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Abstract

In this paper,weprove an extendedversion of theMinkowski Inequality, holding
for any smooth bounded set � ⊂ R

n , n ≥ 3. Our proof relies on the discovery of
effective monotonicity formulas holding along the level set flow of the p-capacitary
potentials associated with�, for every p sufficiently close to 1. These formulas also
testify the existence of a link between themonotonicity formulas derived byColding
and Minicozzi for the level set flow of Green’s functions and the monotonicity
formulas employed by Huisken, Ilmanen and several other authors in studying the
geometric implications of the Inverse Mean Curvature Flow. In dimension n ≥
8, our conclusions are stronger than the ones obtained so far through the latter
mentioned technique.

1. Introduction and Statements of the Main Results

A classical result in the theory of convex hypersurfaces in Euclidean spaces is
the so called Minkowski inequality [52], which says that if � � R

n , n ≥ 3, is a
convex domain with smooth boundary andH is themean curvature of ∂� computed
with respect to the outward unit normal, then

( |Sn−1|
|∂�|

)1/(n−1)

≤
 

∂�

H

n − 1
dσ

with equality if and only if � is a ball. In other words, the inverse of the surface
radius is a sharp lower bound for the averaged total mean curvature of ∂�. Observe
that the above inequality can be conveniently rephrased as

( |∂�|
|Sn−1|

)n−2
n−1≤ 1

|Sn−1|
ˆ

∂�

H

n − 1
dσ , (1.1)
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so that it can be combined with the standard Isoperimetric Inequality to deduce
its volumetric version, also known in the literature as a higher order Isoperimetric
Inequality (see [15] and [56])

( |�|
|Bn|

)n−2
n ≤ 1

|Sn−1|
ˆ

∂�

H

n − 1
dσ , (1.2)

at least when� varies in the class of convex domains. It is worth recalling that both
the Isoperimetric Inequality and the Minkowski Inequality are part of a family of
inequalities involving quermassintegrals that were originally deduced in the context
of convex analysis from the classical Aleksandrov–Fenchel mixed volume inequal-
ities [6,7,24]. A natural question, raised by several authors (see [14,15,36,61]), is
whether the Minkowski Inequality (1.1) as well as its volumetric version (1.2) hold
true for larger classes of domains than just for the convex one.

Positive answers to these questions have been proposed so far using the In-
verse Mean Curvature Flow (IMCF from now on) and methods based on Optimal
Transport. Our main concern in this paper is to propose an alternative technology
based on Nonlinear Potential Theory, which is powerful enough to recover, im-
prove and extend all the so far known results on these topics. Surprisingly, this new
approach provides simplified arguments, which are also very flexible and likely to
be exportable to several interesting frameworks, such as complete manifolds with
nonnegative Ricci curvature and asymptotically flat manifolds with nonnegative
scalar curvature. In Sect. 2, we will describe in more details the main features of
this approach, drawing a systematic comparison with the existing curvature flow
techniques. Here, we just anticipate that the cornerstone of ourmethod is the discov-
ery of effective monotonicity formulas (see Theorem 4.2 and Theorem 4.4), holding
along the level sets of the p-capacitary potential u p : Rn \ � → R associated with
�. Besides their geometric implications, these formulas have a technical relevance
on their own, as they persist through all the possible singularities of the flow. It is
worth noticing that, in the present framework, the flow singularities correspond to
the critical points of u p, and these might in principle be arranged in sets of full
measure. This means that, albeit the level set flow is possibly subject to jumps,
our monotonicity formulas are strong enough to survive them. Finally, from a the-
oretical point of view, these formulas can be seen as the crucial step towards the
completion of a program initiated in the series of works [1,3,4,26] and intended to
link the monotonicity formulas employed by Huisken, Ilmanen and other authors
in studying the geometric implications of the IMCF (see e.g., [8–10,21,27,29–
31,34,36,37,45,51,64] to the monotonicity formulas discovered by Colding and
Minicozzi in [16–18] for the level set flow of the Green’s functions on complete
manifolds with nonnegative Ricci curvature. In fact, as explained in Sect. 2.2, the
first ones can be recovered from ours in the limit as p → 1+, whereas the latter
can be reconstructed setting p = 2 and letting � shrink to a single point (see the
Appendix of [1]).

We pass now to describing the main geometric inequalities obtained in this
paper. The first one is an extension of the Minkowski Inequality, holding for every
bounded and smooth subset ofRn , inwhich the totalmean curvature of the boundary
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is replaced by the L1-norm of the mean curvature, whereas the perimeter of the
set � is replaced by the one of its strictly outward minimising hull �∗, which is
defined in Definition 5.2 below in accordance to [37, pp. 371–372]. For the reader’s
convenience we briefly recall that a set is called outward minimising if it minimises
the perimeter among all the sets containing it; moreover, an outward minimising
set is called strictly outward minimising if it coincides almost everywhere with
any outward minimising set containing it and having the same perimeter. Loosely
speaking, �∗ is – up to negligible components – the smallest strictly outward
minimising set that contains � (see Definitions 5.1 and 5.2 in Sect. 5 for more
details). With these concepts at hand, our first main result reads as follows:

Theorem 1.1. (Extended Minkowski Inequality) If � ⊂ R
n is a bounded open set

with smooth boundary, then

( |∂�∗|
|Sn−1|

)n−2
n−1≤ 1

|Sn−1|
ˆ

∂�

∣∣∣∣ H

n − 1

∣∣∣∣ dσ , (1.3)

where �∗ is the strictly outward minimising hull of � defined as in Definition 5.2.
Moreover, the dimensional constants appearing here are optimal, in the sense that

min

{
|∂�∗|− n−2

n−1

ˆ
∂�

|H| dσ
∣∣∣∣ � � R

n , with ∂� smooth

}
= (n − 1) |Sn−1| 1

n−1 ,

and the minimum is achieved on spheres.

As a matter of fact, the Extended Minkowski Inequality (1.3) is deduced as the
limit, for p → 1+, of the following geometric p-capacitary inequality, which we
believe of independent interest.

Theorem 1.2. (L p-Minkowski Inequality) Let � ⊂ R
n be an open bounded set

with smooth boundary. Then, for every 1 < p < n, the following inequality holds:

Cp(�)
n−p−1
n−p ≤ 1

|Sn−1|
ˆ

∂�

∣∣∣∣ H

n − 1

∣∣∣∣
p

dσ. (1.4)

Here Cp(�) is the normalised p-capacity of � introduced in Definition 3.1. More-
over, equality holds in (1.4) if and only if � is a ball.

In order to deduce (1.3) from (1.4), one needs to compute the limit of the p-capacity
of a bounded set with smooth boundary as p → 1+. Apart from the case of convex
domains, treated in [66], we were unable to find in the literature a complete and
satisfactory discussion of this very basic issue. For this reason, we have established
that

lim
p→1+ Cp(�) = |∂�∗|

|Sn−1|
in Theorem 5.6 of Sect. 5.

As an immediate corollary of Theorem 1.1, we recover theMinkowski Inequal-
ity for outwardminimising sets, since for every� in this class it holds |∂�| = |∂�∗|
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(see Remark 5.4) and H ≥ 0, as a standard variational computation readily shows.
Such inequality was originally conceived by Huisken in [36], exploiting the theory
of weak solutions to the IMCF, previously developed in [37] (see also [27, Theorem
2–(b)] for a published version of the argument in the case of outward minimising
sets with strictly mean-convex boundary). The conceptual differences between this
method and our technique are described in Sect. 2, where we also discuss some of
the technical subtleties arising in the two approaches.

Corollary 1.3. (Minkowski Inequality for Outward Minimising Sets) If � ⊂ R
n

is a bounded outward minimising open set with smooth boundary, then

( |∂�|
|Sn−1|

)n−2
n−1≤ 1

|Sn−1|
ˆ

∂�

H

n − 1
dσ . (1.5)

Moreover, the dimensional constants appearing here are optimal, in the sense that

min

{
|∂�|− n−2

n−1

ˆ
∂�

H dσ

∣∣∣∣ � � R
noutward minimising , with ∂� smooth

}

= (n − 1) |Sn−1| 1
n−1 ,

and the minimum is achieved on spheres. Viceversa, if the equality holds in (1.5)
for some bounded strictly outward minimising open set with smooth and strictly
mean-convex boundary, then � is isometric to a round ball.

It is worth pointing out that for n ≤ 7, the above corollary can be shown to
be equivalent to Theorem 1.1 at the price of a non completely trivial approxima-
tion procedure. Indeed, starting from a possibly non outward minimising �, one
immediately checks that

1

|Sn−1|
ˆ

∂�∗
H

n − 1
dσ ≤ 1

|Sn−1|
ˆ

∂�

∣∣∣∣ H

n − 1

∣∣∣∣ dσ ,

where �∗ is the strictly outward minimising hull of �. On the other hand, when
n ≤ 7 the main result in [58] guarantees that ∂�∗ is of class C 1,1. In particular,
with the help of [38, Lemma 2.6], it can be approximated in the C 1 ∩ W 2,1-
topology by a sequence of smooth and strictlymean-convex hypersurfaces. Arguing
as in [37, Lemma 5.6] one realises that these hypersurfaces are bounding strictly
outward minimising sets {�∗

ε}ε>0, so that inequality (1.5) is satisfied by the whole
approximating sequence. Letting ε → 0 yields

( |∂�∗|
|Sn−1|

)n−2
n−1≤ 1

|Sn−1|
ˆ

∂�∗
H

n − 1
dσ ,

from which the thesis follows at once. Obviously, this argument breaks down in
higher dimension, due to the serious regularity issues coming from the possible
presence of a non-empty singular set in the area minimising portion of ∂�∗.



Minkowski Inequalities via Nonlinear Potential Theory 55

Remark 1.4. It is very likely that a perturbation argument similar to the ones in [35]
might extend the above argument to n = 8, because in this case the singularities
of the area minimising portion of the striclty outward minimising hull consist of
isolated points.

