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Abstract 

Resting-state fMRI (rsfMRI) has been widely used to map intrinsic brain network organization 
of the human brain both in health and in pathological conditions. However, the neural underpinnings 
and dynamic rules governing brain-wide rsfMRI coupling remain unclear. Filling this knowledge gap 
is of crucial importance, given our current inability to decode and reverse-engineer clinical signatures 
of aberrant connectivity into interpretable neurophysiological events that can help understand or 
diagnose brain disorders.  

Toward this goal, here we combined chemogenetics, rsfMRI, and in vivo electrophysiology in 
the mouse to investigate how regional manipulations of brain activity (i.e. neural inhibition, or 
excitation) causally contribute to whole-brain fMRI network organization. In a first set of proof of 
concept investigations, we empirically probed the widely held notion that neural inhibition of a 
cortical node would result in reduced fMRI coupling of the silenced area and its long-range terminals. 
Surprisingly, we found that chronic inhibition of the mouse medial prefrontal cortex (PFC) via viral 
overexpression of a potassium channel paradoxically increased fMRI connectivity between the 
inhibited area and its direct thalamo-cortical targets. Notably, acute chemogenetic inhibition of the 
PFC reproduced analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we 
found that chemogenetic inhibition of the PFC enhances low frequency (0.1 - 4 Hz) oscillatory power 
via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ 
band coherence between areas that exhibit fMRI overconnectivity. These results provide causal 
evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, 
less-localized slow oscillatory processes, with important implications for neural modeling and 
interpretation of fMRI overconnectivity in brain disorders.  

Importantly, our observation that neural inhibition of the PFC results in fMRI overconnectivity 
allowed us to predict that neural activation of the same area might produce opposite results, i.e. fMRI 
underconnectivity and neural desynchronization. To test this hypothesis, we used chemogenetics to 
increase local excitatory-inhibitory (E/I) balance in the PFC. As predicted, chemogenetic stimulation 
of CamkII-expressing neurons, or inhibition of fast-spiking parvalbumin-expressing neurons, 
produced similar rsfMRI signatures of rsfMRI underconnectivity. Both manipulations produced 
analogous electrophysiological signatures characterized by increased firing activity and a robust LFP 
power shift towards higher (i.e. γ) frequencies, effectively reversing the corresponding neural 
signature observed in DREADD inhibition studies. Importantly, the same E/I affecting perturbations 
were also associated with socio-communicative deficits in behaving mice hence underscoring the 
behavioral relevance of the employed manipulations. These results show that excitatory/inhibitory 
balance critically biases brain-wide fMRI coupling, pointing at a possible unifying mechanistic link 
between E/I imbalance and rsfMRI connectivity disruption in developmental disorders. More broadly, 
these investigations reveal a set of fundamental rules linking regional brain activity to macroscale 
functional connectivity, offering opportunities to physiologically interpret rsfMRI signatures of 
functional dysconnectivity in human brain disorders.
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Chapter 1: Introduction 

1.1 Mapping the functional organization of the brain with resting-state fMRI 

Neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), are 

becoming increasingly popular for investigating functional synchronization in the resting human brain 

(e.g. in the absence of an active task or stimulus). The computation of statistical correlations between 

spontaneous fluctuations in Blood Oxygenated Level Dependent (BOLD) signal across brain regions is 

often used as a measure of inter-regional communication or "Functional Connectivity" (FC, Figure 

1.1)(Biswal et al., 1995; Fox & Raichle, 2007; Friston, 2011; Van Den Heuvel et al., 2010). A large body 

of experimental work has demonstrated that spontaneous low-frequency fluctuations in fMRI signals 

are temporally synchronous across multiple functional systewhilems, delineating a set of 

reproducible topographies known as resting-state networks (RSNs), which can be reliably identified 

in humans (Van Den Heuvel et al., 2010) as well in several animal species including primates (Milham 

et al., 2020) and rodents (Gozzi & Schwarz, 2016; Hutchison et al., 2010; Lu et al., 2012; Schwarz et 

al., 2012, 2013). 

 

 

Figure 1.1 Resting-state fMRI (rsfMRI) measures functional connectivity (FC) by correlating spontaneous 
fluctuations in BOLD activity. FC is typically quantified with respect to a seed region (i.e. PCC – posterior 
cingulate cortex). Temporal correlation between spontaneous fMRI BOLD fluctuations in the seed voxel is 
mapped with voxel-resolution to define areas that are functionally connected (i.e. exhibit synchronous 
fluctuations) to the probed areas. The highlighted areas define so-called resting-state functional connectivity 
networks (RSN) (from Hu & Zeng, 2019).  
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Well-characterized human RSNs include anatomically and functionally related regions 

involved in sensory and cognitive function (visual, somatomotor, auditory, frontoparietal, attentional, 

and limbic, among others, (Yeo et al., 2011)) as well as more widely distributed associative areas, 

such as an insular-prefrontal “salience network”, and a set of corticolimbic areas termed “Default 

Mode Network” (DMN), owing to their high synchronization at rest. This latter network is of particular 

interest, given that its highly debated and still mysterious cognitive and processing functions, its 

disproportionately high metabolic requirement in resting conditions (Buckner et al., 2008), and its 

strong vulnerability to disruption in multiple brain disorders (Buckner et al., 2008; Gusnard & Raichle, 

2001; Raichle, 2015; Raichle et al., 2001; Uddin et al., 2009; Yeo et al., 2011; Zhao et al., 2013). 

1.2 Evolutionarily-relevant rsfMRI networks in the rodent brain  

Previous studies in awake and anesthetized primates (Rilling et al., 2007; Vincent et al., 2007) 

as well as rodents (Gutierrez-Barragan et al., 2022; Hutchison et al., 2010; Lu et al., 2012; Schwarz et 

al., 2012, 2013) have revealed the presence of multiple cortical and subcortical RSNs broadly 

recapitulating functional network systems observed in the human brain (Fig 1.2). These include motor 

and sensory cortical networks (Grandjean et al., 2020; Sforazzini et al., 2014; Liang Wang et al., 2012) 

dorsal and posterior hippocampal systems, a thalamo cortical network (Liang et al., 2015), and 

multiple basal forebrain arousal-related RSNs (Gutierrez-Barragan et al., 2022). Notwithstanding 

some expected differences in the organization of higher-order cortical RSN across species (Corbetta 

& Shulman, 2002), these observations are of great importance, as they suggest that brain-wide RSN 

organization is to a large extent evolutionarily conserved in mammalians species. Importantly, these 

correspondences also offer the opportunity to leverage advanced perturbational and recording 

approaches in physiologically accessible species for the investigation of the neural underpinning of 

rsfMRI connectivity (Gozzi & Schwarz, 2016). As part of this line of investigation, the implementation 

of rsfMRI in the laboratory mouse is of special interest, owing to the large availability of transgenic 

models and neural manipulations currently available to experimental neuroscientists.  

Recent advances in preclinical functional neuroimaging have paved the way for the 

implementation of robust rsfMRI connectivity mapping in the mouse. Pioneering work from Sforazzini 

and colleagues (Sforazzini et al., 2014) revealed the presence of robust, homotopic rsfMRI 

connectivity networks in this species, including distributed network systems previously identified in 

primates and humans. These include a mouse precursor of the human DMN, and a salience network. 

The observation of these RSNs in a lower mammalian species is consistent with the large involvement 
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of evolutionarily ancient limbic cortices in these networks (Gozzi & Schwarz, 2016; Whitesell et al., 

2021). Subsequent high-resolution voxel-scale network analysis of rsfMRI connectivity corroborated 

these findings, revealing the presence of six distinct functional modules related to known large-scale 

functional partitions observed in the human brain (Liska et al., 2015). These initial investigations have 

been independently confirmed and expanded by subsequent studies from an increasing number of 

labs in the world (Grandjean et al., 2017, 2020; Lee et al., 2021) which together have established a 

novel field of translational research aimed to study the foundational principles of large-scale network 

organization and its disruption in brain disorders. 

Importantly, initial rsfMRI mapping in primates and rodents has been promptly followed by a 

stream of subsequent studies aimed to relate the spatial structure of RSN to underlying neuronal 

anatomy as part of the nascent field of brain connectomics (Bargmann & Marder, 2013). Specifically, 

the use of high-resolution connectomes based on tracer injections in animals has allowed to relate 

rsfMRI network architecture with quantitative and directional measures of connectivity at the 

mesoscale (Knox et al., 2018; Oh et al., 2014), hence transcending the limitations of coarse-scale 

human anatomical connectome mapping via diffusion-based MRI. These investigations, recently 

reviewed by Suárez et al. (2020), have revealed conserved rules of cortical connectivity across species 

(Goulas et al., 2019), including cell-class-specific projection patterns (Harris & Shepherd, 2015) but 

more importantly have shown that the topographic organization of rsfMRI networks is critically 

shaped and constrained by the underlying connectome structure (Coletta et al., 2020; Grandjean et 

al., 2017; Stafford et al., 2014). These investigations have been recently extended to the 

investigations of the layer and cell-type-specific organization of specific rsfMRI networks (i.e. the 

DMN, (Whitesell et al., 2021)). Collectively, this research has revealed a tight relationship between 

the structural and functional organization of brain activity at the macroscale, providing robust 

empirical support to so-called “structurally based” models of rsfMRI connectivity (Alstott et al., 2009; 

Suárez et al., 2020), according to which rsfMRI network organization and the ensuing functional 

connectivity are a direct expression of the anatomical organization of axonal connectome (Deco et 

al., 2013, 2017). This prevalent notion is of relevance to this thesis, as some of the assumptions of 

these widely-held models are challenged by some of the results we report and extensively discuss in 

chapter 4.   
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Figure 1.2 The mouse brain contains evolutionarily-relevant rsfMRI networks. These networks encompass 
motor-sensory systems, sub-cortical components (Left, IC: independent components, form Sforazzini et al., 
2014), as well evolutionarily relevant precursors of the human salience and DMN (from Liska & Gozzi, 2016; 
Sforazzini et al., 2014) 

 

1.3 rsfMRI connectivity is disrupted in psychiatric and developmental disorders  

The optimization of rsfMRI mapping in rodents and other physiologically accessible species 

has been welcomed with great excitement by clinical and systems neuroscientists interested in the 

investigation of rsfMRI connectivity disruption in human brain disorders. Since its inception, rsfMRI 

has been indeed widely employed to study large-scale brain organization in the diseased brain, with 

the aim to understand how complex etiopathology could affect interareal communication, and large-

scale network organization. Clinical rsfMRI investigations have produced robust and undisputed 

evidence that rsfMRI connectivity is almost invariably disrupted in all major brain disorders. For 

example, reduced rsfMRI connectivity in associative cortical regions has been largely documented in 

schizophrenia (Clinton & Meador-Woodruff, 2004; Friston & Frith, 1995; Garrity et al., 2007; Huang 

et al., 2010; Lynall et al., 2010). Patients with depression, by contrast, exhibit atypically stronger 

rsfMRI coupling in the frontal and parietal components of the DMN, as well as in the cortico-midline 

system (Lin Wang et al., 2012). An opposing rsfMRI signature, consisting of reduced connectivity in 

prefrontal regions, has been consistently documented in bipolar disorder (Leichsenring et al., 2011; 

Lis et al., 2007) (Fig. 1.4). 
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Figure 1.3 Signatures of altered or atypical functional connectivity in brain disorders. The figure shows how 
different pathologies can result in different patterns of functional dysconnectivity (adapted from Zhao et al., 
2013). 

 

rsfMRI mapping has also been widely utilized to study “functional connectopathy” in autism 

spectrum disorders (ASD) and related developmental conditions. The results obtained by these 

investigations are described in more detail here, as they epitomize both the power and the limitations 

of the clinical use of rsfMRI to map brain pathology, and the usefulness of complementary 

approaches in animals to address clinically relevant questions. Initial applications of rsfMRI to clinical 

ASD were strongly biased by the expectation that this method, in conjunction with other brain 

mapping techniques, could help objectivize diagnosis of these disorders by revealing an unequivocal 

signature of network dysfunction specific for autism. A number of imaging studies in both idiopathic 

(Di Martino et al., 2014) and syndromic autism (Hall et al., 2013; Scott-Van Zeeland et al., 2010) have 

produced encouraging converging evidence of disrupted rsfMRI connectivity. These initial 

observations have strongly influenced the field, promoting the so-called “disrupted connectivity 

theory of ASD” (Geschwind, 2009; Vasa et al., 2016), whereby symptoms of ASD may arise from 

dysfunctional interregional brain communication inferable from rsfMRI connectivity mapping. In its 

original declination, this theory posits that individuals with ASD would be characterized by weak 

connections (under-connectivity) between distant brain regions and increased connections within 

local regions (over-connectivity) (Belmonte et al., 2004), resulting in altered sensory and cognitive 

processing.  However, a wave of subsequent studies have quelled this initial enthusiasm, revealing 

great heterogeneity in the clinical manifestation of ASD functional connectopathy, with evidence of 
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reduced, increased, or mosaic patterns of functional dysconnectivity across clinical cohorts (Di 

Martino et al., 2014; Holiga et al., 2019; J. V. Hull et al., 2017; Supekar et al., 2013; Vasa et al., 2016). 

These inconsistent observations have stirred controversy and debate in the field, putting into 

question the etiological significance of these findings, and questioning the robustness and 

reproducibility of rsfMRI to investigate the diseased brain (Bossier et al., 2020; King et al., 2019). This 

ongoing discussion highlights our inability to properly frame and interpret the origin and significance 

of functional connectopathy in human disorders and highlights the need to complement clinical 

research with mechanistic investigations in physiologically accessible species. Filling this knowledge 

gap is of paramount importance, given our current inability to decode and reverse-engineer clinical 

signatures of aberrant connectivity into interpretable neurophysiological events that can help 

understand or diagnose brain disorders.  

1.4 rsfMRI connectivity is disrupted in mouse models of developmental disorders  

While the origin and significance of ASD-related connectional aberrations remain largely 

unknown, the heterogeneous “connectional landscape” observed in the clinical studies is in fact not 

surprising in the light of the mounting evidence that the ASD spectrum reflects multiple and diverse 

genetic and etiological contributions (Satterstrom et al., 2020). Importantly, this observation suggests 

that the heterogeneous expression of connectivity in ASD might, in reality, be a bona fide reflection 

of etiological variability in ASD, rather than the byproduct of experimental and technical 

inconsistencies related to rsfMRI data analysis. Within this framework, connectivity heterogeneity 

across clinical cohorts would thus be an expected outcome, possibly inducive of patient stratification 

based on cross-etiological network dysfunction patterns. However, the alternative hypothesis that 

ASD connectional heterogeneity is more prosaically the expression of rsfMRI related noise remains, 

and current clinical research does not at present allow to rigorously disambiguate these two opposing 

views. 

rsfMRI measurements in transgenic rodent lines, where advanced genetic techniques allow 

for precise control of environmental and genetic variability (Liska & Gozzi, 2016), have recently 

allowed us to rigorously address this question (Zerbi et al., 2021). Specifically, recent collaborative 

work between our lab and the University of Zurich has sought to address the long-standing question 

of whether heterogenous functional connectivity in ASD would be expected to converge onto a single 

signature of network dysfunction of diagnostic value for ASD, or whether it could be instead 

conceptualized as the sum of different functional dysconnectivity modes. To rigorously address this 
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question, we used mouse rsfMRI to carry out a cross-etiological investigation of fMRI-based 

functional connectivity across 16 distinct mouse ASD models (Zerbi et al., 2021). This strategy has the 

advantage of allowing rigorous control of genetic and environmental variation and minimization of 

motion artifacts via the use of light sedation, thereby circumventing two of the most notorious 

confounding factors in clinical research. Moreover, these investigations benefitted by the presence 

of a clearly-defined reference group (i.e. wild-type littermates), enabling to produce relative 

estimates of rsfMRI connectivity as in analogous human case-control studies (Di Martino et al., 2014). 

Interestingly, this investigation revealed that various ASD-related etiologies produce a wide range of 

connectional anomalies, including opposing (i.e. over- vs. under-connectivity) signatures of network 

dysfunction. We note here that the use of the terms over- or under-connectivity refer to between 

group differences, and, as extensively described and discussed in chapter 3, do not necessarily imply 

increased (or decreased) direct communication between regions. Nonetheless, this finding argues 

against the existence of a biologically meaningful, specific signature of rsfMRI dysfunction in ASD. 

Importantly, these diverse and often diverging connectional fingerprints could nonetheless be 

clustered into four homogeneous connectivity sub-types, each with specific signs of network 

dysfunction and reported as follow:  

1. “Under-connectivity” in anterior cingulate, caudoputamen, hippocampus, colliculus, insula, 

somato-motor cortices, and increased connectivity between areas in amygdala, ventral 

posterolateral thalamus, pontine nuclei, prefrontal, orbitofrontal, and piriform and visual 

cortices. 

2. “Under-connectivity” between cortico-striatal areas and inferior colliculus but increased 

connectivity between hippocampus, ventral orbital, and lateral septal nuclei cortex.  

3. “Under-connectivity” of thalamic VPM, anterior cingulate, insula, hippocampus and only a 

moderate over-connectivity in the accumbens shell and hypothalamus.  

4. “Over-connectivity” in hypothalamus and hippocampus and under-connectivity between 

piriform and olfactory-related areas, striatum and polymodal thalamus. 

Across these clusters, independently from the directionality of the atypical connectivity (i.e., 

over- or under-connectivity), somatomotor, olfactory, and cortical areas showed a higher level of 

vulnerability (Fig 1.5, Zerbi et al., 2021). These results are important, as they suggest that etiological 

variability is a key predictor of connection heterogeneity in ASD, thus explaining inconsistent results 

in clinical populations. Moreover, they also promote a profound reconceptualization of heterogenous 
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rsfMRI dysconnectivity in autism: rather than challenge the heterogeneous nature of clinical findings. 

Clinical efforts should be aimed at embracing this variability and parsing it into cross-etiological 

“connectivity neuro-subtypes” of putative pathophysiological relevance. 

 

Figure 1.4 Functional connectivity signatures across 16 models of autism can be clustered into different groups, 
potentially revealing etiologically relevant connectivity subtypes (Zerbi et al., 2021). 

 

These findings have been described in great detail as they set the stage for the research 

described in this thesis along two main directions. First, they demonstrate that the translational 

nature of rsfMRI enables this approach to address research questions of high clinical relevance. 

Second, the identification of cross-etiological signatures of rsfMRI dysconnectivity reveals the critical 

need to elucidate the physiological underpinnings of network dysfunction with the ultimate goal of 

decode and reverse engineering altered or aberrant rsfMRI coupling into interpretable (and 

mechanistically relevant) cascades of physiological events. This admittedly highly ambitious goal can 

only be attained via a systematic dissection of the neural drivers of rsfMRI connectivity via targeted 

neural manipulations in model organisms. In the next chapter, I will expand on this strategy and will 

discuss more in detail some of the experimental approaches employed in this thesis to achieve this 

goal. 
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1.5 Towards physiological decoding of fMRI dysconnectivity 

1.5.1 Neural constituents of cortical circuits 

 A major goal of my thesis was to probe the neural drivers of functional coupling in cortical 

areas as assessed with rsfMRI using cell-type-specific neuromanipulations in the mouse. The 

information gathered in these investigations may thus help characterize and possibly decode 

corresponding dysconnectivity signatures into physiologically interpretable signals. In this chapter   

I will briefly review some key cell populations that I manipulated in this thesis and their contribution 

to cortical network function. 

Cortical networks comprise glutamatergic excitatory neurons and local inhibitory GABAergic 

interneurons that modulate signal flow and shape mesoscale network dynamics (Gonzalez-Burgos et 

al., 2015). Propagation of activity in excitatory networks is predictable and straightforward: excitation 

generates further excitation, independent of time, wiring complexity, and strength of excitation. 

Excitatory glutamatergic neurons, also known as principal cells (PCs), are defined by their capacity to 

activate through excitatory neurotransmitters other neurons and encode information through action 

potential intensity and frequency. Although less abundant than their excitatory counterparts, 

GABAergic inhibitory interneurons (IN) are critically involved in controlling excitation and the 

emergence of brain rhythms. One defining feature of this class of neurons is their high heterogeneity, 

which forms the basis of distinct functional categories based on morphological, electrophysiological, 

and molecular features. This heterogeneity has been exploited to provide a functional and molecular 

classification of IN in the neocortex. Among the best characterized and most studied classes of INs 

are cells that express the calcium-binding protein parvalbumin (PV) and those expressing the 

neuropeptide somatostatin (Sst) (Tremblay et al., 2016). These two markers, together with the 

expressions of ionotropic serotonin receptor 5HT3a (5HT3aR), appear to be present in non-

overlapping IN populations in the neocortex (Tasic et al., 2016; Zeisel et al., 2015), and together, 

account for nearly 100% of neurons expressing GAD-67 mRNA, a neural marker specific for GABAergic 

neurons (Rudy et al., 2011).  
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Figure 1.5 Different classes of cortical interneurons are distinguished on the basis of their morphology and pattern 
of connectivity. Adapted from Marín (2012) 

 

PV positive neurons have attracted a lot of interest in the preclinical and clinical community, 

given the emerging evidence linking their dysfunction to psychiatric disorders (Marín, 2012; Morris 

et al., 2008; Urban-Ciecko & Barth, 2016) and the possibility of manipulating them via genetically 

engineered mouse lines. PV positive neurons include two morphological types: fast-spiking (FS) 

basket cells and chandelier cells. Chandelier INs, also known as axo-axonic neurons, are the most 

recognizable INs in terms of morphology (DeFelipe et al., 2013) due to the unique candlestick-like 

synaptic terminal arrays they form to specifically target the initial axon segment of PCs. In contrast, 

basket cells make peri-somatic “basket” terminals on the soma and proximal dendrites of PCs and 
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INs. PV FS basket cells are the largest population of INs in the neocortex. By producing hyperpolarizing 

and/or shunting inhibition close to the site of action potential generation, both types of INs 

powerfully influence the output of their target cells (Rudy et al., 2011). Specifically, the speed and 

precision of the PV-mediated cell signaling allow this type of cells to function as coincidence detectors 

and to impose this function onto their postsynaptic targets. These features, in turn, make PC-cells a 

class of INs pivotally involved in the emergence and control of meso- ad macroscale neural network 

synchronization and dynamics, with a prominent involvement in the generation of fast rhythms 

(Cardin et al., 2009; Sohal et al., 2009; Tremblay et al., 2016; Xue et al., 2014).  

Networks built from excitatory and PV inhibitory neurons can self-organize and generate 

complex properties. One of the most interesting is the generation of electrophysiological oscillations 

and mesoscale network dynamics (Buzsáki, 2006). Different morphological and biophysical properties 

of INs can convey different rhythmicity. For example, when inhibition is mediated by fast-acting 

GABAA receptors like the ones present in the PV cells, the corresponding oscillation frequency will 

correspond to the gamma frequency band (40–100 hertz) of the local field potential (Buzsáki, 2006; 

Buzsáki et al., 2004; Fries, 2005). Changing the time constant of the GABAA-receptor the mediated 

GABA response will affect the frequency of the interneuron network oscillators (Buzsáki, 2006; 

Buzsáki et al., 2004; Fries, 2005). These properties are of great interest in the light of the emerging 

view that large-scale interregional neuronal communication could be mechanistically subserved by 

neuronal coherence in brain rhythms (Fries, 2005). According to this view, neuronal oscillations and 

rhythmic excitability fluctuations produce a temporal window for communication. In the case of bi-

directional communication, only coherently oscillating neuronal clusters can interact effectively. 

Importantly, in case of the absence of synchronicity or phase-shifting in large-scale rhythms, the 

communication between different brain areas would be strongly impaired, possibly affecting 

macroscale functional coupling and network communication (Buzsáki, 2006; Fries, 2005). Taken 

together, these features suggest that a proper tuning of local and long-range excitatory and Inhibitory 

(E/I) balance are critical for the establishment and maintenance of long-range functional coupling. In 

this respect, regional deviations in overall neural output, or local E/I imbalances are expected to 

prominently affect brain communication and functional connectivity as assessed with rsfMRI and 

other functional mapping methods. Accumulating evidence of the coexistence of E/I imbalance and 

functional dysconnectivity in several brain disorders (briefly reviewed in the following chapter) lend 

indirect support to this hypothesis.  
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1.5.2 Excitatory and inhibitory balance and functional dysconnectivity in autism 

One long-standing conceptual framework used to explain pathological changes in the autistic 

brain and related developmental disorders is that genetically distinct forms of autism share a 

common increase in synaptic E/I ratio, leading to hyperexcitability, excess spiking, and increased 

“noise” in cortical circuits (Rubenstein & Merzenich, 2003). Supporting this hypothesis, a large body 

of evidence points to a deficient GABAergic activity in patients with ASD, as well as mouse lines 

modeling the disorders (Chao et al., 2010; Gibson et al., 2008). Moreover, substantial comorbidity 

between ASD and epilepsy exist, with as many as 30% of autistic patients presenting clinical signs of 

seizures (Canitano, 2007; Gillberg & Billstedt, 2000). Other observations are broadly consistent with 

this framework, including the involvement of many autism-related mutations in the dysregulation of 

excitatory synapses (Davenport et al., 2019; Pathania et al., 2014), and post-mortem studies 

reporting a reduced number of GABAergic interneurons in people with autism (Zikopoulos & Barbas, 

2013). 

It should, however, be pointed out that, despite the popularity and plausibility of the E/I 

imbalance theory of autism, physiology studies using transgenic mouse models of ASD provided only 

mixed support for this hypothesis. The number of investigations of synaptic function in genetic mouse 

models of ASD reported reduced inhibitory activity in the mouse hippocampus and neocortex (Chao 

et al., 2010; Gibson et al., 2008). However, other investigations have challenged this view, reporting 

a greater decrease in excitation than inhibition (Dani et al., 2005) or increased inhibition altogether 

(Harrington et al., 2016). It is possible that the observed discrepancies might be due to variability 

across studies like area of interest, cell type, ASD genotype, and physiological methods of analysis, 

which complicate the identification of common synaptic and local circuit defects (Chao et al., 2010; 

Dani et al., 2005; Delattre et al., 2013). A recent attempt to clarify this heterogeneity comes from a 

study conducted on four different autism animal models by Antoine et al. (2019). This research 

showed reduced inhibition coupled with a more modest reduction in excitation, driving an increase 

in the E/I conductance ratio (Antoine et al., 2019). However, in these models, circuit-level neocortical 

activity was not affected, opening up the intriguing possibility that E/I ratio imbalance could be a 

homeostatic response (i.e., an adaptive compensation) to stabilize neuronal activity, which would in 

turn call into question the causal contribution of E/I imbalance to ASD (Antoine et al., 2019).  

Notwithstanding the current controversy on the etiological role of this phenomenon and its 

generalizability to ASD, clinical evidence of a possible overall brain hyper-excitability in ASD remains 
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prominent (as denoted by high ASD and epilepsy comorbidity). Importantly, with the vast majority of 

research on the pathological relevance of E/I focusing on microcircuit organization. However, one 

key aspect that appears to have been largely neglected is whether and how E/I imbalance may be 

associated with disease-relevant traits affecting macroscale network communication and dynamics, 

a set of functions that are critical for proper brain functioning (Brock et al., 2007; Rubenstein & 

Merzenich, 2003). This notion would be consistent with the evidence of atypical or disrupted rsfMRI 

connectivity in ASD (Vasa et al., 2016), as neurobiological deficits in the function of both excitatory 

and inhibitory neuronal populations could lead to local E/I imbalance and consequently impaired 

functional coupling in ASD.  

As discussed above, a large body of evidence points to a deficient inhibitory activity in patients 

with ASD and in mouse lines modeling the disorders (Chao et al., 2010; Gibson et al., 2008). Because 

of the established role of inhibitory function in determining brain rhythms and functional coupling 

(Yizhar et al., 2011), a novel, unifying conceptual framework whereby local alterations in E/I balance 

would lead to disrupted macroscale functional coupling is thereby conceivable. Such an interpretative 

construct would mechanistically link the E/I imbalance and disrupted connectivity of ASD into a single 

broad conceptual umbrella, suggesting that regional E/I alterations could cause functional 

connectivity disruption observed in ASD.  

