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By probing the population of binary black hole (BBH) mergers detected by LIGO-Virgo, we can infer
properties about the underlying black hole formation channels. A mechanism known as pair-instability (PI)
supernova is expected to prevent the formation of black holes from stellar collapse with mass greater than
∼40–65 M⊙ and less than ∼120 M⊙. Any BBH merger detected by LIGO-Virgo with a component black
hole in this so-called PI mass gap likely originated from an alternative formation channel. Here, we firmly
establish GW190521 as an outlier to the stellar-mass BBH population if the PI mass gap begins at or below
65 M⊙. In addition, for a PI lower boundary of 40–50 M⊙, we find it unlikely that the remaining
distribution of detected BBH events, excluding GW190521, is consistent with the stellar-mass BBH
population.
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I. INTRODUCTION

During the first two observing runs of Advanced LIGO
and Advanced Virgo (O1 and O2), 11 gravitational wave
(GW) signals were identified by the LIGO-Virgo
Collaboration [1,2] including 10 from binary black hole
(BBH) mergers [3]. Substantial improvements in detector
sensitivity prior to the first half of the third observing run
(O3a) led to the detection of 39 new GW event candidates,
at least 36 of which are consistent with BBH mergers [4].
This growing population of BBH mergers allows us to
probe underlying black hole formation channels [5,6].
Black holes can form directly through stellar collapse,

mergers, accretion, or through collapse of dense gas in the
early Universe (primordial black holes). Binary systems
consisting of black holes which formed from stellar
collapse are referred to as stellar-mass BBHs. In the case
of stellar evolution, a mechanism known as pair-instability
(PI) supernovae is expected to prevent the formation of
heavier black holes [7–11]. In PI, the production of
positron-electron pairs causes a reduction in radiation
pressure. This in turn causes the core of the star to contract,
raising the temperature and increasing the production of
positron-electron pairs in a runaway process. Any star with
a helium core mass 32 M⊙ ≲MHE ≲ 64 M⊙ undergoes
pulsational pair-instability (PPI). In PPI, the stellar
envelope is removed and the mass of the star is reduced
until the star reaches a stable state [7,12–14]. Any star with
a helium core mass 64 M⊙ ≲MHE ≲ 135 M⊙ undergoes
PI supernova which blasts the star apart, leaving no

remnant compact object [7,15,16]. More massive
stars are predicted to collapse directly to black holes
[16–18].
The PI process is heavily dependent on stellar metallicity

[19,20]. A metal-poor star (Z ≤ 3 × 10−4) may collapse
into a black hole with mass up to ∼65 M⊙ if the
star’s hydrogen envelope falls onto the compact object
and up to ∼45 M⊙ otherwise [21]. Compared to a low
metallicity star, a metal-rich star is expected to collapse into
a lower mass compact object [8,16,22–27]. Overall, this
mechanism results in an absence of black holes in the mass
spectrum known as the PI mass gap. Some theoretical
uncertainties regarding the lower boundary remain [28–32],
however, 65 M⊙ is likely a conservative lower limit
[8–11,16,33,34]. The upper boundary of the PI mass gap
is more certain and is believed to be ∼120 M⊙ [8,9,11].
Black holes can exceed the PI mass limit if they are

formed from the previous merger of smaller black holes.
This so-called hierarchical merger scenario can occur
through dynamical encounters in dense stellar clusters
such as galactic nuclei, globular clusters [35–46], or
nuclear star clusters [47,48]. Hierarchical mergers can also
form through gas-capture in the disks of active galactic
nuclei (AGNs) [49–55]. Alternatively, black holes can
exceed the PI mass limit by substantial accretion, which
is possible for black holes in AGN disks [56,57]. Black
holes can also form within the PI mass gap when young
stars within a dense young star cluster merge in a runaway
collision process [58–60].
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GW190521 is the heaviest BBH merger detected to date
and marks the first direct detection of an intermediate mass
black hole [61]. Reference [34] estimates the probability for
at least one of the component black holes to lie within
65–120 M⊙ to be 99.0%, assuming a binary system
with quasicircular orbit. This probability increases when
the analysis was repeated after taking into account
the population of detected binary systems [6]. Hence,
GW190521 is an appealing candidate for alternative for-
mation scenarios—a prospect which has already been
explored in various papers [62–69]. We caution, however,
that analyzing the features of a potential outlier BBH event
outside the context of the entire population of detected
events can be misleading (a notion previously examined by
Fishbach et al. in Ref. [70]).
Here, we investigate whether GW190521 or any other