A simple and very nice consequence of inequality (1.5) is a nearly umbilical
estimate for outward minimising surfaces inR3 with optimal constant. The relation
between theMinkowski Inequality and the nearly umbilical estimateswas suggested
by Huisken in [36]. Here, for the sake of reference, we included a proof of this fact
in Sect. 6 (see Theorem 6.1). The general nearly umbilical estimate for surfaces in
R
2 with an implicit dimensional constant is a very remarkable theorem, proved in

[20] by De Lellis and Müller. We refer the reader to the original paper [20] as well
as to the Ph.D. thesis [54] and the references therein for a complete account about
the geometric features and implications of such a deep result.

Another direct consequence of Theorem 1.1 is the following optimal version
of inequality (1.2), holding for bounded open sets with smooth boundary.

Theorem 1.5. (VolumetricMinkowski Inequality) Let� ⊂ R
n be a bounded open

set with smooth boundary. Then

( |�|
|Bn|

)n−2
n ≤ 1

|Sn−1|
ˆ

∂�

∣∣∣∣ H

n − 1

∣∣∣∣ dσ . (1.6)

Moreover, equality holds in (1.6) if and only if � is a ball.

Inequality (1.6) is achieved applying the Isoperimetric Inequality to the left hand
side of (1.3), and taking into account that � ⊆ �∗, the latter being a hull. Observe
that the rigidity statement in the above theorem follows essentially from the rigidity
statement of the Isoperimetric Inequality. To the authors’ knowledge, the above
inequality was previously known to hold for domains with a strictly mean-convex
boundary of positive scalar curvature (for short ∂� ∈ �+

2 ). On this regard, we
refer the reader to the paper [15] and the subsequent [56], where the inequality
is proved with methods based on Optimal Transport. For n ≤ 7, we note that
inequality (1.6) can also be deduced from Corollary 1.3 through the approximation
argument outlined above.

1.1. Summary

In Sect. 2 we describe the main features of our method through a fairly system-
atic comparison with the previous approaches, based on the IMCF. Approximations
schemes à laMoser [53] and formal analogies are employed tomake some heuristic
considerations as well as to introduce the main technical challenges of the present
work. After collecting some preparatory material in Sect. 3, we face these chal-
lenges in Sect. 4, which constitutes the core of our analysis. There we solve the
issues coming from the presence of critical points, proving effective monotonicity
formulas (see Theorem 4.2 and Theorem 4.4), whose validity persists also beyond
possible jumps. Having this tools at hand, we prove the L p-Minkowski Inequal-
ity (1.4) and then, passing to the limit as p → 1+, we prove, in Sect. 5, the
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Extended Minkowski Inequality (1.3). Here the main difficulty is to characterise
in a geometrically meaningful way the limit of the p-capacity of the domain under
consideration. We accomplish this task in Theorem 5.6.

2. Inverse Mean Curvature Flow Versus Nonlinear Potential Theory

Having introduced the main results of this paper in terms of geometric inequal-
ities, we now describe the method that will be employed to deduce them. The most
appropriate way to accomplish this task is to compare our approach set in nonlinear
potential theory with the one based on the IMCF, in both its smooth and weak
version.

2.1. Smooth and weak inverse mean curvature flow

Using the smooth IMCF it is possible to provide an extension of the classical
Minkowski Inequality (1.1) for convex domains to the family of starshaped domains
with strictly mean-convex boundary. This approach has been completely developed
in [34] and relies essentially on the results in [32] and [63], where it is proven that
if� is strictly mean-convex and starshaped, then the IMCF {∂�t }t≥0 starting at ∂�

is defined and smooth for all times. In this case it is possible to carry out a smooth
computation, showing that the function

t 
−→ |∂�t |− n−2
n−1

ˆ
∂�t

H dσt (2.1)

is non increasing. The Minkowski Inequality then follows from the main theorems
in [32,63]. These ensure that, as t → +∞, the hypersurfaces ∂�t converge to a
round sphere, once they are suitably rescaled, so that

|∂�|− n−2
n−1

ˆ
∂�

H dσ ≥ lim
t→+∞ |∂�t |− n−2

n−1

ˆ
∂�t

H dσt = (n − 1) |Sn−1| 1
n−1 .

(2.2)

This approach, which is extremely clean and quite flexible, has found remarkable
applications also in non Euclidean contexts (see [10,21,29–31,49]). However, it
is suitable only for those hypersurfaces that do not change topology along their
evolution. For example, if the ambient manifold is (asymptotically) flat, it applies
only to hypersurfaces with spherical topology.

These topological restrictions can be overtaken considering weak solutions of
the IMCF starting at the boundary of outward minimising sets, as described in
Huisken–Ilmanen’s theory [37,38]. In fact, weak solutions are engineered in order
to allow for jumps, at which the topological changes take place, preserving at
the same time the monotonicity of the quantity (2.1). On this regard, it is worth
pointing out explicitly that the class of outward minimising sets includes the one of
starshaped domainswith strictlymean-convex boundary, as it can be easily deduced
combining the long time existence established in [32,63] with a simple integration
by parts argument.
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Needless to say that the larger generality obtained throughweak solutions comes
at the cost of a much more sophisticated and delicate theory, whose extension
to different contexts is not straightforward at all. For example, one of the major
difficulties is to show that the monotonicity formulas survive the jumps. In [37]
this is achieved by means of an elliptic regularisation procedure in which the weak
solution of the IMCF is approximated by a family of smooth functions whose level
sets obey a slightly modified version of the desired monotonicity. To the best of
our knowledge, such a spectacular though technically demanding construction has
never been replied beyond the original context of asymptotically flat Riemannian
manifolds [27,36,37,51,64], with the only exception of [43, Theorem 3.2], where
the authors have checked that Huisken–Ilmanen theory applies to the case under
consideration. Hence, the expected extensions of the results in [10,21,29–31] to
the case of outward minimising hypersufaces are missing so far.

Another crucial point in the weak IMCF theory is the characterisation of the
limits of the relevant monotone quantities. To be more specific, one would like
to extend the validity of (2.2) to the class of weak solutions of the IMCF starting
at an outward minimising domain. A possible way to accomplish this task is to
invoke [38, Theorem 2.7-(b)] and then again [32, Theorem 0.1]. Indeed, the former
affirms that the weak IMCF eventually becomes strictly starshaped at some large
enough time, so that the latter applies yielding the desired asymptotic behaviour.
The proof of [38, Theorem 2.7-(b)] relies in turn on a blow-down analysis that can
be carried out following the proof of [37, Blowdown Lemma 7.1]. This argument
represents a quite delicate point, to treat which a remarkable amount of theory needs
to be employed. In the present paper, as explained in the next subsection, both the
problem of dealing with possible jumps and the problem of characterising the limit
of the relevant monotone quantities will be faced in a completely different way,
with the help of nonlinear potential theory.

2.2. Level sets of p-capacitary potentials

The key point in our approach is to replace the weak IMCF technique with
a novel analysis of a very natural family of functions, namely the p-capacitary
potentials of �. These are the weak solutions to the problems⎧⎨

⎩
�pu = 0 in R

n \ � ,

u = 1 on ∂� ,

u(x) → 0 as |x | → ∞ ,

with 1 < p < n.
For heuristic considerations, it is useful to recall that these functions are playing

an ancillary role in the weak IMCF theory, by virtue of a beautiful approximation
result, originally due to Moser [53] and subsequently extended by Kotschwar and
Ni [41] (see also the very recent [50]). This result says that if u p is a weak solution
to the above problem, then the functions wp = −(p − 1) log u p converge locally
uniformly in R

n \ � to a proper weak solution of the IMCF, as p → 1+. As a
formal justification of this fact, it can be noted that the functions wp satisfy the
identities
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�pwp = |Dwp|p,
which in the limit as p → 1+ becomes

div

(
Dw

|Dw|
)

= |Dw|. (2.3)

As it is well known, the latter equation corresponds to the level set formulation of
the IMCF, since the left hand side equals the mean curvature of the level sets of w.

As a concrete application of this elegant approximation scheme one imme-
diately earns an alternative and flexible approach to the existence theory for the
weak IMCF. Unfortunately, such a scheme is not as much effective for drawing
geometric conclusions. For example, one would hopefully like to use it to deduce
the validity of (2.2) from the nowadays classical asymptotic expansions of the u p’s
(see Lemma 3.3). However, the convergence is not strong enough to take the limit
of the integral quantities, moreover it only holds on compact subsets of Rn \ �,
preventing this strategy from being successfully implemented.

In view of these considerations and motivated by the recent discoveries in the
field of harmonic functions [1,2,4], we then let the p-harmonic functions play the
leading role, providing their already rich and well established theory with a so far
missing ingredient, namely the existence of monotonicity formulas – or a relaxed
version of them – holding along their level set flow and in presence of critical
points. Once this will be done, we would get a self consistent theory, completely
independent of the IMCF and powerful enough to recover and extend all the main
geometric conclusions.

To clarify these concepts, let us first discuss the toy-problem case, where the
p-capacitary potential has no critical points. In this case, which is treated in [26]
assuming � convex, one finds that for every 1 < p < n the function

(0, 1] � τ 
−→ Up(τ ) = τ
− n−1

n−p

ˆ
{u p=τ }

|Du p|p dσ (2.4)

is nondecreasing. The monotonicity readily implies (1.4). In fact, computing the
limit of Up as τ → 0+, with the help of Lemma 3.3 (see [26, Lemma 2.6] with
q = p/(p − 1) for details), gives
(n − p

p − 1

)p |Sn−1| Cp(�)
n−p−1
n−p = lim

τ→0+ Up(τ ) ≤ Up(1) =
ˆ

∂�

|Du p|p dσ .

