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We consider the maximum entropy constrained optimization problem associated
with OrderedWeighted Averaging (OWA) in the binomial decomposition framework.

We begin by reviewing the analytic solution of the maximum entropy method
proposed by Filev and Yager in 1995, and later by Fullér and Majlender in 2001.
Next we briefly review the binomial decomposition framework, which allows for an
alternative parametric description of the OWA functions. The values of the binomial
coefficients αj , j = 1, . . . , n are uniquely determined by the weighting structure of
the OWA function.

We observe that for low orness values Ω ∈ [0, 0.5] the optimal weights are de-
creasing, whereas they are increasing for high orness values Ω ∈ [0.5, 1]. Moreover,
we notice that the optimal values of the first and last weights have a wide range in
[0, 1], while the values of the other weights have more restricted ranges.

As for the optimal αj , j = 1, . . . , n coefficients we find that their behavior with
respect to orness values Ω ∈ [0, 1] is very different for low/high orness. We illustrate
graphically the optimal αj , j = 1, . . . , n coefficients in two parts, first for low orness
values Ω ∈ [0, 0.5] and then for high orness values Ω ∈ [0.5, 1].

We observe that the optimal αj , j = 1, . . . , n for low orness values Ω ∈ [0, 0.5]
are all non negative and take values in the unit interval, independently of the di-
mension n. On the contrary, the optimal values of the αj , j = 1, . . . , n coefficients
for high orness values Ω ∈ [0.5, 1] depend strongly on the dimension n, both in the
complexity of their distribution and in the amplitude of their scale.

1. INTRODUCTION

Multiple criteria decision making (MDCM) is a major branch of Operational
Research which focuses on solving decision problems under various criteria and con-
straints. In the context of multiple criteria decision models, there is a variety of
important constrained optimization problems involving ordered weighting averaging
within the aggregation process.

∗Author to whom all corrispondence should be addressed; e-mail silvia.bortot@unitn.it
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In the binomial decomposition framework, due to Calvo and De Baets [8] and
later discussed by Bortot and Marques Pereira [4], Bortot et al. [5],Bortot et al. [6]
in the context of generalized Gini welfare functions, any OWA function with weights
wi with i = 1, . . . , n can be represented as a linear combination of binomial OWA
functions Cj with j = 1, . . . , n whose coefficients αj with j = 1, . . . , n are subject
to boundary and monotonicity conditions. The coefficients αj with j = 1, . . . , n
are uniquely determined by the weighting structure of the OWA function, and vice-
versa. Therefore an OWA function can be equivalently described either by its weights
wi with i = 1, . . . , n or by its coefficients αj with j = 1, . . . , n in the binomial
decomposition.

The maximum entropy approach to weight elicitation in ordered weighted av-
eraging (OWA) was introduced by O’Hagan [47], [48], Filev and Yager [17], [18],
and later discussed by Fullér and Majlender [21], Liu and Chen [39], Cheng and
Chang [13], Yager [54], and Ahn [1]. Comprehensive reviews of the maximum en-
tropy method can be found in Xu [52], Wu et al. [51], Liu [38], and Carlsson and
Fullér [10].

In the maximum entropy approach, a unique OWA weighting structure is as-
sociated with every given orness value Ω ∈ [0, 1]. The maximum entropy method
is based on the solution of a constrained optimization problem: maximize entropy
S(w) given an orness value Ω ∈ [0, 1].

Applications of the maximal entropy methods approach can be found in various
fields, see for instance Chang et al. [11], Liaw et al. [37], Yusoff and Merigó-Lindahl
[57], Chuu [15], He et al. [34], and Kang et al. [35]. Two very recent applications
of the maximum entropy method are described in Kim and Ahn [36], Brunelli and
Fedrizzi [7]. The former studies the elicitation of orness values and its application
in the choice of investment alternatives, while the latter suggests to use optimal
entropy weights for the construction of inconsistency indices of pairwise comparison
matrices in the AHP framework.

The report is organized as follows. In Section 2 we briefly present the basic con-
cepts of OWA functions, entropy, and orness. We describe the maximum entropy
constrained optimization problem and we discuss the analytic solution of the prob-
lem introduced by Filev and Yager in 1995 [17], and later by Fullér and Majlender
in 2001 [21]. In Section 3 we briefly review the binomial decomposition of OWA
functions and we describe the maximum entropy method in the context of the bino-
mial decomposition. In Section 4 we describe the numerical results obtained with
Matlab regarding the maximum entropy constrained optimization problem, firstly
in terms of the OWA weights wi with i = 1, . . . , n and secondly in terms of the
binomial decomposition coefficients αj with j = 1, . . . , n in dimensions n = 3, 5, 7, 9.
The final Section contains some concluding remarks.

2. OWA FUNCTIONS AND THE MAXIMUM ENTROPY METHOD

We begin by introducing some basic notations and definitions regarding OWA
functions, orness, and entropy in the context of averaging functions. We describe the
maximum entropy approach, a method to obtain the OWA weights as the optimal
solution of a constrained optimization problem.
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We consider the standard framework of averaging functions on the Dn domain,
with D ⊆ R real interval and n ≥ 2. Points in Dn are denoted x = (x1, . . . , xn), with
1 = (1, . . . , 1), 0 = (0, . . . , 0) . For every x ∈ D , we have x · 1 = (x, . . . , x). Given
x ,y ∈ Dn, x ≥ y indicates that xi ≥ yi for every i = 1, . . . , n, and by x > y we
mean x ≥ y and x ̸= y . Given x ∈ Dn, the increasing reorderings of x are denoted
as x(1) ≤ · · · ≤ x(n) and the decreasing ones as x[1] ≥ · · · ≥ x[n]. In other words we
can say that, x(1) = min{x1, . . . , xn} = x[n] and x(n) = max{x1, . . . , xn} = x[1] .

We begin by defining averaging functions on the Dn domain. Complete reviews
on averaging functions can be found in Fodor and Roubens [20], Calvo et al. [9],
Torra et al. [50], Beliakov et al. [2], Grabisch et al. [32], Mesiar et al. [43], Grabisch
et al. [33], and Beliakov et al. [3].

Definition 1 A function A : Dn −→ D is an averaging function if it is monotonic
and idempotent. An averaging function is said to be strict if it is strictly monotonic.
Notice that monotonicity and idempotency imply that min(x) ≤ A(x) ≤ max(x), for
all x ∈ Dn.

We consider a particular instance of averaging functions, the ordered weighted
averaging (OWA) function introduced by Yager [53]. The OWA function has been
widely used to combine multiple objectives into a single objective function. A fun-
damental aspect of OWA function is the reordering step in the collection of the
variables. This fact implies that the weights are associated with a particular or-
dered position and not with a specific variable.

Definition 2 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with
∑n

i=1wi =
1, the Ordered Weighted Averaging (OWA) function associated with w is the aver-
aging function A : Dn −→ D defined as

A(x) =
n∑

i=1

wi x(i). (1)

The traditional form of OWA functions as introduced in [53] is A(x ) =
∑n

i=1 w̃i x[i],
where w̃i = wn−i+1. In [55, 56] the theory and applications of OWA functions are
discussed in detail.

The OWA function allows to model various averaging functions from the mini-
mum w = (1, 0, . . . , 0, 0) through the arithmetic mean w = (1/n, 1/n, . . . , 1/n, 1/n)
to the maximum w = (0, 0, . . . , 0, 1) .

Yager has introduced two measures which characterize OWA functions, the or-
ness and the entropy. Orness is the degree to which the OWA function resembles
the maximum based on its weighting vector.

Definition 3 Given an OWA function associated with a weighting vector w =
(w1, . . . , wn) ∈ [0, 1]n, with

∑n
i=1wi = 1, the orness of an OWA function is de-

fined as

Ω(w) =
1

n− 1

n∑
i=1

(i− 1)wi . (2)
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The orness measure takes values in the unit interval. When orness is equal to 1,
the OWA is the maximum. Conversely, when orness is equal to 0, then the OWA is
the minimum. Values between 0 and 1 represent trade-offs between minimum and
maximum.

The entropy of an OWA function provides a measure of weight dispersion.

