
⊆

[
(M \ K̊) ∩ {|x| ≤ R0}

]
t

{
Ci × [t0, 1)

}
,

which gives the contradiction that the noncompact set {C j × [t0, 1)
}
, where j ∈ {1, 2} \ {i}, is contained

into the compact one (M \ K̊) ∩ {|x| ≤ R0}. Therefore, {u = t0} is connected. Now, setting ũ := u ◦ ψ−1,
we have that, up to a bigger t0 and due to (2.5), the set {̃u = t0} is a compact and connected hypersurface
of Rn having strictly positive sectional curvature, as a Riemannian submanifold of (Rn, gRn). Hence,
{̃u = t0} is diffeomorphic to Sn−1 by the Gauss map (see [10, Section 5.B] for more details). Statement
(ii) thus follows, being {u = t0} and {̃u = t0} diffeomorphic.

To see (i), observe first that if t is a regular value of u, then Et := {u ≥ t} is a n–dimensional
submanifold with boundary {u = t}. By Theorem 2.3 and by the Maximum Principle, every connected
component C of Et is unbounded. Since u → 1 at ∞, we have that u(C) = [t, 1), and hence C ∩ {u =

t0} , ∅, for every t0 ∈ (t, 1). Then, Et is connected by (ii). If t is a critical value of u, we let t > t be
a regular value of u such that {u = t} is connected and let {tm} be a nondecreasing sequence of regular
value of u such that tm < t and tm → t. Hence,

{
{tm ≤ u ≤ t}

}
m∈N is a nonincreasing family of connected

and compact sets in M, which is Hausdorff, and in turn the intersection {t ≤ u ≤ t} is still connected.
In particular, we deduce that Et = {t ≤ u ≤ t} ∪ {u ≥ t} is connected.

To check (iii), note first that for every t ∈ (0, 1) regular value of u, the equalities are always true.
If t ∈ (0, 1) is a critical value of u, by Theorem 2.3 and by the Maximum Principle the interior of
{0 ≤ u ≤ t} and the interior of {u ≥ t} are both disjoint from {u = t}, so that (iii) is still true.

Let (M, g0, u) be a sub-static harmonic triple, and let t ∈ [0, 1) be a real number. We consider the
spaces of measure(

{u = t},B({u = t}),Hn−1
M {u = t}

)
and

(
S := {u = t} \ Crit(u),Λ(S ), σg0 := µι∗g0

)
.

Let f : S → R be a continuous and consider the zero–extension f̊ of f defined on {u = t} as

f̊ (p) =

 f (p) if p ∈ S ,

0 if p ∈ {u = t} ∩ Crit(u).

By Theorem 2.3 and by definition of the Lebesgue integral, we have that f̊ ∈ L1(Hn−1
M {u = t}

)
iff

f ∈ L1(σg0) and ∫
{u=t}

f̊ d
(
Hn−1

M {u = t}
)

=

∫
S

f dσg0 . (2.26)

Similarly, if f : {u = t} → R is a continuous function, then f ∈ L1(Hn−1
M {u = t}

)
iff f |S ∈ L1(σg0) and∫

{u=t}

f d
(
Hn−1

M {u = t}
)

=

∫
S

f |S dσg0 . (2.27)

In the rest of this paper, we will confuse the integrals of cases (2.26) and (2.27), denoting both by∫
{u=t}

f dσg0 .
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3. Monotonicity and Outer Rigidity Theorem

In this section, we state and prove our Monotonicity and Outer Rigidity Theorem, which is then
used to prove the Capacitary Riemannian Penrose Inequality (1.7). From now on and unless otherwise
stated, (M, g0, u) will always be a sub-static harmonic triple, and, when referring to such triple, the
subscript g0 will be dropped. The only exception is |Sn−1|, which always stands for the Euclidean
volume of Sn−1.

Theorem 3.1 (Monotonicity and Outer Rigidity Theorem). Let (M, g0, u) be a sub-static harmonic
triple, and let Fβ : τ ∈ [1,+∞)→ [0,+∞) be the function defined by

Fβ(τ) := (1 + τ)β
n−1
n−2

∫
{
u=
√

τ−1
τ+1

} |Du|β+1 dσ , (3.1)

for every β ≥ 0. Then, the following properties hold true.

(i) Differentiability, Monotonicity and Outer Rigidity: for every β > n−2
n−1 , the function Fβ is

continuously differentiable with nonpositive derivative in (1,+∞). Moreover, if there exists

τ0 ∈ (1,+∞) such that F′β(τ0) = 0 for some β > n−2
n−1 , then, setting t0 =

√
τ0−1
τ0+1 , the Riemannian

submanifold {u ≥ t0} is isometric to(
[r0,+∞) × Sn−1 ,

dr ⊗ dr
1 − 2Cr2−n + r2gSn−1

)
, r0 = [C(1 + τ0)]

1
n−2 .

(ii) Convexity: for every β > n−2
n−1 , the function Fβ is convex on [1,∞).

We remark that the functions Fβ are well–defined, in view of Theorem 2.3 and since the integrand
function in (3.1) is bounded on every level set of u. Note that, from Theorem 3.1 and by a simple
argument based on the Dominated Convergence Theorem, the monotonicity and the convexity of Fβ

extend to the case β = n−2
n−1 . Moreover, on the values τ such that

{
u =

√
τ−1
τ+1

}
is regular and thus on a.e.

τ > 1 due to Theorem 2.3 (iii), the function Fβ is twice differentiable for each β > n−2
n−1 , with first and

second derivative given by

F′β(τ) = −β
(τ + 1)β

n−1
n−2−

3
2

√
τ − 1

∫
{
u=
√

τ−1
τ+1

} |Du|β
[
H −

n − 1
n − 2

2u
1 − u2 |Du|

]
dσ , (3.2)

F′′β (τ) = β
(τ + 1)β

n−1
n−2−3

τ − 1

{(
β −

n − 2
n − 1

) ∫
{
u=
√

τ−1
τ+1

} |Du|β−1
[

H −
n − 1
n − 2

2u
1 − u2 |Du|

]2
dσ

+ β

∫
{
u=
√

τ−1
τ+1

} |Du|β−3
∣∣∣ DT |Du|

∣∣∣2dσ +

∫
{
u=
√

τ−1
τ+1

} |Du|β−1
[
|h|2 −

1
n − 1

|H|2
]

dσ

+

∫
{
u=
√

τ−1
τ+1

} |Du|β−1
[

Ric(ν, ν) −
D2u (ν, ν)

u

]
dσ

}
. (3.3)
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In the computation, we have used the first normal variation of the volume and the mean curvature of
{u = t}, and the Divergence Theorem. The symbols H and h stand respectively for the mean curvature

and the second fundamental form of the smooth (n − 1)–dimensional submanifold
{
u =

√
τ−1
τ+1

}
, with

respect to the ∞–pointing unit normal vector field ν = Du
|Du| . Also, DT denotes the tangential part of the

gradient, that is
DT f = D f − g0(D f , ν)ν,

for every f ∈ C1(M).

To prove Theorem 3.1, we use the results of Section 4, which are obtained in the conformal setting
defined by

g = (1 − u2)
2

n−2 g0 , ϕ = log
(1 + u
1 − u

)
. (3.4)

Denoting by ∇ and ∆g the Levi–Civita connection and the Laplace–Beltrami operator of g, the triple
(M, g, ϕ) satisfies the following system.

Ricg − coth(ϕ)∇2ϕ +
1

n − 2
dϕ ⊗ dϕ −

1
n − 2

|∇ϕ|2g g ≥ 0 in M̊,

∆gϕ = 0 in M,

ϕ = 0 on ∂M,

ϕ→ +∞ at∞.

(3.5)

Moreover, we have that

|∇ϕ|2g = 4 |Du|2(1 − u2)−2 n−1
n−2 −→

(
2C

)− 2
n−2 (n − 2)2 at ∞ , (?)

as we will see in the proof of Lemma 4.1.

Remark 3.1. Since Crit(ϕ) = Crit(u) = {|∇ϕ|g = 0} by the equality in (?) and since {ϕ = s} = {u =

tanh
( s

2

)
} by (3.4), using Theorem 2.3 and Remark 2.1 we deduce that: Crit(ϕ) has zero µg–measure

and zero (n− 1)–Hausdorff measure in (M, g); the level sets of ϕ have finite (n− 1)–Hausdorff measure
in (M, g) and in particular the smooth (n − 1)–dimensional submanifolds {ϕ = s} \ Crit(ϕ) have finite
g–area, i.e., finite σg–measure. Moreover, {ϕ ≥ s} is connected for every s ≥ 0 and there exists s0 ≥ 0
such that {ϕ = s} is regular and diffeomorphic to Sn−1, for every s ≥ s0. Similar comments as those at
the end of Subsection 2.2 can be made, regarding the relation between integration and Crit(ϕ).

Let Φβ : [0,∞)→ R be the function defined by formula

Φβ(s) :=
∫
{ϕ=s}

|∇ϕ|β+1
g dσg ,

for every β ≥ 0. For the convenience of the reader, we anticipate from Section 4 the properties of Φβ

that we are going to use.

