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ABSTRACT
Attackers can access sensitive information of programs by exploit-

ing the side-effects of speculatively-executed instructions using

Spectre attacks. To mitigate these attacks, popular compilers de-

ployed a wide range of countermeasures whose security, however,

has not been ascertained: while some are believed to be secure,

others are known to be insecure and result in vulnerable programs.

This paper develops formal foundations for reasoning about the

security of these defenses. For this, it proposes a framework of se-

cure compilation criteria that characterise when compilers produce

code resistant against Spectre v1 attacks. With this framework, this

paper performs a comprehensive security analysis of countermea-

sures against Spectre v1 attacks implemented in major compilers,

deriving the first security proofs of said countermeasures.

This paper uses a blue, sans-serif font for elements of the source language
and an orange, bold font for elements of the target language. Elements
common to all languages are typeset in a black, italic font (to avoid

repetitions). For a better experience, please print or view this in colour [48].

1 INTRODUCTION
By predicting the outcome of branching (and other) instructions,

CPUs can trigger speculative execution and speed up computation

by executing code based on such predictions. When predictions

are incorrect, CPUs roll back the effects of speculatively-executed

instructions on the architectural state, i.e., memory, flags, and reg-

isters. However, they do not roll back effects on microarchitectural

components like caches.

Exploiting microarchitectural leaks caused by speculative execu-

tion leads to Spectre attacks [35, 37, 38, 41, 57]. Compilers support

a number of countermeasures, e.g., the insertion of lfence specu-

lation barriers [31] and speculative load hardening [16], that can
mitigate leaks introduced by speculation over branch instructions

like those exploited in the Spectre v1 attack [37].

Existing countermeasures, however, are often developed in an

unprincipled way, that is, they are not proven to be secure, and

some of them fail in blocking speculative leaks, i.e., leaks introduced
by speculatively executed instructions. For instance, the Microsoft

Visual C++ compiler misplaces speculation barriers, thereby pro-

ducing programs that are still vulnerable to Spectre attacks [27, 36].

In this paper, we propose a novel secure compilation framework

for reasoning about speculative execution attacks and we use it

to provide the first precise characterization of security for a com-

prehensive class of compiler countermeasures against Spectre v1

attacks. Let us now discuss our contributions more in detail:
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▶ We present a secure compilation framework tailored towards

reasoning about speculative execution attacks (Section 2). The dis-

tinguishing feature of our framework is that compilers translate

programs from a source language L, with a standard imperative

semantics, into a target language T equipped with a speculative

semantics capturing the effects of speculatively-executed instruc-

tions. This matches a programmer’s mental model: programmers

do not think about speculative execution when writing source code

(and they should not!) since speculation only exists in processors (

captured by T’s speculative semantics). It is the duty of a (secure)

compiler to ensure the features of T cannot be exploited.

Our framework encompasses two different security models for spec-

ulative execution: (1) (Strong) speculative non-interference [27] (SNI),
which considers all leaks derived from speculatively-executed in-

structions as harmful, and (2)Weak speculative non-interference [28],
which considers harmful only leaks of speculatively-accessed data.

▶ We introduce speculative safety (SS, Section 3), a novel safety

property that implies the absence of classes of speculative leaks.

The key features of SS are that (1) it is parametric in a taint-tracking

mechanism, which we leverage to reason about security by focusing

on single traces, and (2) it is formulated to simplify proving that a

compiler preserves it. We instantiate SS using two different taint-

tracking mechanisms obtaining strong SS and weak SS. We precisely

characterize the security guarantees of SS by showing that strong

(resp. weak) SS over-approximates strong (resp. weak) SNI.

▶ We define two novel secure compilation criteria: Robust Spec-
ulative Safety Preservation (RSSP) and Robust Speculative Non-Inter-
ference Preservation (RSNIP , Section 4). These criteria respectively

ensure that compilers preserve (strong or weak) SS and SNI robustly,
i.e, even when linked against arbitrary (potentially malicious) code.

Satisfying these criteria implies that compilers correctly place coun-

termeasures to prevent speculative leaks. However, RSSP requires

preserving a safety property (SS) and it is simpler to prove than

RSNIP , which requires preserving a hyperproperty [20]. To the

best of our knowledge, these are the first criteria that concretely

instantiate a recent theory that phrases security of compilers as

the preservation of (hyper)properties [3, 4, 51] to reason about a

concrete security property, that is, the absence of speculative leaks.

▶ Using our framework, we perform a comprehensive secu-

rity analysis of countermeasures against Spectre v1 attacks imple-

mented in major C compilers (Section 5). Specifically, we focus on

(1) automated insertion of lfences (implemented in the Microsoft

Visual C++ and the Intel ICC compilers [33, 47]), and (2) speculative

load hardening (SLH, implemented in Clang [16]). We prove that:

– The Microsoft Visual C++ implementation of (1) violates weak

RSNIP and is thus insecure.

– The Intel ICC implementation of (1) provides strong RSNIP , so
compiled programs have no speculative leaks.
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– SLH provides weak RSNIP , so compiled programs do not leak

speculatively-accessed data. This prevents Spectre-style attacks,

but compiled programs might still speculatively leak data ac-

cessed non-speculatively.

– The non-interprocedural variant of SLH violates weak RSNIP
and is thus insecure.

– Our novel variant of SLH, called strong SLH, provides strong

RSNIP and blocks all speculative leaks.

All our security proofs follow a common methodology (see Sec-

tion 4.3) whose key insight is that proving a countermeasure to be

RSSP is sufficient to ensure its security since SS over-approximates

SNI. This allows us to leverage SS to simplify our proofs.

We conclude by discussing limitations and extensions of our ap-

proach (Section 6) and related work (Section 7).

For simplicity, we only discuss key aspects of our formal models.

Full details and proofs are in the companion report [52].

2 MODELLING SPECULATIVE EXECUTION
To illustrate our speculative execution model, we first introduce

Spectre v1 (Listing 1). Using that, we define the threat model that we

consider (Section 2.1). Then, we present the syntax of our languages

(Section 2.2) and their trace model (Section 2.3). This is followed by

the operational semantics of our languages (Section 2.4). Next, we

present the source (non-speculative) trace semantics (Section 2.5)

and the target (speculative) trace semantics (Section 2.6). This for-

malisation focuses on the strong SNI model, so we conclude by

defining the changes necessary for weak SNI (Section 2.7).

1 void get (int y)
2 if (y < size) then
3 temp = B[A[y]∗512]

Listing 1: The classic Spectre v1 snippet.

Consider the standard Spectre v1 example [37] in Listing 1. Func-

tion get checks whether the index stored in variable y is less than

the size of array A, stored in the global variable size. If so, the

program retrieves A[y], multiplies it by the cache line size (here:

512), and uses the result to access array B. If size is not cached,

modern processors predict the guard’s outcome and speculatively

continue the execution. Thus, line 3 might be executed even if y ≥

size. When size becomes available, the processor checks whether

the prediction was correct. If not, it rolls back all changes to the

architectural state and executes the correct branch. However, the

speculatively-executed memory accesses leave a footprint in the

cache, which enables an adversary to retrieve A[y] even for y ≥ size.

2.1 Threat Model
We study compiler countermeasures that translate source programs

into (hardened) target programs. In our setting, an attacker is an

arbitrary program at target level that is linked against a (compiled)

partial program of interest. The partial program (or, component)
stores sensitive information in a private heap that is not accessible

to the attacker. For this, we assume that attacker and component

run on separate processes and OS-level memory protection restrict

access to the private heap. For example, in Listing 1, the array A

would be stored in the private heap and the attacker is code that

runs before and after function get.

While attackers cannot directly access the private heap, they

can mount confused deputy attacks [29, 54] to trick components

into leaking sensitive information despite the memory protection.

We focus on preventing only speculative leaks, i.e., those caused

by speculatively-executed instructions. For this, our attacker can

observe the program counter and the locations of memory accesses

during program execution. This attacker model is commonly used

to formalise code that has no timing side-channels [8, 44] without

requiring microarchitectural models. Following [27], we capture

this model in our semantics through traces that record the address

of all memory accesses (e.g., the address of B[A[y]∗512] in Listing 1)

and the outcome of all control-flow instructions.

To model the effects of speculative execution, our target lan-

guage mispredicts the outcome of all branch instructions in the

component. This is the worst-case scenario in terms of leakage

regardless of how attackers poison the branch predictor [27].

2.2 Languages L and T
Technically, we have a pair of source and target languages (L and T)
for studying security in the strong SNI model and a pair of source

and target languages (L- and T-) for studying weak SNI. Strong (L-T)
and weak (L--T-) languages have the same syntax and a very similar

semantics, which differ only in the security-relevant observations

produced during the computation. We focus this section and the

following ones on the strong languages L-T; we introduce the small

changes for the weak languages L--T- in Section 2.7.

The source (L) and target (T) languages are single-threadedWhile

languageswith a heap, a stack to lookup local variables, and a notion

of components (our unit of compilation). We focus on such a setting,

instead of an assembly-style language like [17, 27], to reason about

speculative leaks without getting bogged down in complications

like unstructured control flow. This does not limit the power of

attackers: since attackers reside in another process, they would not

be able to exploit the additional features of assembly languages

(e.g., unstructured control flow) to compromise components.

The common syntax of L and T is presented below; we indicate

sequences of elements e1, · · · , en as e and e · e denotes a stack with
top element e and rest of the stack e.

ProgramsW , P ::= H , F , I Codebase C ::= F , I Imports I ::= f

Functions F ::= f (x) 7→ s; return; Attackers A ::= H , F [·]

Heaps H ::= ∅ | H ; n 7→ v where n ∈ Z

Expressions e ::= x | v | e ⊕ e Values v ::= n ∈ N

Statements s ::= skip | s; s | let x = e in s | call f e | e := e

| e :=pr e | let x = rd e in s | let x = rdpr e in s

| ifz e then s else s | let x = e (if e) in s | lfence

We model components, i.e., partial programs (P), and attackers (A).
A (partial) program P defines its heap H , a list of functions F , and a
list of imports I , which are all the functions an attacker can define.

An attacker A just defines its heap and its functions. We indicate

the code base of a program (its functions and imports) as C.
Functions are untyped, and their bodies are sequences of state-

ments s that include standard instructions: skipping, sequencing,
let-bindings, function calls, writing the public and the private heap,
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reading the public and private heap, conditional branching, condi-

tional assignments and speculation barriers. Statements can contain

expressions e, which include program variables x, natural numbers

n, arithmetic and comparison operators ⊕. Heaps H map memory

addresses n ∈ Z to values v. Heaps are partitioned in a public part

(when the domain n ≥ 0) and a private part (if n < 0). An attacker

A can only define and access the public heap. A program P defines

a private heap and it can access both private and public heaps.