BBH merger is an outlier to the stellar-mass BBH pop-
ulation. Distinguishing between separate alternative for-
mation channels is outside the scope of this work. We
examine the BBH events detected by Coherent WaveBurst
(cWB), a model waveform independent pipeline used to
search for GW signals [71,72], and compare this sample of
detected events against models of the stellar-mass BBH
population. In the method presented below, we add
simulated BBH waveforms (injections) directly into the
GW detector strain data and recover them with the cWB
pipeline. This allows us to directly account for detector
noise when estimating the significance of potential outliers.
Ultimately, we seek to answer two fundamental questions:
(i) accounting for statistical fluctuations, are there any
outliers to the stellar-mass BBH population? and (ii) is the
distribution of detected BBH events consistent with the
stellar-mass BBH population?
This paper is organized as follows. In Sec. II, we

familiarize the reader with cWB—a pipeline that uses
minimal assumptions to identify GW transient signals.
Next, we specify the stellar-mass BBH population models
and injections used in this study. Then, we define our test
statistic and describe our statistical procedure used to
classify outliers. In Sec. III, we present our results for
various possible models of the stellar-mass BBH popula-
tion. Finally, in Sec. IV, we state the conclusions of this
study and briefly discuss our future work.

II. METHOD

A. Coherent waveburst

CWB is a search algorithm that identifies GW signals in
the LIGO-Virgo detector data without directly using a
waveform model [71,72]. The signal detection process is
performed in the time-frequency domain using the Wilson
Daubechies Meyer wavelet transform [73]. Here, the
algorithm identifies wavelets inconsistent with detector
noise and assembles them into clusters. If a cluster of
wavelets is coincident in time and frequency across the

detector network, then an event trigger is generated. For
each event trigger, summary statistics are calculated which
describe the time-frequency evolution (f0, ΔTs, ΔFs, M,
FM, eM), signal strength and coherence (SNRnet, cc, nf),
and the likelihood fit (Ec=L). Additional statistics are used
to estimate the number of cycles in the reconstructed
waveform (Q0, Q1). The summary statistics used in this
study are defined in Appendix C.
Through O1, O2, and O3a, cWB has contributed to the

detection of 22 BBH merger candidates (displayed in
Table I). Among these detections is GW190521, which
cWB played a crucial role in identifying [61,74]. In this

TABLE I. List of 22 BBH merger event candidates observed by
cWB during the O1, O2, and O3a observing runs. Summary
statistics, including the central frequency f0 and network signal-
to-noise ratio SNRnet, are reconstructed by the cWB pipeline and
fed into XGBoost to estimate the source frame total mass McWB
(described in Sec. II D). Events in the table are ordered according
to McWB. The estimated source frame mass McWB can be
compared against the estimated source frame mass MGWTC
reported in the LIGO-Virgo Transient Catalogs [3,4].