Definition 4 Given an OWA function associated with a weighting vector w =
(w1, . . . , wn) ∈ [0, 1]n, with

∑n
i=1wi = 1, the entropy of an OWA function is defined

as

S(w) = −
n∑

i=1

wi ln(wi) (3)

where we assume, as usual, the continuous extension w lnw = 0 when w = 0.

The entropy measure reaches its maximum value when all the weights are equal
to 1/n. Consequently, we can say that the entropy measures the degree to which we
use all the objectives equally.

We now define a set of linear orness preserving weight transformations which
will be useful in the maximal entropy framework to be discussed later. These orness
preserving weight transformations require n ≥ 3, since weight transformations in
n = 2 necessarily changes orness .

Given n ≥ 3 and w = (w1, . . . , wn) ∈ (0, 1)n with w1+ . . .+wn = 1, we consider
three weights wi, wj , wk ∈ (0, 1) with 1 ≤ i ≤ j ≤ k ≤ n.

An orness preserving linear weight transformation, which is defined as

wi(t) = wi + si t , wj(t) = wj + sj t , wk(t) = wk + sk t (4)

for t in a right neighborhood of t = 0, satisfies

si + sj + sk = 0 , (i− 1) si + (j − 1) sj + (k − 1) sk = 0 (5)

where si, sj , sk are the slopes of the corresponding weight transformations. There-
fore, combining the two equations in (5), we obtain

(i− k) si = −(j − k) sj , (j − i) sj = −(k − i) sk , (k − j) sk = −(i− j) si (6)

which implies that only two sign configurations are possible, either

(si ⊕ sj ⊖ sk ⊕) or (si ⊖ sj ⊕ sk ⊖) . (7)

Consider for instance the case n = 5 and the uniform weight distribution w = (w1 =
1/5, w2 = 1/5, w3 = 1/5, w4 = 1/5, w5 = 1/5). Considering i = 2, j = 3, k = 5,
an orness preserving weight transformation in this case could be associated with
s = (s1 = 0, s2 = 2/3, s3 = −1, s4 = 0, s5 = 1/3).

2.1. Maximun entropy method
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A fundamental issue in the theory of OWA functions is the determination of the
associated weights. In the literature several methodologies have been introduced in
order to obtain appropriate OWA weights, as discussed by Filev and Yager [18].

One of the primal methods of deriving the associated weights of the OWA func-
tion is proposed by O’Hagan [47], [48]. This approach is based on the constrained op-
timization method in which a predefined degree of orness is assumed, and the weights
are computed by maximizing the entropy. O’Hagan called the optimal weights as
maximum entropy OWA (MEOWA) weights.

Filev and Yager [17] introduced a method to generate the MEOWA weights with-
out solving the maximum entropy constraint optimization problem. Fullér and Ma-
jlender [21] transformed the maximum entropy method into a polynomial equation
method and Liu and Chen [39] introduced a general form of the MEOWA function
using a parametric geometric approach. Comprehensive reviews of the maximum
entropy method can be found in Xu [52], Wu et al. [51], Liu [38], and Carlsson and
Fullér [10].

The maximum entropy method is based on the solution of the following con-
strained optimization problem,

max
w

S(w) = −
n∑

i=1

wi lnwi (8)

subject to
n∑

i=1

wi = 1 ,
1

n− 1

n∑
i=1

(i− 1)wi = Ω (9)

where the weights wi are subject to conditions wi ≥ 0 for i = 1, . . . , n and Ω ∈ [0, 1]
is a given degree of orness.

The two extreme orness cases Ω ∈ [0, 1] are associated with unique weighting
vectors: w = (w1, w2, . . . , wn−1, wn) = (1, 0, . . . , 0, 0) in the case Ω = 0, and w =
(w1, w2, . . . , wn−1, wn) = (0, 0, . . . , 0, 1) in the case Ω = 1. In both cases the entropy
S(w) is null.

On the other hand, if orness lies in the open interval Ω ∈ (0, 1), it can be shown
that the optimal weights are always positive, which means that the constrained
optimization problem (8)-(9) is a Lagrange problem with two equality constraints
within the open domain w ∈ (0, 1)n.

Proposition 1 Consider OWA functions associated with weighting vectors w =
(w1, . . . , wn) ∈ [0, 1]n, with

∑n
i=1wi = 1. Given an orness value Ω ∈ (0, 1), the asso-

ciated maximum entropy weights are necessarily positive, that is, w = (w1, . . . , wn) ∈
(0, 1)n.

Proof : Given n ≥ 2 and orness values Ω ∈ (0, 1), consider weighting vectors w =
(w1, . . . , wn) ∈ (0, 1)n with w1 + . . .+ wn = 1, and the entropy function

S(w) = −
n∑

i=1

wi lnwi ∈ (0, lnn ] . (10)
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In the n = 2 case, all the weighting vectors associated with orness values Ω ∈ (0, 1)
are positive, and thus the proof is trivial. In the n ≥ 3 cases, a general orness
preserving weight transformation as in (4)-(5) defines a function

S(w(t)) = −
n∑

i=1

wi(t) lnwi(t) (11)

whose derivative is

S′(w(t)) = −
n∑

i=1

w′
i(t) (lnwi(t) + 1) = −

n∑
i=1

si ln (wi + si t) (12)

since
∑n

i=1 si = 0. In particular, an orness preserving transformation on three
weights wi, wj , wk with 1 ≤ i ≤ j ≤ k ≤ n leads to

S′(w(t)) = −ln [(wi + si t)
si (wj + sj t)

sj (wk + sk t)
sk ] (13)

where si, sj , sk satisfy conditions (5).
For the first of the two possible sign configurations as in (7), we obtain

S′(w(t)) = −ln
[(wi + si t)

si (wk + sk t)
sk

(wj− |sj| t)|sj |
]

(14)

within a right neighborhood of t = 0 if the condition wsi
i wsk

k < w
|sj |
j holds. This

condition in fact applies if either wi and wk are sufficiently small.
Analogously, for the second of the two possible sign configurations as in (7), we

get

S′(w(t)) = −ln
[ (wj + sj t)

sj

(wi− |si| t)|si| (wk− |sk| t)|sk|
]

(15)

within a right neighborhood of t = 0 if the condition w
sj
j < w

|si|
i w

|sk|
k holds. This

condition in fact applies if wj is sufficiently small.

Let us now consider the general case n ≥ 3 and w = (w1, . . . , wn) ∈ [0, 1]n with
w1+. . .+wn = 1. Weighting vectors w with n−1 null weights have zero entropy and
are thus not maximal. Maximum entropy weighting vectors must necessarily have
at least two positive weights, both in the (0, 1) interval due to unit normalization.

Consider now the existence of a null weight, which is either on the left, center, or
right of the two positive weights. In the first and third cases, we can show that such
weighting vector is not maximal using the orness preserving weight transformation
of sign configuration (si ⊕ sj ⊖ sk ⊕). As we have seen before, in such case

the condition wsi
i wsk

k < w
|sj |
j after equation (14) holds and therefore the entropy

increases as the null weight increases from 0.
Analogously, in the second case, when the null weight is between the two positive

weights, we can show that such weighting vector is not maximal using the orness pre-
serving weight transformation of sign configuration (si ⊖ sj ⊕ sk ⊖). In such case

the condition w
sj
j < w

|si|
i w

|sk|
k after equation (15) holds and therefore the entropy

increases as the null weight increases from 0.
We have thus shown that weighting vectors with one or more null weights do not

correspond to maximum entropy OWA functions with orness Ω ∈ (0, 1) .
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2

The Lagrange function of problem (8)-(9) can be denoted as

L(w , λ1, λ2) = −
n∑

i=1

wi ln(wi) + λ1

( n∑
i=1

wi−1
)
+ λ2

( 1

n− 1

n∑
i=1

(i−1)wi−Ω
)
(16)

where λ1, λ2 are the Lagrange multipliers. The partial derivatives of the Lagrange
function can be computed as

∂L

∂wi
= −ln(wi)− 1 + λ1 + λ2

i− 1

n− 1
= 0 i = 1, . . . , n (17)

∂L

∂λ1
=

n∑
i=1

wi − 1 = 0 (18)

∂L

∂λ2
=

1

n− 1

n∑
i=1

(i− 1)wi − Ω = 0 (19)

where Ω ∈ (0, 1) is a given degree of orness.
In the following subsections we describe the analytic solution of the maximum

entropy method introduced by Filev and Yager in 1995 [17], and by Fullér and
Majlender in 2001 [21].