2.3 Labels and Traces
Computation steps in L and T are labelled with labels λ, which
can be the empty label ϵ , an action α? or α ! recording the control-
flow between attacker and code (as required for secure compilation

proofs [2, 4, 49, 51]), or a µarch. action δ capturing what a microar-

chitectural attacker can observe.

µarch. Acts. δ ::= read(n) | write(n) | read(n 7→ v)

| write(n 7→ v) | if(v) | rlb

Actions α ::= call f v | ret v Labels λ ::= ϵ | α? | α ! | δ

Action call f v? represents a call to a function f in the component

with valuev . Dually, call f v! represents a call(back) to the attacker
with value v . Action ret! represents a return to the attacker and

ret? a return(back) to the component.

The read(n) and write(n) actions denote respectively read and

write accesses to the private heap location n. Dually, the read(n 7→ v)
and write(n 7→ v) actions denote respectively read and write ac-

cesses to the public heap location n where v is the value read

from/written to memory. In these actions, locations n model leaks

through the data cache whereas values v, which only appear in

operations on the public heap, model that attackers have access to

the public heap. In contrast, the if(v) action denotes the outcome

of branch instructions and the rlb action indicates the roll-back

of speculatively-executed instructions. These actions implicitly ex-

pose which instruction we are currently executing, and thus the

instruction cache content.

Traces λ are sequences of labels. The semantics only track µarch.
actions executed inside the component P , whereas those executed in
the attacker-controlled context A are ignored (Rule E-L-single later
on). The reason is that µarch. actions produced by A can be safely

ignored since A cannot access the private heap (this is analogous

to other robust safety works [23, 25, 40, 60]).

2.4 Operational Semantics for L and T
Both languages are given a labelled operational semantics that

describes how statements execute. This semantics is defined in

terms of program states C,H ,B ▷ (s)f that consist of a codebase C,

a heap H , a stack of local variables B, a statement s, and a stack of

function names f . C is used to look up function bodies, function

names f , which we often omit for simplicity, are used to infer if

the code that is executing comes from the attacker or from the

component, and this determines the produced labels.

Bindings B ::= ∅ | B; x 7→ v Prog. States Ω ::= C,H ,B ▷ (s)f
Both L and T have a big-step operational semantics for ex-

pressions and a small-step, structural operational semantics for

statements that generates labels. The former follows judgements

B ▷ e ↓ v meaning: “according to variables B, expression e reduces

to value v.” The latter follows judgements Ω
λ
−−→ Ω′ meaning:

“state Ω reduces in one step to Ω′ emitting label λ.”
We remark that values are computed as expected (though we

use 0 for true in ifz statements; see Rule E-if-true) and expressions

access only local variables in B (reading from the heap is treated as

a statement); therefore, we omit the expression semantics. Similarly,

many of the rules for the statement semantics are standard and thus

omitted; the most illustrative ones are given below. We use |n | for
the absolute value of n and H (n) to look up the binding for n in H .

(E-if-true)
B ▷ e ↓ 0

C, H, B · B ▷ ifz e then s else s′
(if(0))
−−−−−−−→ C, H, B · B ▷ s

(E-read-prv)
B ▷ e ↓ n H (−|n |) = v

C, H, B · B ▷ let x = rdpr e in s
read(−|n |)
−−−−−−−−−−→ C, H, B · B ∪ x 7→ v ▷ s

(E-write-prv)

B ▷ e ↓ n H = H1;−|n | 7→ v′;H2
B ▷ e′ ↓ v H ′ = H1;−|n | 7→ v;H2

C, H, B · B ▷ e :=pr e′
write(−|n|)
−−−−−−−−−−−→ C, H ′, B · B ▷ skip

The rules of conditionals, read, and write emit the related µarch. ac-
tions (from Section 2.3). Specifically, conditionals produce obser-

vations recording the outcome of the condition (Rule E-if-true),

whereas memory operations produce observations recording the

accessed memory address (Rule E-read-prv and Rule E-write-prv).

2.5 Non-speculative Semantics for L
We now define the non-speculative semantics of L, which describes

how (whole) programs behave when executed on a processor with-

out speculative execution. A component P and an attacker A can

be linked to obtain a whole programW ≡ A [P] that contains the
functions and heaps of A and P . Only whole programs can run, and

a program is whole only if it defines all functions that are called

and if the attacker defines all the functions in the interfaces of P .
For this, we define the big-step semantics =⇒ of L, which con-

catenates single steps (defined by→) into multiple ones and single

labels into traces. The judgement Ω
λ
==⇒ Ω′ is read: “state Ω emits

trace λ and becomes Ω′”. The most interesting rule is below. As

mentioned in Section 2.3, the trace does not contain µarch. ac-
tions performed by the attacker (see the ‘then’ branch, recall that

functions in I are defined by the attacker).

(E-L-single)

Ω ≡ F, I, H, B ▷ (s)f·f Ω′ ≡ F, I, H′, B′ ▷ (s′)f′·f′

Ω
α
−−−→ Ω′ if f == f′ and f ∈ I then λ = ϵ else λ = α

Ω
λ
==⇒ Ω′

Finally, the behaviour Beh(W) of a whole programW is the trace

λ generated from the =⇒ semantics starting from the initial state of

W (indicated as Ω0 (W)) until termination. Intuitively, a program’s

initial state is the main function, which is defined by the attacker.

Example 2.1 (L trace for Listing 1). Consider size=4. Trace tns
indicates a valid execution of the code in L (without speculation).

tns = call get 0? · if(0) · read(nA) · read(nB + v0A) · ret!
3
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We indicate the addresses of arrays A and B in the L heap with

nA and nB respectively and the value stored at A[i] with viA. �

2.6 Speculative Semantics for T
Our semantics for T models the effects of speculatively-executed

instructions. This semantics is inspired by the “always mispredict”

semantics of Guarnieri et al. [27], which captures the worst-case

scenario (from an information theoretic perspective) independently

of the branch prediction outcomes. Whenever the semantics ex-

ecutes a branch instruction, it first mis-speculates by executing

the wrong branch for a fixed number w of steps (called speculation
window). After speculating for w steps, the speculative execution

is terminated, the changes to the program state are rolled back,

and the semantics restarts by executing the correct branch. The

µarch. effects of speculatively-executed instructions are recorded

on the trace as actions.

Speculative program states (Σ) are defined as stacks of specula-

tion instances (Φ = (Ω,w)), each one recording the program state Ω
and the remaining speculation windoww. The speculation window

is a natural number n or ⊥ when no speculation is happening; its

maximum length is a global constantω that depends on physical

characteristics of the CPU like the size of the reorder buffer.

Speculative States Σ ::= Φ Speculation Instance Φ ::= (Ω,w)

The execution of programW starts in state (Ω0 (W) ,⊥), i.e., in the

same initial state that L starts in.

In the small-step operational semantics Φ λ Φ′, reductions hap-
pen at the top of the stack:

(E-T-speculate-if)

Ω ≡ C, H, B · B ▷ (s; s′)f ·f s ≡ if e then s′′ else s′′′

Ω
α
−−−→ Ω′ C ≡ F; I f < I j = min (ω, n)

if B ▷ e ↓ 0 then Ω′′ ≡ C, H, B · B ▷ s′′′; s′ else Ω′′ ≡ C, H, B · B ▷ s′′; s′

Φ · (Ω, n + 1) α Φ · (Ω′, n) · (Ω′′, j)
(E-T-speculate-action)

Ω
λ
−−−→ Ω′ Ω ≡ C, H, B ▷ s; s′ s . ifz · · · and s . lfence

Φ · (Ω, n + 1) λ Φ · (Ω′, n)
(E-T-speculate-lfence)

Ω
ϵ
−−→ Ω′

Ω ≡ C, H, B ▷ s; s′ s ≡ lfence

Φ · (Ω, n + 1) ϵ Φ · (Ω′, 0)

(E-T-speculate-rollback)
n = 0 or Ω is stuck

Φ · (Ω, n) rlb Φ

Executing a statement updates the program state on top of the

state and reduces the speculation window by 1 (Rule E-T-speculate-
action). Mis-speculation pushes the mis-speculating state on top

of the stack (Rule E-T-speculate-if). Note that speculation does

not happen in attacker code (condition f < I, recall that f is the
function executing now and I are all attacker-defined functions).

This is without loss of generality since (1) attackers cannot directly

access the private heap, and (2) our security definitions (Section 3)

will consider any possible attacker, so the speculative behavior of

an attacker (i.e., the speculative execution of the ‘wrong branch’)

will be captured by another one who has the same branches but

inverted (e.g., the ‘then’ code of one attacker is the ‘else’ code of

another). When the speculation window is exhausted (or if the

speculation reaches a stuck state), speculation ends and the top of

the stack is popped (Rule E-T-speculate-rollback). The role of the

lfence instruction is setting to zero the speculation window, so that

rollbacks are triggered (Rule E-T-speculate-lfence).
As before, the behaviour Beh(W) of a whole programW is the

trace λ generated, according to the =⇒ semantics, starting from

the initial state ofW until termination.

Example 2.2 (T Trace for Listing 1). Consider the same setting

as Example 2.1. Trace tsp is a valid execution of the code in T, and
therefore with speculation. As before, we indicate the addresses

of arrays A and B in the source and target heaps with nA and nB
respectively and the value stored at A[i] with viA.

tsp = call get 8? · if(1) · read(nA + 8) ·read(nB + v8A) · rlb · ret!

Differently from tns in Example 2.1, trace tsp contains specula-
tively executed instructions whose side effects are represented by

the actions read(nA + 8) and read(nB + v8A). �

2.7 Weak Languages L- and T-

To conclude, we now introduce the weak languages L- andT-, which
we use to study security in the weak SNI model. Following [28],

these languages differ from L and T in a single aspect, that is, in

the actions produced by memory reads. Specifically, in L- and T-,
non-speculatively reading from the private heap produces an action

read(n 7→ v) that contains the read value v as well as the accessed

memory address n. As we show next, this difference allows us to

precisely characterize only the leaks of transiently loaded data,

which are exactly those leaks exploited in speculative disclosure

gadgets like Listing 1, rather than all speculative leak.

3 SECURITY DEFINITIONS FOR SECURE
SPECULATION

We now present semantic security definitions against speculative

leaks. We start by presenting (robust) speculative non-interference

(RSNI, Section 3.1). Next, we introduce (robust) speculative safety

(RSS, Section 3.2). These definitions can be applied to programs in

the four languages L, T, L-, and T-. Therefore, we write RSNI(L) and
RSS(L) to indicate which language L the definitions are referring to.

Since these languages have the same syntax but different semantics,

we also study the relationships between RSNI and RSS for weak

and strong languages. We depict these results below (only for T
and T- since all security definitions trivially hold for the source

non-speculative languages L and L-) and discuss them further down.