Event SNRnet f0 [Hz] McWB ½M⊙� MGWTC ½M⊙�
GW190521 14.4 57.8 193.2 157.9þ37.5

−20.9

GW190706_222641 12.7 74.1 139.2 101.1þ18.0
−13.5

GW190602_175927 11.1 76.9 126.8 114.0þ18.4
−15.5

GW190519_153544 14.0 89.2 115.5 104.2þ14.5
−15.0

GW170729 10.2 81.8 110.5 84.4þ15.8
−11.1

GW190701_203306 10.2 93.3 104.3 94.1þ11.6
−9.2

GW190521_074359 24.7 91.4 92.9 74.4þ6.9
−2.4

GW170814 17.2 115.4 90.2 55.9þ3.4
−2.6

GW190421_213856 9.3 87.2 84.6 71.7þ12.5
−8.6

GW190727_060333 11.4 103.5 81.2 65.8þ10.8
−7.3

GW190503_185404 11.5 109.8 78.8 71.3þ9.3
−8.1

GW170823 10.8 114.2 73.5 68.7þ10.8
−8.1

GW150914 25.2 118.7 68.6 66.1þ3.8
−3.3

GW190915_235702 12.3 119.9 67.1 59.5þ7.6
−6.2

GW170104 13.0 147.0 65.3 51.0þ5.3
−4.1

GW190828_063405 16.6 103.5 60.9 57.5þ7.4
−4.5

GW190408_181802 14.8 117.3 52.2 42.9þ4.0
−2.9

GW151226 11.9 120.6 45.8 21.5þ6.2
−1.5

GW190412 19.7 108.5 45.6 38.4þ3.8
−3.7

GW190517_055101 10.7 133.4 41.8 61.9þ10.1
−9.6

GW190512_180714 10.7 125.7 33.1 35.7þ3.8
−3.4

GW170608 14.1 116.9 17.4 18.6þ3.2
−0.7
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work, we compare these BBH detections against predic-
tions made by the stellar-mass BBH population. Simulated
waveforms representative of the stellar-mass BBH
population are injected into the GW detector data and
recovered with cWB. We restrict our analysis to events
detected by cWB with a false alarm rate (FAR) less than
1 yr−1 to maintain a high purity sample set. Although the
inclusion of Virgo generally improves source property
reconstruction, we simplify our analysis by considering
only the Hanford-Livingston detector network.

B. Stellar-mass BBH population models

We examine two phenomenological mass models pre-
sented in Ref. [6]: the Broken Power Law model [75] and
the Power Law þ Peak model [76]. Each population model
is described by a set of hyperparameters whose values are
estimated by applying hierarchical Bayesian inference on
the full population of BBH merger candidates detected by
LIGO-Virgo [77–79]. Below is a short description of
each model:

(i) Broken Power Law: The primary mass distribution is
characterized by a gentle sloping power law at low
mass designed to capture the observed Salpeter
initial mass function [80,81] and a second steep
sloping power law at high mass which targets a mass
tapering of the distribution. The mass ratio is given
as a power law that favors equal mass binaries [82].

(ii) Power Law þ Peak: The primary mass distribution is
characterized by a power law component at low
mass and wide Gaussian component at high masses
which models a build-up of black holes due to PPI
supernovae [83,84]. Similar to the previous model,
the mass ratio is given as a power law favoring equal
mass binaries.

The left plot in Fig. 1 displays the astrophysical
distribution for the primary mass m1 predicted by each
model, averaged over uncertainty. These mass models
describe the complete astrophysical distribution of BBHs
and do not distinguish between separate formation chan-
nels. To isolate the stellar-mass BBH population, we apply

a theoretically motivated cutoff on the primary mass to
model the PI mass gap lower boundary. We assume that no
stellar-mass BBHs form inside of the PI gap. To account
for the uncertainty surrounding the PI mass limit, we
consider three cases: (i) m1 < 65 M⊙, (ii) m1 < 50 M⊙,
and (iii) m1 < 40 M⊙. For brevity, we abbreviate each
model and add a subscript indicating the primary mass
cutoff, e.g., BPL65 indicates the Broken Power Law model
with a primary mass cutoff of m1 < 65 M⊙.

C. Injections

An essential part of this work is that we add injections
directly to GW detector strain data. This allows us to
compare our detected BBH events against the population
models, accounting for selection bias. We use the
SEOBNRv4 waveform approximant [85] and inject simu-
lated waveforms uniformly in time throughout the O1-O3a
observing runs. In the case of O1 and O2, we use the public
GW strain data available through the Gravitational Wave
Open Science Center (GWOSC) [86]. At the time of this
publication, the GW strain data for the complete O3a
observing run was not publicly available. Instead, we used
the segments of data available from the GWTC-2 GWOSC
data release [86] to emulate the O3a sensitivity, and we
repeated injection analysis on these data segments until
realizing the full O3a observation time.
The component masses for each simulated BBH event

are drawn from the tested stellar-mass model under con-
sideration (see Sec. II B). Component black hole spins are
drawn from a uniform aligned spin distribution. This spin
distribution is theoretically motivated to favor isolated
binaries [87–92]. The binary source distance is drawn
assuming uniform density in comoving volume up to
redshift z ¼ 2 [93]. Other extrinsic binary parameters
including sky location and inclination angle are randomly
selected.
We recover the simulated BBH events using the cWB

pipeline and select events with a FAR less than 1 yr−1. The
right plot in Fig. 1 displays the distribution of detected
events for each population model. By comparison to the

FIG. 1. Expected probability distribution of source frame primary mass m1, averaged over uncertainty, for the Broken Power Law
(orange) and Power Law + Peak (blue) models: (left) astrophysical distributions, (right) distributions of events detected by cWB with
FAR less than 1 yr−1. Dotted vertical lines indicate tested values of the PI mass limit: 40 M⊙, 50 M⊙, and 65 M⊙.
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astrophysical distributions, the detected distributions favor
more massive BBH mergers due to selection effects caused
by the ground-based detectors and the cWB search
pipeline.