Importantly, the biological plausibility of this hypothesis can be rigorously and simply tested 

in proof-of-concept studies entailing the combination of cell-type-specific manipulations of neural 

excitability with brain-wide functional connectivity mapping in animals. Specifically, chemogenetic 

tools have recently been developed for long-term neuronal manipulations that appear to be ideally 

designed to mimic disease-induced altered connectivity (Farrell & Roth, 2013). This method entails 

the expression of a genetically modified receptor on targeted neurons, which can be remotely 

activated by an exogenous, biologically inert ligand (Farrell & Roth, 2013; Sternson & Roth, 2014). 

The combination of chemogenetics and rsfMRI (chemo-fMRI, (Giorgi et al., 2017)) is, therefore, a 

powerful investigational tool that can be employed to deconstruct rsfMRI connectivity and 

understand how regional brain activity (and local E/I balance) can affect brain-wide coupling, with 

implications for the modeling and interpretation of dysconnectivity in brain disorders. This approach 

and its potential as a perturbational tool in neuroimaging research are discussed more in detail in the 

following chapter, as they represent the technical foundations of this thesis. 
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1.6 Deconstructing rsfMRI connectivity with chemo-fMRI 

Chemogenetics techniques rely on the expression of engineered receptors into a specific cell 

population to modulate their activity by systemically administering an exogenous designer ligand that 

is biologically inert, or devoid of prominent direct pharmacological effects (Farrell & Roth, 2013; 

Sternson & Roth, 2014). This neural platform entails the expression of engineered G-protein coupled 

receptors to regionally modulate neural activity with cell-type specificity (Sternson & Roth, 2014; Zhu 

& Roth, 2015). The combined use of chemogenetics and fMRI represents a novel experimental 

strategy for bridging different levels of investigation in experimental neuroscience. Giorgi and 

colleagues reported the first demonstration of this approach in 2017, coining the term "chemo-fMRI" 

to refer to the combined use of fMRI and chemogenetics. The authors of this study used chemo-fMRI 

to causally probe the brain-wide substrates modulated by endogenous serotonergic activity (Giorgi 

et al., 2017). A subsequent influential chemo-fMRI study probed the effect of chemogenetic 

inactivation of the amygdala on rsfMRI patterns of connectivity in rhesus monkeys (Grayson et al., 

2016). The authors found that, as predicted by the structurally-based model of connectivity, this 

manipulation reduced amygdala-cortical and cortico-cortical coupling. These studies demonstrate 

the power of combining a focal DREADD manipulation with rsfMRI to detect changes in local and 

global network organization in vivo. Similar findings have been reported in two recent rodent chemo-

fMRI studies (Peeters et al., 2020; Tu et al., 2020).  

In our study, we have expanded these investigations by probing how regional neural silencing 

and increased E/I affect brain-wide functional connectivity within the mouse DMN. For the specific 

purpose of these studies, we employed “designer receptors exclusively activated by designer drugs 

(DREADDs) (Roth, 2016). These are engineered acetylcholine G-coupled receptors maximally 

responsive to clozapine-N-oxide (CNO), a metabolite of the antipsychotic drug clozapine (Manvich et 

al., 2018; Roth, 2016). Depending on the interacting G-protein, two main classes of DREADDs have 

been developed: Gi-coupled (hM4Di) and Gq-coupled (hM3Dq) DREADDs. Gi-DREADDs promote Gi-

protein-dependent intracellular signaling, leading to neuronal inhibition via activation of inward 

rectifying K channels, thereby hyperpolarizing, hence inhibiting neuronal activity (Roth, 2016), and 

silencing synaptic transmission (Fig. 1.6) (Stachniak et al., 2014).  When expressed pan-neuronally in 

both excitatory and inhibitory populations, hM4Di DREADDs can be used to produce neural silencing 

(Wiegert et al., 2017). Notably, the use of this approach in combination with rsfMRI thus offers the 

opportunity to deconstruct rsfMRI coupling by inactivating a neural node and assessing how neural 
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activity reconfigures in response to this manipulation. We have used this strategy extensively in a 

series of studies we describe in greater detail in chapter 3.  

 

Figure 1.6 Muscarinic acetylcholine receptors have been engineered to produce different DREADDs. Through viral 
vectors, DREADDs can be expressed in specific neuronal populations. The peripheral administration of an inert 
ligand leads to receptor activation, triggering an intracellular signaling cascade that can enhance or inhibit 
neuronal activity. Figure adapted from Ju (2022). 

 

Ligand-mediated activation of hM3Dq leads instead to intracellular Gq-mediated signaling 

cascade, enhancing neuronal firing and leading to desynchronized spiking activity at the population 

level (Campbell & Marchant, 2018). This manipulation can therefore be used to produce a generalized 

increase in neuronal excitability (and therefore increased E/I) when hM3Dq is expressed in pyramidal 

cells. An analogous outcome can be attained by expressing inhibitory DREADD hM4Di in inhibitory 

neurons via the use of double floxed constructs in Cre-expressing lines (Yizhar et al., 2011). This 

manipulation can reduce inhibitory output producing excitatory disinhibition. We have used both 

these strategies to causally link regional imbalances in E/I and network-level regional synchronization 

as measured with rsfMRI. We briefly report on the results of this study in chapter 4 below. 

While chemo-fMRI allows for the functional deconstruction of network activity, some key 

methodological issues related to the use of this approach must be highlighted. First, the temporal 

resolution of chemogenetics is very low (i.e. hours). While the absence of DREADD precise temporal 

control can be problematic in behavioral research, this aspect does not appear to be an issue in 



16 
 

imaging studies in which a neural mass phenomenon like rsfMRI can greatly benefit from the 

prolonged modulation of large brain regions attainable with chemogenetics. A second noteworthy 

limitation of chemogenetics is the possible confounding contribution of off-target pharmacological 

effects, like in the case of the in vivo back-conversion of CNO into the antipsychotic drug clozapine 

(Gomez et al., 2017). While this phenomenon can result in unspecific effects, rigorous CNO dose 

management (Giorgi et al., 2017) or the use of more selective ligands (Bonaventura et al., 2019; Nagai 

et al., 2020) can minimize these contributions. Regardless of the ligand employed, it is however 

essential to consider that the accurate control of these effects requires the experimental use of a 

specific control group in which the baseline effect of the selected dose of DREADD actuator is 

rigorously assessed. To control for possible DREADD-related off-target effects, the studies we present 

in chapters 3 and 4 were designed to control for this confound by using a reference CNO-treated 

control arm. The results of our work show that these limitations can be accurately controlled, 

allowing for a proficient use of chemo-fMRI to deconstruct fMRI connectivity.  
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Chapter 2: Aim of this work 

This work was aimed to probe the neural drivers of rsfMRI coupling via the implementation 

of cell-type-specific neural manipulations in the mouse. By examining how rsfMRI networks 

reconfigure in response to regional changes in neural activity, we sought to unravel the neural 

underpinnings and dynamic rules governing brain-wide rsfMRI coupling, paving the way to future 

decoding of corresponding (dys)connectivity signatures into physiologically interpretable signals.  

In a first set of proof-of-concept investigations, we empirically probed the widely held notion 

that neural inhibition of a cortical node would result in reduced fMRI coupling of the silenced area 

and its long-range terminals (Chapter 3). To this aim, we chronically (Kir2.1 overexpression) and 

acutely (hM4Di activation) inhibited the mouse medial prefrontal cortex (PFC) and measured the 

ensuing pattern of rsfMRI connectivity and neural coupling via in vivo electrophysiology. Surprisingly, 

we found that these manipulations produce patterns of fMRI overconnectivity. Using in vivo 

electrophysiology, we identified a specific and mechanistically plausible neural signature for this 

phenomenon. Our results provide causal evidence that cortical inactivation can counterintuitively 

increase fMRI connectivity via enhanced, less-localized slow oscillatory processes, with important 

implications for neural modeling and interpretation of fMRI overconnectivity in brain disorders.   

The observation that neural inhibition of the PFC results in fMRI overconnectivity allowed us 

to predict that neural activation of the same area might produce opposite results, i.e. fMRI 

underconnectivity and neural desynchronization. We thus chemogenetically excited prefrontal 

CaMKII positive PCs and inhibited PV positive neurons, hence increasing local E/I balance. Preliminary 

examination of the obtained results confirmed our predictions, showing that both manipulations 

produce similar rsfMRI signatures of rsfMRI underconnectivity, effectively reversing the neural 

signature observed in DREADD inhibition studies. We report a preliminary account of this ongoing 

work in chapter 4. Taken together, our investigations reveal a set of fundamental rules linking 

regional brain activity to macroscale functional connectivity, offering opportunities to physiologically 

interpret rsfMRI signatures of functional dysconnectivity in human brain disorders 



18 
 

Chapter 3: Increased fMRI connectivity upon chemogenetic inhibition of the 

prefrontal cortex  

 

This Chapter will be published as: 

“Increased fMRI connectivity upon chemogenetic inhibition of the prefrontal cortex” 

Federico Rocchi*, Carola Canella*, Shahryar Noei*, Daniel Gutierrez-Barragan, Ludovico Coletta, 

Alberto Galbusera, Massimo Pasqualetti, Giuliano Iurilli, Stefano Panzeri, Alessandro Gozzi.  

Accepted for publication, Nature communications, 2022 

*shared first authorship 

  



19 
 

3.1 Introduction  

A rapidly expanding approach to understand the functional organization of brain networks is to map 

large-scale patterns of spontaneous activity via non-invasive neuroimaging. The ease and 

reproducibility of “resting state” fMRI (rsfMRI) have promoted the widespread use of this approach, 

leading to the observation that spontaneous fMRI activity is organized into highly coherent functional 

networks, defined by temporally correlated fluctuations in BOLD signal (Power et al., 2014). The non-

invasive nature of rsfMRI has fueled the use of this method to map intrinsic brain network 

organization in the healthy human brain, as well as in psychiatric or neurological conditions, in which 

evidence of disrupted or aberrant rsfMRI functional coupling has been largely documented (Power 

et al., 2014). However, despite the growing popularity of rsfMRI, our knowledge of the underpinnings 

of brain-wide fMRI coupling remains very limited. 

Multiple lines of evidence suggest that structural and rsfMRI-based connectivity are robustly related 

(Power et al., 2014). First, structural and functional connection strengths are correlated both at the 

whole-brain and mesoscopic scale (Coletta et al., 2020; Hagmann et al., 2008; Z. Wang et al., 2013), 

and rsfMRI network topography closely recapitulates patterns of anatomical connectivity in several 

mammalian species (Coletta et al., 2020; Goñi et al., 2014; Honey et al., 2009). Second, experimental 

resection of callosal connections (O’Reilly et al., 2013) or chemogenetic inactivation of the amygdala 

result in reduced rsfMRI connectivity with regions anatomically linked to the manipulated area 

(Grayson et al., 2016). Lastly, computational modeling corroborates a tight relationship between 

structural and functional connectivity, as synchronous rsfMRI fluctuations can be modeled by 

dynamical systems endowed with realistic anatomical connectivity patterns of long-range axonal 

interactions (Ponce-Alvarez et al., 2015). Accordingly, simulated axonal lesions in these models result 

in reduced functional coupling (Alstott et al., 2009).  

 These observations have prompted the widespread use of statistical dependencies in spontaneous 

fMRI signal as an index of interareal functional communication (Power et al., 2014). However, the 

neural mechanisms linking regional brain activity to large-scale rsfMRI network connectivity remain 

unclear. For example, growing experimental evidence suggests that, while tightly constrained by 

underlying anatomy, rsfMRI connectivity may only partially reflect direct interactions between areas, 

as widespread BOLD signal modulation might arise via subcortical connections, whether through the 

thalamus via long-range loops (Gent et al., 2018), or as a result of diffuse neuromodulation mediated 

by brainstem nuclei (Liu et al., 2018; Munn et al., 2021). This notion is epitomized by the observation 
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of intact rsfMRI coupling among brain regions not directly structurally connected as in the case of 

acallosal humans, primates, and rodents (O’Reilly et al., 2013; Sforazzini et al., 2016; Tyszka et al., 

2011). Moreover, rsfMRI network topography can dynamically reconfigure in response to local 

perturbations (Eldaief et al., 2011) or pathological processes (Pagani et al., 2021). In keeping with 

this, neurological disorders such as Parkinson’s disease, stroke, and Alzheimer’s disease have been 

often found to be associated with unexpectedly increased interareal rsfMRI connectivity despite the 

loss of cortical function characterizing these conditions (Hillary & Grafman, 2017; Siegel et al., 2016). 

Taken together, these observations point at a complex relationship between interareal brain activity 

and rsfMRI coupling, and call for a deeper investigation of the neural mechanisms underlying the 

reconfiguration of rsfMRI connectivity in response to varying interareal input or pathological 

perturbations.  

 Here we combine rsfMRI, neural and chemogenetic inhibition (chemo-fMRI (Giorgi et al., 

2017)), and in vivo electrophysiology in the mouse to probe how inactivation of a cortical area 

causally affects rsfMRI coupling. Surprisingly, we find that chronic and acute inhibition of the medial 

prefrontal cortex (PFC), a core component of the mouse default mode network (DMN, Whitesell et 

al., 2021), can increase rsfMRI coupling with its thalamo-cortical targets. This effect is associated with 

decreased ϒ power in the suppressed region and robustly increased low frequency (0.1-4 Hz) 

electrophysiological coherence between functionally overconnected PFC targets. These findings 

reveal a highly dynamic, non-monotonic relationship between regional cortical activity and network-

wide rsfMRI connectivity, and provide an interpretative framework for the observation of 

counterintuitively increased rsfMRI connectivity in pathological conditions characterized by impaired 

cortical function. 
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3.2 Methods 

3.2.1 Ethical statement 

All in vivo experiments were conducted in accordance with the Italian law (DL 26/214, EU 

63/2010, Ministero della Sanità, Roma). Animal research protocols were reviewed and consented by 

the animal care committee of the University of Trento and Italian Ministry of Health (authorization 

no. 852/17 to A.G.). All surgical procedures were performed under anesthesia. 

 

3.2.2 Animals 

Adult (6 week old) male C57Bl6/J mice, and transgenic animals expressing Cre recombinase in  

parvalbumin-positive GABAergic neurons (B6.129P2-Pvalbtm1(cre)Arbr/J, (Cardin et al., 2009) were  

bred in house. Mice were housed with temperature maintained at 21 ± 1°C and humidity at 60 ± 10%. 

 

3.2.3 Anatomical definition of mouse medial prefrontal cortex 

Our anatomical definition of mouse medial prefrontal cortex (PFC) reflects recent 

neuroanatomical (Carlén, 2017) and cytoarchitectural cross-species comparisons (Vogt & Paxinos, 

2014), according to which the mouse PFC comprises a prelimbic region, corresponding to primate 

Brodmann area 32 (A32), the anterior cingulate cortex, corresponding to Brodmann area A24b, and 

the infralimbic cortex, corresponding to Brodmann area A24a. Our viral manipulations were therefore 

aimed to inhibit an anatomical ensemble comprising all the above mentioned regions at the following 

coordinates, expressed in millimeter from Bregma: 1.7 from anterior to posterior, +/- 0.3 lateral, −1.7 

deep (Paxinos & Franklin, 2004). 

 

3.2.4 Viral injections 

Mice were anesthetized with isoflurane and head-fixed in a stereotaxic apparatus (Stoelting). 

Injections were performed with a Hamilton syringe mounted on Nanoliter Syringe Pump with 

controller (KD Scientific), at a speed of 0.05  ul/min, followed by a 5–10 min waiting period, to avoid 

backflow of viral solution. To prevent layer- or cell-type specific expression (Nathanson et al., 2009), 

all in vivo viral transductions were carried out using high-titer (> 1013 vg/mL) viral suspensions. The 
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following injections volumes were employed: 300 nL (AAV8-hSyn-hM4D(Gi)-mCherry  and AAV8-

hSyn-GFP; http://www.addgene.org) or 2 μL (AAV8-hSyn-MYC-mKir2.1(E224G/Y242F)-IRES-GFP, Xue 

et al. 2004, http://www.vectorbiolabs.com  or AAV8-hSyn-GFP http://www.addgene.org), or 1 μL 

(AAV8-CamkII-hM3D(Gq)-mCherry; http://www.addgene.org) or 300 nL (AAV9-hSyn-DIO-hM4D(Gi)-

mCherry; http://www.addgene.org) of viral suspension were injected bilaterally in the mouse PFC 

(see coordinates above). Control groups for both CamkII-hM3D(Gq) and PV-hM4D(Gi) were obtained 

by sham-injecting genotype-matched littermates. rsfMRI or electrophysiological recordings were 

carried out no sooner than three weeks after the injection to allow for maximal viral expression.  

 

3.2.5 rsfMRI acquisitions   

The animal preparation protocol was recently described in detail (Ferrari et al., 2012; 

Gutierrez-Barragan et al., 2019; Sforazzini et al., 2014). Briefly, mice were anesthetized with 

isoflurane (5%, induction), intubated and artificially ventilated (2%, surgery). The left femoral artery 

was cannulated for continuous blood pressure monitoring. At the end of surgery, isoflurane was 

discontinued and substituted with a shallow halothane regimen (0.75%) to obtain light sedation and 

to preserve cerebral blood flow auto-regulation (Gozzi et al., 2007). Ventilation parameters were 

adjusted to maintain normo-physiological paCO2 (< 40 mmHg) and paO2 levels (> 90 mmHg, 

corresponding to >98% hemoglobin saturation). To probe the generalizability of our findings, we also 

repeated our inhibitory chemo-fMRI manipulations under a combination of medetomidine and low-

dose isoflurane  (0.05 mg/kg bolus and 0.1 mg/kg/h IV infusion, plus 0.5% isoflurane, (Grandjean et 

al., 2020; Lee et al., 2021).   

rsfMRI data acquisition commenced 30 min after isoflurane cessation. Functional images were 

acquired with a 7T MRI scanner (Bruker, Ettlingen) equipped with a BGA-9 gradient set (380 mT/m, 

max. linear slew rate 3,420 T/m/s) as previously described (Liska et al., 2015), using a 72 mm birdcage 

transmit coil and a 4-channel solenoid coil for signal reception. Single-shot BOLD rsfMRI time series 

were acquired using an EPI sequence with the following parameters: TR/TE 1000/15 ms, flip angle 

60°, matrix 98 x 98, FOV 2.3 x 2.3 cm, 18 coronal slices, slice thickness 550 µm, bandwidth 250 KHz. 

rsfMRI acquisition with Kir2.1-transduced (AAV8-hSyn-MYC-mKir2.1(E224G/Y242F)-IRES-GFP, n = 16) 

and control mice (AAV8-hSyn-GFP, n = 19) encompassed 35-minute long timeseries, corresponding 

to 2100 volumes.  
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Chemo-fMRI acquisitions comprised two consecutive rsfMRI timeseries, encompassing 1800 volumes 

(30 min) and 2100 volumes (35 min), respectively. CNO (2 mg/kg, Sigma Aldrich) was injected 

intravenously fifteen minutes (volume #900) after the start of the first scan. The first 900 fMRI 

volumes of this first timeseries scan were used as pre-CNO baseline rsfMRI reference in time-resolved 

analyses. Based on the pharmacokinetic profile of CNO, the post CNO window was split into temporal 

domains as follows: the first 15 min post injection (900 volumes) were considered part of a drug 

equilibration window, while the following 35 min (2100 volumes) were considered to cover the  

DREADD active time window (Trakoshis et al., 2020). All group comparisons in the chemo-fMRI study 

were carried out within this latter time window, unless otherwise stated. After post-mortem analyses 

of viral expressions, a total of n = 15 hM4Di and n = 19 GFP-transduced animals were retained for 

analyses. 

 

3.2.6 Image preprocessing and analysis 

Raw rsfMRI timeseries were preprocessed as described in previous work (Gutierrez-Barragan 

et al., 2019; Sforazzini et al., 2014). Briefly, the initial 120 volumes of the time series were removed 

to allow for thermal gradient equilibration. Data were then despiked, motion corrected, and spatially 

registered to a common reference template. Motion traces of head realignment parameters (3 

translations + 3 rotations) and mean ventricular signal (corresponding to the averaged BOLD signal 

within a reference ventricular mask) were used as nuisance covariates and regressed out from each 

time course. All rsfMRI time series also underwent band‐pass filtering within a frequency window of 

0.01–0.1 Hz (halothane) or 0.01-0.25 Hz (MED-ISO,  Grandjean et al., 2020) followed by spatial 

smoothing with a full width at half maximum of 0.6 mm. To control for the effects of global fMRI 

signal regression on the mapped changes, all rsfMRI timeseries were also recomputed by regressing 

average fMRI signal within an intracerebral mask 

rsfMRI connectivity of the mouse DMN in Kir2.1 and chemo-fMRI scans was probed using a 

seed-based approach. In the case of the chemo-fMRI study, this quantification was carried out during 

the CNO active time window. A 5x5x2 seed region was selected to cover the PFC areas targeted by 

viral injections. Voxel‐wise intergroup differences in seed-based mapping were assessed using a 2‐

tailed Student's t test (|t| > 2, p < 0.05) and family‐wise error (FWE) cluster‐corrected using a cluster 

threshold of p = 0.05 as implemented in FSL (https://fsl.fmrib.ox.ac.uk/fsl/). The antero‐posterior 

connectivity profile of the DMN was assessed by computing Person correlation between the PFC seed 
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abovementioned and a series of 6 x 6 x 2 voxel seeds placed along the midline extension of the 

cingulate and retrosplenial cortices as previously described (Pagani et al., 2019). Quantification of 

cortico-thalamic connectivity was carried out with respect to a meta-regional parcellation of the 

mouse cortex in volumes-of-interest.  To rule out a possible confounding contribution of spurious 

neurovascular changes in CNO-induced rsfMRI connectivity alterations, we calculated and statistically 

compared the characteristic hemodynamic response function between Kir2.1 and control mice, and 

between hM4Di-expressing and control mice upon CNO-administration (active phase),  as previously 

described (Pagani et al., 2019; Wu et al., 2013).  

Whole-brain connectivity in hM4Di and Control mice was calculated across a set of volumes 

of interest recapitulating anatomical areas of the Allen brain atlas. The anatomical probed area were 

selected according to their coverage of previously characterized network systems of the mouse brain 

(Liska et al., 2015; Sforazzini et al., 2014; Whitesell et al., 2021): TH: thalamus (thalamus polymodal 

association cortex related, Thalamus Sensory-Motor cortex related); STR: striatum (Striatum dorsal 

region left, striatum dorsal region right, striatum ventral region left, striatum ventral region right); 

LCN: lateral cortical network (LCN: primary motor cortex left, primary motor cortex right, primary 

somatosensory cortex left,  primary somatosensory cortex right, secondary somatosensory cortex 

left, secondary somatosensory cortex right, Lateral septal complex left, lateral septal complex right); 

HCP: hippocampus (Ammon’s horn left; Ammon’s horn right, dentate gyrus left; dentate gyrus right, 

Entorhinal area left,  entorhinal area right, subiculum left, subiculum right); DMN: default mode 

network (anterior cingulate area; Infralimbic area, secondary motor cortex left, secondary motor 

cortex right, orbital area, prelimbic area, posterior parietal association areas left, Posterior parietal 

association areas right, retrosplenial area);  

To relate the strength of underlying anatomical connectivity to the regions exhibiting 

increased rsfMRI connectivity with voxel resolution, we extracted outgoing projections from the 

affected PFC regions using a spatially-resampled (0.027 mm3) version of a voxel scale model of the 

Allen Brain Institute structural connectome (Coletta et al., 2020). We then plotted the strength of 

PFC-departing structural projections against the corresponding between-group difference in rsfMRI 

connectivity using the cluster-corrected difference map and assessed differences in the distribution 

of overconnected areas with respect to all the brain voxels using a Wilcoxon rank-sum test.  

To quantify the contribution of distinct thalamic subregions to overall group differences, we used k-

means clustering to partition voxels within the thalamus, based on whole-brain rsfMRI group-
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difference obtained using the PFC seed as recently described (Schleifer et al., 2019; Vassilvitskii & 

Arthur, 2006). This approach revealed two major thalamic clusters, one medial and one bilateral 

partition encompassing sensory areas. Seed-based functional connectivity was subsequently 

computed for each of the two-resultant k-means clusters independently, and the resulting functional 

connectivity maps were compared and quantified across cortical VOIs.  

 

3.2.7 Electrophysiological recordings 

Electrophysiological recordings were carried out in animals subjected to the same animal 

preparation and sedation regime employed for rsfMRI mapping (Ferrari et al., 2012; Sforazzini et al., 

2014). Briefly, mice were anesthetized with isoflurane (5% induction), intubated, artificially ventilated 

(2% maintenance), and head-fixed in a stereotaxic apparatus (Stoelting). The tail vein was cannulated 

for CNO injection. To ensure maximal consistency between viral injections and recording site, the 

skull surface was exposed and an insertion hole in the right PFC was gently drilled through the skull 

corresponding to the location of prior viral injection point. A single shank electrode (Neuronexus, 

USA, interelectrode spacing 1 - 2.5 mm) was next inserted through the overlying dura mater by a 

microdrive array system (Kopf Instruments, Germany) at an insertion rate of 1 µm/min to reach the 

same stereotaxic coordinates employed for viral injection. The site receptive fields were plotted 

manually and the position and size of each field were stored together with the acquisition data. After 

electrode insertion, isoflurane was discontinued and replaced by halothane at a maintenance level 

of 0.75% to induce rsfMRI-comparable sedation. Electrophysiological data acquisition commenced 1 

hour after isoflurane cessation. Such transition time was required to ensure complete washout of 

isoflurane anesthesia and avoid residual burst-suppressing activity associated with extended 

exposure to deep anesthetic levels.  

Neural activity was next recorded in consecutive 5 min time bins to cover a 15 min pre-

injection time window, and a 60 min post CNO timeframe in n = 5 hM4Di and n = 5 GFP-expressing 

mice. Signals were amplified using an RHD 2000 amplifier system (Intan Technologies) at a sampling 

rate of 20 kHz. For CamkII-hM3D(Gq) (n = 4) and PV-hM4D(Gi) (n = 6) experiments we acquired 

respectively n = 4 and n = 7 control animals. In the case of control Kir2.1 recordings, a four shank 

electrode was inserted along the coronal plane to bi-hemispherically cover the right (Kir2.1-

expressing) and left (GFP-expressing) PFC (n = 4). The left region served as internal reference control 
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to better assess the efficacy of Kir2.1 neural inhibition. Electrophysiological signals were then 

recorded into 5 min time bins to cover a 35 min time-window.  

To measure multi-electrode coherence, three electrodes were inserted in key cortical and 

subcortical substrates identified as overconnected in our chemo-fMRI mapping in n = 4 hM4Di and n 

= 5 GFP-expressing mice. A multi-probe micromanipulator (New-Scale Technologies) was used to 

insert three 16 channels single shank electrode (Neuronexus, USA, interelectrode spacing 1 - 2.5 mm) 

in the right prefrontal cortex, centromedial thalamus and retrosplenial cortex, respectively. 

Representative electrode locations are reported in Figure 3.1, corresponding to the following 

stereotaxic coordinates: PFC 1.7 mm AP, +/‐ 0.3 mm ML, -1.7 mm DV; mediodorsal thalamus:  -1.7 

mm AP, -0.3 mm ML, -3.5mm DV (5° insertion angle); retrosplenial cortex:  -2.4 mm AP, -0.3 mm ML, 

-1.3 mm DV. To reduce tissue damage, an insertion rate < 1 µm/min was employed, allowing for a 30 

minute equilibration every 400 µm traveled. Ground electrodes were put in contact with the cerebral 

brain fluid through a window drilled in the skull. Signals were then recorded into 1 min time bins to 

cover a 15-min pre-injection baseline and a 40-min post CNO time window. 
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Figure 3.1 Histological validation of electrode placement. Electrode insertion traces (Th and Rs, red, lipophilic 
dye DiI) are here highlighted with a white line to indicate approximate electrode profile and insertion angle. In 
the PFC, red signal represents hSyn-hM4Di viral expression, and area of electrode insertion is indicated by a the 
corresponding mechanically-induced lesion produced before electrode removal at the end of recording session. 
Individual color channels have been adjusted to increase contrast. PFC: medial prefrontal cortex; Th: thalamus; 
Rs: retrosplenial cortex. 

