
Vehicle Localisation using Asphalt Embedded
Magnetometer Sensors

1st Giammarco Valenti
Dept. of industrial Engineering

University of Trento
Trento, Italy

giammarco.valenti@unitn.it

2nd Francesco Biral
Dept. of industrial Engineering

University of Trento
Trento, Italy

francesco.biral@unitn.it

3rd Daniele Fontanelli
Dept. of industrial Engineering

University of Trento
Trento, Italy

daniele.fontanelli@unitn.it

Abstract—While advanced driving assistance systems for
vehicles are becoming mature in urban and freeway scenarios, the
enabling service of precise localisation with respect to the road
lane is gaining more and more attention in the last decade. Indeed,
having knowledge of the precise location of the vehicle allows safer
and more efficient solutions, especially when those information
are shared among multiple vehicles. This manuscript deals with
the definition of an effective and simple nonlinear least squares
solution for estimation and tracking of vehicles using multiple
magnetometers embedded on the lateral road stripes. The solution
relies on a classical model of magnetometer measurements and
it is made robust by adding turning the classic least square
solution to a constrained optimisation problem dictated by known
road quantities (i.e., curvature and lanes dimensions). A first set
of results sound promising for an effective application of the
proposed algorithm to vehicle tracking.

Keywords—Vehicle localisation, Magnetometers, Weighted Least
Squares estimation

I. INTRODUCTION

Precise vehicle localisation in the road lanes is a task
of paramount importance for the deployment of intelligent
vehicles equipped with Advanced Driving Assistance Systems
(ADAS) or Autonomous Driving (AD) capabilities [1]. The
most widespread solution adopted for precise localisation is the
data fusion of on board sensors (with various combinations)
and the use of high resolution road maps. Vehicles equipped
with a rich set of sensors can precisely localise themselves at
lane level but with a quite expensive equipment. Additionally,
they cannot solve alone the problem of identifying object
not in line of sight or occluded by other vehicles or
infrastructure/urban elements (e.g. buildings). A solution
to extend the electronic horizon of intelligent vehicles is
provided by Vehicle-to-Vehicle and Vehicle-to-infrastructure
communications (jointly referred as V2X communication)
[2]. In particular, the road equipped with sensors in specific
locations, such as intersections, may detect the presence
of vehicles and vulnerable road users and broadcast the
information for the benefit of all intelligent vehicles in the
area. The V2X approach is also low cost and is more suitable
to powered two wheelers.

The work presented in this manuscript is partially sponsored by SAFE
STRIP (Safe and green sensor technologies for self-explaining and forgiving
road interactive applications) project which has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (Grant Agreement n◦ 723211).

Among the sensors used for the infrastructure,
videocameras are emerging as the most effective, especially
when combined with the advancement of deep neural
networks, but their efficacy is jeopardised by low visibility
in bad weather conditions (e.g. heavy rain, fog, etc.) or
occlusions in complex urban environments. The SAFE STRIP
EU project [3] has proposed to support intelligent transport
systems (ITS) by designing and developing road strips that
embed various sensors to provide a large set of static passive
info (i.e. speed limit, asphalt characteristics, road geometry
and layout) and dynamic environmental/road parameters (e.g.
temperature, humidity, ice, ambient light, water). For the
vehicle detection at lane level, switches embedded in the strip
placed transversally to the road direction were used. The
adopted solution provides in-lane position and vehicle speed,
but can hardly support vehicle tracking and accurate in-lane
orientation. To overcame this problem, we propose to use
magnetometers embedded in the strips placed along the road
direction. This solution has the advantage to be more robust
(i.e. strips are not continuously pressed by vehicles), can work
in any conditions and it is suitable to track the vehicle position
and other quantities (e.g. vehicle sideslip estimation fusing
magnetometers and GPS data [4], [5]) for longer stretch of
the road. The use of magnetometers mounted on road surface
is not new, however they are manly employed to classify [6]
and/or detect the vehicles and estimate their speeds [7] for
traffic management applications [8]. In [9], a bank of Extended
Kalman Filters is proposed for tracking road vehicles that
are travelling in the vicinity of two magnetometers place on
the two side of the roads. Authors in [10] propose to fuse
road-mounted accelerometer and magnetometer measurements
for vehicle tracking and traffic monitoring using a multirate
particle filters. The scenario investigated considers a single
couple of two sensors and a vehicle moving in straight line
on a straight road. In [11] and array of 4 magnetometers
is used to measure the magnetic field of a moving target
but the tracking problem is not the focus of the work.
Finally a progressive extended Kalman filter is proposed to
track a magnetic dipole [12]. The algorithm is tested on an
intersection using two magnetometers placed on the road side.

