
Learning to focus on number 

Manuela Piazza a,b,c,⁎, Vito De Feo d, Stefano Panzeri d, Stanislas Dehaene a,b,e 

 

a Cognitive  Neuroimaging  Unit,  CEA  DSV/I2BM,  INSERM,  Université  Paris-Sud,  

Université  Paris-Saclay,  NeuroSpin  Center,  91191  Gif/Yvette,  France 

b NeuroSpin Center, Institute of BioImaging, Commissariat à l’Energie Atomique, F-91191 

Gif/Yvette, France 

c Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy 

d Center for Neuroscience and Cognitive Systems @UniTn, Neural Computation Laboratory, 

Istituto Italiano di Tecnologia, 38068 Rovereto, Italy 

e Collège de France, F-75005 Paris, France 

 

 

A B S T R A C T 

 

With age and education, children become increasingly accurate in processing numerosity. 

This developmental trend is often interpreted as a progressive refinement of the mental 

representation of number. Here we provide empirical and theoretical support for an 

alternative possibility, the filtering hypothesis, which proposes that development primarily 

affects the ability to focus on the relevant dimension of number and to avoid interference 

from irrelevant but often co-varying quantitative dimensions. Data from the same numerical 

comparison task in adults and children of various levels of numeracy, including Mundurucú 

Indians and western dyscalculics, show that, as predicted by the filtering hypothesis, age 

and education primarily increase the ability to focus on number and filter out potentially 

interfering information on the non-numerical dimensions. These findings can be cap- tured 

by a minimal computational model where learning consists in the training of a multivariate  

classifier whose discrimination boundaries get progressively aligned to the task-relevant 

dimension of number. This view of development has important consequences for education. 

  

 

  



 

  

 

1. Introduction 

 

During development, children become increasingly precise in making numerical judgments 

(Halberda & Feigenson, 2008). The evi- dence for this change comes primarily from 

numerosity comparison or discrimination tasks, where participants are asked to point, 

without counting, to the numerically larger (or smaller) of two sets, or to decide whether 

two sets contain the same number of items. Performance on such tasks depends on the 

logarithm of the ratio (log ratio) of the two numerosities, according to Weber’s law 

(Dehaene, 2007). Studies in naïve non-human animals (Agrillo, Dadda, Serena, & Bisazza, 

2008; Jordan, Brannon, Logothetis, & Ghazanfar, 2005; Rugani, Regolin, & Vallortigara, 

2011; Viswanathan & Nieder, 2015) and human newborns (Izard, Sann, Spelke, & Streri, 

2009) indicate that number, like many numerical discrimination performance later on 

(Guillaume, Nys, Mussolin, & Content, 2013; Piazza, Pica, Izard, Spelke, & Dehaene, 2013; 

Nys et al., 2013). 

The most straightforward explanation for this behavioral improve- ment, hereafter called 

the sharpening hypothesis, assumes that ma- turation and formal education progressively 

sharpen the internal re- presentation of numerosity, see Fig. 1B. The intraparietal cortex of 

both humans and macaques has been identified as a key node for the neural representation 

of numerosity (Piazza & Eger, 2015), and this hypothesis holds that the tuning curves of 

neurons in this region get progressively sharper. This idea recently received partial support 

by two fMRI studies investigating numerosity coding precision in the intraparietal sulcus 

(hereafter IPS) of adults and young preschoolers tested with an iden- tical adaptation 

paradigm: the pattern of fMRI responses to numerically other quantitative   dimensions   of   

the   environment,   is   immediately deviant  stimuli,  a proXy for   “numerosity   tuning   

functions”,   were available, even in the absence of training. However, the precision of 

numerical discrimination is initially low (newborns discriminate sets only when they differ by 

300%), and it improves progressively during development (adults eventually differentiate 

small 15–20% numerical changes) (Halberda & Feigenson, 2008). Recent investigations 

indicate that while brain maturation is responsible for this evolution during the 



first years of life, formal education plays a key role in increasing sharper in adults (Piazza, 

Izard, Pinel, Le Bihan, & Dehaene, 2004) compared to preschoolers (Kersey & Cantlon, 

2017), mirroring their higher accuracy in numerical discrimination precision. However, be- 

cause the BOLD signal has limited temporal resolution, it remains possible that the brain 

activation in this paradigm reflected the effect of a post-perceptual attentional amplification 

rather than the initial en- coding of numerosity. 

  

 

 

  

 

  

 

Fig. 1. Two potential sources of errors and two theoretical accounts of the increasing precision of numerical 

abilities with age and education. The task studied in the present paper requires com- paring pair of sets of 

different numbers (n1 and n2) each characterized by different non-numer- ical dimensions (such as total 



occupied area or individual items size, d1 and d2), and to choose the set with the largest number ignoring the 

non- numerical dimensions. In panel A, each dot re- presents one individual trial that is a specific combination 

of two numbers (their log ratio varying along the horizontal axis) and their re- lative non-numerical features 

(their log ratio varying along the vertical axis). The vertical line indicates the optimal decision boundary for 

such a number comparison task. Dots close to the de- cision boundary represent trials where the two 

numerosities vary little, and their distance in- creases as we move away from it. Panel B and C represent the 

two potential sources of errors and of  developmental  changes,  referred  to  as  the “sharpening” and  the  

“filtering” hypotheses  respectively. In these panels the width of the dots represents the noise of internal 

representations of number and of another non-numerical dimension (NND). According to the sharpening 

model (B), representations are initially highly noisy  and they become more precise (sharper) with age and 

education. Sharpening predicts an overall re- duction in error rates, particularly for stimuli close to the decision 

boundary, but not necessarily a reduction in the congruity effect: error rate should equally decrease in the 

congruent and incongruent pairs. According to the filtering model (C), numerical development involves an 

increasing capacity to focus on the relevant dimension and to filter out irrelevant non-numerical dimensions, 

with no concurrent change in the precision of the underlying representations. Such a development is 

illustrated here as a progressive rotation of the decision boundary towards the optimal vertical line, thus a 

reduction of the angle (ϑ) between the actual decision slope and the optimal one. Filtering predicts a 

reduction of the congruity effect in that error rates should solely decrease in the incongruent conditions (the 

shaded area shrinks). 