 

LFP and multi-unit activity (MUA). To compute the LFP signal, raw extracellular recordings 

were first down-sampled to 4 kHz, then band-pass filtered to 1-250 Hz using a previously published 

two-step procedure (Belitski et al., 2008). Briefly, raw timeseries were first low-pass filtered using a 

4th order Butterworth filter with a cut-off frequency of 1 kHz. The resulting timeseries were next 

down-sampled to 2 kHz, then again filtered using a Kaiser window filter between 1Hz to 250Hz (with 

a sharp transition bandwidth of 1Hz, passband ripple of 0.01 dB and a stop band attenuation of 60 

dB) and then resampled at 1 kHz. All the filtering was applied both in forward and backward temporal 

direction to avoid any phase transitions due to filtering.  

PFC

Th

Rs
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To compute multi-unity activity (MUA) we again followed the procedure described in (Belitski 

et al., 2008). Briefly, we computed a band-passed high-frequency signal using a 4th order Butterworth 

filter with a <100 Hz cut off frequency, then band-pass filtered between 400 and 3000 Hz using a 

Kaiser window filter (with transition band of 50 Hz, stopband attenuation of 60 dB, and passband 

ripple of 0.01 dB). From the high frequency signal we detected spike times using a spike detection 

threshold corresponding to 4-times the median of the high frequency signal, then divided by 0.6745 

as suggested in (Quiroga et al., 2004). Spikes were considered to be biologically plausible, and as such 

retained in these computations, only if occurring more than 1 ms apart.  

To quantify effectiveness of Kir2.1 in suppressing spontaneous activity, firing rate was 

computed (in units of spikes/s) by dividing the number of spikes per electrode by the recording 

duration in seconds. The resulting spike rates were averaged across the channels corresponding to 

the virally targeted or control region. The average spike rate for four subjects was next tested against 

each other using paired t test. To assess the effect of chemo-fMRI manipulations, spiking activity was 

computed in experimental and control animals as described above and segmented into one-minute 

bins. We next computed the channel averaged firing rate for each segment, and normalized this value 

with respect to the firing rate recorded during baseline (pre-CNO) period. The resulting baseline 

normalized firing rate index was then used to assess changes in spiking rate upon CNO injection in 

the two experimental cohorts.  

To determine the time lag at which different firing rate samples from the same channels could 

be considered as approximately statistically independent, we computed for each subject the 

autocorrelation of the channel-averaged firing rate for each subject and computed the time lag after 

which the autocorrelation function drops below the 95th percentile. We then, for each subject, 

retained samples of the baseline-normalized firing rate at different times separated by the above 

obtained lags. We next separately analyzed the baseline-normalized rates in three different periods: 

0 to 15 minutes (transient time), 15 to 35 minutes, and 35 to 55 minutes after CNO the injection 

(active time). We pooled all the retained data points in these windows both over time and over 

subjects and then compared the median between the two populations using a two-sided Wilcoxon 

rank-sum test. The obtained p-values were corrected using a Benjamini-Hochberg FDR correction. 

LFP spectrograms were computed using a Fourier transform with a Kaiser window with a 

frequency resolution of 0.15 Hz, temporal resolution of 6 seconds, and with 50% overlapping 

windows. Spectrograms and their differences were smoothed in time with the resolution of 30 
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seconds, and in frequency with the resolution of 1Hz using a median filter. To quantify the effect of 

CNO on LFP rhythms, we computed a spectrogram modulation index as follows. First, we computed 

the channel-averaged spectrograms for the duration of the baseline recording. Next, we averaged 

time-frequency spectral profiles over time, resulting in frequency-resolved spectral profiles. The 

effect of CNO was next assessed by computing a modulation index, defined as the ratio of channel-

averaged spectrogram after injection minus baseline, time-averaged spectrogram, and the sum of 

the same quantities, for every time window and for every frequency. This modulation index ranges 

between -1 and 1 and describes the changes due to drug injection over time for each frequency.  

To obtain a statistical assessment of CNO effects across groups and bands, we computed the 

autocorrelation of spectrograms for every subject at every frequency, using (as for our assessment 

of firing rate) only spectrograms computed at time points far enough to be approximately statistically 

independent. The time lag to determine such approximately independent points was identified as 

the interval after which the spectrum's autocorrelation function dropped below the 95th percentile. 

We next computed the median of the modulation index over different frequency bands defined as 

follows: slow (0.1-1 Hz), δ (1-4 Hz), θ (4-8 Hz), α (8-12 Hz), β (12-30 Hz) and ƴ (30-70 Hz). Data within 

each band were pooled over uncorrelated time points (determined as above by taking time samples 

separated by lags at which autocorrelation became negligible) and over subjects, and the population 

medians were compared using two-sided Wilcoxon rank-sum tests, followed by FDR correction.  

3.2.8 Multielectrode coherence 

Channel averaged spectrograms were preprocessed as described above. Raw spectral power 

coherence was assessed by computing the magnitude of squared coherency using Welch’s 

overlapped averaged periodogram method (Welch, 1967) with a 50% overlapping window of 2 

seconds length. Coherence was calculated for every 60-second bin of channel-averaged recordings. 

Temporal smoothing was carried out using a 60-second median filter as described above. CNO 

spectrograms (30-40 post CNO injection window) were normalized with respect to the last 3 minutes 

of pre-CNO baseline using a modulation index as before. To obtain a quantifiable assessment of the 

CNO effect across different groups and bands, data within each band were pooled into 60-second 

bins. Subject and the population medians were compared for each region separately using one-sided 

Wilcoxon rank-sum tests, followed by FDR correction. The use of 60 second bins was motivated by 

estimations of the time lags at which autocorrelation of electrophysiological signals drops below the 

95th percentile value (and thus samples are approximately independent) as described above.  
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To assess changes in ultra-slow fluctuations in the ϒ band envelope of LFP, following the work from 

Nir et al. (2008), we computed LFP data spectrogram for the last 10 minutes of baseline and 30 to 40 

minutes of post injection window, using a moving window of 2 seconds width and 0.75 percent 

overlap, resulting in an estimation of the resulting ultra-slow power for each 0.5 second interval. The 

ϒ-band envelope was computed as the integrated power of the spectrograms in the ϒ band (30-70 

Hz), following previously published procedures (Mateo et al., 2017). The power spectrum of this time 

series was next computed, after correction for 1/f component (Mateo et al., 2017), revealing a peak 

in the 0.02-0.05 Hz region. Interareal coherence was then computed as described above for both 

experimental and control mice. To assess the effect of chemogenetic manipulations, we defined a 

coherence modulation index as described above for other frequency bands. Between group statistical 

assessments were carried out using two‐sided Wilcoxon rank‐sum tests, followed by FDR correction.   

To quantify interregional phase coupling, LFP data were first filtered using a third order Butterworth 

filter in delta band, and the instantaneous phase of each channel was computed by taking the phase 

of the analytical signal resulted from the Hilbert transform. For all possible pairs of channels 

belonging to two different regions, we next computed the corresponding Phase Locking Value (PLV) 

as follows: 

PLV =
1

N
|∑ 𝑒𝑖(𝜃𝑐ℎ1(𝑡𝑗)−𝜃𝑐ℎ2(𝑡𝑗))

𝑁

𝑗=1

|  

Where N is the number of data points in time and 𝜃𝑐ℎ1(𝑡𝑗), 𝜃𝑐ℎ2(𝑡𝑗)  are the instantaneous phase of 

the LFP of channel 1 and 2 at time j. The PLV value for each pair during the 30 to 40 minutes post 

CNO was next normalized with respect to the PLV value of the last 3 minutes of the pre-CNO baseline 

using a modulation index and was pooled over channel pairs and animals. The obtained population 

medians of the control and experimental group for each region pair were next compared using two-

sided Wilcoxon rank-sum tests, followed by FDR correction.  

 

3.2.9 Power spectrum of simulated spiking activity  

To understand whether the increase in δ and slow LFP power observed with DREADD-induced 

inhibition could be explained by selective elimination of spikes not occurring at the preferred, most 

excitable, phase of the considered oscillation, we simulated 10 seconds epochs of spikes locked to a 
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cosine “LFP” wave oscillating at 1 Hz. In the first scenario, representing the DREADD conditions, we 

generated 100 spikes (rate of 10 spikes per second) tightly distributed around the preferred phase π 

with values taken from a von Mises distribution with an extremely high value (20) of the 

concentration parameter. For the second case (representing sham condition), we added 100 more 

spikes distributed almost randomly across phases, with values taken from a von Mises distribution 

with an extremely low value (0.5) of the concentration parameter. We then smoothed spike temporal 

components with a Gaussian kernel (100 ms width) and computed the power spectra of the resulting 

spike train with the multitaper method (Matlab pspectrum function). 

  

3.2.10 Relationships between spikes and LFP phases  

We computed at each time point the phase of the LFP in a given frequency band as the angle 

of the Hilbert transform of the band passed LFP. We considered for this analysis the slow and δ bands. 

Signal in each band was band-passed using a 3rd order Butterworth filter. To measure the locking of 

spikes to specific phases of each band, we considered the distribution of the LFP phase values at the 

time of each MUA spike. From this distribution, we computed the phase locking value (PLV) as 1 

minus the circular variance of this distribution (Methods Section “Multielectrode coherence”). PLV 

ranges from 0 (no locking or relationship between phase and spike times) to 1 (perfect locking of 

spikes to a certain phase). As for other quantities, we also computed a PLV modulation index as the 

difference of PLV values between the active-drug and baseline periods divided by the sum of PLV 

values in the active-drug and baseline periods. A two-sided Wilcoxon was used to check if the median 

PLV modulation index is higher for the experimental data with respect to control data.  

Violin plot representations of all electrophysiological analyses include individual statistically-

independent points (see above) used for intergroup comparisons. Plots were generated using Prism 

Graphpad 9.1. Plot truncation at extremities is introduced by the software to avoid representation of 

kernel density-related fictitious values above the highest data value or below the smallest.  

 

3.2.11 LFP-LFP phase differences  

To characterize the phase differences across areas, we computed the distribution across time 

of the difference in the instantaneous phase (computed as explained above) of PFC and Rs electrode 

pairs. From this distribution, we considered a channel pair to have significant PLV (see 



32 
 

“Multielectrode coherence” section above) if its PLV value exceeded the 95th percentile of surrogate 

PLV distribution obtained by shuffling LFPs in time prior to filtering, and if the same PLV value was 

also greater than 0.1. We report in Fig. 3.10 the distribution of preferred phase differences (the 

circular mean of the phase difference distribution) for these significant channels. In the same figure, 

we also report (as thick lines) the values of the circular mean across all significant channels in each 

condition. We here report only the results of retrosplenial and PFC electrode pairs in the δ band, 

because this was the only combination exhibiting very stable mean circular phases across all baseline 

conditions and during the active time of the control injection. Circular and statistics were all 

computed with CircStat package (Berens, 2009). 
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3.3 Results 

3.3.1 rsfMRI overconnectivity upon chronic inactivation of the mouse prefrontal cortex   

The robust structural foundations of rsfMRI connectivity suggest that neural inhibition of a 

network node would result in diminished functional coupling with regions receiving direct axonal 

projections from the inactivated region (Alstott et al., 2009; Grayson et al., 2016; Suárez et al., 2020). 

To test this prediction and more broadly investigate how rsfMRI dynamically reconfigures in response 

to local neural suppression, we carried out rsfMRI measurements in a cohort of mice in which 

neuronal activity in PFC was chronically inhibited via bilateral viral transduction of the inward 

rectifying potassium channel Kir2.1 (Fig. 3.2a). Our interest in the PFC was motivated by its 

translational relevance as a key component of the mouse default mode network (DMN), a major 

phylogenetically conserved rsfMRI network that in rodents is composed by three hubs, namely the 

PFC, the retrosplenial cortex and the medial thalamus (Coletta et al., 2020; Whitesell et al., 2021). 

Prior research in awake animals has shown that virally‐mediated Kir2.1 expression results in a 

reduction of both evoked and spontaneous neuronal excitability lasting several weeks (Beier et al., 

2017; Xue et al., 2014). In keeping with this, in vivo electrophysiological recordings in the PFC of mice 

unilaterally transduced with Kir2.1 revealed a robust reduction of spontaneous firing rate in the 

targeted cortical area with respect to its contralateral control regions (N = 4, paired t test, p = 0.002, 

Fig. 3.3).  

We next compared the patterns of rsfMRI connectivity in Kir2.1 and GFP-transduced control 

littermates by imaging Kir2.1 transduced mice four weeks after viral injections (Fig. 3.2a). Consistent 

with previous investigations (Bertero et al., 2018; Pagani et al., 2019), seed-based probing revealed 

significant long-range correlation between the PFC and thalamo-cortical components of the mouse 

DMN in both cohorts (Fig. 3.2b). Surprisingly, between-group comparisons revealed foci of 

significantly increased rsfMRI connectivity in the posterior cingulate/retrosplenial cortex and 

centromedial thalamic regions of Kir2.1 transduced mice (t test, p < 0.05, t > 2.03, FWE cluster-

corrected, p < 0.05; Fig. 3.2c). Regional quantifications of DMN connectivity via multiple prefrontal-

DMN seeds corroborated these findings, revealing increased rsfMRI synchronization along the entire 

midline extension of this network (two-way repeated measures ANOVA, F1, 33 = 6.93; p = 0.013; Fig. 

3.2d) and its centromedial thalamic targets (t test, t33 = 2.589, p = 0.014; Fig. 3.2e). Voxel-wise 

mapping did not reveal any foci of reduced functional connectivity with the PFC (t > 2.03, FWE cluster-

corrected, p < 0.05). Importantly, all the thalamic and cortical regions showing increased rsfMRI 
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connectivity in Kir2.1 mice are characterized by high axonal projection density from the PFC, as seen 

by comparing the magnitude of inter-group rsfMRI connectivity differences with incoming axonal 

connectivity strength inferred from a voxel-model of the mouse brain connectome (Coletta et al., 

2020) (Fig. 3.2f, Wilcoxon rank-sum test, p<0.0001). Interestingly, the direction and anatomical 

location of DMN rsfMRI overconnectivity was not altered by global fMRI signal regression (Fig. 3.4), 

with the exception of thalamic areas, in which the connectivity difference between groups was 

attenuated. Together, these findings reveal that chronic inhibition of neural activity in the PFC may 

counterintuitively increase rsfMRI functional connectivity between long-range thalamo-cortical 

targets of the mouse DMN.   

 

 

Figure 3.2 Chronic inhibition of the mouse PFC results in rsfMRI overconnectivity (a) Viral expression localization. 
The potassium channel Kir2.1 (n = 16) or GFP (control, n = 19) were transduced bilaterally into the PFC of adult 
male mice. Left: Representative histology sample shown Kir2.1 (green). Right: Heatmaps illustrate a qualitative 

a

c

4

F
C

 (t)

b

Control

Kir2.1

Difference - Kir2.1 > Control

2

PFC

Th

Rs

PFC

Rs

Rs

Rs

Rs

Th

Rs

f

80 100
Projection density (arb. units)

0.2

F
C

 (r)
0.7

F
C

 (r)

0.05

0.1

Th Th

Th Th

Rs

d e   

PFC

Rs

PFC

Hsyn-Kir2.1

20 100
Incidence %

a

c

4

F
C

 (t)

b

Control

Kir2.1

Difference - Kir2.1 > Control

2

PFC

Th

Rs

PFC

Rs

Rs

Rs

Rs

Th

Rs

f

80 100
Projection density (arb.units)

0.2

F
C

 (r)
0.7

F
C

 (r)

0.05

0.1

Th Th

Th Th

Rs

d

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

PFC Connectivity to Thalamus

C
o

n
n

e
c
ti

v
it

y
 [

z
]

*
Control

Kir2.1

e   

PFC

C
o

n
n

e
c
ti

v
it

y
 [

z
]

R
sd

R
sc

R
sb

R
sa

C
gc

C
gb

C
ga

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Connectivity to PFC

Control

Kir2.1 §

Rs

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0
0.00

0.05

0.10

0.15

0.20

Anatomical projection strength

[log 10]

F
re

q
u

e
n

c
y

Overconnected voxels

Non-significant voxels

-7 -6 -5 -4 -3 -2

-2

0

2

4

6

Anatomical projection strength

 [log10]

rs
fM

R
I 

C
o

n
n

e
c

ti
v

it
y

D
if

fe
re

n
c

e
 (

T
)

PFC

Hsyn-Kir2.1

0.2 1
Incidence



35 
 

regional assessment of viral expression across subjects. (b) Seed based connectivity mapping of the PFC in GFP 
(control), and Kir2.1-transduced subjects. (c) Corresponding group difference maps. Area exhibiting significantly 
increased rsfMRI connectivity in Kir2.1 expressing mice are depicted in red-yellow (r and T stat difference map). 
(d) Antero-posterior profiling of rsfMRI connectivity of the PFC within the midline axis of the mouse DMN (§ p 
= 0.014, two-way ANOVA with repeated measurements, genotype effect, n = 16 and n = 19 Kir2.1 or GFP-
expressing mice, respectively). (e) Fronto-thalamic rsfMRI overconnectivity in Kir2.1 expressing mice (*p = 
0.014, two-sided t test, n = 16 and n = 19 Kir2.1 or GFP-expressing mice, respectively). Data in (e) and (f) are 
presented as mean values ± SEM. (f) Regions exhibiting rsfMRI overconnectivity in Kir2.1 mice are robustly 
innervated by the PFC. Left: Axonal projections from the PFC (top 20% strongest connections). Middle: scatter 
plot illustrating intergroup differences in rsfMRI connectivity as a function of PFC structural connectivity 
strength. Green dots indicate significantly functionally overconnected voxels. Right: Distribution of 
overconnected voxels as a function of axonal connectivity strength Green. FC: functional connectivity; DMN: 
Default Mode Network; Cg: cingulate cortex; PFC: prefrontal cortex, RS: retrosplenial; Th: Thalamus. 

 

 

 

Figure 3.3 Overexpression of the potassium channel Kir2.1 in the PFC reduces spontaneous neural activity. (a) 
Experimental design: Kir2.1 injection was performed unilaterally in the right PFC. A viral vector encoding GFP 
was injected in the contralateral area. Electrophysiological recordings were carried out bilaterally using a four-
shank electrode. (b) Mean spontaneous firing rate for the control side (no Kir2.1 expression), and the side 
expressing Kir2.1. (n=4; ** p = 0.002, two-sided paired t-test).  
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Figure 3.4 rsfMRI overconnectivity in Kir2.1 and DREADD-expressing mice persists after global fMRI signal 
regression. (a) Between-group difference maps (Pearson’s r, and corresponding T stat difference maps). rsfMRI 
connectivity was here computed after fMRI global signal regressions. (b) Antero-posterior profiling of rsfMRI 
connectivity of the PFC along the midline axis of the mouse DMN in the two cohorts revealing consistent 
overconnectivity in Kir2.1 mice (§ p = 0.013, 2-way ANOVA repeated measurements, genotype effect, n = 16 
and n = 19 Kir2.1 or GFP-expressing mice, respectively). (c-d) rsfMRI overconnectivity in hM4Di mice is not 
affected by rsfMRI global signal regression (c) Between-group difference maps (Pearson’s r, and corresponding 
T stat difference maps, two-sided ). (d) Antero-posterior profiling of rsfMRI connectivity of the PFC along the 
midline axis of the mouse DMN in the two cohorts upon fMRI global signal regressions (§§ p < 0.001, 2-way 
ANOVA repeated measurements, genotype effect, n = 15 and n = 19 hM4Di or GFP-expressing mice, 
respectively). Data in (b) and (d) are presented as mean values ± SEM. Cg: cingulate cortex; PFC: prefrontal 
cortex, RS: retrosplenial cortex, TH: Thalamus; FC: functional connectivity.  
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3.3.2 rsfMRI overconnectivity upon acute chemogenetic inactivation of the mouse prefrontal cortex   

To corroborate the specificity of Kir2.1 findings and obtain mechanistic insight into the neural 

correlates of the observed fMRI overconnectivity, we designed a new set of experiments in which 

DREADD-based chemogenetics was employed to induce a time-controlled, acute inhibition of PFC 

activity during rsfMRI scanning. It should be noted that the same manipulations we hereafter refer 

to as “chemogenetic inhibition/inactivation”, are often termed and interpreted as “chemogenetic 

silencing” in neuro-behavioral neuroscience (Wiegert et al., 2017).  

An overview of experimental procedures is provided in Figure 3.5. To enable remote inhibition 

of fronto-cortical activity, we bilaterally transduced the PFC with the inhibitory hM4Di DREADD using 

a pan-neuronal promoter (Figure 3.5a), a strategy widely used to regionally inhibit excitatory neural 

function in behavioral studies (Wiegert et al., 2017). In keeping with previous investigations, the use 

of a high titer viral suspension resulted in reliable and homogeneous transduction of neurons across 

cortical layers (Nathanson et al., 2009). Three weeks after viral injection, control (GFP- transduced) 

and hM4Di-expressing animals underwent rsfMRI scanning or electrophysiological recordings before 

and after intravenous injection of the DREADD activator clozapine-N-oxide (CNO). To account for the 

relatively slow pharmacokinetic profile of CNO in the rodent brain (Jendryka et al., 2019; Trakoshis et 

al., 2020), both imaging and electrophysiological recordings were split into a pre-CNO injection 

baseline, a transitory (0 -15 min) drug-equilibration period, and an active time window (15-50 min 

post CNO injection) to which all our analyses refer to, unless otherwise specified (Fig. 3.5b-c). 

  To test the efficacy of chemogenetic inhibition, we first performed a set of 

electrophysiological recordings in the PFC of hM4Di- or GFP-transduced control animals prior to and 

after CNO administration, under the same experimental conditions used in rsfMRI imaging (Fig. 3.5d-

e). Baseline electrophysiological traces revealed the presence of appreciable spontaneous multi-unit 

activity in the PFC of both groups (mean firing rate 15.0 ± 2.2 spikes/s in hM4Di-expressing, and 14.1 

± 3.8 in GFP-transduced mice, n = 5 each group, p = 0.85, t test). As expected, CNO administration 

robustly inhibited firing rate in hM4Di expressing mice, but not in control subjects (Fig. 3.5e-f, p<0.01 

FDR corrected, t test). DREADD-induced PFC inhibition was characterized by a gradual decrease of 

neural firing upon CNO administration, reaching a steady-state approximately 10-15 min after the 

intravenous bolus (Fig. 3.5f).  

Prompted by recent work suggesting that DREADDs may alter or disrupt, rather than 

completely silence, neuronal activity in vivo (Schmidt et al., 2019), we next examined more in detail 
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the firing patterns of individual electrode sites in multi-unit activity (MUA) recordings. For each group, 

we compared the firing rates of each MUA site under basal conditions with those obtained in the 

same recording site upon CNO administration. A scatterplot of spike rate across paired conditions 

revealed that, during the active phase, the vast majority of MUA sites in DREADD-expressing mice 

showed a marked decrease in firing rate, with virtually no site showing any appreciable decrease in 

firing in control animals (Fig. 3.5g). Given that MUA is strongly biased by the spiking activity of 

pyramidal neurons (Logothetis, 2008), these analyses suggest that our chemogenetic manipulations 

produce a general decrease in excitatory firing. 

       To probe whether acute chemogenetic inhibition of the PFC would produce rsfMRI 

overconnectivity as observed with Kir2.1, we next compared rsfMRI connectivity patterns in hM4Di 

transduced and control mice upon acute CNO administration (active phase, Fig. 3.6). Recapitulating 

the results of chronic PFC inhibition, voxel-wise mapping revealed foci of significantly increased 

rsfMRI connectivity in the posterior cingulate/retrosplenial cortices and midline thalamic regions of 

DREADD-expressing mice (t test, p < 0.05, t > 2.03, FWE cluster-corrected, p < 0.05; Fig. 3.6a). 

Regional quantifications corroborated the presence of rsfMRI overconnectivity along the cingulate 

and retrosplenial axis of the DMN, and between the PFC and medio-dorsal thalamic areas (two-way 

repeated measures ANOVA, F1,32 = 6.58; p = 0.0155; t test t32 = 4.30, p = 0.001, respectively; Fig. 

3.6b-c), a set of regions characterized by dense incoming projections from the PFC (Fig. 3.7, Wilcoxon 

rank-sum test, p<0.0001). Notably, the direction and the anatomical location of the observed rsfMRI 

overconnectivity was regionally unaltered by global fMRI signal regression (Figure 3.4), arguing 

against an unspecific contribution of arousal related global dynamics or global fMRI co-activation to 

the mapped changes (Gutierrez-Barragan et al., 2019; Turchi et al., 2018).  

Baseline PFC connectivity in these areas was comparable across groups (voxel-wise mapping, 

Z>2.03 cluster corrected, PFC-Cingulate, two-way ANOVA, F1,32 = 0.48, p = 0.49, Thalamo-PFC, t test, 

t32 = 0.23, p = 0.81), and overconnectivity gradually emerged in the hM4Di cohort after CNO 

administration, peaking during the DREADD active time-window (PFC-Rs: T32 = 2.158, p = 0.03, PFC-

Th: T32 = 4.301, p = 0.0001, t test, Fig. 3.6d). Moreover, no intergroup differences were observed in 

the estimated characteristic hemodynamic response function in this area (kernel height p > 0.6; time-

to-peak p > 0.12, full-width-at-half-peak p > 0.37, t test) nor were between-group differences in 

arterial blood pressure (p > 0.7, t test) or blood gas levels observed (PaCO2 p = 0.49; PaO2 p = 0.22, 

t test). These control measurements rule out major spurious vascular or hemodynamic contributions 
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and corroborate the specificity of the mapped changes. Importantly, a replication of our chemo-fMRI 

study in a new set of animals imaged using a combination of medetomidine and low-dose isoflurane 

(Grandjean et al., 2020; Lee et al., 2021) revealed increased rsfMRI coupling between PFC and 

thalamic and retrosplenial areas (Fig. 3.8), recapitulating our findings in halothane-anesthetized mice. 