2.2. Filev and Yager’s analytic construction of MEOWA weights

Filev and Yager in 1995 [17] introduced a method to obtain the optimal weights
thus solving the maximum entropy constraint optimization problem (8)-(9). Us-
ing the Lagrange multiplier method they derived an exponential equation which
determines the optimal weighting vector.

Consider the constrained optimization problem described in (8)-(9). Expression
(17) can be written as

ln(wi) + 1 = λ1 + λ2
i− 1

n− 1

wi = e
λ1+λ2

i−1
n−1−1

(20)
n∑

i=1

wi =

n∑
i=1

e
λ1+λ2

i−1
n−1−1

. (21)

Using expression (18) we obtain

eλ1−1
n∑

i=1

e
λ2

i−1
n−1 = 1 . (22)

Dividing expression (20) by expression (22) we obtain the expression for the optimal
weights wi, i = 1, . . . , n,

wi =
eλ1−1 e

λ2
i−1
n−1

eλ1−1
∑n

j=1 e
λ2

j−1
n−1

=
e
λ2

i− 1

n− 1∑n
j=1 e

λ2
j−1
n−1

. (23)

7

Author’s Accepted Manuscript Intl. J. Intelligent Systems DOI http://dx.doi.org/10.1002/int.22083



We can substitute the weight expression (23) into (19) to obtain a non-linear equa-
tion connecting the given degree of orness Ω and the Lagrange multiplier λ2 in the
following way,

1

n− 1

n∑
i=1

(i− 1)
e
λ2

i−1
n−1∑n

j=1 e
λ2

j−1
n−1

= Ω (24)

or alternatively,
n∑

i=1

(
i− 1

n− 1
− Ω

)
e
λ2

i−1
n−1 = 0 . (25)

Clearly, using expressions (23) and (25) we can obtain directly the optimal
weights given a specified degree of orness Ω by first computing the Lagrange multi-
plier λ2 from equation (25) and then by computing the Lagrange multiplier λ1 from
(22), thus solving the constrained optimization problem in (8)-(9).

2.3 Fullér and Majlender’s analytic construction of MEOWA weights

Fullér and Majlender in 2001 [21] also introduced a method to obtain the optimal
weights thus solving the maximum entropy constraint optimization problem (8)-(9).
Using the Lagrange multiplier method they derived a polynomial equation whose
solution can determine the optimal weighting vector.

Consider the constrained optimization problem described in (8)-(9). For i = 1
equation (17) becomes

−ln(w1)− 1 + λ1 = 0 ⇒ λ1 = ln(w1) + 1 . (26)

For i = n equation (17) becomes

−ln(wn)− 1 + λ1 + λ2 = 0 . (27)

Substituting expression (26) in (27) we obtain

λ2 = ln(wn)− ln(w1) . (28)

For 1 ≤ i ≤ n, using (26) and (28), equation (17) turns into

ln(wi) =
n− i

n− 1
ln(w1) +

i− 1

n− 1
ln(wn) (29)

or equivalently,

wi =
n−1

√
wn−i
1 wi−1

n . (30)

In the case that w1 = wn then from (30) we have that

w1 = w2 = . . . = wn =
1

n

which corresponds to the optimal solution of the maximum entropy constraint op-

timization problem (8) for orness Ω = 0.5. In fact, when w1 = w2 = . . . = wn =
1

n
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then S(w) = ln(n) which is the global optimal value of dispersion for any OWA
function.

Now consider the case w1 ̸= wn. Introducing the notation

u1 = w
1/(n−1)
1 and un = w1/(n−1)

n (31)

in expression (30) we get

wi = un−i
1 ui−1

n , 1 ≤ i ≤ n. (32)

In what follows, we will determine the optimal weight distribution by means of
the implicit solution of a polynomial equation on wn. For this purpose, we make use
of the following general results.

Proposition 2 Given a, b ∈ R with a ̸= b we have that

n∑
i=1

an−i bi−1 =
an − bn

a− b

or equivalently,

(a− b)
n∑

i=1

an−i bi−1 = an − bn. (33)

Proof : Let us use the following notation:
∑n

i=1 an−i bi−1 = (∗). We have the
following,

(a− b) (∗) = a
n∑

i=1

an−i bi−1 − b
n∑

i=1

an−i bi−1

=

n∑
i=1

an−i+1 bi−1 −
n∑

i=1

an−i bi

=
(
anb0 + an−1b1 + . . .+ a2bn−2 + a1bn−1

)
−

−
(
an−1b1 + an−2b2 + . . .+ a1bn−1 + a0bn)

= an − bn.

2

Proposition 3 Given a, b ∈ R with a ̸= b we have that

n∑
i=1

i an−i bi−1 =
1

a− b

[
a

n∑
i=1

an−i bi−1 − nbn
]

(34)
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Proof : Let us use the following notation:
∑n

i=1 i an−i bi−1 = (∗ ∗). We have the
following,

a (∗ ∗) =

n∑
i=1

i an−i+1 bi−1

b (∗ ∗) =

n∑
i=1

i an−i bi =

n∑
j=2

(j − 1) an−j+1 bj−1

=
n∑

i=1

(i− 1) an−i+1 bi−1 + nbn .

a (∗ ∗)− b (∗ ∗) =
n∑

i=1

an−i+1 bi−1 − nbn = a
n∑

i=1

an−i bi−1 − nbn

(∗ ∗) =
1

a− b
[ a (∗)− nbn ] .

2

These two general results will now be instrumental to obtain the basic equation
which determines the maximum entropy OWA weights, as described below.

From equation (18) and Proposition 2 we have

n∑
i=1

un−i
1 ui−1

n = 1 ⇔ un1 − unn
u1 − un

= 1

⇔ un1 − unn = u1 − un. (35)

We recall equation (19). By substituting (32) in (19) we obtain

n∑
i=1

(i− 1)un−i
1 ui−1

n = (n− 1)Ω . (36)

The left hand side of equation (36) from can be expressed as

n∑
i=1

(i− 1)un−i
1 ui−1

n =

n∑
i=1

i un−i
1 ui−1

n −
n∑

i=1

un−i
1 ui−1

n (37)

and, using Proposition 3 we have

n∑
i=1

(i− 1)un−i
1 ui−1

n =
1

u1 − un

[
u1

n∑
i=1

un−i
1 ui−1

n − nunn − (u1 − un)

n∑
i=1

un−i
1 ui−1

n

]
=

1

u1 − un

[
un

n∑
i=1

un−i
1 ui−1

n − nunn

]
(38)

thus obtaining

n∑
i=1

(i− 1)un−i
1 ui−1

n =
1

u1 − un

[
un

(un1 − unn
u1 − un

)
− nunn

]
=

1

u1 − un

(
un − nunn

)
. (39)
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Therefore, equation (36) can be expressed as

1

u1 − un

(
un − nunn

)
= (n− 1)Ω

un(1− nun−1
n ) = u1(n− 1)Ω− un(n− 1)Ω

un
(
1− nun−1

n + (n− 1)Ω
)

= u1(n− 1)Ω

u1
un

=
(n− 1)Ω + 1− nwn

(n− 1)Ω
. (40)

Rewriting equation (35) as

un1 − unn = u1 − un ⇔ un1
un

− un+1
n =

u1
un

− 1

⇔ un−1
1

u1
un

− un−1
n =

u1
un

− 1 (41)

and, using equation (40), we obtain

un−1
1 (

(n− 1)Ω + 1− nwn

(n− 1)Ω
)− un−1

n =
1− nwn

(n− 1)Ω

w1((n− 1)Ω + 1− nwn)− wn(n− 1)Ω = 1− nwn

w1 =
((n− 1)Ω− n)wn + 1

(n− 1)Ω + 1− nwn
. (42)

Equation (35) can also be rewritten as

un1 − unn = u1 − un ⇔ u1(w1 − 1) = un(wn − 1)

⇔ w1(w1 − 1)n−1 = wn(wn − 1)n−1 (43)

and using equation (42), we obtain

wn(wn − 1)n−1 =

(
(n− 1)Ω− n

)
wn + 1

(n− 1)Ω + 1− nwn

[ (n− 1)Ω(wn − 1)

(n− 1)Ω + 1− nwn

]n−1

leading to the fundamental polynomial equation for the weight wn in relation with
a given orness value Ω ∈ (0, 1),

wn

[
(n− 1)Ω + 1− nwn

]n
=

(
(n− 1)Ω

)n−1[(
(n− 1)Ω− n

)
wn + 1

]
. (44)

Thus, the optimal value of wn should satisfy equation (44). Fullér and Majlender
in [21] proved that there exists a unique meaningful wn ∈ (0, 1) for this equation,
given an orness value Ω ∈ (0, 1). Once the weight wn is obtained, the weight w1 is
determined by equation (42). The other weights are obtained using equation (30).