 

 

  

Conceptually, however, developmental improvements in numerical judgement may also 

result from an improved ability to selectively at- tend to the representation of numerosity 

and amplify the contribution of numerosity to perceptual judgement while ignoring other 

quantita- tive information (average item size, density, total occupied area) that is also 

automatically extracted from sets of multiple items. According to this filtering hypothesis 

(see Fig. 1C), children get progressively better at teasing apart numerical from non-

numerical quantitative variables when confronted with sets. Evidence suggests that already 

at an early age, children spontaneously estimate the variables of numerosity, size, and 

surface area (Cordes & Brannon, 2008, 2011). During development, the decision system 

would learn to focus on numerosity and to avoid interference from other continuous 

magnitudes, thus resulting in an increasingly accurate judgment. The existence of a 

congruity effects in numerical processing fits squarely with the filtering hypothesis. When 

asked to choose the numerically larger of two sets, human adults are less accurate when the 



size of the items, or the inter-item distance is incongruent with number, than when it is 

congruent (Gebuis & Reynvoet, 2012). Congruity effects are thought to arise from the fact 

that numerical and non-numerical dimensions are encoded in over- lapping sectors of 

parietal cortex, and in some cases, by the very same neurons (Harvey, Fracasso, Petridou, & 

Dumoulin, 2015; Pinel, Dehaene, Riviere, & LeBihan, 2001; Tudusciuc & Nieder, 2009). Be- 

cause of this overlap, brain areas downstream of those representing numerical and non-

numerical dimensions may be confronted with the same problem that confronts 

multivariate classifiers, namely the iden- tification of relevant dimensions in a highly 

multidimensional set of neuronal responses (King & Dehaene, 2014, boX2). 

Sharpening and filtering are not necessarily mutually exclusive learning mechanisms: both 

may jointly occur during development/education. However, they are qualitatively different. 

The former affects the precision of the representation (see Fig. 1B), while the latter affects 

the effectiveness of the decision system at discarding task-irrelevant representations (see 

Fig. 1C). Indeed, the two hypotheses make rather different predictions of the developmental 

time course of performance. As illustrated in Fig. 1B, if sharpening is the only mechanism, 

then there should be an overall reduction in error rates, particularly for stimuli close to the 

decision boundary, but not necessarily a reduction in the congruity effect: decreasing the 

noise without changing the decision boundary should result in increases in accuracy in both 

trials where number is incongruent with non-numerical dimensions and trials where 

number and the non-numerical dimensions are congruent. If only fil- tering is at work (see 

Fig. 1C), on the other hand, learning should dif- ferentially affect the congruent and 

incongruent trials: progress should be mostly observed on incongruent trials, but it should 

be absent on congruent trials. If there is only filtering, it is even possible that, in the course 

of learning, children would perform increasingly worse on con- gruent trials, as they would 

lose the benefit of a reliance on correlated helping variables. Such a behavior would clearly 

speak against the sharpening model, which would be unable to accommodate a decrease in 

performance. A third possibility is that, because sharpening and fil- tering are not mutually 

exclusive, they both occur during development: this would result in improvements occurring 

in both congruent and incongruent conditions, but more so in the incongruent conditions. 

To test those predictions, we re-analyzed a large set of previously 

published psychophysical data where subjects of different ages and levels of numeracy were 

engaged in a common numerosity comparison task. Contrary to most previous research 



(Bugden & Ansari, 2015; Gilmore et al., 2013; Szucs, Nobes, Devine, Gabriel, & Gebuis, 

2013), here we varied the degree of congruity between numerical and non-numerical 

variables. We could therefore estimate the impact of nu- merical and non-numerical 

variables on the subjects’ trial-by-trial choices, and examine their variations as a function of 

age and educa- tion, with the ultimate goal of directly contrasting the prediction of the 

sharpening and filtering models. We used two complementary approaches: the first, model 

based, used logistic regression, and the second, model free, used Shannon information. 

Finally, we presented a minimal simulation of learning in this task, based on the filtering hy- 

pothesis, and showing that a support vector machine, trained with dot stimuli, progressively 

learns to rely only the relevant numerical di- mension of the stimuli and mimics the 

observed human data. 

 

2. Methods 

 

2.1. Participants 

 

Numerosity comparison data was obtained from a large group of subjects of different ages, 

education and cultures: 44 Italian kinder- garteners (age  range = 3.6–6.2,  mean = 5.1);  29  

Italian  school-aged children (age range 8–12, mean = 9.9); 20 Italian educated adults (age 

range = 22–33, mean = 26.6); 25 Italian dyscalculic children (age range = 8–12, mean = 10.3), 

and 38 Mundurucú children and adults of different education level (age range = 3–63, mean 

= 24.6). These data were previously reported only from the point of view of a change in 

Weber fraction (Piazza et al., 2010, 2013). Furthermore, in those publications we only 

included in the final analyses data from partici- pants who showed evidence of performing 

the task by consistently at- tending to number (as identified through a consistent effect of 

the nu- merical logratio on performance, with a minimum partial least square fit of the 

psychometric function = 0.2). Here, because our aim was to evaluate how performance 

evolves, we included the data of all parti- cipants. However, the results remained 

substantially unchanged when we restricted the present analyses to subjects included in the 

afore- mentioned publications. 

 

 



2.2. Stimuli space 

 

The stimuli consisted of pairs of arrays of black dots displayed within two white discs on 

either side of a central white fiXation point (see Fig. 2A for a couple of exemplar pairs of 

stimuli). On each trial, one of the two arrays contained either 16 or 32 dots (the reference, 

here- after referred to as n1). The paired array (the target, hereafter referred to as n2) 

contained between 10 and 22 dots (along the following 10- level continuum: 10, 12, 13, 14, 

15, 17, 18, 19, 20, or 22 dots) when n1 was 16 and double those quantities when n1 was 32. 