This result suggests that the observed overconnectivity does not reflect pharmacological interaction 

of DREADDs with the specific anesthetic used, but represents a more general phenomenon that 

extends to other sedatives and anesthetic condition. More broadly, our chemo-fMRI results show 

that acute inactivation of PFC activity results in a pattern of DMN overconnectivity closely 

recapitulating that observed with chronic Kir2.1-mediated neural inhibition, suggesting that the 

ensuing overconnectivity is not manipulation-specific, nor the indirect consequence of homeostatic 

reactivity to protracted neural suppression. 
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Figure 3.5 Chemogenetic inhibition of neural firing in the PFC (a) Experimental design of chemo-fMRI 
experiments. AAV8-hSyn-hM4Di (n = 15) or AAV8-hSyn-GFP (control, n = 19) were bilaterally injected into the 
PFC of wild type. Left: Representative histology sample shown hM4Di (red) expression. Right: Heatmaps 
illustrate a qualitative regional assessment of viral expression across subjects. (b) Mice underwent chemo-fMRI 
scanning or (c) electrophysiological recordings to probe effectiveness of chemogenetic manipulations. A 
reference acquisition timeline is reported to depict timeseries binning into a 15 min pre-CNO reference baseline, 
a drug equilibration window (15 min, transition), and a 35 min CNO active time window (active). (d) 
Representative raw traces collected before and after CNO injection in representative recordings site of a hM4Di-
expressing mouse. (e-f) Reduced firing rate in hM4Di-expressing mice (n = 5) compared to GFP-transduced 
controls (n = 5, two-sided Wilcoxon rank-sum tests, FDR corrected **q < 0.01, ***q < 0.001,). Data are 
presented as mean values ± SEM. (g) Scatterplot comparing the firing rate of individual PFC recording channels 
during baseline conditions (x axis) and the active phase (y axis) in control and DREADD-expressing animals (two-
sided Wilcoxon rank-sum test FDR corrected, **q<0.01, ***q<0.001).  
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Figure 3.6 Chemogenetic inhibition of the mouse PFC results in rsfMRI overconnectivity (a) Seed-based 
connectivity of the PFC and between group difference map revealed rsfMRI over-connectivity in the DMN of 
hM4Di expressing mice during the active phase. (b) Antero-posterior profiling of rsfMRI connectivity of the PFC 
along the midline axis of the mouse DMN in the two cohorts (§ p =  0.106, two-way ANOVA repeated 
measurements, genotype effect, n = 15 and n =19 control or hM4Di-expressing animals, respectively). (c) 
Thalamo-cortical rsfMRI hyper synchronization in hM4Di expressing mice and (d) prefrontal-retrosplenial and 
prefrontal-thalamic connectivity timecourse (*p = 0.039, ***p < 0.001, two-sided t test, n = 15 and n = 19 
hM4Di or GFP-expressing mice, respectively.) Data in (b), (c) and (d) are presented as mean values ± SEM. (e) 
k-means clustering of PFC-thalamic rsfMRI connectivity profiles (thalamus, blue; polymodal thalamus, red; 
unimodal thalamus, green) in Control (n= 19) and hM4Di (n= 15) animals. (f-g) Seed connectivity of sub-
thalamic partitions (f, polymodal thalamus; g, unimodal thalamus) and corresponding between group 
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difference maps. FC: functional connectivity; Cg: cingulate cortex; M1: motor cortex; S1: Sensory cortex; PFC: 
prefrontal cortex, RS: retrosplenial cortex; Th: Thalamus; V1: visual cortex. 

 

 

Figure 3.7 Voxels exhibiting rsfMRI overconnectivity upon chemogenetic inhibition of the PFC are robustly 
innervated by the PFC. Left: scatter plot illustrating intergroup differences in rsfMRI connectivity as a function 
of PFC structural connectivity strength. Note that all significantly overconnected voxels (red) contain robust 
axonal projections from the PFC. Right: distribution of voxels exhibiting the most significant rsfMRI connectivity 
(red) and those that are not affected (grey).  
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Figure 3.8 Chemogenetic inhibition of the mouse PFC under medetomidine-isoflurane anesthesia recapitulates 
the rsfMRI overconnectivity profile observed in halothane-anesthetized mice. (a) Seed-based connectivity of the 
PFC in control (hSyn-GFP n = 19) and experimental (hSyn-hM4Di, n = 12, top) animals (top) and corresponding 
between-group connectivity difference map (Pearson’s r, and T stat, respectively, bottom). (b) Thalamo-cortical 
rsfMRI overconnectivity in hM4Di expressing mice (*p = 0.03, two-sided t test, n = 12 and n = 19 hM4Di or GFP-
expressing mice, respectively). (c) Antero-posterior profiling of rsfMRI connectivity of the PFC along the midline 
axis of the DMN in the two cohorts (§ p = 0.012, 2-way ANOVA repeated measurements, genotype effect, n = 
12 and n = 19 hM4Di or GFP-expressing mice, respectively). Data in (b) and (c) are presented as mean values ± 
SEM. Cg: cingulate cortex; PFC: prefrontal cortex, RS: retrosplenial cortex; Th: Thalamus; FC: functional 
connectivity.  

 

3.3.3 Chemogenetic inhibition of the prefrontal cortex leads to thalamo-cortical rsfMRI 

overconnectivity  

Topographical mapping of rsfMRI connectivity upon chemogenetic inhibition of the PFC 

revealed foci of overconnectivity in polymodal medio-dorsal and centro-medial areas of the 

thalamus, a set of higher order nuclei densely innervated by the mouse PFC (Mitchell, 2015). We thus 

probed the rsfMRI connectivity of the thalamus to assess whether the observed foci of thalamic 

overconnectivity could underlie or involve the engagement of additional brain regions outside the 

DMN. To obtain a regionally unbiased identification of polymodal (i.e. densely-PFC projecting) versus 

more unimodal lateral portions of the thalamus, we used k-means clustering to partition thalamic 

voxels based on their whole-brain rsfMRI connectivity profile, as previously described (Schleifer et 

al., 2019). Consistent with the neuroanatomical organization of this region, our approach revealed 

two segregable thalamic sub-territories, one encompassing its centromedial and anterodorsal (PFC-

innervated) polymodal components, and the second encompassing more lateral (unimodal/sensory) 

areas (Fig. 3.6e). This anatomical segregation is also of potential mechanistic interest, as polymodal 

thalamic areas have been recently shown to serve as key generators and cortical propagators of slow 

neural rhythms (e.g. δ) relevant to rsfMRI coupling  (Gent et al., 2018; He et al., 2008; Hughes et al., 

2011; Nir et al., 2008).  

Interestingly, seed-based probing of the unimodal thalamus did not reveal significant rsfMRI 

connectivity differences between hM4Di-expressing and control animals (Fig. 3.6g), whereas seed-

based probing of the polymodal thalamus revealed in hM4Di expressing-mice a widespread pattern 

of cortical overconnectivity, exceeding the boundaries of the PFC to encompass motor and 

somatosensory territories, including the retrosplenial cortex (Fig. 3.6f, t test, p < 0.05, t > 2.03, FWE 

cluster-corrected, p < 0.05, Fig. 3.9). To probe the network specificity of these effects, we next 
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mapped whole-brain rsfMRI connectivity in hM4Di and control animals using a whole-brain 

parcellation scheme (Fig. 3.10). This analysis revealed the presence of significant clusters of rsfMRI 

overconnectivity only in regions of the DMN and in polymodal thalamic areas of DREADD-expressing 

animals, the latter areas exhibiting overconnectivity with larger cortical regions. No meaningful 

clusters of rsfMRI over- or under-connectivity were otherwise observed in any of the areas probed. 

These results show that, upon acute suppression of fronto-cortical activity, PFC-innervated 

polymodal thalamic regions, but not unimodal areas, exhibit over-synchronous rsfMRI coupling with 

large cortical areas.  

 

Figure 3.9 The polymodal thalamus is functionally overconnected to cortical areas. Quantification of thalamo-
cortical connectivity extracted from polymodal (left) and unimodal (right) thalamic partitions (*q<0.05, 
**q<0.01, two-sided t test, FDR corrected, n = 15 and n = 19 hM4Di or GFP-expressing mice, respectively). 
Source data are provided as a Source Data file. M1: primary motor cortex; M2: secondary motor cortex; S1: 
primary somatosensory cortex; S1: secondary somatosensory cortex; PFC: prefrontal cortex, RS: retrosplenial 
cortex; V1: primary visual cortex. 
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Figure 3.10 Whole-brain rsfMRI connectivity in control and hM4Di-expressing mice. Correlation matrices in (a) 
and (b) depict inter-areal connectivity in control and hM4Di mice respectively. (c) Mean difference map (t), and 
(d) regions exhibiting connectivity differences larger than |t|> 2.1, corresponding to p < 0.05, two-tailed t test 
(uncorrected). TH: thalamus; STR: striatum; LCN: lateral cortical network; HCP: hippocampus; DMN: default 
mode network; FC: functional connectivity.  

 

3.3.4 Chemogenetic inactivation of the prefrontal cortex inhibits firing not locked to slow rhythms, 

resulting in increased slow oscillatory power 

      To obtain insight into the neural rhythms underlying the observed rsfMRI overconnectivity, we 

next analyzed local field potential (LFP) traces obtained from the same set of PFC electrophysiological 

recordings analyzed in Fig. 3.5. Consistent with the observed firing rate reduction, LFP spectrograms 
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from hM4Di-transduced animals revealed an overall shift of LFP power towards lower frequencies, 

with a robust decrease in β- and ƴ-band power after CNO administration with respect to CNO treated 

controls (F1,22 = 239.4, p < 0.1 and p<0.001, respectively, Fig. 3.11a-b). Notably, the LFP power 

reduction in these frequency bands was also accompanied by a prominent increase in δ and slow-

band (defined here as 0.1 – 1 Hz) LFP power in DREADD-expressing subjects (Fig. 3.11b, slow p < 

0.001, δ p < 0.01, θ p = 0.77; α p = 0.34; β p = 0.01; ƴ p<0.001; Wilcoxon rank-sum tests, FDR 

corrected). Given that higher LFP frequencies typically reflect local neural interactions, while lower 

LFP frequencies are instead associated with larger scale phenomena (Einevoll et al., 2013; Logothetis, 

2008) these results suggest that chemogenetic inhibition of PFC suppresses local, rather than global, 

neural processes.  

 To investigate the relationship between DREADD-induced reduction in firing and the 

concomitant increase in local slow and δ oscillatory power, we next performed phase locking analyses 

of MUA firing in the PFC. Interestingly, our investigations revealed that in DREADD-expressing 

animals, the fewer residual spikes recorded after CNO injection exhibited strong phase locking to 

ongoing slow and δ LFP oscillations. Such strong phase locking was not observed in control animals 

or in baseline recordings, where spike distributions were instead more equally spread across δ and 

slow oscillation phases (Fig. 3.11c-e). These observations suggest that chemogenetic inhibition of the 

PFC leads to a selective reduction of firing not locked to ongoing slow rhythms, resulting in a 

concomitant increased phase locking of residual firing to high-excitability phases of ongoing low 

frequency oscillations. The resulting spiking activity is therefore on average greatly reduced, but also 

considerably more periodic and phase-locked to underlying low frequency oscillatory rhythms. 

To better illustrate the relationship between increased oscillation power and enhanced spike 

locking in the slow and δ bands, we performed a simple simulation. Specifically, we first simulated 

spike trains to have weak phase locking to a slow rhythm, with spikes happening almost equally across 

phase angles of the oscillatory cycle as observed in control conditions. To mimic DREADD-induced 

effects, we next selectively removed spikes emitted at the non-preferred phases of slow oscillatory 

activity as observed in our recordings. To mimic DREADD-induced effects, we next selectively 

removed spikes emitted at the non-preferred phases of slow oscillatory activity as observed in our 

recordings. In keeping with our experimental results, this simple simulation showed that the removal 

of “asynchronous" off-preferred-phase firing reduces power of high frequency spiking activity, while 

simultaneously increasing the power of the low-frequency rhythm residual spikes are entrained to 
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(Fig. 3.12). This suggests that DREADD-induced increase in slow LFP power does not necessarily 

reflect the generation of a new, “artificial” rhythm, but can be simply explained by the emergence of 

increased phase locking to existing slow oscillatory activity.  

Finally, to further probe the mechanistic specificity of our findings, we measured rsfMRI 

connectivity profiles produced by cell-type specific manipulations designed to increase local PFC 

firing. We found that chemogenetic inhibition of fast-spiking Parvalbumin (PV) GABAergic cells or 

hM3Dq-based excitation of pyramidal (CamkII-expressing) neurons both produced PFC 

underconnectivity with cortical terminals of the DMN (Fig. 3.13). Notably, both manipulations 

produced neural signatures characterized by increased local firing rate and a robust shift of LFP power 

towards higher frequencies, effectively reversing the corresponding electrophysiological signature 

observed in our DREADD inhibition studies (Fig. 3.11). These effects were far more prominent in mice 

undergoing DREADD-based stimulation of pyramidal neurons, a manipulation that was also 

associated with largely suppressed slow and δ-band LFP activity. Taken together, these new 

investigations suggest that the observed functional overconnectivity does not reflect an increased 

excitatory/inhibitory ratio in the PFC, or an unspecific functional inhibition of GABAergic neurons.  
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Figure 3.11 Chemogenetic inhibition of the PFC reduces ƴ activity but increases slow oscillatory power (a) Mean 
post-injection spectrogram in control (Left), hM4Di-expressing animals (center), and mean between group 
difference (right). (b) Quantification of band-specific power spectrum changes upon CNO injection in both 
groups (*q <0.05, ***q<0.001, two-sided Wilcoxon rank-sum tests followed by FDR correction, for n = 50 and 
n = 60 statistically independent recordings from n = 5 hM4Di and n = 5 control mice, respectively). (c) Example 
traces of bandpassed δ-band LFPs and corresponding spiking activity (right) from a representative PFC 
recording channel during active phase in control and DREADD-expressing mice. Note the presence of greatly 
reduced, but more phase-locked firing in animals expressing hM4Di channel. (d) Violin plots depicting PLV of 
PFC spikes to slow and δ bands (***q<0.001, two-sided Wilcoxon rank-sum tests followed by FDR correction 
for n = 79 and n = 80 statistically independent recordings from n = 5 hM4Di and n = 5 control mice, respectively). 
(e) Probability of firing (all sessions and datapoints) as a function of the phase angle of δ (bottom) and slow 
(top) bands. Phase conventions are such that 0 and 180 deg represent the peak and through of LFP, respectively. 
(Violin plots: thick lines represent median, dashed lines indicate 25th and 75th percentile, respectively). PLV: 
phase locking value. 
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Figure 3.12 A simple simulation of the effect of suppressing neural firing not locked to slow rhythms. (a) Top 
(black line):  1 Hz simulated sinusoidal “LFP” wave to which spikes trains are locked. Middle (red lines): spike 
trains strongly locked to the LFP wave, conceptualizing firing during DREADD-induced manipulation. Bottom 
(red lines): spike trains obtained from the red ones but adding also an equal number of unlocked spikes, 
conceptualizing firing during control conditions.  (b) Power spectra of the resulting spike trains.  

 

 

Figure 3.13 Chemogenetic inhibition of parvalbumin GABAergic cells (a-d) and stimulation of pyramidal neurons 
(e-h) produce rsfMRI underconnectivity. (a) Between group PFC seed-based connectivity difference maps 
revealed rsfMRI underconnectivity (blue) in the DMN of PV::hM4Di expressing mice during the active CNO 
phase. PV::Cre mice were bilaterally injected with hSyn-DIO-hM4Di (n = 16). Control PV::Cre animals underwent 
sham injections (control, n = 17). (b) Antero-posterior profiling of rsfMRI connectivity of the PFC along the 
midline axis of the mouse DMN (§§ p = 0.008, 2-way ANOVA repeated measurements, genotype effect, 
PV::hM4Di n = 16, sham n = 17). (c) Increased firing rate in PV::hM4Di mice upon CNO injection (two-sided 
Wilcoxon rank-sum test, p = 0.019, n = 12 and n = 14 statistically independent recordings in n = 6 PV::hM4Di 
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and n = 7 control mice, respectively).  (d) Quantification of the corresponding band‐specific power spectrum 
changes in the PFC (***q < 0.001, two-sided Wilcoxon rank-sum test followed by FDR correction, n = 120 and 
n = 140 statistically independent recordings in n = 6 PV::hM4Di and n = 7 control mice, respectively). (e) Between 
group PFC seed-based connectivity difference map in mice expressing CamkII::hM3Dq (n = 20), or CamkII::cre 
mice subjected to sham viral injections (control, n = 17) during the CNO active phase. This analysis revealed the 
presence of robust rsfMRI underconnectivity (blue) in the DMN. (f) Antero-posterior profiling of rsfMRI 
connectivity of the PFC along the midline axis of the mouse DMN in the two cohorts (§§ p < 0.001, 2-way ANOVA 
repeated measurements, genotype effect, CamkII::hM3Dq n = 20, sham n = 17). (g) Largely increased firing rate 
in hM3Dq‐expressing mice compared to controls (*** p < 0.001, two-sided Wilcoxon rank-sum test, n = 8 and 
n = 8 statistically independent recordings in n = 4 CamkII::hM3Dq and n = 4 sham mice, respectively). (h) 
Quantification of corresponding band‐specific power spectrum changes upon CNO injection (*** q < 0.001, 
two-sided Wilcoxon rank-sum test followed by FDR correction, n = 80 statistically independent recordings in n 
= 4 CamkII::hM3Dq and n = 4 control mice, respectively). Data in barplots (c) and (g) are presented as mean 
values ± SEM. Violin plots: thick lines represent median, dashed lines indicate 25th and 75th percentile, 
respectively. Cg: cingulate cortex; PFC: prefrontal cortex, RS: retrosplenial cortex; Th: Thalamus; FC: functional 
connectivity.  

 

3.3.5 Chemogenetic inhibition of the prefrontal cortex increases interareal slow oscillatory coherence   

The increase in slow and δ band LFP power observed in the chemogenetically-inhibited PFC 

led us to hypothesize that the resulting rsfMRI overconnectivity could be driven by enhanced low-

frequency neural coherence, as opposed to direct interareal communication via higher frequency 

neural oscillations (Besserve et al., 2015; Bosman et al., 2012; Van Kerkoerle et al., 2014). To test this 

hypothesis, we carried out a new set of simultaneous multi-electrode LFP recordings in the PFC, 

retrosplenial, and centromedial (polymodal) thalamus of control and DREADD- transduced animals 

(Fig. 3.14). We selected these region pairs because they exhibit the highest functional 

overconnectivity in our chemo-fMRI study. Spectral-power quantifications after CNO administration 

revealed a reduction of γ and β LFP power in all the three recording sites, together with increased 

slow and δ LFP power in the PFC, but not in the retrosplenial cortex or centromedial thalamus of 

DREADD-transduced animals (Fig. 3.15a). 

To explore the possible neural correlates of fMRI connectivity in terms of frequency-

dependent neural communication, we next computed LFP power coherence between 

electrophysiological signals recorded at these electrode pairs and probed the presence of increased 

coupling between the recording sites. Notably, we found a clear CNO-induced increase in low-

frequency LFP power coherence in PFC-Rs and PFC-polymodal thalamic areas in hM4Di-transduced 

animals (Fig. 3.15b). In keeping with rsfMRI evidence of increased thalamo-cortical connectivity upon 

PFC inhibition, enhanced low-frequency power coherence was also observed between the thalamus 

and retrosplenial cortex (Fig. 3.15b). Quantification of these changes in canonical LFP frequency 
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bands revealed significantly increased power coherence in the slow and δ bands for all the three 

electrode pairs (Fig. 3.14a-c, q < 0.05, Wilcoxon rank-sum test, FDR corrected, all pairs). We next 

computed inter-areal coherence between the envelope of ϒ-band amplitude because ultra-slow 

(~0.1 Hz) variation in ϒ-band envelope has been linked to arteriole dynamics and suggested to be a 

contributing factor to rsfMRI coupling (Mateo et al., 2017; Nir et al., 2008). Mean coherence plots of 

ϒ-envelope over the ultra-slow frequency range (0.02-0.5 Hz  (Mateo et al., 2017)) revealed only 

marginally increased CNO-induced coherence in hM4Di expressing mice (Fig. 3.15c). In keeping with 

this observation, we did not find evidence of significantly increased ultra-slow ϒ-envelope coherence 

(integrated between 0.02 to 0.5 Hz) between any electrode pairs (q > 0.1, Wilcoxon rank-sum test, 

FDR corrected). 

To link these oscillatory changes to the observed rsfMRI patterns, following the procedure 

described in  Wang et al. (2012), we next compared the obtained electrophysiological coherence 

values with corresponding (separately-measured) interareal rsfMRI connectivity in hM4Di and 

control animals (Fig. 3.14d-e). We first compared between-group band-specific LFP coherence 

differences across all electrode pairs with corresponding interareal rsfMRI connectivity changes 

measured during the active CNO phase (Fig. 3.14d). These quantifications revealed that δ and slow 

LFP bands were the only frequency ranges exhibiting CNO-induced increased coherence between 

PFC-retrosplenial and PFC-thalamic electrode pairs, in agreement with the corresponding CNO-

induced interareal rsfMRI connectivity increases (Fig. 3.14d). While considerably smaller, between-

group ultra-slow LFP gamma-envelope coherence also revealed CNO-induced increases in all the 

three electrode pairs (Fig. 3.14d). Other LFP bands did not show full concordance with rsfMRI 

findings: for example, β band coherence increased after CNO administration in PFC-retrosplenial but 

not in PFC-thalamus electrode pairs. Similarly, no meaningful between-group changes in power 

coherence upon DREADD stimulation was observed in the θ and γ LFP bands (Fig. 3.14d). Further 

supporting a key contribution of slow and δ rhythms to the observed rsfMRI overconnectivity, we 

found that pairwise LFP coherence difference across all the recorded sites in these two bands 

exhibited a linear relationship with corresponding group-level pair-wise rsfMRI connectivity 

measured in both DREADD and control animals during the CNO active window (Fig. 3.13e, δ R2 = 

0.92, p = 0.002; slow R2 = 0.73, p = 0.029, uncorrected). Only δ LFP coupling however retained a 

significant correlation with rsfMRI connectivity upon FDR correction (q=0.008, FDR corrected). A 

much weaker correlation between band specific LFP coherence and pairwise rsfMRI connectivity was 

apparent for all the other bands (Fig. 3.14e, p > 0.11 all bands). These findings were paralleled by the 
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observation of similarly robust increased interareal δ- and slow-band LFP phase coherence, a widely 

used measure of functional synchronization in LFP/EEG studies (Bowyer, 2016) (Fig. 3.14f). Taken 

together, these results corroborate a neural origin for our imaging findings and implicate increased 

slow and δ LFP coherence as a plausible neural driver of the observed rsfMRI over-synchronization.  

Our findings can be summarized in a simple illustrative scheme (Fig. 3.16) in which 

chemogenetic inhibition of the PFC (node A) reduces high-frequency local activity via a preferential 

suppression of spikes not locked to ongoing, global low frequency rhythms. This in turns produces a 

breakdown of high-frequency communication between the manipulated area and its targets (B and 

C). At the same time, the residual firing activity in the inhibited node becomes more entrained with 

ongoing low-frequency fluctuations, here depicted as a global slow rhythm. The observed functional 

overconnectivity may then reflect the resulting increase in interareal slow and δ LFP coherence, 

which we have empirically found, under our experimental conditions, to predict the direction and 

magnitude of rsfMRI coupling better than the coherence of faster rhythms. Importantly, this model 

is also broadly consistent with examinations of LFP signatures of directionality of interactions 

between areas (Fig. 3.17). Specifically, using phase-lag quantifications as a measure of information 

flow directionality, we found that in the δ band PFC activity preceded in phase retrosplenial cortex 

activity, a finding consistent with previous reports of antero-posteriorly travelling δ wave activity in 

the anesthetized mouse brain (Mitra et al., 2018). Consistent with our hypothesis, after CNO 

administration the phase difference between PFC and retrosplenial cortex in DREADD-expressing 

animals was greatly reduced, implying that chemogenetic suppressions of local high frequency results 

in more synchronous and less phase-lagged δ activity. This finding suggests that after chemogenetic 

inhibition, PFC activity becomes more entrained with global, slow covarying rhythms.  
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Figure 3.14 Chemogenetic inhibition of the PFC results in increased interareal slow oscillatory coherence. Baseline 
normalized power coherence at different frequency bands for PFC-retrosplenial (a), PFC-thalamus (b) and 
retrosplenial-thalamus (c) electrode pairs (*q <0.05, ***q<0.001, one-sided Wilcoxon rank-sum test, FDR 
corrected for n = 50 and n = 40 statistically independent recordings from n = 5 hM4Di and n = 4 control mice, 
respectively). (d) Band specific coherence and mean functional connectivity (FC) difference (hM4Di – Control) 
for all pairs of electrophysiologically-probed regions. Mean FC data were extracted for corresponding regional 
pairs during the CNO active time window in hM4Di and control animals. (e) Correlation between corresponding 
band specific coherence and mean functional connectivity for all pairs of electrophysiologically-probed regions 
(PFC-Rs; PFC-Th; Rs-Th). Shaded area indicates 95% CI for δ. (f) Baseline normalized phase coherence in slow 
and delta band between electrode pairs (Violin plots: thick lines represent median, dashed lines indicate 25th 
and 75th percentile, respectively; ***q<0.001, two-sided Wilcoxon rank-sum tests, FDR corrected). PLV: phase 
locking value.  
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Figure 3.15 LFP power spectra and absolute coherence in multi-electrode recordings. (a) Quantification of band-
specific power spectrum changes in LFPs recorded in the PFC (left), centromedial thalamus (Th; center) and 
retrosplenial cortex (Rs; right) upon systemic CNO administration. Power was quantified with respect to pre-
injection baseline (violin plots: thick lines represent median, dashed lines indicate 25th and 75th percentile, 
respectively; two-sided Wilcoxon rank-sum tests, followed by FDR correction, ***q<0.001, n = 50 and n = 40 
statistically independent recordings in n = 5 hM4Di and n = 4 control mice, respectively). (b) Mean absolute 
power coherence for all pairs of electrophysiologically-probed regions (PFC-Rs; PFC-Th; Rs-Th) during both 
baseline and CNO active time window in hM4Di and control animals (mean ± SEM). (c) Mean absolute power 
coherence of ultra-slow oscillation for all pairs of electrophysiologically-probed regions (PFC-Rs; PFC-Th; Rs-Th) 
computed for both baseline and CNO active time window in hM4Di and control animals (mean ± SEM).  
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Figure 3.16 A schematic illustration of our findings. Chemogenetically inhibiting neural activity in cortical node 
A (i.e. PFC) reduces high-frequency direct interactions between the manipulated region and its targets (B and 
C), concomitantly producing higher entrainment of residual spiking activity with ongoing global low-frequency 
oscillations (node C). Under the assumption (supported by our data) that rsfMRI interareal connectivity is 
primarily driven by low-frequency neural synchronization, this interpretative framework predicts both the 
observed increase in interareal slow and δ LFP coherence, and the corresponding increase in interareal rsfMRI 
connectivity.  

 

 

Figure 3.17 LFP δ-band phase difference between PFC and Rs cortices. Distribution of the difference in average 
instantaneous phase between PFC and Rs recording channels, before (baseline) and after CNO-administration 
(active) in control and hM4Di-expressing animals. Thick lines indicate the circular average across channels of 
the phase difference for baseline (blue) and active (red) phase, respectively.  
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3.4 Discussion 

 Here we combine neural perturbations and mouse rsfMRI to investigate how rsfMRI 

topography reconfigures in response to targeted cortical inactivation. We report that chronic and 

acute neural inactivation of the mouse PFC can counterintuitively increase rsfMRI connectivity with 

DMN targets directly innervated by the inhibited area. Electrophysiological investigations revealed 

that chemogenetic inactivation of the PFC preferentially and robustly suppresses the firing activity 

that is not phased locked to highly excitable peaks of ongoing slow-oscillatory rhythms, leading to 

increased slow and δ band power, and enhanced interareal low-frequency coherence. These 

observations argue against a neural-independent origin for the observed overconnectivity, and 

implicate low-frequency neural rhythms in the establishment of the observed rsfMRI 

overconnectivity.  

While critically shaped and constrained by underlying axonal connectivity (Coletta et al., 2020; 

Hagmann et al., 2008; Z. Wang et al., 2013), spatiotemporal correlations in spontaneous rsfMRI 

activity can dynamically reconfigure in response to local perturbations. In-depth investigations of the 

reconfiguration patterns resulting from regional suppression of neural activity are of special interest. 

These allow for a targeted deconstruction of rsfMRI coupling and may offer opportunities to 

mechanistically interpret aberrant rsfMRI connectivity patterns in neurological conditions 

characterized by loss of cortical function (Alstott et al., 2009; Friston & Büchel, 2004; Grayson et al., 

2016). Leveraging the recent implementations of chemo-fMRI in the mouse (Giorgi et al., 2017), we 

causally probed how neural suppression of cortical activity affects brain-wide rsfMRI coupling. In 

contrast to theoretical (Alstott et al., 2009) and experimental (Grayson et al., 2016) evidence 

predicting that regional inactivation of a neural node would result in reduced functional 

synchronization with its direct anatomical targets, we found that both chronic and acute inhibition 

of the PFC can counterintuitively increase rsfMRI connectivity within thalamo-cortical substrates of 

the mouse DMN.  