(◦) For every β ≥ 0, the function Φβ(s) is continuous in [0,+∞).
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(�) For every β > n−2
n−1 , the function Φβ is continuously differentiable in (0,+∞). The derivative Φ′β is

nonpositive, satisfies for every S > s > 0

Φ′β(S )

sinh(S )
−

Φ′β(s)

sinh(s)
≥ 0 , (3.6)

and admits for every s > 0 the integral representation

Φ′β(s) = −β sinh(s)
∫
{ϕ>s}

|∇ϕ|
β−2
g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg ≤ 0 ,

where Q is defined in (4.9).
(� �) If there exists s0 > 0 such that Φ′β(s0) = 0 for some β > n−2

n−1 , then {ϕ = s0} is connected and
({ϕ ≥ s0}, g) is isometric to

(
[0,+∞) × {ϕ = s0}, dρ ⊗ dρ + g{ϕ=s0}), where ρ is the g–distance

function to {ϕ = s0} and ϕ is an affine function of ρ in {ϕ ≥ s0}. If Φβ is constant for some β > n−2
n−1 ,

then ∂M is connected and (M, g) is isometric to
(
[0,+∞) × ∂M, dρ ⊗ dρ + g∂M), where ρ is the

g–distance function to ∂M and ϕ is an affine function of ρ.

In the above list we have gathered and summarised the results contained in Lemma 4.5, Proposition 4.6,
and Corollary 4.7.

Proof of Theorem 3.1. Step 1: Differentiability, Monotonicity and Convexity. For every β ≥ 0 and for
all τ ∈ [1,+∞), we note that

Fβ(τ) = 2
β

n−2−1 Φβ

(
log

( √
τ + 1 +

√
τ − 1

√
τ + 1 −

√
τ − 1

))
. (3.7)

Consequently, by (◦), we deduce that for every β ≥ 0 the function Fβ is continuous in [1,+∞). By (�)
and by (3.7), we obtain immediately that for every β > n−2

n−1 the function Fβ is continuously differentiable
in (1,+∞), with

F′β(τ) = 2
β

n−2−1 1
√
τ2 − 1

Φ′β

(
log

( √
τ + 1 +

√
τ − 1

√
τ + 1 −

√
τ − 1

))
. (3.8)

In particular, from (�) we get F′β ≤ 0. As for the convexity, noticing that

√
τ2 − 1 = sinh

(
log

( √
τ + 1 +

√
τ − 1

√
τ + 1 −

√
τ − 1

))
and that the function log

( √τ+1+
√
τ−1

√
τ+1−

√
τ−1

)
is nondecreasing, from (3.6) we obtain that F′β is nondecreasing

in (1,+∞). Therefore also by the continuity of Fβ at 1, Fβ is convex in [1,+∞).
Step 2: Outer Rigidity. Let us assume that there exists τ0 ∈ (1,∞) such that F′β(τ0) = 0 for some β >

n−2
n−1 . Then, by equality (3.8), Φ′β(s0) = 0 for s0 = log

( √τ0+1+
√
τ0−1

√
τ0+1−

√
τ0−1

)
, and hence, by (� �), ({ϕ ≥ s0}, g)

is isometric to
(
[0,+∞) × {ϕ = s0}, dρ ⊗ dρ + g{ϕ=s0}), where ρ is the g–distance function to {ϕ = s0}
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and ϕ = (n − 2) (2C)−
1

n−2ρ + s0, because |∇ρ|g ≡ 1 and in view of the limit in (?). Setting t0 = tanh s0
2 ,

consider N the submanifold with boundary {ϕ ≥ s0} = {u ≥ t0}. Writing

N [0,+∞) × ∂N [s0,+∞) × ∂N [t0, 1) × ∂N

g dρ ⊗ dρ + g∂N
dϕ ⊗ dϕ

(n − 2)2 (2C)−
2

n−2

+ g∂N
22 n−1

n−2 C
2

n−2

(n − 2)2 (1 − u2)2 du ⊗ du + g∂N

p 7→
(
ρ, q

)
7→

(
ϕ = (n − 2) (2C)−

1
n−2 ρ, q

)
7→

(
u = tanh

ϕ

2
, q

)
,

the Riemannian manifolds in the first row, whose metrics are indicated in the second row, are pairwise
isometric through the applications written in the third row. We recall that the application p → (ρ, q)
in the third row is the inverse of the diffeomorphism given by the normal exponential map, i.e., the
application which associates to every point p of N the couple having as first coordinate the g–distance
of p from ∂N and as second coordinate the point q of ∂N that realizes such distance. Then, in view
of (3.4) and with the same notation as above, the following Riemannian manifolds are isometric.

N [t0, 1) × ∂N [r0,+∞) × ∂N

g0
22 n−1

n−2 C
2

n−2

(n − 2)2 (1 − u2)2 n−1
n−2

du ⊗ du + (1 − u2)−
2

n−2 g∂N
dr ⊗ dr

1 − 2C r2−n + (2C)−
2

n−2 r2g∂N

p 7→
(
u, q

)
7→

(
r =

( 2C
1 − u2

) 1
n−2
, q

)
, (3.9)

where r0 =
( 2C

1−t20

) 1
n−2 . Doing some computations, we obtain that

|Rm|2 (p) = (2C)
4

n−2 r−4 (p)
∣∣∣∣Rmg∂N +

1 − 2C r2−n

2
n

n−2 C
2

n−2

g∂N T g∂N

∣∣∣∣2
g∂N

(q) + c r−2n (p) , (3.10)

where the convection followed for the Riemannian curvature tensor is that given in [23], c is a suitable
positive constant and q is the point of ∂N that realizes the g–distance of p from ∂N. Denoting by Θ the
diffeomorphism from N to [r0,+∞) × ∂N introduced in (3.9), for every q0 ∈ ∂N we consider the curve

γ : r ∈ [r0,+∞)→ Θ−1(r, q0) ∈ M

and observe from (3.10) that

(2C)−
4

n−2 r4 |Rm|2 (γ(r))
r→+∞
−−−−→

∣∣∣∣Rmg∂N +
(2C )−

2
n−2

2
g∂N T g∂N

∣∣∣∣2
g∂N

(q0) . (3.11)

At the same time, we have that

r4 |Rm|2 (γ(r))
r→+∞
−−−−→ 0 . (3.12)

This is because g0 is asymptotically flat according to Definition 1.1 and by (2.3), which yields in
particular

|Rm| = O(|x|−(p+2)) and
r
|x|

|x|→+∞
−−−−−→ 1 ,
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for some p > n−2
2 . Combining (3.11) and (3.12), the arbitrariness of the point q0 in ∂N gives that

Rmg∂N = −
(2C )−

2
n−2

2
g∂N T g∂N .

Hence the sectional curvature of the Riemannian manifold (∂N, g∂N) is constant and identically equal
to (2C )−

2
n−2 . Then, being all the level sets {u = t} with t ≈ 1 regular and diffeomorphic to Sn−1 as

observed in Remark 2.1, for [10, Section 3.F] (∂N, g∂N) and (Sn−1, (2C )
2

n−2 gSn−1) are isometric. Then,
({u ≥ t0}, g0) is isometric to the submanifold

(
[r0,+∞) × Sn−1 , dr⊗dr

1−2Cr2−n + r2gSn−1
)

of the Schwarzschild
manifold with associated ADM mass given by C. �

Proof of Theorem 1.1. Spep 1: Inequality. By Theorem 3.1, we have that Fβ(τ0) ≥ limτ→+∞ Fβ(τ), for
every τ0 > 1. In particular, since Fβ is continuous in [1,+∞) due to the step 1 of Theorem 3.1, we have
that

Fβ(1) ≥ lim
τ→+∞

Fβ(τ) , (3.13)

for every β > n−2
n−1 . Since D2u ≡ 0 on ∂M and since ∂M of M is connected, |Du| is constantly equal to

(n−2)C |Sn−1 |

|∂M| , by formula (2.2). In particular, we have that

Fβ(1) =
2β

n−1
n−2 (n − 2)β+1 Cβ+1 |Sn−1|β+1

|∂M|β
(3.14)

By (?), we know that

|Du|

(1 − u2)
n−1
n−2

−→ 2−
n−1
n−2 (n − 2)C−

1
n−2 at ∞

Therefore, fixed ε > 0, there exists 1 < τ0 < +∞ such that

|Du| ≥ (1 − u2)
n−1
n−2

(
2−

n−1
n−2 (n − 2)C−

1
n−2 − ε

)
in

{
u ≥

√
τ0−1
τ0+1

}
and the level sets

{
u =

√
τ−1
τ+1

}
are regular for all τ ≥ τ0. Therefore, for every τ ≥ τ0 we

have that

Fβ(τ) = (1 + τ)β
n−1
n−2

∫
{
u=
√

τ−1
τ+1

} |Du|β+1 dσ

≥ (1 + τ)β
n−1
n−2

∫
{
u=
√

τ−1
τ+1

} (1 − u2)β
n−1
n−2

(
2−

n−1
n−2 (n − 2)C−

1
n−2 − ε

)β
|Du| dσ

= 2β
n−1
n−2

(
2−

n−1
n−2 (n − 2)C−

1
n−2 − ε

)β ∫
∂M

|Du| dσ

= 2β
n−1
n−2 (n − 2)C

(
2−

n−1
n−2 (n − 2)C−

1
n−2 − ε

)β
|Sn−1| ,
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where in the second equality we have used the Divergence Theorem couple with the fact that u is
harmonic, and in the third equality we have used formula (2.2). Since ε is arbitrary, we get

lim
τ→+∞

Fβ(τ) ≥ (n − 2)β+1 C1− β
n−2 |Sn−1| .