The solution that we propose here is meant to be
completely independent from vehicle on-board sensors and
it aims at tracking vehicles along curvy roads with lane
level accuracy including vehicle orientation in the lane. The
estimated information are ment to be shared with intelligent
vehicles and road operators to support cooperative safety



Fig. 1. Road and magnetometers deployment, denoted with a unique identified
and a square marker in the figure. The actual vehicle trajectory is also reported
with a dotted line.

functions via V2X communication of new 5G solutions.

The paper is organised as follows. In Section II, we
set up the problem introducing the models adopted and the
manuscript notation. The solution is detailed in Section III,
while a preliminary simulative validation is reported and
discussed in Section IV. Finally, in Section V, we present our
conclusions and announce future work directions.

II. BACKGROUND MATERIAL AND PROBLEM
FORMULATION

The problem we are addressing in this paper is the
localisation of a vehicle on a road using magnetometers placed
on the side of the road in known positions, as represented in
Figure 1 with squares on the road sides. The vehicle model
adopted in this paper corresponds to the kinematics of a
point mass vehicle described in curvilinear coordinates (i.e.
road coordinates). It is briefly described here in its discretised
version, adopting a sampling time of Ts

uk+1 = uk,

sk+1 = sk + Tsuk,

nk+1 = nk + Tsξkuk,

zk+1 = zk,

ξk+1 = ξk − Tsκ(sk)uk,

(1)

where we adopted the notation uk = u(kTs), as customary.
uk is the forward velocity of the vehicle, supposed to be time-
invariant in the short road section where the magnetometers
are placed, sk is the curvilinear abscissa of the vehicle defined
by the road centre line, nk is the normal displacement with
respect to that line and zk is the height of the vehicle with
respect to the road plane (constant as well). Finally, ξk is the
relative orientation of the vehicle with respect to the tangent of
the road and κ(sk) is the curvature of the vehicle trajectory in
the location sk, which is supposed to be compensated by the
yaw rate. Obviously, all these quantities are referred to time
kTs. We generically refer to the vehicle state as the vector
pk = [sk, nk, zk, ξk]T .

A. Sensors model

The magnetometer model here adopted is the one presented
in [9] and here detailed after the following simplifying
assumptions.

Assumption 1: The magnetometer is aligned with the road,
i.e. its x axis is tangent to the road.

Assumption 2: The curvature of the road with respect to
the magnetometer range is negligible.

Notice that Assumption 1 can be easily verified by
calibration of the deployed sensor, while Assumption 2 is
easily verified in the majority of the common roads. In practice,
this constraint may simply impose a limit on the sensor
deployment road sectors, but it proves to be very relevant. In
fact, given the i-th magnetometer position in road coordinates
be pi,m = [si,m, ni,m, zi,m]T with zi,m = 0, ∀i, it is
possible to write the cartesian coordinates of the vehicle in
the magnetometer reference frame as

xi,k = si,k − si,m,
yi,k = ni,k − ni,m,

(2)

with the additional value of zk in (1), which are denoted as
ri,k = [xi,k, yi,k, zk]T .

Let m0 = [mx0
,my0

,mz0 ]T be the magnetic dipole
expressed in the vehicle reference frame, the overall magnetic
dipole moment at time kTs is given by [9]

mk = Rot(ξk)m0 +
d

µ0
B0, (3)

where Rot(ξk) is the rotation induced by the vehicle orientation
ξk in (1), d is the target characteristic scalar factor, µ0 is the
scaling magnetic constant and B0 is the constant dipole bias
induced by the earth magnetic field, which is supposed to be
known (if not, it can be estimated with the magnetometers in
static conditions, i.e., when no vehicles are detected).

Therefore, the i-th magnetometer measurements can be
expressed as

zi,k = hi(ri,k,mk,B0) + εi,k =

= B0+
µ0

4π‖ri,k‖5
(
3ri,kr

T
i,k−‖ri,k‖2I3

)
mk+εi,k =

= B0 +Hi,kmk + εi,k ≈

≈ B0 +Hi,kRot(ξk)m0 +
d

µ0
B0 + εi,k,

(4)

where I3 is the identity matrix of dimension 3 × 3 and εk
are the measurements uncertainty, supposed to be zero-mean,
white, Gaussian with covariance matrix R. Notice that in (4)
we made the simplifying assumption that the second term in
the right-hand side of (3) is approximately constant, so has to
estimate separately the contribution of d.