For the pre- schoolers, about half of dyscalculics, and the adult participants, the trials with 

the most extreme n2 values (10 and 22 for n1 = 16, and 20 and 44 for n1 = 32) were 

omitted. In both versions of the experiment, perceptual variables were assigned to the 

stimuli such that, on half the trials the size of the dots and the average dot-to-dot distance 

were held constant across numerosities in the n2 arrays (as a consequence of this, 

numerosity of the n2 arrays was correlated with both the total area occupied by the items, 

and with the external envelope of the set). The n1 arrays paired with those stimuli were 

constructed such that these parameters varied simultaneously, and were randomly assigned 

to the n1 sets such that, from trial to trial, they covered all values assigned to the different 

n2 arrays. In this set of stimuli pairs, in one half the cu- mulative area occupied by the dots 

and the external envelope were congruent with number, and in the other half they were 

incongruent. On the other half of the trials, on the contrary, it was the area occupied by the 

items and the external envelope of the set that were held con- stant in the n2 arrays (thus 

numerosity of the n2 arrays was anti-cor- related with the individual dot size and the dot-to-

dot distance), and varied randomly in the n1 arrays. In this set of stimuli pairs, half had the 

size of individual dots and the external envelope of the set which were congruent with 

number and the other half they were incongruent (see Dehaene, Izard, & Piazza, 2005, for 

the stimulus generation pro- gram). This design ensured a large variability in continuous 

features across trials, such that numerosity judgments could not be above chance if subjects 

attended solely to one of these non-numerical para- meters throughout the experiment. 

Stimuli remained on-screen until participants gave their response, which consisted of 

pressing the button on the computer keyboard that corresponded to the position of the 

more numerous set. Subjects were explicitly instructed to respond as quickly as possible 



without counting. Previously reported response times (in the range of 1–2 s) indicated that 

they were not counting, but were using an estimation strategy. 

For the sake of coherence with the existing literature, we here adopt the terminology of 

DeWind, Adams, Platt, & Brannon (2015), who used a parametric modeling approach similar 

to ours, also recently with children (Starr, DeWind, & Brannon, 2017). We therefore defined 

our stimuli space using four variables (all expressed in terms of number of piXels), which, 

combined in pairs, univocally define number: item surface area (the area occupied by a 

single dot, hereafter ISA) and total surface area (the item surface areas multiplied by the 

number of items, hereafter TSA); field area (also sometimes referred to as “convex hull”, 

indicating the portion of the space where dots actually fall into, hereafter FA) and sparsity 

(the field area divided by the number of items, hereafter Spar). Because these 4 variables 

are clearly inter-de- pendent, and because their full combination is fully confounded with 

number, it was not possible to simultaneously test the effect of all 4 together with that of 

number. The two summary parameters “Size” and “Spacing” defined in the original paper by 

DeWind were not orthogonal with number, as our stimuli were not constructed to satisfy 

this prin- ciple. Thus, in order to estimate the combined impact on the non-nu- merical 

variables on subjects’ decision without arbitrarily selecting a subset of such variables, first 

we computed the component of each variable that was orthogonal to number, obtaining 4 

new non-numer- ical variables. To do this we subtracted from each variable its scalar 

product with number (i.e. the component that was parallel to number). Moreover, because 

the scope of the current study was not to precisely determine which specific physical 

characteristic of the stimuli has the strongest influence on numerical judgment, but rather 

to pit number vs. the non-numerical quantitative dimensions considered as a whole, we 

decided to condense the non-numerical variables in a single summary measure, called 

“Non-Numerical Dimension” (NND) which we defined as the first principal component 

(estimated by means of Principal Component Analysis) of the set of the 4 previously defined 

non-nu- merical variables. This component explained 98.9% of the variance of the 4 

different non-numerical parameters, proving that it was a good summary measure. The 

relative weights of the 4 non-numerical di- mensions used by PCA to build the NND were 

0.557, 0.487, 0.473, 0.467 for sparsity, ISA, TSA and FA, respectively, indicating that all 

equally loaded onto the NND. This new variable was, by construction orthogonal to number, 

thus allowing us to evaluate its impact on sub- jects’ choice independently from that of 



number (see Fig. 2A for ex- amples of pairs of stimuli where number and the NND were 

congruent (left) vs. incongruent (right)). All analyses were also replicated separately for each 

non-numerical variable, and the results were essentially identical. 

 

3. Analyses and results 

 

We started by separately analyzing, for each group, the trials in which the non-numerical 

dimension was congruent with the numerical dimension, and those for which it was 

incongruent. Incongruent trials represented about 50% of trials (49% for adults, 50% for 

Mundurucús, 50% for preschoolers, 51% for school kids, and 49% for dyscalculics). 

Overall accuracy was higher on congruent than on incongruent trials in all groups but for the 

8–12 non-dyscalculic children (an ANOVA Group by Congruency yielded a significant effect 

of Group F(2, 180) = 26.79, p < 0.001, η2 = 0.23, of Congruency F(1, 180) = 176.96  p < 0.001, 

 

 



 

 

Fig. 2. Influence of congruity between number and the non-numerical dimensions on the number comparison 

task for the three groups of western non-dyscalculic subjects. (A) EXamples of stimuli where number is either 

congruent or incongruent with other non-numerical dimensions. (B) Psychometric functions of three age 

groups: pre-schoolers (Western 3–6 yo), school children (Western 8–12 yo) and adults (Western adults). Each 

plot represents the percentage of responses in which the comparison array (n2) was reported as larger than 

the reference array (n1), as a function of the log n2/n1 ratio (black squares: n1 = 16; black diamonds: n1 = 32). 

The curves are normal cumulative-distribution fitting functions used to estimate the internal weber fractions. 

Left, trials where number and the non-numerical dimension were congruent. Right, incongruent trials. 

Psychometric curves could be fit for all groups and conditions apart from the trials in incongruent conditions in 

the kindergarten group. (C) Beta values from the multiple logistic regression computed at the group level with 

two predictors (number and the specified non- numerical dimension (NND); error bars are SEM of the 

estimated beta). (D) Decision boundary estimates projected on the real stimuli space: dots represent a sub set 

of real stimuli (for clarity reason, chosen by random down-sampling the full set) as the unique combination of 

number and NND (expressed here as the SD normalized logratio of number and NND). Empty dots represent 

error trials, while filled dots correspond to correct trials. The solid black line represents the decision boundary 

(see text). The systematic presence of errors in the top left and bottom right quadrant (incongruent 

conditions) in preschoolers indicates that they used a sub-optimal decision boundary, due to interference from 

the irrelevant dimension. 