In a similar way we can obtain the reverse inequality, so that

lim
τ→+∞

Fβ(τ) = (n − 2)β+1 C1− β
n−2 |Sn−1| . (3.15)

Joining the formulas in (3.13), (3.14) and (3.15), we obtain the desired inequality (1.7).

Step 2: Rigidity. If (M, g0) is isometric to the Schwarzschild manifold with ADM mass m > 0, then
the right–hand side and the left–hand side of (1.7) are both equal to m, by direct computation.

Suppose now that the equality holds in (1.7). Then, by Step 1 and for every β > n−2
n−1 , the function

Fβ is constant. In turn, Φβ is constant, being

Φβ(s) = 21− β
n−2 Fβ

(
1 + tanh2 ( s

2

)
1 − tanh2 ( s

2

) )
.

Finally, (� �) and the very same argument of the proof of the Outer Rigidity in Theorem 3.1 imply first
that (M, g) is isometric to (

[0,+∞) × ∂M, dρ ⊗ dρ + g∂M),

where ρ is the g–distance to ∂M and ϕ is an affine function of ρ, and secondly that (M, g0) is isometric
to the Schwarzschild manifold with ADM mass C. �

4. Conformal setting

Let us consider the conformal change g of the metric g0 introduced in (3.4) which is well–defined
being 0 ≤ u < 1 in M. The metric g is complete, since any g–geodesic γ parametrized by g–arc
length defined on a bounded interval [0, a) can be extended to a continuous path on [0, a]. Indeed, if
γ has infinity length with respect to g0, there exists a sequence {tm}m∈N such that γ(tm) → ∞ (being γ
not contained in any compact set) and using, in the computation of g–length of γ, the passage from
g to g0, the asymptotic flatness of (M, g0) and the asymptotic expansion of u in (2.3) we obtain that
γ has infinity length with respect to g. Hence γ has finite length with respect to g0 and, being g0

complete, it follows that g is complete (see [24, Section 1.1] and [9]). We also recall that the metric g
is asymptotically cylindrical (see [2, Section 3.1]). The other main element of the conformal setting is
the C∞–function ϕ, defined in (3.4). Now, the reverse changes are

g0 =
(

cosh
ϕ

2

) 4
n−2 g , u = tanh

ϕ

2
.

Recalling that we denote by the symbols ∇ and ∆g the Levi–Civita connection and the
Laplace–Beltrami operator of g, by the formulas in [6, Theorem 1.159], we obtain

Du =
1
2

(
cosh

ϕ

2

)− 2n
n−2
∇ϕ , (4.1)
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D2u =
1
2

1
cosh2 ϕ

2

∇2ϕ −
n

2(n − 2)
sinh ϕ

2

cosh3 ϕ

2

dϕ ⊗ dϕ +
1

2(n − 2)
sinh ϕ

2

cosh3 ϕ

2

|∇ϕ|2g g , (4.2)

∆u =
1
2

(
cosh

ϕ

2

)− 2n
n−2

∆gϕ , (4.3)

Ric = Ricg − tanh
(ϕ
2

)
∇2ϕ +

[ 1
n − 2

tanh2
(ϕ
2

)
−

1
2

1
cosh2 ϕ

2

]
dϕ ⊗ dϕ

−
1

(n − 2)

[ 1
2

1
cosh2 ϕ

2

+ tanh2
(ϕ
2

)]
|∇ϕ|2g g .

Translating system (1.1) in terms of g and ϕ, we get system (3.5). Moreover, on {ϕ = s} \ Crit(ϕ) we
consider the∞–pointing normal unit vector fields

ν =
Du
|Du|

, νg =
∇ϕ

|∇ϕ|g
,

the mean curvatures

H = −
D2u(Du,Du)
|Du|3

, Hg = −
∇2ϕ(∇ϕ,∇ϕ)
|∇ϕ|3g

, (4.4)

and the second fundamental forms

h(X,Y) =
D2u (X,Y)
|Du|

, hg(X,Y) =
∇2ϕ (X,Y)
|∇ϕ|g

,

for any X,Y tangent vector fields to the considered submanifold.
Reversing formulas (4.1), (4.2) and (4.3), we get

∇ϕ =
2

(1 − u2)
n

n−2
Du ,

∇2ϕ =
2

1 − u2

[
D2u +

n
n − 2

2u
1 − u2 du ⊗ du −

1
n − 2

2u
1 − u2 |Du|2 g0

]
,

|∇2ϕ|2g =
4

(1 − u2)
2n

n−2

|D2u|2 +
16n

n − 2
u

(1 − u2)
3n−2
n−2

D2u(Du,Du) +
16n(n − 1)

(n − 2)2

u2

(1 − u2)4
(

n−1
n−2

) |Du|4 .

These equalities, jointly with the asymptotic flatness of (M, g0) and the asymptotic expansion of u given
in Section 2, allow us to obtain an upper bound for the functions |∇ϕ|g and |∇2ϕ|g, and for the g–areas
of the level sets of ϕ sufficiently ”close” to infinity. This is the content of the following lemma.

Lemma 4.1. There exists 0 ≤ s0 < +∞ such that

sup
M
|∇ϕ|g + sup

M
|∇2ϕ|g + sup

s≥s0

∫
{ϕ=s}

dσg < +∞ . (4.5)

Proof. Let ψ be a chart at infinity. Considering g̃0 = ψ∗g0 = g̃0;i jdxi ⊗ dx j, by formulas (2.6) and (2.4),
the coordinate expression of

|∇ϕ|2g =
4 |Du|2

(1 − u2)2 n−1
n−2
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is

ψ∗|∇ϕ|
2
g =

4ψ∗|Du|2

(1 − ũ2)2 n−1
n−2

=
4 g̃i j

0 ∂ĩu ∂ j̃u{
1 − [1 − C|x|2−n + o(|x|2−n)]2}2 ( n−1

n−2 )

=
4
[
δi j + O

(
|x|−p)] [(n − 2)2 C2 |x|−2n xi x j + o(|x|2−2n)

][
2C |x|2−n + o(|x|2−n)

]2 ( n−1
n−2 )

=
4 (n − 2)2 C2 |x|2−2n + o(|x|2−2n)(

2C
)2 ( n−1

n−2 )
|x|2−2n (

1 + o(1)
) =

4 (n − 2)2 C2 + o(1)(
2C

)2 ( n−1
n−2 ) (1 + o(1)

) .
Hence

|∇ϕ|2g −→
4 (n − 2)2 C2(

2C
)2 ( n−1

n−2 )
=

(
2C

)− 2
n−2 (n − 2)2 at ∞ . (4.6)

Moreover, by limit (4.6) there exist a constant L > 0 and a value s0 > 0 of ϕ such that every s ≥ s0 is a
regular value of ϕ and (1 − u2)

n−1
n−2 ≤ L |Du| on {ϕ ≥ s0}. Then∫

{ϕ=s}

dσg =

∫
{u=tanh s

2 }

(1 − u2)
n−1
n−2 dσ ≤ L

∫
{u=tanh s

2 }

|Du| dσ = L
∫
∂M

|Du| dσ ,

where in the last equality we have applied the Divergence Theorem. Consequently, we have that
sup
s≥s0

∫
{ϕ=s}

dσg < +∞. Similarly, we have that

ψ∗|D2u|2 = g̃ i1i2
0 g̃ j1 j2

0 (D2
g̃0

ũ)i1 j1(D
2
g̃0

ũ)i2 j2 = g̃ i1i2
0 g̃ j1 j2

0
[
∂i1∂ j1 ũ − Γ

k1
g̃0;i1 j1

∂k1 ũ
][
∂i2∂ j2 ũ − Γ

k2
g̃0;i2 j2

∂k2 ũ
]

= [δ i1i2δ j1 j2 + O
(
|x|−p)] [∂i1∂ j1 ũ − O(|x|−(p+n))

] [
∂i2∂ j2 ũ − O(|x|−(p+n))

]
=

[
(n − 1)(n − 2)C

]2
|x|−2n + o(|x|−2n)

due to formulas (2.6), (2.5) and (5.3). Moreover,

ψ∗D2u(Du,Du) = D2
g̃0

ũ(Dg̃0 ũ,Dg̃0 ũ) = g̃ ir
0 g̃ js

0 ∂rũ ∂sũ
(
∂i∂ j̃u − Γk

g̃0;i j∂kũ)

= −(n − 1) (n − 2)3 C3|x|2−3n + o(|x|2−3n) .

All in all,

ψ∗|∇
2ϕ|2g =

4

(1 − ũ2)
2n

n−2

ψ∗|D2ũ|2 +
16n

n − 2
ũ

(1 − ũ2)
3n−2
n−2

ψ∗D2ũ(Dũ,Dũ)

+
16n(n − 1)

(n − 2)2

ũ2

(1 − ũ2)4
(

n−1
n−2

) ψ∗|Dũ|4

= (n − 1) (n − 2)2 (2C)−
4

n−2
{n − 1 + o(1)

1 + o(1)
−

2 n ũ + o(1)
1 + o(1)

+
16 n ũ2 + o(1)

1 + o(1)

}
,

which gives

|∇2ϕ|2g −→ (n − 1) (15n − 1) (n − 2)2 (2C)−
4

n−2 at ∞ .
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In particular, since ϕ is smooth, we have that

sup
M
|∇ϕ|g + sup

M
|∇2ϕ|g < +∞ .