D. Population outlier test statistic

In this study, we require a test statistic that captures the
characteristics of an outlier to the stellar-mass BBH
population. One logical statistic to consider is the source
frame primary mass m1, since stellar-mass BBH events are
not expected to havem1 inside the PI mass gap. Ideally, one
could use the source frame primary mass m1 estimated via
Bayesian inference. However, since we inject and recover
Oð100;000Þ simulated BBH events in this study, this is not
a feasible approach.
Instead, we utilize cWB in combination with a super-

vised machine learning (ML) algorithm XGBoost [94] to
rapidly estimate the source frame total mass for a given
event. This estimate, which we callMcWB, serves as our test
statistic. The injected source frame total mass Minj is
designated as the target variable in our ML regression
model, and the summary statistics reconstructed by cWB
are used as input features to estimate the target variable.
Figure 2 shows the injected Minj and estimated McWB for
simulated BBH events drawn from the Power Law þ Peak

mass model. In Appendix C.4 of Ref. [6], we use a
simplified approach without ML, but we expect the method
presented in this paper to be more sensitive to measure
outliers of the stellar-mass BBH population.
To generate a robust estimate of the source frame total

mass, we train our ML algorithm on a simulation set
independent from the stellar-mass BBH population simu-
lation sets. This way, the trained ML algorithm is
conservative when applied to tested population models.
We use the IMRPhenomPv2 waveform approximant [95]
and inject simulated waveforms uniformly throughout O1,
O2, and our emulated O3a observation run. For each

training event, the primary mass m1 is drawn from a
uniform distribution m1 ∈ ½1; 150� M⊙, and the mass ratio
q is fixed equal to one. The component spins are drawn
from an isotropic distribution. Extrinsic parameters includ-
ing sky location, orientation, and distance are each drawn
from uniform distributions. We again consider only events
detected by cWB with FAR less than 1 yr−1. More
information regarding our ML training and tuning pro-
cedure can be found in Appendix D.

E. Statistical procedure

Our statistical procedure is divided into two steps. First
we identify which events, if any, in our sample set are
potential outliers to the stellar-mass BBH population. And
second, we remove any potential outliers and determine if
the remaining distribution of events is consistent with the
stellar-mass BBH population. We use McWB, defined in
Sec. II D, as an outlier test statistic where a higher value of
McWB indicates a greater probability for the event to have
originated inside the PI mass gap.
First, to estimate the significance of potential outliers, we

consider a bootstrap resampling procedure. In this pro-
cedure, we identify the event x which has the highest value
of McWB from our sample set of N event candidates. We
then randomly draw N simulated events with replacement
from the model distribution and select the simulated event
from the set which has the highest value of McWB, i.e., we
select the outlier from the simulated set. We repeat this
routine 10,000 times, and thus estimate the distribution of
outliers events O predicted by the model. So, the proba-
bility for a model to produce an outlier as significant as
event x is given as:

PrðMx
cWB ≥ MO

cWBjH0Þ; ð1Þ

where H0 represents the null hypothesis that event x is
consistent with the model outlier distribution O. This is the
one-sided (right tail) p-value. If this probability is less than
our conservatively chosen threshold α ¼ 0.01, we claim
that event x is a potential outlier to the tested popula-
tion model.
In the case where event x is found to be a potential

outlier, we omit the event from the sample set and reanalyze
the remaining N − 1 events. We repeat this process until all
outliers are identified.
Once we have identified the number of population

outliers Nout, we then study whether the remaining sample
set of N − Nout events are consistent with the population
model. We again consider a bootstrap resampling pro-
cedure where the BBH events in our sample set are ordered
according to McWB. We then randomly draw 10,000
batches of N − Nout simulated events and sort each batch
according to McWB. The nth ranked event from our sample
set is compared against the nth ranked simulated event from
each batch. Thus, we can identify if the nth ranked event in

