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Compiler correctness, in its simplest form, is defined as the inclusion of the set of traces of the compiled pro-
gram in the set of traces of the original program. This is equivalent to the preservation of all trace properties.
Here, traces collect, for instance, the externally observable events of each execution. However, this definition
requires the set of traces of the source and target languages to be the same, which is not the case when the
languages are far apart or when observations are fine-grained. To overcome this issue, we study a general-
ized compiler correctness definition, which uses source and target traces drawn from potentially different sets

C. Abate, R. Blanco, A. Durier, C. Hrit,cu, É. Tanter, and J. Thibault part of this work was conducted while these authors
were employed at or visiting Inria Paris.
This article revises and extends the work of Abate et al. [2] presented at ESOP’20 with the following additions: It contains
a more complete account of the classes of properties that can be preserved by correct compilers by discussing safety and
hyperproperty preservation. It discusses recent work on the preservation of noninterference through compilation [7, 52, 74]
and interprets this work within the presented framework. It unifies the language presentation for the compilers that are
proven correct using different relations. It provides a self-contained and in-depth analysis of the classes of properties that
can be preserved by secure compilers by discussing subset-closed hyperproperties, hypersafety, 2-relational properties, 2-
relational safety, and 2-relational hyperproperties. Generally, this article provides more intuition and explanation for some
of the presented notions as well as for the discussed instances of our theory.
Please note that Coq symbols as well as Compiler Criteria are links: the former to Coq files in the external repository
https://github.com/secure-compilation/different_traces, the latter to definitions inside this document.
This work was in part supported by the European Research Council under ERC Starting Grant SECOMP (715753), by the
German Federal Ministry of Education and Research (BMBF) through funding for the CISPA-Stanford Center for Cyberse-
curity (FKZ: 13N1S0762), by DARPA grant SSITH/HOPE (FA8650-15-C-7558), by the Office of Naval Research for support
through grant N00014-18-1-2620, Accountable Protocol Customization, and by UAIC internal grant 07/2018.
Authors’ addresses: C. Abate, R. Blanco, A. Durier, C. Hrit,cu, and J. Thibault, MPI-SP, Universitätsstraβe 140, Bochum, Ger-
many; emails: {carmine.abate, roberto.blanco, adrien.durier}@mpi-sp.org, catalin.hritcu@gmail.com, jeremy.thibault@mpi-
sp.org; S, . Ciobâcă, Department of Computer Science, Alexandru Ioan Cuza University Ias,i, Bulevardul Carol I, Nr. 11, 700506,
Ias,i, Romania; email: stefan.ciobaca@info.uaic.ro; D. Garg, Max Planck Institute for Software Systems, Saarland Informatics
Campus, Saarbrücken, Germany; email: dg@mpi-sws.org;M. Patrignani, Stanford, 343 SerraMall USA andCISPAHelmholz
Center for Information Security, Saarland Informatics Campus, Saarbrücken, Germany; email: mp@cs.stanford.edu;
È. Tanter, Computer Science Department (DCC), University of Chile, Chile; email: etanter@dcc.uchile.cl.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
0164-0925/2021/11-ART14 $15.00
https://doi.org/10.1145/3460860

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 4, Article 14. Publication date: November 2021.

https://github.com/secure-compilation/different_traces
https://secure-compilation.github.io/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3460860


14:2 C. Abate et al.

and connected by an arbitrary relation. We set out to understand what guarantees this generalized compiler
correctness definition gives us when instantiated with a non-trivial relation on traces. When this trace rela-
tion is not equality, it is no longer possible to preserve the trace properties of the source program unchanged.
Instead, we provide a generic characterization of the target trace property ensured by correctly compiling
a program that satisfies a given source property, and dually, of the source trace property one is required to
show to obtain a certain target property for the compiled code. We show that this view on compiler correct-
ness can naturally account for undefined behavior, resource exhaustion, different source and target values,
side channels, and various abstraction mismatches. Finally, we show that the same generalization also applies
to many definitions of secure compilation, which characterize the protection of a compiled program linked
against adversarial code.

CCS Concepts: • Security and privacy → Formal security models; • Software and its engineering →
Compilers; Software verification;

Additional KeyWords and Phrases: Trace properties, hyperproperties, property-preserving compilation, com-

piler correctness, secure compilation, Galois connection, formal languages, programming languages
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1 INTRODUCTION

Compiler correctness is an old idea [46, 49, 50] that has seen a significant revival in recent times.
This newwave was started by the creation of the CompCert verified C compiler [41] and continued
by the proposal of many significant extensions and variants of CompCert [10, 11, 15, 29, 36, 37, 51,
67, 73, 76, 80] and the success of many other milestone compiler verification projects, including
Vellvm [83], Pilsner [56], CakeML [77], and CertiCoq [5]. Verification through proof assistants
allows the user of a compiler to trust the proofs without diving into all of the details. Still, to
clearly understand the benefits and limitations of using a verified compiler, she has to deeply
understand the statement of correctness. This is true not just for correct compilation, but also for
secure compilation, which is the more recent idea that a compilation chain should not just provide
correctness but also security against co-linked adversarial components [4, 32].

Basic Compiler Correctness. The gold standard for compiler correctness is semantic preserva-
tion, which intuitively says that the semantics of a compiled program (in the target language)
is compatible with the semantics of the original program (in the source language). For practical
verified compilers, such as CompCert [41] and CakeML [77], semantic preservation is stated extrin-
sically, by referring to traces. In these two settings, a trace is an ordered sequence of events—such
as inputs from and outputs to an external environment—that are produced by the execution of a
program.
A basic definition of compiler correctness can be given by the inclusion of the set of traces of

the compiled program in the set of traces of the original program. Formally [41]:

Definition 1.1 (Basic Compiler Correctness (CC)). A compiler ↓ is correct (CC) iff

∀W t . W↓�t ⇒ W�t .

This definition says that for any whole1 source program W, if we compile it (denoted W↓),
execute it in the semantics of the target language, and observe a trace t , then the original W can

1For simplicity, for now, we ignore separate compilation and linking, returning to it in Section 6.
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produce the same trace t in the semantics of the source language.2 This definition is simple and
easy to understand, since it only references a few familiar concepts: a compiler between a source
and a target language, each equipped with a trace-producing semantics (usually nondeterministic).

Beyond Basic Compiler Correctness. Definition 1.1 implicitly assumes that the source and tar-
get traces are drawn from the very same set, and requires that any target trace produced by a
compiled program can be faithfully reproduced by the source program. In practice, existing veri-
fied compiler adopts a less restrictive formulation of compiler correctness:
CompCert [41] The original compiler correctness theorem of CompCert [41] can be seen as an

instance of basic compiler correctness, but it does not provide any guarantees for programs
that can exhibit undefined behavior [68]. As allowed by the C standard, such unsafe pro-
grams are not even considered to be in the source language, so are not quantified over. This
has important practical implications, since undefined behavior often leads to exploitable se-
curity vulnerabilities [16, 30, 31] and serious confusion even among experienced C and C++
developers [40, 68, 78, 79]. As such, since 2010, CompCert provides an additional top-level
correctness theorem3 that better accounts for the presence of unsafe programs by provid-
ing guarantees for them up to the point when they encounter undefined behavior [68]. This
new theorem goes beyond the basic correctness definition above, as a target trace need only
correspond to a source trace up to the occurrence of undefined behavior in the source trace.

CakeML [77] Compiler correctness for CakeML accounts for memory exhaustion in target exe-
cutions. Crucially, memory exhaustion events cannot occur in source traces, only in target
traces. Hence, dually to CompCert, compiler correctness only requires source and target
traces to coincide up to the occurrence of a memory exhaustion event in the target trace.

Trace-relating Compiler Correctness. Generalized formalizations of compiler correctness like
the ones above can be naturally expressed as instances of a uniform definition, which we call
trace-relating compiler correctness. This generalizes basic compiler correctness by (a) considering
that source and target traces belong to possibly distinct sets TraceS and TraceT, and (b) being pa-
rameterized by an arbitrary trace relation ∼.

Definition 1.2 (Trace-relating Compiler Correctness (CC∼)). A compiler ↓ is correct with respect
to a trace relation ∼ ⊆ TraceS × TraceT iff

∀W.∀t. W↓�t ⇒∃s ∼ t.W�s.

This definition requires that, for any target trace t produced by the compiled program W↓, there
exists a source trace s that can be produced by the original program W and is related to t according
to ∼ (i.e., s ∼ t). By choosing the trace relation appropriately, one can recover the different notions
of compiler correctness presented above:
Basic CC Take s ∼ t to be s = t. Trivially, the basic CC of Definition 1.1 is CC=.
CompCert Undefined behavior is modeled in CompCert as a trace-terminating event Wrong that

can occur in any of its languages (source, target, and all intermediate languages), so for a
given phase (or composition thereof), we have TraceS = TraceT. Nevertheless, the relation
between source and target traces with which to instantiate CC∼ to obtain CompCert’s cur-
rent theorem is the following (note that we denote finite traces–or prefixes– as m):

s ∼ t ≡ s = t ∨ (∃m ≤ t. s =m·Wrong).