(2.5)

Next, one computes

0 ≤ U ′
p(1) = 1

(p − 1)

ˆ
∂�

|Du p|p−1H dσ −
( n − 1

n − p

)ˆ
∂�

|Du p|p dσ ,

(2.6)

and thus, by Hölder’s inequality, one gets
ˆ

∂�

|Du p|p dσ ≤
(n − p

p − 1

)p ˆ
∂�

∣∣∣∣ H

n − 1

∣∣∣∣
p

dσ .
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Combining the latter inequality with (2.5) yields (1.4). The Extended Minkowski
Inequality (1.3) can thus be obtained in the limit of (1.4), as p → 1+, by using the
analysis of Sect. 5.

A question arises whether the monotonicity of the Up’s and the one of the
quantity defined in (2.1) are related or not. It turns out that the only way to answer
this question is to proceed formally. Setting as above wp = −(p − 1) log u p and
t = −(p − 1) log τ , for every 1 < p < n, the monotonicity of the function Up is
equivalent to the statement that the function

[0,+∞) � t 
−→ e− n−p−1
n−p t̂

{wp=t}
|Dwp|p dσ

is nonincreasing. Taking the formal limit as p → 1+, one would get the same
monotonicity statement for the function

[0,+∞) � t 
−→ e− n−2
n−1 t̂

{w=t}
|Dw| dσ ,

where w solves (2.3), and thus |Dw|(x) coincides with the mean curvature of the
level set passing through x . Recalling that |{w = t}| = |∂�t | = |∂�| et along
the IMCF, it is easy to realise that the latter monotonicity is equivalent to the one
in (2.1). However, it is important to emphasize once more that the above argument
is just formal and does not prove anything, sincewp is converging tow only locally
uniformly on compact sets and w itself is nothing more than a weak solution to the
IMCF.

In presence of critical points for the p-capacitary potentials, the above formal
derivation could appear in principle all the more naïve, since – unlike in the linear
case treated in [4] – the monotonicity of (2.4) is not even a priori guaranteed. This
phenomenon is typical of the nonlinear setting and is basically due to the loss of
analyticity of the solution and the consequent loss of control on the behaviour of the
critical points and of the critical values. In particular, in the case of the p-capacitary
potential, one cannot exclude a priori the presence of clusters of critical points and
critical values with full measure. Due to these difficulties, it is impossible to re-
adapt the strategy employed in the linear case [4] to earn the full monotonicity of the
Up’s. However, we will be able to prove in the next sections that the inequalities

0 ≤ U ′
p(1) and lim

τ→0+ Up(τ ) ≤ Up(1) (2.7)

hold true. These inequalities – together with their conformal counterparts defined
below (3.10) – will be referred to as effective inequalities and will be deduced in
Sect. 4 as consequences of some effective monotonicity properties of the functions
Up (see Theorems 4.2 and 4.4 combined with formulæ (3.11)). Here, the locution
“effective monotonicity” should be understood in contrast with the “full mono-
tonicity” which is instead enjoyed by theUp’s either in the case where � is convex
(see [26]) or in the case p = 2 (see [4]).

As explained through (2.5) and (2.6), the two conditions in (2.7) are sufficient
to deduce the L p-Minkowski Inequality (1.4) and in turn the Extended Minkowski
Inequality (1.3). It must be noticed that the proof of the inequalities (2.7) requires
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both a technical and a conceptual enhancement of the previously existing tech-
niques ( [3,4,26]). This is particularly evident in the analysis leading to the second
inequality, which is based on the discovery of a further family of monotonic func-
tions (see Theorem 4.4), whose existence was far beyond the horizon both of the
linear case [4] and of the nonlinear convex case [26].

2.3. Further directions

In virtue of the previous observations it is quite clear that methods based on
linear and nonlinear potential theory may provide an efficient alternative to the
employment of the IMCF techniques in many contexts. To be concrete, let us just
mention a couple of projects that represent a natural continuation of the present
work.

The first one is the potential revisitation of the IMCF proof of the Riemannian
Penrose Inequality due to Huisken and Ilmanen [37]. Indeed, it is not too hard to
provide a formal guess of the monotonic quantities which are expected to play
the same role as the Hawking Mass in the Geroch’s monotonicity scheme. The
hard part, as usual, is the treatment of the critical points. There are good reasons
to believe that the method and the ideas presented in this work also apply to that
situation.

The second one is the extension of the Minkowski Inequalities to the case of
complete manifolds with nonnegative Ricci curvature. Proceeding in parallel with
the linear theory (compare [4, Theorem 1.1] with [1, Theorem 1.3]), one can prove
that if themanifold (M, g) isAsymptotically LocallyEuclidean and� is an outward
minimising domain, then it holds

(
AVR(g)

|Sn−1|
|∂�|

)1/(n−1)

≤
 

∂�

H

n − 1
dσ ,

where AVR(g) stands for the Asymptotic Volume Ratio of (M, g). A detailed proof
of this result will appear in a forthcoming manuscript.

Other challenges include the study of natural geometric inequalities in Cartan-
Hadamard manifolds as well as in Asymptotically Hyperbolic manifolds.

3. Preparatory Material

3.1. Preliminaries on p-capacitary potentials

We recall the well known notion of p-capacity, introducing at the same time a
normalised version of it that is suitable for our applications.

Definition 3.1. (p-capacity & normalised p-capacity) Let � ⊂ R
n be a bounded

open set with smooth boundary.



Minkowski Inequalities via Nonlinear Potential Theory 61

• The p-capacity of � is defined as

Capp(�) = inf

{ˆ
Rn

|Dv|p dμ
∣∣∣∣ v ∈ C∞

c (Rn), v ≥ 1 on �

}
.

• The normalised p-capacity of � is defined as

Cp(�) = inf

{(
p−1
n−p

)p−1
1

|Sn−1|
´
Rn |Dv|p dμ

∣∣∣∣ v ∈ C∞
c (Rn), v ≥ 1 on �

}
.

(3.1)

The variational structure of the above definition leads naturally to the formulation
of the following problem

⎧⎨
⎩

�pu = 0 in R
n \ � ,

u = 1 on ∂� ,

u(x) → 0 as |x | → ∞ .

(3.2)

It is well known that, for every bounded open set � with smooth boundary and
every 1 < p < n, problem (3.2) admits a unique weak solution. Such a solution is
called the p-capacitary potential associated with �. For the reader’s convenience,
we recall that a function v is a weak solution of �pv = 0 in an open set V if

v ∈ W 1,p
loc (V ) and

ˆ

V

〈
|Dv|p−2Dv

∣∣∣Dψ
〉
dμ = 0

for any test function ψ ∈ C∞
c (V ). By the important contributions [22,23,44] and

[62], we know that weakly p-harmonic functions are C 1,α
loc (we are not aware of

an explicit formula relating α to p; we note, however, that such relation cannot
be uniform in p). On the other hand, the classical regularity theory for quasilinear
nondegenerate elliptic equations (see e.g. [42]) ensures that they are analytic around
the points where the gradient does not vanish. We also recall from [46] that the
C 1,α-regularity can be extended up to the boundary.

Note that the uniqueness of the solution to problem (3.2) can be easily proved
by suitably applying the Comparison Theorem for weakly p-harmonic functions
[47, Theorem 2.15] on large balls of radius R, and letting then R → +∞. With the
same argument one can also show that the solution u to problem (3.2) is such that
0 < u(x) < 1 for every x ∈ R

n \ �. Finally, we recall that such a solution realises
the infimum in (3.1). This can be proved using a standard exhaustion scheme (for
example the one proposed in [19]) and invoking the C 1,α

loc regularity to guarantee
the convergence of the scheme itself. These facts are summarised in the following
theorem:

Theorem 3.2. (Existence and regularity of p-capacitary potentials) Let� ⊂ R
n be

a bounded open set with smooth boundary, and let 1 < p < n. Then, the following
statements hold true:
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(i) There exists a unique weak solution u ∈ C 1,α
loc (Rn \�)∩C (Rn \�) to problem

(3.2).
(ii) The solution u is analytic at points where Du �= 0.
(iii) The solution u fulfills

Cp(�) =
( p − 1

n − p

)p−1 1

|Sn−1|
ˆ

Rn\�
|Du|p dμ , (3.3)

where Cp(�) is the normalised p-capacity of � defined in (3.1).

Note that since ∂� is assumed to be smooth, by the Hopf Lemma for p-harmonic
functions (see [60, Proposition 3.2.1]), we have that |Du| �= 0 in a neighbourhood
of this hypersurface. Coupled with this fact, the asymptotic expansions below
imply that Crit(u) = {

x ∈ R
n \ �

∣∣ Du(x) = 0
}
is a compact subset of Rn \ �

(generically depending on p). Finally, it is worth recalling that for p �= 2, the set
Crit(u) is a priori allowed to have full measure.

Lemma 3.3. (Asymptotic expansions of u and |Du|) Let � ⊂ R
n be a bounded

open set with smooth boundary, and let 1 < p < n. Then, the solution u to (3.2)
satisfies

(i) lim|x |→+∞ u(x) |x | n−p
p−1 = Cp(�)

1
p−1 ,

(ii) lim|x |→+∞ |Du(x)| |x | n−1
p−1 = ( n−p

p−1

)
Cp(�)

1
p−1 ,

where Cp(�) is the normalised p-capacity of � defined in (3.1). In particular,
Crit(u) is a compact subset of Rn \ �, possibly with full measure.

For the proof of this lemma we refer the reader to [40] (see also the more recent
[55, Lemma 2.3 and (2.2)] for a precise statement). It is also worth mentioning [28],
where similar expansions are employed to infer rotational symmetry of starshaped
domains supporting a solution to problem (3.2) with constant normal derivative on
the boundary. From the point of view of the present paper, the main implication of
the above lemma is the computation of the limit

lim
τ→0+ Up(τ ) =

(n − p

p − 1

)p |Sn−1| Cp(�)
n−p−1
n−p , (3.4)

where τ 
→ Up(τ ) is the function defined in (2.4) (see [26, Lemma 2.6]). The
following characterisation of the p-capacity of � is widely used in the literature
and it is also very useful for our purposes. Hence, we provide a proof.