�

Remark 4.1. Note that sup
s≥0

∫
{ϕ=s}

dσg ∈ (0,+∞], since we cannot a priori exclude that there exist a

critical value s > 0 and a sequence {sm} ⊂ (0,+∞) such that sm → s and∫
{ϕ=sm}

dσg → +∞ .

As it will be clear in the proof of the integral identity (4.17), which is at the core of the conformal–
monotonicity result (Proposition 4.6), it is useful to introduce a suitable vector field with nonnegative
divergence. To do this, let us focus on the set M̊ \ Crit(ϕ) and notice first that the classical Bochner
formula, applied to the g–harmonic function ϕ, becomes

1
2

∆g|∇ϕ|
2
g = |∇2ϕ|2g + Ricg(∇ϕ,∇ϕ) + g(∇∆gϕ,∇ϕ) = |∇2ϕ|2g + Ricg(∇ϕ,∇ϕ) . (4.7)

Then, we obtain

∆g|∇ϕ|
β
g = divg

(
∇|∇ϕ|βg

)
= divg

(β
2
|∇ϕ|β−2

g ∇|∇ϕ|
2
g

)
=
β

2

[
g(∇|∇ϕ|β−2

g ,∇|∇ϕ|2g) + |∇ϕ|β−2
g ∆g|∇ϕ|

2
g

]
= β |∇ϕ|β−2

g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Ricg(∇ϕ,∇ϕ)
]
, (4.8)

where in the third equality we have used (4.7). Now, observe from the nonnegativity of the tensor

Q := Ricg − coth(ϕ)∇2ϕ +
1

n − 2
dϕ ⊗ dϕ −

1
n − 2

|∇ϕ|2g g (4.9)

(see (3.5)) that

Q(∇ϕ,∇ϕ) = Ricg(∇ϕ,∇ϕ) − coth(ϕ)∇2ϕ(∇ϕ,∇ϕ) ≥ 0 . (4.10)

Therefore, by adding and subtracting the term β |∇ϕ|
β−2
g coth(ϕ)∇2ϕ(∇ϕ,∇ϕ) on the right–hand side

of (4.8), we get

∆g|∇ϕ|
β
g − β |∇ϕ|

β−2
g coth(ϕ)∇2ϕ(∇ϕ,∇ϕ)

= β|∇ϕ|β−2
g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]
. (4.11)

Since
β |∇ϕ|β−2

g coth(ϕ)∇2ϕ(∇ϕ,∇ϕ) = coth(ϕ) g(∇|∇ϕ|βg,∇ϕ)
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and since, setting

Yβ :=
∇ |∇ϕ|

β
g

sinhϕ
, (4.12)

there holds

divg Yβ =
∆g|∇ϕ|

β
g

sinhϕ
−

coshϕ
sinh2 ϕ

g(∇|∇ϕ|βg,∇ϕ) ,

from (4.11) we get

sinh(ϕ) divg Yβ = β|∇ϕ|β−2
g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]
.

Note that, by the refined Kato inequality for harmonic function

n
n − 1

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g
≤ |∇2ϕ|2g , (4.13)

we have that

(β − 2)
∣∣∣∣∇|∇ϕ|g ∣∣∣∣2

g
+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)

=
(
β −

n − 2
n − 1

)∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+

[
|∇2ϕ|2g −

n
n − 1

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

]
+ Q(∇ϕ,∇ϕ) ≥ 0 , (4.14)

whenever β ≥ n−2
n−1 . Hence, divg Yβ ≥ 0 for every β ≥ n−2

n−1 . This fact will be heavily used in the proof
of the forthcoming results. It will also be useful to have a precise estimate of

∫
{|∇ϕ|g=δ}

∣∣∣∇|∇ϕ|g ∣∣∣
g

dσg

in terms of a suitable power of δ, close to Crit(ϕ), that is when δ → 0+. This is the content of the
following lemma.

Lemma 4.2. There exists δ0 > 0 such that

sup
{
δ−

1
n−1

∫
{|∇ϕ|g=δ}

∣∣∣∇|∇ϕ|g ∣∣∣
g

dσg : 0 < δ < δ0 regular value of |∇ϕ|g

}
< +∞ . (4.15)

We recall that the set of the critical values of |∇ϕ|2g has zero Lebesgue measure by Sard’s Theorem,
whereas we have no information regarding the localH–dimension of Crit(|∇ϕ|2g).

Proof. Applying Sard’s Theorem to the smooth function |∇ϕ|2g there exists ε0 > 0 such that ε0 is a
regular value of |∇ϕ|2g and

ε0 < min
{

min
{ϕ=0}
|∇ϕ|2g, the limit of |∇ϕ|2g at∞

}
,

where the limit in the previous expression is the (finite and positive) value computed in (4.6). In
particular, {|∇ϕ|2g ≤ ε0} is compactly contained in M̊, and for every 0 < δ < δ0 regular value of |∇ϕ|g
we have that

δ−
1

n−1

∫
{|∇ϕ|g=δ}

∣∣∣∇|∇ϕ|g ∣∣∣
g

dσg =

∫
{|∇ϕ|g=δ}

sinh(ϕ)
|∇ϕ|

− 1
n−1

g

∣∣∣∇|∇ϕ|g ∣∣∣
g

sinh(ϕ)
dσg
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≤ c
∫

{|∇ϕ|g=δ}

|∇ϕ|
− 1

n−1
g

∣∣∣∇|∇ϕ|g ∣∣∣
g

sinh(ϕ)
dσg .

Now, consider the smooth vector field

Z := 2
n − 1
n − 2

Y n−2
n−1

=
1

sinhϕ

∇|∇ϕ|2g

|∇ϕ|
n

n−1
g

,

with divgZ ≥ 0. Set

Uµ := {|∇ϕ|2g < µ} for every µ > 0 . (4.16)

Then, for every 0 < ε < ε0 regular value of the function |∇ϕ|2g , we apply the Divergence Theorem to
the smooth vector field Z on Uε0 \ Uε, and we get

∫
{|∇ϕ|2g=ε0}

1
sinhϕ

∣∣∣∇|∇ϕ|2g ∣∣∣
g

|∇ϕ|
n

n−1
g

dσg −

∫
{|∇ϕ|2g=ε}

1
sinhϕ

∣∣∣∇|∇ϕ|2g ∣∣∣
g

|∇ϕ|
n

n−1
g

dσg

=

∫
Uε0\Uε

divgZ dµg ≥ 0 .

Then, it follows

∫
{|∇ϕ|2g=ε0}

1
sinhϕ

∣∣∣∇|∇ϕ|2g ∣∣∣
g

|∇ϕ|
n

n−1
g

dσg ≥

∫
{|∇ϕ|2g=ε}

1
sinhϕ

∣∣∣∇|∇ϕ|2g ∣∣∣
g

|∇ϕ|
n

n−1
g

dσg .

Therefore, setting

c1 :=
∫

{|∇ϕ|2g=ε0}

1
sinhϕ

∣∣∣∇|∇ϕ|2g ∣∣∣
g

|∇ϕ|
n

n−1
g

dσg > 0 ,

we obtain

1

ε
1
2

n
n−1

∫
{|∇ϕ|2g=ε}

∣∣∣∇|∇ϕ|2g ∣∣∣
g

sinhϕ
dσg ≤ c1 .

Consequently, the desired statement follows keeping in mind that: if δ is a regular value of |∇ϕ|g, then
δ2 is a regular value of |∇ϕ|2g; in M \ Crit(ϕ) we have ∇|∇ϕ|2g = 2|∇ϕ|g∇|∇ϕ|g. �

We underline that from now on we will use Remark 3.1 widely.
The following proposition contains the integral identity which is the main tool of our analysis.
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Proposition 4.3. Let (M, g0, u) be a sub-static harmonic triple, and let g and ϕ be the metric and the
function defined in (3.4). Then, for every β > n−2

n−1 and for every S > s > 0 regular values of ϕ, it holds∫
{ϕ=s}

|∇ϕ|
β
g Hg

sinhϕ
dσg −

∫
{ϕ=S }

|∇ϕ|
β
g Hg

sinhϕ
dσg

=

∫
{s<ϕ<S }

|∇ϕ|
β−2
g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg , (4.17)

where the tensor Q is defined as in (4.9).

Proof. The case β ≥ 2 is an easy adaptation of the argument used in [2] but it is anyway a consequence
of the following argument. We focus on the unknown case n−2

n−1 < β < 2. In M̊ \Crit(ϕ) we consider the
smooth vector field Yβ, defined in (4.12) and satisfying

0 ≤ divg Yβ =

β |∇ϕ|
β−2
g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]

sinhϕ
, (4.18)

as already explained. Set

ES
s := {s < ϕ < S }, for every S > s > 0 .

When ES
s ∩Crit(ϕ) = ∅, then the statement is a straightforward application of the Divergence Theorem.