2Typesetting convention [60]: We use a blue, sans-serif font for source elements, an orange, bold font for target ones, and
a black, italic font for elements common to both languages.
3Stated at the top of the CompCert file driver/Complements.v and discussed by Regehr [68].
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A compiler satisfying CC∼ for this trace relation can turn a source prefix ending in undefined
behaviorm·Wrong (where “·” is concatenation) either into the same prefix in the target (first
disjunct) or into a target trace that starts with the prefix m but then continues arbitrarily
(second disjunct, “≤” is the prefix relation).

CakeML Here, target traces are sequences of symbols from an alphabet ΣT that has a specific
trace-terminating event, Resource_limit_hit, which is not available in the source alphabet
ΣS (i.e., ΣT = ΣS∪{Resource_limit_hit}. Then, the compiler correctness theorem of CakeML
can be obtained by instantiating CC∼ with the following ∼ relation:

s ∼ t ≡ s = t ∨ (∃m.m ≤ s. t =m·Resource_limit_hit).

The resulting CC∼ instance relates a target trace ending in Resource_limit_hit after execut-
ing prefixm to a source trace that first producesm and then continues in a way given by the
semantics of the source program.

Beyond undefined behavior and resource exhaustion, there are many other practical uses for
CC∼: In this article, we show that it also accounts for differences between source and target values,
for a single source output being turned into a series of target outputs, and for side-channels.
On the flip side, the compiler correctness statement and its implications can be more difficult

to understand for CC∼ than for CC=. The full implications of choosing a particular ∼ relation
can be subtle. In fact, using a bad relation can make the compiler correctness statement trivial or
unexpected. For instance, it should be easy to see that if one uses the total relation, which relates
all source traces to all target ones, the CC∼ property holds for every compiler, yet it might take
one a bit more effort to understand that the same is true even for the following relation:

s ∼ t ≡ ∃W.W�s ∧ W↓�t.

Reasoning about Trace Properties.To understandmore about a particular CC∼ instance, we pro-
pose to also look at how it preserves trace properties—defined as sets of allowed traces [39]—from
the source to the target. For instance, it is well known that CC= is equivalent to the preservation of
all trace properties (whereW |= π reads “W satisfies property π ” and stands for∀t .W�t ⇒ t ∈ π ):

CC= ≡ ∀π ∈ 2Trace. ∀W.W|=π ⇒ W↓|=π .

However, to the best of our knowledge, similar results have not been formulated for trace relations
beyond equality, when it is no longer possible to preserve the trace properties of the source pro-
gram unchanged. For trace-relating compiler correctness, where source and target traces can be
drawn from different sets and related by an arbitrary trace relation, there are two crucial questions
to ask:
(1) For a source trace property πS of a program—established for instance by formal verification—

what is the strongest target property that any CC∼ compiler is guaranteed to ensure for the
produced target program?

(2) For a target trace property πT, what is the weakest source property we need to show of the
original source program to obtain πT for the result of any CC∼ compiler?

Far from being mere hypothetical questions, they can help the developer of a verified compiler
better understand the compiler correctness theorem they are proving, and we expect that any user
of such a compiler will need to ask either one or the other if they are to make use of that theorem.
In this work, we provide a simple and natural answer to these questions, for any instance of CC∼.
Building upon a bijection between relations and Galois connections [6, 26, 54], we observe that
any trace relation ∼ corresponds to two property mappings τ̃ and σ̃ , which are functions mapping
source properties to target ones (τ̃ standing for “to target”) and target properties to source ones
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Fig. 1. The equivalent compiler correctness definitions forming our trinitarian view.

(σ̃ standing for “to source”):

τ̃ (πS) = {t | ∃s. s ∼ t ∧ s ∈ πS},
σ̃ (πT) = {s | ∀t. s ∼ t ⇒ t ∈ πT}.

The existential image of ∼, τ̃ , answers the first question above by mapping a given source property
πS to the target property that contains all target traces for which there exists a related source trace
that satisfies πS. Dually, the universal image of ∼, σ̃ , answers the second question by mapping a
given target property πT to the source property that contains all source traces for which all related
target traces satisfy πT. We introduce two new correct compilation definitions in terms of trace

property preservation (TP):

• TPτ̃ quantifies over all source trace properties and uses τ̃ to obtain the corresponding target
properties;

• TPσ̃ quantifies over all target trace properties and uses σ̃ to obtain the corresponding source
properties.

We prove that these two definitions are equivalent to CC∼, yielding a novel trinitarian view of
compiler correctness (Figure 1).

Contributions.

• We propose a new trinitarian view of compiler correctness that accounts for non-trivial
relations between source and target traces. While, as discussed above, specific instances of
the CC∼ definition have already been used in practice, we seem to be the first to propose
assessing the meaningfulness of CC∼ instances in terms of how properties are preserved
between the source and the target, and in particular by looking at the property mappings σ̃
and τ̃ induced by the trace relation ∼. We prove that CC∼, TPσ̃ , and TPτ̃ are equivalent for
any trace relation (Section 2.2), as illustrated in Figure 1. In the opposite direction, we show
that for every trace relation corresponding to a given Galois connection [26], an analogous
equivalence holds.

• We extend these results from the preservation of trace properties to the larger class of subset-
closed hyperproperties, e.g., noninterference (Section 3.1),4 and to the classes of safety prop-
erties (Section 3.2) and all hyperproperties (Section 3.3).

• We use CC∼ compilers of various complexities to illustrate that our view on compiler cor-
rectness naturally accounts for undefined behavior (Section 4.1), resource exhaustion (Sec-
tion 4.2), different source and target values (Section 4.3), and differences in the granularity
of data and observable events (Section 4.4). We expect these ideas to extend to other dis-
crepancies between source and target traces. For each compiler, we show how to choose
the relation between source and target traces and how the induced property mappings pre-
serve interesting trace properties and subset-closed hyperproperties. We look at the way

4Given the deterministic nature of our programs, we consider notions of noninterference that are often used in deterministic
languages. We leave notions of noninterference in nondeterministic languages for future work.
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particular σ̃ and τ̃ work on different kinds of properties and how the produced properties
can be expressed for different kinds of traces.

• We analyze the impact of correct compilation on noninterference [28], showing what can
still be preserved (and thus also what is lost) when target observations are finer than source
ones, e.g., side-channel observations (Section 5). We formalize the guarantee obtained by
correct compilation of a noninterfering program as abstract noninterference [27], a weak-
ening of target noninterference. Dually, we identify a family of declassifications of target
noninterference for which source reasoning is possible.

• We show that the trinitarian view also extends to a large class of secure compilation defi-
nitions [3], formally characterizing the protection of the compiled program against linked
adversarial code (Section 6). For each secure compilation definition, we again propose both a
property-free characterization in the style of CC∼ and two characterizations in terms of pre-
serving a class of source or target properties satisfied against arbitrary adversarial contexts.
The additional quantification over contexts allows for finer distinctions when considering
different property classes, so we study mapping classes not only of trace properties and
hyperproperties, but also of relational hyperproperties [3].

• We provide instances of secure compilers that preserve three different classes of hyperprop-
erties (trace, safety, and hypersafety properties) when targeting a language with additional
trace events that are not possible in the source (Section 7).

The results and insights that we provide often follow one’s expected intuition and may be consid-
ered unsurprising. However, our framework is the first to capture such expectations formally and
precisely, and as such it provides a uniform way to discuss these and to formalize future (possibly
surprising) ones. The article closes with discussions of related (Section 8) and future work (Sec-
tion 9). Some technical proofs can be found in the Appendix (Section A).
The traces considered in our examples are structured, usually as sequences of events. We notice,

however, that unless explicitly mentioned, all our definitions and results are more general and
make no assumption whatsoever about the structure of traces. Most of the theorems formally or
informally mentioned in the article were mechanized in the Coq proof assistant and are marked
with . This development has around 10K lines of code and is available at the following address:
https://github.com/secure-compilation/different_traces.

2 TRACE-RELATING COMPILER CORRECTNESS

In this section, we start by generalizing the trace property preservation definitions at the end of the
introduction to TPσ and TPτ , which depend on two arbitrary mappings σ and τ (Section 2.1). We
prove that, whenever σ and τ form a Galois connection, TPσ and TPτ are equivalent (Theorem 2.4).
We then exploit a bijective correspondence between trace relations and Galois connections to close
the trinitarian view (Section 2.2), with two main benefits: First, it helps us assess the meaningful-
ness of a given trace relation by looking at the property mappings it induces; second, it allows us
to construct new compiler correctness definitions starting from a desired mapping of properties.
Finally, we generalize the classic result that compiler correctness (i.e., CC=) is enough to preserve
not just trace properties but also all subset-closed hyperproperties [18]. For this, we show that
CC∼ is also equivalent to subset-closed hyperproperty preservation, for which we also define both
a version in terms of σ̃ and a version in terms of τ̃ (Section 3.1).

2.1 Property Mappings

As explained in Section 1, trace-relating compiler correctness CC∼, by itself, lacks a crisp descrip-
tion of which trace properties are preserved by compilation. Since even the syntax of traces can
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differ between source and target, one can either focus on trace properties of the source (and then
interpret them in the target) or on trace properties of the target (and then interpret them in the
source). Formally, we need two property mappings, τ : 2TraceS → 2TraceT and σ : 2TraceT → 2TraceS ,
which lead us to the following generalization of trace property preservation (TP):

Definition 2.1 (TPσ and TPτ ). Given two property mappings, τ : 2TraceS → 2TraceT and σ :
2TraceT → 2TraceS , for a compilation chain ·↓, we define TPτ and TPσ as follows:

TPτ ≡ ∀πS. ∀W.W |= πS ⇒ W↓ |= τ (πS),

TPσ ≡ ∀πT. ∀W.W |= σ (πT) ⇒ W↓ |= πT.