Lemma 3.4. Let � ⊂ R
n be a bounded open set with smooth boundary, and let

1 < p < n. Then, the solution u to (3.2) satisfies

Cp(�) =
( p − 1

n − p

)p−1 1

|Sn−1|
ˆ

∂�

|Du|p−1 dσ ,

where Cp(�) is the normalised p-capacity of � defined in (3.1).
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Proof. For ε > 0, let Vε be the ε-tubular neighbourhood of Crit(u), namely

Vε =
{
x ∈ R

n \ �

∣∣∣ dist(x,Crit(u)
)

< ε
}

,

where dist
(
x,Crit(u)

)
is the Euclidean distance of x from Crit(u). By the compact-

ness of Crit(u) in R
n \ �, we have that Vε ⊂ {u ≥ t}, for every ε > 0 and t > 0

small enough. Since |Du| = 0 on Crit(u) by definition, we have from identity (3.3)
and by Monotone Convergence Theorem that

(n − p

p − 1

)p−1|Sn−1|Cp(�) = lim
ε→0+ lim

t→0+

ˆ
{u≥t}\Vε

|Du|p dμ .

By the discussions above, u is analytic – and in turn p-harmonic in the classical
sense – in the set {u ≥ t} \ Vε. Therefore, for ε and t small enough, the Divergence
Theorem yields

ˆ
{u≥t}\Vε

|Du|p dμ =
ˆ

{u≥t}\Vε

div
(
u |Du|p−2Du

)
dμ =

= − t
ˆ

{u=t}
|Du|p−1 dσ +

ˆ
∂�

|Du|p−1 dσ

+
ˆ

∂Vε

u |Du|p−2 〈Du | ν〉 dσ ,

where ν is the inward unit normal to Vε. Observe that ν is well defined almost
everywhere on ∂Vε and for almost every ε > 0, in view of the Sard-type property
for Lipschitz functions proved in [5]. Now observe that for every small enough t
the level set {u = t} is regular and ´{u=t}|Du|p−1 dσ is constant, by the Divergence
Theorem. It follows that the first term in the rightmost hand side of the above
formula vanishes as t → 0+. Also, when ε → 0+ the integral on ∂Vε tends to 0,
since |Du|p−1(x) vanishes as x approaches Crit(u) and u remains bounded. ��
In the following subsection as well as in the remaining part of the paper we will
always assume that 1 < p < n, unless otherwise stated.

3.2. The conformal setting

As shown in [1,3,4] and [26], it is very convenient to work in the conformally
related Riemannian manifold (Rn \ �, g), where g is given by

g = u
2
( p−1
n−p

)
gRn . (3.5)

In this setting it is also convenient to consider the new variable

ϕ = − (p − 1)(n − 2)

(n − p)
log u . (3.6)
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By the same formal computations as in [26], the boundary value problem (3.2)
translates in terms of g and ϕ as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�
g
pϕ=0 in R

n \ �,

Ricg −∇∇ϕ + dϕ ⊗ dϕ

n − 2
=
( |∇ϕ|2g
n − 2

−
( p − 2

n − 2

)∇∇ϕ(∇ϕ,∇ϕ)

|∇ϕ|2g

)
g in

(
R
n \ �

)\Crit(ϕ),

ϕ=0 on ∂�,

ϕ(x)→+∞ as x → ∞.

Here,∇ is the Levi-Civita connection of g,∇∇ the Hessian operator, and �
g
p is the

p-Laplace operator computed with respect to the metric g, explicitly defined as

�
g
pϕ = divg

(|∇ϕ|p−2∇ϕ
)
,

where divg is the divergence computed with respect to g. A very useful tool in
the study of p-harmonic functions is the Kato-type identity, introduced in [26,
Proposition 4.4]. For the reader’s convenience, we recall its precise statement in
the following proposition:

Proposition 3.5. (Kato-type identity & orthogonal decomposition) Let (M, g) be
a Riemannian manifold, and let ϕ be a p-harmonic function on M. Then, at any
point where |∇ϕ| �= 0, the following identity holds true

|∇∇ϕ|2 −
(
1 + (p − 1)2

n − 1

)∣∣∣∇|∇ϕ|
∣∣∣2= |∇ϕ|2

∣∣∣ h − H

n − 1
g�

∣∣∣2

+
(
1 − (p − 1)2

n − 1

)∣∣∣∇�|∇ϕ|
∣∣∣2,

(3.7)

whereh andH are respectively the second fundamental formand themean curvature
of the level sets of ϕ with respect to the unit normal ∇ϕ/|∇ϕ|, and g� is the metric
induced by g on the level sets of ϕ. Finally, for a given differentiable function f ,
we agree that ∇� f indicates the tangential part of the gradient, according to the
orthogonal decomposition

∇⊥ f =
〈
∇ f

∣∣∣∣ ∇ϕ

|∇ϕ|
〉 ∇ϕ

|∇ϕ| and ∇� f = ∇ f − ∇⊥ f .

In particular, the following formula holds true:

∣∣∇|∇ϕ|∣∣2 = ∣∣∇�|∇ϕ|∣∣2 + ∣∣∇⊥|∇ϕ|∣∣2. (3.8)

Since the proof of the L p-Minkowski Inequality outlined in Sect. 2.2will be car-
ried out in the conformal setting described above, the fundamental conditions (2.7)
need to be rephrased accordingly. It is then worth introducing the following defi-
nition.
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Definition 3.6. (The function 
p) For any 1 < p < n, let g and ϕ be defined
by (3.5) and (3.6). We define the function 
p : [0,+∞) → R by


p(s) =
ˆ

{ϕ=s}
|∇ϕ|pg dσg , (3.9)

where dσg is the area element induced by the ambient measure dμg on the given
level set. We agree that

ˆ
{ϕ=s}

|∇ϕ|pg dσg =
ˆ

{ϕs}\Crit(ϕ)

|∇ϕ|pg dσg ,

whenever a critical value is involved.

We conclude this subsection, recalling some of the relevant properties of the
function
p just introduced. Their proofs are basically immediate – as they follows
from the analogous properties of the corresponding functionUp, defined in (2.4) –
and are left to the reader.

• The function 
p is bounded at infinity. Moreover, it follows from (3.4) that

lim
s→+∞ 
p(s) = (n − 2)p |Sn−1| Cp(�)

n−p−1
n−p .

• The function 
p is differentiable at the regular values of ϕ.
• In terms of 
p, the effective inequalities (2.7) correspond to


′
p(0) ≤ 0 and lim

s→+∞ 
p(s) ≤ 
p(0) . (3.10)

In fact it is easily seen that


p(s) =
[
(n − 2)(p − 1)

(n − p)

]p

Up

(
e− (n−p)

(n−2)(p−1) s
)
,


′
p(s) = −

[
(n − 2)(p − 1)

(n − p)

]p−1

e− (n−p)
(n−2)(p−1) s U ′

p

(
e− (n−p)

(n−2)(p−1) s
)
,

(3.11)

whenever these objects are well defined.

The inequalities (3.10) are at the core of our analysis and will be deduced in Sect. 4,
as consequences of our effective monotonicity fomulas (see Theorem 4.2 and The-
orem 4.4).

4. Proof of the L p-Minkowski Inequality

The aim of this section is to give a complete proof of Theorem 1.2, namely the
L p-Minkowski Inequality

Cp(�)
n−p−1
n−p ≤ 1

|Sn−1|
ˆ

∂�

∣∣∣∣ H

n − 1

∣∣∣∣
p

dσ .
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In force of the discussion in Sect. 2.2 (see also Sect. 4.3 below for a fully detailed
proof), it is sufficient to establish the validity of the inequalities (2.7) in their
conformal version (3.10)


′
p(0) ≤ 0 and 
p(+∞) = lim

s→+∞ 
p(s) ≤ 
p(0) .

Since all the computations of this section will be performed in the conformally
related setting, the subscript g will be dropped from the notations.

4.1. First effective inequality: 
′
p(0) ≤ 0.

For a given 1 < p < n, let us consider the vector field

X = e− (n−p)
(n−2)(p−1) ϕ |∇ϕ|p−2

(
∇ |∇ϕ| + (p − 2)∇⊥|∇ϕ|

)
. (4.1)

As it can be readily checked, at a regular value of ϕ one has that

e−
(n−p)

(n−2)(p−1) s 
′
p(s) = 1

p − 1

ˆ
{ϕ=s}

〈
X

∣∣∣∣ ∇ϕ

|∇ϕ|
〉
dσ . (4.2)

In the next lemma, we compute the divergence of X .

Lemma 4.1. (Divergence of X ) For any 1 < p < n, let g and ϕ be defined by (3.5)
and (3.6), and let X be the vector field defined in (4.1). Then, the following identity
holds at any point x ∈ R

n \ � such that |∇ϕ|(x) �= 0.

divX = e− (n−p)
(n−2)(p−1) ϕ Q ≥ 0 , (4.3)

where

Q = |∇ϕ|p−3
{

|∇ϕ|2
∣∣∣∣ h − H

n − 1
g�

∣∣∣∣
2

+ (p − 1)
∣∣∣∇�|∇ϕ|

∣∣∣2+ (p − 1)2

n − 1

∣∣∣∇⊥|∇ϕ|
∣∣∣2
}
, (4.4)

whereh andH are respectively the second fundamental formand themean curvature
of the level sets of ϕ with respect to the unit normal ∇ϕ/|∇ϕ|.
Proof. For the sake of clearness, we write

X = e− (n−p)
(n−2)(p−1) ϕ(W + Z) ,

where

W = |∇ϕ|p−2 ∇ |∇ϕ| and Z = (p − 2)|∇ϕ|p−2∇⊥|∇ϕ| .
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Using the same computation as in [26, Proposition 4.3] with q = p/(p−1) (in the
notation of that paper), one finds that the divergence of W is given by

divW =
(n − p

n − 2

) 〈
W | ∇ϕ

〉+
+ |∇ϕ|p−3

{
|∇∇ϕ|2 −

∣∣∣∇|∇ϕ|
∣∣∣2

+ (
p − 2

) [ ∣∣∣∇⊥|∇ϕ|
∣∣∣2 − ∇∇|∇ϕ|(∇ϕ,∇ϕ)

|∇ϕ|
]}

.