B. Problem formulation

The objective of this paper is to design an estimator
that is able to track the vehicle position in road coordinates
pk described by the dynamic model (1), to estimate the
vehicle dipole m0 and to estimate the unknown target scalar
factor d using the noisy measurements (4) coming from
m ≥ 1 magnetometers placed on the road side(s) (a possible



deployment with m = 12 is reported in Figure 1). In this
manuscript, we assume that the velocity of the vehicle uk
is not part of the estimation process and it is assumed
given (e.g., the vehicle can transmit this information when it
travels nearby the magnetometers). Notice that this assumption
can be easily verified assuming the vehicle is endowed
with a simple wireless connection (e.g., V2X [13] or ITS-
G5 [14] communication). Notice additionally that estimating
the position pk in road coordinates from just a single
magnetometer (i.e. m ≥ 1) allows to easily fuse together the
measurements from multiple magnetometers as well as to set
up distributed estimation processes. In this first version of the
paper, we consider communication between the magnetometer
to propagate suitable initial estimation conditions for the
nonlinear regressors, as it will be explained in the next
sections.

III. A NONLINEAR LEAST SQUARES SOLUTION

The solution we are presenting in this manuscript considers
both the highly nonlinear measurement function (4) and the
system dynamics in (1), whose longitudinal velocity uk is
supposed to be unknown and constant. The very first step
to design an estimator is to verify if the state of interest
ak = [pT

k ,m
T
0 , d]T is actually observable. To this end, we

rely on the results in [9], where it is stated that the problem is
observable even for a single magnetometer (i.e. m = 1) if some
priors are known on the vehicle road position and the vehicle is
not moving radially with respect to the magnetometer, which is
not the case at hand due to Assumptions 1 and Assumption 2.

In what follows we present the proposed approach. We first
present how the single magnetometer problem can be solved
and then we propose our strategy when m > 1 in the road
sector.

A. State estimation with m = 1

Let us suppose that at time kTs a number of k consecutive
measurements are collected by the only i-ht magnetometer
available with a sampling time of Ts. We first set-up the
following simple vehicle detection algorithm: if there exists∥∥∥∥∥zi,k −

∑ k−1
j=1zi,j

k − 1

∥∥∥∥∥ > ∆z,

where ∆z is a tuning threshold that depends on the available
hardware and on the covariance matrix R of the uncertainties
in (4), a vehicle is detected at time k = k. Hence, from k ≥ k
all the measurements can be used to track the vehicle, until
for some k > k the following holds∥∥∥∥∥zi,k −

∑ k−1
j=1zi,j

k − 1

∥∥∥∥∥ < ∆z.

From the previous algorithm it follows that ∀k ∈ [k, k] the
magnetometer returns a valid measurement of a vehicle to be
adopted in the estimation of ak.

The valid set [k, k] is split into chunks of l consecutive
measurements. In practice, at time (k+ l− 1)Ts, it is possible
to derive the first estimate. By denoting with k? = k,
the objective of the estimator is then to make use of the
measurements zi,k? , . . . , zi,k?+l−1 to retrieve an estimate âk?

(we use the notation ·̂ to denote estimated quantities), which
is detailed in Section III-B. Once âk? is available, the same
idea of [15] can be applied and, hence, we can propagate such
estimate to time âk?+l−1. Recalling that âk? = [p̂T

k? , m̂T
0 , d̂]T ,

only p̂k? is time varying and so it is the only quantity to
be propagated. To this end, we can write the closed form
propagation derived from (1) and reported next

sk?+l−1 = sk? + Ts

k?+l−2∑
j=0

uk?+j ,

nk?+l−1 = nk? + Tsξk?

k?+l−2∑
j=0

uk?+j+

− T 2
s

k?+l−2∑
j=0

uk?+j

j−1∑
q=0

κ(sk?+q)uk?+q,

zk?+l−1 = zk? ,

ξk?+l−1 = ξk? − Ts
k?+l−2∑
j=0

κ(sk?+j)uk?+j ,

(5)

which can be computed using the yaw rate compensation.

The main advantage of the proposed approach relies on
the fact that the estimator objective turns to be an unknown
but constant value âk? , thus opening to solutions of the
Least Squares (LS) family (see Section III-B). Moreover, once
âk?+l−1 is derived, it is sufficient to set k? = k? + l and then
starts the iteration with the new set of l measurements.