For an arbitrary source program W, τ interprets a source property πS as the target guarantee for
W↓. Dually, σ defines a source obligation sufficient for the satisfaction of a target property πT after
compilation. Ideally:

(i) Given πT, the target interpretation of the source obligation σ (πT) should actually guarantee
that πT holds, i.e., τ (σ (πT)) ⊆ πT;

(ii) Dually for πS, we would not want the source obligation for τ (πS) to be harder than πS itself,
i.e., σ (τ (πS)) ⊇ πS.

These requirements are satisfied when the two maps form a Galois connection between the posets
of source and target properties ordered by inclusion. We briefly recall the definition and the char-
acteristic property of Galois connections [20, 47].

Definition 2.2 (Galois Connection). Let (X , �) and (Y ,�) be two posets. A pair of maps, α : X →
Y , γ : Y → X is a Galois connection iff it satisfies the adjunction law: ∀x ∈ X . ∀y ∈ Y . α (x ) �
y ⇐⇒ x � γ (y). α (respectively, γ ) is the lower (upper) adjoint or abstraction (concretization)
function and Y (X ) the abstract (concrete) domain.

We will often write α : (X , �) � (Y ,�) : γ to denote a Galois connection, or simply α : X �
Y : γ , or even α � γ when the involved posets are clear from context.

Lemma 2.3 (Characteristic Property of Galois Connections). If α :(X , �) � (Y ,�):γ is a
Galois connection, then α ,γ are monotone and id � γ ◦ α and α ◦ γ � id , i.e.,

∀x ∈ X . x � γ (α (x ))

∀y ∈ Y . α (γ (y)) � y.

If X ,Y are complete lattices, then α is continuous, i.e., ∀F ⊆ X . α (
⊔

F ) =
⊔

α (F ).

If two property mappings, τ and σ , form a Galois connection on trace properties ordered by set
inclusion, then Lemma 2.3 (with α = τ and γ = σ ) tells us that they satisfy conditions (i ), (ii )
above, i.e., τ (σ (πT)) ⊆ πT and σ (τ (πS)) ⊇ πS.5 These conditions on τ and σ are sufficient to show
the equivalence of the criteria they define, respectively, TPτ and TPσ .

Theorem 2.4 (TPτ and TPσ Coincide ). Let τ : 2TraceS � 2TraceT : σ be a Galois connection,
with τ and σ the lower and upper adjoints (respectively). Then TPτ ⇐⇒ TPσ .

Proof. Notice that if a program satisfies a property π , then it satisfies every less restrictive
i.e., bigger property π ′ ⊇ π . Building on this:

(⇒) Assume TPτ and that W satisfies σ (πT). Apply TPτ to W and σ (πT) and deduce that W↓
satisfies τ (σ (πT)) ⊆ πT.

5While target traces are often “more concrete” than source ones, trace properties 2Trace (which in Coq we represent as the
function type Trace→Prop) are contravariant in Trace and thus target properties correspond to the abstract domain.
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(⇐) Assume TPσ and that W satisfies πS ⊆ σ (τ (πS)). Apply TPσ to W and σ (τ (πS)) deducing
W↓ satisfies τ (πS). �

2.2 Trace Relations and Property Mappings

We now investigate the relation between CC∼, TPτ, and TPσ. We show that for a trace relation and
its corresponding Galois connection (Lemma 2.7), the three criteria are equivalent (Theorem 2.8).
This equivalence offers interesting insights for both verification and the design of a correct com-
piler. For a CC∼ compiler, the equivalence makes explicit both the guarantees one has after com-
pilation (τ̃ ) and source proof obligations to ensure the satisfaction of a given target property (σ̃ ).
However, a compiler designer might first determine the target guarantees the compiler itself must
provide, i.e., τ , and then prove an equivalent statement, CC∼, for which more convenient proof
techniques exist in the literature [9, 77].

Definition 2.5 (Existential and Universal Image [26]). Given any two sets X and Y and a relation
∼ ⊆ A × B, define the relation’s existential or direct image, τ̃ : 2X → 2Y and its universal image,
σ̃ : 2Y → 2X as follows:

τ̃ = λ π ∈ 2X .
{
y �� ∃x . x ∼ y ∧ x ∈ π

}
σ̃ = λ π ∈ 2Y .

{
x �� ∀y. x ∼ y ⇒ y ∈ π

}
.

When trace relations are considered, the corresponding existential and universal images can be
used to instantiate Definition 2.1 leading to the trinitarian view already mentioned in Section 1.

Theorem 2.6 (Trinitarian View ). For any trace relation ∼ and its
existential and universal images τ̃ and σ̃ , we have:

This result relies both on Theorem 2.4 and on the fact that the existential and universal images of a
trace relation form a Galois connection ( ). The theorem can be stated in a slightly more general
form (Theorem 2.8), exploiting an isomorphism between the category of sets and relations and a
subcategory of monotonic predicate transformers [26]. We specialize this isomorphism to what is
of interest for our purposes and deduce a bijective correspondence between trace relations and
Galois connections on properties.

Lemma 2.7 (Trace Relations � Galois Connections on Trace Properties). The function
∼ �→ τ̃ � σ̃ that maps a trace relation to its existential and universal images is a bijection between
trace relations 2TraceS×TraceT and Galois connections on trace properties 2TraceS � 2TraceT . Its inverse is
τ � σ �→ ∼̂, where s ∼̂ t ≡ t ∈ τ ({s}).

The bijection just introduced allows us to generalize Theorem 2.6 and switch anytime between the
three views of compiler correctness described earlier.

Theorem 2.8 (Correspondence of Criteria). For any trace relation ∼ and corresponding Galois
connection τ � σ , we have: TPτ ⇐⇒ CC∼ ⇐⇒ TPσ .

Note that sometimes the lifted properties may be trivial: The target guarantee can be the true
property (the set of all traces) or the source obligation the false property (the empty set of traces).
This might be the case when source observations abstract away too much information (Section 4.2
presents an example).
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3 PRESERVING OTHER (HYPER)PROPERTY CLASSES

In this section, we investigate how to preserve other classes of (hyper)properties beyond trace
properties: subset-closed hyperproperties (Section 3.1), safety properties (Section 3.2), and arbi-
trary hyperproperties that are not just subset-closed (Section 3.3). For each of these classes, we
start by giving an intuition of what it means to preserve such a class in the equal-trace setting,
then we study preservation of that class in the trace-relating setting. For subset-closed hyperprop-
erties, we have to refine the Galois connection to ensure the information “HS is subset-closed” is
not lost with the application of τ̃ . Similarly, when looking at safety properties, we have to preserve
the information that a propery is a safety property. For arbitrary hyperproperties one might in-
stead require that no information at all is lost during the (pre or post) composition of τ̃ and σ̃ . The
section concludes with a comparison of the criteria in terms of relative strengths (Section 3.4).

3.1 Preservation of Subset-closed Hyperproperties

Hyperproperty preservation is a strong requirement in general. Fortunately, many interesting hy-
perproperties are subset-closed (SCH for short) (e.g., noninterference), and these are known to
be preserved by refinement [18]. When the trace semantics is common to source and target lan-
guages, a subset-closed hyperproperty is preserved if the behaviors of the compiled program refine
the behaviors of the source program, which coincides with the statement of CC=. We generalize
this result to the trace-relating setting, introducing two other equivalent characterizations of CC∼

in terms of preservation of subset-closed hyperproperties (Theorem 3.3). To do so, we close under
subsets the images of both τ̃ and σ̃ so source subset-closed hyperproperties are mapped to target
subset-closed ones and vice versa.

First, a hyperproperty H is defined as a set of sets of traces, H ∈ 22
Trace

(recall that Traces is the
set of all traces) [18]. A program satisfies a hyperproperty when its complete set of traces, which
from now on we will call its behavior, is a member of the hyperproperty.

Definition 3.1 (Hyperproperty Satisfaction [18]). A programW satisfies a hyperproperty H , writ-
tenW |= H ,6 iff beh(W ) ∈ H , where beh(W ) = {t | W�t }.

To talk about hyperproperty preservation in the trace-relating setting, we need an interpretation
of source hyperproperties into the target and vice versa. The one we consider builds on top of
the two trace property mappings τ and σ , which are naturally lifted to hyperproperty mappings.
This way, we are able to extract two hyperproperty mappings from a trace relation similarly to
Section 2.2:

Definition 3.2 (Lifting Property Mappings to Hyperproperty Mappings). Let τ : 2TraceS → 2TraceT

and σ : 2TraceT → 2TraceS be arbitrary property mappings. The images of HS ∈ 22
TraceS ,HT ∈ 22

TraceT

under τ and σ are, respectively:

τ̃ (HS) = {τ (πS) | πS ∈ HS} , σ̃ (HT) = {σ (πT) | πT ∈ HT} .

Formally, we are defining two newmappings, this time on hyperproperties, but with a small abuse
of notation, we still denote them τ̃ and σ̃ .