FIG. 2. Estimated source frame total mass McWB and injected
source frame total mass Minj for simulated BBH events drawn
from the Power Law þ Peak mass distribution model. Dashed
black line indicates the identity line.
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our sample set is consistent with predictions made by the
tested population model.
To further quantify the consistency between the sample

distribution and tested population model, we apply the
Anderson-Darling (AD) goodness-of-fit test [96].
Compared to the Kolmogorov-Smirnov (KS) test
[97,98], the AD test is expected to be more sensitive at
the tails of the distribution and so is more suitable for this
analysis. If the AD p-value pAD is less than β ¼ 0.01, then
we find the sample distribution is inconsistent with the
tested model distribution.

III. RESULTS

A. PI mass limit of 65 M⊙

In this section, we present the results of our analysis under
three separate assumptions of the PI mass limit. First, we
examine stellar-mass BBH models under the assumption of
a 65 M⊙ PI mass limit: BPL65 and PLP65, defined in
Sec. II B. Our sample distribution consists of 22 BBH
events detected by cWB (see Table I). We order these events
according toMcWB. Here, the first rank event is GW190521
with McWB ¼ 193.2 M⊙.
We compare GW190521 against outliers predicted by

each model to determine if the event is a stellar-mass BBH
population outlier. Specifically, we generate batches
of 22 simulated events from the BPL65 and PLP65 models
and compare GW190521 against the outlier from each
batch. The rotated histograms in Fig. 3 show McWB for

GW190521 (red dotted line) compared against the distri-
bution of McWB for outliers predicted by BPL65 (orange)
and PLP65 (blue). The dashed lines in each histogram
denote the 98% confidence predicted by the model. Using
Eq. (1), we find the probability for the BPL65 and PLP65
models to produce an outlier as significant as GW190521 to
be less than 0.0001. So, assuming the PI mass limit exists as
a sharp cutoff at 65 M⊙, we find GW190521 to be an
outlier to the stellar-mass BBH population.
Next, we investigate if any other events are outliers to the

stellar-mass BBH population. We omit GW190521, and
reanalyze the remaining 21 detected BBH events in our
sample set against batches of 21 simulated BBH events
predicted by each model. The highest ranked event in this
sample set is GW190706_222641withMcWB ¼ 139.2 M⊙.
After applying the same statistical procedure as above, we
calculate a p-value of 0.109 and 0.082 for the BPL65 and
PLP65 model, respectively, and so this event is consistent
with both population models.
After identifying all potential population outliers, in this

case just GW190521, we examine whether the remaining
sample distribution is consistent with the tested population
models. Figure 3 shows the estimatedMcWB for our sample
set (black) compared to predictions made by the BPL65

(orange) and PLP65 (blue) models. The dark orange (blue)
line represents the median value of McWB predicted by the
BPL65 (PLP65) model, the shaded region indicates 90% con-
fidence interval, and the dashed lines indicate 98% confi-
dence interval. We find that all 21 events lie within the
98% confidence interval predicted by eachmodel. Applying
the AD goodness-of-fit test, we estimate pAD for the BPL65

model and PLP65 model to be greater than 0.25. So, the
distribution of detected events, excluding GW190521, is
consistent with both stellar-mass BBH models.

B. PI mass limit of 50 M⊙

Next, we repeat our statistical analysis for stellar-mass
BBH models assuming a PI mass limit of 50 M⊙: BPL50

and PLP50. Here, we again compare the McWB distribution
of the 22 BBH events detected cWB (our sample distri-
bution) against the McWB distribution predicted by the two
models.
As in Sec. III A, we find GW190521 to be an outlier to

the tested stellar-mass BBH population models (p-value
< 0.0001). So, we reanalyze the remaining 21 BBH
detections. Here, the highest ranked event from this set,
GW190706_222641, has an outlier p-value of 0.009 when
compared to the BPL50 model and an outlier p-value of
0.011 when compared to the PLP50 model. By definition of
our a priori p-value threshold α ¼ 0.01, we treat this event
as a potential outlier to the BPL50 model but not the PLP50
model. No other potential outliers are identified for the
BPL50 stellar-mass model. In Fig. 4, the rotated histograms
show the estimatedMcWB of potential outliers compared to
predictions made by each population model. Here, it is