Now, suppose that ES
s ∩ Crit(ϕ) , ∅. In this case we consider, for every ε > 0 sufficiently small, a

smooth nondecreasing cut–off function χε : [0,+∞)→ [0, 1] satisfying the following conditions

χε(τ) = 0 in
[

0,
1
2
ε
]
, 0 ≤ χ′ε(τ) ≤ cε−1 in

[ 1
2
ε,

3
2
ε
]
, χε(τ) = 1 in

[ 3
2
ε,+∞

)
,

where c is a positive real constant independent of ε. We then define the smooth function Ξε : M →
[0, 1] as

Ξε = χε ◦ |∇ϕ|
2
g ,

and apply the Divergence Theorem to the smooth vector field Ξε Yβ in ES
s . In this way, we get∫

{ϕ=s}

|∇ϕ|
β
g Hg

sinhϕ
dσg −

∫
{ϕ=S }

|∇ϕ|
β
g Hg

sinhϕ
dσg = β−1

[ ∫
ES

s

Ξε divg Yβ dµg +

∫
ES

s

g(∇Ξε,Yβ) dµg

]

=

∫
ES

s

Ξε |∇ϕ|
β−2
g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg

+

∫
(

U 3
2 ε
\U 1

2 ε

)
∩ ES

s

χ′ε
(
|∇ϕ|2g

)
|∇ϕ|

β−2
g

∣∣∣∣∇|∇ϕ|2g ∣∣∣∣2
g

2 sinhϕ
dµg ,
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where Uµ is defined in (4.16). Note that {χε} can always be chosen to be nondecreasing in ε so that, in
turn, {Ξε} is nondecreasing. Therefore, applying the Monotone Convergence Theorem, when ε → 0+,
the first term on the right of the second equality tends to

∫
ES

s

|∇ϕ|
β−2
g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg .

For obtaining the desired statement, we show

lim
ε→0+

∫
(

U 3
2 ε
\U 1

2 ε

)
∩ ES

s

χ′ε
(
|∇ϕ|2g

)
|∇ϕ|

β−2
g

∣∣∣∣∇|∇ϕ|2g ∣∣∣∣2
g

2 sinhϕ
dµg = 0 . (4.19)

First we observe that

∫
(

U 3
2 ε
\U 1

2 ε

)
∩ ES

s

χ′ε
(
|∇ϕ|2g

)
|∇ϕ|

β−2
g

∣∣∣∣∇|∇ϕ|2g ∣∣∣∣2
g

2 sinhϕ
dµg ≤

∫
U 3

2 ε
\U 1

2 ε

χ′ε
(
|∇ϕ|2g

)
|∇ϕ|

β−2
g

∣∣∣∣∇|∇ϕ|2g ∣∣∣∣2
g

2 sinhϕ
dµg

≤
c

2ε

3
2 ε∫

1
2 ε

s
β−2

2 ds
∫

{|∇ϕ|2g=s}

∣∣∣∇|∇ϕ|2g ∣∣∣
g

sinhϕ
dσg

where, keeping in mind the properties satisfied by χε, in the first inequality we have used the
nonnegativity of the integrand function and in the last one the Coarea Formula. Note that there exist
ε0, c1 > 0 such that the inequality

1

s
1
2

n
n−1

∫
{|∇ϕ|2g=s}

∣∣∣∇|∇ϕ|2g ∣∣∣
g

sinhϕ
dσg ≤ c1

is true a.e. s ∈ [1
2ε,

3
2ε] for every 0 < ε < 2

3ε0, by both Sard’s Theorem applied to the smooth function
|∇ϕ|2g and by Lemma 4.2. Then, we get

∫
(

U 3
2 ε
\U 1

2 ε

)
∩ ES

s

χ′ε
(
|∇ϕ|2g

)
|∇ϕ|

β−2
g

∣∣∣∣∇|∇ϕ|2g ∣∣∣∣2
g

2 sinhϕ
dµg ≤

c
2ε

3
2 ε∫

1
2 ε

s
β−2

2 ds
∫

{|∇ϕ|2g=s}

∣∣∣∇|∇ϕ|2g ∣∣∣
g

sinhϕ
dσg

≤
c c1

2ε

3
2 ε∫

1
2 ε

s
β−2

2 + 1
2

n
n−1 ds
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=
c c1

2ε

3
2 ε∫

1
2 ε

s
1
2 (β− n−2

n−1 ) ds

≤ c2 ε
1
2 (β− n−2

n−1 ) ,

where c2 > 0 is sufficiently big constant. This implies the limit in (4.19), because β > n−2
n−1 . �

Corollary 4.4. For every S > s > 0 regular values of ϕ there exists rs,S ≥ 0 such that∫
{ϕ=s}

|∇ϕ|
n−2
n−1
g Hg

sinhϕ
dσg −

∫
{ϕ=S }

|∇ϕ|
n−2
n−1
g Hg

sinhϕ
dσg

=

∫
{s<ϕ<S }

|∇ϕ|
− n

n−1
g

[
|∇2ϕ|2g −

n
n−1

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg + rs,S .

Proof. Let {βm}m∈N be a sequence such that βm >
n−2
n−1 and βm →

n−2
n−1 . Due to Proposition 4.3, we have∫

{ϕ=s}

|∇ϕ|
n−2
n−1
g Hg

sinhϕ
dσg −

∫
{ϕ=S }

|∇ϕ|
n−2
n−1
g Hg

sinhϕ
dσg

= lim
m→+∞

[ ∫
{ϕ=s}

|∇ϕ|
βm
g Hg

sinhϕ
dσg −

∫
{ϕ=S }

|∇ϕ|
βm
g Hg

sinhϕ
dσg

]

= lim
m→+∞

∫
{s<ϕ<S }

|∇ϕ|
βm−2
g

[
(βm − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg

≥

∫
{s<ϕ<S }

|∇ϕ|
− n

n−1
g

[
|∇2ϕ|2g −

n
n−1

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg ,

where the first equality is consequence of the Dominate Converge Theorem keeping in mind that s and
S are regular values of ϕ while the inequality follows from Fatou’s Lemma. Since {βm}m∈N is arbitrary,
the quantity

rs,S := lim
β→ n−2

n−1
+

{ ∫
{s<ϕ<S }

|∇ϕ|
β−2
g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg

}

−

∫
{s<ϕ<S }

|∇ϕ|
− n

n−1
g

[
|∇2ϕ|2g −

n
n−1

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg

is well–defined. Moreover, it is nonnegative as above and therefore we get the statement. �
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Remark 4.2. For every β > n−2
n−1 and for every s > 0 regular value of the function ϕ:

∫
{ϕ=s}

|∇ϕ|
β
g Hg

sinhϕ
dσg =

∫
{ϕ>s}

|∇ϕ|
β−2
g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg . (4.20)

For every S big enough, which is a regular value of ϕ, by Lemma 4.5 with (4.6) we have∣∣∣∣∣∣
∫
{ϕ=S }

|∇ϕ|βg Hg dσg

∣∣∣∣∣∣ ≤
∫
{ϕ=S }

|∇ϕ|β−1
g |∇2ϕ|g dσg ≤ c̃ .

In particular,

lim
S→+∞

1
sinh(S )

∫
{ϕ=S }

|∇ϕ|βg Hg dσg = 0 .

Therefore, the desired identity can be obtained by the Monotone Convergence Theorem, by passing to
the limit as S → +∞ in (4.17).

Remark 4.3. For every β > n−2
n−1 , as consequence of integral identity (4.17), we have

|∇ϕ|β−2
g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]
∈ L1

loc
(
M̊, µg

)
. (4.21)

Since ∫
K

|∇ϕ|β−3
g |∇2ϕ(∇ϕ,∇ϕ)| dµg ≤

∫
K

|∇ϕ|β−1
g

∣∣∣∣∇|∇ϕ|g ∣∣∣∣
g

dµg =

∫
K

|∇ϕ|
β
2
g |∇ϕ|

β−2
2

g

∣∣∣∣∇|∇ϕ|g ∣∣∣∣
g

dµg

for every K ⊂ M̊ compact, by Hölder’s Inequality from (4.21) with (4.14) we get that

|∇ϕ|β−3
g ∇2ϕ(∇ϕ,∇ϕ) ∈ L1

loc
(
M̊, µg

)
. (4.22)

We need a final lemma before stating the (last and) most important result of this section.

Lemma 4.5. Let (M, g0, u) be a sub-static harmonic triple, and let g and ϕ be the metric and the
function defined in (3.4). Then, the following statements hold true.

(i) For every β ≥ 0 and for every S > s > 0:∫
{ϕ=S }

|∇ϕ|
β+1
g

sinhϕ
dσg −

∫
{ϕ=s}

|∇ϕ|
β+1
g

sinhϕ
dσg = (4.23)

=

∫
{s<ϕ<S }

|∇ϕ|
β−2
g

[
β∇2ϕ(∇ϕ,∇ϕ) − coth(ϕ)|∇ϕ|4g

]
sinhϕ

dµg .
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(ii) For every β ≥ 0 and for every s > 0:

∫
{ϕ=s}

|∇ϕ|
β+1
g

sinhϕ
dσg =

∫
{ϕ>s}

|∇ϕ|
β−2
g

[
coth(ϕ)|∇ϕ|4g − β∇

2ϕ(∇ϕ,∇ϕ)
]

sinhϕ
dµg .

(iii) The function Φβ : [0,∞)→ R, defined by formula

Φβ(s) :=
∫
{ϕ=s}

|∇ϕ|β+1
g dσg (4.24)

for every β ≥ 0, is continuous and admits for every s > 0 the integral representation

Φβ(s) := sinh(s)
∫
{ϕ>s}

|∇ϕ|
β−2
g

[
coth(ϕ)|∇ϕ|4g − β∇

2ϕ(∇ϕ,∇ϕ)
]

sinhϕ
dµg .

This lemma can be proved as [2, Proposition 4.1]. In the Appendix we provide an alternative proof
which is self contained and does not make use of any fine property of the measure of Crit(ϕ): we just
need to know very classical properties of it (see Remark 3.1).