 

 

  

η2 = 0.50  and  critically   of   their   interaction   F(2,   180) = 40.13, p < 0.001, η2 = 0.31; 

planned comparisons  indicated  significantly more errors in the incongruent vs congruent 

for all groups but the 10 years old school kids (Adults = 64% vs 87%; Preschooler = 36.4% vs 

82.3%; 10 years old school kids = 66.1% vs 74.6%). The absence of a congruity effect in 10 

years old school kids originated from the fact that, when compared to preschoolers, they 

improved in the incongruent trials  (from  36.4% ± 1.8%  to  66.1% ± 3.1%  accuracy,  t(71) = 

8.86, p < 0.001), but they actually got worse on congruent trials (from 82.3% ± 1.6%  to  74.6 

± 3.0%  accuracy,  t(71) = 2.46,  p = 0.017); compare second and third rows in Fig. 2B. This is 

precisely what is predicted by the filtering hypothesis. Average performances for con- 

gruent and incongruent trials in each group are represented in Fig. 2B and fitted by 

psychometric curves which we computed following our our previously published 

methodology (Piazza et al., 2010, 2013). The psychometric curves were, for all groups, 



steeper in the congruent than in the incongruent condition, yielding different estimates of 

the internal weber fraction 

  

 

 3.1 Logistic regression approach 

 

To investigate the relative weight of numerical and non-numerical dimensions, we used a 

multiple logistic regression analysis on the trial- by-trial performance to estimate the 

contributions of two parameters, the logratio of the numerosities of the two sets and of 

their non-nu- merical dimensions. This approach was first used at the group level, by pooling 

the responses of all trials and of all subjects within each group. In all groups, the beta 

coefficients of both predictors were highly sig- 

nificant (all p < 0.001) and all models fitted the data well (Hosmer–Lemeshow test Goodness 

of Fit p > 0.05), except than for the preschoolers group (HL GOF p = 0.007). In all groups the 

beta coeffi- cient of number was significantly higher than that of the non-numerical 

dimension (all  p  values < 0.001)  (adults:  z = 18.54;  school  kids: z = 23.76; kindergartener: 

z = 4.01; dyscalculics: z = 12.99;  Mundurucús: z = 22.94), see Figs. 2C and 3B. Because the 

ratio be- tween the estimated beta coefficients of number and of the NND can be readily 

interpreted as the slope of the decision boundary on the stimuli 

 

 

 

 



Fig. 3. Influence of congruity between number and the non-numerical dimensions on the number comparison 

task in Mundurucús and dyscalculic subjects. (A) Psychometric functions of two groups. Each plot represents 

the percentage of responses in which the comparison array (n2) was reported as larger than the reference 

array (n1), as a function of the log n1/n2 ratio (black squares: n1 = 16; black diamonds: n1 = 32). The curves 

are normal cumulative-distribution fitting functions used to estimate the internal weber fractions. Left, trials 

where number and the non-numerical dimension were congruent. Right, incongruent trials. (B) Beta values 

from the multiple logistic regression computed at the group level with two predictors (number and the 

specified non-numerical dimension (NND); error bars are SEM of the estimated beta). (C) Decision boundary 

estimates projected on the real stimuli space. Dots represent stimuli as the unique combination of number 

and NND 

(expressed here as the SD normalized logratio of number and NND). Empty dots represent error trials, while 

black dots correspond to correct trials. The solid black line represents the decision boundary (see Section 2). 

For clarity reasons, the dots represent only a subset of all the real stimuli (chosen by random sub-sampling of 

the full set).  

 

  

space (a graphical representation of this can be found in Fig. 1C), we computed this ratio for 

each group and transformed it into an angle (defined as the inverse tangent of the slope). In 

Fig. 2D and Fig. 3C we plot the resulting decision boundary for each of the five groups. The 

angle was  tilted  away  from  the  optimal  decision  boundary  slope (ϑ = 90°) in 

kindergarteners, and with age it approached the optimal 90°       inclination       (adults:       ϑ 

= 83.28 ± 0.71°;       school       kids: ϑ = 87.66 ± 0.68°; kindergartener: ϑ = 54.00 ±  2.72°). The 

tilting of the decision boundary during development/education is in line with the predictions 

of the filtering hypothesis (compare the bottom and top panels in Fig. 2D with right and left 

panels in Fig. 1C). We also explored these effects in dyscalculic children, in whom we had 

previously re- ported a deficit of the Weber fraction (Piazza et al., 2010). The average 

inclination  of  the   decision   boundary   for   the   dyscalculics   was ϑ = 77.56 ± 1.19°,     

significantly     smaller     than     the     value     of ϑ = 87.66 ± 0.68° observed in their age – 

and IQ matched controls (z = 7.38, p < 0.001), see Figs. 2D and 3C. In the Mundurucús, the 

average boundary angle was ϑ = 75.49 ± 0.59°. 

In order to further support these group results with statistical analyses that take into 

account the inter-individual differences, we ran the same logistic regression analysis at the 

single subject level. Results confirmed that the beta coefficient of number was significantly 

higher than that of the non-numerical dimension for all groups but the kin- dergarteners 



(adults: t(19) = 11.4; school kids t(28) = 10.8; dyscalcu- lics t(24) = 4.93; Mundurucús t(37) = 

7.59; all ps < 0.001; kinder- garteners  t(43) = 0.11,  p = 0.91).  This  finding  indicates  that  

even when a strong influence of the physical parameters of the stimuli was present, number 

remained the dominant variable driving subjects’ judgements for all groups but the younger 

ones (see Figs. 2C and 3B). With these single-subject measures in hand, we next explored 

the developmental trajectory of the two beta values (for number and the NND) as a function 

of age and education (Fig. 4). In the Western edu- cated non-dyscalculic subjects, age led to 

an increase in the impact of number (linear regression of age on the estimated beta 

coefficient of number in the  previously  described  logistic  regression  r2 = 0.27, p < 0.001) 

and a decrease in the impact of the irrelevant non-nu- merical dimension  (r2 = 0.11,  p = 

0.01),  see  Fig.  4A.  These  effects, however, are mostly seen when considering all age 

groups together: when looking separately within each group (kindergarteners, school kids, 

and adults), significant effects of age are seen only within the kindergarteners (regression 

between age and the beta estimate of number and of the NND, both p < 0.05). This is 

potentially due to the smaller sample sizes within the two older groups. Alternatively, it 

could indicate that our effects display true discontinuities during develop- ment. Testing this 

possibility would require a constant number of subjects for each age as well as a continuous 

sampling of age during the life-span. Future studies could address this question. In our 

sample, both within and across each group, age and education are highly cor- related. Thus, 

to specifically test the effect of education, we moved to the Mundurucús, for whom 

education is limited and largely in- dependent of age. First, we tested a linear regression of 

education on the two coefficients in the entire population of Mundurucús tested. While   

the   effect   of   number   showed   no   increase   with   education (p = 0.98) (see Fig. 4B, left 

panel), we observed that education induced a dramatic decrease in the effect of the non-

numerical dimension, even when regressing out age (regression of education on the age 

standar- dized residuals r2 = 0.32, p < 0.001) (see Fig. 4B, right panel). 