RSS(T)

RSS(T-)

RSNI(T)

RSNI(T-)

Theorem 3.10

Theorem 3.11

Theorem 3.12 Theorem 3.5

most secure

least secure

least precise most precise

3.1 Robust Speculative Non-Interference
Speculative non-interference (SNI) is a class of security proper-

ties [27, 28] that is based on comparing the information leaked

by instructions executed speculatively and non-speculatively. SNI

requires that speculatively-executed instructions do not leak more

information than what is leaked by executing the program without

speculative execution, which is obtained by ignoring observations

produced speculatively. Hence, SNI semantically characterize the

4



Anonymous submission #9999 to ACM CCS 2021

information leaks that are introduced by speculative execution, that

is, those leaks that are exploited in Spectre-style attacks.

Property. Here, we instantiate robust speculative non-interference
in our framework by following SNI’s trace-based characteriza-

tion [27, Proposition 1]. Thus we need to introduce two concepts:

• SNI is parametric in a policy denoting sensitive information.

As mentioned in Section 2.1, we assume that only the private heap

is sensitive. Hence, whole programs W and W ′ are low-equivalent,
writtenW ′ =LW , if they differ only in their private heaps.

• SNI requires comparing the leakage resulting from non-spec-

ulative and speculative instructions. The non-speculative projection
t↾nse [27] of a trace t extracts the observations associated with non-

speculatively-executed instructions. We obtain t↾nse by removing

from t all sub-strings enclosed between if(v) and rlb observa-

tions. We illustrate this using an example: ·↾nse applied to tsp from

Example 2.2 produces tsp↾nse= call get 8? · if(1) · ret!.
Now, we can formalise SNI. A whole program W is SNI if its

traces do not leak more than their non-speculative projections. That

is, if an attacker can distinguish the traces produced by W and a

low-equivalent program W ′, the distinguishing observation must

be made by an instruction that does not result frommis-speculation.

Definition 3.1 (Speculative Non-Interference (SNI)).

⊢ W : SNI

def
= ∀W ′. ifW ′ =LW

and Beh(Ω0 (W ))↾nse= Beh
(
Ω0
(
W ′
))
↾nse

then Beh(Ω0 (W )) = Beh
(
Ω0
(
W ′
))

A component P is robustly speculatively non-interferent if it is

SNI no matter what valid attacker it is linked to (Definition 3.2),

where an attacker A is valid (⊢ A : atk) if it does not define a private
heap and does not contain instructions to read and write it.

Definition 3.2 (Robust Speculative Non-Interference (RSNI)).

⊢ P : RSNI

def
= ∀A. if ⊢ A : atk then ⊢ A [P] : SNI

Example 3.3 (Listing 1 is RSNI in L and not in T). Consider the
code of Listing 1. As expected, this code is RSNI in L. Indeed, L does
not support speculative execution and, therefore, for any trace tns
produced by an L-program tns↾nse= tns.

The same code, however, is not RSNI in T. Consider the code of
Listing 1 (indicated as P1) and an attacker A8 that calls function

get with 8. Since array A is in the private heap, the low-equivalent

program required by Definition 3.1 is the same A8 linked with some

PN, which is the same P1 with some array Nwith contents different

from A in the heap such that A[8],N[8]. Whole program A8 [P1]
generates trace tsp from Example 2.2 while A8 [PN] generates t′sp
below. We indicate the address of array N as nN and the content

of N[i] as viN. Low-equivalence yields that addresses are the same

(nA + 8 = nN + 8) but contents are not (v8A , v8N), and thus B is

accessed at different offsets (nB + v8A , nB + v8N).

t′sp = call get 8? · if(1) · read(nN + 8) · read(nB + v8N) · rlb · ret!

Listing 1 is not RSNI in T since the non-speculative projections of

t′sp and of tsp are the same (see above) while t′sp and tsp are different
(read(nB + v8A) , read(nB + v8N)). For the same reason, Listing 1

is also not RSNI in T-. �

Security Guarantees. Since RSNI is defined in terms of traces, its

security guarantees depend on which of the four languages L, T, L-,
and T- we consider. As expected, for the source languages L and L-,
RSNI is trivially satisfied; there is no speculative execution in L and

L- and all traces are identical to their non-speculative projections.

Theorem 3.4 (All L and L- programs are RSNI).

∀P. ⊢ P : RSNI(L) and ⊢ P : RSNI(L-)

For the target languages T and T-, which support speculative

execution, RSNI provides different security guarantees.

RSNI(T) corresponds to speculative non-interference [27, 28],

which ensures the absence of all speculative leaks. In our setting,

the only allowed leaks are those depending either on information

from the public heap or information from the private heap that is

disclosed through actions produced non-speculatively, e.g., as an

address of a non-speculative memory access. Any other speculative

leak of information from the private heap is disallowed by RSNI(T).
RSNI(T-), in contrast, corresponds to weak speculative non-

interference [28], which allows speculative leaks of information that

has been retrieved non-speculatively. Indeed, in T- non-speculative
reads from the private heap produce actions read(n 7→ v) that ad-
ditionally disclose the value v read from the heap as part of the non-

speculative projection. As a result, data retrieved non-speculatively

from the private heap can influence speculative actions, which are

not part of the non-speculative projection of the trace, without

violating RSNI(T-). That is, RSNI(T-) ensures the absence only of

leaks of speculatively-accessed data.

Since RSNI(T) ensures the absence of all speculative leaks while
RSNI(T-) only ensures the absence of some of them, any RSNI(T)
program is also RSNI(T-).

Theorem 3.5 (RSNI(T) Implies RSNI(T-)).

∀P. if ⊢ P : RSNI(T) then ⊢ P : RSNI(T-)

As shown in [28], strong and weak speculative non-interference

(that is, RSNI(T) and RSNI(T-)) have different implications for se-

cure programming. In particular, programs that are traditionally

constant-time (i.e., constant-time under the non-speculative se-

mantics) and satisfy strong speculative non-interference are also

constant-time w.r.t. the speculative semantics. Similarly, programs

that are traditionally sandboxed (i.e., do not access out-of-the-

sandbox data non-speculatively) and satisfy weak speculative non-

interference are also sandboxed w.r.t. the speculative semantics.

3.2 Robust Speculative Safety
We now introduce speculative safety (SS), a safety property that

soundly over-approximates SNI. To enable reasoning about secu-

rity using single traces (rather than pairs of traces as in SNI), we

extend our languages with a taint-tracking mechanism that (1)

taints values as “safe” (denoted by S) whenever they can be leaked

speculatively without violating SNI (e.g., the public heap is “safe”)

or “unsafe” (denoted by U ) otherwise, and (2) propagates taints to

labels across computations. Speculatively safe programs produce

traces containing only safe labels.

Taint tracking Taint-tracking is at the foundation of our speculative

safety definition and it enables reasoning about security on single

traces. For this, we extend the semantics of our languages L, L-, T,
5
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and T- with a taint tracking mechanism. We consider two taint-

tracking mechanisms, a strong and a weak one, that lead to different

security guarantees, as we show later. Each mechanism is adopted

in the related pair of languages: strong (resp. weak) languages

use the strong (resp. weak) taint-tracking. Our taint-tracking is

rather standard, so we provide an informal overview of its key

features below using the rules for reading from the private heap as

an example; full details are Appendix B. These rules simply extend

Rule E-read-prv with taint, which is highlighted in gray.

(T-read-prv)

B ▷ e ↓ n : σ ′ H (−|n |) = v : σ ′′ σ = σ ′′ ⊔ σ ′

σpc ;C, H, B · B ▷ let x = rdpr e in s
read(−|n|)

σ ⊓ σpc
−−−−−−−−−−−−−−−−−−−−→

C, H, B · B ∪ x 7→ v : U ▷ s
(T-read-prv-weak)

B ▷ e ↓ n : σ ′ H (−|n |) = v : σ ′′ σ = σ ′′ ⊔ σ ′

σpc ;C, H, B · B ▷ let x = rdpr e in s
read(−|n| 7→v)

σ ⊓ σpc
−−−−−−−−−−−−−−−−−−−−−−−→

C, H, B · B ∪ x 7→ v : σ ′ ⊓ σpc ▷ s

• All values v are tainted with a taint σ ∈ {S,U }. Heaps H
and variable bindings B are extended to record the taint of values.

Taints form the usual integrity lattice S ≤ U (which is the dual of

the lattice used for non-interference) and are combined using the

least-upper-bound (⊔) and greatest-lower-bound (⊓) operators. For

simplicity, we report here the key cases: S ⊔U = U and S ⊓U = S .
• The public part of the initial heap is tainted as safe, and its

private part is tainted as unsafe.

• The taint-tracking mechanism also tracks the taint σpc asso-
ciated with the program counter. The program counter taint is S
whenever we are not speculating and it is raised to U whenever we

are executing instructions speculatively. The latter can happen only

in the T and T- languages, where it is represented by the speculative
state containing more than one speculation instance. In the source

languages, instead, σpc is always S.
• Taint is propagated in the standard way across computations.

For example, expressions combine taints using the least-upper-

bound ⊔, i.e., expressions involving unsafe values are tainted U .

The strong and weak taint-tracking mechanisms differ, however,

in how they handle memory reads from the private heap. When

reading from the private heap, the strong mechanism used in L and

T taints the variable where the data is stored as unsafe (U ) (Rule T-

read-prv). In contrast, the weak mechanism of L- and T-, taints the
target value with the greatest-lower-bound of the taints of the mem-

ory address and of the program counter (Rule T-read-prv-weak).

This ensures that information retrieved non-speculatively from the

private heap (i.e., the program counter taint is S) is tainted S.
• The taint tracking does not keep track of implicit flows. Since

the program counter is part of the actions, any sensitive implicit flow

would appear in the trace due to the corresponding if(v) action.
• The taint of labels is the greatest-lower-bound of the taint

of the expressions generating the label and the program counter

taint (Rule T-read-prv and Rule T-read-prv-weak). This ensures

that non-speculative labels are tainted as safe (S), while speculative

labels are tainted as unsafe (U ) if they depend on unsafe data and

safe otherwise.

With a slight abuse of notation, in the following we refer to

the languages L, L-, T, and T- extended with the corresponding

taint-tracking mechanisms outlined above whenever we talk about

speculative safety. That is, for speculative safety, programs in L, L-,
T, and T- produce traces λσ of tainted labels λσ , where taints σ are

computed as described above.

Property. Speculative safety ensures that whole programsW gen-

erate only safe (S) actions in their traces. As we show later, SS

security guarantees depend on the underlying language (and on its

taint-tracking mechanism).

Definition 3.6 (Speculative Safety (SS)).

⊢ W : SS

def
= ∀λσ ∈ Beh(W ).∀ασ ∈ λσ . σ ≡ S

A component P is RSS if it upholds SS when linked against

arbitrary valid attackers (Definition 3.7).