(4.5)

Plugging the Kato-type identity (3.7) in (4.5) and using the standard decomposi-
tion (3.8), we immediately get

divW =
(n − p

n − 2

) 〈
W | ∇ϕ

〉 +

+ |∇ϕ|p−3
{
|∇ϕ|2

∣∣∣∣ h − H

n − 1
g�

∣∣∣∣
2

− (
p − 2

) ∇∇|∇ϕ|(∇ϕ,∇ϕ)

|∇ϕ| +

+
∣∣∣∇�|∇ϕ|

∣∣∣2 +
[
(p − 1)2

n − 1
+ (

p − 2
)] ∣∣∣∇⊥|∇ϕ|

∣∣∣2
}
.

(4.6)

Let us now compute the divergence of Z . Clearly, by the p-harmonicity of ϕ, we
have

divZ = (p − 2) |∇ϕ|p−2
〈
∇
(〈

∇|∇ϕ|
∣∣∣∣ ∇ϕ

|∇ϕ|2
〉) ∣∣∣∣∇ϕ

〉
.

Expanding the right hand side and using the identity

∇∇ϕ
(∇|∇ϕ|,∇ϕ

)
|∇ϕ| =

∣∣∣∇|∇ϕ|
∣∣∣2

yield

divZ = (p − 2)|∇ϕ|p−3
{∇∇|∇ϕ|(∇ϕ,∇ϕ)

|∇ϕ| +
∣∣∣∇�|∇ϕ|

∣∣∣2− ∣∣∣∇⊥|∇ϕ|
∣∣∣2
}
.

(4.7)

Finally, combining (4.6) and (4.7), and observing that

〈X | ∇ϕ〉 = e−
(n−p)

(n−2)(p−1) ϕ (p − 1) 〈W | ∇ϕ〉 ,

we arrive at

divX = e−
(n−p)

(n−2)(p−1) ϕ

(
divW + divZ −

(n − p

n − 2

)
〈W | ∇ϕ〉

)
= e−

(n−p)
(n−2)(p−1) ϕQ .

This completes the proof of the lemma. ��



68 V. Agostiniani, M. Fogagnolo & L. Mazzieri

In absence of critical points, the Divergence Theorem applied to the vector field X
on the open region {s < ϕ < S}, with 0 < s < S, easily yields the inequality

ˆ
{ϕ=s}

〈
X

∣∣∣∣ ∇ϕ

|∇ϕ|
〉
dσ ≤

ˆ
{ϕ=S}

〈
X

∣∣∣∣ ∇ϕ

|∇ϕ|
〉
dσ ,

and in turns, thanks to (4.2), the inequality (4.8) below. In presence of a possibly
wild critical set, this direct argument is no longer working. Fortunately, some of
the new ideas introduced in [4] to treat the same issues in the case of harmonic
functions are exportable to the case of p-harmonic functions, where one does not
know a priori that the critical set is (n − 1)-negligible. As a consequence, we are
still able to provide an effective version of the considered monotonicity, showing
that (4.8) is actually in force, provided s is small enough and S is large enough.
The desired effective inequality 
′

p(0) ≤ 0, will follow at once.

Theorem 4.2. (Effective Monotonicity Formula – I) For any 1 < p < n, let g
and ϕ be defined by (3.5) and (3.6) and let 0 < sp < Sp < +∞ be such that
Crit(ϕ) ⊂ {sp < ϕ < Sp}. Then, for every 0 ≤ s ≤ sp < Sp ≤ S, the inequality


′
p(s)

e
(n−p)

(n−2)(p−1) s
≤ 
′

p(S)

e
(n−p)

(n−2)(p−1) S
(4.8)

holds true, where 
p is the function defined in (3.9). In particular, one has that

′

p(0) ≤ 0.

Proof. For a given ε > 0, we consider a smooth nonnegative cut-off-function
χ : [0,+∞) → R, such that

⎧⎪⎨
⎪⎩

χ(t) = 0 in t < 1
2ε ,

χ̇(t) ≥ 0 in 1
2ε ≤ t ≤ 3

2ε ,

χ(t) = 1 in t > 3
2ε .

(4.9)

Sinceχ
(|∇ϕ|) = 0 onCrit(ϕ), we can apply theDivergenceTheorem to the smooth

vector field

X̃ = χ
(|∇ϕ|) X

in the domain {s < ϕ < S}. Observe that, choosing ε small enough, we can make
sure that χ

(|∇ϕ|) = 1 on {ϕ = s} and {ϕ = S}, since Crit(ϕ) ⊂ {sp < ϕ < Sp}.
Having this in mind, we compute

ˆ
{ϕ=S}

〈
X

∣∣∣∣ ∇ϕ

|∇ϕ|
〉
dσ −

ˆ
{ϕ=s}

〈
X

∣∣∣∣ ∇ϕ

|∇ϕ|
〉
dσ =

ˆ
{s<ϕ<S}

divX̃ dμ

=
ˆ

{s<ϕ<S}\Uε/2

χ
(|∇ϕ|) divX dμ +

ˆ
U3ε/2\Uε/2

χ̇
(|∇ϕ|) 〈X | ∇|∇ϕ|〉 dμ ,

(4.10)

where in the last identitywe have used the tubular neighbourhood of Crit(ϕ) defined
for every δ > 0 as Uδ = {|∇ϕ| ≤ δ}. In view of (4.2), (4.3), (4.9) and (4.10), the
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inequality (4.8) is proved if we show that 〈X | ∇|∇ϕ|〉 ≥ 0 onU3ε/2 \Uε/2. On the
other hand, a direct computation gives

〈
X
∣∣∇|∇ϕ|〉 = e− (n−p)

(n−2)(p−1) ϕ |∇ϕ|p−2
[ ∣∣∇|∇ϕ|∣∣2+ (p − 2)

∣∣∇⊥|∇ϕ|∣∣2 ] =

= e− (n−p)
(n−2)(p−1) ϕ |∇ϕ|p−2

[ ∣∣∇�|∇ϕ|∣∣2+ (p − 1)
∣∣∇⊥|∇ϕ|∣∣2 ] ≥ 0 .

This completes the proof of the first part of the statement. It remains to show that

′

p(0) ≤ 0. From (4.8) it follows at once that, for every S ≥ Sp, it holds

e
(n−p)

(n−2)(p−1) S 
′
p(0) ≤ 
′

p(S) .

Integrating both sides of the above inequality on an interval of the form (Sp, S),
with Sp < S, we obtain

(n − 2)(p − 1)

(n − p)
e

(n−p)
(n−2)(p−1) S 
′

p(0) + 
p(Sp)

− (n − 2)(p − 1)

(n − p)
e

(n−p)
(n−2)(p−1) Sp 
′

p(0) ≤ 
p(S) .

If by contradiction, 
′
p(0) > 0, then, letting S → +∞ in the above inequality, we

would deduce that 
p(S) → +∞, against the boundedness of 
p discussed at the
end of Sect. 3.2. ��

4.2. Second effective inequality: 
p(+∞) ≤ 
p(0).

As already observed several times, the presence of critical points and critical
values possibly arranged in sets with full measure makes the full monotonicity not
expectable in general. In fact, the lack of a sufficiently strong Sard-type property for
the p-capacitary potentials prevents any kind of straightforward adaptation of the
arguments presented in [4] (it is worth mentioning though [12,13], where a generic
non-fattening property is proved for the level sets of p-harmonic functions). In other
words, there is no hope for deducing the global inequality
p(+∞) ≤ 
p(0) from
the pointwise inequality 
′

p(s) ≤ 0 through integration, since the latter inequality
may fail to be true – or even well defined – for too many values of s ∈ [0,+∞).
To face the main difficulty of our program, we craft a new family of effective
monotonicity formulas. For a given 1 < p < n and a given 0 < λ < 1, we
consider the vector field

Yλ =
(
e

(n−p)
(n−2)(p−1) ϕ − λ

)
X −

(n − p

n − 2

)
|∇ϕ|p−1∇ϕ , (4.11)

where X has been defined in (4.1). It is convenient to observe that at a regular value
of ϕ it holds
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(
e

(n−p)
(n−2)(p−1) s − λ

e
(n−p)

(n−2)(p−1) s

)

′

p(s) − (n − p)

(n − 2)(p − 1)

p(s)

= 1

(p − 1)

ˆ
{ϕ=s}

〈
Yλ

∣∣∣∣ ∇ϕ

|∇ϕ|
〉
dσ . (4.12)

In the next lemma, we compute the divergence of Yλ.

Lemma 4.3. (Divergence of Yλ) For any 1 < p < n and any 0 < λ < 1, let g
and ϕ be defined by (3.5) and (3.6) and let Yλ be the vector field defined in (4.11).
Then, the following identity holds at any point x ∈ R

n \ � such that |∇ϕ|(x) �= 0

divYλ =
(

e
(n−p)

(n−2)(p−1) ϕ − λ

e
(n−p)

(n−2)(p−1) ϕ

)
Q ≥ 0 ,

where Q is the nonnegative quantity defined in (4.4).

Proof. By the very definition of Yλ, we have that

divYλ =
(
e

(n−p)
(n−2)(p−1) ϕ − λ

)
divX + (n − p)

(n − 2)(p − 1)
e

(n−p)
(n−2)(p−1) ϕ 〈X | ∇ϕ〉

−
(n − p

n − 2

)
div

(|∇ϕ|p−1∇ϕ
)
.