Interestingly, it is not possible to apply the argument used for CC= to show that a CC∼ compiler
guarantees W↓ |= τ̃ (HS) whenever W |= HS. This is because direct images do not necessarily
preserve subset-closure [44, 55]. We therefore close the image of τ̃ and σ̃ under subsets (denoted
as Cl⊆) and obtain the following result:

6In case of ambiguity with property satisfaction the class of H will be made explicit.
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Theorem 3.3 (Preservation of Subset-Closed Hyperproperties ). For any trace relation ∼
and its existential and universal images lifted to hyperproperties, τ̃ and σ̃ , and for Cl⊆ (H ) = {π |
∃π ′ ∈ H . π ⊆ π ′}, we have the following:

SCHPCl⊆◦τ̃ ≡ ∀W∀HS ∈ SCHS.W |= HS ⇒ W↓ |= Cl⊆ (τ̃ (HS));

SCHPCl⊆◦σ̃ ≡ ∀W∀HT ∈ SCHT.W |= Cl⊆ (σ̃ (HT)) ⇒ W↓ |= HT.

The use of Cl⊆ in Theorem 3.3 implies a loss of precision in preserving subset-closed hyperprop-
erties through compilation. In Section 5, we focus on a specific security-relevant subset-closed
hyperproperty, noninterference, and show that such a loss of precision can be seen as a declassifi-
cation. Instead, now we define the trinity and the related formal machinery for safety properties
preservation.

3.2 Preserving Safety Properties

The class of Safety properties collects all trace properties prescribing that “something bad never
happens” or equivalently, all trace properties whose violation can bemonitored and, once observed,
no longer restored [18]. More abstractly, safety properties can be defined as the closed sets of a
topology [18, 58], with no need to consider any particular structure on the traces. To ease the
presentation, we consider the trace model adopted by Abate et al. [3] where traces resemble lists
and streams of events. This model naturally comes with a notion of prefixes and a relation between
a prefixm and a trace t , writtenm ≤ t . Intuitively, π is a safety property if any trace t violating
the property extends a “bad prefix” m that witnesses such a violation. Every safety property is
therefore uniquely defined by the set of its “bad prefixes.” We recall below the definition and the
characterization of safety properties in terms of sets of finite prefixesm.

Definition 3.4 (Safety Properties [18]). Let π be a trace property. Then,

π ∈ Safety iff ∀t � π . ∃m ≤ t . ∀t ′.m ≤ t ′ ⇒ t ′ � π .
Equivalently, π ∈ Safety iff there exists a set of finite prefixesM , such that

∀t . t � π ⇐⇒ (∃m ∈ M .m ≤ t ).

Due to this characterization of safety properties through finite prefixes (Definition 3.4), the preser-
vation of all and only the safety properties is equivalent to CC= restricted to finite prefixes.

Theorem 3.5. The following are equivalent:

SC= ≡ ∀W,m. W↓�∗m ⇒ W�∗m,

SP ≡ ∀π ∈ Safety.W |= π ⇒ W↓ |= π ,

whereW�∗m stands for ∃t .m ≤ t ∧W�t .

Unfolding�∗, we can interpret SC= as follows:Whenever W↓ produces a trace t ≥ m that violates
a specific safety property, namely, the one defined by the singleton prefix set {m}, then W violates
the same safety property, producing a trace t ′ ≥ m but possibly distinct from t .
The generalization we propose of SC= to the trace-relating setting, states that whenever W↓ pro-
duces a trace t that violates a target safety property, then W violates the source interpretation of
the property, i.e., its image through σ̃ .7 The following theorem defines SC∼ and its two equivalent
formulations:

7At least one other symmetric generalization is possible: For πS ∈ SafetyS defined by M = {m }, if W↓ produces a trace t

that violates the target interpretation of πS, i.e., τ̃ (πS), then W produces s ≥ m, thus violating πS.
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Fig. 2. Composition of τ̃ � σ̃ and Safe � id.

Theorem 3.6 (Trinitarian View for Safety). For a trace relation ∼ ⊆ TraceS × TraceT and its
corresponding property mappings σ̃ and τ̃ , the following are equivalent:

SC∼ ≡ ∀W∀t∀m ≤ t. W↓�t ⇒ ∃t′ ≥ m∃s ∼ t′.W�s,

SPσ̃ ≡ ∀W ∀πT ∈ SafetyT.W |= σ̃ (πT) ⇒ W↓ |= πT,

TPSafe◦τ̃ ≡ ∀W ∀πS ∈ 2TraceS .W |= πS ⇒ W↓ |= (Safe ◦ τ̃ ) (πS).

Coherent with the informal meaning we aimed to give to SC∼, SPσ̃ quantifies over target safety
properties, while SPτ̃ quantifies over arbitrary source properties, but imposes the composition
of τ̃ with Safe, which maps an arbitrary target property πT to the target safety property that
best over-approximates πT.8 More precisely, Safe is a closure operator on target properties, with
SafetyT =

{
Safe(πT) ��� πT ∈ 2TraceT

}
being the class of target safety properties.

In Figure 2 the blue and red ellipses represent source and target properties properties, respectively,
and are connected by τ̃ � σ̃ . The red ellipse is the class of all target safety properties. Safe �
id is a Galois connection between target properties and the target safety properties, as Safe is a
closure operator [21]. Finally, the composition of Galois connections is still a Galois connection
[21]. Hence,

Safe ◦ τ̃ : 2TraceS � SafetyT : σ̃

is a Galois connection between source properties and target safety properties, which we used to
prove the equivalence SPτ̃ ⇐⇒ SPσ̃ ( ). We notice that this argument generalizes to arbitrary
closure operators on target properties ( ). We come back to this in Section 6, where more such
results will be needed when considering other classes of properties being preserved by secure
compilers. Now, we define the trinity for arbitrary hyperproperties, not just the subset-closed
ones.

3.3 Preserving Non-subset Closed Hyperproperties

Subset-closed hyperproperties are not expressive enough to all capture interesting properties,
e.g., possibilistic notions of information-flow [18], so we aim to briefly discuss the preservation
of arbitrary hyperproperties. In general, one cannot lift a Galois connection over trace properties
to a Galois connection over arbitrary hyperproperties.
While two out of three of the criteria we introduce in this section are equivalent under no

assumptions (HC∼ ⇐⇒ HPτ̃ ), for a comparison with the third one, we require that no information

8Safe(πT) = ∩ {
ST

�� πT ⊆ ST ∧ ST ∈ SafetyT
}
is the topological closure in the topology where safety properties coincide

with the closed sets (see, e.g., Clarkson and Schneider [18] and Pasqua and Mastroeni [58]).
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Fig. 3. Generalization of Compiler Correctness and its trace-relating variations.

is lost in the pre or post composition of τ and σ . For this, we label the trinity in Theorem 3.8 as
weak.

To start, we note that the following strengthening of CC=, denoted HC=, is equivalent to the
preservation of arbitrary hyperproperties. Here, beh(W) is the set of all traces of W:

Theorem 3.7 (HC=, HP). The following are equivalent:

HC= ≡ ∀W. beh( W↓) = beh(W),

HP ≡ ∀W ∀H ∈ 22Trace

.W |= H ⇐⇒ W↓ |= H .

HC= requires that the behavior of W↓ is exactly the same as the behavior of W. We generalize
this to the trace-relating setting by requiring that the behavior of W↓ coincide with the target
interpretation of the source properties describing the behavior of W.9

Theorem 3.8 (Weak Trinity forHyperproperties ). For a trace relation∼ ⊆ TraceS×TraceT

and induced property mappings σ̃ and τ̃ , we have:
HC∼ ⇐⇒ HPτ̃ ;
if τ̃ � σ̃ is a Galois insertion (i.e., τ̃ ◦ σ̃ = id), then HC∼ ⇒ HPσ̃ ,
if σ̃ � τ̃ is a Galois reflection (i.e., σ̃ ◦ τ̃ = id), then HPσ̃ ⇒ HPτ̃ ,

HC∼ ≡ ∀W. beh( W↓) = τ̃ (beh(W)),

HPτ̃ ≡ ∀W ∀HS.W |= HS ⇒ W↓ |= τ̃ (HS),

HPσ̃ ≡ ∀W ∀HT.W |= σ̃ (HT) ⇒ W↓ |= HT.

In other words, it is still possible (and sound) to deduce a source obligation for a given target
hyperproperty HT (HC∼ ⇒ HPσ̃ ) when no information is lost in the composition τ̃ ◦ σ̃ . Dually,
HPτ̃ (and hence HC∼) is a consequence of HPσ̃ when no information is lost in composing in the
other direction, σ̃ ◦ τ̃ .

3.4 Comparing the Presented Criteria

At this point, we have presented four trinities of criteria that preserve trace properties, subset-
closed hyperproperties, safety properties, and arbitrary hyperproperties. Figure 3 sums up our
trinities and orders them according their relative strength.
In Section 6, we will also consider, in the setting of secure compilation, the class of safety hyper-

properties or hypersafety, and relational hyperproperties. In the setting of correct compilation—
which focuses only on whole programs—it is straightforward to show that the trinity for hyper-
safety coincides with the one for safety properties in the same way the trinity of trace properties

9At least one generalization is possible: σ̃ (beh( W↓)) = beh(W). In this case, HC∼ ⇐⇒ HPσ̃ holds unconditionally while
the other two implications hold under the same, but swapped, hypotheses from Theorem 3.8.
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and subset-closed hyperproperties coincide. Similarly the trinity for relational hyperproperties
coincides with the one for hyperproperties.