Definition 3.7 (Robust Speculative Safety (RSS)).

⊢ P : RSS

def
= ∀A. if ⊢ A : atk then ⊢ A [P] : SS

Example 3.8 (Listing 1 is RSS in L and not in T). The code of

Listing 1 is RSS in L because σpc is always S and, therefore, all

actions are tainted as S. The code, however, is neither RSS in T
nor in T-. For this, consider the trace from Example 2.2. The taint-

tracking mechanism taints the actions as follows:

tsp = call get 8?S · if(1)S · read(A[8])S · read(B[A[8]])U · rlbS · ret!S

The trace contains an unsafe action corresponding to the second

memory access. This happens because the action has been generated

speculatively (that is, σpc is U) and it depends on data retrieved

from the private heap (which T’s taint-tracking taints as U). �

Security Guarantees. Similarly to SNI, the security guarantees of

SS depend on the underlying language. As expected, RSS trivially

holds for L and L- since they only produce labels tainted S.

Theorem 3.9 (All L and L- programs are RSS).

∀P. ⊢ P : RSS(L) and ⊢ P : RSS(L-)

In contrast, RSS’ guarantees are different for T and T-, which are

equipped with distinct taint tracking mechanisms.

RSS(T) is a strict over-approximation of RSNI(T) (and, thus, of
speculative non-interference in terms of [27, 28]) and its preserva-

tion through compilation is easier to prove than RSNI(T)-preservation.

Theorem 3.10 (RSS(T) over-approximates RSNI(T)).

1) ∀P. if ⊢ P : RSS(T) then ⊢ P : RSNI(T)

2) ∃P. ⊢ P : RSNI(T) and ⊬ P : RSS(T)

To understand point 1, observe that RSS(T) ensures that only safe
observations are produced by a program P. This, in turn, ensures

that no information originating from the private heap is leaked

through speculatively-executed instructions in P. Therefore, P satis-

fies RSNI(T) because everything except the private heap is visible to
the attacker, i.e., there are no additional leaks due to speculatively-

executed instructions.

To understand point 2, consider get_nc from Listing 2, which

always accesses B[A[y]]. This code is RSNI(T) because states that
6
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can be distinguished by the traces can also be distinguished by their

non-speculative projections, i.e., speculatively-executed instruc-

tions do not leak additional information. However, it is not RSS(T)
because speculative memory accesses will produce U actions.

1 void get_nc (int y)
2 if (y < size) then B[A[y] ] else B[A[y] ]

Listing 2: Code that is RSNI but not RSS.

RSS(T-), in contrast, is a strict over-approximation of RSNI(T-)
(and, therefore, of weak speculative non-interference in terms of [28]).

Theorem 3.11 (RSS(T-) over-approximates RSNI(T-)).

1) ∀P. if ⊢ P : RSS(T-) then ⊢ P : RSNI(T-)

2) ∃P. ⊢ P : RSNI(T-) and ⊬ P : RSS(T-)

Finally, it is easy to see that any RSS(T) program is also RSS(T-)
since all actions tainted S by the taint-tracking of T are tainted S
also by the taint-tracking of T-.

Theorem 3.12 (RSS(T) Implies RSS(T-)).

∀P. if ⊢ P : RSS(T) then ⊢ P : RSS(T-)

4 COMPILER CRITERIA FOR SECURE
SPECULATION

We now introduce our secure compilation criteria: robust speculative
safety preservation (RSSP , Section 4.1), which preserves RSS, and

robust speculative non-interference preservation (RSNIP , Section 4.2),

which preserves RSNI. We conclude by discussing how compilers

can be proven secure or insecure using these criteria (Section 4.3).

As before, criteria can be instantiated using pairs of languages

L-T or L--T-. Criteria instantiated with the strong languages (say

RSSP(L,T)) are indicated with a + (that is, RSSP+). Those instantiated
with weak languages (say RSNIP(L-,T-)) are indicated with a - (that

is, RSNIP-). When we omit the ‘sign’, we refer to both criteria. For

simplicity, we only present the strong criteria (for L-T), weak ones

are defined identically (but for L−-T−).

4.1 Robust Speculative Safety Preservation
The first criterion is clear: a compiler preserves RSS if given a source

component that is RSS, the compiled counterpart is also RSS.

Definition 4.1 (RSSP+).

⊢ J·K : RSSP+ def
= ∀P ∈ L. if ⊢ P : RSS(L) then ⊢ JPK : RSS(T)

Definition 4.1 is a “property-ful” criterion since it explicitly refers

to the preserved property [3, 4]. Proving a “property-ful” criterion,

however, can be fairly complex. Fortunately, it is generally possible

to turn a “property-ful” definition into an equivalent “property-free”
one [3, 4, 51], which come in so-called backtranslation form with

established proof techniques [2, 4, 13, 45, 49, 51].

To state the equivalence of these criteria, we introduce a cross-

language relation between traces of the two languages, which spec-

ifies when two possibly different traces have the same “meaning”.

Our property-free security criterion (RSSC, Definition 4.2) states

that a compiler is RSSC if for any target-level attacker A that gener-

ates a traceλσ , we can build a source-level attackerA that generates

a trace λσ that is related to λσ . A source trace λσ and a target trace

λσ are related (denoted with λσ ≈λσ ) if the target trace contains all
the actions of the source trace, plus possible interleavings of safe (S)
actions (Rules Trace-Relation-Safe and Trace-Relation-Safe-Heap).

All other actions must be the same (i.e., ≡, Rules Trace-Relation-

Same and Trace-Relation-Same-Heap).

(Trace-Relation-Same)

λσ ≈λσ ασ ≡ ασ

λσ · ασ ≈λσ · ασ

(Trace-Relation-Same-Heap)

λσ ≈λσ δσ ≡ δσ

λσ · δσ ≈λσ · δσ

(Trace-Relation-Safe)

λσ ≈λσ

λσ ≈λσ · α S

(Trace-Relation-Safe-Heap)

λσ ≈λσ

λσ ≈λσ · δS

We are now ready to formalise RSSC, which intuitively states

that compiled programs produce the same traces as their source

counterparts with possibly additional safe actions. Crucially, RSSC
is equivalent to RSSP (Theorem 4.3), this result implies that our

choice for the trace relation is correct; a relation that is too strong

or too weak would not let us prove this equivalence.

Definition 4.2 (RSSC+).

⊢ J·K : RSSC+ def
= ∀P ∈ L,A,λσ . if Beh

(
A
[
JPK

] )
= λσ

then ∃A, λσ .Beh(A [P]) = λσ and λσ ≈λσ

Theorem 4.3 (RSSP and RSSC are eqivalent).

∀J·K. ⊢ J·K : RSSP+ ⇐⇒ ⊢ J·K : RSSC+

∀J·K. ⊢ J·K : RSSP- ⇐⇒ ⊢ J·K : RSSC-

Definition 4.2 requires providing an existentially-quantified source

attacker A. The general proof technique for these criteria is called
backtranslation [4, 50], and it can either be attacker-based [13, 21,

45] or trace-based [2, 49, 51]. The distinction tells us what quanti-

fied element one can use to build the source attacker A, either the
target attacker A or the trace λσ respectively. In our proofs, we

will use an attacker-based backtranslation.

4.2 Robust Speculative Non-Interference
Preservation

Here, we only present a property-ful criterion for the preservation

of RSNI (Definition 4.4). The reason is that we only directly prove

that compilers do not attain RSNIP . This kind of proof is simple

already (Corollary 4.5), and we do not need a property-free criterion.

Definition 4.4 (RSNIP+).

⊢ J·K : RSNIP+ def
= ∀P ∈ L. if ⊢ P : RSNI(L) then ⊢ JPK : RSNI(T)

Corollary 4.5 (⊬ J·K : RSNIP+).

⊬ J·K : RSNIP+ def
= ∃P ∈ L. ⊢ P : RSNI(L) and ⊬ JPK : RSNI(T)

Let us now unfold the corollary in order to understand what must be
proven to show that a compiler is not RSNIP+. The crux is the second
clause of the corollary, which gets unfolded to the following. Recall
that low-equivalent programs simply differ in their private heap, so
A
[
JP′K

]
is the same as A

[
JPK

]
but with a different private heap.

⊬ JPK : RSNI(T) = ∃A. ⊢ A : atk and given A
[
JP′K

]
=L A

[
JPK

]

we have Beh
(
Ω0
(
A
[
JPK

] ))
↾nse= Beh

(
Ω0
(
A
[
JP′K

] ))
↾nse

7
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and Beh
(
Ω0
(
A
[
JPK

] ))
, Beh

(
Ω0
(
A
[
JP′K

] ))
That is, we need to find a program P and an attacker A that violate
RSNI. Finding the existentially-quantified program (and attacker) that
demonstrate insecurity of a countermeasure may be hard. Fortunately,
some failed attempts at proving RSSC can provide hints for how to do
this; we provide more insights for this in the appendix. □

We remark that the insecurity part of our methodology is used

to show its completeness wrt vulnerability to Spectre v1 attacks.

Unfortunately, one still has to manually come up with the insecure

counterexample and verify that it is not RSNI.

4.3 A Methodology for Provably-(In)Secure
Countermeasures

To prevent speculative leaks, secure compilers should produce tar-

get programs that satisfy RSNI (cf. Section 3.1) whereas insecure

compilers will produce some programs that fail to achieve RSNI.

In this section, we show how to combine the results from the pre-

vious sections to derive exactly these facts about compilers; we

depict this with the two chains of implications below. The first

one (1) lists the assumptions (black dashed lines) and logical steps

(theorem-annotated implications) to conclude compiler security

while the second one (2) lists assumptions and logical steps for

compiler insecurity. For simplicity, the diagram focuses on secu-

rity definitions and compiler criteria for L and T. There are similar

chains of implications for L- and T- that use Theorem 3.11 instead

of Theorem 3.10.

⊢ P : RSS(L)

⊢ JPK : RSS(T)

∀P ∈ L

⊢ JPK : RSNI(T)

⊢ J·K : RSSP+

Theorem 3.10

⊢ J·K : RSSC+

Theorem 4.3 ⊢ P : RSNI(L)

∃P ∈ L

⊬JPK : RSNI(T)

⊬ J·K : RSNIP+

(1) (2)

To show security (1), we need to prove that any compiled compo-

nent is RSNI in the target language. Rather than directly reasoning

about RSNI, we rely on RSS, which over-approximates RSNI (cf.

Theorem 3.10). This significantly simplifies our security proofs

since it allows us to reason about single traces rather than pairs of

traces. Thus, it suffices to show that any compiled component is

RSS in the target. This can be obtained by (i) an RSSP+ compiler so

long as (ii) any P is RSS in the source. By Theorem 4.3, for point (i)

it is sufficient to show that the compiler is RSSC+
. Point (ii) holds

for any P (Theorem 3.9). This direction highlights how RSS really

is a working security definition that simplifies proving the more

precise, semantic security definition which is RSNI.