Proposition 4.6. Let (M, g0, u) be a sub-static harmonic triple, let g and ϕ be the metric and the
function defined in (3.4), and let Φβ : [0,∞) → R be the function defined by formula (4.24) for every
β ≥ 0. Then for every β > n−2

n−1 , the function Φβ is continuously differentiable. The derivative Φ′β is
nonpositive and admits for every s > 0 the integral representation

Φ′β(s) = −β sinh(s)
∫
{ϕ>s}

|∇ϕ|
β−2
g

[
(β − 2)

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg ≤ 0 . (4.25)

Moreover, if there exists s0 > 0 such that Φ′β(s0) = 0 for some β > n−2
n−1 , then ({ϕ ≥ s0}, g) is isometric to(

[0,+∞) × {ϕ = s0}, dρ ⊗ dρ + g{ϕ=s0}), where ρ is the g–distance function to {ϕ = s0} and ϕ is an affine
function of ρ in {ϕ ≥ s0}.

The following proof is essentially the same as in [2]. For completeness, we include it here, in a
slightly refined version.

Proof. Step 1: Continuous Differentiability and Monotonicity. Let β > n−2
n−1 . Note that the boundary ∂M

is a regular level set of ϕ and then, by Theorem 2.3 and the relationship between Crit(u) and Crit(ϕ),
there exists ε0 such that the interval [0, ε0] doesn’t contain critical values of the function ϕ. Therefore,
for every 0 < ε ≤ ε0, applying first the Divergence Theorem to the smooth vector field |∇ϕ|βg ∇ϕ in
{0 < ϕ < ε} and later the Coarea Formula, we get

Φβ(ε) = Φβ(0) − β

ε∫
0

ds
∫
{ϕ=s}

|∇ϕ|βg Hg dσg .
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Being ∫
{ϕ=s1}

|∇ϕ|βg Hg dσg −

∫
{ϕ=s2}

|∇ϕ|βg Hg dσg = β−1
∫

{s1<ϕ<s2}

divg
(
∇|∇ϕ|βg

)
dµg

for every 0 ≤ s1 < s2 ≤ ε0, by the Dominated Convergence Theorem the function

s ∈ [0, ε0]→
∫
{ϕ=s}

|∇ϕ|βg Hg dσg ∈ R

is continuous and therefore, by the Fundamental Theorem of Calculus Φβ is continuously differentiable
on the closed interval [0, ε0].

Let s0 be a regular value of the function ϕ. By Remark 4.3, we can define the function Ψβ :
(0,+∞)→ R by

Ψβ(s) =



∫
{ϕ=s0}

|∇ϕ|
β
g Hg

sinhϕ dσg +
∫

{s<ϕ<s0}

|∇ϕ|
β−2
g

[
(β−2)

∣∣∣∇|∇ϕ|g ∣∣∣2g+|∇2ϕ|2g+Q(∇ϕ,∇ϕ)
]

sinhϕ dµg if s ≤ s0

∫
{ϕ=s0}

|∇ϕ|
β
g Hg

sinhϕ dσg −
∫

{s0<ϕ<s}

|∇ϕ|
β−2
g

[
(β−2)

∣∣∣∇|∇ϕ|g ∣∣∣2g+|∇2ϕ|2g+Q(∇ϕ,∇ϕ)
]

sinhϕ dµg if s > s0 ,

which satisfies the following properties

(i) for every s > 0 regular value of the function ϕ, we have Ψβ(s) =
∫
{ϕ=s}

|∇ϕ|
β
g Hg

sinhϕ dσg ;

(ii) the function Ψβ is continuous on its definition interval (0,+∞).

The first statement follows immediately from Proposition 4.3. As for the second statement, we first
observe that

Ψβ(s) − Ψβ(s) =

∫
{s<ϕ<s}

|∇ϕ|
β−2
g

[
(β − 2)

∣∣∣∇|∇ϕ|g ∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg (4.26)

for every couple 0 < s < s < +∞. Always by Remark 4.3 and by the Dominated Convergence
Theorem, we can deduce the right and the left continuity of Ψβ on the interval (0,+∞).

We consider Υβ : s ∈ (0,+∞) → Φβ(s)
sinh s ∈ R . For every (s, s) couple of real number such that

0 < s < s < +∞, we have

Υβ(s) − Υβ(s)
s − s

=
1

s − s

∫
{s<ϕ<s}

|∇ϕ|
β−2
g

[
β∇2ϕ(∇ϕ,∇ϕ) − coth(ϕ)|∇ϕ|4g

]
sinhϕ

dµg

=
1

s − s

s∫
s

dτ
∫
{ϕ=τ}

|∇ϕ|
β−3
g

[
β∇2ϕ(∇ϕ,∇ϕ) − coth(ϕ)|∇ϕ|4g

]
sinhϕ

dσg
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(?)
= −

β

s − s

s∫
s

Ψβ(τ) dτ −
1

s − s

s∫
s

coth(τ)Υβ(τ) dτ ,

where the first equality follows from Lemma 4.5 (i), the second equality from the Coarea Formula
keeping in mind (4.22). Moreover, the last equality follows from (i) and from Sard’s Theorem. Using
the continuity of both the functions Υβ and Ψβ, passing to the limit in (?) for either s → s or s → s
yields that the function Υβ is C1, and

Υ′β( · ) = −βΨβ( · ) − coth( · ) Υβ( · ) .

Since Φβ(s) = sinh(s)Υβ(s) for every s > 0, then Φβ ∈ C1(0,+∞) and Φ′β(s) = −β sinh(s)Ψβ(s).
Moreover, by (4.26), we can see

Φ′β(S )

sinh(S )
−

Φ′β(s)

sinh(s)
= −βΨβ(S ) + βΨβ(s)

= β

∫
{s<ϕ<S }

|∇ϕ|
β−2
g

[
(β − 2)

∣∣∣∇|∇ϕ|g ∣∣∣2
g

+ |∇2ϕ|2g + Q(∇ϕ,∇ϕ)
]

sinhϕ
dµg

for every 0 < s < S < +∞.
Finally the integral representation (4.25) follows in the limit as S → +∞ of the above identity, by

using the Monotone Convergence Theorem, and by the fact that

lim
S→+∞

Φ′β(S )

sinh(S )
= −β lim

S→+∞
Ψβ(S ) = −β lim

S→+∞

∫
{ϕ=S }

|∇ϕ|
β
g Hg

sinhϕ
dσg = 0 .

Step 2: Outer Rigidity. Let β > n−2
n−1 and suppose Φ′β(s0) = 0 for some s0 > 0. By (4.25) with (4.14)

we deduce that(
β −

n − 2
n − 1

) ∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g
≡ 0 and |∇2ϕ|2g −

n
n − 1

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g
≡ 0 in {ϕ ≥ s0} \ Crit(ϕ) .

Consequently ∇2ϕ ≡ 0 in {ϕ ≥ s0} being µg
(
Crit(ϕ)

)
= 0, and hence |∇ϕ|2g ≡ a2 with a > 0 since

{ϕ ≥ s0} is connected, due to Remark 3.1. Then, {ϕ ≥ s0}, with the induced Riemanninan metric, is
a noncompact, connected and complete Riemannian manifold (being properly embedded in M), with
smooth, compact and totally geodesic boundary, and with Ricg ≥ 0 (from the inequality in (3.5)).
Applying [18, Theorem C], we can thus deduce that the level set {ϕ = s0} is connected (this is true
in general and not only in the rigid case, if s0 � 0, as observed in Remark 3.1), and that {ϕ ≥ s0} is
isometric to the product [0,+∞) × {ϕ = s0}. Moreover, the isometry from the product [0,+∞) × {ϕ =

s0} to {ϕ ≥ s0} is given by the normal exponential map.
Now we want to prove that ϕ is an affine function of ρ on {ϕ ≥ s0}. First, we remark that every

integral curve γp of ∇ϕ outgoing from a point p of {ϕ = s0} is defined on the interval [0,+∞), and it
is contained in {ϕ ≥ s0}, by the completeness and since |∇ϕ|g > 0. Furthermore, ϕ ◦ γp(t) = a2t + s0
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for every t ∈ [0,+∞), and all the curves γp realize the distance between the hypersurfaces {ϕ = s0} and
{ϕ = s1} with s1 > s0. Indeed, for any curve σ : [0, l]→ {ϕ ≥ s0} parametrized by arc–length joining a
point of {ϕ = s0} to a point of {ϕ = s1} we have

Lg(σ ) =

l∫
0

| σ̇(τ) |g dτ ≥

∣∣∣∣∣∣
l∫

0

g
(
σ̇(τ),

1
a
∇ϕ

(
σ(t)

) )
dτ

∣∣∣∣∣∣ =
1
a
|ϕ ◦ σ (l) − ϕ ◦ σ(0)|

= at = Lg( γσ(0) |[0,t] ) = Lg( γ· |[0,t] ) ,

where s1, s0 and t satisfy s1 = a2t + s0. Since ξ =
∇ϕ

a is the unit inner normal vector field of the
boundary {ϕ = s0} and we just know that the normal exponential map is a diffeomorphism, exp⊥(tξp)
is a point having distance from {ϕ = s0} equal to t , and therefore

ϕ
(

exp⊥(tξp)
)

= ϕ ◦ γp

( t
a

)
= at + s0 = a ρ

(
exp⊥(tξp)

)
+ s0 .