4 INSTANCES OF TRACE-RELATING COMPILER CORRECTNESS

The trace-relating view of compiler correctness above can serve as a unifying framework for study-
ing a range of interesting compilers. This section provides several representative instantiations of
the framework: source languages with undefined behavior that compilation can turn into arbitrary
target behavior (Section 4.1), target languages with resource exhaustion that cannot happen in the
source (Section 4.2), changes in the representation of values (Section 4.3), and differences in the
granularity of data and observable events (Section 4.4).

4.1 Undefined Behavior

We start by expanding upon the discussion of undefined behavior in Section 1. We first study
the model of CompCert, where source and target alphabets are the same, including the event for
undefined behavior. The trace relation weakens equality by allowing undefined behavior to be
replaced with an arbitrary sequence of events.

Example 4.1 (CompCert-like Undefined Behavior Relation). Source and target traces are sequences
of events drawn from Σ, where Wrong ∈ Σ is a terminal event that represents an undefined behav-
ior. We then use the trace relation defined in the introduction:

s ∼ t ≡ s = t ∨ ∃m ≤ t. s =m ·Wrong.

Each trace of a target program produced by a CC∼ compiler either also is a trace of the original
source program or has a finite prefix that the source program also produces, immediately before
encountering undefined behavior. As explained in Section 1, one of the correctness theorems in
CompCert can be rephrased as this variant of CC∼.
We proved that the property mappings induced by the relation can be written as ( ):

σ̃ (πT) =
{
s �� s∈πT ∧ s �m·Wrong

} ∪ {
m·Wrong �� ∀t.m≤t ⇒ t∈πT

}
,

τ̃ (πS) = {t | t∈πS} ∪
{
t �� ∃m ≤ t.m·Wrong ∈ πS

}
.

These two mappings explain what a CC∼ compiler ensures for the ∼ relation above. The target-to-
source mapping σ̃ states that to prove that a compiled program has a property πT using source-
level reasoning, one has to prove that any trace produced by the source program must either be
a target trace satisfying πT or have undefined behavior, but only provided that any continuation
of the trace substituted for the undefined behavior satisfies πT . The source-to-target mapping τ̃
states that by compiling a program satisfying a property πS, we obtain a program that produces
traces that satisfy the same property or that extend a source trace that ends in undefined behavior.
These definitions can help us reason about programs. For instance, σ̃ specifies that, to prove

that an event does not happen in the target, it is not enough to prove that it does not happen
in the source: It is also necessary to prove that the source program does not have any undefined
behavior (second disjunct). Indeed, if it had an undefined behavior, its continuations could exhibit
the unwanted event.

This relation can be easily generalized to other settings. For instance, consider the setting in
which we compile down to a low-level language like machine code. Target traces can now contain
new events that cannot occur in the source: Indeed, in modern architectures like x86 a compiler
typically uses only a fraction of the available instruction set. Some instructionsmight even perform
dangerous operations, such as writing to the hard drive or controlling a device that is hidden from
the source language. Formally, the source and target do not have the same events anymore. Thus,
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we consider a source alphabet, ΣS = Σ ∪ {Wrong}, and a target alphabet, ΣT = Σ ∪ Σ′. The trace
relation is defined in the sameway andwe obtain the same propertymappings as above, except that
target traces now havemore events (some of whichmay be dangerous), the arbitrary continuations
of target traces get more interesting. For instance, consider a new event that represents writing
data on the hard drive, and suppose we want to prove that this event cannot happen for a compiled
program. Then, proving this property requires exactly proving that the source program exhibits
no undefined behavior [14]. More generally, what one can prove about target-only events can only
be either that they cannot appear (because there is no undefined behavior) or that any of them can
appear (in the case of undefined behavior).
In Section 7.1, we study a similar example, showing that even in a safe language linked adver-

sarial contexts can cause dangerous target events that have no source correspondent.

4.2 Resource Exhaustion

Let us return to the discussion about resource exhaustion in Section 1.

Example 4.2 (Resource Exhaustion). We consider traces made of events drawn from ΣS in the
source, and ΣT = ΣS ∪ {Resource_Limit_Hit} in the target. Recall the trace relation for resource
exhaustion:

s ∼ t ≡ s = t ∨ ∃m ≤ s. t =m · Resource_Limit_Hit

Formally, this relation is similar to the one for undefined behavior, except this time it is the target
trace that is allowed to end early instead of the source trace.
The induced trace property mappings σ̃ and τ̃ are the following ( ):

σ̃ (πT ) = {s | s ∈ πT } ∩ {s | ∀m ≤ s.m · Resource_Limit_Hit ∈ πT },
τ̃ (πS) = πS ∪ {m · Resource_Limit_Hit | ∃s ∈ πS.m ≤ s}.

These capture the following intuitions: The target-to-source mapping σ̃ states that to prove a
property of the compiled program one has to show that the traces of the source program satisfy
two conditions: (1) they must also satisfy the target property; and (2) the termination of every one
of their prefixes by a resource exhaustion error must be allowed by the target property. This is
rather restrictive: Any property that prevents resource exhaustion cannot be proved using source-
level reasoning. Indeed, if πT does not allow resource exhaustion, then σ̃ (πT) = ∅. This is to be
expected, since resource exhaustion is simply not accounted for at the source level. The source-to-
target mapping τ̃ states that a compiled program produces traces that either belong to the same
properties as the traces of the source program or end early due to resource exhaustion.
In this example, safety properties [39] are mapped (in both directions) to other safety properties

( ). This can be desirable for a relation: Since safety properties are usually easier to reason about,
one interested only in safety properties at the target can reason about them using source-level
reasoning tools for safety properties. To reason about safety, one would use the criteria presented
in Section 3.2.
Since it focuses on traces and not just safety, the compiler correctness theorem in CakeML is an

instance of CC∼ for the ∼ relation above. We have also implemented two small compilers that are
correct for this relation. The full details can be found in the Coq development.The first compiler
( ) goes from a simple expression language (similar to the one in Section 4.3 but without inputs)
to the same language except that execution is bounded by some amount of fuel: Each execution
step consumes some amount of fuel and execution immediately halts when it runs out of fuel.
The compiler is the identity.
The second compiler ( ) is more interesting: We proved this CC∼ instance for a variant of a

compiler from a while language to a simple stack machine by Xavier Leroy [43]. We enriched
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the two languages with outputs and modified the semantics of the stack machine so it falls into
an error state if the stack reaches a certain size. The proof uses a standard forward simulation
modified to account for failure: If the source execution takes a step from a configuration to another
configuration emitting some event (which can be a silent event), then there are two possibilities
for a related target configuration: Either (i) it can take some steps to another configuration related
to the second source configuration and emit the same event (as in a standard simulation); or (ii) it
can take some steps to an error state without emitting any events. The latter corresponds to the
case of a resource exhaustion error: The target execution can terminate early, producing only a
prefix of the source execution trace, as allowed by the relation.

We conclude this subsection by noting that the resource exhaustion relation and the undefined
behavior relation from the previous subsection can easily be combined. Indeed, given a relation
∼UB and a relation ∼RE defined as above on the same sets of traces, we can build a new relation ∼
that allows both refinement of undefined behavior and resource exhaustion by taking their union:
s ∼ t ≡ s ∼UB t∨ s ∼RE t. A compiler that is CC∼UB or CC∼RE is trivially CC∼, though the converse
is not true.

4.3 Different Source and Target Values

This section first presents the common language formalization (Section 4.3.1) that the following
(Section 4.3.2) and later instances (Section 4.4 and Section 7.1) build upon. This shared language
formalization does not contain a key language feature, namely, the expressions that generate ac-
tions and thus labels. This is because each instance deals with specific ways to generate actions, so
each instance will define its own extension to each of the languages defined below. Additionally,
each instance will define its own compiler and the trace relation used to attain CC∼.

4.3.1 Shared Source and Target Language Formalization. The source language is a pure, stati-
cally typed expression language whose expressions e include naturals, Booleans, a Boolean condi-
tional and a conditional for expressions that reduce to 0, arithmetic and relational operations, and
sequencing.

e ::= n | b | if e then e else e | ifz e then e else e | e op e | e; e′

op ::= + | × | ≤ | == ty ::= B | N

Types ty are either N (naturals) or B (Booleans) and typing is standard.