To show insecurity (2), we need to prove that there exists a

compiled component that is not RSNI in the target language. For

this, we show (A) that the compiler is not RSNIP+ given that (B) the

source component Pwas RSNI in the source. To show (A), we follow

Corollary 4.5, whereas point (B) holds for any P (Theorem 3.9).

Our security criteria, instantiated for the strong (L-T) and weak

(L--T-) languages, provide a way of characterizing the security

guarantees of any countermeasure J·K, which is what we do next.

In particular, showing that J·K is RSSC+
ensures that compiled code

has no speculative leak. Similarly, showing that J·K is RSSC-
(and

not RSNIP+) ensures that compiled code does not leak information

about speculatively-accessed data, i.e., it would prevent Spectre

attacks. Finally, showing that J·K is not RSNIP- implies that compiled

code leaks speculatively accessed data, like in Spectre attacks.

Preservation or Enforcement? RSNIP and RSSP focus on preserving
the related security property. Since their premise is always satisfied,

we could also state them in terms of enforcing RSNI and RSS over

compiled programs. We choose against this to be able to reuse

established compiler theory [39], and since it is unclear how to

prove Theorem 4.3 with enforcement statements.

5 COUNTERMEASURES ANALYSIS
In this section, we characterise the security guarantees of the main

Spectre v1 countermeasures implemented by compiler vendors:

insertion of speculation barriers (lfence) and speculative load

hardening (slh). For this, we develop formal models that capture

the key aspects of these countermeasures as implemented by the

Microsoft Visual C++ compiler [47] (MSVC, Section 5.1), the In-

tel C++ compiler [33] (ICC, Section 5.2), and the Clang compiler

(Section 5.3), and we analyze their guarantees using our secure

compilation criteria. We continue the section with an overview of

our proofs (Section 5.4). We conclude by discussing our analysis’

results (Section 5.5). For space constraints, compiled snippets, their

formalisation, and full security proofs can be found in [52].

5.1 MSVC is Insecure
Inserting speculation barriers—the lfence x86 instruction—after

branch instructions is a simple countermeasure against Spectre

v1 [31, 33, 47]. This instruction stops speculative execution at the

price of significant performance overhead.

MSVC implements a countermeasure that tries to minimize the

number of lfences by selectively determining which branches to

patch [47]. However, MSVC fails in inserting some necessary lfence
s, thereby producing insecure code that is not RSNI(T-) and that is

vulnerable to Spectre-style attacks.

To show this, we follow Corollary 4.5 and provide a program

that is RSNI(L-) and its compilation is not RSNI(T-). The program
we consider, which is RSNI(L-) (Theorem 3.9), is given in Listing 3.

1 void get (int y)
2 if (y < size) then
3 if (A[y] == 0) then
4 temp = B[0];

Listing 3: A variant of the classic Spectre v1 snippet
(Example 10 from [36]).

As shown in [27, 36], MSVC fails in injecting an lfence after the
first branch instruction. As a result, the compiled target program

is identical to Listing 3, and it speculatively leaks whether A[y] is

0 through the branch statement in line 3, i.e., it violates RSNI(T-).
We refer to [27, 36] for additional examples of MSVC’s insecurity.

5.2 ICC is Secure
The Intel C++ compiler also implements a countermeasure that

inserts lfences after each branch instruction [33].

We model this countermeasure with J·Kf , a homomorphic com-

piler that takes a component in L and translates all of its subparts

8
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to T. Its key feature is inserting an lfence statement at the begin-

ning of every then and else branch of compiled code. All other

statements are left unmodified by the compiler.

Jifz e then s else s′Kf= ifz JeKf then {lfence; JsKf }else {lfence; Js′Kf }

It should come at no surprise that J·Kf is RSSC+
(Theorem 5.1). In T,

the only source of speculation are branches (Rule E-T-speculate-if)
but any branch, whether it evaluates to true or false, will execute an

lfence (Rule E-T-speculate-lfence), triggering a rollback (Rule E-T-
speculate-rollback). Since compiled code performs no action during

speculation, it can only perform actions when the program counter

is tainted as S, which makes all actions S. These actions are easy to

relate to their source-level counterparts since they are generated

according to the non-speculative semantics.

Theorem 5.1 (ICC is secure for L-T). ⊢ J·Kf : RSSC+

5.3 Speculative Load Hardening
Clang implements a countermeasure called speculative load hard-

ening [16] (SLH) that works as follows:

• Compiled code keeps track of a predicate bit that records
whether the processor is mis-speculating (predicate bit set to 1)
or not (predicate bit set to 0). This is done by replicating the be-

haviour of all branch instructions using branch-less cmov instruc-
tions, which do not trigger speculation. SLH-compiled code tracks

the predicate bit inter-procedurally by storing it into the most-

significant bits of the stack pointer register, which are always un-

used. Note that when all speculative transactions have been rolled

back, the predicate bit is reset to 0 by the rollback capabilities of

the processor.

• Compiled code uses the predicate bit to initialise a mask

whose usage is detailed below. At the beginning of a function,

SLH-compiled code retrieves the predicate bit from the stack and

uses it to initialize a mask either to 0xF..F if predicate bit is 1 or

to 0x0..0 otherwise. During the computation, SLH-compiled code

uses cmov instructions to conditionally update the mask and pre-

serve the invariant that mask = 0xF..F if code is mis-speculating

and mask = 0x0..0 otherwise. Before returning from a function,

SLH-compiled code pushes the most-significant bit of the current

mask to the stack; thereby preserving the predicate bit.

• All inputs to control-flow and store instructions are hardened

by masking their values with mask (i.e., by or-ing their value with

mask). That is, whenever code is mis-speculating (i.e., mask =
0xF..F) the inputs to these statements are “F-ed” to 0xF..F, oth-
erwise they are left unchanged. This prevents speculative leaks

through control-flow and store statements.

• The outputs of memory loads instructions are hardened by

or-ing their value with mask. So, when code is mis-speculating,

the result of load instructions is “F-ed” to 0xF..F. This prevents
leaks of speculatively-accessed memory locations. Inputs to load

instructions, however, are not masked.

In the following, we analyse the security guarantees of SLH.

5.3.1 SLH is not RSNIP+. We show that SLH is not RSNIP+, i.e., it
does not preserve (strong) speculative non-interference and thus it

allows speculative leaks of data retrieved non-speculatively.

Following Corollary 4.5, we do this by providing a program that

is RSNI(L) and that is compiled to a program that is not RSNI(T).
The program in Listing 4 differs from Listing 1 in that the first

memory access is performed non-speculatively (line 2).

1 void get (int y)
2 x = A[y];
3 if (y < size) then
4 temp = B[x];

Listing 4: Another variant of the classic Spectre v1 snippet.

In its compilation, SLH hardens the value of A[y] using the mask

retrieved from the stack pointer. When the get function is invoked

non-speculatively, the mask is set to 0x0..0 and A[y] is not masked.

Thus, speculatively-executing the load in (the compiled counter-

part of) line 4 leaks the value of A[y], which might differ for low-

equivalent states, and violates RSNI(T).

5.3.2 SLH is RSSC-. We now show that SLH is RSSC-
, that is, it

prevents leaks of speculatively-accessed data.

We formalise SLH using the J·Ks compiler, whose most inter-

esting cases are given in the top of Figure 1. The compiler takes

components in L- and outputs compiled code in T-. The compiler

keeps track of the predicate bit in a cross-procedural way, masks

inputs to control-flow and store instructions, and masks outputs of

load instructions as described before.

Since the stack pointer is not accessible from an attacker residing

in another process, J·Ks tracks the predicate bit in the first location

of the private heap which attackers cannot access. So location −1 is
initialised to 1 (false) and updated to 0whenever we are speculating.
Compiled code must update the predicate bit right after the then
and else branches (statements −1 :=pr · · ·). Since location −1 is

reserved for the predicate bit, all private memory accesses and the

private heap are shifted by 1.

Several statements may leak information to the attacker: calling

attacker functions, reading and writing the public and private heap,

and branching. For function calls, memory writes, and branch in-

structions, J·Ks masks the input to these statement. That is, we eval-

uate the sub-expressions used in those statements and store them

in auxiliary variables (called xf ). Then, we look up the predicate

bit (via statement let pr = rdpr −1 in · · ·) and store it in variable

pr. Finally, using the conditional assignment, we set the result of

those expressions to 0 (tainted S as all constants) if the predicate
bit is 0 (true). In contrast, for memory reads, J·Ks masks the output

of these statement based on the predicate bit stored in pr.
As stated in Theorem 5.2, programs compiled with SLH are

RSS(T-) and, therefore, RSNI(T-) (Theorem 3.10). Hence, they are

free of leaks of speculatively-accessed data, which is sufficient to

stop Spectre-style leaks like those in Listing 1.

Theorem 5.2 (SLH is secure for L--T-). ⊢ J·Ks : RSSC-

J·Ks is RSSC-
for two reasons. First, location −1 (and thus variable

pr where its contents are loaded) always correctly tracks whether

speculation is ongoing or not. This holds because location −1 and
pr cannot be tampered by the attacker, the compiler initializes −1
correctly, and the assignments right after the branches correctly

update location −1 (via the negation of the guard xf ). Second, when-
ever speculation is happening, the result of load operations is set to

a constant 0 whose taint is S. So, computations happening during

9
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r
H; F; I

zs
= JHKs ∪ (−1 7→ 1 : S);

r
F
zs
;

r
I
zs

JH,−n 7→ v : UKs = JHKs,−JnKs − 1 7→ JvKs : U

Jifz e then s else s′Ks = let xf=JeK
s in let pr = rdpr −1 in let xf = 0 (if pr) in ifz xf then −1 :=pr pr ∨ ¬xf ; JsK

s else −1 :=pr pr ∨ xf ; Js
′Ks

q
e :=pr e′

ys
= let xf=JeK

s+1 in let x′f=Je
′Ks in let pr = rdpr −1 in let xf = 0 (if pr) in let x′f = 0 (if pr) in xf :=pr x

′
fq

let x = rdpr e in s
ys
= let xf=JeK

s+1 in let pr = rdpr −1 in let x = rdpr xf in let x = 0 (if pr) in JsKs

q
let x = rdpr e in s

yss
= let xf=JeK

ss+1 in let pr = rdpr −1 in let xf = 0 (if pr) in let x = rdpr xf in JsKss

Figure 1: Key bits of the SLH compiler J·Ks (above). The SSLH compiler J·Kss (below) differs in the compilation of memory reads.

speculation either depend on data loaded non-speculatively, which

are tainted as S by the taint-tracking of T-, or on masked values,

which are also tainted S. Speculative actions are tainted with glb (⊓)

of data taint (S) and pc taint (U). Since S ⊓U = S (see Section 3.2),

speculative actions are tainted S, satisfying RSS(T-).