FIG. 3. Distribution of BBH events detected by cWB, shown in
red/black, ranked according to McWB and compared to predic-
tions made by stellar-mass models BPL65 (top) and PLP65
(bottom), which assume a PI mass limit of 65 M⊙. Event names
are abbreviated. Shaded region indicates 90% confidence inter-
val, dashed lines indicate 98% confidence interval. GW190521 is
identified as an outlier to both population models. The remaining
BBH events are consistent with both models.
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evident that GW190521 is a clear outlier to both models,
whereas GW190706_222641 lies just outside the 98% con-
fidence interval for the BPL50 model.
Next, we examine the remaining distribution of detected

events. The main panels in Fig. 4 show this distribution
compared to predictions made by each model. Here, we
observe that the sample distribution appears to deviate from
the predicted distributions, particularly the PLP50 model
distribution. That is, there are more high mass events in the
sample distribution compared to the predictions made by
each model. To quantify this deviation, we apply the AD
test. For the BPL50 stellar-mass model, we analyze the 20
nonoutlier BBH detections and calculate pAD to be 0.039—
so the detected events are consistent with the model. For the
PLP50 model, we analyze the 21 nonoutlier BBH detec-
tions, including GW190706_222641, and calculate pAD to
be 0.006. This indicates that the sample distribution is
inconsistent with the PLP50 model. As a cross-check, we
examine the case of evaluating GW190706_222641 as a
potential outlier, since it barely passes our outlier p-value
threshold. Applying the AD test for this case, we calculate
pAD to be 0.036. So, if GW190706_222641 is treated as a
potential outlier, then the remaining sample distribution is
consistent with PLP50.

C. PI mass limit of 40 M⊙

In the final case, we consider a PI mass limit of 40 M⊙.
Our results for this case are summarized in Fig. 5. As in the

previous two cases, we first compare GW190521 against
the distribution of outliers predicted by each model. We
again find GW190521 to be an outlier with a p-value less
than 0.0001 for both models (leftmost rotated histogram).
We then reanalyze the remaining 21 BBH events in our
sample set to test if the highest ranked event in this set,
GW190706_222641, is an outlier to the stellar-mass BBH
models. For this event, we calculate a p-value of 0.007 and
0.006 for the BPL40 and PLP40 models, respectively
(second rotated histogram). So, this event is also classified
as a potential outlier. We then rerun our analysis for the
remaining 20 detected BBH events and find no additional
outliers in the sample set.
The main panels in Fig. 5 show the sample distribution,

according to McWB, compared to predictions made by each
stellar-mass BBH population model. Here, we notice that
more high mass events are found compared to the pre-
dictions made by either population model. Applying the
AD test, we find pAD for both the BPL40 model and the
PLP40 model to be less than 0.001. So, if the PI mass limit
is at 40 M⊙, then we have two potential outliers—
GW190521 and GW190706_222641—and out of the
remaining 20 BBH events, there are more high mass events
than predicted by the models.

IV. CONCLUSIONS

In this paper, we introduce a method to determine
if the distribution of BBH events detected by cWB is
consistent with the stellar-mass BBH population. Detector
noise is unavoidable and could affect the inference and

FIG. 4. Distribution of BBH events detected by cWB, shown in
red/black, compared to predictions made by stellar-mass models
BPL50 (top) and PLP50 (bottom), which assume a PI mass
limit of 50 M⊙. For the BPL50 model, GW190521 and
GW190706_222641 are evaluated as potential outliers, and the
remaining events are consistent with the population model. For
the PLP50 model, only GW190521 is identified as an outlier,
while the remaining distribution of events are inconsistent with
the model.