Our results advance our understanding of the principles underlying brain-wide rsfMRI 

coupling in two directions. First, we provide causal evidence that regional suppressions of brain 

activity does not necessarily lead to reduced neural and functional coupling between the inactivated 

area and its direct anatomical projection targets, but can result in increased rsfMRI connectivity via 

enhanced, less-localized slow oscillatory coherence. These observations point at a highly dynamic 

and non-monotonic relationship between structural and functional connectivity, underscoring a 
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critical contribution of remote sources of large-scale neural covariation (e.g. δ and slow oscillations 

(He et al., 2008; Pan et al., 2013)) to the establishment of interareal rsfMRI coupling. This view is in 

keeping with correlational evidence of a dissociation between rsfMRI connectivity and underlying 

anatomical connections, such in the case of acallosal brains in which preserved bi-hemispheric 

connectivity has been repeatedly observed (O’Reilly et al., 2013; Sforazzini et al., 2016; Tyszka et al., 

2011). It should be emphasized here that these results should not be intended as a refutation of the 

structural foundations of rsfMRI connectivity, but rather the basis of an updated framework in which 

reciprocal interareal rsfMRI coupling can be strongly biased, or even overridden, by slow 

synchronized input from global rhythm generators.  

Second, our results also provide a novel reference framework for the interpretation and 

reverse engineering of rsfMRI overconnectivity observed in brain pathology, especially in 

degenerative or neurological states characterized by rsfMRI overconnectivity. Although sometimes 

compounded by pathophysiological rearrangements in synaptic activity (Busche & Konnerth, 2016), 

observations of unexpected early-stage increases in functional connectivity in degenerative or 

neurological conditions characterized by loss of or reduced cortical function such as Alzheimer’s 

disease or stroke have been speculatively conceptualized as the result of compensatory rerouting of 

signal propagation along indirect structural paths, a neuroadaptive strategy aimed at maintaining task 

performance (Hillary & Grafman, 2017; Pusil et al., 2019; Siegel et al., 2016). Our findings offer an 

alternative, network-level physiological mechanism for these clinical observations, suggesting that 

rsfMRI overconnectivity may reflect reduced high frequency cortical activity of more local origin, and 

consequently enhanced phase locking of residual firing to the highly excitable phases of global low-

frequency rhythms generated in subcortical modulatory centers (Reimann & Niendorf, 2020; Safaai 

et al., 2015) and/or reflecting cortical-subcortical loops (Gent et al., 2018). EEG and MEG studies in 

neurological populations are consistent with this hypothesis, as rsfMRI overconnectivity and robust 

δ hyper-synchronization have been previously observed ipsilaterally to lesioned areas in stroke 

(Dubovik et al., 2012; Siegel et al., 2016). Similar findings have been reported in Alzheimer’s disease 

patients, in which this effect appears to be especially prominent in polymodal cortical areas (Huth et 

al., 2012; Ranasinghe et al., 2020). Within such a framework, functional impairments in cortical 

activity following degenerative pathology could manifest as hyper-synchronization during pre-

disease states, eventually reverting to hypotrophy-associated under-connectivity at advanced stages 

of brain pathology. 
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While a neural mass phenomenon like interareal rsfMRI coupling cannot be mechanistically dissected 

into discrete circuital elements, our observation of foci of overconnectivity in polymodal thalamic 

areas and the increased synchronization of these with larger cortical territories is intriguing, as it 

points at a putative involvement of higher order thalamic relay in the generation (or propagation) of 

the observed overconnectivity. This hypothesis would be consistent with the observation that full 

expression of δ and slow oscillatory activity requires thalamic participation (David et al., 2013; Hughes 

et al., 2002), and with recent evidence pointing at the presence of a prefrontal-thalamic loop involved 

in the generation and propagation of δ synchronization (Gent et al., 2018). However, other 

modulatory mechanisms (Liu et al., 2018; Safaai et al., 2015) or subcortical substrates (Narikiyo et al., 

2020) may similarly (or alternatively) play a role in the observed overconnectivity, and the 

identification of neural generators of rsfMRI coupling and their involvement in the reconfiguration of 

rsfMRI topography in response to local perturbations remain an open issue.   

The observed increases in slow and δ band coherence upon inhibition of the PFC is in excellent 

agreement with previous reports of a robust association between spontaneous fMRI activity and slow 

oscillatory activity (Chan et al., 2017; He et al., 2008; Lu et al., 2007, 2016; Neuner et al., 2014; Pan 

et al., 2013; Liang Wang et al., 2012). Our findings corroborate and expand these investigations by 

showing that reconfiguration of rsfMRI connectivity in response to local cortical inactivation is 

supported by increased interareal slow oscillatory coherence, a phenomenon reflecting DREADD-

induced reduction of high frequency firing, and concomitantly increased phase locking of residual 

spiking activity with ongoing global low-frequency oscillations. Recent work has linked ultra-slow 

(~0.1 Hz) variation in gamma-band amplitude to the vasomotor activity underlying intrinsic rsfMRI 

connectivity (Mateo et al., 2017; Nir et al., 2008), suggesting that this rhythm may serve as a possible 

primary generator of interareal rsfMRI coupling. Interestingly, while we found evidence of ultra-slow 

ϒ envelope coherence across functionally connected areas under basal conditions (Fig. 3.15c), the 

corresponding coherence increases upon chemogenetic manipulations were very small and did not 

correlate with corresponding pairwise rsfMRI overconnectivity. This finding suggests that, under the 

conditions of our manipulations, rsfMRI overconnectivity is most plausibly explained by increased 

canonical band (e.g. δ) low frequency inter-areal coherence.  

Although the light sedation protocol used in our measurements enhances slow oscillatory rhythms 

(Franks, 2008), such a brain state is unlikely to be the primary reason for our observation of rsfMRI 

overconnectivity. Supporting this notion, increased rsfMRI connectivity between homotopic cortical 
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regions has been observed in awake humans upon inhibitory transcranial magnetic stimulation (TMS) 

of the primary motor cortex (Strens et al., 2002; Watanabe et al., 2014). Analgously increased rsfMRI 

overconnectivity and δ hyper-synchronization have also been observed patients with stroke and in 

early stage Alzheimer’s disease imaged in conscious conditions (Dubovik et al., 2012; Huth et al., 

2012; Ranasinghe et al., 2020; Siegel et al., 2016). Given the highly dynamic nature of rsfMRI network 

activity, the sign and neurophysiological signatures identified in this study could however conceivably 

be affected by arousal levels. In this respect, a recent report of rsfMRI underconnectivity after 

chemogenetic inhibition of the rat postero-dorsal cingulate cortex is of interest in the light of a 

possible high-arousal state of these awake, restrained animals (Tu et al., 2020). While the lack of 

electrophysiological recordings in this study prevents a direct comparison with our findings, high-

arousal conditions are characterized by a robust shift towards high frequency LFP activity and a 

possibly dominant contribution of direct feedforward interactions to interareal communication. 

Under these conditions, the synchronizing contribution of slow oscillatory activity may thus be largely 

reduced, and chemogenetic inhibition could thus produce qualitatively different effects. As robust 

methods for mapping rsfMRI activity in awake mice are becoming available (Gutierrez-Barragan et 

al., 2022), systematic investigations of the effect of DREADD inhibition as a function of arousal state 

may help probe the plausibility of this model. 

Interestingly, TMS investigations (Watanabe et al., 2014)also show that excitatory pulse  stimulations 

may produce rsfMRI de-synchronization, pointing at a possible general, inverse relationship between 

local cortical activity and interareal rsfMRI coupling. An analogous relationship might also be present 

in the mouse because, reconstituting the results of our control experiments, decreased rsfMRI 

connectivity has been recently observed with excitatory DREADD stimulation of somato-motor areas 

in lightly anesthetized animals (Markicevic et al., 2020). This relationship however requires further 

corroboration, as KORD-based chemogenetic inhibition of the cingulate cortex was instead reported 

by others to produce rsfMRI underconnectivity in anesthetized mice (Peeters et al., 2020). These 

inconsistencies reveal the critical need to couple perturbational rsfMRI studies with 

electrophysiological recordings to confirm the effect of the designated manipulation,  and relate 

changes in rsfMRI connectivity to underlying neural rhythms. 

A strength of our approach is the use of translationally-relevant fMRI-based readouts enabling a 

possible extrapolation of experimental findings to analogous human research. However, some 

limitations need to be recognized when assessing the generalizability of our results across species 
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and conditions. First, the magnitude and direction of rsfMRI connectivity produced by neuronal 

inhibition could be manipulation specific (Wiegert et al., 2017), an effect that in the case of 

chemogenetics might also be compounded by possible off-target effects of commonly used 

chemogenetic actuators (Gomez et al., 2017). By employing (unlike others, Grayson et al., 2016; 

Peeters et al., 2020; Tu et al., 2020) a design in which CNO is administered under all conditions to all 

experimental groups, we were able to rigorously control any confounding effect of this actuator via 

a direct contrast of CNO-treated control and DREADD-expressing animals. As a result, the effects we 

report in the manuscript are to be attributed to the sole DREADD activation. The observation that 

chronic inhibition with Kir2.1 reconstitutes the overconnectivity obtained under DREADD 

manipulation increases our confidence in the validity of our mechanistic inferences. Second, it should 

be emphasized that the mechanisms that we report here may not be necessarily applicable to awake, 

behaving conditions, as task-dependent cognitive and sensory processing may strongly and 

dynamically bias brain rhythms and interregional coupling beyond what could be inferred in the 

resting, sedated brain. This aspect however does not diminish the translational impact of our findings, 

owing to the prominent use of resting-state fMRI to map functional network activity and our current 

inability to back-translate rsfMRI signatures of brain dysfunction into physiologically interpretable 

events.  

In conclusion, the present work provides causal evidence that inhibition of a cortical region can lead 

to counterintuitively increased patterns of rsfMRI connectivity, an effect mediated by increased 

interareal slow-frequency coherence. These findings point at a non-monotonic relationship between 

regional cortical activity and network-wide rsfMRI connectivity, and define novel testable network-

level mechanisms for the emergence of rsfMRI overconnectivity in clinical conditions characterized 

by loss of cortical function. 
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Chapter 4: General discussion  

This chapter offers a general discussion of the results described above, in the broader context of 

some ongoing unpublished work which I briefly discuss here, and the results of the following 

manuscript I contributed to:  

Trakoshis S, Martínez-Cañada P, Rocchi F, Canella C, You W, Chakrabarti B, Ruigrok AN, Bullmore ET, 

Suckling J, Markicevic M, Zerbi V, Baron-Cohen S, Gozzi A, Lai MC, Panzeri S, Lombardo MV. (2020). 

Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men 

versus women eLife. 2020; 9. 0/08/05. 

A full version of the article is available in Appendix I, appended to this thesis  (page 92). 

 

4.1 Towards physiological decoding of rsfMRI dysconnectivity? 

The results illustrated in chapter 3 show that sustained neural inhibition of a cortical area can 

lead to rsfMRI overconnectivity between the manipulated area and some of its direct axonal targets. 

Electrophysiological investigations revealed that this effect is associated with increased coherence in 

low-frequency oscillations (0.1 - 4 Hz), hence uncovering a possible mechanistic link between 

increased low-frequency neural dynamics and macroscale rsfMRI over synchronization. This finding 

advances our understanding of the basic foundational mechanisms linking inter-areal patterns of 

brain activity to fMRI-based metrics of regional communication widely used in cognitive 

neuroscience.  

In-depth investigations of how regional suppression of neural activity reverberates on the 

spatiotemporal structure of spontaneous rsfMRI activity are of equal (if not greater) interest for the 

clinical interpretation of neural patterns of overconnectivity in brain disorders. Specifically, our 

results show how the combined use of chemo-fMRI and multielectrode investigations allow for a 

targeted deconstruction of rsfMRI coupling, which in turn offer the opportunities to mechanistically 

interpret and physiologically decode aberrant rsfMRI connectivity patterns in clinical conditions. We 

extensively discussed in the previous chapter some of the direct implications of this finding for 

neurological disorders characterized by loss of cortical activity like stroke or Alzheimer’s disease.  

Importantly, our results may also allow us to make testable predictions about the network 

effects of neural manipulations that increase (rather than inhibit) regional activity, hence offering 

opportunities to physiologically “decode” atypical patterns of functional connectivity. Research along 

this direction might have very important translational relevance, as increased excitability and 

elevated excitatory/inhibitory imbalance (E/I imbalance) have been largely implicated in the 
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etiopathology of ASD and other developmental disorders, in which atypical patterns of functional 

connectivity have been repeatedly described (discussed in sections 1.5.2). Specifically, our result 

suggests that increased regional excitability (as opposed to regional inhibition) would lead to an fMRI 

network desynchronization, a phenotype already observed in multiple models of ASD characterized 

by E/I imbalance (Bertero et al., 2018; Pagani et al., 2019) and in clinical populations. In the next 

section, I briefly present the results of ongoing, unpublished investigations aimed to formally test 

these hypotheses. Given the preliminary nature of these results, and in the interest of keeping my 

thesis compact, I have decided to briefly mention our findings as part of a general discussion rather 

than reporting them formally in a dedicated chapter. 

 

4.2 Increased E/I imbalance in the mouse PFC disrupts rsfMRI connectivity 

In chapter 3, we showed that PFC inhibition leads to rsfMRI overconnectivity. Following this line of 

reasoning, we hypothesized that increasing the PFC excitatory neurons’ excitability would result in 

desynchronization between the areas of the DMN. Based on this assumption, we designed a proof-

of-concept chemogenetic study aimed to increase the excitability of pyramidal neurons in the PFC. 

This investigation, which was part of a follow-up line of research, was eventually included in the work 

described in Chapter 3, as a response to a reviewer’s question (depicted in Figure 3.13, methods 

section 3.2). However, the original goal of this initial study was to generate a large and unspecific 

increase in regional E/I in PFC, a manipulation that in previous seminal work from Yizhar et al. (2011) 

was found to produce behavioral alterations of relevance for developmental disorders.  To remotely 

increase fronto-cortical excitability, we bilaterally transduced the PFC with the excitatory hM3Dq 

DREADD using a calmodulin-kinase-alfa promoter, a strategy enabling reliable targeting of pyramidal 

neurons (X. Wang et al., 2013; Watakabe et al., 2015). Control (sham injected) and hM3Dq-expressing 

mice were then subjected to rsfMRI scanning or electrophysiological recordings before and after 

intravenous administration of the DREADD activator clozapine-N-oxide (CNO). Recapitulating our 

prior work, to account for CNO's slow pharmacokinetic profile in the mouse brain (Jendryka et al., 

2019; Trakoshis et al., 2020), all imaging and electrophysiological recordings were acquired using a 

combination of medetomidine and low-dose isoflurane (Grandjean et al., 2020; Lee et al., 2021) and 

divided into three time windows: a pre-CNO injection baseline, a transitory (0 -15 min) drug-

equilibration period, and an active time window (15-35 min post-CNO injection) to which all our 

rsfMRI analyses refer to.  
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To test the efficacy of the employed manipulation, we initially performed electrophysiological 

recordings in the PFC of hM3Dq-transduced or control mice before and after CNO injection, under 

the same experimental settings employed in rsfMRI imaging, and following the procedure described 

in Chapter 3. As expected, CNO administration robustly increased firing rate in the PFC of hM3Dq 

expressing mice, but not in control subjects (Fig. 4.1a, p<0.001, Wilcoxon rank-sum tests). We next 

evaluated local field potential (LFP) traces acquired from the same set of recordings. Band-specific 

spectral analysis of LFP recordings revealed in hM3Dq-transduced animals a robust increase in β- and 

ƴ-band power after CNO administration with respect to CNO-treated controls, an effect consistent 

with the observed firing rate increase (q<0.001 FDR corrected, Wilcoxon rank-sum tests, Fig. 4.1b). 

Notably, the LFP power increase in these bands was also accompanied by a reduction in all the other 

frequencies in DREADD-expressing subjects, an effect that was quantitively prominent in the delta 

and slow bands (Fig. 4.1b, q<0.001, Wilcoxon rank-sum tests, FDR corrected). In the light of our 

results in chapter 3, these results document that, according to our predictions, this manipulation 

effectively reverses the neural signature produced by chemogenetic inhibition in the PFC, leading to 

locally increased firing activity and possibly reduced synchronization with slow global rhythms 

(Einevoll et al., 2013; Logothetis, 2008). To verify whether this effect would produce fMRI 

desynchronization (i.e. rsfMRI hypoconnectivity), we next compared rsfMRI connectivity patterns in 

hM3Dq transduced and control mice during the active phase upon acute CNO administration. 

Interestingly, voxel-wise mapping revealed dramatically reduced rsfMRI connectivity between the 

PFC and its target regions within the DMN in DREADD-expressing mice (t-test, p < 0.05, t > 2, FWE 

cluster-corrected, p < 0.05; Fig. 4.1c). This effect was corroborated by regional quantifications of 

rsfMRI underconnectivity along the cingulate and retrosplenial axis of the DMN (two-way repeated-

measures ANOVA, F1,35 = 18.25; p = 0.001, Fig. 4.1d). This result is important, as it reveals a putative 

predictive framework whereby neural inhibition produces over synchronization of the silenced region 

with ongoing global rhythms, whilst increased excitability shifts LFP oscillations to the higher 

frequency, possibly desynchronizing them with ongoing slower rhythms. We are now carrying out 

multi-electrode investigations to test the validity of this notion. Importantly, at the brain-wide level, 

our manipulation induced patterns of desynchronization between the areas of the DMN, hence 

establishing a putative unifying mechanistic link between E/I imbalance and impaired functional 

connectivity.  

To further corroborate this notion and extend it to behavioral domains of relevance for 

developmental disorders, we next carried out behavioral investigations of social activity in the same 
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mice used for brain imaging using a three-chamber sociability test. This study was prompted by 

previous work convincingly linking optogenetically induced E/I imbalance in the mouse PFC to socio-

behavioral impairments reminiscent of ASD-like core symptoms (Selimbeyoglu et al., 2017; Yizhar et 

al., 2011).  To replicate the experimental conditions upon which our manipulation exertd their 

maximal effects, behavioral tests were carried out 30 min after CNO administration. As expected, 

sham mice exhibited social preference, i.e. they spent significantly more time sniffing a stimulus 

mouse compared to an empty cup (Fig. 4.1e),. By contrast, social preference in hM3Dq-expressing 

mice was strongly attenuated (paired t-test, p = 0.07 Fig. 4.1e). In keeping with this, a comparison of 

the corresponding metric of sociability (social index, Cutuli et al., 2016) revealed a robust reduction 

in sociability in DREADD-expressing mice compared to control animals  (t-test, p = 0.009 Fig. 4.1f). 

Taken together, these results suggest that behaviorally-relevant disruption of E/I balance results in 

largely disrupted cortico-cortical fMRI connectivity. More broadly, these findings also suggest that 

the rsfMRI connectivity can be inversely (and bidirectionally) related to the regional patterns of brain 

activity, corroborating a non-monotonic nature of this phenomenon. 
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Figure 4.1 Chemogenetic excitation of excitatory neurons. (a) Increased firing rate in hM3Dq‐expressing mice compared to 
controls. Wilcoxon rank-sum tests, *** p<0.001. (b) Quantification of corresponding band‐specific power spectrum 
changes upon CNO injection Wilcoxon rank-sum tests, FDR corrected, *** q<0.001. (c) Between-group PFC seed-based 
connectivity difference map in mice expressing AAV8-CamkII-hM3Dq (n = 20) or subjected to sham viral injections (control, 
n = 17) during the CNO active phase. (d) Antero-posterior profiling of rsfMRI connectivity of the PFC along the midline axis 
of the mouse DMN in the two cohorts. §§ p<0.01, 2-way ANOVA repeated measurements, group effect. (e) Result from a 
three-chamber sociability test (time spent sniffing, (controls n = 31, CamKII::hM3Dq expressing mice, n = 31). (f) 
Quantification of the results in (e) in terms of sociability index (i.e. time spent sniffing normalized over the total time spent 
sniffing). *** p < 0.001, ** p < 0.01 Two-tailed Student t-test. Barplots: data are plotted as mean ± SEM. Violin plots: thick 
lines represent the median, dashed lines indicate 25th and 75th percentile, respectively. Cg: cingulate cortex; PFC: prefrontal 
cortex, RS: retrosplenial cortex; Th: Thalamus. Panels a-d has been reproduced from previous figure 3.13 e-h. 
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Based on the evidence of inhibitory interneuron dysfunction in human developmental 

disorders (Marín, 2012; Yizhar et al., 2011), we next investigated whether a reduced inhibitory activity 

would produce a similar neural response, functional connectivity, and behavioral effects. To this aim, 

we bilaterally injected a floxed version of hM4Di inhibitory DREADD in a mouse line expressing the 

Cre-recombinase construct in fast/spiking parvalbumin PV+ neurons (Cardin et al., 2009; Markicevic 

et al., 2018). Littermate mice undergoing sham injections were used as control animals. To test the 

presence of increased excitability upon chemogenetic inhibition of PV+ interneurons, we performed 

electrophysiological recordings in the PFC of hM4Di-transduced animals before and after CNO 

administration. During the DREADD active phase, hM4Di-expressing mice showed a moderate 

increase in firing rate compared to sham littermates (Fig. 4.2a, p= 0.017, Wilcoxon rank-sum test). 

Subsequent LFP analyses showed that PV+ neuron inhibition was associated with increased high-

frequency LFP power after CNO administration (Wilcoxon rank-sum test, FDR corrected, θ q < 0.001; 

α q < 0.0; β q < 0.0 01; ƴ  q < 0.01). However, unlike CamkII::hM3Dq mice, in PV::hM3Di mice delta 

activity was found to be increased, and no alteration in slow band power was observed  (Fig. 4.2b, 

Wilcoxon rank-sum test, FDR corrected, slow q = 0.063, δ q < 0.001). Interestingly, subsequent rsfMRI 

connectivity mapping revealed functional overconnectivity between PFC and cortical terminals of the 

DMN in PV::hM4Di expressing mice compared to control animals (t-test, p < 0.05, t > 2, FWE cluster-

corrected, p < 0.05; Fig. 4.2c; two-way repeated-measures ANOVA, F1,31 = 8.022; p = 0.008, Fig. 

4.2d). This effect appeared to recapitulate the connectivity signature observed in CamkII::hM3Dq 

mice, although the strength and extension of the mapped dysconnectivity were, in this case, largely 

reduced. A replication of socio-behavioral testing in these mice showed the presence of mildly 

reduced social preference DREADD-expressing mice upon administration of CNO.  

Notwithstanding some (expected) differences in the neural signature associated with these 

two manipulations, the results we obtained are in excellent agreement, supporting the notion that 

E/I imbalance in the PFC results in disrupted brain-wide functional hypoconnectivity and reduced 

sociability, hence mechanistically linking some key endophenotypes that are largely investigated in 

human developmental disorders like ASD. Importantly, our results also represent an interesting 

extension of prior behavioral work obtained with optogenetics (Yizhar et al., 2011), suggesting that 

DREADD represents a valuable experimental platform enabling the induction of long-lasting 

manipulation of translational relevance for the study of brain disorders. As such, chemogenetic offers 

the opportunity to investigate these phenomena in longitudinal studies, for example, by probing the 

role of E/I imbalance in critical developmental periods. Our approach also allowed us to link 
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bidirectional manipulations of neural activity to functional connectivity as measured with rsfMRI, 

providing a multiscale characterization of brain connectivity that can help future decoding of brain 

disorders in the human population. In the next section, I will describe a first example of the possibility 

of using this approach to physiologically decode dysconnectivity signals and link them to E/I 

imbalance in human ASD. 
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Figure 4.2 Chemogenetic inhibition of PV+ interneurons. (a) Increased firing rate in PV::hM4Di mice upon CNO injection. 
Wilcoxon rank-sum tests, FDR corrected, * q<0.05. (b) Quantification of the corresponding band‐specific power spectrum 
changes in the PFC. Wilcoxon rank-sum tests, FDR corrected, *** q<0.001. (c) Between-group PFC seed-based connectivity 
difference maps revealed rsfMRI underconnectivity (blue)  in the DMN of PV::hM4Di expressing mice during the active CNO 
phase. PV::Cre mice were bilaterally injected with AAV9-hSyn-DIO-hM4Di (n = 16) or were subjected to sham injections 
(control, n = 17). (d) Antero-posterior profiling of rsfMRI connectivity of the PFC along the midline axis of the mouse DMN. 
(e) Time spent sniffing a social stimulus vs. an object in a three-chamber test for social cognition. Data measured during 
social preference trial in controls (n = 15) and PV::hM4Di expressing mice (n = 17). (f) The time spent sniffing has been 
normalized over the total time spent sniffing. Two-tailed Student t-test, * p < 0.05. Barplots: data are plotted as mean ± 
SEM. Violin plots: thick lines represent the median, dashed lines indicate 25th and 75th percentile, respectively. Cg: cingulate 
cortex; PFC: prefrontal cortex, RS: retrosplenial cortex. Panels a-d has been reproduced from previous figure 3.13 a-d. 
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4.3 Decoding E/I imbalance in human fMRI timeseries  

The results I presented so far provide insights into the link between E/I imbalance and rsfMRI 

connectivity alterations, as seen in animal models of ASD. But can these findings translate from 

animals to humans?  

A proof of concept demonstration of this possibility has been described in a collaborative 

project with the Lombardo and Panzeri labs at the IIT, which we published in 2020 (Trakoshis et al., 

2020). The goal of this project was to try and decode PFC-related E/I imbalance in fMRI signals from 

autistic patients by mapping a timeseries metric estimated from the rsfMRI BOLD signal called “Hurst” 

(H) exponent (Trakoshis et al., 2020). This metric is the exponent of the 1/f spectral power law 

depicting rsfMRI signal (as well as many other complex physiological timeseries such as EEG etc.). The 

Hurst exponent represents a measure of “long-term memory” of physiological timeseries (Wei et al., 

2013). High H values are thereby associated with so-called “persistent” (e.g., “slowly fluctuating”) 

timeseries, i.e., those in which an increase in values will most likely be followed by an increase in the 

short term,  and a decrease in values will most likely be followed by another decrease in the short 

term. By contrast, a low H value will be associated with timeseries with minimal or no temporal 

autocorrelation. Importantly, recent work has proposed that the exponent of the 1/f spectral power 

law reflects the extent of E/I imbalance (Gao et al., 2017). This suggests that neurophysiologically 

increased E/I ratio generates flatter 1/f slope driving H (as measured in BOLD fMRI) to be decreased.  

In our work, we used a bottom-up strategy, employing computational models of local 

neuronal microcircuitry, to predict how H in LFP and rsfMRI BOLD data will behave when the E/I 

balance is disrupted. Our modeling showed an inverse relationship between the H index and E/I ratio 

in simulated LFP and fMRI data (Fig. 4.3a), with higher excitability corresponding to a lower H index, 

meaning that signal originated by E/I imbalance affected area are more contaminated by noise and 

difficult to predict. This result also suggests that the Hurst exponent could be a good index to map 

underlying between-group differences in the E/I ratio as assessed with rsfMRI. Importantly, to test 

the in vivo predictive value of our computational modeling, we used the chemo-fMRI approach 

presented in the previous chapter to increase neurophysiological excitation (CamkII-hM3Dq) or 

inhibition of local activity (hSyn-hM4Di).  
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The obtained findings were fully consistent with in-silico predictions, showing that increased 

neuronal excitability (produced by CamkII::hM3Dq stimulation) resulted in a decrease in H (Fig. 4.3b), 

a value that does not change significantly when local activity is instead silenced. Notably, when we 

looked at human rsfMRI data acquired in typically developing controls and male and female patients 

with ASD, we observed a significant sex-diagnosis interaction in mPFC area A32 (corresponding to the 

medial prefrontal cortex in rodents). This effect was dominated by a lower Hurst exponent (indicative 

of increased E/I ratio) in male but not female patients. Interestingly, we also found that this 

parameter was linearly correlated with camouflaging score in women. This trait reflects the 

observation that women with autism are sometimes better at hiding (‘camouflaging’) their difficulties 

when socializing or communicating than men with autism (L. Hull et al., 2020; Lai et al., 2017). Our 

results suggest that the better a woman is at camouflaging her autism, the more her brain activity in 

this region resembled that of non-autistic women (Fig. 4.4e-f).  