Using the definition (4.1) of the vector field X , we compute

〈X | ∇ϕ〉 = (p − 1) e− (n−p)
(n−2)(p−1) ϕ |∇ϕ|p−2 〈∇|∇ϕ| | ∇ϕ〉 .

Exploiting the p-harmonicity of ϕ, we get

div
(|∇ϕ|p−1∇ϕ

) = |∇ϕ|p−2 〈∇|∇ϕ| | ∇ϕ〉 .

We conclude that

divYλ =
(
e

(n−p)
(n−2)(p−1) ϕ − λ

)
divX =

(
e

(n−p)
(n−2)(p−1) ϕ − λ

e
(n−p)

(n−2)(p−1) ϕ

)
Q ,

where in the last equality we made use of the identity (4.3). ��
Again, in absence of critical points, the Divergence Theorem applied to the

vector field Yλ on the open region {s < ϕ < S} easily yields the inequality
ˆ

{ϕ=s}

〈
Yλ

∣∣∣∣ ∇ϕ

|∇ϕ|
〉
dσ ≤

ˆ
{ϕ=S}

〈
Yλ

∣∣∣∣ ∇ϕ

|∇ϕ|
〉
dσ ,

and in turn, thanks to (4.12), the inequality (4.13) below. As usual, the difficult
part is the treatment of the critical points. However, a quite surprising computation
in the spirit of Theorem 4.2 shows that it is always possible to deduce the second
effective inequality.
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Theorem 4.4. (Effective Monotonicity Formula – II) For any 1 < p < n, let g
and ϕ be defined by (3.5) and (3.6) and let 0 < sp < Sp < +∞ be such that
Crit(ϕ) ⊂ {sp < ϕ < Sp}. Then, for every 0 < λ < 1 and every 0 ≤ s ≤ sp <

Sp ≤ S, the inequality

(
e

(n−p)s
(n−2)(p−1) − λ

e
(n−p)s

(n−2)(p−1)

)

′

p(s) − (n − p)
p(s)

(n − 2)(p − 1)

≤
(
e

(n−p)S
(n−2)(p−1) − λ

e
(n−p)S

(n−2)(p−1)

)

′

p(S) − (n − p)
p(S)

(n − 2)(p − 1)
(4.13)

holds true, where 
p is the function defined in (3.9). In particular, one has that

p(+∞) ≤ 
p(0).

Proof. Let χ : [0,+∞) → R be the same smooth nonnegative cut-off function as
in the proof of Theorem 4.2, so that the properties (4.9) are in force. To simplify
the notation, let us also set

ηλ(ϕ) = 1

e
(n−p)

(n−2)(p−1) ϕ − λ

.

Finally, let us consider the smooth vector field

Ỹλ = χ
(
ηλ(ϕ) |∇ϕ|) Yλ ,

where Yλ has been defined in (4.11). Again, choosing ε small enough, we can
suppose Ỹλ = Yλ on {ϕ = s} and {ϕ = S}, with s and S as in the statement.
Hence, applying the Divergence Theorem to the smooth vector field Ỹλ on the
region {s < ϕ < S} gives

ˆ
{ϕ=S}

〈
Yλ

∣∣∣∣ ∇ϕ

|∇ϕ|
〉
dσ −

ˆ
{ϕ=s}

〈
Yλ

∣∣∣∣ ∇ϕ

|∇ϕ|
〉
dσ =

ˆ
{s<ϕ<S}

divỸλ dμ

=
ˆ

{s<ϕ<S}\Uε/2

χ
(
ηλ(ϕ) |∇ϕ|) divYλ dμ

+
ˆ
U3ε/2\Uε/2

χ̇
(
ηλ(ϕ) |∇ϕ|) 〈Yλ | ∇(ηλ(ϕ)|∇ϕ|)〉 dμ ,

where this time the tubular neighbourhoods of Crit(ϕ) are defined, for every δ > 0,
asUδ = { ηλ(ϕ) |∇ϕ| ≤ δ }. Since, as observed in Lemma 4.3, the divergence of Yλ

is nonnegative on {s ≤ ϕ ≤ S}\Uε/2, where clearly |∇ϕ| �= 0, the inequality (4.13)
is proved if we can show that

〈
Yλ

∣∣∣∇(ηλ(ϕ)|∇ϕ|
)〉

≥ 0
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on U3ε/2 \Uε/2. A direct – though not immediately evident – computation, com-
bined with the definition (4.11) of Yλ yields

〈
Yλ

∣∣∣∣∇
(

|∇ϕ|
e

(n−p)
(n−2)(p−1) ϕ− λ

)〉

= e− (n−p)
(n−2)(p−1) ϕ |∇ϕ|p−2

[ ∣∣∇�|∇ϕ|∣∣2+ (p − 1)
∣∣∇⊥|∇ϕ|∣∣2 ]

− 2
(n − p

n − 2

)
ηλ(ϕ) |∇ϕ|p

〈
∇|∇ϕ|

∣∣∣∣ ∇ϕ

|∇ϕ|
〉

+

+
(n − p

n − 2

)2
η2λ(ϕ)

e
(n−p)

(n−2)(p−1) ϕ |∇ϕ|p+2

p − 1

= e− (n−p)
(n−2)(p−1) ϕ |∇ϕ|p−2

∣∣∇�|∇ϕ|∣∣2

+
[(n − p

n − 2

)
ηλ(ϕ)

(
e

(n−p)
(n−2)(p−1) ϕ |∇ϕ|p+2

(p − 1)

)1/2
−

−
〈
∇|∇ϕ|

∣∣∣∣ ∇ϕ

|∇ϕ|
〉 (

(p − 1) e− (n−p)
(n−2)(p−1) ϕ |∇ϕ|p−2

)1/2 ]2

This completes the proof of the first part of the statement, since the rightmost
hand side is manifestly nonnegative. It remains to show that 
p(+∞) ≤ 
p(0).
Applying the inequality (4.13) with 0 < λ < 1, s = 0 and Sp ≤ S, we get

(n − p)

(n − 2)(p − 1)

(

p(S) − 
p(0)

)
≤ − (1 − λ)
′

p(0)

+
(
e

(n−p)
(n−2)(p−1) S− λ

e
(n−p)

(n−2)(p−1) S

)

′

p(S) .

Observe now that (4.8) holds also for Sp < s < S (the cut-off argument is not even
necessary in this case). Then, the very same reasoning employed to deduce that

′

p(0) ≤ 0 gives also 
′
p(s) ≤ 0 for any s > Sp. In particular, 
p is a definitely

bounded monotone function, and this implies lim inf S→+∞ 
′
p(S) ≤ 0. Hence,

passing to the (inferior) limit as S → +∞ in the above inequality yields

(n − p)

(n − 2)(p − 1)

(
lim

S→+∞
p(S) − 
p(0)
)

≤ − (1 − λ)
′
p(0) .

Letting λ → 1− on the right hand side leads to the second effective inequality

p(+∞) ≤ 
p(0). ��

4.3. Completion of the proof of Theorem 1.2

We are finally in the position to complete the proof of the L p-Minkowski
inequality, together with the related rigidity statement.
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Proof of Theorem 1.2. To obtain inequality (1.4), it is sufficient to detail the proof
sketched in Sect. 2.2. As already observed in (3.10), the effective inequalities ob-
tained in Theorems 4.2 and 4.4 correspond to U ′

p(1) ≥ 0 and Up(0+) ≤ Up(1),
respectively. The first effective inequality implies thatˆ

∂�

( p − 1

n − p

)
|Du|p dσ ≤

ˆ
∂�

|Du|p−1 H

n − 1
dσ ,

since a direct computation shows that

U ′
p(τ ) = 1

p − 1
τ

− n−1
n−p

ˆ
{u=τ }

|Du|p−1
[
H − (p − 1)(n − 1)

(n − p)
|D log u|

]
dσ .

Applying the Hölder inequality to the above right hand side, with conjugate expo-
nents a = p/(p − 1) and b = p, one is left with

ˆ
∂�

|Du|p dσ ≤
(n − p

p − 1

)p
ˆ

∂�

∣∣∣∣ H

n − 1

∣∣∣∣
p

dσ . (4.14)

Using the second effective inequality Up(0+) ≤ Up(1) in combination with (3.4)
we get
(n − p

p − 1

)p |Sn−1| Cp(�)
n−p−1
n−p = lim

τ→0+ Up(τ ) ≤ Up(1) =
ˆ

∂�

|Du|p dσ ,

that combined with (4.14) gives the desired

Cp(�)
n−p−1
n−p ≤ 1

|Sn−1|
ˆ

∂�

∣∣∣∣ H

n − 1

∣∣∣∣
p

dσ .

Assume now that equality holds in (1.2). Then, equality holds in (4.14), and con-
sequently U ′

p(1) = 
′
p(0) = 0. Let s∗ ∈ (0,+∞] be the first critical value of ϕ.

A straightforward perusal of the proof of Theorem 4.2 shows that divg X = 0 in
{ϕ ≤ s} for any s < s∗. By (4.3) and (3.7)wededuce that |∇∇ϕ|g = 0 in this region.
Then, a very standard argument (see e.g. the proof of [2, Theorem 4.1 (i)]) shows
that ({ϕ ≤ s}, g) is isometric to the cylinder

([0, s] × {ϕ = 0}, dt ⊗ dt + g{ϕ=0}
)
,

and that |∇ϕ|g equals a (positive) constant in this region. The existence of a crit-
ical value s∗ < +∞ would thus contradict the continuity of |∇ϕ|g , that follows
from the C 1-regularity of p-harmonic functions. Then, |∇∇ϕ|g = 0 on the whole
R
n \ �, and then [2, Theorem 4.1 (ii)] implies that ∂� is a sphere. ��

5. Proof of the Extended Minkowski Inequality

In this section we derive the Extended Minkowski Inequality (1.3)

( |∂�∗|
|Sn−1|

)n−2
n−1≤ 1

|Sn−1|
ˆ

∂�

∣∣∣∣ H

n − 1

∣∣∣∣ dσ ,

by letting p → 1+ in the L p-Minkowski Inequality (1.4). The main task here (see
Theorem 5.6) is to compute – and characterise geometrically – the limit of the
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variational p-capacity of a bounded set with smooth boundary. As we are going
to see, this limit turns out to be related to the strictly outward minimising hull of
�, a notion that plays a central role in the formulation of the weak Inverse Mean
Curvature Flow introduced in [37].