B. Constrained nonlinear least squares

We now presents the details of the estimator that, using
the measurements zi,k? , . . . , zi,k?+l−1, computes the estimate
âk? . To this end, we first recall that the measurement function
in (4) can be equivalently rewritten as

hi(ri,k,mk,B0) = hi(ak,B0),

which allows to write the nonlinear LS solution

âk? = arg min
ak?

l−1∑
j=0

δzTi,k?+jδzi,k?+j , (6)

where δzi,k?+j = zi,k?+j−hi(ak?+j ,B0). We first notice that
by means of (5), all the elements in ak?+j , ∀j > 0, can be
expressed in terms of ak? , thus making the proposed solution
well grounded. Moreover, this problem turns to be solvable
with a minimum of l = 3 consecutive measurements from
the single magnetometer (i.e., 3 equations per measurements,
which makes a total of 3l = 9 equations in 8 unknowns in
ak? ).

To solve the nonlinear problem in (6), we adopted the
Gauss-Newton method. Since this is a purely numerical
method, we impose the minimum value of the update vector to
continue for the search of the minimum to be ∆ak? > ∆ak? ,
while otherwise the method stops and return the last computed
âk? . However, due to the highly nonlinear characteristics
of the problem, we impose two constraints, thus turning
the problem to an optimal constrained problem. First, we
notice that the gradient-descent like approach of Gauss-Newton
should be limited. Therefore, whenever an update vector ∆ak?



is computed with Gauss-Newton method, we impose the
following check:

∆ak? =

{
∆ak?

∆ak?

‖∆ak? ‖
, if ‖∆ak?‖ > ∆ak? ,

∆ak? , otherwise.

This way, the algorithm moves with a slower pace towards
the solution, but it is more robust to numerical errors in the
computation of the Gauss-Newton step. Of course, both ∆ak?

and ∆ak? need to be fine tuned with respect to the assumed
noise level in the magnetometer.

The second constraint is on the feasible values that the
vector âk? may assume. In particular, it is easy to see that
p̂k? are easily limited by the road dimension and by the
fact that the vehicle is not performing a U-turn in front of
the magnetometers, thus imposing ξ̂k? ∈ [−π/2, π/2] rad. It
is also assumed a maximum value for the magnetic dipole
m̂k and a maximum and minimum value for d̂. To respect
the imposed constraints, we adopt the constrained projector
reported in [16], which returns the solution that respect the
constraints and it is the closest (with respect to the Euclidean
norm) to the computed Gauss-Newton solution.

C. State estimator with m > 1

The extension to multiple magnetometers increases the
robustness and the effectiveness of the method. For this
first version of the paper, each magnetometer carries out its
own estimation based on its own l measurements and the
algorithm presented in Section III-B. The connection among
the different magnetometers is offered by the iterative nature
of the nonlinear LS. Indeed, it is easy to notice that once
the i-th magnetometer has computed the estimates âk? using
the measurements at time k?Ts to (k? + l − 1)Ts, it should
use the next available measurements from time (k? + l)Ts to
(k? + 2l − 1)Ts to determine the estimate âk?+l. However,
this second estimate does not start from a generic point in the
feasible domain, but its first guess is just given by âgk?+l, i.e.
by âk? propagated forward using (5). This way, after the first
solution is retrieved, the next iteration of the algorithm will be
far less critical and certainly faster.

This propagation approach adopted for the single
magnetometer, can be applied as well to propagate the
estimates among the different magnetometers. Let us suppose
that that a first estimate âk? is retrieved for the i-th
magnetometer. It is then possible to revert (2) to have an
estimate in global road coordinates for p̂k? , while, of course,
the other two components of âk? , i.e., m̂0 and d̂ are not time
varying nor depending on the chosen reference frame. Using
again (2) with respect to the j-th magnetometer position, is
then possible to have a good initial condition for the j-th
magnetometer and measurements zj,k? , . . . , zj,k?+l−1 as well,
thus improving performance and robustness of the estimation
procedure.

IV. SIMULATION RESULTS

In this section, we present the first simulation results for
the algorithm presented in Section III. We assume a sampling
time of Ts = 50 ms for each magnetometer and a number
of m = 12 sensors, deployed as depicted in Figure 1. The

Fig. 2. Nonlinear LS estimation errors as a function on the number of steps
of the algorithm. The end of each computation is signed with a black cross.

value of the scaling magnetic constant is imposed to be
µ0 = 4π · 10−7, while the terrestrial constant magnetic field
is B0 = [13.5, 13.5, 1.6]T . We assume that the actual value
of the dipole is m0 = [100, 100, 100]T Tesla, instead the
vehicles is supposed to move along the dotted trajectory in
Figure 1. The covariance matrix of the Gaussian uncertainties
in (4) is R = σ2

εIm (i.e., the uncertainties εk are white
and uncorrelated along the different magnetometer sensed
quantities), with σε = 0.01 Tesla.