(Type-nat)

� n : N

(Type-bool)

� b : B

(Type-plus-times)

� e1 : N � e2 : N · = + or ×
� e1 · e2 : N

(Type-le)

� e1 : N � e2 : N

� e1 ≤ e2 : B
(Type-ite)

� e1 : B � e2 : ty � e3 : ty

� if e1 then e2 else e3 : ty

(Type-izte)

� e1 : N � e2 : ty � e3 : ty

� ifz e1 then e2 else e3 : ty

The language semantics deal with actions i, lists of actions is, and expression results r. A list of
actions is is a list of individual actions i, which are instance-dependant and thus presented later;
the same holds for source traces s.

r ::= n | b i, s ::= instance-specific is ::= i · is | ∅

The source language has a standard big-step operational semantics (e� 〈is, r〉) that tells how an
expression e generates a list of actions and a result 〈is, r〉.
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(Sem-nat)

n� 〈∅, n〉

(Sem-bool)

b� 〈∅, b〉

(Sem-op-nat)

e1 � 〈is1, n1〉 e2 � 〈is2, n2〉 op ∈ {+,×}
e1 op e2 �

〈
is1 · is2, (n1 op n2)

〉
(Sem-le)

e1 � 〈is1, n1〉 e2 � 〈is2, n2〉
e1 ≤ e2 � 〈is1 · is2, (n1 ≤ n2)〉

(Sem-ite)

e� 〈is, b〉 b?i = 1 : i = 2 ei � 〈isi, ri〉
if e then e1 else e2 � 〈is · isi, ri〉

(Sem-izte)

e� 〈is, n〉 n == 0?i = 1 : i = 2 ei � 〈isi, ri〉
ifz e then e1 else e2 � 〈is · isi, ri〉

(Sem-seq)

e� 〈is, r〉 e′� 〈is′, r′〉
e; e′� 〈is · is′, r′〉

The target language is analogous to the source one, except that it is untyped, it only has naturals
n, and its only conditional is ifz e then e else e.

e ::= n | e op e | ifz e then e else e | e; e′ op ::= + | × r ::= n

i, t ::= instance-specific is ::= i · is | ∅

The semantics of the target language is also given in big-step style; since its rules are a subset
of the source rules, they are omitted. Since we only have naturals and all expressions operate on
them, no error result is possible in the target.

4.3.2 Different Source and Target Values. In this instance, we extend the source language with
expressions to perform Booleans and natural inputs, while the target only has expressions to in-
put naturals. To compile the ≤, the target is also extended with a conditional that checks if an
expression is less than another.

e ::= · · · | in-b | in-n i ::= n | b s ::= 〈is, r〉
e ::= · · · | in-n | if e ≤ e then e else e i ::= n t ::= 〈is, r〉

Source actions are Boolean b and natural inputs n and source traces s are lists of actions is together
with a final result r. Target actions are just natural inputs n.
The source extensions respect typing and thus well-typed programs never produce error ( ).

The semantics of the extensions adds elements to the traces.

(Type-in-b)

� in-b : B

(Type-in-n)

� in-n : N

(Sem-in-nat)

in-n� 〈n · ∅, n〉

(Sem-in-bool)

in-b� 〈b · ∅, b〉
(Sem-itele)

e1 � 〈is1,n1〉 e2 � 〈is2,n2〉 n1 ≤ n2?i = 3 : i = 4 ei � 〈isi,ni〉
if e1 ≤ e2 then e3 else e4 � 〈is1 · is2 · isi,ni〉

The compiler is homomorphic, translating a source expression to the same target expression;
the only differences are natural numbers (and conditionals).

n↓ = n true↓ = 1 e1 + e2↓ = e1↓+e2↓
in-n↓ = in-n false↓ = 0 e1 ≤ e2↓ = if e1↓ ≤ e2↓ then 1 else 0

in-b↓ = in-n e1 × e2↓ = e1↓×e2↓ if e1 then e2 else e3↓ = ifz e1↓ then e3↓ else e2↓
e; e′⏐� = e↓; e′⏐� ifz e1 then e2 else e3↓ = ifz e1↓ then e2↓ else e3↓

When compiling an if-then-else the then and else branches of the source are swapped in the target
because of the compilation of Booleans.

Relating Traces. We relate basic values (naturals and Booleans) in a non-injective fashion, as
noted below. Then, we extend the relation to lists of inputs pointwise (Rules Empty and Cons) and
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lift that relation to traces (Rules Nat and Bool).

n ∼ n true ∼ n if n > 0 false ∼ 0

(Empty)

∅ ∼ ∅

(Cons)

i ∼ i is ∼ is

i · is ∼ i · is

(Nat)

is ∼ is n ∼ n

〈is, n〉 ∼ 〈is,n〉

(Bool)

is ∼ is b ∼ n

〈is, b〉 ∼ 〈is,n〉

Property mappings. The property mappings σ̃ and τ̃ induced by the trace relation ∼ defined
above capture the intuition behind encoding Booleans as naturals:

• the source-to-target mapping allows true to be encoded by any non-zero number;
• the target-to-source mapping requires that 0 be replaceable by both 0 and false.

Compiler correctness. With the relation above, the compiler is proven to satisfy CC∼.

Theorem 4.3 ( ·↓ is Correct ). ·↓ is CC∼.

Simulations with different traces. In the settings where TraceS = TraceT, it is customary
to prove compiler correctness showing a forward simulation (i.e., a simulation between source
and target transition system); then, using determinacy [24, 48] of the target language and input
totality [25, 82] (receptiveness) of the source, this forward simulation is flipped into a backward
simulation (a simulation between target and source transition system), as described by Beringer
et al. [9], Leroy [42]. This “flipping” is useful, because forward simulations are often much easier
to prove (by induction on the transitions of the source) than backward ones. For the proof of
Theorem 4.3, we had to show a backward simulation, as it was not possible to define a forward
one and then flip it. Hereafter, we show the reason lies in the shape of trace relation itself and
discuss when is possible to generalize the flipping to the trace-relating setting.
We first give the main idea of the flipping proof, when the inputs are the same in the source and the
target [9, 42]. We only consider inputs, as it is the most interesting case, since with determinacy,
nondeterminism only occurs on inputs. Given a forward simulation R, and a target program WT

that simulates a source program WS, WT is able to perform an input iff so is WS: otherwise, say, for
instance that WS performs an output, by forward simulation WT would also perform an output,
which is impossible because of determinacy. By input totality of the source, WS must be able to
perform the exact same input as WT; using forward simulation and determinacy, the resulting
programs must be related.

WS

i1

���
�
�
�
�
� = WS

i2

��

R WT

i1

��

By input totality
��

��
By contradiction,

using forward simulation

and determinacy

��

∃WS1
R

By forward simulation and determinacy

� � � � � � 	 
 � � 
 � �· WT1

The trace relation from Section 4.3.2 is not injective (both 0 and false are mapped to 0), therefore,
these arguments do not apply: Not all possible inputs of target programs are accounted for in the
forward simulation. To flip a forward simulation into a backward one it is necessary that, for any
source program WS and target program WT related by the forward simulation R, the following
diagram is satisfied:
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WS

iS1

��

∃iS2

���
�
�
�

R WT

iT1

��

iT2

���
��

��
��

�

∃WS2

R

� � � � � � 	 
 � � � 
 �WS1 R WT1 WT2

where iS1 ∼ iT1

iS1 ∼ iT2

iS2 ∼ iT2

We say that a forward simulation for which this property holds is flippable. For our example com-
piler, a flippable forward simulation works as follows: Whenever a Boolean input occurs in the
source, the target program must perform every strictly positive input n (and not just 1, as sug-
gested by the compiler). Using this property, determinacy of the target, input totality of the source,
as well as the fact that any target input has an inverse image through the relation, we can indeed
show that the forward simulation can be turned into a backward one: Starting from WS R WT and
an input iT2, we show that there is iS1 and iT2 as in the diagram above, using the same arguments
as when the inputs are the same; because the simulation is flippable, we can close the diagram and
obtain the existence of an adequate iS2. From this, we obtain CC∼.
In fact, we showed that the flippable hypothesis is also sufficient to flip a forward simulation

into a backward one, even in the trace-relating setting, and proved it in a general (i.e., language
independent) “flipping theorem” ( ). We have also shown that if the relation ∼ defines a bijection
between the inputs of the source and the target, then any forward simulation is flippable, hence
reobtaining the usual proof technique [9, 42] as a special case.

4.4 Abstraction Mismatches

We now consider how to relate traces where a single source action is compiled to multiple target
ones. To illustrate this, we extend our source language to output (nested) pairs of arbitrary size
and our target language to send values that have a fixed size. Concretely, the source is analogous
to the language of Section 4.3, except that it does not have inputs (nor Booleans for simplicity) but
it has pairs. Additionally, it has an expression send e that can emit a (nested) pair e of values in a
single action. Given that e reduces to a pair, e.g., 〈v1, 〈v2, v3〉〉, expression send 〈v1, 〈v2, v3〉〉 emits
action 〈v1, 〈v2, v3〉〉. That expression is eventually compiled into a sequence of individual sends in
the target language send v1 ; send v2 ; send v3, since in the target, send e sends the value that e

reduces to, but the language cannot send pairs (although it has pair constructs).
The source and target languages are formally extended (respectively, in the first and second

lines below) with pairs and sending constructs as follows: For reasons that we explain when the
compiler is presented, we extend the target language with a let-in construct and variables. Finally,
source traces are sequences of sent values i (which include nested pairs) and target traces are only
sequences of natural numbers.

e ::= · · · | 〈e, e〉 | e.1 | e.2 | send e ty ::= N | ty × ty i ::= n | 〈i, i〉 s ::= is

e ::= · · · | 〈e, e〉 | e.1 | e.2 | let x = e in e | x | send e i ::= n t ::= is

The source additions are well-typed and their semantics is unsurprising; the semantics relies on
the usual capture-avoiding substitution [r/x] of a result r for a variable x.