2.4. Gajdos’ generating function framework
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The Ordered Weighted Averaging (OWA) functions in the general framework
introduced by Gajdos [22] are of the form

Af (x ) =
n∑

i=1

[
f
(n− i+ 1

n

)
− f

(n− i

n

)]
x(i) (45)

where f is a continuous and increasing function on the unit interval, with f(0) =
0 and f(1) = 1. The general graphical representation of Gajdos’ weights with
generating function f is illustrated in Fig. 1. An analogous and equivalent weight
generation mechanism, based on the notion of quantifier, has been discussed by
Yager in [54].

Figure 1: General representation of Gajdos’ weights.

Concerning the generating function f , the integer parametric choices f(t) = tk,
with k = 1, . . . , n, can be seen in relation with the k-additivity of the OWA function,
as discussed in Gajdos [22]. In what follows, however, we wish to discuss the choice
of an exponential form for the weight generating function.

Proposition 4 The maximum entropy OWA functions can be written in the general
framework (45) introduced by Gajdos with the following weight generating function
f : [0, 1] → [0, 1],

f(x) =
eαx − 1

eα − 1
α ≠ 0 , f(x) = x α = 0 , x ∈ [0, 1] (46)

which is continuous and increasing on the unit interval, with f(0) = 0 and f(1) = 1.

Proof : Consider the exponential function f : [0, 1] → [0, 1],

f(x) =
eαx − 1

eα − 1
α ̸= 0 , f(x) = x α = 0 , x ∈ [0, 1] . (47)
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Clearly, the function f is continuous and increasing on the unit interval, with f(0) =
0 and f(1) = 1.

The weighting structure of the OWA function Af (x ) = wi x(i) associated to
function f is of the form

wi = f
(n− i+ 1

n

)
− f

(n− i

n

)
=

e
α

(n− i+ 1)

n − e
α

(n− i)

n

eα − 1
i = 1, . . . , n (48)

where we assume α ̸= 0, otherwise wi = 1/n for i = 1, . . . , n. Normalization follows
immediately,

n∑
i=1

wi =
1

eα − 1

[
eα − e

α
(n− 1)

n + e
α

(n− 1)

n − e
α

(n− 2)

n + . . .

. . .+ e
α

2

n − e
α

1

n + e
α

1

n − 1
]

=
1

eα − 1

(
eα − 1

)
= 1 . (49)

We will now study the relation between consecutive weights wi, wi+1, for i = 1, . . . , n−
1,

wi − wi+1 =
e
α

(n− i+ 1)

n − 1

eα − 1
− 2

(eα (n− 1)

n − 1

eα − 1

)
+

e
α

(n− i− 1)

n − 1

eα − 1

=
1

eα − 1

[
e
α

(n− i+ 1)

n − 2e
α

(n− 1)

n + e
α

(n− i− 1)

n

]
=

1

eα − 1
e
α

(n− i− 1)

n

(
e
α

2

n − 2e
α

1

n + 1
)
. (50)

Introducing the notation t = e
α

1

n , the expression (e
α

2

n − 2e
α

1

n + 1) becomes
(t2 − 2t+1), which is equal to zero if and only if t = 1, otherwise it is positive. The
sign of the weight differences wi − wi+1 for i = 1, . . . , n − 1, is therefore uniform
along the weighting vector, and depends exclusively on the sign of the parameter α,
through the denominator eα − 1.

By substituting α = −β n/(n− 1) in expression (48) we obtain

wi =
e
−β

(n− i+ 1)

n− 1 − e
−β

(n− i)

n− 1

e
−β

n

n− 1 − 1

=
e
−β

n

n− 1

(
e
−β

1

n− 1 − 1
)
e
β

i

n− 1

e
−β

n

n− 1 − 1

= e
β

i

n− 1
1− e

−β
1

n− 1

e
β

n

n− 1 − 1

= e
β

i

n− 1
1∑n

j=1 e
β

j

n− 1

(51)

where we have used that

n∑
j=1

e
β

j

n− 1 = e
β

1

n− 1
e
β

n

n− 1 − 1

e
β

1

n− 1 − 1

=
e
β

n

n− 1 − 1

1− e
−β

1

n− 1

(52)
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which follows from the formula for the geometric series

c+ cr + cr2 + . . .+ crn = c
rn−1

r − 1
(53)

with c = eβ/(n−1) = r ̸= 1 for any α, β ̸= 0.
The form obtained in (51) for the exponential Gajdos’ weights coincides with

that of the MEOWA weights as obtained by Filev and Yager in [17],

wi =
e
β
(i− 1)

n− 1∑n
j=1 e

β
(j − 1)

n− 1

=
e
β

i

n− 1∑n
j=1 e

β
j

n− 1

. (54)

2

In relation with the sign of the parameter α, which is opposite to that of the
parameter β, we obtain decreasing weights for α > 0, as illustrated in Figure 1,
constant weights for α = 0, and increasing weights for α < 0, as explained after
equation (50).

3. THE BINOMIAL DECOMPOSITION OF OWA FUNCTIONS

In this section we present a brief review of the basic facts on Choquet integration,
focusing on the Möbius representation framework. For recent reviews of Choquet
integration see Grabisch and Labreuche [29], [30], [31], and Grabisch et al. [28] for
the general case, Mayag et al. [41], [42] for the 2-additive case in particular.

We then briefly review the concept of binomial decomposition in terms of the
binomial OWA functions Cj and, finally, we describe the maximum entropy approach
in the context of the binomial decomposition.

Consider a finite set of interacting elements N = {1, 2, . . . , n}. Any subsets
S, T ⊆ N with cardinalities 0 ≤ s, t ≤ n are usually called coalitions. The concepts
of capacity and Choquet integral in the definitions below are due to Choquet [14],
Sugeno [49], Chateauneuf and Jaffray [12], Murofushi and Sugeno [46], Denneberg
[16], Grabisch [23], [24], and Marichal [40].

Definition 5 A capacity on the set N is a set function µ : 2N −→ [0, 1] satisfying

(i) µ(∅) = 0, µ(N) = 1 (boundary conditions)

(ii) S ⊆ T ⊆ N ⇒ µ(S) ≤ µ(T ) (monotonicity conditions).

Definition 6 Let µ be a capacity on N . The Choquet integral Cµ : Dn −→ D with
respect to µ is defined as

Cµ(x) =
n∑

i=1

[µ(A(i))− µ(A(i+1))]x(i) x = (x1, . . . , xn) ∈ Dn (55)

where (·) indicates a permutation on N such that x(1) ≤ x(2) ≤ · · · ≤ x(n). Moreover,
A(i) = {(i), . . . , (n)} and A(n+1) = ∅.

14

Author’s Accepted Manuscript Intl. J. Intelligent Systems DOI http://dx.doi.org/10.1002/int.22083



Definition 7 Let µ be a capacity on the set N . The Möbius transform mµ : 2N −→
R associated with the capacity µ is defined as

mµ(T ) =
∑
S⊆T

(−1)t−sµ(S) T ⊆ N (56)

where s and t denote the cardinality of the coalitions S and T , respectively.