5.3.3 Making SLH More Secure. We now show how to modify SLH

to prevent all speculative leaks. We do so by introducing strong SLH
(SSLH for short) that differs from standard SLH in that it masks the

input (rather than the output) of memory read operations (as such,

we expect an implementation of SSLH to have a small overhead

caused by the newly introduced data dependencies that might de-

lay some masked loads). We model SSLH using the J·Kss compiler

that takes components in L and outputs compiled code in T. J·Kss

differs from J·Ks in how memory reads are compiled (Figure 1).

The compiler masks the input of memory loads by evaluating the

sub-expressions and storing them in auxiliary variables (called xf ),
retrieving the predicate bit and storing it in variable pr, condition-
ally masking the value of xf , and, finally, performing the memory

access using xf as address.
As stated in Theorem 5.3, programs compiled using SSLH are

RSS(T) and, thanks to Theorem 3.10, RSNI(T). Therefore, they are

free of all speculative leaks.

Theorem 5.3 (SSLH is secure for L-T). ⊢ J·Kss : RSSC+

J·Kss satisfies RSSC+
for two reasons. First, the compiler correctly

tracks whether speculation is ongoing (cf. §5.3.2). Second, when-

ever speculation is happening, the result of any possibly-leaking

expression is set to a constant 0 whose taint is S. That is, labels
during speculation are tainted as S, and RSS(T) holds.

5.3.4 Non-interprocedural SLH is insecure. We conclude by show-

ing that the non-interprocedural variant of SLH, where the predi-

cate bit is set to 0 at the beginning of each function, is insecure and

does not prevent all speculative leaks. Consider the program in

Listing 5 that splits the memory accesses of A and B of the classical

Spectre v1 snippet across functions get and get_2.

1 void get (int y)
2 x = A[y];
3 if (y < size) then get_2 (x);
4

5 void get_2 (int x) temp = B[x];

Listing 5: Inter-procedural variant of Spectre v1 snippet [42]

Once compiled, get starts the speculative execution (line 3), then

the compiled code corresponding to get_2 is executed speculatively.

However, the predicate bit of get_2 is set to 0 upon calling the

function. Hence, the memory access corresponding to B[x] is not

masked leading to the leak of x (which contains A[y]), so the target

program violates RSNI(T-).
In Appendix C, we show how to secure this SLH variant.

5.4 How to Prove RSSC
We now illustrate the backtranslation proof technique used to prove

SLH-related countermeasures secure. Our backtranslation is a sim-

ple adaptation of the general backtranslation proof technique [51].

To prove that a compiler is RSSC, we backtranslate a target attacker
(A) to create a source attacker (A =⟨⟨A⟩⟩) so that they produce traces
related by the relation of Section 4. Our backtranslation function

(⟨⟨·⟩⟩), which is the same for all proofs, homomorphically translates

target heaps, functions, statements etc. into source ones.

We depict our proof approach in Figure 2. There, circles and

contoured statements represent source and target states. A black

dotted connection between source and target states indicates that

they are related; dashed target states are not related to any source

state. In our setup, execution happens either on the attacker side or

on the component side, coloured connections between same-colour

states represent reductions.

ifz

JifzKs

w=0

α?σ α !σ
δσ1 δσ2

α ?
σ α !

σδσ
1 δσ

2

λσ

rlb

P / JPKs executes⟨⟨A⟩⟩ / A
executes

⟨⟨A⟩⟩ / A
executes

either A
or JPKs

executes

Figure 2: Diagram depicting the proof that J·Ks is RSSC-.

To prove that source and target traces are related, we set up a

cross-language relation between source and target states and prove

that reductions both preserve this relation and generate related

traces. The state relation we use is strong: a source state is related

to a target one if the latter is a singleton stack and all the sub-part

of the state are identical, i.e., heaps bind the same locations to

the same values and bindings bind the same variables to the same

values. To reason about attacker reductions, we use a lock-step

simulation: we show that starting from related states, if A does a

step, then ⟨⟨A⟩⟩ does the same step and ends up in related states

(yellow areas). To reason about component reductions, we adapt a
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reasoning from compiler correctness results [12, 39]. That is, if s
steps and emits a trace, then JsKs does one or more steps and emits

a trace such that both ending states and traces are related (green

areas, related traces are connected by black-dotted lines). This proof

is straightforward except for the compilation of ifz since it triggers
speculation in T (grey area). After JifzKs is executed, speculation
starts and the cross-language state relation is temporarily broken

(the stack of target states is not a singleton, so the cross-language

state relation cannot hold). Speculative execution continues for w
steps in both attacker and compiled code and generating a trace

λσ . We then prove that λσ is related to the empty source trace

because all actions in λσ are tainted S, and so they do not leak. This
fact follows from proving that while speculating, bindings always

contain S values and therefore any generated action is S. In turn,

this follows from proving that pr correctly captures if speculation

is ongoing or not and that the mask is S. As mentioned, both of

these hold for J·Ks and J·Kss , so they are secure.

The compiler J·Kf can be proved secure in a simpler way since

speculative reductions immediately trigger an lfence, which rolls

the speculation back (the speculation window w is 0) reinstating
the cross-language state relation right away.

5.5 Summary
Our security analysis is the first rigorous characterization of the

security guarantees provided by Spectre v1 compiler countermea-

sures, and it complements existing results that focus on selected

code snippets [27, 36]. The table below depicts the results of our

analysis in terms of the security properties satisfied by compiled

programs. There, • denotes that all compiled programs satisfy the

criterion and ◦ denotes that some compiled programs violates it.

RSNI (T) RSNI (T-)
lfence(MSVC), SLH-no-interp ◦ ◦
lfence(ICC)/J·Kf , SSLH/J·Kss • •
SLH(Clang)/J·Ks ◦ •

The main findings of our security analysis are summarized below:

• The lfence countermeasure implemented in MSVC, denoted

lfence(MSVC), is insecure. It violates RSNIP- and produces pro-

grams that are not speculatively non-interference, i.e., that violate

both RSNI (T) and RSNI (T-). Hence, compiled programs still contain

speculative leaks and might be vulnerable to Spectre attacks.

• The lfence countermeasure implemented in ICC, denoted

lfence(ICC) and modelled by J·Kf , is secure. The model satisfies

RSSP+ (Theorem 5.1) and, as a result, produces only compiled pro-

grams that satisfy speculative non-interference, that is, RSNI(T).
Hence, compiled programs are free of speculative leaks.

• The speculative load hardening countermeasure implemented

in Clang, denoted SLH(Clang) and modelled by J·Kss is secure for
L--T-. The model satisfies RSSP- (Theorem 5.2) and, as a result, pro-

duces only compiled programs that satisfy weak speculative non-

interference, that is, RSNI(T-). Hence, compiled programs are free of

speculatively leaks that involve speculatively-accessed data. While

this is sufficient for preventing Spectre-style attacks, compiled pro-

grams may still speculatively leak data retrieved non-speculatively,

whichmight result in breaking properties like constant-time (see [28]).

• The strong variant of SLH, denoted SSLH and modelled by J·Kss

is secure for L-T. The model satisfies RSSP+ (Theorem 5.3) and pro-

duces compiled programs that satisfy speculative non-interference,

that is, RSNI(T). Thus, compiled programs have no speculative leaks.
• Non-interprocedural SLH, denoted SLH-no-interp, is inse-

cure. It violates RSNIP- and produces programs that violate both

RSNI (T) and RSNI (T-). Hence, compiled programs might still be

vulnerable to Spectre attacks.

Additional security guarantees. In addition to RSNIP , the secure
compilers J·Kf , J·Ks , and J·Kss also preserve the non-speculative be-

havior of source programs. That is, if two source programs W and

W′ produce the same traces, then their compiled counterparts pro-

duce traces with the same non-speculative projection. This directly

follows from the compilers only modifying the speculative behavior

of programs, either through lfences or conditional masking.

By combining RSNIP with the preservation of non-speculative

behaviors, we can derive an additional security guarantee for our

compilers: preservation of non-interference. For simplicity, we only

focus on whole programs and we use J·Kf as an example; the same

argument applies to J·Ks and J·Kss . We say that a programW is non-
interferent (NI) if all programsW ′ that differ fromW only in the

private heap (i.e., they are low-equivalent) produce the same traces

as W . Given a source program W ∈ L that is NI, we obtain that

JWKf is NI if we restrict ourselves to the non-speculative projection
of traces since JWKf preserves the non-speculative behavior ofW.

Since JWKf is RSNI(T), the full traces do not leak more than their

non-speculative projections and thus JWKf is also non-interferent.

The security guarantees of NI depend on the underlying lan-

guage. For strong languages L-T, NI ensures that programs are

constant-time with respect to the private heap (in L, we have classi-
cal constant-time [8, 44] while in T we have speculative constant-

time [17]). Indeed, information from the private heap cannot influ-

ence the traces where read(n), write(n), and if(v) actions corre-
spond to the standard constant-time observer. For the weak lan-

guages L--T-, NI ensures a form of sandboxing where programs (1)

cannot access information form the private heap non-speculatively

(because reading values from the private heap violates NI through

actions read(n 7→ v)), and (2) cannot speculatively leak informa-

tion about the private heap. We leave exploring these additional

security results as future work.

6 SCOPE AND LIMITATIONS OF THE MODEL
Lifting our analysis to real CPUs is only valid to the extent that our

attacker model and speculative semantics capture the target system.

Our attacker observes the location of memory accesses and the

outcome of control-flow statements. This attacker model offers a

good trade-off between precision and simplicity [8, 44], and it has

proven to capture interesting microarchitectural leaks, like those

resulting from caches and port contention. Other classes of microar-

chitectural leaks, like those resulting from internal buffers [63] or

hardware prefetchers [26], might not be captured by our model.

We also assume that attackers cannot access the private heap

since there can be no protection against same-process attackers.

This can be achieved by running attacker and component in sepa-

rate processes and leveraging OS-level memory protection.
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Finally, the semantics of our target languages are adequate to rea-

son only about Spectre v1-style attacks. These semantics ignore the

effects of out-of-order execution. As a result, they cannot be used to

reason about countermeasures that rely only on data dependencies

to restrict speculatively executed instructions [46]. For a similar

reason, our analysis of SLHmight be too pessimistic in that the data

dependencies resulting from the injected masking operations might

effectively limit the scope of speculative execution. Our semantics

also ignore other sources of speculation (e.g., indirect jumps) that

are exploited by other Spectre variants, as we discuss next.

Beyond Spectre v1. Spectre v1 (also called Spectre-PHT) is just

one of the (many) Spectre variants, we recount other variants below

and discuss how to extend this work to reason about them.