(Type-send)

� e : τ × τ ′

� send e

(Type-pair)

� e : τ � e′ : τ ′

� 〈e, e′〉 : τ × τ ′

(Type-p1)

� e : τ × τ ′

� e.1 : τ

(Type-p2)

� e : τ × τ ′

� e.2 : τ ′

(Type-send)

� e : N

� send e
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(Eval-P1)

e� 〈is, 〈r1, r2〉〉
e.1� 〈is, r1〉

(Eval-P2)

e� 〈is, 〈r1, r2〉〉
e.1� 〈is, r2〉

(Eval-Pair)

e� 〈is, r〉 e′� 〈is′, r′〉
〈e, e′〉� 〈is · is′, 〈r, r′〉〉

(Eval-Send)

e� 〈is, r〉
send e� 〈is · r, r〉

(Sem)

e� 〈is, r〉
e� is

(Eval-letin)

e� 〈is, r〉 e′[r/x]� 〈is′, r′〉
let x = e in e′� 〈is · is′, r′〉

The compiler is defined inductively on the type derivation of a source expression ( ·↓ : � e : τ → e).
The only interesting case is when compiling a send e, where we use the source type information
concerning the message (i.e., a pair) being sent to deconstruct that pair into a sequence of natural
numbers, which is what is sent in the target. This is the reason we need the let-in construct in
the target, since we run the pair once (as the argument of the let-in) and then we send all of its
projection to avoid duplicating side effects. Technically, since it is defined on the type derivations
of terms, the compiler is defined inductively on type derivations (and not simply on terms). Thus,
compiling e; e′ would look like the following (using D as a metavariable to range over derivations):

��
�

D
� e

D′

� e′

� e; e′

	

�
⏐⏐⏐⏐⏐⏐� =

(
D
� e

)⏐⏐⏐� ; ( D′

� e′

)⏐⏐⏐� .
However, note that each judgment uniquely identifies which typing rule is being applied and the
underlying derivation. Thus, for compactness, we only write the judgment in the compilation and
implicitly apply the related typing rule to obtain the underlying judgments for recursive calls. To
differentiate this from the compiler of Section 4.3.2, this compiler has parentheses over its input.

(� n : N)↓ = n (� e.1 : τ )↓ = (� e : τ × τ ′)⏐� .1
(� e ⊕ e′ : N)⏐� = (� e : N)↓ ⊕ (e′ : N)⏐� (� e.2 : τ ′)⏐� = (� e : τ × τ ′)⏐� .2

(� 〈
e, e′

〉
: τ × τ ′)⏐� = 〈

(� e : τ )↓, (� e′ : τ ′)⏐�〉
(
�

if e

then e else e′

)⏐⏐⏐⏐⏐� =
if (� e : N)↓
then (� e)↓ else (� e′)⏐� (� send e)↓ =

let x= (� e : τ × τ ′)⏐�
in gensend (x,τ × τ ′)(

�
ifz e

then e else e′

)⏐⏐⏐⏐⏐� =
ifz (� e : N)↓
then (� e)↓ else (� e′)⏐� (� e; e′)⏐� = (� e)↓; (� e′)⏐�

gensend (x,τ ) =
⎧⎪⎨⎪⎩

send x if τ = N

gensend (x,τ ′).1; gensend (x,τ ′′).2 if τ = τ ′ × τ ′′

Relating Traces. We start with the trivial relation between numbers: n∼0 n, i.e., numbers are
related when they are the same. We cannot build a relation between single actions, since a single
source action is related to multiple target ones. Therefore, we define a relation between a source
action i and a target trace t (a list of numbers) inductively on the structure of i.

(Trace-Rel-N-N)

n∼0 n n′ ∼0 n′

〈n, n′〉 ∼n · n′

(Trace-Rel-N-M)

n∼0 n i∼ t

〈n, i〉 ∼n · t

(Trace-Rel-M-N)

i∼ t n∼0 n

〈i, n〉 ∼ t · n

(Trace-Rel-M-M)

i∼ t i′ ∼ t′

〈i, i′〉 ∼ t · t′

A pair of naturals is related to the two actions that send each element of the pair (Rule Trace-Rel-
N-N). If a pair is made of sub-pairs, then we require all such sub-pairs to be related (Rules Trace-
Rel-N-M to Trace-Rel-M-M).
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(Trace-Rel-Single)

s∼ t i∼ t′

s · i∼ t · t′

We build on these rules to define the s ∼ t relation between source and
target traces for which the compiler is correct (Theorem 4.5). Trivially,
traces are related when they are both empty. Alternatively, given related
traces, we can concatenate a source action and a second target trace pro-
vided that they are related (Rule Trace-Rel-Single). Before proving that
the compiler is correct, we need Lemma 4.4. Intuitively, that lemma tells us that the way we break
down a source sent value r into multiple target sends is correct.

Lemma 4.4 (gensend (·, ·) Works). if gensend (x,τ × τ ′)[ (� r : τ × τ ′)↓/x]� t then r∼ t (since
r is necessarily a sent value i, that can be related to t).

Theorem 4.5 ( (·)↓ is Correct). (·)↓ is CC∼.

With our trace relation, the trace property mappings capture the following intuitions:
• The target-to-source mapping states that a source property can reconstruct target action
as it sees fit. For example, trace 4 · 6 · 5 · 7 is related to 〈4, 6〉 · 〈5, 7〉 and 〈〈4, 〈6, 〈5, 7〉〉〉〉 (and
manymore variations). This gives freedom to the source implementation of a target behavior,
which follows from the non-injectivity of ∼.10

• The source-to-target mapping “forgets” about the way pairs are nested, but is faithful w.r.t.
the values vi contained in a message. Notice that source safety properties are always mapped
to target safety properties. For instance, if πS ∈ SafetyS prescribes that some bad num-
ber is never sent, then τ̃ (πS) prescribes the same number is never sent in the target and
τ̃ (πS) ∈ SafetyT. Of course if πS ∈ SafetyS prescribes that a particular nested pairing like
〈4, 〈6, 〈5, 7〉〉〉 never happens, then τ̃ (πS) is still a target safety property, but the trivial one,
since τ̃ (πS) = � ∈ SafetyT.

5 TRACE-RELATING COMPILATION AND NONINTERFERENCE PRESERVATION

We now study the relation between trace-relating compilation and noninterference preservation.
As mentioned earlier (Section 3.1), in the particular case where source and target observations
are drawn from the same set, a correct compiler (CC= ) is enough to ensure the preservation
of all subset-closed hyperproperties, in particular of noninterference (NI) [28]. But in the sce-
nario where target observations are strictly more informative than source observations, this is
not the case. In fact, as we will show, the best guarantee one may expect from a correct trace-
relating compiler (CC∼) in such a setting is a weakening (or declassification) of target noninter-
ference that matches the noninterference property satisfied in the source. In certain scenarios, it
turns out that the noninterference property of interest in the target comes “for free,” while in
others, it does not, and therefore establishing noninterference requires an additional proof ef-
fort beyond CC∼. To formalize this reasoning, this section applies the trinitarian view of trace-
relating compilation to the general framework of abstract noninterference (ANI) [27], clarify-
ing the kind of noninterference preservation that follows from a given trace relation and correct
compilation.
We first define NI and explain the issue of preserving source NI via a CC∼ compiler (Section 5.1).

We then introduce ANI, which allows characterizing various forms of noninterference (Section 5.2),
and formulate a theory of ANI preservation via CC∼, both with respect to a timing insensitive
declassification (Section 5.3) and in general (Section 5.4). We also study how to deal with cases
such as undefined behavior in the target (Section 5.5).We then answer the dual question, i.e., which
source NI should be satisfied to guarantee that compiled programs are noninterfering with respect
to target observers (Section 5.6). Finally, we use this formal development to analyze recent work

10Making ∼ injective is a matter of adding open and close parentheses actions in target traces.
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on correct compilers with interesting noninterference guarantees [7, 74], clarifying whether these
guarantees follow from correctness alone or not (Section 5.7).

5.1 Noninterference and Trace-relating Compilation

Intuitively, noninterference (NI) requires that publicly observable outputs do not reveal infor-
mation about private inputs. To define this formally, we need a few additions to our setup. We
indicate the (disjoint) input and output projections of a trace t as t ◦ and t •, respectively.11 Denote
with [t]low the equivalence class of a trace t , obtained using a standard low-equivalence relation
that relates low (public) events only if they are equal, and ignores any difference between private
events. Then, NI for source traces can be defined as:

NIS =
{
πS

�� ∀s1s2 ∈ πS. [s
◦
1]low = [s

◦
2]low ⇒ [s•1]low = [s

•
2]low

}
.

That is, source NI comprises the sets of traces that have equivalent low output projections as long
as their low input projections are equivalent.
When additional observations are possible in the target, it is unclear whether a noninterfering

source program is compiled to a noninterfering target program or not, and if so, whether the
notion of NI in the target is the expected (or desired) one. We illustrate this issue by considering
a scenario where target traces extend source traces by exposing the execution time. While source
noninterference NIS requires that private inputs do not affect public outputs, NIT additionally
requires that the execution time is not affected by varying private inputs.
To model the scenario described, we represent target traces as pairs of a source trace and a

natural number that denotes the time spent to produce the trace (using ω for infinite time units).
Formally, if TraceS denotes the set of source traces, then TraceT = TraceS ×Nω is the set of target
traces, where Nω � N ∪ {ω}.
Notice that if two source traces s1, s2 are low-equivalent, then {s1, s2} ∈ NIS and

{(s1, 42), (s1, 42)} ∈ NIT, but {(s1, 42), (s2, 43)} � NIT and {(s1, 42), (s2, 42), (s1, 43), (s2, 43)} � NIT.
Consider the following straightforward trace relation, which relates a source trace to any target

trace whose first component is equal to it, irrespective of execution time:

s ∼ t ≡ ∃n. t = (s,n).