To further analyze this effect, we focused on the adult Mundurucús, in whom age and 

education were best dissociated. The average effect of the non-numerical dimension for 

uneducated  adult  Mundurucús (N = 7) was 8.28, much larger than the value of 1.1 

observed in edu- cated Italian  adults,  t(25) = 7.68,  p < 0.01.  This  value  dropped  to 

2.02 in adult Mundurucús who went to school for at least one year (N = 13). Thus, there 

was a highly significant difference in the amount of non-numerical interference between 



educated and uneducated Mundurucús, t(18) = 4.6 , p < 0.001 (see Fig. 3), even though the 

two groups did not differ in age (t(18) = −1.32, p = 0.20), or in overall response times (t(18) = 

1.11, p = 0.28). 

To summarize the results of the multiple regression analyses so far, all groups, including 

adults, suffered from interference from irrelevant non-numerical dimensions, and the 

modulation of this interference was the dominant factor in the developmental change in 

performance with age, education or in dyscalculic subjects. Those findings appear highly 

compatible with the predictions of the filtering hypothesis. 

  

 

 

Fig. 4. Single-subject analyses of the effects of age and education. (A) Single subject estimates of the beta 

values from the multiple logistic regression, plotted as a function of age in the typically devel- oping 

population together with the best-fitting curve. (B) Beta values from the multiple logistic regression corrected 



for age, plotted as a function of level of education in the Mundurucú population together with the best-fitting 

curve. 

  

 

 

Because the regression analyses performed so far assume linear effects and are based on a 

specific model of binary choice, which was unable to capture the data from kindergarteners, 

we complemented and strengthened   these   initial   analyses   by   using   mutual   

information (Shannon, 1948), a general and assumption-free approach which we used to 

estimate the effect of number and the NND on subjects’ choice. Unlike correlation measures 

such as logistic regression, mutual in- formation captures all possible statistical relationships 

among vari- ables, including linear and nonlinear ones (Quian Quiroga & Panzeri, 2009; 

Shannon, 1948). Mutual information, I(C;S), carried by the considered dimension of the 

stimulus s (s = ratio of the two numer- osities and/or ratio of the two NNDs) belonging to set 

S to the subject’s choice c (belonging to set of possible choices C  = {larger, smaller}), is 

defined as follows: 

 

  

where P(s,c) is the probability that in a given trial the subject chose c and stimulus with 

feature s was presented, P(c) is the probability of choice c unconditional on the stimulus, 

and P(s) is the probability of presentation of stimulus with feature s. I(C;S) quantifies, in 

units of bits, the average reduction of uncertainty about which choice was taken based on a 

single-trial observation of the numerical (and/or non-numerical) features of the stimulus. 

I(C;S) is zero bits only when the choice is fully independent from the features of the 

stimulus, as in that case no knowledge about choice can be gained by observing the features 

of the stimulus. I(C;S) reaches its maximal value (1 bit if stimuli and choices are 

equiprobable) if choice depends faithfully on the stimulus (i.e. when the subject always 

performs the task correctly). Unlike simpler trial-averaged measures of task performance, 



such as average percent correct, I(C;S) takes fully into account the distribution of correct 

choices and errors in evaluating the relationships between choice and specific stimulus 

variables. Unlike the beta coefficient of a multiple regression, I(C;S) expresses the results on 

a physical scale of bits that  can be directly interpreted in terms of reduction of uncertainty. 

Information in Eq. (1) was computed according to established procedures (Panzeri, 

Senatore, Montemurro, & Petersen, 2007), by first discretizing stimulus values, then 

plugging the empirical stimulus-choice probabilities into Eq. (1) and finally using the Panzeri-

Treves bias correction to remove the limited sampling bias (Treves & Panzeri, 1995). We 

first computed the mutual information between number and the NND together and the 

subjects’ choice, and then between either variable and choice separately (see Fig. 5), on the 

pooled data for each group.  

Results, plotted in Fig. 5, revealed, for all groups, three important results. First, the 

information carried to choice was significant, in all groups, for both number and the NND 

(number p values < 0.001 for all groups; NND p values < 0.001 for adults and kidergarteners, 

p = 0.008 for school kids). This means that both stimulus variables, in all groups, influenced 

response choice. Second, we found (Fig. 5) that, for all groups, the information that number 

and NND jointly carried to choice was larger than the information that either stimulus 

variable alone carried to choice (Comparison between information carried jointly and 

information carried by number: I(C;N,NND) = 0.315 ± 0.018 bits, I(C;N) = 0.249 ± 0.018 bits, z 

= 2.62 and p = 0.004 for adults; I(C;N,NND) = 0.165 ± 0.010 bits, I(C;N) = 0.147 ± 0.010 

bits, z = 1.28 and p = 0.010 for school kids; I(C;N,NND) = 0.260 ± 0.012 bits, I(C;N) = 0.033 ± 

0.005 bits, z = 17.67 and p < 0.001 for kindergarteners. Comparison between information 

carried jointly and information carried by NND: I(C;N,NND) = 0.315 ± 0.018 bits, I (C;NND) = 

0.056 ± 0.010 bits, z = 12.82 and p < 0.001 for adults; I (C;N,NND) = 0.165 ± 0.010 bits, 

I(C;NND) = 0.005 ± 0.002 bits, z = 15.00 and p < 0.001 for school kids; ; I(C;N,NND) = 0.260 ± 

0.012 bits, I(C;NND) = 0.214 ± 0.010 bits, z = 2.88 and p = 0.002 for kindergarteners). This 

indicates that neither number nor the NND alone is able to determine subjects’ choice with 

the same accuracy as the combination of the two. 