• Spectre BTB [37] exploits speculation over indirect jump in-

structions. The retpoline compiler countermeasure [32] replaces

indirect jumps with a return-based trampoline that leads to code

that perform busywaiting. As a result, the speculated jump executes

no code and thus cannot leak anything.

• Spectre-RSB [41], in contrast, exploits speculation over return

addresses (through ret instructions). To prevent it, Intel deployed a

microcode update [32] that renders retpoline a valid countermeasure

also against Spectre-RSB [15].

• Spectre-STL [30] exploits speculation over data dependencies

between in-flight store and load operations. To mitigate it, ARM

introduced a dedicated SSBB speculation barrier to prevent store

bypasses that could be injected by compilers.

To reason about these Spectre variants, we need to extend the

speculative semantics of T to capture the new kinds of specula-

tive execution; this is analogous to other semantics [9, 17, 43, 64].

Crucially, the traces must capture events that are meaningful for

the related variant (e.g., reads and writes for Spectre-STL, returns

for Spectre-RSB). These actions are already present in traces of T,
so the new semantics can reuse the trace model presented here.

This, in turn, ensures that we can use the secure compilation cri-

teria and trace relation from Section 4 to reason about whether

compiler-inserted countermeasures for these variants are secure or

not. Any proof that countermeasures for these variants are RSSP
should follow the overview in Section 5.4. Specifically, proofs for

retpoline would follow the approach of Figure 2 since speculative

execution gets diverted to code that does not produce observations

(we provide an in-depth discussion on retpoline in Appendix D).

In contrast, reasoning about SSBB would be similar to reasoning

about J·Kf since SSBBs instructions act as speculation barriers. We

leave investigating these topics in detail for future work.

7 RELATEDWORK
Speculative execution attacks. Many attacks analogous to Spec-

tre [35, 37] exist; they differ in the exploited speculation sources [30,

38, 41], the covert channels [57, 59, 62], or the target platforms [19].

We refer the reader to [15] for a survey of existing attacks.

Speculative semantics These semantics model the effects of specu-

latively-executed instructions. Several semantics [9, 17, 28, 43, 64]

explicitly model microarchitectural details like multiple pipeline

stages, reorder buffers, caches, and predictors. These semantics are

significantly more complex than ours (which is inspired by [27]),

and they would lead to much harder proofs.

Security definition against Spectre attacks SNI [27] has been used as

security definition against speculative leaks also by [9, 28]. Cheang

et al. [18] propose trace property-dependent observational determin-
ism, a property similar to SNI. Cauligi et al. [17] present specula-
tive constant-time (SCT), i.e., constant-time w.r.t. the speculative

semantics. Differently from SNI, SCT captures leaks under the non-

speculative and the speculative semantics, and it is inadequate for

reasoning about countermeasures that only modify a program’s

speculative behaviour. More generally, Guarnieri et al. [28] presents
a secure programming framework that subsumes both SNI and SCT.

Compiler countermeasures for Spectre v1 Apart from the insertion of

speculation barriers [5, 31] and SLH [16, 46], few countermeasures

for Spectre v1 exist. Replacing branch instructions with branchless

computations (using cmov and bit masking) is effective [53] but not

generally applicable. oo7 [65] is a tool that automatically patches

speculative leaks by injecting speculation barriers. However, oo7

misses some speculative leaks [27] and violates RSNIP-.
Blade [64] is a compiler countermeasure that aims at optimising

compiled code performance. It finds the minimal set of variables

that need to be masked in order to eliminate paths between sources

(i.e., speculative memory reads) and sinks (i.e., operations result-

ing in microarchitectural side-effects). Similarly to our framework,

Blade consider a source language without speculation and a tar-

get language with speculation and it preserves constant-time from

source to target [64, Corollary 1]. This is different from the compil-

ers we study, which block (classes of) speculative leaks regardless

of whether the source program is constant-time. Blade’s design

relies on fine-grained barriers whose scope are single instructions.

Since these barriers are not available in current CPUs, Blade’s pro-

totype realises them via both lfences and masking. We believe that

our framework can be applied to reason about both Blade’s design

and prototype, but we leave this for future work. The challenges

are extending the target languages with fine-grained barriers and

formalising the optimal placement of those barriers.

Recent work [27, 36] studied the security of compiler counter-

measures by inspecting specific compiled code snippets and de-

tected insecurities in MSVC. Our work extends and complements

these results by providing the first rigorous characterization of

these countermeasures’ security guarantees. In particular, we prove

the security of countermeasures for all source programs, rather

than simply detecting insecurities on specific examples.

Secure compilation RSSC and RSSP are instantiations of robustly-

safe compilation [2–4, 51]. Like [3, 51], we relate source and target

traces using a cross-language relation; however, our target language

has a speculative semantics. While program behaviors are sets of

traces due to non-determinism in [3, 4], behaviors are single traces

for our (deterministic) languages [39].

Fully abstract compilation (FAC) is a widely used secure compila-

tion criterion [24, 34, 49, 50, 55, 58]. FAC compilers must preserve

(and reflect) observational equivalence of source programs in their

compiled counterparts [1, 50]. While FAC has been used to reason

about microarchitectural side-effects [14], it is unclear whether

FAC is well-suited for speculative leaks as it would require explic-

itly modelling microarchitectural components that are modified

speculatively (like caches).
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Constant-time-preserving compilation (CTPC) has been used to

show that compilers preserve constant-time [7, 10, 12]. Similarly

to RSNIP , proving CTPC requires proving the preservation of a

hypersafety property, which is more challenging than preserving

safety properties like RSS. Additionally, CTPC has been devised for

whole programs only (like SNI), and it cannot be used to reason

about countermeasures like SLH that do not preserve constant-time.

Verifying Hypersafety as Safety Verifying if a program satisfies a

2-hypersafety property [20] (like RSNI) is notoriously challeng-

ing. Approaches for this include taint-tracking [6, 56] (which over-

approximates the 2-hypersafety property with a safety property),

secure multi-execution [22] (which runs the code twice in par-

allel) and self-composition [11, 61] (which runs the code twice

sequentially). Our criteria leverage taint-tracking (RSS); we leave

investigating criteria based on the other approaches as future work.
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APPENDIX INDEX
This appendix contains additional information that the paper could

not contain for space constraints. The companion report [52] con-

tains all the language formalisation, theorems and lemmas; it also

contains the code snippets of existing compilers that are used to

prove Corollary 4.5 and the formalisation of all code snippets in

our languages.Appendix A contains details of how to activate each

v1 countermeasure. Appendix B contains details of how we for-

malise the taint tracking rules and how we merge them with the

language semantics. Appendix C describes how to secure the non-

interprocedural SLH countermeasure. Appendix D provides details

of how to apply our methodology to reason about the countermea-

sures for Spectre v2. Appendix E argues in favour of robustness,

i.e., why the way we model attackers is sound.

A ACTIVATING SPECTRE V1
COUNTERMEASURES

In MSVC, the countermeasure can be activated with flag:

/Qspectre.

In ICC, the countermeasure can be activated with flag:

-mconditional- branch=all-fix.

In GCC, SLH can be activated with flag:

-mllvm -x86-speculative-load-hardening.

The non-interprocedural SLH can be activated with flags: -mllvm

-x86-speculative-load-hardening -mllvm -x86-slh-ip=false.

B TAINT TRACKING OVERVIEW
The language semantics we devise contains two kinds of semantics

that operate in parallel: the operational semantics, presented in

the paper, and the taint tracking semantics, presented here. Thus,

technically, the top-level semantics is parametric in the taint track-

ing semantics. The semantics of strong languages L and T uses the

strong form of taint tracking while the semantics of weak languages

L- and T- uses the weak form of taint tracking. We now give an

in-depth overview of our taint-tracking semantics; see [52] for the

full models.

To add taint-tracking to our semantics, we enrich the program

state with taint information and devise a taint-tracking semantics

that determines how taint is propagated. The top-level semantic

judgement is then expressed in terms of the extended program

states. An extended state steps if its operational part steps according

to the semantics of Section 2.4 and if its taint part steps according

to the rules of the taint semantics.

We now define all the elements needed to define the extended

program states: extended heaps and extended bindings. In this

appendix we indicate the heap, state, and bindings used by the

operational semantics with a v suffix, so the H , Ω and B from

Section 2.4 are denoted as Hv , Ωv and Bv respectively. Formally, we

indicate taint as σ ::= S | U . Extended heaps He extend heaps with

the taint of each location, whereas taint heaps Ht only track the

taint. Extended heaps He can be split/merged in their value-only

partH (used for the language semantics) and their taint-only partHt
(used for taint-tracking). We denote this split as He ≡ Hv + Ht . Just

like heaps, extended variable bindings Be extend the binding with

the taint of the variable, whereas taint bindings Bt only track the

taint. Still like heaps, bindings can be split/merged as Be ≡ Bv + Bt .

Extended Heaps He ::= ∅ | He ; n 7→ v : σ where n ∈ Z

Taint Heaps Ht ::= ∅ | Ht ; n 7→ σ where n ∈ Z

Extended Bindings Be ::= ∅ | Be ; x 7→ v : σ

Taint Bindings Bt ::= ∅ | Bt ; x 7→ σ

Exended Prog. States Ωe ::= C,He,Be ▷ (s)f

Taint States Ωt ::= C,Ht ,Bv ▷ (s)f

The taint semantics follows two judgements:

• Judgment Bt ▷ e ↓ σ reads as “expression e is tainted as σ
according to the variable taints Bt ”.

• Judgement σ ;Ωt
σ ′
−−−→ Ω′t reads as “when the pc has taint

σ , state Ωt single-steps to Ω′t producing a (possibly empty)

action with taint σ ′”.
Below are the most representative rules for the taint tracking used

by strong languages:

(T-write-prv)

Be ▷ e ↓ n : σ Be ▷ e′ ↓ _ : σ ′′ H ′t = Ht ∪ −|n | 7→ σ ′′

σpc ;C, Ht, Be · Be ▷ e :=pr e′
σ⊓σpc
−−−−−−−→ C, H ′t , Be · Be ▷ skip

(T-read-prv)

B ▷ e ↓ n : σ ′ na = −|n | Ht (na ) = σ ′′ σ = σ ′′ ⊔ σ ′

σpc ;C, Ht, Be · Be ▷ let x = rdpr e in s
σ⊓σpc
−−−−−−−→

C, Ht, Be · Be ∪ x 7→ 0 : U ▷ s

Writing to the private heap (Rule T-write-prv) taints the location

(−|n|) with the taint of the written expression (σ ′′). In contrast,

reading from the private heap (Rule T-read-prv) taints the variable

where the content is stored as unsafe (U ) and the read value is set

to 0 (this information is not used by the taint-tracking).