Conversely, given the Möbius transformmµ, the associated capacity µ is obtained
as

µ(T ) =
∑
S⊆T

mµ(S) T ⊆ N . (57)

In the Möbius representation, the boundary conditions take the form

mµ(∅) = 0
∑
T⊆N

mµ(T ) = 1 (58)

and the monotonicity conditions can be expressed as follows: for each i = 1, . . . , n
and each coalition T ⊆ N \ {i}, the monotonicity condition is written as∑

S⊆T

mµ(S ∪ {i}) ≥ 0 T ⊆ N \ {i} i = 1, . . . , n . (59)

This form of the monotonicity conditions derives from the original monotonicity
conditions in Definition 5, expressed as µ(T ∪ {i}) − µ(T ) ≥ 0 for each i ∈ N and
T ⊆ N \ {i}.

Defining a capacity µ on a set N of n elements requires 2n − 2 real coefficients,
corresponding to the capacity values µ(T ) for T ⊆ N . In order to control exponential
complexity, Grabisch [25] introduced the concept of k-additive capacities, which has
been further discussed in Grabisch [26], Miranda and Grabisch [44], and Miranda et
al. [45].

Definition 8 A capacity µ on the set N is said to be k-additive if its Möbius
transform satisfies mµ(T ) = 0 for all T ⊆ N with t > k, and there exists at least
one coalition T ⊆ N with t = k such that mµ(T ) ̸= 0.

In the k-additive case, with k = 1, . . . , n, the capacity µ is expressed as follows
in terms of the Möbius transform mµ,

µ(T ) =
∑

S⊆T, s≤ k

mµ(S) T ⊆ N (60)

and the boundary and monotonicity conditions (58) and (59) take the form

mµ(∅) = 0
∑

T⊆N, t≤ k

mµ(T ) = 1 (61)

∑
S⊆T, s≤ k−1

mµ(S ∪ {i}) ≥ 0 T ⊆ N \ {i} i = 1, . . . , n . (62)

Finally, we examine the particular case of symmetric capacities and Choquet
integrals, which play a crucial role in this paper.
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Definition 9 A capacity µ is said to be symmetric if it depends only on the cardi-
nality of the coalition considered, in which case we use the simplified notation

µ(T ) = µ(t) where t = |T | . (63)

Accordingly, for the Möbius transform mµ associated with a symmetric capacity µ
we use the notation

mµ(T ) = mµ(t) where t = |T | . (64)

In the symmetric case, the expression (57) for the capacity µ in terms of the
Möbius transform mµ reduces to

µ(t) =
t∑

s=1

(
t

s

)
mµ(s) t = 1, . . . , n (65)

and the boundary and monotonicity conditions (58) and (59) take the form

mµ(0) = 0

n∑
s=1

(
n

s

)
mµ(s) = 1 (66)

t∑
s=1

(
t− 1

s− 1

)
mµ(s) ≥ 0 t = 1, . . . , n . (67)

The monotonicity conditions correspond to µ(t)− µ(t− 1) ≥ 0 for t = 1, . . . , n.
The Choquet integral (55) with respect to a symmetric capacity µ reduces to an

Ordered Weighted Averaging (OWA) function, see Fodor et al. [19], and Yager [53],

Cµ(x ) =
n∑

i=1

[µ(n− i+ 1)− µ(n− i)]x(i) =

n∑
i=1

wi x(i) = A(x ) (68)

where the weights wi = µ(n− i+1)− µ(n− i) satisfy wi ≥ 0 for i = 1, . . . , n due to
the monotonicity of the capacity µ, and

∑n
i=1wi = 1 due to the boundary conditions

µ(0) = 0 and µ(n) = 1. Comprehensive reviews of OWA functions can be found in
Yager and Kacprzyk [55] and Yager et al. [56].

The weighting structure of the OWA function (68) is thus of the general form

wi = f

(
n− i+ 1

n

)
− f

(
n− i

n

)
(69)

where f is a continuous and increasing function on the unit interval, with f(0) = 0
and f(1) = 1. As mentioned before, Gajdos [22] has shown that the OWA function
A is associated with a k-additive capacity µ, with k = 1, . . . , n, if and only if f is
polynomial of order k. In fact, in (65), the k-additive case is obtained simply by
taking

mµ(k + 1) = · · · = mµ(n) = 0 , mµ(k) = (t− 1) . . . (t− k + 1)/k! (70)
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which is polynomial of order k in the coalition cardinality t.
We now consider OWA functions A : Dn −→ D and we recall the binomial

decomposition of OWA functions due to Calvo and De Baets [8], with the addition
of a uniqueness result, see also Bortot and Marques Pereira [4].

We begin by introducing the convenient notation

αj =

(
n

j

)
mµ(j) j = 1, . . . , n . (71)

In this notation, which has no relation with that of the parameter α in Section 2.4,
the upper boundary condition (66) reduces to

n∑
j=1

αj = 1 (72)

and the monotonicity conditions (67) take the form

i∑
j=1

(
i−1
j−1

)(
n
j

) αj ≥ 0 i = 1, . . . , n . (73)

Definition 10 The binomial OWA functions Cj : Dn −→ D, with j = 1, . . . , n, are
defined as

Cj(x) =
n∑

i=1

wji x(i) =
n∑

i=1

(
n−i
j−1

)(
n
j

) x(i) j = 1, . . . , n (74)

where the binomial weights wji, i, j = 1, . . . , n are null when i+ j > n+1 according
to the usual convention that

(
p
q

)
= 0 when p < q, with p, q = 0, 1, . . .

Except for C1(x ) = x̄, the binomial OWA functions Cj , j = 2, . . . , n have an
increasing number of null weights, in correspondence with x(n−j+2), . . . , x(n). The
weight normalization of the binomial OWA functions,

∑n
i=1wji = 1 for j = 1, . . . , n,

is due to the column-sum property of binomial coefficients,

n∑
i=1

(
n− i

j − 1

)
=

n−1∑
i=0

(
i

j − 1

)
=

(
n

j

)
j = 1, . . . , n . (75)

Proposition 5 [Binomial decomposition] Any OWA function A : Dn −→ D can be
written uniquely as

A(x) = α1C1(x) + α2C2(x) + · · ·+ αnCn(x) (76)

where the coefficients αj, j = 1, . . . , n are subject to conditions (72) and (73). In
the binomial decomposition (76) the k-additive case, with k = 1, . . . , n, is obtained
simply by taking αk+1 = · · · = αn = 0.
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Consider an OWA function A : Dn −→ D associated with a symmetric capacity
µ as in (68),

A(x ) =
n∑

i=1

wi x(i) wi = µ(n− i+ 1)− µ(n− i) (77)

where the weights wi, i = 1, . . . , n can be expressed, using (76), in the form

wi =

n∑
j=1

wji αj =

n−i+1∑
j=1

wji αj i = 1, . . . , n

= w1i α1 + w2i α2 + . . .+ wn−i,i αn−i + wn−i+1,i αn−i+1 (78)

and the coefficients αj , j = 1, . . . , n are subject to conditions (72) and (73). Notice
that the binomial weights wji, i, j = 1, . . . , n are null when i+j > n+1 as explained
in (74). More explicitly, the weights wi with i = 1, . . . , n can be written as

w1 = w11α1 + w21α2 + · · ·+ wn−1,1αn−1 + wn1αn

w2 = w12α1 + w22α2 + · · ·+ wn−1,2αn−1

. . .

wn−1 = w1,n−1α1 + w2,n−1α2

wn = w1nα1

(79)

In the case n = 3, for instance, we obtain

w1 =
1

3
α1 +

2

3
α2 + α3

w2 =
1

3
α1 +

1

3
α2

w3 =
1

3
α1 .

It is clear from expression (79) that the values of the coefficients αj , j = 1, . . . , n
are uniquely determined by the weighting structure of the ordered weighted averag-
ing function A: wn determines α1, then wn−1 determines α2, and so on.

4. MAXIMUM ENTROPY METHOD IN THE CONTEXT OF THE
BINOMIAL DECOMPOSITION

Let us now consider the maximum entropy method in the context of the binomial
decomposition using the coefficients αj , with j = 1, . . . , n, to describe the OWA
function instead of the weights wi, with i = 1, . . . , n. As we have seen, the coefficients
αj , with j = 1, . . . , n, are uniquely determined by the weighting structure of the
OWA function, and vice-versa as indicated in expression (79). This means that
we can express the measures of orness (2) and entropy (3) in terms of the vector
α = (α1, . . . , αn) containing the coefficients αj , with j = 1, . . . , n, in the following
way
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Proposition 6 Given an OWA function associated with the binomial decomposition
coefficients αj, with j = 1, . . . , n, the orness of an OWA function can be written as

Ω(α) =
1

n− 1

n∑
i=1

n−i+1∑
j=1

(i− 1)

(
n−i
j−1

)(
n
j

) αj (80)

where the coefficients αj, with j = 1, . . . , n are subject to conditions (72) and (73).