This tell us that ϕ is an affine function of ρ on {ϕ ≥ s0}. �

While the previous proposition contains an outer rigidity result, with the following corollary we
provide a global rigidity result.

Corollary 4.7. Let (M, g0, u) be a sub-static harmonic triple, let g and ϕ be the metric and the function
defined in (3.4), and let Φβ : [0,∞) → R be the function defined by formula (4.24) for every β ≥ 0. If
Φβ is constant for some β > n−2

n−1 , then ∂M is connected and (M, g) is isometric to
(
[0,+∞) × ∂M, dρ ⊗

dρ + g∂M), where ρ is the g–distance function to ∂M and ϕ is an affine function of ρ.

Proof. We obtain immediately that Φ′β(s) = 0 for every s > 0. Thus, by formula (4.25) with (4.14) we
have that ∫

{ϕ>s}

{(
β −

n − 2
n − 1

) ∣∣∣∇|∇ϕ|g ∣∣∣2
g

+

[
|∇2ϕ|2g −

n
n − 1

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

]
+ Q(∇ϕ,∇ϕ)

}
dµg = 0

for every s > 0. In turn, by the Monotone Convergence Theorem, we get∫
M

{(
β −

n − 2
n − 1

) ∣∣∣∇|∇ϕ|g ∣∣∣2
g

+

[
|∇2ϕ|2g −

n
n − 1

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g

]
+ Q(∇ϕ,∇ϕ)

}
dµg = 0 .

Then, we deduce that(
β −

n − 2
n − 1

) ∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g
≡ 0 and |∇2ϕ|2g −

n
n − 1

∣∣∣∣∇|∇ϕ|g ∣∣∣∣2
g
≡ 0 in M \ Crit(ϕ) ,

due to Kato Inequality for harmonic functions (4.13) and by (4.10). Consequently ∇2ϕ ≡ 0 in M. The
very same argument of the proof of Outer Rigidity in Proposition 4.6 implies that ∂M is connected and
(M, g) is isometric to (

[0,+∞) × ∂M, dρ ⊗ dρ + g∂M)

where ρ is the g–distance to ∂M and ϕ is an affine function of ρ. �
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5. A Black–Hole uniqueness theorem for sub-static manifolds

This section is devoted to the proof of the Black–Hole uniqueness result for a sub–static harmonic
triple, Theorem 1.2. We first recall the classical definition of ADM mass, together with an alternative
characterization of it.

Let (N, h) and ψ be an asymptotically flat manifold with one end and a chart at infinity of N,
respectively. We consider h̃ := ψ∗h = h̃i jdxi ⊗ dx j and we set

m(r) =
1

2(n − 1)|Sn−1|

∫
∂Br

(∂ j̃hi j − ∂ĩh j j)νi
edσe ,

mI(r) = −
1

(n − 2)(n − 1)|Sn−1|

∫
∂Br

(
Rich̃ −

1
2

Rh̃ h̃
)
(X, νh̃) dσh̃ ,

where νe and σe are the ∞–pointing unit normal and the canonical measure on ∂Br as Riemannian
submanifold of (Rn \ B, gRn), respectively, and νh̃ and σh̃ are the ∞–pointing unit normal and the
canonical measure on ∂Br as Riemannian submanifold of (Rn \ B, h̃), respectively. Also, Rich̃ and Rh̃

are the Ricci tensor and the scalar curvature of h̃ respectively, and X is the Euclidean conformal Killing
vector field xi ∂

∂xi . The ADM mass is well defined as

mADM := lim
r→+∞

m(r) ,

and independent of the chosen chart at infinity. Moreover (see [22]), it can be equivalently expressed
as

mADM = lim
r→+∞

mI(r) . (5.1)

From the alternative definition of ADM mass, given by (5.1), and using the Positive Mass
Theorem, more precisely a consequence of it contained in [17, Theorem 1.5], one can prove the
following uniqueness statement. For the notation and terminology, we refer the reader to
Definition 1.1 and Section 2.

Proof of Theorem 1.2. By condition (1.8) and by the fact that D2
g0

u ≡ 0 on ∂M, which in turn implies
Hg0
∂M ≡ 0, we have that the hypothesis of [17, Theorem 1.5] are fulfilled, so that

mADM ≥ C.

Now, we want to show that the reverse inequality holds. Let ψ be a chart at infinity of M (according to
Definition 1.1) and consider g̃0 = ψ∗g0. Recalling that ũ stands for u ◦ ψ−1, we rewrite
characterization (5.1) as

mADM = lim
r→+∞

{
−

1
(n − 2)(n − 1)|Sn−1|

∫
∂Br

(
Ricg̃0 −

D2
g̃0

ũ

ũ

)
(X, νe) dσg̃0

−
1

(n − 2)(n − 1)|Sn−1|

∫
∂Br

(
Ricg̃0 −

D2
g̃0

ũ

ũ

)
(X, νg̃0 − νe) dσg̃0
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−
1

(n − 2)(n − 1)|Sn−1|

∫
∂Br

D2
g̃0

ũ

ũ
(X, νg̃0) dσg̃0 +

1
2(n − 2)(n − 1)|Sn−1|

∫
∂Br

Rg̃0 g̃0(X, νg̃0) dσg̃0

}
.

We note first that since νe = xi

|x|
∂
∂xi = 1

|x| X and ũ Ricg̃0 − D2
g̃0

ũ ≥ 0 from the first equation in (1.1), we
have ∫

∂Br

(
Ricg̃0 −

D2
g̃0

ũ

ũ

)
(X, νe) dσg̃0 =

1
r

∫
∂Br

(
Ricg̃0 −

D2
g̃0

ũ

ũ

)
(X, X) dσg̃0 ≥ 0 . (5.2)

Secondly, recalling that (D2
g̃0

ũ)i j = ∂i∂ j̃u − Γk
i j∂kũ, where Γk

i j are the Christoffel symbols related to g̃0,
and using (1.3), (2.12), and the asymptotic expansions of ũ, we get

|(D2
g̃0

ũ)i j − (D2
e ũ)i j| = |Γ

k
i j∂kũ| = O

(
|x|−(n+p)) (5.3)

(D2
g̃0

ũ)i j = O(|x|−n) . (5.4)

Decay (5.4) coupled with (2.8) (2.10) and (2.11) yields∣∣∣∣ ∫
∂Br

(
Ricg̃0 −

D2
g̃0

ũ

ũ

)
(X, νg̃0 − νe) dσg̃0

∣∣∣∣ ≤ C
∫
∂Br

1
|x|p+min{p+2,n}−1 dσe =

C
rp+min{p+2,n}−n −→ 0 , (5.5)

being p > n−2
2 . Thirdly, we observe that∫

∂Br

D2
g̃0

ũ

ũ
(X, νg̃0) dσg̃0 −−−−→r→+∞

−(n − 1)(n − 2)C|Sn−1| . (5.6)

Indeed ∫
∂Br

D2
g̃0

ũ

ũ
(X, νg̃0) dσg̃0 =

∫
∂Br

D2
g̃0

ũ

ũ
(X, νg̃0 − νe) dσg̃0 +

∫
∂Br

D2
g̃0

ũ − D2
e ũ

ũ
(X, νe) dσg̃0

+

∫
∂Br

D2
e ũ
ũ

(X, νe) dσg̃0 ,

and one can show, with similar estimates as before, that the first two terms of this sum tend to 0 for
r → +∞. It is also easy to see, using (2.5) and (2.11), that∫

∂Br

D2
e ũ
ũ

(X, νe) dσg̃0 −−−−→r→+∞
−(n − 1)(n − 2)C|Sn−1| .

Hence, (5.6) is proven. Gathering (5.2) , (5.5), and (5.6), we have finally obtained

mADM ≤ C + lim sup
r→+∞

1
2(n − 2)(n − 1)|Sn−1|

∫
∂Br

Rg̃0 g(X, νg̃0) dσg̃0 . (5.7)
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We remark that the above inequality is true for any ψ chart at infinity of M. From now on we assume
that ψ satisfies condition (1.8) regarding the decay rate of Rg̃0 at∞. Since

g̃0(X, νg̃0) = g̃0;i jXiν
j
g̃0

=
(
δi j + O(|x|−p)

)
Xi(ν j

g̃0
± ν j

e)

= gRn(X, νe) + O(|x|−p+1) = |x| + O(|x|−p+1) ,

also using (2.11) we obtain∣∣∣∣ ∫
∂Br

Rg̃0 g̃0(X, νg̃0) dσg̃0

∣∣∣∣ ≤ C
∫
∂Br

r−q( r + O(r−p+1)
)

dσe ≤ Cr−q+n −−−−→
r→+∞

0 . (5.8)

The fact that mADM ≤ C thus follows from (5.7). All in all, the rigidity case mADM = C of [17, Theorem
1.5] holds, which implies that (M, g0) is the Schwarzschild manifold. �
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A. Appendix

In this appendix we provide a proof of Lemma 4.5 which is alternative and more self contained than
the corresponding in [2]. We underline that we will use Remark 3.1 widely.