Moreover, results in Fig. 5 show also that number and NND carried approximately 

independent information to the choice, because the choice information present when 

considering jointly both variables 

 



 



 

 

Fig. 5. Information (expressed in bits) carried by the two stimulus features (number (N) and the non-numerical 

dimension (NND)) to choice, considered together (left column of the plot) and separately (central column and 

right column for N and the NND, respectively). Information was computed at the group level, pooling together 

all trials for subjects in each group (error bars are SEM of the estimated information). 

 

approXimately equals the sum of the choice information carried by the two variables 

separately. This means that number and NND carried complementary (non-redundant) 

information to the choice. 

Finally, by contrasting the amount of information carried to choice by number and the NND, 

we found that for adults, the information carried by number (I(C;N) = 0.249 ± 0.018 bits) 

was significantly higher than the one carried by the non-numerical dimension (I (C;NND) = 

0.056 ± 0.010   bits)   (z = 9.70,   p < 0.001).   For   the schoolkids  we  had  a  similar  pattern  

(I(C;N) = 0.147 ± 0.010  bits,  I (C;NND) = 0.005 ± 0.002  bits,  z = 14.45,  p < 0.001).  On  the  

contrary, for the kindergarteners the opposite pattern was observed (I (C;N) = 0.033 ± 0.005      

bits,      I(C;NND) = 0.214 ± 0.010      bits, z = 15.80, p < 0.001) (see Fig. 5). Thus, the 

information analysis provided evidence that, unlike the other groups of western non-

dyscalculic subjects, preschoolers mainly based their decisions on the NND, and much less 

on number. 

 

We then analyzed dyscalculics and Mundurucús and found that the choice information 

carried by number was significantly higher than the choice information carried by NND (for 

dyscalculics: I (C;N) = 0.080 ± 0.008 bits, I(C;NND) = 0.048 ± 0.007 bits, z = 2.97, p = 0.001; 

for Mundurucús: I(C;N) = 0.166 ± 0.009 bits, I (C;NND) = 0.094 ± 0.007 bits, z = 6.62, p < 

0.001). However, dyscalculics differed importantly from their age and IQ matched control 

group: information from the NND was higher (0.048 ± 0.007 bits versus 0.005 ± 0.002 bits, z 

= 5.91, p < 0.001), while that from number was lower (0.080 ± 0.008 bits versus 0.147 ± 

0.010 bits, z = 5.21, p < 0.001), p = 0.01), see Fig. 5. 

To further investigate the effect of choice information taking into account single subjects’ 

variability we re-computed information at the single subject level. First, we confirm that for 

all groups but the kindergarteners mainly based their decisions on the basis of number (for 



adults: I (C;N) = 0.302 ± 0.022 bits, I(C;NND) = 0.059 ± 0.012 bits, t (19) = 9.75, p < 0.001; for 

school kids I(C;N) = 0.187 ± 0.017 bits, I (C;NND) = 0.089 ± 0.019 bits, t(28) = 3.27, p = 0.003; 

for the kinder-garteners: I(C;N) = 0.097 ± 0.008 bits, I(C;NND) = 0.251 ± 0.025 bits, 

t(43) = 5.60), p < 0.001). 

Then, similarly to what we did in our previous logistic regression analyses (Fig. 4), we 

investigated whether age and education modulated information from number and the NND 

by performing regression analyses (see Fig. 6). In Western educated non-dyscalculic subjects 

(Fig. 6A), age led to an increase in the information carried by number (r2 = 0.47, p < 0.001) 

and a decrease in that carried by the non-numerical dimension (r2 = 0.19, p = 0.001). 

Similarly as with the betas of the multiple regressions, here the age effect failed to reach 

significance if we restricted the regression analysis within each age group, potentially due to 

small sample sizes within each group. Again, in order to tease apart the effect of age and 

that of formal education we moved to the analyses of the Mundurucús. Results confirmed 

that education was the principal factor underlying these developmental changes (see 

Fig. 6B): more educated Mundurucús increasingly based their decisions on number (r2 = 

0.22, p = 0.005), and displayed less interference from non-numerical information (r2 = 0.30, 

p < 0.001). 

Taken together, the mutual information results confirm that while all groups, including 

adults, base their decision at least in part upon task-irrelevant non-numerical dimensions, 

the reduction of this inter- ference is the dominant factor in the developmental change in 

perfor- mance with age and education. 

To better differentiate between the predictions of the filtering and of the sharpening 

hypotheses, we finally used information theory to in- vestigate the 

developmental/educational trajectory of the congruity effect. In this analysis, for each 

subject we separated congruent and incongruent trials. While the filtering hypothesis 

predicts that the general improvement due to age and education is due to a selective 

increase of information on number in incongruent trials, the sharpening hypothesis predicts 

that information on number should increase in both congruent and incongruent trials. In 

order to maximize the congruency effect, we selected the trials where the amount of 

congruency was very high and very low, defined as those for which number and the NND 

were either larger than the 70th or smaller than the 30th percentile of each distribution 

(congruent trials = 23.3% of the total number of trials, incongruent = 23.1%). On this subset 



of trials, we computed, for each subject, the information carried to choice by number. In Fig. 

7A we present the developmental trajectory of information carried by number separately 

for congruent and incongruent trials. In the upper part of each plot, where the axis goes 

from 0 to 1, bottom to top, 1 represents the cases where information is totally coherent 

with number: a subject who scores 1 is a subject whose choice was always coherent 

with number and thus who was always correct in the number com- parison task. In the 

bottom part of the figure, where the axis goes from 0 to 1 in the opposite direction, 1 

represents the cases where in- formation is totally incoherent with number: a subject who 

scores 1 here is a subject whose choice was always incoherent with number and thus always 

wrong. Zero represents chance with respect to the task. The results indicate that while in 

congruent trials the information on number remains constant during development (linear 

regression between information and age r2 = 0.0005, p = 0.8), it dramatically changes in the 

case of incongruent trials: while preschoolers’ choices 

 



 

 

Fig. 6. (A) Single-subject analyses of the effect  of age on information from number and the NND. Single subject 

estimates of the impact of number and of the NND on decision in the left and right panel, respectively.  Data 

are plotted  as a function of age in the typically developing population to- gether with the best-fitting curve. 

(B) Single-subject analyses of the Mundurucú data, investigating the effect of education on information from  

number and the NND. Single subject estimates of the impact of number and of the NND on decision in the left 

and right panel, respectively. Data are plotted as a function of age in the typically developing popu- lation 

together with the best-fitting curve. 