Proof. The expression of orness (80) is obtained directly from (2) by substituting
(78). In the case n = 3, for instance, we obtain

Ω(α1, α2, α3) =
1

2
(w2 + 2w3) .

2

Proposition 7 Given an OWA function associated with the binomial decomposition
coefficients αj, with j = 1, . . . , n, the entropy of an OWA function can be written as

S(α) = −
n∑

i=1

[( n−i+1∑
j=1

(
n−i
j−1

)(
n
j

) αj

)
ln
( n−i+1∑

j=1

(
n−i
j−1

)(
n
j

) αj

)]
(81)

where the coefficients αj, with j = 1, . . . , n are subject to conditions (72) and (73).

Proof. The expression of entropy (81) is obtained directly from (3) by substituting
(78). In the case n = 3, for instance, we obtain

S(α1, α2, α3) = −
[(1
3
α1 +

2

3
α2 + α3

)
ln
(1
3
α1 +

2

3
α2 + α3

)
+(1

3
α1 +

1

3
α2

)
ln
(1
3
α1 +

1

3
α2

)
+

1

3
α1ln

(1
3
α1

)]
.

2

The constrained optimization problem described in (8)-(9) can be rewritten in
terms of the coefficients αj , with j = 1, . . . , n, as follows

max
α

S(α) (82)

subject to
n∑

j=1

αj = 1 ,
1

n− 1

n∑
i=1

n−i+1∑
j=1

(i− 1)

(
n−i
j−1

)(
n
j

) αj = Ω (83)

where Ω ∈ [0, 1] is a given degree of orness and the alpha coefficients are subject to
conditions

i∑
j=1

(
i−1
j−1

)(
n
j

) αj ≥ 0 for each i = 1, . . . , n . (84)
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In analogy with what has been discussed earlier in relation with the constrained
optimization problem (8)-(9), the two extreme orness cases Ω = 0, 1 are associated
with unique alpha coefficient vectors: α = (α1, α2, . . . , αn−1, αn) = (0, 0, . . . , 0, 1)
corresponding to w = (w1, w2, . . . , wn−1, wn) = (1, 0, . . . , 0, 0) in the case Ω = 0,
and a more complex α = (α1, α2, . . . , αn−1, αn), solution of the linear system (79),
corresponding to w = (w1, w2, . . . , wn−1, wn) = (0, 0, . . . , 0, 1) in the case Ω = 1. In
both cases the value of entropy S(α) is zero.

On the other hand, if orness is in the open interval Ω ∈ (0, 1), it has been
shown in Proposition 1 that the optimal weights are always positive, which means
that the constraints (84) are strict. In other words, the constrained optimization
problem (82)-(83) is a Lagrange problem with two equality constraints within an
open domain in the space of vectors α = (α1, α2, . . . , αn−1, αn) corresponding to
w ∈ (0, 1)n.

The Lagrange function of the constrained optimization problem (82)-(83) can be
written as

L(α, λ1, λ2) = −
n∑

i=1

[( n−i+1∑
j=1

(
n−i
j−1

)(
n
j

) αj

)
ln
( n−i+1∑

j=1

(
n−i
j−1

)(
n
j

) αj

)]
+

+λ1

[ n∑
j=1

αj − 1
]
+ λ2

[ 1

n− 1

n∑
i=1

n−i+1∑
j=1

(i− 1)

(
n−i
j−1

)(
n
j

) αj − Ω
]
(85)

where λ1 and λ2 are Lagrange multipliers.
Using the Lagrange function (85), the Lagrange conditions can be summarized with
respect to αj , λ1, λ2, with i, j = 1, . . . , n, as

1. The partial derivatives of the Lagrange function with respect to the free vari-
ables are equal to zero

∂L

∂αj
= 0 j = 1, . . . , n. (86)

2. The partial derivatives of the Lagrange function with respect to the Lagrange
multipliers corresponding to equality constraints are equal to zero

∂L

∂λ1
= 0 ,

∂L

∂λ2
= 0. (87)

Given a predefined degree of orness Ω the solution of the constrained optimization
problem in (82) with respect to the constraints (83)and (84) will give us the optimal
values of the coefficients αj , with j = 1, . . . , n which maximize the entropy.

We will now examine the numerical solutions of the constrained optimization
problem related to the maximum entropy method in dimension n = 3. More specifi-
cally, we describe the numerical results of the maximum entropy optimization prob-
lem, firstly in terms the OWA weights wi, i = 1, . . . , n, and secondly in terms of the
binomial decomposition coefficients αj , j = 1, . . . , n for the cases n = 3, 5, 7, 9. To
do that, since we are dealing with non-linear constrained optimization problems, we
use the non-linear programming solver fmincon in the MATLAB environment.
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4.1. Maximum entropy method in the case n = 3 : weights

In this subsection we consider the maximum entropy method in the case n = 3.
The constrained optimization problem described in (8)-(9) for n = 3 reduces to

max
w

S(w) = −
(
w1 lnw1 + w2 lnw2 + w3 lnw3

)
(88)

subject to

w1 + w2 + w3 = 1 ,
1

2

(
w2 + 2w3

)
= Ω (89)

where Ω ∈ (0, 1) is a given degree of orness. We know from Proposition 1 that the
maximum entropy weights satisfy the positivity constraints

w1 > 0, w2 > 0, w3 > 0 . (90)

To solve the above nonlinear constrained optimization problem we use the La-
grange multiplier method. The Lagrange function of problem (88)-(89) can be writ-
ten as

L(w , λ1, λ2) = −
(
w1 lnw1 + w2 lnw2 + w3 lnw3

)
+ λ1

(
w1 + w2 + w3 − 1) +

+λ2

[1
2
(w2 + 2w3)− Ω

]
(91)

where λ1, λ2 are the Lagrange multipliers. Using the Lagrange function (91) we
need to solve the following system of equations

1. The partial derivatives of the Lagrange function with respect to the weight
variables are equal to zero,

∂L

∂w1
= 0,

∂L

∂w2
= 0,

∂L

∂w3
= 0. (92)

Using (91) we obtain
−lnw1 − 1 + λ1 = 0

−lnw2 − 1 + λ1 +
1

2
λ2 = 0

−lnw3 − 1 + λ1 + λ2 = 0

(93)

2. The partial derivatives of the Lagrange function with respect to the Lagrange
multipliers corresponding to equality constraints are equal to zero,

∂L

∂λ1
= 0,

∂L

∂λ2
= 0. (94)

Using (91) we obtain

w1 + w2 + w3 − 1 = 0 ,
1

2
(w2 + 2w3)− Ω = 0. (95)

21

Author’s Accepted Manuscript Intl. J. Intelligent Systems DOI http://dx.doi.org/10.1002/int.22083



Using equations (95) we can express the weights w1, w2 and w3 in the following way

w1 = w , w2 = 2− 2Ω− 2w1 , w3 = 2Ω + w1 − 1 . (96)

Using expressions (96) the partial derivatives of the Lagrange function with respect
to the weight variables (93) can be rewritten as

lnw + 1− λ1 = 0

ln (2− 2Ω− 2w) + 1− λ1 −
1

2
λ2 = 0

ln (2Ω + w − 1) + 1− λ1 − λ2 = 0

(97)

We exponenciate
w = eλ1−1

2− 2Ω− 2w = eλ1+
1
2λ2−1

2Ω + w − 1 = eλ1+λ2−1

(98)

and by substituting the first of these equations into the second and third, we obtain

2− 2eλ1−1 − eλ1+
1
2λ2−1 = 2Ω = 1 + eλ1+λ2−1 − eλ1−1 . (99)

In Fig. 2 we represent the values of the Lagrange multipliers λ1, λ2 with respect
to the optimal solutions of the constrained optimization problem in (88)-(89) with
respect to the orness values Ω ∈ [0, 1].