From a more mechanistic standpoint, our results are important as they prove the feasibility 

of physiologically decoding rsfMRI signals via the establishments of translational links across species 

(i.e., rodents to humans), a critical aspect that can be leveraged to probe the predictive value of 

neurocomputational models and to mechanistically explain how regional perturbations affect the 

macroscale organization of the brain. This line of research represents a fundamental step towards a 

better understanding of human pathological phenotypes. 
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Figure 4.3 Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men 
versus women (a) H values are plotted as a function of g for two different firing rates of thalamic input (1.5 and 
2 spikes/second). The reference value of g (shown in previous studies to reproduce cortical data well) is 
represented by a dashed black line. (b) Changes in H in BOLD from prefrontal cortex (PFC) after real hM3Dq 
DREADD manipulation in mice. Individual gray lines indicate H for individual mice, while the colored lines 
indicate Baseline (pink), Transition (green), and Treatment (blue) periods of the experiment. (c) Venn diagram 
depicting the enrichment between autism-associated genes affecting excitatory neurons (Autism E-Genes) and 
DHT-sensitive genes. It also includes a heatmap of these genes whereby the color indicates z-normalized 
expression values. The column dendrogram clearly shows that all samples with DHT treatment are clustered 
separately from the control (DMSO) samples. Each row depicts the expression of a different gene. (d) t-statistic 
map from a whole-brain one-sample t-test on these DHT-sensitive and autism-associated genes in excitatory 
neurons. Results are thresholded at FDR q < 0.01. (e) H estimates from vMPFC (area p32) across males and 
females with and without autism. (f) shows the correlation between vMPFC H and behavioral camouflaging 
score in autistic males (orange) and females (blue). Figure and legend adapted from Trakoshis et al. (2020).  
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4.4 Limitations and Future Directions 

We covered some key limitations of our research in the discussion of our work in chapter 3. I 

will mention again here the fact that a key priority for this research is to probe the generalizability of 

our findings to other brain regions and neural substrates: are these relationships specific to the PFC 

(owing to its profuse innervation of arousal-related nuclei), or can they be generalized to other 

cortical regions? Recent work from Markicevic et al. (2018) showed that chemogenetic stimulation 

of sensory areas produced fMRI hypoconnectivity similar to that we mapped in the PFC, suggesting 

that these properties might possibly be extended to other areas. Further research is required to 

investigate these aspects. A second key area of high priority future investigations is research on the 

possible generalizability (or lack thereof) of our results to awake conditions. Our extrapolation of the 

H index across species (mouse, anesthesia; human awake) suggests the general principle we report 

here is likely to hold also in the awake resting brain. However, rigorous investigations are required to 

assess whether the described relationship is affected by arousal, and if so, how the underlying 

neuronal rhythms are affected. Finally, we are fully aware the possibility of physiologically decoding 

complex dysconnectivity patterns signals in clinical population is highly ambitious and possibly never 

fully attainable, owing to our poor understanding of the physiological cascade underlying fMRI 

connectivity, and the plethora of pathophysiological mechanisms that can confound and complicate 

the interpretation of rsfMRI signals in the diseased brain. Our research serves nonetheless as a first 

stepping stone towards the generation of physiologically meaningful models that can help generate 

clinically testable hypotheses about the origin and significance of brain dysconnectivity in brain 

disorders. 

In summary, the integration of modern approaches for modulating brain activity in the mouse 

represents a robust platform that will guide us toward a better understanding of the neurological 

basis of brain-wide functional coupling in health and disease. One of the primary open questions of 

modern systems neuroscience consists in how whole-brain macro-scale phenomena are influenced 

by micro-scale activity. In this regard, the emerging evidence of consistent large-scale network 

mapping in physiologically accessible species such as the mouse is extremely promising.  We think a 

bright future lies ahead for rsfMRI connectivity mapping in rodents owing to its power to bridge the 

explanatory gap between cellular/microscale neuro phenomena and large-scale neural dynamics. 

Specifically, our results show the power of chemo-fMRI (Giorgi et al., 2017) to enable a precise 

deconstruction and manipulation of steady-state network activity that can be critically used to 

physiologically decoded signatures of atypical connectivity. The findings presented in this thesis are 
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a striking illustration of this approach, showcasing a collection of novel (and somehow unexpected) 

insights that call into question the current understanding of functional connectivity. An exciting 

extension of this research platform is multi-site electrophysiological recordings to reveal the rhythms 

involved in guiding and shaping long-range functional dysconnectivity. Moreover, new awake rsfMRI 

protocols (Gutierrez-Barragan et al., 2022; Liang et al., 2015; Stenroos et al., 2018; Tu et al., 2020) 

will help probe the extension of our results to different brain states (i.e., anesthesia and awake 

conditions). Lastly, manipulating additional brain areas will probe the generalizability of our findings 

and might advance our understanding of the connectional atypicalities observed in ASD and other 

neuropsychiatric diseases.
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Abstract 

 

Excitation-inhibition (E:I) imbalance is theorized as an important pathophysiological mechanism in 
autism. Autism affects males more frequently than females and sex-related mechanisms (e.g., X-
linked genes, androgen hormones) can influence E:I balance. This suggests that E:I imbalance may 
affect autism differently in males versus females. With a combination of in-silico modeling and in-vivo 
chemogenetic manipulations in mice, we first show that a time-series metric estimated from fMRI 
BOLD signal, the Hurst exponent (H), can be an index for underlying change in the synaptic E:I ratio. 
In autism we find that H is reduced, indicating increased excitation, in the medial prefrontal cortex 
(MPFC) of autistic males but not females. Increasingly intact MPFC H is also associated with 
heightened ability to behaviorally camouflage social-communicative difficulties, but only in autistic 
females. This work suggests that H in BOLD can index synaptic E:I ratio and that E:I imbalance affects 
autistic males and females differently.  

 

 

Keywords:  autism; heterogeneity; excitation; inhibition; fMRI; Hurst exponent; DREADD; sex/gender; 
camouflaging 
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Excitation-inhibition (E:I) balance in the brain has been hypothesized to be atypical in many 
neuropsychiatric conditions1,2, including autism. Rubenstein and Merzenich originally suggested that 
some types of autism may be explained by an E:I imbalance that may lead to hyper-excitability in 
cortical circuitry and potentially enhanced levels of neuronal noise1. However, coming to a better 
understanding of how E:I balance is affected across a heterogeneous mixture of autistic individuals 
has proven to be challenging because of the limited availability of robust E:I biomarkers that are non-
invasive and applicable in humans and which can be measured on a large scale. A majority of the 
literature about E:I balance in autism extends from investigations of  prominent single gene 
mutations associated with autism and the animal model research around these genes2,3. This leaves 
a significant gap in evaluating the E:I theory on a larger majority of the autistic population. While no 
one theory can fully explain all individuals with an autism diagnosis4,5, the E:I imbalance theory may 
have utility for understanding subtypes of autistic individuals6–8.  

 

Sex/gender may be an important stratifier of relevance for highlighting E:I imbalance 
subtypes9,10. Many highly penetrant autism-associated genes are located on the sex chromosomes 
(e.g., FMR1, MECP2, NLGN3, GABRA3, ARX, SYN1) and are known to lead to pathophysiology 
implicating E:I dysregulation1,11,12. Other genes playing important roles in the balance between 
excitation and inhibition in the brain (e.g., MEF2C, GRIK2, GRIA1, SCN3A, SCN9A, NPTX2) are highly 
sensitive to androgens in human neuronal stem cells and are highly expressed in ‘social brain’ circuitry 
such as the default mode network, and in particular, the medial prefrontal cortex (MPFC)13. 
Optogenetic stimulation to enhance excitation in mouse MPFC also results in changes in social 
behavior14,15. These results hint that sex-relevant biological mechanisms affect E:I balance and that 
key social brain regions such as MPFC may be of particular importance for explaining how E:I 
imbalance affects social behavior. Sex/gender heterogeneity also leads to differing clinical 
presentations and compensatory mechanisms in autism that may depend on E:I balance in MPFC. It 
is known that many cognitively able adult autistic women engage in camouflaging behaviors that tend 
to compensate or mask their social-communicative difficulties moreso than autistic men16–18. Prior 
work has shown that whereas autistic males show reduced ventral MPFC (vMPFC) self-representation 
response, autistic females show intact vMPFC self-representation. Furthermore, the degree to which 
vMPFC shows intact self-representation response in autistic females is associated with enhanced 
ability to camouflage19. If E:I imbalance asymmetrically affects vMPFC function in males versus 
females, this could help explain differential camouflaging in adult autistic females.   

 

To better understand sex-specific E:I imbalance in autism we need better neuroimaging 
biomarkers that index underlying synaptic E:I mechanisms and which can be deployed on a large-
scale for in-vivo investigation in deeply phenotyped cohorts. Here we pursue the idea that spectral 
properties of neural time-series data (e.g., local field potentials (LFP) or blood oxygen level dependent 
(BOLD) signal) could be used to isolate such biomarkers. It has been long known that LFP and resting 
state fMRI (rsfMRI) data exhibits rich spectral properties, with power decreasing as function of 
frequency20–24. Models of neural networks have reported that the E:I ratio has profound effects on 
the spectral shape of electrophysiological activity25–27. Recent work with simplified models has 
proposed that the exponent of the 1/f spectral power law, an index closely related to H, reflects the 
extent of E:I imbalance28. This suggest that neurophysiologically heightened E:I ratio generates flatter 
1/f slope in LFP data and this could drive H (as measured in BOLD) to be decreased. In past work we 
have shown that a metric related to 1/f slope, the Hurst exponent (H), is atypically decreased in 
rsfMRI data of adult autistic males, particularly for social brain areas like MPFC29. H is statistically 
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relevant for the concept of ‘neural noise’ since lower levels of H can be interpreted as closer to what 
would be expected of a completely noisy random signal (e.g., white noise produces an H = 0.5). 
Related to H and long-memory characteristics of the rsfMRI time-series, prior work has also shown 
case-control differences in the intrinsic neural timescale in autism (e.g., magnitude of temporal 
autocorrelation)30. However, these prior studies examine primarily male-dominated samples and 
thus cannot shed insight into sex-related heterogeneity in autism. 

 

In this work we aim to better understand how E:I imbalance may differentially affect autistic 
males and females. To achieve this aim, we first took a bottom-up approach by using in-silico (i.e. 
computational) models of local neuronal microcircuitry to make predictions about how H and 1/f 
slope in local field potentials (LFP) and rsfMRI data may behave when there are underlying changes 
in E:I balance. Importantly, our approach takes a major step forward from prior work28 by utilizing a 
model that includes interactions within and between excitatory and inhibitory neuronal populations. 
Next, our in-silico predictions are then tested in-vivo with a combination of rsfMRI and experimental 
manipulations in mice that either increase neurophysiological excitation or that silence the local 
activity in the network. Chemogenetic (i.e. designer receptors exclusively activated by designer drugs; 
DREADD) or optogenetic manipulations are optimally suited to these purposes, owing to the 
possibility of enabling remote control of neuronal excitability with cell-type and regional 
specificity14,31. Manipulations of neuronal activity like these in animals are key for two reasons. First, 
they allow for experimental in-vivo confirmation of in-silico predictions. Second, such work is a key 
translational link across species (i.e. rodents to humans), given the common use of neuroimaging 
readouts from rsfMRI32. At the genomic level we then examine what cell types could possibly underlie 
sex-related heterogeneity in E:I imbalance. Finally, we then turn to the human rsfMRI data to show 
how E:I imbalance may differ amongst autistic males and females and how such mechanisms may 
explain individual differences in camouflaging behavior. 

 

Results 

 

Analysis of E:I balance in simulated LFPs from a recurrent network model  

 

In a bottom-up fashion, we first worked to identify potential biomarkers of E:I imbalance from 
neural time-series data such as local field potentials (LFPs). Motivating our in-silico modeling of E:I 
effects on LFP and BOLD data, we note prior work by Gao and colleagues28. This prior work simulated 
LFP time-series from non-interacting excitatory and inhibitory neuronal populations (Figure 1 – figure 
supplement 1A) and showed that spectral properties such as the 1/f slope flatten with increasing E:I 
ratio (Figure 1 – figure supplement 1B). Given the relationship between 1/f slope and H33, we show 
within this modeling approach that as E:I ratio increases, H decreases (Figure 1 – figure supplement 
1C). However, a limitation of this prior work is that it does not include interactions between excitatory 
and inhibitory populations nor does it allow for recurrent connections within such populations. 

 

To address these limitations, we developed a more biologically plausible recurrent network 
model of interacting excitatory and inhibitory integrate-and-fire neuronal populations that receive 
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external inputs (both a sensory driven thalamic input and a sensory unrelated intracortical input) 
(Figure 1A; see Methods for more details). From this model, we computed the network’s LFP as the 
sum of absolute values of all synaptic currents. The absolute value is taken because AMPA synapses 
are usually apical and GABA synapse are peri-somatic and thus their dipoles sum with the same sign 
along dendrites26,34,35. We computed LFP summing presynaptic currents from both external inputs 
and recurrent interactions, as real LFPs capture both sources of synaptic activity36. We have 
extensively validated this method of computing LFPs from integrate-and-fire networks in previous 
work on both real cortical data and simulations with networks of realistically-shaped 3D neurons and 
shown that it works better than when using alternatives such as the sum of simulated membrane 
potentials, the signed sum of synaptic currents or a time integration of the spike rate26,37. In this in-
silico network, we manipulated the E:I ratio by independently varying the strengths of the inhibitory 
(𝑔𝐼) and excitatory (𝑔𝐸) synaptic conductances. We called g the relative ratio between inhibitory and 
excitatory conductances (𝑔 = 𝑔𝐼/𝑔𝐸). We report simulation results for two levels of strength of 
thalamic input (𝜐0 = 1.5 spikes/second and 𝜐0 = 2 spikes/second), and we verified that our results 
hold qualitatively for a wider range of input levels (1.5 to 4 spikes/second).  

 

Figures 1B-C show examples of LFP time-series and power spectral densities (PSDs) for two 
values of 𝑔, one within an excitation-dominated regime (𝑔 = 5.6) and the other within an inhibition-
dominated regime (𝑔 = 14.8). The spectral profiles (Figure 1C) display two different regions of 
frequencies with different spectral properties: a region of  steeper negative 1/f slopes at higher 
frequencies (> 30 Hz) and a region of shallower (small negative and sometimes positive) slopes at low 
frequencies (< 30 Hz). Thus, we calculated slopes for the low- and high-frequency regions with 
piecewise regressions of log power predicted by log frequency. Slopes from the low-frequency 
(Figure 1D) and high-frequency region (Figure 1E) increase when 𝑔 is reduced (i.e. E:I ratio 
augmented). This means that lower values of 𝑔 correspond to faster spectra with relatively more 
power at higher frequencies. Changes in slopes are more prominent in the excitation-dominated 
region where 𝑔 is smaller (that is, E:I ratio is shifted in favor of E) than the reference value (𝑔 = 11.3), 
which has been shown to be a plausible reference value that reproduces cortical power spectra 
well26,34,37–40. An increase in 𝑔 beyond this reference value (shifting the E:I balance towards stronger 
inhibition) had a weaker effect on slopes. Similar results were obtained when quantifying 1/f slope 
using the FOOOF algorithm41 (Figure 1 – figure supplement 2), indicating that slopes are not biased 
by the particular piecewise linear fit procedure. Next, we computed H from the same simulated LFPs. 
As expected, H decreases with decreasing 𝑔 (i.e. increasing E:I ratio), but only when 𝑔 is below the 
baseline reference value (Figure 1F). These results clearly indicate that, in a biologically plausible 
computational model of local cortical microcircuitry including recurrent connections between 
excitatory and inhibitory neuronal populations, changes in synaptic E:I ratio are reflected by and thus 
could be inferred from the overall LFP readout of 1/f slope or H. 
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Figure 1: Predictions from a recurrent network model of how the low- and high-frequency slopes of the 
LFP power spectrum and H change with the variation in relative ratio of inhibitory and excitatory 
synaptic conductances. Panel A shows a sketch of the point-neuron network that includes recurrent 
connections between two types of populations: excitatory cells (E) and inhibitory cells (I). Each 
population receives two types of external inputs: intracortical activity and thalamic stimulation. Panels 
B and C show examples of normalized LFP times series and their corresponding PSDs generated for 
two different ratios between inhibitory and excitatory conductances (𝑔 = 𝑔𝐼/𝑔𝐸). The low- and high-
frequency slopes of the piecewise regression lines that fit the log-log plot of the LFP PSDs are computed 
over two different frequency ranges (1-30 Hz for the low-frequency slope and 30 - 100 Hz for the high-
frequency slope). The relationship between low-frequency slopes (panel D), high-frequency slopes 
(panel E) and H values (panel F) are plotted as a function of 𝑔 for two different firing rates of thalamic 
input (1.5 and 2 spikes/second). The reference value of 𝑔 (which has shown in previous studies to 
reproduce cortical data well) is represented by a dashed black line. In panel G and H, we show H values 
in 3 different groups of 𝑔 (high, medium and low 𝑔), with the same number of samples in each group. 

 

Simulated BOLD signal tracks with changes in E:I ratio and correlates selectively with LFP power bands 

 

Given that E:I ratio in LFP data is related to 1/f slope and H, we next asked whether simulated 
fMRI BOLD signal from the recurrent model would also show similar relationships. To answer this 
question, we first had to simulate BOLD data from the LFP data generated from the recurrent model. 
Our approach to simulating BOLD (see Methods and Figure 2 – figure supplement 1 for how BOLD 
was simulated from LFP), captures several key characteristics about the empirical relationship 
between LFP and BOLD. Studies with simultaneous LFP and BOLD measured in animals have shown 
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that although BOLD signal correlates with both LFPs and spikes, it correlates more strongly with the 
LFP than with spikes42–46. Further studies with simultaneous LFP and BOLD measured in non-human 
primates42,43,47 have considered the relationship between frequency-resolved LFPs and BOLD and 
indicate that LFP power shows time-lagged correlations with the time course of BOLD signal and that 
different frequency bands vary in how they correlate with measured BOLD signal. In particular, 
gamma band frequencies tend to show the strongest correlation between LFP power and BOLD 
signal. Frequency dependency of the EEG-BOLD relationship, with prominent predictive power of the 
gamma band, is also reported in humans48. Remarkably, these empirical observations are 
recapitulated with simulated LFP and BOLD data from the recurrent model. Figure 2A shows time-
lagged correlations between time-dependent LFP power and BOLD. Figure 2B shows that all 
considered LFP frequency bands (e.g., alpha, beta, gamma) correlate with BOLD, but with the gamma 
band showing the strongest correlations. Thus, our method for simulating BOLD from recurrent 
model LFP data retains key empirical relationships observed between real LFP power and BOLD. 
Simulating BOLD with a simple hemodynamic response function (HRF) convolution of the LFP would 
have not respected the patterns of correlations between LFP power and BOLD observed in empirical 
data (i.e. the relative increase in correlation between the gamma band and BOLD with respect to 
other bands; Figure 2 – figure supplement 2).  

 

With simulated BOLD from the recurrent model, we next computed H on these data to 
understand if E:I ratio in the recurrent model is associated with changes in H in BOLD. Strikingly, H in 
BOLD shows the same dependency on 𝑔 as observed in LFP data (Figure 2C-D) - H in BOLD decreases 
as E:I ratio is shifted toward higher excitation by lowering the value of 𝑔 with respect to the reference 
value. Although H in LFP and BOLD showed similar associations with respect to changes in 𝑔, it is 
notable that the range of H in BOLD is shifted towards smaller values (Figure 2C-D) than H in LFP 
(Figure 1G-H). We also verified that the dependency of H in BOLD on 𝑔 was largely independent of 
the details of how BOLD is simulated from LFP. While the results shown in Figure 2 are computed 
with an HRF that reproduces the correlation function measured between the BOLD signal and the 
gamma band of LFP43, it is notable that these results remained similar when using the canonical HRF 
instead (Figure 2 – figure supplement 2). Removing the high pass filter from simulation of BOLD 
response did alter the relative values of correlation between LFP power and BOLD across frequency 
bands, making the BOLD response more in disagreement with experimental data, but did not change 
the relationship of decreasing H with decreasing 𝑔 (Figure 2 – figure supplement 2), suggesting that 
our conclusions are robust to the details of the model of the LFP to BOLD relationship. In sum, the 
inferences from the recurrent network model suggest that H in LFP and BOLD data can be utilized as 
a marker to track changes in underlying synaptic E:I mechanisms. 
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Figure 2: Relationship between E:I ratio from the recurrent model and H measured in simulated BOLD 
response. Panel A shows time-lagged Pearson correlations between LFP power across a range of 
different frequencies and the BOLD signal. Panel B shows the correlation between LFP power and the 
BOLD signal in selected frequency bands. The following four LFP bands are considered: alpha (8 - 12 
Hz), beta (15 - 30 Hz), gamma (40 - 100 Hz) and the total LFP power (0 - 100 Hz). The relationship 
between E:I ratio (g) and H in simulated BOLD is shown in panels C and D two different firing rates of 
thalamic input (1.5 and 2 spikes/second). 

 

Modeling the effects of chemogenetic manipulations within the recurrent network model 

 

We next investigated manipulations of parameters within the recurrent model that 
approximate the effects of empirical chemogenetic DREADD manipulations in neurons. These 
simulations are useful to both gain a better understanding of the empirical BOLD measures under 
DREADD manipulations presented in the next section, and to better characterize the specificity of the 
origin of changes in 1/f slopes and H with the E:I ratio. Given that as shown above, in our models 
changes of H in BOLD mirror those in LFPs, here we present changes in model LFP spectra when 
simulating these DREADD manipulations.  

 

We first studied the specific effect of solely increasing excitation within the recurrent 
network. This can be achieved experimentally by using the drug clozapine-N-oxide (CNO) on the 
DREADD receptor hM3Dq to increase the excitability of excitatory cells only49.  We simulated this kind 
of increase of excitability of pyramidal cells in the recurrent network model by lowering their voltage 
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threshold (𝑉𝑡ℎ) for spike initiation. Progressively lowering 𝑉𝑡ℎ from -52 to -53 mV resulted in more 
positive low-frequency and flatter high-frequency 1/f slopes  (Figure 3 – figure supplement 1A) and 
also caused decreases in H (Figure 3A). For H, increasing 𝑉𝑡ℎ (i.e. decreasing excitability) from -52 to 
-51 mV resulted in little change in H. These results predict that specific increases of excitation, as in 
the application of the hM3Dq DREADD to enhance excitability of pyramidal neurons, should reduce 
steepness of the high-frequency slopes and lead to a decrease in H. These results also confirm our 
above findings that in recurrent networks in which excitatory and inhibitory neurons interact, 
increases in excitability are easier to detect from changes in 1/f slope or H than decreases in 
excitation. 

 

To study whether the changes in 1/f slopes and H are specific to modulations in excitability of 
only excitatory neurons, we modeled the combined effect of silencing both excitatory and inhibitory 
neuronal populations. This silencing of both excitatory and inhibitory neurons can be obtained 
experimentally by application of the hM4Di DREADD (see next Section). In the recurrent network 
model, we simulated this silencing of both excitatory and inhibitory cells by decreasing the resting 
potential, 𝐸𝐿, in both excitatory and inhibitory neurons. Decreasing 𝐸𝐿 from the baseline value of -70 
to -75 mV produced varied effects in 1/f slopes (Figure 3 – figure supplement 1B) and resulted in a 
slight increase of H (Figure 3B). Note that a moderate increase in H with higher input (Figure 3B) was 
also found when comparing two very different levels of input. Given that a possible non-local action 
of hM4Di might lead to less excitatory input to the considered area coming from the silencing of 
nearby regions, this suggests that our conclusion should still hold even in the presence of some non-
local DREADD effects. In general, the effects of simulating hM4Di DREADD were far less prominent 
than those reported above when simulating enhanced excitation specifically (Figure 3A and Figure 3 
– figure supplement 1A). These results predict overall a very small effect of the hM4Di DREADD on H 
and 1/f slopes. These results also imply that decreases in H are more likely to result from specific 
increases in excitation rather than from non-specific decreases of excitability across both excitatory 
and inhibitory neuronal populations.   
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Figure 3:  Changes to H after chemogenetic DREADD manipulations to enhance excitability or silence 
excitatory and inhibitory neurons. Panel A shows how H changes after the voltage threshold for spike 
initiation in excitatory neurons (𝑉𝑡ℎ) is reduced in the recurrent model, thereby enhancing excitability 
as would be achieved with hM3Dq DREADD manipulation. Panel B shows how H changes after 
decreasing the resting potential of excitatory and inhibitory neurons (𝐸𝐿), as would be achieved with 
hM4Di DREADD manipulation. The voltage threshold for spike initiation in excitatory neurons (𝑉𝑡ℎ) is 
reduced in the recurrent model, thereby silencing both excitatory and inhibitory neurons as would be 
achieved with hM4Di DREADD manipulation. Panel C shows changes in H in BOLD from prefrontal 
cortex (PFC) after real hM3Dq DREADD manipulation in mice, while panel D shows changes in PFC 
BOLD H after hM4Di DREADD manipulation in mice. In panels C and D, individual gray lines indicate H 
for individual mice, while the colored lines indicate Baseline (pink), Transition (green), and Treatment 
(blue) periods of the experiment. During the Baseline period H is measured before the drug or SHAM 
injection is implemented. The Transition phase is the period after injection but before the period where 
the drug has maximal effect. The Treatment phase occurs when the drug begins to exert its maximal 
effect. The green star indicates a Condition*Time interaction (p<0.05) in the Transition phase, whereas 
the blue stars indicate a main effect of Condition within the Treatment phase (p < 0.005).  

 

Changes in H in BOLD after chemogenetic manipulation to enhance excitability of excitatory neurons 
in mice 

 

All of the results thus far report results from our in-silico model of recurrent neuronal 
networks and their readouts as simulated LFP or BOLD data. The in-silico modeling of BOLD data 
suggests that if E:I ratio is increased via enhanced excitability of excitatory neurons, then H should 
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decrease. To empirically test this prediction in-vivo, we measured rsfMRI BOLD signal in prefrontal 
cortex (PFC) of mice under conditions where a chemogenetic manipulation (hM3Dq DREADD)49 is 
used to enhance excitability of pyramidal neurons. Here we used a sliding window analysis to assess 
dynamic changes in H over the course of 3 different phases of the experiment – 1) a ‘Baseline’ phase 
where the CNO drug or a SHAM injection had not yet occurred, 2) a ‘Transition’ phase directly 
following CNO or SHAM injection, and 3) a ‘Treatment’ phase, whereby CNO has its maximal effect. 
We find that H is modulated over time by the DREADD manipulation (condition*time*treatment 
phase interaction F = 349.03, p < 0.0001). During the Baseline phase of rsfMRI scanning before the 
DREADD-actuator CNO was injected, H under DREADD or a SHAM control conditions are not affected 
(condition main effect F = 0.82, p = 0.37; condition*time interaction F = 0.36, p = 0.54). However, 
during the Transition phase of the experiment where the CNO begins to have its effects, we find a 
condition*time interaction (F = 4.94, p = 0.0262), whereby H drops over time at a steeper rate during 
the DREADD condition compared to the SHAM condition (green line in Figure 3C). Finally, during the 
Treatment phase of the experiment, where the drug exerts its maximal effect, there is a significant 
main effect of condition (F = 12.92, p = 0.0011) and no condition*time interaction (F = 0.66, p = 
0.4182) (blue line in Figure 3C) (Table 1). This effect is explained by H being reduced in the DREADD 
vs SHAM condition. These in-vivo results are directly in line with the in-silico prediction that enhancing 
E:I ratio via enhancing the excitability of excitatory neurons results in a decrease in H (i.e. Figure 1F-
H, Figure 2C-D, and Figure 3A). 