FIG. 5. Distribution of BBH events detected by cWB, shown in
red/black, compared to predictions made by stellar-mass models
BPL40 (top) and PLP40 (bottom). Two events—GW190521 and
GW190706_222641—are found to be potential population out-
liers. The remaining 20 BBH events are inconsistent with both
stellar-mass BBH population models.
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understanding of any given event, thereby making an
otherwise ordinary BBH merger appear as an outlier.
Our analysis operates directly on search statistics by
injecting simulated waveforms representative of the stel-
lar-mass BBH population directly into the detector strain
data and recovering them with the search pipeline. This
way, any inference errors caused by the detector noise are
captured within the model distribution.
The existence of the PI mass gap is widely accepted,

though its bounds are not yet well defined. Following the
detections of BBH mergers, and in particular GW190521,
made by LIGO-Virgo, it is now possible to probe
the PI mass gap. Some works have investigated stellar
evolution mechanisms which may increase the PI lower
limit to account for GW190521 [28,30–32]. Alternative
approaches have examined the mass models fit to the
LIGO-Virgo BBH detections [5,6,75,76] to understand
whether there is evidence for a mass gap [68] or whether
outliers exist [70] (see also Appendix A). In this paper, we
examine three separate theoretically motivated cutoffs in
the black hole mass distribution to model the PI mass lower
boundary to identify if any detected binaries merged within
the mass gap.
We began this study to further investigate the origin of

the GW190521 signal and to understand whether an event
like GW190521 could be imitated by a stellar-mass BBH
merger. We conclude that if the PI mass gap begins at or
below 65 M⊙, then GW190521 is a clear outlier to the
stellar-mass BBH population and that its outlier signifi-
cance cannot be explained by statistical fluctuations. Any
population study, such as the analysis presented in this
paper, is dependent on the sample distribution. So, we
expect the significance of stellar-mass BBH population
outliers presented here to fluctuate following future observ-
ing runs. However, it is critical to note that we do not expect
our outlier significance of GW190521 to change in a
meaningful way (See Appendix B). Our conclusion on
GW190521 is consistent with the population re-weighted
posterior probability, which places the primary mass m1

firmly above 65 M⊙ [6].
Regarding the remaining distribution of 21 BBHmergers

detected by cWB, we find it unlikely that this sample
distribution is consistent with the stellar-mass BBH pop-
ulation, assuming the PI mass limit exists at 50 M⊙. In this
case, there is also some evidence that GW190706_222641
could be an outlier to the stellar-mass BBH population.
And if the PI mass limit is at 40 M⊙, differences between
the sample distribution and stellar-mass BBH population
models cannot be reconciled. In this case, there is over-
whelming evidence that cWB has detected more high mass
BBH events compared to predictions made by the stellar-
mass models.
In future work, we aim to expand upon this analysis by

testing BBH population models corresponding to specific
astrophysical channels. In this case, the inclusion of spin

effects into our test statistic will become important to
distinguish between different alternative scenarios.
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APPENDIX A: CONSISTENCY CHECK ON
PHENOMENOLOGICAL POPULATION MODELS

This section serves as a consistency check on two
phenomenological population models, Broken Power
Law and Power Law þ Peak, which are fit to the
population of BBH mergers detected by LIGO-Virgo.
This is an update to the work presented in Ref. [6],
Appendix C.4.
Here, we apply the same methodology presented in

Sec. II. First, we compare GW190521 against the distri-
bution of outliers predicted by each model. We estimate the
probability for the Broken Power Law model and the Power

Law þ Peak model to produce an outlier as significant as
GW190521 to be 0.0104 and 0.015, respectively. This is
consistent with the result reported in Ref. [6], where we
estimate the outlier p-value of GW190521 to be 0.053 for
the Broken Power Law model and 0.077 for the Power Lawþ
Peak model. Here, we expect the change in significance is
due to the improved sensitivity to population outliers with
the updated method presented in this paper. The results of
this test are summarized in Figure 6. Analyzing the full
distribution of events detected by cWB, we find that the
sample distribution is consistent with both population
models (pAD > 0.25). Overall, we cannot make any con-
clusive statements regarding which model fits the observed
data better. Future BBH detections could help resolve the
differences between the models and point to a pre-
ferred model.
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APPENDIX B: FURTHER INVESTIGATION OF
THE OUTLIER SIGNIFICANCE OF GW190521

One main conclusion of this work is that GW190521 is
inconsistent with the stellar-mass BBH population, assum-
ing a PI mass limit at or below 65 M⊙. This result, however,
is inherently dependent on our sample size and is subject to
change following additional detections in future observing
runs. Nevertheless, we expect the outlier significance of
GW190521 presented here will not meaningfully change
following future observing runs.
To test this, we consider a hypothetical scenariowhere the

cWBpipeline identified 100 BBH events during the O1, O2,
and O3a observing runs (instead of 22 BBH events). Under
this scenario, we conservatively assume that GW190521
persists as the first rank event, according to McWB.
Following the statistical procedure described in Sec. II E,
we estimate the outlier p-value of GW190521 to be less than
0.0001. Though this p-value is admittedly limited by our
simulated sample size, our conclusion remains that no
simulated BBH event representative of the stellar-mass
BBH population is as significant as GW190521.