In the table in Fig. 2 we present the values of the Lagrange multipliers λ1, λ2

obtained from equations (113) for orness values Ω ∈ [0, 1] in the case n = 3.

Orness λ λ2

0.0 1 ∞

0.1 0.809198 -3.44751

0.2 0.617079 -2.11974

0.3 0.409359 -1.28034

0.4 0.175311 -0.609237

0.5 -0.0986123 0

0.6 -0.433925 0.609237

0.7 -0.870983 1.28034

0.8 -1.50266 2.11974

0.9 -2.63832 3.44751

1.0 ∞ ∞

(a)
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6

8
 1

 2

(b)

Figure 2: The Lagrange multipliers λ1, λ2 for orness Ω ∈ [0, 1], with n=3.

We can see that as the value of the orness varies from zero to one the Lagrange
multiplier λ1 is decreasing while λ2 is increasing. Moreover we can observe that the
Lagrange multiplier λ2 is equal to zero when orness is equal to 0.5.
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In Fig. 3 we can see the optimal values of the OWA weights that maximize
entropy subject to the constraints (90) associated with the orness value Ω ∈ [0, 1],
in the case n = 3.
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(b)

Figure 3: The optimal values of the OWA weights for orness Ω ∈ [0, 1], with n=3.

We observe that w1 is decreasing, whereas w3 is increasing with respect to Ω ∈
[0, 1]. On the other hand, w2 is increasing in the first half of the unit interval and
decreasing thereafter. We see that when orness is equal to 0.5 the weights w1, w2 and
w3 are equal to 1/3, which corresponds to the weighting structure of the arithmetic
mean in the case n = 3. Our results agree with those discussed by Filev and Yager
in [17]. As expected, for the extreme orness values Ω = 0, 1 the associated weights
are uniquely defined as (w1 = 1, w2 = 0, w3 = 0) and (w1 = 0, w2 = 0, w3 = 1),
respectively. In both cases the entropy value is null.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2
entropy

Figure 4: The optimal values of the objective function for the orness Ω ∈ [0, 1], with
n=3.
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In Fig. 4 we illustrate the values of the entropy function with respect to the
optimal solutions of the constrained optimization problem in (88)-(89) with respect
to the orness values Ω ∈ [0, 1]. We observe that entropy is increasing as the orness
increases from zero to 0.5, reaching its maximum value ln 3 when the orness is equal
to 0.5. For orness values greater than 0.5 the entropy is decreasing. The minimum
value of entropy is obtained for the extreme values of orness Ω = 0, 1.

4.2. Maximum entropy method in the case n = 3 : alphas

In this subsection we consider the maximum entropy method in the context of the
binomial decomposition in the case n = 3. The constrained optimization problem
(82)- (83) for n = 3 reduces to

max
α

S(α) = −
[(1
3
α1 +

2

3
α2 + α3

)
ln
(1
3
α1 +

2

3
α2 + α3

)
+

+
(1
3
α1 +

1

3
α2

)
ln
(1
3
α1 +

1

3
α2

)
+

1

3
α1ln

(1
3
α1

)]
(100)

subject to

α1 + α2 + α3 = 1 ,
1

2
α1 +

1

6
α2 = Ω (101)

where Ω ∈ (0, 1) is a given degree of orness. We know from Proposition 1 and (90)
that the maximum entropy alpha coefficients satisfy the positivity constraints

1

3
α1 > 0,

1

3
α1 +

1

3
α2 > 0,

1

3
α1 +

2

3
α2 + α3 > 0 . (102)

To solve the above nonlinear constrained optimization problem we use the La-
grange multiplier method given that the solution has to satisfy the inequality con-
straints. The Lagrange function of problem (100)-(101) can be written as

L(α, λ1, λ2) = −
[(1
3
α1 +

2

3
α2 + α3

)
ln
(1
3
α1 +

2

3
α2 + α3

)
+

+
(1
3
α1 +

1

3
α2

)
ln
(1
3
α1 +

1

3
α2

)
+

1

3
α1ln

(1
3
α1

)]
+

+λ1

(
α1 + α2 + α3 − 1

)
+ λ2

(1
2
α1 +

1

6
α2 − Ω

)
(103)

where λ1, λ2 are the Lagrange multipliers. Using the Lagrange function (103) we
need to solve the following system of equations

1. The partial derivatives of the Lagrange function with respect to the free vari-
ables are equal to zero

∂L

∂α1
= 0,

∂L

∂α2
= 0,

∂L

∂α3
= 0 (104)
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or equivalently,
−1

3

[
ln(

1

3
α1 +

2

3
α2 + α3) + ln(

1

3
α1 +

1

3
α2) + ln(

1

3
α1)

]
− 1 + λ1 +

1

2
λ2 = 0

−1

3

[
2 ln(

1

3
α1 +

2

3
α2 + α3) + ln(

1

3
α1 +

1

3
α2)

]
− 1 + λ1 +

1

6
λ2 = 0

−1

3

[
3 ln

(1
3
α1 +

2

3
α2 + α3

)]
− 1 + λ1 = 0 .

(105)

2. The partial derivatives of the Lagrange function with respect to the Lagrange
multipliers corresponding to equality constraints are equal to zero

∂L

∂λ1
= 0,

∂L

∂λ2
= 0 (106)

or equivalently,

α1 + α2 + α3 − 1 = 0 , 3α1 + α2 − 6Ω = 0 (107)

Using expressions (107) we can write the coefficients α2 and α3 in terms of the
coefficient α1 in the following way

α2 = 6Ω− 3α1 , α3 = 1− 6Ω + 2α1 . (108)

We introduce the simplified notation α1 = α. Using expressions (108) the partial
derivatives of the Lagrange function with respect to the free variables (105) can be
rewritten as

−1

3

[
ln(1− 2Ω +

1

3
α) + ln(2Ω− 2

3
α) + ln(

1

3
α)

]
− 1 + λ1 +

1

2
λ2 = 0

−1

3

[
2 ln(1− 2Ω +

1

3
α) + ln(2Ω− 2

3
α)

]
− 1 + λ1 +

1

6
λ2 = 0

−1

3

[
3 ln(1− 2Ω +

1

3
α)

]
− 1 + λ1 = 0

(109)

Applying Gauss-Jordan elimination we obtain
ln(2Ω− 2

3
α) + ln(

1

3
α) + 2− 2λ1 −

3

2
λ2 = 0

ln(2Ω− 2

3
α) + 1− λ1 −

1

2
λ2 = 0

ln(1− 2Ω +
1

3
α) + 1− λ1 = 0 .

(110)

We apply again Gauss-Jordan elimination
ln(

1

3
α) + 1− λ1 − λ2 = 0

ln(2Ω− 2

3
α) + 1− λ1 −

1

2
λ2 = 0

ln(1− 2Ω +
1

3
α) + 1− λ1 = 0 .

(111)
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We exponenciate
α = 3eλ1+λ2−1

2Ω− 2

3
α = eλ1+

1
2λ2−1

1− 2Ω +
1

3
α = eλ1−1

(112)

and by substituting the first of these equations into the second and third, we obtain

2eλ1+λ2−1 + eλ1+
1
2λ2−1 = 2Ω = 1 + eλ1+λ2−1 − eλ1−1 . (113)

These equations are equivalent to the analogous equations (99). Using the latter,
we obtain that

eλ1+λ2−1 = 1− eλ1−1 − eλ1+
1
2λ2−1 . (114)

In fact, using this result we can immediately transform the left hand side of (113)
into the left hand side of (99).

The values of the Lagrange multipliers λ1, λ2 with respect to the optimal so-
lutions of the constrained optimization problem in (100)-(101) are represented in
Fig. 2 with respect to the orness values Ω ∈ [0, 1].