5.1. (Strictly) outward minimising sets and the strictly outward minimising hull

The notion of outward minimising sets and strictly outward minimising sets are
given in the context of sets with finite perimeter. We refer the reader to [48] for a
comprehensive treatment of the basic notions that we are going to recall.

Definition 5.1. (Outward minimising and strictly outward minimising sets) Let
E ⊂ R

n be a bounded measurable set with finite perimeter. We say that E is
outward minimising if for any F ⊂ R

n with E ⊆ F we have |∂∗E | ≤ |∂∗F |,
where by ∂∗F we denote the reduced boundary of a set F . We say that E is strictly
outward minimising if it is outward minimising and any time |∂∗E | = |∂∗F | for
some F ⊂ R

n with E ⊆ F we have |F \ E | = 0.

It is easily seen that a bounded open set with finite perimeter is (strictly) outward
minimising if and only if any measure zero modification of it is (strictly) outward
minimising. In order to define appropriate representatives for these sets, we recall
the definition of the measure theoretic interior of a set E with |E | < +∞ as the
points of density 1 for E , namely

Int(E) =
{
x ∈ R

n
∣∣∣ lim
r→0+

|E ∩ B(x, r)|
|B(x, r)| = 1

}
.

It follows from Lebesgue Differentiation Theorem (see [48, Theorem 5.16]) that

|E� Int(E)| = 0 .

Importantly, a set with finite perimeter E satisfies,

∂ Int(E) = ∂∗E, (5.1)

that is, the topological boundary of the measure theoretic interior of a set with finite
perimeter coincides with the closure of its reduced boundary.We address the reader
to [11, Theorem 10] for a proof of this nice property. We are now ready to define
the strictly outward minimising hull of a set. As it can be checked, this concept
essentially coincides with the one outlined in [37, p. 371].

Definition 5.2. (Strictly outward minimising hull) Let � ⊂ R
n be a bounded open

set with smooth boundary. We define the strictly outward minimising hull of � as
the measure theoretic interior of a set E solving the minimisation problem

inf
E∈SOMBE(�)

|E |,

where

SOMBE (�) = {
E | � ⊆ E and E is bounded and strictly outward minimising

}
.
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According to [25, Theorem1.1], every bounded subset� ⊂ R
n with smooth bound-

ary admits a bounded strictly outwardminimising hull�∗, which is characterised as
a maximal volume solution to the least area problem with obstacle �. In particular,
it satisfies

|∂∗�∗| = inf
{ |∂∗F | ∣∣ � ⊆ F

}
. (5.2)

We recall that the main result in [58] (see also the comprehensive [37, Theorem
1.3]) provides us with a regularity result for any solution E to (5.2) such that
∂E = ∂∗E . Note that �∗ fulfils this requirement (in view of (5.1) and the fact that
Int(�∗) = �∗, by the very definition of�∗). The topological boundary ∂�∗ is thus
equipped with the following regularity.

Theorem 5.3. (Regularity of the strictly outward minimising hull) Let � ⊂ R
n be

a bounded set with smooth boundary. Then

(i) ∂�∗ is a C 1,1 hypersurface in a neighbourhood of any point in ∂�∗ ∩ ∂�.
(ii) ∂�∗ is area minimising in ∂�∗ \ ∂�. In particular there exists a singular

set Sing ⊂ ∂�∗ \ ∂�, with Hausdorff dimension at most n − 8, such that
∂�∗ \ ∂� is a real analytic hypersurface in a neighbourhood of any point in
(∂�∗ \ ∂�) \ Sing.
An obvious consequence of this theorem is the fact that |∂∗�∗| = |∂�∗|.

Remark 5.4. Since, as already pointed out, the boundary of�∗ has least area among
sets enclosing �, we have that a bounded open set � ⊂ R

n with smooth boundary
is outward minimising if and only if

|∂�| = |∂�∗|.
Observe that the inequality |∂�∗| ≤ |∂�| is automatically satisfied, due to (5.2).

Since |∂∗�∗| = |∂�∗| we can apply the nice interior approximation result [57,
Theorem 1.1] to B(x, R)\�∗, with�∗ � B(x, R), to obtain the following exterior
approximation result.

Lemma 5.5. (Smooth exterior approximation of the strictly outward minimising
hull) Let � ⊂ R

n be a bounded open set with smooth boundary. Then, there exists
a sequence of bounded sets {�k}k∈N with smooth boundary such that

�∗ ⊂ �k, |∂�k | → |∂�∗|.

5.2. Minimising hulls and p-capacities

Let � ⊂ R
n be a bounded open set with smooth boundary. Recall from Defi-

nition 3.1 that for 1 < p < n one has

Capp(�) = inf

{ˆ
Rn

|D f |p dμ
∣∣∣ f ≥ χ�, f ∈ C∞

c (Rn)

}
. (5.3)
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We can define, analogously, the 1-capacity of a bounded open set with smooth
boundary � as

Cap1(�) = inf

{ˆ
Rn

|D f | dμ
∣∣∣ f ≥ χ�, f ∈ C∞

c (Rn)

}
. (5.4)

The following result says that Cap1(�) can indeed be recovered as the limit of
Capp(�), as p → 1+, and that these quantities are also related with the strictly
outward minimising hull of �.

Theorem 5.6. Let � ⊂ R
n be a bounded open set with smooth boundary. Then,

lim
p→1+ Capp(�) = |∂�∗|,

where �∗ is the strictly outward minimising hull of �.

Proof. Let us first observe that for any f ∈ C∞
c (Rn) with f ≥ χ� we have, by

co-area formula,

ˆ
Rn

|D f | dμ ≥
ˆ 1

0
|{ f = t}| dt ≥ inf

{
|∂E | ∣∣ � ⊂ E, ∂E smooth

}
≥ |∂�∗|,

where the last inequality is due to (5.2). In particular, taking the infimum over any
such f , we get

|∂�∗| ≤ Cap1(�). (5.5)

We now prove that

Cap1(�) ≤ lim inf
p→1+ Capp(�). (5.6)

This will be done by passing to the limit as p → 1+ in the inequality appearing
in the proof of [67, Theorem 3.2], keeping track of the appearing constants (which
results in inequality (5.10) below). Namely, for every f ∈ C∞

c (Rn) with f ≥ χ�

and any positive exponent q, the function f q is an admissible competitor in (5.3)
and (5.4). Then, by definition of the 1-capacity and by Hölder inequality we have

Cap1(�) ≤
ˆ
Rn

|D f q | dμ = q
ˆ
Rn

f q−1|D f | dμ

≤ q

(ˆ
Rn

f (q−1) p
p−1 dμ

)(p−1)/p (ˆ
Rn

|D f |p dμ
)1/p

. (5.7)

Let now q satisfy (q − 1)p/(p − 1) = p∗, where p∗ = pn/(n− p) is the Sobolev
conjugate exponent of p, that is

q = 1 + p∗ (p − 1)

p
. (5.8)
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Observe that with this choice q > 1. Then, we obtain, applying the Sobolev in-
equality to the first integral in the right hand side of (5.7),

Cap1(�) ≤ q T p∗(p−1)/p
n,p

( ˆ
Rn

|D f |p dμ
)p∗(p−1)/p2+1/p

= q T q−1
n,p

( ˆ
Rn

|D f |p dμ
)(n−1)/(n−p)

, (5.9)

where Tn,p is Talenti’s best constant in the Sobolev inequality, obtained in [59].
We recall that the precise value of such constant is

Tn,p = 1

π1/2n1/p

(
p − 1

n − p

)(p−1)/p [
�(1 + n/2)�(n)

�(n/p)�(1 + n − n/p)

]1/n
,

where � is Euler’s Gamma function. Taking the infimum over any f ∈ C∞
c (Rn)

with f ≥ χ� in (5.9), we obtain

Cap1(�) ≤ q T q−1
n,p Capp(�)(n−1)/(n−p). (5.10)

As p → 1+, one can check that Tn,p converges to a positive constant, precisely
(compare with [59, p. 355])

lim
p→1+ Tn,p =

(
1

|Sn−1|
)1/n

,

and this implies

lim
p→1+ T q−1

n,p = 1.

Note that q → 1, as p → 1+, in view of (5.8). In turn, passing to the limit in (5.10),
we get (5.6).

We are left to prove the inequality

lim sup
p→1+

Capp(�) ≤ |∂�∗|. (5.11)

Let E be any open and bounded set in Rn with smooth boundary such that � ⊂ E .
Define, for x ∈ R

n , the function dE (x) = dist(x, E). Moreover, let us introduce a
smooth cut-off function χε fulfilling⎧⎪⎨

⎪⎩
χε(t) = 1 in t < ε,

χ̇ε(t) ≤ 0 in ε ≤ t ≤ 2ε

χε(t) = 0 in t > 2ε,

and let us set ηε(x) = χε(dE (x)). Choosing ε small enough, it is easily seen, by
the regularity of dE in a neighbourhood of E (see [33, Lemma 14.16]), that the
function ηε is an admissible competitor in (5.3) and (5.4). Then,

Capp(�) ≤
ˆ
Rn

|Dηε|p dμ
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for any p ≥ 1. Letting p → 1+, we get

lim sup
p→1+

Capp(�) ≤
ˆ
Rn

|Dηε| dμ ≤ − sup
s∈(ε,2ε)

|{dE = s}|
ˆ 2ε

ε

χ̇ε(t) dt

= sup
s∈(ε,2ε)

|{dE = s}| ,

where in the second inequality we have applied the coarea formula. Since, as ε →
0+, we clearly have

sup
s∈(ε,2ε)

|{dE = s}| → |∂E |,

we conclude that

lim sup
p→1+

Capp(�) ≤ |∂E |

for any bounded open set E with smooth boundary containing �. In particular,
considering a sequence of bounded sets {�k}k∈N with smooth boundary containing
�∗ and with |∂�k | → |∂�∗| as k → ∞, provided in Lemma 5.5, we get (5.11).
The inequalities (5.5), (5.6) and (5.11) combine as

|∂�∗| ≤ Cap1(�) ≤ lim inf
p→1+ Capp(�) ≤ lim sup

p→1+
Capp(�) ≤ |∂�∗|,

completing the proof. ��

5.3. Proof of Theorem 1.1 and Corollary 1.3

We are now in the position to prove Theorem 1.1 together with its Corollary 1.3.