For the proposed estimation algorithm, the threshold for
data valid detection in Section III-A is set to ∆z = 0.05 Tesla,
while the minimum number of measurements to estimate âk
described in Section III-B is l = 3. Moreover, the tolerance for
the Gauss-Newton method are ∆ak? = 10−3 and ∆ak? = 1.
Due to the road characteristics and to impose the constraints
in Section III-B, we assume that a valid estimate in the
magnetometer relative system (2) is when x̂i,k ∈ [−8, 8] m,
ŷi,k ∈ [−4, 4] m, ẑi,k ∈ [0.1, 1] m, ξ̂k? ∈ [−π/2, π/2] rad.
Moreover, the maximum value for the magnetic dipole m̂k

along the different components is between 0 and 200 Tesla.
Finally, the target characteristic scalar factor estimate d̂ ∈
[0.5, 2].

Figure 2 reports the absolute value of the estimation error
ãk = ak− âk as a function of the nonlinear LS iteration steps.
We first notice that the first estimate is obtained after around
140 steps (i.e., the first cross black cross position location in
Figure 2), since the initial condition is simply computed by
generating random initial conditions verifying the constraints
previously mentioned. However, after the first estimate, the
algorithm speeds up and generate an estimate right after one
step (hence, the sequence of black crosses appears to be a solid
think line in Figure 2).

Notice that the estimation error is considerably small,
which testify that the approach validated with these
preliminary results sounds promising. As a further proof, we
report also the absolute value of the estimation error as a
function of the vehicle trajectory (see Figure 3): between
k = 47 and k = 87 time steps, the vehicle is located in the
road section equipped with the sensors depicted in Figure 1
and, hence, tracked.



Fig. 3. Absolute errors in terms of vehicle trajectory.

We are now presenting the results considering an increasing
noise on the vehicle velocity (assumed to be zero mean,
white, normally distributed and with standard deviation
σu ∈ {0, 0.001, 0.01, 0.1} m/s) and a variable number of
measurements to estimate âk ranging between l ∈ {3, . . . , 10}.
For space limits, we report the mean, maximum and minimum
absolute error only for the quantities n and mx0

in Figure 4-a
and Figure 5-a, respectively, being all the others comparable
and with similar behaviours. It is easy to see how the
uncertainty on the forward velocity plays a major role in
the achievable estimation uncertainty, which can be, however,
mitigated by increasing the number of measurements. In
order to test the proposed solution in non-nominal conditions,
Figure 4-b and Figure 5-b show the estimation error of the
same quantities n and mx0 when zk, i.e. the hight of the
vehicle w.r.t. the road plane, is variable. In particular, we
have assumed zk varying with a sinusoidal function ranging
between 0 and 0.8. Notice that the lower value is outside the
admissible range for zk previously hypothesised. It is clearly
visible from Figure 4-b and Figure 5-b that such variability
is predominant in the estimator performance, nonetheless the
performance remains acceptable with any value of uncertainty
or number of measurements.

Finally, Figure 6 reports the mean execution time of the
algorithm in all the cases of Figure 4 and Figure 5. It is
clearly visible how the computational burden, here evaluated
on a laptop endowed with an Intel Core i9 at 2.9 GHz but
considering a non optimised code written in Matlab, is well
within the sampling time Ts = 50 ms of the sensors, and can
accommodate the communication phase with the vehicle and
easily executable on an embedded platform.

V. CONCLUSION

We proposed an effective and simple nonlinear LS
solution for estimation and tracking of vehicles using multiple
magnetometers. The solution relies on a classical model of
the measurements and it is made more robust by adding
constraints on the estimated quantities. A first set of results
sound promising for an effective application of the algorithm
to this specific problem. In the future works, we are planning
to relax the constraints on the vehicle curvature knowledge,
to fuse the sensors readings together in the estimator and

(a)

(b)

Fig. 4. Absolute errors in terms of forward velocity uncertainty σu and
consecutive measurements considered l for the quantity n with (a) constant
and (b) varying zk .

to improve the estimator performance by considering the
covariance matrix of correlated uncertainties (i.e., nonlinear
Weighted LS solution). Furthermore, future developments will
focus on the determination of conditions for the detection of
multiple vehicles as well as on the simultaneous estimation of
the vehicle(s) longitudinal velocity. We will also study how to
remove the yaw rate compensation assumption and compare
the proposed Gauss-Newton solution to the Levenberg-
Marquardt approach. Finally, experimental investigation of the
effectiveness of the solution in a real test case scenario is
planned. In particular, we are planning to work in collaboration
with CRF-Trento and use centimetre level GPS-RTK ground
truth reference for the tracked vehicle.
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