In Fig. 5 we illustrate the optimal values of the coefficients α1, α2, α3 which
maximize entropy subject to the constraints (101) for Ω ∈ [0, 1]. As we can see,
the coefficients α1, α2, α3 follow different trends with respect to Ω ∈ [0, 1]. The
coefficient α1 is non negative and increasing across the unit interval, while the co-
efficient α2 takes negative values for high orness Ω ∈ [0.5, 1]. The coefficient α3 is
also non negative with respect to Ω ∈ [0, 1], in the first half of the unit interval it
is decreasing, whereas in the second half of the unit interval it shows an increasing
pattern. In the case Ω = 0, we have α = (α1, α2, α3) = (0, 0, 1), whereas in the case
Ω = 1, we have a more complex vector of coefficients, α = (α1, α2, α3) = (3,−3, 1).
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(b)

Figure 5: The optimal values of the coefficients α1, α2, α3 for the orness Ω ∈ [0, 1],
with n=3.
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The values of the entropy function with respect to the optimal solutions of the
constrained optimization problem in (100)-(101) are represented in Fig. 4 with re-
spect to the orness values Ω ∈ [0, 1]. The optimal values of the entropy S and the
Lagrange multipliers λ1, λ2 are, as expected, the same in the constrained optimiza-
tion problems (88)-(89) and (100)-(101).

4.3. The optimal weights for orness Ω ∈ [0, 1] in the cases n = 3, 5, 7, 9

We consider the cases n = 3, 5, 7, 9 and we compute the optimal maximum
entropy weights by solving the non-linear constrained optimization problem in (8)
using MATLAB’s function fmincon for orness values Ω ∈ [0, 1].
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Figure 6: The optimal weights for orness Ω ∈ [0, 1] in the cases n = 3, 5, 7, 9.

In Fig. 6 we illustrate the optimal weights for orness Ω ∈ [0, 1] in the cases
n = 3, 5, 7, 9. As we can see, for low orness values Ω ∈ [0, 0.5] the optimal weights
are decreasing,whereas for high orness values Ω ∈ [0.5, 1] the optimal weights are
increasing. As expected, for orness Ω = 0.5 we have wi = 1/n, for i = 1, . . . , n, in all
the cases n = 3, 5, 7, 9. Moreover, we observe that the optimal values of the first and
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last weights w1, wn have a wide range between zero and one, whereas on the other
hand the values of the other weights do not. Finally, if for some given level of orness
Ω ∈ [0, 1] the optimal weighting vector is wΩ = (w1, w2, . . . , wn), then the optimal
weighting vector for orness 1− Ω is its reverse, that is, w1−Ω = (wn, wn−1 . . . , w1).

4.4. The optimal alphas for orness Ω ∈ [0, 1] in the cases n = 3, 5, 7, 9

In this subsection we focus on the maximum entropy method in the context of
the binomial decomposition. We consider the cases n = 3, 5, 7, 9 and we compute
the optimal αj with j = 1, . . . , n coefficients for orness values Ω ∈ [0, 1]. The
binomial αj with j = 1, . . . , n coefficients are determined in the following way: first
we compute the optimal weights for orness Ω ∈ [0, 1] in the cases n = 3, 5, 7, 9 using
MATLAB’s function fmincon. Once the weights are obtained, the coefficients αj

with j = 1, . . . , n are computed from the linear system from expression (79). Due
to the fact that the behavior of the coefficients αj with j = 1, . . . , n with respect to
orness is very different for low/high orness values, we illustrate the optimal values
of the coefficients αj with j = 1, . . . , n in two parts, first for low orness values
Ω ∈ [0, 0.5], and then for high orness values Ω ∈ [0.5, 1].
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(d) Case n = 9

Figure 7: The optimal αj , j = 1, . . . , n, for orness Ω ∈ [0, 0.5] in the cases n =
3, 5, 7, 9.

In Fig. 7 we represent the optimal αj coefficients, with j = 1, . . . , n, for orness
values Ω ∈ [0, 0.5] in the cases n = 3, 5, 7, 9. For orness values Ω ∈ [0, 0.5] we
observe the following: The optimal coefficients αj with j = 1, . . . , n are all non
negative and take values in the unit interval, independent of the order of n. The
coefficient α1 is increasing whereas the coefficient αn is decreasing. The intermediate
coefficients α2, . . . , αn−1 initially increase (with the higher αj to increase faster) and
then decrease as orness increases. Moreover, as the value of orness Ω increases
(towards to 0.5), the number of the higher coefficients αj that become zero or are
very close to zero is increasing. Finaly, as the order of n increases, the values of the
higher coefficients αj go faster to zero (as orness increases).
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Figure 8: The optimal αj , j = 1, . . . , n, for orness Ω ∈ [0.5, 1] in the cases n =
3, 5, 7, 9.

In Fig. 8 we represent the optimal αj coefficients, with j = 1, . . . , n, for orness
values Ω ∈ [0.5, 1] in the cases n = 3, 5, 7, 9. It is clear that the range of the optimal
αj values depends on the order of n for orness values Ω ∈ [0.5, 1]. In order to have
them on the same scale for the cases n = 3, 5, 7, 9 we examine the optimal Möbius
transforms mµ(j) = αj/

(
n
j

)
, j = 1, . . . , n for orness values Ω ∈ [0.5, 1].
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Figure 9: The optimal Möbius transforms mµ(j) = αj/
(
n
j

)
, j = 1, . . . , n, for orness

Ω ∈ [0.5, 1] in the cases n = 3, 5, 7, 9.

In Fig. 9 we illustrate the optimal Möbius transforms mµ(j) = αj/
(
n
j

)
, j =

1, . . . , n, for orness Ω ∈ [0.5, 1] in the cases n = 3, 5, 7, 9. We notice that for orness
Ω = 0.5 we have mµ(1) = 1 and mµ(k) = 0 with k = 2, . . . , n. Moreover, the optimal
Möbius transforms mµ(j), with j odd, are increasing and take non negative values,
whereas the optimal Möbius transforms mµ(j), with j even, are decreasing and take
non positive values (as orness increases). Finally, as the order of n increases the
number of the higher optimal Möbius transforms mµ(j) that are zero increases too
for orness values Ω close to 0.5.

5. CONCLUSIONS

In the context of multiple criteria decision making we have examined the maxi-
mum entropy constrained optimization problem associated with Ordered Weighted
Averaging. OWA functions are of the form A(x ) =

∑n
i=1wi x(i), with

∑n
i=1wi = 1.

We have discussed two measures which characterize OWA functions, orness and en-
tropy. Orness is the degree to which an OWA function resembles the maximum
operator, whereas entropy is a measure of weight dispersion.
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We have reviewd the maximum entropy approach, a method to determine ap-
propriate OWA weights with minimum dispersion. The maximum entropy method
is based on the solution of a constrained optimization problem, maximize entropy
S(w) given a specified degree of orness Ω. We have briefly reviewed the analytic
solution of the maximum entropy method proposed by Filev and Yager in 1995 [17],
and later by Fullér and Majlender in 2001 [21].

In this context, we have discussed the numerical results concerning the con-
strained optimization problem of the maximum entropy method, initially in terms
of the OWA weights wi, with i = 1, . . . , n, and then in terms of the binomial decom-
position coefficients αj , with j = 1, . . . , n, in dimensions n = 3, 5, 7, 9.

Next we have briefly reviewed the framework of the binomial decomposition,
which allows for an alternative parametric description of the OWA functions. The
values of the binomial coefficients αj , j = 1, . . . , n are uniquely determined by the
weighting structure of the OWA function. Consequently, the weights wi, i = 1, . . . , n
of the OWA function can be written explicitly in terms of the binomial coefficients
αj , j = 1, . . . , n.

We have observed that for low orness values Ω ∈ [0, 0.5] the optimal weights
are decreasing, whereas for high orness values Ω ∈ [0.5, 1] the optimal weights are
increasing. Moreover, we have noticed that the optimal values of the first and last
weights w1, wn have a wide range between zero and one, while on the other hand
the values of the other weights do not.

Regarding the optimal αj coefficients, we have found that their behavior with
respect to orness values Ω ∈ [0, 1] is very different for low/high orness values. For
this reason we have illustrated graphically the optimal αj coefficients in two parts,
first for low orness values Ω ∈ [0, 0.5] and then for high orness values Ω ∈ [0.5, 1].
We have observed that the optimal αj , with j = 1, . . . , n for low orness values
Ω ∈ [0, 0.5] are all non negative and take values in the unit interval, independently
of the dimension n. On the contrary, the optimal values of the αj coefficients for
high orness values Ω ∈ [0.5, 1] depend strongly on the dimension n, both in the
complexity of their distribution and in the amplitude of their scale.
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