APPENDIX C: ML TRAINING FEATURE LIST

We utilize XGBoost, a boosted decision tree ML algo-
rithm [94], as a regression tool to estimate the source frame
total mass McWB for a given event. To estimate the target
variable, ML algorithms require input features which are
correlated with the target variable. In our case, the target
variable is the source frame total mass Minj, and the ML

features are summary statistics reconstructed by cWB.
Below is the list of 13 summary statistics used in the
training process, ordered according to the gain importance
metric. Unsurprisingly, the most important feature is a
measure of the central frequency f0, which is expected to
be inversely proportional to the detector frame total mass.
Further attempts at feature pruning reduced our evaluation
score on a validation data set. Some summary statistic
definitions below are equivalent to those found inRef. [105].

(i) f0—Energy weighted signal central frequency.
(ii) ΔFs—Energy weighted signal bandwidth.
(iii) On—Observation run number. Including the obser-

vation run number allows the ML algorithm to
respond to changes in detector sensitivity across
separate observing runs.

(iv) nf—Effective number of time-frequency resolutions
used for event detection and waveform reconstruction.

(v) ΔTs—Energy weighted signal duration.
(vi) FM—Chirp mass energy fraction, chirp mass good-

ness of fit metric, defined in Ref. [106].
(vii) M—Chirp mass parameter estimated in the time-

frequency domain, defined in Ref. [106].
(viii) SNRnet—Quadrature sum of the reconstructed signal

SNR found in each GW detector.
(ix) Q0—An estimation of the effective number of cycles

in a cWB event [107].
(x) eM—Chirp mass ellipicity, chirp mass goodness of

fit metric, defined in Ref. [106].
(xi) cc—Coherent energy divided by the sum of coherent

energy and null energy, defined in Ref. [71].
(xii) Q1—The waveform shape parameter [107] devel-

oped to identify a characteristic family of (blip)
glitches present in the detectors [3,108].

(xiii) Ec=L—Ratio of the coherent energy to the network
likelihood.

FIG. 6. Distribution of BBH events detected by cWB, shown in
black, ranked according to McWB and compared to predictions
made by the Broken Power Law model (top) and Power Law þ
Peak model (bottom). Shaded region indicates 90% confidence
interval, dashed lines indicate 98% confidence interval. The BBH
events detected by cWB are consistent with both population
models.

TABLE II. List of tuned hyper-parameters. Bold parameters
indicate hyper-parameters selected through tuning with 5-fold
cross validation. The base_score is initialized to the mean
source frame total mass of the training data set M̄inj †: the
n_estimators hyperparameter is optimized using early stop-
ping, described in the main text.

Hyperparameter Entry

objective reg:pseudohubererror
tree_method gpu_hist
grow_policy lossguide
base_score M̄inj
n_estimators 20000†
learning_rate 0.03, 0.1
max_depth 5, 7, 9, 11, 13
min_child_weight 1, 5, 10
gamma 1.0, 2.0, 5.0
colsample_bytree 0.6, 0.8, 1.0
subsample 0.6, 0.8
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APPENDIX D: ML TRAINING AND TUNING

Our training set consists of simulated BBH events
recovered by cWB, described in Sec. II D. We use the
Huber loss function [109] as the learning objective for our
XGBoost regression model. This loss function is expected
to be less sensitive to outliers compared to the squared loss
function. The base_score, which represents the initial
prediction for all instances, is initialized to the mean
injected source frame total mass of the training data set

M̄inj. To optimize the number of decision trees, we employ
early stopping which restricts the number of trees based on
the model performance over an independent validation data
set. Here, early stopping effectively limits overfitting. To
tune the remaining XGBoost hyperparameters, we perform
a grid search over 540 combinations of hyperparameters
and use 5-fold cross validation to further prevent over-
fitting. Selected hyperparameters are shown in bold in
Table II.
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