  

 

    

 

    



 

  

were systematically consistent with the NND and inconsistent with number, with age and 

education preschoolers became able to filter out the interference from the NND thus 

responding mainly according to number (linear regression between age and information, 

considering the coherent and incoherent information as a continuum from totally 

incoherent to totally coherent, r2 = 0.14, p < 0.001). 

As for the previous analyses, the Mundurucús data were used to separate developmental 

maturation from education. The results, 

  

 

 

Fig. 7. (A) Single subject estimates of the impact of number in the strongly congruent and strongly incongruent 

trials in the left and right panel, re- spectively. Data are plotted as a function of age in the typically developing 

population together with the best-fitting curve. (B) Age corrected estimates of the impact of number in the 



strongly congruent and strongly incongruent trials in the left and right panel, respectively. Data are plotted as 

a function of education in the Mundurucú population together with the best-fitting curve. 

  

 

depicted in Fig. 7B, indicate that education (once correcting for age) is a factor that yields 

important changes: while in congruent trials it yields to a slight  decrease  in  the  

information  from  number  (r2 = 0.13, p = 0.02), it yields a dramatic increase in incongruent 

trials (r2 = 0.30, p < 0.001). This indicates that education acts by improving the ability to 

focus on number and filter out irrelevant non-numerical quantitative features of the sets. 

As a last step, as a proof-of-concept, we examined if the reported changes in performance 

as a function of development and education could be simulated using a minimal 

computational model. We trained a simple multivariate classifier (Cortes & Vapnik, 1995) on 

our task using a linear Support Vector Machine, as implemented in the basic SVM function 

in the Matlab software. On each trial, the classifier was given as input the 5 dimensions that 

characterized each pairs of sets (number, ISA, TSA, FA, and Spar), for a total of 10 features, 

and was trained to provide as output which of the two sets contained the larger number of 

dots. We set the initial parameters of the model (noise level = 10%, and proportion of 

congruent vs. incongruent trials = 75% potentially mimicking   children’s   experience   in   

the   natural   environment,   where number and the physical variables often co-vary) such 

that during the initial phases of training the model approXimated the performance of our 

group of kindergarteners. Then we evaluated the evolution of the classifier performance 

using a typical 95%–5% cross-validation scheme (training the classifier on 95% of the data 

and testing on the remaining 5%), reporting average performance every 10 training trials. 

The re- sults, depicted in Fig. 8, indicate that the classifier initially performed quite poorly, 

and especially so on incongruent trials, but then quickly tuned in to the most relevant input 

dimension (number) as training progressed. Fig. 8C shows the performance of the classifier 

as a function of the log ratio of the compared numbers. During the initial stages of training, 

performance on congruent trials already exhibited a standard psychometric curve as a 

function of log ratio, while it remained flat on incongruent trials, mimicking the 

performance of preschoolers, dys- calculics, and uneducated adult Mundurucús (compare 

Fig. 8C, left plots, with Fig. 2B (preschoolers) and Fig. 3A (Mundurucú Indians and western 

dyscalculics)). After training, performance improved such that the derived psychometric 



curves of the model nicely reproduced per- formance observed in educated adults (compare 

Fig. 8C, right plots, with Fig. 2B (adults)). Thus, this implementation of the filtering idea 

captures the bulk of the data, although we emphasize that this model is only a proof-of-

principle, and that more work will be needed to systematically explore the range of 

parameter values and to quantify the model fit. 

 

 

4. Discussion 

 

Using two complementary analytical approaches (regression and mutual information) on a 

large data set from human subjects of dif- ferent ages and levels of math education, we 

have demonstrated that the improvement in numerosity comparison performance with age 

and education mainly consists in an improved ability to focus on number and ignore other 

non-numerical dimensions of the sets (here called “filtering” mechanism). While the 

existence of congruity effects was previously reported (Gilmore et al., 2013; Szucs et al., 

2013), here, by parametrically varying the degree of congruity between number and other 

variables, we go beyond a binary congruency approach. By comparing numerate and non-

numerate children and adults, moreover, we dissociate education from maturation effects, 

and demonstrate that education is a key factor whose primary effect is to strongly decrease 

the   impact   of   the   non-numerical   features   on   numerical   decision making. We finally 

demonstrate that dyscalculic subjects’ impairment in numerosity comparison is mainly due 

to a disproportionally high interference effect (see (Bugden & Ansari, 2015) for a similar 

result), suggesting that dyscalculics profit less from formal education compared to their 

typically developing peers. 

The bulk of these results fit squarely with the “filtering hypothesis”, that sees numerosity 

comparison as a multivariate classification pro- blem: during learning, decision units must 

determine which of their inputs provide cues to number, and which provide cues to non-nu- 

merical co-varying parameters, and they must learn to selectively at- tend to the first ones. 

The filtering hypothesis predicts that learning- related improvements should be mainly 

confined to trials where number information conflicts with information coming from 

continuous parameters of the sets (incongruent trials). Early math education, by highlighting 



the invariant nature of number with respect to the con- tinuous quantitative features of 

sets, is probably the best source of training for such a “mental classifier” tool. 

The most stringent empirical evidence in favor of the filtering hypothesis stemmed from our 

analysis of information. We quantified how much information about number is carried to 

the subject’s choice, and how such information changes with age and education. Finally, we 

compared the developmental trajectory of information about number in congruent vs. 

incongruent trials. In congruent trials, information about number did not increase with age 

and education, whereas it did in- crease with age and education in incongruent trials. These 

observations, while fitting squarely with the predictions of the filtering hypothesis, are at 

odd with the sharpening hypothesis, which assumes that ma- turation and education mainly 

act by sharpening the internal re- presentation of numerosity, and thus predicts 

improvements in both congruent and incongruent trials. 