Proof of Theorem 1.1. It suffices to pass to the limit as p → 1+ in (1.4), that is

Cp(�)
n−p−1
n−p ≤ 1

|Sn−1|
ˆ

∂�

∣∣∣∣ H

n − 1

∣∣∣∣
p

dσ . (5.12)

Indeed, recalling the relation between p-capacity and normalised p-capacity given
in Definition 3.1, Theorem 5.6 shows that the left hand side of the above inequality
behaves as

lim
p→1+ Cp(�)

n−p−1
n−p =

( |∂�∗|
|Sn−1|

) n−2
n−1

,

while the right-hand side of (5.12) is immediately seen to converge to the right
hand side of (1.3). Spheres show the optimality of the estimate since their mean
curvature is given by (n − 1)/R, where R is the radius of the ball they enclose. ��
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Proof Corollary 1.3. Inequality (1.5) immediately follows from the fact that out-
ward minimising sets with smooth boundary satisfy |∂�∗| = |∂�| (see Remark
5.4) and the mean curvature of their boundaries (computed with respect to the
outward unit normal) is nonnegative, for otherwise one might easily provide com-
pactly supported outward perturbations of ∂� that decrease the area. To see this,
it is sufficient to recall that the first variation of |∂�| with respect to the variation
ψν, where ψ ∈ C∞

c (∂�) is nonnegative and ν is the outward unit normal, is given
by

ˆ
∂�

Hψ dσ .

To complete the proof of Corollary 1.3, we are left to consider the equality case
in (1.5) for some strictly outward minimising set with smooth and strictly mean-
convex boundary. To this aim, let {∂�t }t∈[0,T ) be the evolution of ∂� under smooth
IMCF, up to some T > 0. By [37, Lemma 2.4], the weak IMCF starting at ∂�

coincides with the smooth flow {�t }t∈[0,T ∗), for some 0 < T ∗ ≤ T . In particular,
by [37, Lemma 1.4], �t is strictly outward minimising and strictly mean-convex
for every t ∈ [0, T ∗), and then (1.5) holds for every ∂�t with t ∈ [0, T ∗). We can
then define, for t ∈ [0, T ∗), the monotonic quantity already discussed in Sect. 2.1,
namely

Q(t) = |∂�t |− n−2
n−1

ˆ
∂�t

H dσ .

Observe that inequality (1.5) is equivalent to Q(0) ≥ (n − 1)|Sn−1|1/(n−1), and
assuming equality in (1.5) is equivalent to Q(0) = (n − 1)|Sn−1|1/(n−1). By the
smoothness of the flow, the function Q(t) is differentiable for t ∈ [0, T ), and then
a straightforward computation involving the standard evolution equations provided
e.g. in [39, Theorem 3.2] shows that

Q′(0) = −|∂�|− n−2
n−1

ˆ
∂�

|h̊|2
H

dσ ≤ 0 . (5.13)

However, since we assumed Q(0) = (n − 1)|Sn−1|1/(n−1), the strict inequality
Q′(0) < 0 would implyQ(t) < (n − 1)|Sn−1|1/(n−1) for some t ∈ (0, T ∗), which
is equivalent to contradict (1.5) for some outward minimising �t with strictly
mean-convex boundary. Then Q′(0) = 0 and in turn, by formula (5.13), ∂� is
totally umbilical. Therefore, ∂� must be a sphere. ��

6. Optimal Nearly Umbilical Estimates for Outward Minimising Sets

This section is devoted to the proof of an optimal version of the well celebrated
De Lellis–Müller nearly umbilical estimates for outward minimising domains.
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Theorem 6.1. (Optimal Nearly Umbilical Estimate) If � ⊂ R
3 is a bounded

outward minimising open domain with smooth boundary, then

ˆ
∂�

∣∣∣∣∣ h − H

2
g∂�

∣∣∣∣∣
2

dσ ≤ 2
ˆ

∂�

∣∣h̊∣∣2 dσ , (6.1)

where g∂� is the metric induced on ∂� by the Euclidean metric of R3, and

H =
 

∂�

Hdσ , h̊ = h − H

2
g∂� .

Moreover, the equality is achieved in (6.1) by some strictlymean-convex and strictly
outward minimising domain � if and only if � is isometric to a round ball.

A first main tool we are going to use in order to deduce Theorem 6.1 from Theorem
1.1 is the classical Gauss’ equation for surfaces in R3, yielding

R∂� = H2 − |h2|, (6.2)

where R∂� is the scalar curvature of ∂� computed with respect to the metric g∂�

induced on it by the Euclidean metric of R3. A second main tool we need to recall
is the famous Gauss–Bonnet formula, stating that

ˆ
∂�

R∂� dσ = 4πχ(∂�), (6.3)

where χ(∂�) is the Euler characteristic of the surface ∂�.
We are finally going to showhow theMinkowski inequality (1.1) combinedwith

these basic identities in differential geometry gives the optimal nearly umbilical
estimate (6.1).

Proof. (Proof of Theorem 6.1) Expanding the squares, it is straightforwardly seen
that (6.1) is equivalent to

ˆ
∂�

(
|H|2 − |h|2

)
dσ ≤ H

2

2
|∂�|.

Invoking Gauss’ equation (6.2) and Gauss–Bonnet formula (6.3), we then obtain
that (6.1) is equivalent to

8πχ(∂�) = 2
ˆ

∂�

R∂� dσ = 2
ˆ

∂�

(
|H|2 − |h|2

)
dσ ≤ H

2|∂�|,

that is, to

√
2πχ(∂�)|∂�| ≤

ˆ
∂�

H

2
dσ. (6.4)

Since obviously χ(∂�) ≤ 2, the inequality (6.4) follows from the Minkowski
inequality (1.5).
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Assume now that equality holds for some outward minimising set � with
smooth and strictly mean-convex boundary. Let {∂�t }t∈[0,T ) be evolving by IMCF
with initial datum ∂�. By [37, Lemma 2.4], the weak IMCF {Et }t∈[0,∞) starting
at ∂� coincides with �t for t ∈ [0, T ∗), for some T ∗ possibly smaller than T . In
particular, �t is outward minimising and strictly mean-convex for any t ∈ [0, T ∗),
for some T ∗ > 0, and then (6.1) holds for ∂�t for any t ∈ [0, T ∗). We can then
define, for T ∈ [0, T ∗), the quantity

P(t) =
ˆ

∂�t

|h̊|2 dσ − 1

2

ˆ
∂�t

(
H − 1

|∂�t |
ˆ

∂�t

H

)2

dσ,

introduced in [54, Chapter 3]. Observe that inequality (6.1) is equivalent toP(0) ≥
0, assuming equality in (6.1) is equivalent to P(0) = 0. By the smoothness of the
flow, the function P(t) is differentiable for t ∈ [0, T ), and then [54, Lemma 3.4]
yields

P ′(0) = −H
ˆ

∂�

|h̊|2
H

dσ ≤ 0. (6.5)

However, since we assumed P(0) = 0, P ′(0) < 0 would imply P(t) < 0 for some
t ∈ (0, T ∗) that is equivalent to falsify (6.1) for some outward minimising �t with
strictly mean-convex boundary. Then P ′(0) = 0, and by formula (6.5) this means
that ∂� is totally umbilical, thus a sphere. ��
Inequality (6.4) in the above proof, that we just showed to be equivalent to the
nearly umbilical estimate (6.1), actually coincides with the Minkowski inequality
for mean-convex hypersurfaces (1.5) if χ(∂�) = 2, that is, if ∂� is diffeomorphic
to a sphere. We want to show, with the following easy proposition, that such a
diffeomorphism exists each time the right-hand side of (6.1) is smaller than 16π .

Proposition 6.2. Let� ⊂ R
3 be a bounded open set with smooth andmean-convex

boundary. If
ˆ

∂�

∣∣∣∣h − H

2
g∂�

∣∣∣∣
2

dσ ≤ 8π (6.6)

then ∂� is diffeomorphic to a sphere. In particular, if (6.6)holds, then theMinkowski
inequality is equivalent to the optimal nearly umbilical estimate.

Proof. If (6.6) holds, we have, by the classical Willmore inequality [65],
ˆ

∂�

∣∣∣∣h − H

2
g∂�

∣∣∣∣
2

dσ ≤ 8π ≤ 1

2

ˆ
∂�

H2 dσ,

which implies ˆ
∂�

(
|H|2 − |h|2

)
dσ ≥ 0. (6.7)

Moreover, since equality is attained in the Willmore inequality if and only if ∂�

is isometric to a sphere with the round metric, the same rigidity statement holds if
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equality is attained in (6.7). On the other hand, applying the Gauss’ equation (6.2)
and the Gauss–Bonnet formula (6.3), (6.7) is equivalent to

χ(∂�) ≥ 0.

If χ(∂�) = 0 then by the characterisation of the equality case in the Willmore
inequality ∂� would be even isometric to a sphere, and this is a contradiction.
Then χ(∂�) = 2, as claimed. ��
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