Proof of Lemma 4.5 (i). In M̊ \ Crit(ϕ) and for every β ≥ 0, we consider the smooth vector field

Xβ :=
|∇ϕ|

β
g ∇ϕ

sinhϕ
,

which is such that

divg Xβ =
|∇ϕ|

β−2
g

[
β∇2ϕ(∇ϕ,∇ϕ) − coth(ϕ)|∇ϕ|4g

]
sinhϕ

If {s ≤ ϕ ≤ S } ∩ Crit(ϕ) = ∅, then the statement is a straightforward application of the Divergence
Theorem. Now, suppose that {s ≤ ϕ ≤ S } ∩ Crit(ϕ) , ∅. Since there always exists s ∈ (s, S ) regular
value of ϕ, up to splitting the right–hand side of (4.23) into two subintegrals, we can suppose without
loss of generality that one among s and S is a regular value of ϕ. To fix the ideas, suppose that S is
the regular value. We are going to change the function ϕ in a neighbourhood of the set Crit(ϕ). To do
this, for every ε > 0 sufficiently small, applying Sard’s Theorem to the smooth function ϕ, we can fix a
positive real number δ(ε) such that s + δ(ε) < S is a regular value of ϕ and δ(ε) < d ε, where d > 0 will
be specified later. Then, considering a smooth nonincreasing cut–off function ζε : [0,+∞) → [0, 1]
satisfying the conditions

ζε(τ) = 1 in
[

0,
1
2
ε
]
, |ζ′ε(τ)| ≤

c
ε

in
[ 1

2
ε,

3
2
ε
]
, ζε(τ) = 0 in

[ 3
2
ε,+∞

)
, (A.1)

where c is a positive real constant independent of ε, we define

ϕε := ϕ − ζε(|∇ϕ|2g) δ(ε) .

Clearly,

∇ϕε = ∇ϕ − δ(ε) ζ′ε
(
|∇ϕ|2g

)
∇|∇ϕ|2g, (A.2)

and

ϕ = ϕε in
{
|∇ϕ|2g ≥

3
2
ε
}
. (A.3)

Note that s is a regular value for the function ϕε. To see this, let p be a point of {ϕε = s} and
distinguish the two cases

|∇ϕ|2g (p) ≤
1
2
ε ; |∇ϕ|2g (p)

(F)
>

1
2
ε.

In the first case, ζε(|∇ϕ|2g) ≡ 1 so that s = ϕε(p) = ϕ(p) − δ(ε) and ∇ϕε(p) = ∇ϕ(p). Since s + δ(ε) is a
regular value for ϕ, ∇ϕε(p) , 0. In the second case, observing that s ≤ ϕ(p) ≤ s + δ(ε) and therefore
p ∈ {s ≤ ϕ ≤ S }, we have from (A.2) that in p

|∇ϕε|g ≥ |∇ϕ|g − δ(ε) |ζ′ε|
(
|∇ϕ|2g

)∣∣∣∇|∇ϕ|2g∣∣∣g = |∇ϕ|g
(
1 − 2δ(ε) |ζ′ε|

(
|∇ϕ|2g

)∣∣∣∇|∇ϕ|g∣∣∣g)
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≥ |∇ϕ|g
(
1 − 2d ε

c
ε

max
{s≤ϕ≤S }

∣∣∣∇|∇ϕ|g ∣∣∣
g

)
,

where c is the constant appearing in (A.1). Now, observe that max
{s≤ϕ≤S }

∣∣∣∇|∇ϕ|g ∣∣∣
g
> 0, since otherwise,

due to the presence of critical points in {s ≤ ϕ ≤ S }, there should be a connected component of
{s ≤ ϕ ≤ S } where ∇ϕ ≡ 0. But this is impossible because {s ≤ ϕ ≤ S } = {s < ϕ < S } (by Remark 2.1)
and by the size of Crit(ϕ). Hence, choosing

d ≤
1

4 c max
{s≤ϕ≤S }

∣∣∣∇|∇ϕ|g ∣∣∣
g

,

from above we obtain |∇ϕε|g(p) ≥ |∇ϕ|g2 (p). In particular, from (F) we get that |∇ϕε|g(p) > ε
4 .

Now, we apply the Divergence Theorem to the smooth vector field Ξ4εXβ on {s < ϕε < S }, where

Ξε := 1 − ζε(|∇ϕ|2g).

Recalling that Uµ is defined as in (4.16), we obtain∫
{ϕε=S }

g
(
Ξ4εXβ,

∇ϕε
|∇ϕε|g

)
dσg −

∫
{ϕε=s}

g
(
Ξ4εXβ,

∇ϕε
|∇ϕε|g

)
dσg

=

∫
{s<ϕε<S }

Ξ4ε

|∇ϕ|
β−2
g

[
β∇2ϕ(∇ϕ,∇ϕ) − coth(ϕ)|∇ϕ|4g

]
sinhϕ

dµg

− 2
∫

(
U6ε\U2ε

)
∩{s<ϕε<S }

ζ′4ε
(
|∇ϕ|2g

)
|∇ϕ|

β
g ∇

2ϕ(∇ϕ,∇ϕ)

sinhϕ
dµg .

Note that {ϕ = S } is compactly contained in {|∇ϕ|2g >
3
2 ε} for every ε sufficiently small, and Ξ4ε ≡ 0 in

{|∇ϕ|2g ≤ 2 ε} ⊃ {|∇ϕ|2g ≤
3
2 ε}. Then, by (A.3) we get∫

{ϕ=S }

|∇ϕ|
β+1
g

sinhϕ
dσg −

∫
{
ϕ=s,|∇ϕ|2g≥ 3

2 ε
} Ξ4ε

|∇ϕ|
β+1
g

sinhϕ
dσg

=

∫
{s<ϕ<S }

Ξ4ε

|∇ϕ|
β−2
g

[
β∇2ϕ(∇ϕ,∇ϕ) − coth(ϕ)|∇ϕ|4g

]
sinhϕ

dµg

− 2
∫

(
U6ε\U2ε

)
∩{s<ϕ<S }

ζ′4ε
(
|∇ϕ|2g

)
|∇ϕ|

β
g ∇

2ϕ(∇ϕ,∇ϕ)

sinhϕ
dµg . (A.4)

Looking at the left–hand side of (A.4), note that∣∣∣∣∣∣
∫

(
U6ε\U2ε

)
∩{s<ϕ<S }

ζ′4ε
(
|∇ϕ|2g

)
|∇ϕ|βg∇

2ϕ(∇ϕ,∇ϕ) dµg

∣∣∣∣∣∣ ≤ c
4 ε

∫
U6ε

|∇ϕ|β+2
g |∇

2ϕ|g dµg
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≤ C
ε
β
2 +1

ε
µg(U6ε)→ 0 ,

where in the second inequality we have used Lemma 4.1 and the fact that Uε is contained in a compact
set for every ε << 1 (which is a consequence of (4.6)). Moreover, by the Dominated Convergence
Theorem, we have that

lim
ε→0+

∫
{s<ϕ<S }

Ξ4ε

|∇ϕ|
β−2
g

[
β∇2ϕ(∇ϕ,∇ϕ) − coth(ϕ)|∇ϕ|4g

]
sinhϕ

dµg

=

∫
{s<ϕ<S }

|∇ϕ|
β−2
g

[
β∇2ϕ(∇ϕ,∇ϕ) − coth(ϕ)|∇ϕ|4g

]
sinhϕ

dµg .

Finally, note that {ζε} can always be chosen to be nonincreasing in ε so that, in turn, {Ξε} in
nondecreasing. Therefore, looking at the left–hand side of (A.4), we have that

lim
ε→0+

∫
{
ϕ=s,|∇ϕ|2g≥ 3

2 ε
} Ξ4ε

|∇ϕ|
β+1
g

sinhϕ
dσg = lim

ε→0+

∫
{ϕ=s}

Ξ4ε
|∇ϕ|

β+1
g

sinhϕ
dσg

=

∫
{ϕ=s}

|∇ϕ|
β+1
g

sinhϕ
dσg ,

by the Monotone Convergence Theorem. All in all, passing to the limit as ε → 0+ in (A.4), yields the
desired identity. �

Proof of Lemma 4.5 (ii). Lemma 4.1 implies

lim
S→+∞

∫
{ϕ=S }

|∇ϕ|
β+1
g

sinhϕ
dσg = 0 .

Note that

|∇ϕ|
β−2
g

[
coth(ϕ)|∇ϕ|4g − β∇

2ϕ(∇ϕ,∇ϕ)
]

sinhϕ
∈ L1

(
{ϕ ≥ s}; µg

)
because its absolute value belongs to L1

loc
(
{ϕ ≥ s}, µg

)
immediately and to L1({ϕ ≥ S }, µg

)
for S

sufficiently big, applying the Coarea Formula coupled with (4.6) and Lemma 4.5. Therefore, passing
to the limit as S → +∞ in (4.23) and using the Dominated Convergence Theorem gives the desired
identity.

�

Proof of Lemma 4.5 (iii). Let β ≥ 0. We are assuming that the boundary ∂M is a regular level set of ϕ
so that there exists ε > 0 such that [0, ε] ∩ Crit(ϕ) = ∅. Therefore, applying the Divergence Theorem
to the smooth vector field |∇ϕ|βg ∇ϕ in {0 < ϕ < ε} yields

Φβ(ε) − Φβ(0) =

∫
{0<ϕ<ε}

β |∇ϕ|β−2
g ∇2ϕ(∇ϕ,∇ϕ) dµg .
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In turn, the absolute continuity of the integral implies the continuity of Φβ at 0. By point (i) and again
by the absolute continuity of the integral, we obtain the right and the left continuity of the function

Υβ : s ∈ (0,+∞)→
Φβ(s)
sinh s

∈ R .

Hence, Φβ is continuous also in (0,+∞). The integral representation of Φβ follows directly from point
(ii). �
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