 

Chemogenetically silencing both excitatory and inhibitory neurons has no effect on H in BOLD 

 

While the above results show that specific enhancement of excitability in excitatory neurons 
results in a decrease in BOLD H, it is an important negative control contrast to investigate whether 
non-specifically reducing the excitability of both excitatory and inhibitory neuronal populations might 
also affect H. This is an important negative control since if H were to change in a similar direction 
after this manipulation, it would make interpretations about decrease in H being due to increased E:I 
ratio via excitation problematic. The in-silico simulation of this manipulation (Figure 3B) would predict 
that H would not be changed much, and that if a change in H were to occur, it would be a slight 
increase rather than a decrease in H. By expressing the inhibitory hM4Di DREADD50 under the control 
of a pan-neuronal promoter, we chemogenetically silenced both excitatory and inhibitory neurons in 
PFC of mice and re-ran the same rsfMRI neuroimaging protocol as before. While a significant 3-way 
interaction between condition, time, and treatment phase was present (F = 85.8, p < 0.0001), there 
were no strong main effects of condition or condition*time interactions in any of the baseline, 
transition, or treatment phases of the experiment (see Table 2 and Figure 3D). Overall, these results 
along with the recurrent model simulation of hM4Di DREADD (Figure 3B) bolster strength of the 
interpretation that enhanced excitation drives decreasing H in BOLD and that H in BOLD would not 
change appreciably in a situation such as pan-neuronal silencing of both excitatory and inhibitory 
neurons.  

 

Consistent with the idea that heightened excitation leads to flattening of the 1/f slope and 
reductions in H, we also computed a measure of the fractional amplitude of low frequency 
fluctuations (fALFF)51. Given the effect of flattening 1/f slope, we expected that fALFF would show 
reductions due to the DREADD excitation manipulation but would show no effect for the DREADD 
silencing manipulation. These expectations were confirmed, as DREADD excitation results in a large 



104 
 

drop in fALFF, which shows a stark drop off midway through the transition phase and stays markedly 
lower throughout the treatment phase when the drug has its maximal effects. In contrast, similar 
effects do not occur for the DREADD silencing manipulation (see Figure 3 – figure supplement 2). 

 

Autism-associated genes in excitatory neuronal cell types in the human brain are enriched for genes 
that are differentially expressed by androgen hormones 

 

The in-silico and in-vivo animal model findings thus far suggest that excitation affects metrics 
computed on neural time-series data such as 1/f slope and H. Applied to the idea of sex-related 
heterogeneity in E:I imbalance in autism, these results make the prediction that excitatory neuronal 
cell types would be the central cell type affecting such neuroimaging phenotypes in a sex-specific 
manner.  To test this hypothesis about sex-specific effects on excitatory neuronal cell types, we 
examined whether known autism-associated genes that affect excitatory neuronal cell types52,53 are 
highly overlapping with differentially expressed genes in human neuronal stem cells when treated 
with a potent androgen hormone, dihydrotestosterone (DHT)13,54. Genes differentially expressed by 
DHT are highly prominent within the gene set of autism-associated genes that affect excitatory 
neurons (OR = 1.67, p = 0.03), with most of the overlapping genes being those whereby DHT 
upregulates expression (Figure 4A). By contrast, genes associated with autism that affect inhibitory 
neuronal cell types or other non-neuronal cells (e.g., microglia, astrocytes, oligdendrocytes) are not 
enriched for DHT differentially expressed genes (inhibitory neurons: OR = 1.51, p = 0.12; microglia: 
OR = 0.78, p = 0.78; astrocytes or oligodendrocytes: OR = 1.11, p = 0.49). This result suggests that 
autism-associated genes specifically affecting excitatory neuronal cell types are also susceptible to 
the male-specific influence of androgen hormones in human neuronal stem cells.  

 

We next additionally examined how such DHT-sensitive and autism-associated excitatory 
neuron genes spatially express in the adult human brain. This analysis would help shed insight on 
which brain areas might be more affected by such sex-specific effects in autism. A one-sample t-test 
of gene maps from the Allen Institute Human Brain Atlas55 shows that this subset of DHT-sensitive 
and autism-associated excitatory neuron genes are highly expressed in MPFC, PCC, insula, and 
intraparietal sulcus, amongst other areas (Figure 4B-C). 
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Figure 4: Autism-associated genes within excitatory neuronal cell types are enriched for genes 
differentially expressed by androgen hormones. Panel A shows a Venn diagram depicting the 
enrichment between autism-associated genes affected excitatory neurons and DHT-sensitive genes. 
Panel A also includes a heatmap of these genes whereby the color indicates z-normalized expression 
values. The column dendrogram clearly shows that all samples with DHT treatment are clustered 
separately from the control (DMSO) samples. Each row depicts the expression of a different gene. 
Panel B shows a t-statistic map from a whole-brain one-sample t-test on these DHT-sensitive and 
autism-associated genes in excitatory neurons. Results are thresholded at FDR q<0.01. Panel C shows 
spatial gene expression profiles on a representative surface rendering of the medial wall of the cortex 
for specific genes shown in panel B. Each map shows expression as z-scores with the color scaling set 
to a range of -2<z<2. 

 

H is on-average reduced in adult autistic men but not women 

 

We next move to application of this work to human rsfMRI data in autistic men and women. 
If E:I ratio is affected by sex-related mechanisms13, we predict that H would be differentially affected 
in autistic males versus females and manifest as sex-by-diagnosis interactions in a 2x2 factorial design 
(Sex: Male vs Female; Diagnosis: Autism vs Typically-Developing (TD)). More specifically, the 
directionality of our predictions from the in-silico and in-vivo results in Figures 1-3 are that if H reflects 
E:I ratio, there should be decreased H (due to enhanced E) specifically in autistic males but not autistic 
females. Mass-univariate analysis uncovered one region in ventromedial prefrontal cortex (vMPFC), 
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region p32, with a sex-by-diagnosis interaction passing FDR q<0.05 (F(5,104) = 15.13, p = 0.0001, 
partial η2 = 0.12) (Figure 5A). In line with directionality of our predictions, this interaction effect is 
driven by a large TD>Autism effect in males (Cohen’s d = 1.30) and a small Autism>TD effect in females 
(Cohen’s d = -0.27) (Figure 5B). A similar sex-by-diagnosis interaction appeared when using another 
metric such as the intrinsic neural timescale30 (Figure 5 – figure supplement 1) and when H was first 
calculated at each voxel and then averaged across voxels (Figure 5 – figure supplement 2). While the 
main effects of diagnosis and sex are not the primary contrast for this study, we report that no 
significant regions survived FDR q<0.05 for the main effects of diagnosis. However, 61% of brain 
regions showed an on-average male>female sex difference (Figure 5 – figure supplement 1), which is 
in keeping with results from other work on sex differences in H46. 

 

In contrast to mass univariate analysis, we also used partial least squares (PLS) analysis as a 
multivariate alternative to uncover distributed neural systems that express the sex-by-diagnosis 
interaction. PLS analysis identified one neural system expressing the same sex-by-diagnosis 
interaction (d = 2.04, p = 0.036) and included default mode network (DMN) areas such as MPFC and 
posterior cingulate cortex/precuneus (PCC) (Figure 5 – figure supplement 1), and other non-DMN 
areas such as insula, lateral prefrontal cortex, somatosensory and motor cortices, intraparietal sulcus, 
amongst others (Figure 5C). Many of these regions detected by the PLS analysis were subthreshold 
of FDR q<0.05 in the mass-univariate analysis, but do show heightened effect sizes in keeping with 
this sex-by-diagnosis interaction pattern (e.g., white and light blue areas in the unthresholded map 
shown in Figure 5A). Detection of these regions in a mass-univariate analysis may require a larger 
sample size to enhance statistical power. Given that many of these PLS-identified regions of a sex-by-
diagnosis interaction appear similar to those that appear in the gene expression map in Figure 4B of 
DHT-sensitive and autism-associated excitatory genes, we assessed how much each HCP-MMP 
parcellated regions overlap with the map in Figure 4B. PLS-identified regions in vMPFC (e.g., areas 
p32 and 10r) overlap by about 73-75%. Areas within the insula (e.g., Pol1, Pol2, MI) overlap by around 
59-69%. Parietal areas in PCC (e.g., v23ab, d23ab) and intraparietal sulcus (LIPd) overlap by around 
73-85% (Figure 5D).   

 

Correlation between vMPFC H and camouflaging in autistic women but not men 

 

In prior task-fMRI work we found a similar sex-by-diagnosis interaction in vMPFC self-
representation response and a female-specific brain-behavioral correlation with camouflaging 
ability19. Given that adult autistic females engage more in camouflaging on-average16–18, we next 
asked whether vMPFC H would be related to camouflaging in a sex-specific manner. In autistic 
females, increased camouflaging was strongly associated with increased H in vMPFC (r = 0.60, p = 
0.001). However, no significant association was apparent in autistic males (r = -0.10, p = 0.63). The 
strength of this brain-behavioral correlation significantly differed between autistic males and females 
(z = 2.58, p = 0.009) (Figure 5E). This result suggests that progressively more intact vMPFC H in autistic 
females, which are likely reflective of more intact E:I balance, is associated with better ability to 
camouflage social-communicative difficulties. Beyond this hypothesis-driven comparison of the 
relationship between H and camouflaging in vMPFC, we also ran correlations with ADI-R, ADOS and 
AQ scores. ADOS social-communication (SC) was negatively correlated with vMPFC H in autistic 
females (r = -0.51, p = 0.008) indicating higher H with lower SC severity. This relationship was not 
present in autistic males (r = -0.04, p = 0.83). However, the difference between these correlations 
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was not statistically significant (z = 1.70, p = 0.08). ADI-R subdomains, ADOS RRB, and AQ correlations 
were not statistically significant.  

 

 

Figure 5: Autism rsfMRI sex-by-diagnosis interaction results. Panel A shows unthresholded and 
thresholded with FDR q<0.05 mass-univariate results for the sex-by-diagnosis interaction contrast. 
Panel B shows H estimates from vMPFC (area p32) across males and females with and without autism. 
Panel C shows partial least squares (PLS) results unthresholded and thresholded to show the top 20% 
of brain regions ranked by bootstrap ratio (BSR). Panel D shows the percentage of voxels within each 
HCP-MMP parcellation region that overlap with the DHT-sensitive AND Autism E-Genes map shown 
in Figure 4B. Panel E shows correlation between vMPFC H and behavioral camouflaging score in 
autistic males (orange) and females (blue). 

 

Discussion 

  

In this work we set out to better understand how intrinsic E:I imbalance affects the autistic 
brain in a sex-specific manner. Evidence from animal models of rare genetic variants associated with 
autism have typically been used as the primary evidence for the E:I imbalance theory1,2. However, 
these variants affect only a small percentage of the autism population. Thus, it is unclear how E:I 
imbalance might affect the majority of heterogeneous individuals within the total autism population. 
To bridge this gap we need multi-level methods that can be applied to understand the ‘living biology’ 
behind actual human individuals56, such as in-vivo neuroimaging data and metrics applied to such 
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time-series data that are linked to actual underlying neural E:I mechanisms57. Bridging this gap will 
help us identify mechanistic targets that explain neural and behavioral variability across a much larger 
portion of individuals in the autism population. 

 

Based on earlier work28, we reasoned that metrics such as 1/f slope and H in neural time-
series data would be relevant as an in-vivo neuroimaging marker of E:I mechanisms. Prior work 
suggested this relationship via a model that considers inhibition and excitation as separate entities28. 
However, excitation and inhibition in the brain are inseparably linked. Results about the relationship 
between spectral shape and E:I balance obtained with our model of recurrent excitation and 
inhibition are largely compatible with those obtained with an earlier model of uncoupled excitation 
and inhibition28. The uncoupled model predicts a linear increase of the slope value (i.e. flatter, less 
negative slopes) as E:I ratio increases. This is because in the uncoupled model changing the E:I ratio 
modifies only the ratio of the contribution to the LFP spectra of excitatory (faster time constant) and 
inhibitory (slower time constant) synaptic currents, leading to a linear relationship between slopes 
and E:I. In contrast, we found that the relationship between E:I and the spectral slope flattens out for 
high values of I. This, in our view, may in part arise from the fact that, as shown in studies of recurrent 
network models25, higher recurrent inhibition leads to higher peak frequency of gamma oscillations 
(i.e. an increase of power at higher frequencies) thus partly counteracting the low-pass filtering effect 
of inhibitory currents in the uncoupled model. We plan to investigate in future studies how these 
opposing effects interact in a wider range of configurations and to use these results to gain a better 
understanding of the relationship between E:I ratio and LFP spectral shape.  

 

Furthermore, prior work28 considered only 1/f slopes in simulated LFP data and did not 
explore the effect of the transformation between LFP neural activity to BOLD. Our simulations 
address these problems and significantly extends prior work28 on the relationship between E:I 
imbalance and changes in spectral properties of neural signals. We showed that when excitation and 
inhibition interact in a recurrent network model, flatter 1/f slopes and decreases in H are specific 
markers of increases in E:I ratio. We also showed that in simulated BOLD signal, H and E:I ratio are 
associated in a manner similar to the relationships observed with LFP data. Taken together, these 
results predict that changes in H in neural time-series data can be interpreted as a shift in synaptic 
E:I ratio that permeates through in LFP or BOLD readouts. 

 

Our simple model to generate BOLD from frequency-resolved LFPs reflect several features of 
the empirical LFP-BOLD relationship - namely the presence of a particularly strong gamma-BOLD 
relationship and the fact that a better prediction of the BOLD is obtained from the frequency-resolved 
LFP than from the wideband LFP. However, a limitation of our simple model is that, in its present 
form, it cannot capture the negative relationship between the power of some low-frequency LFP 
bands and the BOLD amplitude that has been reported in some studies47,48,58,59. Modelling the low 
frequency LFP to BOLD relationship in greater detail would require significant extensions of our neural 
model, as lower frequency oscillations are thought to arise from more complex cortico-cortical and 
thalamocortical loops than those that can be captured by our simple model of a local recurrent circuit 
with only two classes of neurons and no spatial structure60,61. An important topic for further 
modelling work will be to understand how biomarkers of more complex neural feedback loops can 
be extracted from LFP or BOLD spectral signatures. 
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The power of our in-silico modeling approach is that it provides explicit predictions of what to 
expect in real BOLD data when synaptic E:I imbalance occurs. Remarkably, these in-silico predictions 
are confirmed in-vivo with rsfMRI BOLD data in halothane-sedated mice after experimental 
chemogenetic manipulations that specifically enhance neural excitation. Intriguingly, and consistent 
with in-silico predictions, manipulations that silence both excitatory and inhibitory neuronal 
populations do not have a strong effect on H in BOLD. These results are in line with optogenetic 
studies showing that specifically enhancing excitation in MPFC seems to have the biggest effects on 
social behavior in mice14. The present work clearly shows that enhancement of excitation results in 
measurable changes in BOLD readouts as decreases in H. This insight allows us to leverage H as an in-
vivo rsfMRI biomarker that has strong relevance back to synaptic E:I imbalance. Future extensions of 
our research might involve refined modelling and the use of chemogenetic manipulations in awake 
conditions, hence minimizing the possible confounding contribution of anesthesia on baseline E:I 
balance.  

  

 With regards to how sex-related heterogeneity in E:I imbalance might manifest in autism, we 
utilized genomics data and found that autism-associated genes that affect excitatory neuronal cell 
types are enriched for genes that are differentially expressed by DHT in human neuronal stem cells. 
This inference extends prior work implicating excitatory neuron cell types in autism-relevant 
biology52,53,62,63 by linking genomic mechanisms in these cell types to the male-specific influence of 
androgen hormones. Importantly, other cell types such as inhibitory neurons do not express autism-
associated genes that are also influenced by DHT. Additionally, the DHT-sensitive and autism-
associated excitatory genes tend to spatially express in the human adult brain in regions such as 
MPFC, PCC, insula, and intraparietal sulcus, which have been shown to be affected in autism across 
a range of task-related and rsfMRI studies19,64–68, and which overlap with areas discovered by the PLS 
analysis to express a sex-by-diagnosis interaction (Figure 5D). 

 

Moving to human rsfMRI data on adult patients with autism, we utilized H as a neuroimaging 
biomarker of E:I imbalance. Specifically, we examined whether H differs between adult males and 
females with and without autism. Mass-univariate analysis highlighted one region in vMPFC which 
showed a sex-by-diagnosis interaction - that is, H was specifically reduced in adult autistic males, but 
not in autistic females. Reduced H in autistic males is compatible with the inference of elevated E:I 
ratio potentially driven by enhanced excitation. The observed effect in vMPFC may also be consistent 
with a ‘gender-incoherence’ pattern (i.e. towards reversal of typical sex differences in autism)69. 
However, sex-specific normative ranges would need to be better established before interpreting 
effects in autism as being reversals of normative sex differences. More work with much larger general 
population-based datasets is needed to establish whether there are robust normative sex differences 
in H and to describe the normative ranges of H may take for each brain region, sex, and across age. 
Such work would also help with normative modeling70 approaches that would enable identification 
of which autistic individuals highly deviate from sex-specific norms.  

 

Multivariate PLS analysis extended the mass univariate results by showing that a distributed 
neural system structurally and functionally connected to vMPFC, such as default mode network 
(DMN) areas like PCC71,72, as well as intraparietal sulcus and insular cortex66, also expressed a similar 
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but more subtle sex-by-diagnosis interaction. Interestingly, these regions highlighted by the PLS 
analysis are remarkably similar to the map of brain regions where autism-associated excitatory and 
DHT-sensitive genes highly express (Figure 4B-C, Figure 5D). Therefore, important social brain 
circuitry such as the DMN, and other integrative hubs of the salience network (e.g., insula) that 
connect DMN to other important large-scale networks66 may be asymmetrically affected by 
heightened E:I ratio in autistic males more than autistic females.  

 

These human rsfMRI results are not only compatible with the in-silico predictions and the in-
vivo mouse rsfMRI data presented here, but are also compatible with several prior lines of work. Our 
prior work highlighted that DMN functional connectivity in typically developing adolescent males, but 
not females, is affected by heightened levels of fetal testosterone and this network was heavily 
comprised of MPFC and PCC13. In the same work, we showed that a cortical midline DMN subsystem 
comprising MPFC and PCC highly expresses several genes relevant for excitatory postsynaptic 
potentials (e.g., MEF2C, GRIK2, GRIA1, SCN3A, SCN9A, NPTX2). The current findings linking autism-
associated genes in excitatory neuron cell types (Figure 4) allow for more precise inferences about 
the importance of excitatory cell types over and above other inhibitory cell types. This is important 
given that evidence regarding inhibitory neuronal cell types and their role in E:I imbalance in autism 
is more mixed73,74. Importantly, the expression of these genes in human neuronal stem cells are 
elevated after exposure to the potent androgen DHT13. Thus, one potential explanation for the male-
specific reduction of H in vMPFC could have to do with early developmental and androgen-sensitive 
upregulation of genes that play central roles in excitatory neuron cell types, and thus ultimately 
affecting downstream E:I imbalance. Such effects may be less critical in human females and may serve 
an important basis for sex-differential human brain development75. These effects may also help 
explain why qualitative sex differences emerge in autism10,76.  

 

rsfMRI H in autistic adults was also relevant in a sex-specific manner to a clinical behavioral 
phenomenon known as ‘camouflaging’. Camouflaging relates to a set of compensatory or masking 
strategies/mechanisms that allow individuals to cope with their social-communicative difficulties in 
everyday social situations16,17,77. It is known that cognitively able adult autistic females tend to engage 
in more camouflaging behavior than males16–18 and the extent to which individual females engage in 
camouflaging is linked to vMPFC function19. One of the most important known functions of vMPFC 
has to do with self-representation68 and simulating others based on information about the self78. In 
prior task-related fMRI work we found a similar sex-by-diagnosis interaction effect whereby males 
are more impaired in vMPFC self-representation response than their female autistic counterparts. 
Furthermore, increased magnitude of vMPFC self-representation neural response correlates with 
increased camouflaging ability, but only in adult autistic females19. Strikingly, here we find a similar 
sex-by-diagnosis interaction effect in vMPFC H as well as a female-specific correlation with 
camouflaging - as vMPFC H increases, indicative of a more normative or intact level of E:I balance, 
camouflaging also increases. This converging set of results suggests that intrinsic mechanisms such 
as E:I balance may be atypical only in cognitively able autistic males at vMPFC. More intact E:I balance 
in the vMPFC of autistic females may enable better vMPFC-related function (e.g., self-representation) 
and thus potentially better enable these individuals to camouflage social-communicative difficulties 
and cope in social situations. Future work changing E:I balance in vMPFC may provide a useful avenue 
for ameliorating daily life social-communication adaptation and coping difficulties in autistic males 
and enable them to optimally engage in compensatory processes such as camouflaging to the similar 
extent as autistic females. It may also be fruitful to examine how intact E:I balance in vMPFC of 
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females may be an expression of protective factors that are hypothesized to buffer risk for autism in 
females79,80. 

 

This work may also be of broader relevance for investigating sex-specific E:I imbalance that 
affects other early-onset neurodevelopmental disorders with a similar male-bias as autism81. For 
instance, conditions like ADHD affect males more frequently than females and also show some 
similarities in affecting behavioral regulation and associated neural correlates82. Furthermore, gene 
sets associated with excitatory and inhibitory neurotransmitters are linked to 
hyperactivity/impulsivity severity in ADHD, suggesting that E:I-relevant mechanisms may be 
perturbed83. It will be important for future work to test how specific sex-specific E:I imbalance is to 
autism versus other related sex-biased neurodevelopmental disorders. Similarly, future work should 
investigate how H may change over development. Prior work has shown that H and other related 
measures such as 1/f slope can change with normative and pathological aging in both rsfMRI and EEG 
data21,84,85. Imperative to this work will be the establishment of age and sex-specific norms for H in 
much larger datasets. Age and sex-specific norms will enable more work to better uncover how these 
biomarkers may be affected in neurodevelopmental disorders or disorders relevant to 
neurodegeneration. Such work combined with normative modeling approaches70 may help uncover 
how experiential and environmental effects further affect such metrics.  

 

In conclusion, we show that spectral properties of neural time-series data, such as H and 1/f 
slope, can be utilized in neuroimaging readouts like LFP and BOLD as a biomarker for underlying E:I-
relevant mechanisms. In-silico predictions from simulated LFP and BOLD data were confirmed in-vivo 
with rsfMRI BOLD data where excitation was enhanced through chemogenetic manipulation. Finally, 
in application to humans, we show that H in rsfMRI data is reduced in vMPFC and other DMN areas 
of adult autistic males, but not females. Reduced H is indicative of enhanced excitation and thus 
points to sex-specific dysregulation of E:I balance in social brain networks of autistic males. This male-
specific dysregulation of E:I balance may be linked to sex-differential early developmental events such 
as androgen-upregulation of gene expression for genes that play important roles in excitatory 
neurons13. The intact levels of H in females may help facilitate elevated levels of compensation known 
as camouflaging to cope with daily social-communicative difficulties. This important female-specific 
brain-behavioral correlation may also be key for future interventions targeting E:I mechanisms and 
MPFC-related brain networks to enable better coping with daily social-communicative difficulties. 
More generally, this work extends the relevance of the E:I imbalance theory of autism beyond 
evidence from autism-associated rare genetic variants and specify a larger portion of the autism 
population whereby these E:I mechanisms may be of critical importance. 
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Methods 

 

Human Participants 

 

All procedures contributing to this work comply with the ethical standards of the relevant 
national and institutional committees on human experimentation and with the Helsinki Declaration 
of 1975, as revised in 2008. All human participants’ informed consent was obtained in accord with 
procedures approved by the Suffolk Local Research Ethics Committee. Adult native English speakers 
(n=136, age range = 18-49 years) with normal/corrected-to-normal vision participated: n=33 typically 
developing (TD) males, n=34 autistic males, n=34 TD females and n=34 autistic females (Table 3). 
They all reported cis-gender identity based on a single item inquiring their birth-assigned sex and 
another on their identified gender. Groups were not statistically different on age or full-scale IQ (FIQ) 
on the Wechsler Abbreviated Scales of Intelligence (WASI) (Table 3). Exclusion criteria for all 
participants included a history of or current psychotic disorders, substance-use disorders, severe 
head injury, genetic disorders associated with autism (e.g. fragile X syndrome and tuberous sclerosis), 
intellectual disability (i.e. Full-scale IQ (FIQ) < 70), or other medical conditions significantly affecting 
brain function (e.g. epilepsy). 

 

The inclusion criterion for both male and female autistic participants was a formal clinical 
diagnosis of International Statistical Classification of Diseases and Related Health Problems 10th 
Revision (ICD-10) childhood autism or Asperger’s syndrome, or Diagnostic and Statistical Manual of 
Mental Disorders (4th ed., text rev.; DSM-IV-TR) autistic disorder or Asperger’s disorder, as assessed 
by a psychiatrist or clinical psychologist in the National Health Service, UK. Since all participants were 
adults, we further considered available information of developmental history to include only those 
with clinically evident childhood autistic symptoms, for example, from information collected using 
the Autism Diagnostic Interview–Revised (ADI-R)86 where possible, or from the participants’ clinical 
diagnosis letters shared with the research team to determine eligibility. We used this clinically based 
criterion for inclusion for the purpose of sampling autistic individuals currently diagnosed by 
specialists in mental health services in the daily practice and to align with best clinical practice as 
recommended by the UK National Institute for Health and Clinical Excellence (NICE) guideline87. For 
assessing levels of autism characteristics, we administered the Autism Spectrum Quotient (AQ)88, 
module 4 of the Autism Diagnostic Observation Schedule (ADOS)89, and ADI-R86 where possible, 
before the fMRI session. Autistic male and female groups were not significantly different on any ADI-
R subdomain scores or Reading the Mind in the Eyes Test (RMET)90 performance (Table 3).  

 

We further used criteria for inclusion based on characteristics about data quality (see next 
paragraphs for data preprocessing). In particular, we excluded participants where the number of 
volumes was not acquired due to scanner hardware issues (n=1), the preprocessing pipeline could 
not adequately preprocess the data (e.g., bad registrations; n=5). Participants were also excluded if 
their head motion exceed a mean framewise displacement (meanFD)91 of >0.4mm (n=8). For the 
remaining subjects we further visually inspected plots of framewise displacement (FD) and DVARS91 
traces to determine whether the wavelet despiking step sufficiently attenuated artefact-related 
variability that would leave DVARS spikes. Here we made a qualitative and consensus judgement 
amongst authors (S.T. and M.V.L) to exclude individuals (n=9) whereby there were numerous FD 
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spikes above 0.5mm or numerous DVARS spikes leftover after wavelet despiking was applied. Other 
exclusions included any VIQ or PIQ <70 (n=1) and co-morbid agenesis of the corpus callosum (n=1). 
The final sample sizes included in all further analyses was n=29 TD males, n=23 autistic males, n=33 
TD females, and n=25 autistic females. The final groups used in all analyses did not statistically differ 
on age (diagnosis main effect: F(3,106) = 0.03, p = 0.85; sex main effect: F(3,106) = 0.14, p = 0.70; 
sex-by-diagnosis interaction: F(3,106) = 0.25, p = 0.61) or FIQ (diagnosis main effect: F(3,106) = 3.38, 
p = 0.07; sex main effect: F(3,106) = 0.48, p = 0.48; sex-by-diagnosis interaction: F(3,106) = 2.24, p = 
0.13) (see Table 3). 