The present research also speaks to the general field of perceptual learning and decision 

making, where it identifies the control of inter- ference as a key ingredient. In the past, 

scholars had interpreted im- provements in perceptual decision making as a sharpening of 

the re- presentational codes (Gilbert, Sigman, & Crist, 2001; Goldstone, 1998; Yang & 

Maunsell, 2004). Accordingly, the lifespan improvements in numerosity discrimination were 

thought to be due to a progressive sharpening of the tuning curves of parietal number-

coding neurons (Piazza, Pinel, Le Bihan, & Dehaene, 2007; Verguts & Fias, 2004). However, 

representation sharpening is only one of the potential me- chanisms underlying perceptual 

learning. Another potential mechanism is the improved selection of task-relevant input from 

noisy sensory re- presentations (Dosher & Lu, 1998; Petrov, Dosher, & Lu, 2005). This idea 

was previously applied to the discrimination of simple object features, such as orientation or 

contrast, where the signal to filter out was background noise. Here we extend this view to 

number, which is a property of a set, and where the irrelevant signals that must be filtered 

out (density, average size, total occupied area) are other properties of the very same set, 

not simply background. According to the filtering hypothesis, learning is implemented 

through a mechanism akin to the training of a linear filter whose discrimination vector gets 

aligned to the dimension which is relevant to the task at hand, excluding the spurious 

correlations with other dimensions. 

The filtering mechanism may take place in the prefrontal cortex, where neurons flexibly 

encode the relevant features of complex, mul- tidimensional stimuli according to context 



and task relevance. Support for this idea comes from a study of perceptual decision making 

in monkeys (Mante, Sussillo, Shenoy, & Newsome, 2013): during a color or motion 

discrimination task on colored moving stimuli, prefrontal cortex neurons initially 

represented both the color and motion dimen- sions, but during decision-making, only the 

task-relevant dimension got projected to the choice dimension. In the number domain, this 

hy- pothesis was recently evaluated in macaques (Viswanathan & Nieder, 2015): neurons in 

both parietal and prefrontal cortex were recorded during a numerosity discrimination 

training, where the number and color of stimuli varied from trial to trial. Training did not 

change the tuning curves of number neurons (thus, the sharpening hypothesis was rejected 

in this region). However, in prefrontal cortex only, training increased the number of 

number-selective neurons and their degree of selectivity for number vs. color (but again not 

the width of their tuning curves). These observations suggest that learning in monkeys was 

not dependent upon a sharpening of the primary parietal representation of 

  

 



 

Fig. 8. Simulations of the developmental changes in numerosity comparison. A multivariate classifier (A) was 

trained on the problem of identifying, from the same input dimensions as in our main experiment, which of 

two sets contains the larger number of objects. (B) Overall performance of the classifier on congruent and 

incongruent trials as a function of number of training trials. (C) Performance as a function of the distance 

between numbers (same format as Figs. 2B and 3A), approXimating that observed in young western 

preschoolers and dyscalculics, as well as uneducated Mundurucú Indians vs. western educated adults. 

 

  

number, but rather on its extraction by prefrontal cortex neurons and use for decision-

making. 

Our results fit with this animal model, but provide a step forward in several ways. First, 

Nieder did not contrast number to other non-nu- merical quantitative features such as 

length or density, but only to color information, which does not produce behavioral 

interference in nu- merosity tasks in humans. The present study, by contrast, addresses 

directly the question of the development of congruency effect between number and other 

quantitative non-numerical dimensions. Second, we contrasted sharpening to filtering using 

behavioral data and, most im- portantly, in humans subjects of variable age and education. 

Thus, our findings demonstrate that filtering is the principal mechanism under- lying 

learning not only in macaque monkeys but also in humans, and emphasize an effect of 

potential relevance to the field of education. 

How does filtering evolve before children undertake formal math education? While simple 

experiments suggest that infants can sponta- neously discard density, area, and size, and 

respond to number (Cordes & Brannon, 2008, 2009), the precise psychophysics of numerical 

pre- ference and its interaction with other quantitative features during the first years of life 

remains to be characterized. It is possible that number and other physical variables are 

immediately separable by infants, but that their correlation in the natural environment is 

internalized through experience. This predicts that the interference effects should rapidly 

increase during the first months/years of life, and then decrease only later, coinciding with 

the onset of formal education to numerical symbols and mathematics. However, it is equally 

possible that number and the continuous dimensions are originally “integral” (inseparable) 

(Garner & Felfoldy, 1970), and become separable through experience and education (Foard 

& Kemler, 1984; Goldstone, 1994). 



Several options are also available for the nature of the filtering process. Some authors 

(Cappelletti, Didino, Stoianov, & Zorzi, 2014; Houdé et al., 2011) proposed that interference 

effects in numerosity comparison is controlled by a central domain-general inhibitory 

system. This hypothesis, however, is partially questioned by the observation that the 

developmental trajectories of number and density judgements, which are both quantitative 

ensemble properties of sets that suffer from mutual interference, are different and not 

correlated across subjects (Odic, 2018). Another possibility is that filtering occurs without 

the need of effortful attentional inhibition, but that it reflects an automatic process akin to 

statistical learning, which continuously adjusts the weights assigned to the different 

dimensions to comply with the task at hand. Previous work using dual-task settings in adults 

showed that numerical estimation precision was not impaired by increasing the at- tentional 

load of a concurrent task, indirectly supporting the idea that attention is not needed to 

implement such filtering operation (Burr, Turi, & Anobile,  2010; Piazza, Fumarola, Chinello, 

&  Melcher, 2011). 

Our conception of this filtering mechanism also differs from a pre- vious proposal (Gilmore 

et al., 2013) in that we do not see it as a multi- purpose domain-general system, but rather 

one that specifically oper- ates in the domain of quantity judgements. Let us consider, by 

analogy, phonological skills and their development in relation to learning reading: with age 

and education, children become increasingly able to filter out word-level global 

phonological information and focus their attention on the syllabic sub-unit information, thus 

improving their “phonological awareness”. Such improvements are the result of forms of 

filtering and inhibition that are domain specific in that they occur during reading/spelling 

acquisition, a very specific form of cultural training. In the same vein, we propose that 

another form of cultural training, that of learning to count and to operate with numerical 

sym- bols, acts as a powerful training tool that allows the brain to separate the signals 

coming from different magnitude systems, thus making numerical judgements less prone to 

interference from continuous magnitudes. 

In conclusion, the present study provides evidence that the ability to filter out irrelevant 

information and amplify the relevant one is a key ingredient during perceptual learning in 

the number domain. Our re- sults also lead to a testable prediction for early math 

education: a pedagogy that systematically emphasizes the invariance of number in the face 



of variations and transformations in other irrelevant dimen- sions (spacing, size, density, 

etc.) should be the most effective. 

 

Appendix A.  Supplementary material 

 

Supplementary data associated with this article can be found, in the online version, at 

https://doi.org/10.1016/j.cognition.2018.07.011. 
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