For taint-tracking of the weak languages, we replace Rule T-read-

prv with the one below that taints the read variable with the glb of

the taints of the pc and of the read value (σ ′ ⊓ σpc) instead of U .

(T-read-prv-weak)

B ▷ e ↓ n : σ ′ na = −|n | Ht (na ) = σ ′′ σ = σ ′′ ⊔ σ ′

σpc ;C, Ht, B · B ▷ let x = rdpr e in s
σ⊓σpc
−−−−−−−→

C, Ht, B · B ∪ x 7→ 0 : σ ′ ⊓ σpc ▷ s

To correctly taint memory accesses, we need to evaluate ex-

pression e to derive the accessed location |n|; see, for instance,
Rule T-write-prv. This is why taint-tracking states Ωt contain the

full stack of bindings Bv and not just the taints Bt . The rules above
rely on a judgement Be ▷ e ↓ n : σ which is obtained by joining

the result of the expression semantics on the values of Be and of

the taint-tracking semantics on the taints of Be .
(Combine-B)

Bv + Bt ≡ Be Bv ▷ e ↓ v Bt ▷ e ↓ σ
Be ▷ e ↓ v : σ

The operational and taint single-steps from Section 2.4 are com-

bined according to the judgement Ωe
λσ
−−−−→ Ω′e below.

(Combine-s-L)

Ωv + Ωt ≡ Ωe Ω′v + Ω′t ≡ Ω′e Ωv
λ
−−→ Ω′v S;Ωt

σ
−−−→ Ω′t

Ωe
λσ
−−−−→ Ω′e
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(Merge-Ω)

Hv + Ht ≡ He B′v + Bt ≡ Be Bv + Bt ≡ B′e

C;Hv ;Bv ▷ s + C;Ht ;Be ▷ s′ ≡ C;He ;B′e ▷ s

The operational semantics determines how states reduce (Ωv
λ
−−→ Ω′v),

whereas the taint-tracking semantics determines the action’s la-

bel and how taints are updated (S;Ωt
σ
−−−→ Ω′t). As already men-

tioned, the pc taint is always safe since there is no speculation in

L. Moreover, merging states Ωv + Ωt results in ignoring the value

information accumulated in Ωt since we rely on the computation

performed by the operational semantics for values (Rule Merge-Ω).
In the speculative semantics, as for the non-speculative one, we

decouple the operational aspects from the taint-tracking ones. At

the top level, speculative program states (Σe) are defined as stacks

of extended speculation instances (Φe), which can be merged/split

in their operational (Φv) and taint (Φt) sub-parts. The operational
part (Φv) was presented in Section 2. The taint part (Φt) keeps track
of the taint part of the program state (Ωt) and the taint of the pc

(σ ). As before, Φv and Φt can be split/merged as Φe ≡ Φv + Φt.

Speculative States Σe ::= Φe

Extended Speculation Instance Φe ::= (Ωe,w,σ )

Speculation Instance Taint Φt ::= (Ωt,σ )

In the taint tracking used by the speculative semantics, similarly

to the operational one, reductions happen at the top of the stack:

Φt σ Φ′t . Selected rules are below:

(T-T-speculate-action)

σ ′;Ωt
σ
−−−→ Ω′t Ωt ≡ C, Ht, B ▷ s; s′

s . ifz _ then _ else _ and s . lfence

Φt · (Ωt, σ ) σ ′ ⊓σ Φt · (Ω
′
t, σ )

(T-T-speculate-if)

Ωt ≡ C, Ht, B · B ▷ (s; s′)f ·f s ≡ if e then s′′ else s′′′

σ ′;Ωt
σ
−−−→ Ω′t C ≡ F; I f < I

if B ▷ e ↓ 0 : σ then Ω′′t ≡ C, Ht, B · B ▷ s′′′; s′

if B ▷ e ↓ n : σ and n > 0 then Ω′′t ≡ C, Ht, B · B ▷ s′′; s′

Φt · (Ωt, σ ′) σ ⊓σ ′ Φt · (Ω
′
t, σ

′) · (Ω′′t , U)

In these rules, σ is the program counter taint which is com-

bined with the action taint σ ′ (Rules T-T-speculate-action and T-

T-speculate-if). Mis-speculation pushes a new state on top of the

stack whose program counter is tainted U denoting the beginning

of speculation (Rule T-T-speculate-if).
The two operational and taint-tracking single steps from Sec-

tion 2.6 are combined in a single reduction as follows:

(Combine-T)

Φv + Φt ≡ Σe Φ′v + Φ
′
t ≡ Σ′e Φv

λ Φ′v Φt
σ Φ′t

Σe λσ Σ′e

This reduction is used by the big-step semantics Σe
λσ

====⇒ Σ′e that
concatenates single labels into traces, which, as before, do not

contain microarchitectural actions generated by the attacker.

C NISLH: A SECURE
NON-INTERPROCEDURAL SLH

It is also possible to secure the variant of SLH that does not carry

the predicate bit across procedures. We model NISLH as J·Ksn by

having the predicate bit initialized at the beginning of each function

to 1 (false) in a local variable pr. As before, compiled code updates

pr after every branching instruction. To ensure that pr correctly
captures whether we are mis-speculating, we place an lfence as the
first instruction of every compiled function.

s f (x) 7→ s;

return;

{s

n
= f (x) 7→

������

lfence; let pr=false in

JsKsn; return;
u

w
v

ifz e

then s

else s′

}

�
~

s

n

=

���������

let xf=JeK
s
n in

ifz xf then let pr=pr ∨ ¬xf in JsKsn
else let pr=pr ∨ xf in Js′Ksn

This compiler is also RSSC-
for the same reason as before. In-

stead of having location −1 that correctly tracks speculation, local

variable pr does (masking is done as in J·Ks before).

Theorem C.1 (The NISLH compiler is RSSC-
). ⊢ J·Ksn :RSSC

-

In a similar way, one can construct a secure, non-interprocedura

version of J·Kss that satisfies RSSC+
.

D THE SPECTRE V2 CASE
This section describes how to apply our methodology to reason

about countermeasures against the Spectre v2 attack. The Spectre

v2 attack relies on speculation over the outcome of indirect jumps,

rather than branch instructions. When an indirect jump is encoun-

tered, if the location where to jump is not present in the cache,

heuristics are used in order to understand where to jump to. As

for the speculation over branches, these heuristics can be wrong,

and when this is detected, execution is rolled back. An attacker

can therefore exploit this kind of speculative execution in order to

make benign code execute malicious one. The main countermeasure

against this kind of attack is the use of a retpoline, i.e., a return-
based trampoline. Intuitively, the retpoline replaces indirect jumps

with a return to dead code, where the program will effectively sleep

until the speculation window is over.

In order to prove security of the retpoline countermeasure, we

therefore need the following:

• add indirect jumps to our languages and give them a regular

semantics (Appendix D.1);

• give a speculative reduction to jump in T such that the loca-

tion where to jump is nondeterministically chosen; this will

be the start of speculation (Appendix D.2);

• change the call/return semantics in order to model retpolines,

i.e., have the return address explicit (Appendix D.3).

With these changes, we can formalise a compiler that introduces

the retpoline countermeasure (Appendix D.4) and reason about

whether it is secure (Appendix D.5).

D.1 Indirect Jumps
The simplest way to add indirect jumps to our while languages is

to treat function names f as natural numbers and add a statement
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goto e that jumps to function f where B ▷ e ↓ f . Additionally, we
need to add the way for a component to specify private functions,

i.e., functions that are not callable from the attacker. This is still

generic enough that one can model the assembly-level kind of

attacks without having to add a pc to all instructions or labels to

the language.

D.2 Speculative Execution of Jumps
To focus only on speculation over jumps, we would replace Rule E-

T-speculate-if (handling the speculation over branch instructions)

with a rule that checks that the statement being executed is a goto e
where e evaluates to f . In that case, the right state (jumping to f )
is pushed on the stack of states, but on top of that we push another

state with a jump to function f ′ , f , for a non-deterministically

chosen f ′ that is valid.

D.3 Explicit Call and Return Semantics
We need to add a return address, keep track of the return address

in a stack of return addresses as well as a register where the return

address can be read from. The reason is that the retpoline counter-

measure relies on another kind of speculation, the one on return

addresses. Normally, architectures push the return address on the

stack and in a specific register rsp. When it is time to return, if the

value on top of the stack differs from that on rsp, speculation starts,

and a return to the top of the stack is made. When speculation ends,

it is rolled back (as before, with the usual microarchitectural leaks)

and a return to the value of rsp is done.

D.4 The Retpoline Countermeasure
The retpoline countermeasure J·Kr is a homomorphic compiler with

a single salient case: the compilation of goto e, where we encode the
implementation of retpolines from Compiling a goto will not rely
on target-level goto, since they would trigger the goto-speculation

and result in vulnerable code. Instead, the compilation of goto will

be turned into a call to an auxiliary function aux. Function aux
will change the contents of register rsp to the function where the

source goto wanted to jump. Then, function aux will contain code

that sleeps. This way, when the compiled goto is executed, function
aux is called and the address where to the goto should have jumped

to to is pushed on the stack. This function speculatively returns to

the code that sleeps and then, when speculation ends, execution

resumes from the address popped from the stack (the target of the

goto).

D.5 Security of J·Kr

We believe J·Kr is RSSC+
and we can argue that using the same

proof technique described in the paper. As before, the key part of

these proofs is reasoning when speculation happens, i.e., in the

gray area of Figure 2. In the case of J·Kr , we see that the only code

executed during speculation is sleeping code. Additionally, once

the speculation window runs out, we need to prove that the state

we end up in is the same as the source state that executed the goto.
However, this last step only amounts to proving that the retpoline

is correct, i.e., that it jumps where it is supposed to.

E ROBUSTNESS AND ATTACKERS
Typically, works that deal with Spectre attacks do not consider an

active attacker, like us, but a passive one. If we were to adopt the

same view, we would have to elide the whole ‘robustness’ aspect

in our paper. We believe that dealing with robustness and with an

explicit representation of attackers has its merits, and this is why

we opted in favour of it. As already mentioned, these attackers

can mount confused deputy attacks [29, 54], unlike passive ones.

Then, by using robustness we give a precise characterisation of the

attacker and of its power. It is by having this characterisation that

we can tell precisely that with a single memory shared between

code and attacker, no defence mechanism is possible. Thus we

need two memories (in the model), which gets justified in practice

by saying that the attacker needs to reside in another process.

Deriving this conclusion seems harder –if at all possible– without

a concrete notion of attacker. Conversely, our precise definition

of the attacker power also limits the scope of the attackers we

can meaningfully reason about. Thus, we need to ensure that the

model faithfully comprises all attack vectors that practical attackers

mounting Spectre attack rely on – which is what we believe the

model does. Finally, this approach lets us apply existing secure

compilation theory.
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