 

Human fMRI data acquisition 

 

Imaging was performed on a 3T GE Signa Scanner at the Cambridge Magnetic Resonance 
Imaging and Spectroscopy Unit. Participants were asked to lie quietly in the scanner awake with eyes 
closed for 13 minutes and 39 seconds during sequential acquisition of 625 whole-brain T2*-weighted 
echo planar image volumes with the following parameters: relaxation time = 1302 ms; echo time = 
30 ms; flip angle = 70°; matrix size = 64 x 64; field of view = 24 cm; 22 anterior commissure-posterior 
commissure aligned slices per image volume; 4 mm axial slice thickness; 1 mm slice gap. The first five 
time-points were discarded to allow for T2-stabilization. During analysis of the Hurst exponent (H) for 
BOLD time-series, due to the discrete wavelet transform using volumes in power of 2, only the first 
512 volumes (29) were utilized. A high-resolution spoiled gradient anatomical image was acquired for 
each participant for registration purposes. 

 

Human fMRI data analysis 

 

Preprocessing of the resting state data was split into two components; core preprocessing 
and denoising. Core preprocessing was implemented with AFNI92 (http://afni.nimh.nih.gov/) using 
the tool speedypp.py (http://bit.ly/23u2vZp)93. This core preprocessing pipeline included the 
following steps: (i) slice acquisition correction using heptic (7th order) Lagrange polynomial 
interpolation; (ii) rigid-body head movement correction to the first frame of data, using quintic (5th 
order) polynomial interpolation to estimate the realignment parameters (3 displacements and 3 
rotations); (iii) obliquity transform to the structural image; (iv) affine co-registration to the skull-
stripped structural image using a gray matter mask; (v) nonlinear warping to MNI space (MNI152 
template) with AFNI 3dQwarp; (v) spatial smoothing (6 mm FWHM); and (vi) a within-run intensity 
normalization to a whole-brain median of 1000. Core preprocessing was followed by denoising steps 
to further remove motion-related and other artifacts. Denoising steps included: (viii) wavelet time 
series despiking (‘wavelet denoising’); (ix) confound signal regression including the 6 motion 
parameters estimated in (ii), their first order temporal derivatives, and ventricular cerebrospinal fluid 
(CSF) signal (referred to as 13-parameter regression). The wavelet denoising method has been shown 
to mitigate substantial spatial and temporal heterogeneity in motion-related artifact that manifests 
linearly or non-linearly and can do so without the need for data scrubbing94. Data scrubbing (i.e. 
volume censoring) cannot be used in our time-series-based analyses here as such a procedure breaks 
up the temporal structure of the time-series in such a way that invalidates estimation of the Hurst 
exponent (H) that examine long-memory characteristics. Wavelet denoising is implemented with the 
Brain Wavelet toolbox (http://www.brainwavelet.org). The 13-parameter regression of motion and 
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CSF signals was achieved using AFNI 3dBandpass with the –ort argument. To further characterize 
motion and its impact on the data, we computed FD and DVARS91. Between-group comparisons 
showed that all groups were similar with respect to head motion as measured by meanFD with no 
diagnosis (F(3,106) = 1.77, p = 0.18) or sex (F(3,106) = 0.51, p = 0.47) main effects or sex-by-diagnosis 
interaction (F(3,106) = 1.10, p = 0.29). All groups showed average meanFD of less than 0.2 mm (see 
Table 3).  

 

Mean time-series for each of the 180 parcels within the Human Connectome Project 
Multimodal Parcellation (HCP-MMP)95 were extracted from the final preprocessed data, to estimate 
H. The estimation of H utilizes a discrete wavelet transform and a model of the time-series as 
fractionally integrated processes (FIP) and is estimated using maximum likelihood estimation. This 
method utilizing the FIP model for estimating H differs from our prior work29, which used a model of 
fractional Gaussian noise (fGn). fGn is one type of process subsumed under the FIP model. However, 
the fGn model has the limitation of assuming that the BOLD time-series is stationary and also limits 
the upper bound of H at 1. In practice, we have seen that the upper bound of H=1 from the fGn model 
results in ceiling effects for many brain regions and subjects. Thus, to remove the assumption of 
stationarity and upper bound of H=1, the FIP model offers more flexibility and potentially added 
sensitivity due to better estimation of between-subject variability when estimates are near or exceed 
H=1. When H>1 the time-series is considered non-stationary and has long memory characteristics 
(e.g., is fractal). H is computed using the nonfractal MATLAB toolbox written by one of the co-authors 
(WY) (https://github.com/wonsang/nonfractal). The specific function utilized is bfn_mfin_ml.m 
function with the ‘filter’ argument set to ‘haar’ and the ‘ub’ and ‘lb’ arguments set to [1.5,10] and [-
0.5,0], respectively. 

 

After H was estimated for each of the 180 HCP-MMP parcels, we used a general linear model 
to test for sex-by-diagnosis interactions as well as main effects of Sex and Diagnosis in H. These 
models also incorporated meanFD and FIQ as covariates of no interest. Multiple comparison 
correction was achieved using an FDR q<0.05 threshold. Visualization of effect sizes for figures was 
achieved using the ggseg library in R (https://github.com/LCBC-UiO/ggseg). 

 

In addition to mass-univariate analysis, we also utilized multivariate partial least squares (PLS) 
analysis96 to highlight distributed neural systems that capture the effect of a sex-by-diagnosis 
interaction. This analysis was implemented with code from the plsgui MATLAB toolbox 
(http://www.rotman-baycrest.on.ca/pls/). A matrix with participants along the rows and all 180 HCP-
MMP parcels along with columns was input as the primary neuroimaging matrix for PLS. We also 
inserted a vector describing the sex-by-diagnosis contrast as the matrix to relate to the neuroimaging 
matrix. This vector describing the sex-by-diagnosis interaction was computed by matrix multiplication 
of the contrast vector of [1, -1, -1, 1] to a design matrix that was set up with columns defining TD 
males, autism males, TD females, and autism females, respectively. The PLS analysis was run with 
10,000 permutations to compute p-values for each latent-variable (LV) pair and 10,000 bootstrap 
resamples in order to compute bootstrap ratios (BSR) to identify brain regions of importance for each 
LV pair. To isolate specific brain regions of importance for a statistically significant LV, we selected 
the top 20th percentile of brain regions ranked by BSR. 
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Relationships between H and camouflaging were conducted within autistic males and females 
separately. Pearson’s correlations were used to estimate the strength of the relationship and groups 
were compared on the strength of the relationship using Fisher’s r-to-z transform as implemented 
with the paired.r function in the psych library in R. 

 

Behavioral index of camouflaging 

 

Camouflaging (consciously or unconsciously compensating for and/or masking difficulties in 
social–interpersonal situations) was operationalized as prior work16,19: the discrepancy between 
extrinsic behavioral presentation in social–interpersonal contexts and the person’s intrinsic status. 
We used both the AQ score and RMET correct score as reflecting intrinsic status (i.e. self-rated 
dispositional traits and performance-based socio-cognitive/mentalizing capability), and the ADOS 
Social-Communication total score as reflecting extrinsic behavioral presentation. The three scores 
were first standardized (SADOS, SAQ and SRMET) within our sample of autistic men and women by mean-
centering (to the whole autism sample in this study) and scaling (i.e. divided by the maximum possible 
score of each) to generate uniformly scaled measures that can be arithmetically manipulated. The 
first estimate of camouflaging was quantified as the difference between self-rated autistic traits and 
extrinsic behaviors (CF1 = SAQ − SADOS), and the second estimate between mentalizing ability and 
extrinsic behaviors (CF2 = −SRMET − SADOS). Then, using principal component analysis, the first principal 
component score of CF1 and CF2 (accounting for 86% of the total variance) was taken as a single, 
parsimonious measure of camouflaging for all subsequent analyses. This method was utilized in order 
to be consistent with prior work which computed the camouflaging metric in an identical fashion16,19. 
This measure should be interpreted by relative values (i.e. higher scores indicate more camouflaging) 
rather than absolute values. This operationalization only allows for estimating camouflaging in 
autistic individuals in our cohort, as it partly derives from the ADOS score which was not available in 
TD participants. This approach remains informative, as qualitative studies suggest that camouflaging 
in autism can be different from similar phenomenon (e.g. impression management) in TD 
individuals97,98.  

 

In-vivo chemogenetic manipulation of excitation in mouse prefrontal cortex 

 

All in-vivo studies in mice were conducted in accordance with the Italian law (DL 116, 1992 
Ministero della Sanità, Roma) and the recommendations in the Guide for the Care and Use of 
Laboratory Animals of the National Institutes of Health. Animal research protocols were also 
reviewed and consented to by the animal care committee of the Istituto Italiano di Tecnologia. The 
Italian Ministry of Health specifically approved the protocol of this study, authorization no. 852/17 to 
A.G. All surgical procedures were performed under anesthesia. 

 

Six to eight week-old adult male C57Bl6/J mice (Jackson Laboratories; Bar Harbor, ME, USA) were anesthetized 

with isoflurane (isoflurane 4%) and head-fixed in a mouse stereotaxic apparatus (isoflurane 2%, Stoelting). 

Viral injections were performed with a Hamilton syringe mounted on Nanoliter Syringe Pump with controller 

(KD Scientific), at a speed of 0.05  l/min, followed by a 5–10 min waiting period, to avoid backflow of viral 

solution and unspecific labeling. Viral suspensions were injected bilaterally in PFC using the following 
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coordinates, expressed in millimeter from bregma: 1.7 from anterior to posterior, 0.3 lateral, −1.7 deep. The 

inhibitory DREADD hM4Di was transduced using an AAV8-hSyn-hM4D(Gi)-mCherry construct. Control animals 

were injected with a control AAV8-hSyn-GFP virus (www.addgene.com). These viral suspensions were 

injected using a 0.3 μL injection volume in n=15 hM4Di DREADD and n=19 SHAM mice, respectively. The 

excitatory DREADD hM3Dq was transduced using an AAV8-CamkII-hM3D (Gq)-mCherry construct. Control 

animals for this experiment were injected with a control AAV8-hSyn-GFP construct. This set of injection were 

carried out using a 1μL injection volume in n=17 hM3Dq DREADD and n=19 SHAM mice, respectively. We 

waited at least 3 weeks to allow for maximal viral expression.  

 

Mouse rsfMRI data acquisition  

 

The animal preparation protocol for mouse rsfMRI scanning was previously described in detail99. Briefly, mice 

were anesthetized with isoflurane (5% induction), intubated and artificially ventilated (2% maintenance). Then 

isoflurane was discontinued and substituted with halothane (0.75%), a sedative  that preserves cerebral blood 

flow auto-regulation and neurovascular coupling100. Functional data acquisition commenced 30 min after 

isoflurane cessation. CNO (2 mg/kg for hM4Di and 0.5 mg/kg for hM3Dq) was administered i.v. after 15 

minutes from the beginning of the acquisition both in virally transduced animals and in sham mice. 

 

Mouse rsfMRI data analysis 

 

Raw mouse rsfMRI data was preprocessed as described in previous work101,102. Briefly, the initial 120 volumes 

of the time-series were removed to allow for T1 and gradient equilibration effects. Data were then despiked, 

motion corrected and spatially registered to a common reference template. Motion traces of head 

realignment parameters (3 translations + 3 rotations) and mean ventricular signal (corresponding to the 

averaged BOLD signal within a reference ventricular mask) were used as nuisance covariates and regressed 

out from each time course. All rsfMRI time-series also underwent band‐pass filtering to a frequency window 

of 0.01–0.1 Hz and spatial smoothing with a full width at half maximum of 0.6 mm. 

 

 The experimental design of the study allowed for computation of H during time-windows in the rsfMRI 

scan before drug injection (i.e. ‘Baseline’), a transition phase where the drug begins having its effect (i.e. 

‘Transition’), and a treatment phase when the drug is thought to have its optimal effect (i.e. ‘Treatment’). 

Analysis of condition, treatment phase, time, and all interactions between such factors was achieved using a 

sliding window analysis. Each window was 512 volumes in length and the sliding step was 1 volume. H is 

computed at each window and results in an H time-series. The H time-series is used as the dependent variable 

in a linear mixed effect model (i.e. using the lme function within the nlme library in R) with fixed effects of 

condition, time, treatment phase, and all 2-way and 3-way interactions between such factors as well as a factor 

accounting for scan day. Random effects in the model included time within mouse as well as treatment phase 

within mouse, all modeled with random intercepts and slopes. This omnibus model was utilized to examine a 

3-way interaction between condition, time, and treatment phase. If this interaction was present, we then split 

the data by the 3 levels of the treatment phase (e.g., Baseline, Transition, and Treatment), in order to examine 

the main effect of condition or the condition*time interaction. Plots of the data indicate each mouse (grey 

lines in Figure 3) as well as group trajectories for each phase, with all trajectories estimated with a generalized 

additive model smoother applied to individual mice and group trajectories.  
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In-silico recurrent network modeling of LFP and BOLD data 

 

The recurrent network model we use represents a standard cortical circuit incorporating 
integrate-and-fire excitatory and inhibitory spiking neurons that interact through recurrent 
connections and receive external inputs (both a sensory driven thalamic input and a sensory 
unrelated intracortical input, see Figure 1A). The network structure and parameters of the recurrent 
network model are the same ones used in Cavallari et al.,40 with conductance-based synapses (for 
full details see40). The network is composed of 5000 neurons, of which 4000 are excitatory (i.e. they 
form AMPA-like excitatory synapses with other neurons) and 1000 inhibitory (forming GABA-like 
synapses). Neurons are randomly connected with a connection probability between each pair of 
neurons of 0.2. Both populations receive two different types of external Poisson inputs: a constant-
rate thalamic input and an intracortical input generated by an Ornstein-Uhlenbeck (OU) process with 
zero mean. A description of the baseline reference parameters used in simulations is given in Table 
4. The LFP is computed as the sum of absolute values of AMPA and GABA postsynaptic currents on 
excitatory cells26,37. This simple estimation of LFPs was shown to capture more than 90% of variance 
of both experimental data recorded from cortical field potentials and of simulated data from a 
complex three-dimensional model of the dipoles generated by cortical neurons26,37,39. We changed 
the E:I ratio by independently varying the strengths of the inhibitory (𝑔𝐼) and excitatory (𝑔𝐸) synaptic 
conductances. We called g the relative ratio between inhibitory and excitatory conductances (𝑔 =
𝑔𝐼/𝑔𝐸). We present results of simulations for two levels of strength of thalamic input (𝜐0 = 1.5 
spikes/second and 𝜐0 = 2 spikes/second), and we verified that our results hold qualitatively for a wider 
range of input levels (1.5 to 4 spikes/second).  

 

For the simulations used to compute H and 1/f slope of LFPs, we simulated a 10-second 
stretch of network activity from which we extracted a 10-second LFP time series used to compute H 
and 1/f slopes for each individual value of g (Figure 1B). To estimate power spectral density (PSD) we 
computed the Fast Fourier Transform with the Welch’s method, dividing the data into ten 
overlapping segments with 50% overlap. 1/f slopes were computed with least-squares regressions 
predicting log power with log frequency. A piece-wise regression was applied to fit two line segments 
to the PSD – one segment to a low frequency region from 1-30 Hz and a second segment to a high-
frequency region from 30-100 Hz.   

 

As a basis for our model translating BOLD from LFP data, we note that prior studies with 
simultaneous electrophysiological and fMRI recordings in non-human primates have established that 
BOLD signal amplitude is more closely correlated with LFP than with any other type of neuronal 
events, such as spikes42,43. Similarly, simultaneous electroencephalogram (EEG)/fMRI studies in 
humans have found that the BOLD correlates with the EEG48,103, which in turns correlates strongly 
with the LFP104. Importantly, the BOLD amplitude at any given time has been found to correlate 
preferentially with the power of high frequency bands. In particular, the BOLD amplitude correlates 
strongly with the gamma (40 - 100 Hz) band. However, the power distribution across frequency bands 
carries complementary information about the BOLD signal, meaning that each band contributes to 
the prediction of BOLD and predicting the BOLD signal directly from a wide band (i.e. the whole LFP 
spectrum) leads to poorer predictions of BOLD42,43,47,48,105,106. To account for these empirical 
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observations, we have developed a model of BOLD signal that integrates contributions from different 
bands with a preferential contribution from high frequency bands.  

 

To compute the simulated BOLD through the convolutions of the simulated LFPs, we needed 
to generate longer time series than the initial 10 seconds simulated for LFPs. However, it was 
unfeasible to simulated very long BOLD time-series due to limitations on computational resources. 
We thus created, from the LFP data used for evaluations of individual g values, aggregated LFP time-
series corresponding to different intervals of g (rather than individual values of g), as follows. The set 
of 10-second LFP time series was divided into 3 equi-populated groups of 𝑔: 𝑔 < 7.5, 7.5 < 𝑔 < 11 
and 𝑔 > 11. A concatenated LFP time series was created for each group by randomly concatenating 
20 LFP traces, which provided 200-second LFP signals. Low frequencies of the concatenated data 
were log-log linearly extrapolated based on the low-frequency slopes obtained in LFP log-log linear 
piecewise fitting. To account for statistical variability, the process of concatenating data was repeated 
20 times for each group of g, randomly changing the order in which the individual LFP traces were 
combined within the group.  

 

Once concatenated LFP time-series data was simulated, we compute the simulated BOLD 
time-series as the LFP data convolved not only with a hemodynamic response function (HRF), as in 
standard network models35,107,108, but also with a high-pass filter (HPF) that gives more predictive 
power to higher LFP frequencies (Figure 2 – figure supplement 1B). We have tested different 
parameters of the HPF, checking that changing the parameters produce qualitatively similar results 
and a monotonic correspondence between H of simulated LFP and H of simulated BOLD, and we 
opted for a HPF with a cutoff frequency (the frequency where the response is lowered by 3 dB) of 
12.5 Hz and with a peak response at 20 Hz. The effect of the HPF was to attenuate low frequencies 
of the BOLD power distribution, partly compensating the low-frequency enhancement of HRFs, and 
to shift the peak frequency of BOLD power to 0.03 Hz, a value much closer to the peak frequency 
found in our real BOLD data and in most BOLD studies109,110 with respect to the one that would have 
been obtained without convolution (see Figure 2 – figure supplement 1).  

 

To simulate BOLD response from the LFP data generated from the recurrent model, within 
the frequency domain we multiplied the LFP spectrum with spectra of the high-pass filter (HPF) and 
the hemodynamic response function (HRF), as follows: 

 

𝐹𝐹𝑇(𝐵𝑂𝐿𝐷) = 𝐹𝐹𝑇(𝐿𝐹𝑃)𝐹𝐹𝑇(𝐻𝑃𝐹)[𝐹𝐹𝑇(𝐻𝑅𝐹) +  𝜂] 

 

Where 𝐹𝐹𝑇 is the fast Fourier transform operation and 𝜂 is a constant white noise term. This 
noise term summarizes neurovascular relationship at frequencies not observable because they are 
faster than the BOLD acquisition frequencies. We assumed that the amplitude of 𝜂 was very small 
and we assigned small values to this noise term. We checked that the exact value of amplitude of 𝜂, 
or the spectral profile of this noise term (for example, simulating 1/f noise instead of white noise), 
did not alter the monotonic relationship between the simulated H of BOLD and LFP. Finally, the 
simulated BOLD time-series data was produced by applying the inverse Fourier transform of 
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𝐹𝐹𝑇(𝐵𝑂𝐿𝐷) and then downsampling the resulting signal to a lower sampling rate, similar to that 
used in BOLD experiments (e.g., 0.5 Hz). The HRF used for simulating BOLD was the HRF from Magri 
et al.,43, but similar results were obtained when using a canonical HRF (see Figure 2 – figure 
supplement 2). 

 

Analyses examining enrichment of autism-associated genes in different cell types with genes 
differentially expressed by androgen hormones 

 

 To test hypotheses regarding cell types that may be affected by androgen influence, we 
examined genes linked to autism via rare de novo protein truncating variants that are enriched for 
expression in specific cell types52. Of the 102 genes reported by Satterstrom et al., we split these lists 
by enrichments in early excitatory neurons (C3), MGE derived cortical interneurons (C16), microglia 
(C19), and astrocytes or oligodendrocyte precursor cells (C4). In addition to high risk mutations linked 
to autism, we additionally used a list of genes differentially expressed (DE) in different cell types 
within post-mortem prefrontal and anterior cingulate cortex tissue of autistic patients53. These DE 
gene lists were split into cell types, and we examined DE genes in any excitatory neuronal cell class 
(L2/3, L4/ L5/6), inhibitory cell classes (IN-PV, IN-SST, IN-VIP, IN-SV2C), microglia, astrocytes (AST-PP, 
AST-FB), and oligodendrocytes.  

 

To test the question of whether cell type autism-associated gene lists were enriched for genes 
known to be differentially expressed by DHT, we used a previous DE gene list from an RNA-seq dataset 
of DHT administration to human neuronal stem cells was utilized for these tests13. Custom code was 
utilized to compute enrichment odds ratios and hypergeometric p-values for each enrichment test 
with different cell type autism-associated lists. The background total for these tests was the total 
number of genes considered in the original DHT-administration dataset (13,284).   

  

 To test how the DHT-sensitive and autism-associated genes in excitatory neurons are 
expressed across the human adult brain, we used whole-brain maps of expression for each gene in 
MNI space from the Allen Institute Human Brain Atlas55. Maps for each gene were downloaded from 
the Neurosynth website (https://neurosynth.org/genes/) and then submitted to a one-sample t-test 
in SPM12, with a threshold of FDR q<0.01. 

 

Data and code availability 

 

Tidy data and analysis code are available at https://github.com/IIT-LAND/ei_hurst. Source 
code of the recurrent network model is available at 
https://github.com/pablomc88/EEG_proxy_from_network_point_neurons. Raw RNA-seq data used 
to identify genes differentially expressed by DHT can be found in Gene Expression Omnibus 
(GSE86457). Data for the Allen Institute Human Brain Atlas can be found here: https://human.brain-
map.org. Mapping of this data to MNI space can be found at the Neurosynth website 
(https://neurosynth.org/genes/). 
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Tables 

 

 Time 

 

Condition (DREADD - 
SHAM) 

Time x Condition 

Baseline 0.82 (0.372) 0.81 (0.369) 0.36 (0.549) 

Transition 5.65 (0.017)* 3.25 (0.081) 4.94 (0.026)* 

Treatment 0.61 (0.433) 12.92 (0.001)** 0.66 (0.418) 

 

Table 1: Results from DREADD excitation manipulation. F-statistics (p-values in parentheses) for main 

effects of time, condition, and time*condition interaction for each of the 3 phases of the experiment 

(Baseline, Transition, Treatment). * = p<0.05, ** = p<0.001. 
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 Time 

 

Condition (DREADD - 
SHAM) 

Time x Condition 

Baseline 0.02 (0.876) 4.01 (0.054) 1.02 (0.137) 

Transition 0.04 (0.838) 0.35 (0.561) 1.36 (0.243) 

Treatment 0.40 (0.533) 0.20 (0.673) 0.10 (0.786) 

 

Table 2: Results from DREADD silencing manipulation. F-statistics (p-values in parentheses) for main 

effects of time, condition, and time*condition interaction for each of the 3 phases of the experiment 

(Baseline, Transition, Treatment). * = p<0.05, ** = p<0.001. 
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  TD males 

(N=29) 

Autistic 

males 

(N=23) 

TD females 

(N=33) 

Autistic 

females 

(N = 25) 

Sex Diagnosis Sex* 

Diagnosis 

Age 28.00 

(6.42) 

27.13 (7.14) 26.99 (5.34) 27.35 

(6.79) 

0.14 (0.70) 0.03 (0.85) 0.25 (0.61) 

VIQ 110.62 

(11.53) 

114.70 

(13.04) 

120.30 

(10.06) 

114.08 

(12.79) 

5.33 (0.02) 0.38 (0.53) 5.18 (0.02) 

PIQ 120.00 

(10.21) 

114.57 

(15.70) 

117.39 (9.27) 110.88 

(17.43) 

1.49 (0.22) 5.55 (0.02) 0.04 (0.83) 

FIQ 116.97 

(10.69) 

116.39 

(14.15) 

121.45 (8.33) 114.16 

(13.82) 

0.48 (0.48) 3.38 (0.06) 2.24 (0.13) 

Camouflaging 

Score 

- -0.16  (0.38) - 0.15 

(0.34) 

9.06 

(0.004) 

- - 

AQ 15.28 

(6.99) 

32.70(8.47) 11.97 (4.93) 38.44 

(6.34) 

0.26 (0.61) 300.59 

(2.2e-16) 

12.48 

(0.0006) 

ADI-R 

Reciprocal-

Social-

Interaction 

-  

17.26 (4.77) 

- 16.56 

(4.52) 

0.27 (0.60) - - 

ADI-R 

Communication 

- 14.83 (3.50) - 13.40 

(3.96) 

1.73 (0.19) - - 

ADI-R RRB - 5.17 (2.35) - 4.24 

(1.61) 

2.61 (0.11) - - 

ADOS 

Communication 

- 3.30 (1.74) - 1.24 

(1.30) 

21.85 

(2.59e-5) 

- - 

ADOS Social - 5.48 (3.45) - 3.48 

(3.06) 

4.52 (0.03) - - 
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ADOS RRB - 1.09 (1.12) - 4.30 

(1.61) 

61.84 

(6.32e-10) 

- - 

ADOS 

Communication 

+ Social Total 

- 8.83 (4.87) - 4.72 

(4.09) 

10.07 

(0.002) 

- - 

RMET 27.14 

(3.59) 

20.83 (6.87) 28.91(2.35) 22.84 

(6.40) 

3.93 (0.04) 42.30 

(2.704e-9) 

0.01 (0.89) 

Mean FD 0.17 

(0.05) 

0.20 (0.07) 0.18(0.06) 0.04 

(0.17) 

0.51 (0.47) 1.77 (0.18) 1.10 (0.29) 

 

Table 3. Descriptive and inferential statistics for group comparisons of demographic and clinical 

variables. Values in the columns for each group represent the mean and standard deviation (in 

parentheses). Values in the columns labeled Sex, Diagnosis, and Sex*Diagnosis indicate the F-statistic 

and p-value (in parentheses). Abbreviations: TD, Typically Developing; VIQ, verbal IQ; PIQ, 

performance IQ; FIQ, full-scale IQ ADI-R, Autism Diagnostic Interview–Revised; ADOS, Autism 

Diagnostic Observation Schedule; RRB, Restricted Repetitive Behaviors; AQ, Autism Spectrum 

Quotient; RMET, Reading the Mind in the Eyes Test, FD: frame-wise displacement. 
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A: Neuron model 

Parameter Description Excitatory cells Inhibitory cells 

Vleak (mV) Leak membrane potential -70  -70  

Vthreshold (mV) Spike threshold -52  -52  

Vreset (mV) Reset potential -59  -59  

τrefractory (ms) Absolute refractory period 2  1  

gleak (nS) Leak membrane conductance 25  20  

Cm (pF) Membrane capacitance 500  200  

τm (ms) Membrane time constant 20  10  

B: Connection parameters 

Parameter Description Excitatory cells Inhibitory cells 

EAMPA (mV) AMPA reversal potential 0  0  

EGABA (mV) GABA reversal potential -80  -80  

τr(AMPA) (ms) Conductance rise time (AMPA) 0.4  0.2  

τd(AMPA) (ms) Conductance decay time (AMPA) 2  1  

τr(GABA) (ms) Conductance rise time (GABA) 0.25  0.25  

τd(GABA) (ms) Conductance decay time (GABA) 5  5  

τl (ms) Synapse latency 0  0  

gAMPA(rec.) (nS) AMPA conductance (recurrent) 0.178 0.233 

gAMPA(tha.) (nS) AMPA conductance (thalamic) 0.234 0.317 

gAMPA(cort.) (nS) AMPA conductance (intracortical) 0.187 0.254 

gGABA (nS) GABA conductance 2.01 2.7 

 

Table 4: Baseline reference parameters of the recurrent network model. Parameters used in Cavallari 
et al.,40 with conductance-based synapses. 
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