A compiler is CC∼ for this trace relation if any trace that can be exhibited in the target can be
simulated in the source in some amount of time. For such a compiler, Theorem 3.3 says that if W
satisfies NIS, then W↓ satisfies Cl⊆ ◦ τ̃ (NIS). This hyperproperty is, however, strictly weaker than
NIT, as it contains for example {(s1, 42), (s2, 42), (s1, 43), (s2, 43)}, and one cannot conclude that
W↓ is noninterfering in the target. It is easy to check that

Cl⊆ ◦ τ̃ (NIS) = Cl⊆ (
{
πS × Nω �� πS ∈ NIS

}
) =

{
πS × I �� πS ∈ NIS ∧ I ⊆ Nω }

,

the first equality coming from τ̃ (πS) = πS × Nω , and the second from NIS being subset-closed. As
we will see, this hyperproperty can be characterized as a form of NI, which one might call timing-
insensitive noninterference, i.e., ensured only against attackers that cannot measure execution time.
For this characterization, and to describe different forms of noninterference as well as formally
analyze their preservation by a CC∼ compiler, we rely on the general framework of abstract non-
interference [27].

11The exact shape of inputs and outputs depends on the scenario. For instance, inputs can be initial memories and outputs
trace semantics of programs as in Reference [27, Section 7], while for interactive programs one may want to consider
streams like Clark and Hunt [17]. We only require the sets of input and output projections to be disjoint. Further infor-
mation, such as the ordering of events, is part of the attacker/observer model or the declassification of noninterference
itself.
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5.2 Abstract Noninterference

ANI [27] is a generalization of NI whose formulation relies on abstractions (in the sense of Ab-
stract Interpretation [20]) to encompass arbitrary variants of NI. ANI is parameterized by an ob-
server abstraction ρ, which denotes the distinguishing power of the attacker, and a selection abstrac-
tion ϕ, which specifies when to check NI, and therefore captures a form of declassification [69].12

Formally:
ANI

ρ

ϕ
=

{
π �� ∀t1t2 ∈ π . ϕ (t ◦1) = ϕ (t ◦2) ⇒ ρ (t •1) = ρ (t •2)

}
.

By picking ϕ = ρ = [·]low , we recover the standard noninterference defined above, where NI
must hold for all low inputs (i.e., no declassification of private inputs), and the observational power
of the attacker is limited to distinguishing low outputs. The observational power of the attacker
can be weakened by choosing a more liberal relation for ρ. For instance, one may limit the attacker
to observe the parity of output integer values. Another way to weaken ANI is to use ϕ to specify
that noninterference is only required to hold for a subset of low inputs.

The operators ϕ and ρ are defined over sets of (input and output projections of) traces, explicitly
ϕ : 2Trace◦ → 2Trace◦ and ρ : 2Trace• → 2Trace• . When we write ϕ (t ) like above, this should be
understood as a convenience notation for ϕ ({t }). Likewise, ϕ = [·]low should be understood as
ϕ = λπ .

⋃
t ∈π [t]low , i.e., the powerset lifting of [·]low . Additionally,ϕ and ρ are required to be upper-

closed operators (uco)—i.e., monotonic, idempotent, and extensive (i.e., ∀π •. π • ⊆ ρ (π •)) —on the
poset that is the powerset of (input and output projections of) traces ordered by inclusion [27].

5.3 Trace-relating Compilation and ANI for Timing

We can now reformulate our example with observable execution times in target traces in terms of

ANI. We have NIS = ANI
ϕ
ρ with ϕ = ρ = [·]low . In this case, the hyperproperty that a compiled

program W↓ satisfies whenever W satisfies NIS can be described as an instance of ANI:

Cl⊆ ◦ τ̃ (NIS) = ANI
ρ
ϕ

for ϕ = ϕ and ρ (π ) =
{
(s,n) �� ∃(s1,n1) ∈ π . [s•]low = [s

•
1]low

}
.

The definition of ϕ tells us that the trace relation does not affect the selection abstraction, i.e., de-
classification is unaffected. The definition of ρ characterizes an observer that cannot distinguish
execution times for noninterfering traces (notice that n1 in the definition of ρ is discarded). For
instance, ρ ({(s,n1)}) = ρ ({(s,n2)}), for any s, n1, n2. Therefore, in this setting, we know explic-
itly through ρ that a CC∼ compiler degrades source noninterference to target timing-insensitive
noninterference.

5.4 Trace-relating Compilation and ANI in General

While the particularϕ and ρ above can be discovered by intuition, we want to knowwhether there
is a systematic way of obtaining them in general. In other words, for any trace relation ∼ and any
notion of source NI, what property is guaranteed on noninterfering source programs by any CC∼

compiler?
We can now answer this question generally (Theorem 5.1): Any source notion of noninterference

expressible as an instance of ANI is mapped to a corresponding instance of ANI in the target,
whenever source traces are an abstraction of target ones (i.e., when ∼ is a total and surjective map).
For this result, we consider trace relations that can be split into input and output trace relations

12To be precise, the original formulation of ANI by Giacobazzi and Mastroeni [27] includes a third parameter η, which
describes the maximal input variation that the attacker may control. Here, we omit η (i.e., take it to be the identity) to
simplify the presentation.
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(denoted as ∼ � 〈 ◦∼, •∼〉) such that s ∼ t ⇐⇒ s◦ ◦∼ t◦ ∧s• •∼ t•. The trace relation ∼ corresponds to a
Galois connection between the sets of trace properties τ̃ � σ̃ as described in Section 2.2. Similarly,
the pair ◦∼ and •∼ corresponds to a pair of Galois connections, τ̃ ◦ � σ̃ ◦ and τ̃ • � σ̃ •, between the
sets of input and output properties. In the timing example, time is an output so we have ∼ � 〈=, •∼〉
and •∼ is defined as s• •∼ t• ≡ ∃n. t• = (s•,n).

Theorem 5.1 (Compiling ANI). Assume traces of source and target languages are related via
∼ ⊆ TraceS × TraceT, ∼ � 〈 ◦∼, •∼〉 such that

◦∼ and
•∼ are both total maps from target to source traces,

and
◦∼ is surjective. Assume ↓ is a CC∼ compiler, and ϕ ∈ uco(2Trace◦S ), ρ ∈ uco(2Trace•S ).

If W satisfies ANI
ρ

ϕ
, then W↓ satisfies ANI

ρ#

ϕ# , where ϕ# and ρ# are defined as:

ϕ# = д◦ ◦ ϕ ◦ f ◦ ρ# = д• ◦ ρ ◦ f •

f ◦ (π ◦) = {s◦ | ∃t◦ ∈ π ◦. s◦ ◦∼ t◦} д◦ (π ◦
S) =

{
t◦

��� ∀s◦. s◦ ◦∼ t◦ ⇒ s◦ ∈ π ◦
S

}
(and both f • and д• are defined analogously).

Moreover, we can prove that if
•∼ is surjective, then ANI

ρ#

ϕ# ⊆ Cl⊆ ◦ τ̃ (ANI
ρ

ϕ
). Therefore, the derived

guarantee ANI
ρ#

ϕ# is at least as strong as the hyperproperty (a priori different from some noninterfer-

ence) that follows by just knowing that the compiler ↓ is CC∼.

The target abstract noninterference has to be intended as the best correct approximation of the
source one. The mappings f ◦ � д◦ are the existential and universal images of the relation ◦∼swap⊆
TraceT × TraceS, defined by t◦

◦∼swap s◦ if and only if s◦ ◦∼ t◦. Therefore, f ◦ and д◦ are lower and
upper adjoints, respectively (Section 2). The operator ϕ# is the best correct approximation of ϕ
w.r.t. to f ◦ � д◦ [20] (hence, the choice of the (_)# notation). A similar result holds for ρ#.
Coming back to our example above, we can formally recover the intuitively justified definitions,

i.e., ϕ# = д◦ ◦ ϕ ◦ f ◦ = ϕ and ρ# = д• ◦ ρ ◦ f • = ρ.

5.5 Noninterference and Undefined Behavior

As stated above, Theorem 5.1 does not apply to several scenarios from Section 4 such as undefined
behavior (Section 4.1). Indeed, in these cases, the relation •∼ is not a total map. Nevertheless, we
can still exploit our framework to reason about the impact of compilation on noninterference.

Let us consider ∼ � 〈 ◦∼, •∼〉 where ◦∼ is any total and surjective map from target to source inputs
(e.g., equality) and •∼ is defined as s• •∼ t• ≡ s• = t• ∨ ∃m• ≤ t•. s• =m• ·Wrong. Intuitively, a CC∼

compiler guarantees noninterference for the compiled program, provided that the target attacker
cannot exploit undefined behavior to learn private information. This intuition can be made formal
by the following theorem:

Theorem 5.2 (Relaxed Compiling ANI). Relax the assumptions of Theorem 5.1 by allowing
•∼ to

be any output trace relation. If W satisfies ANI
ρ

ϕ
, then W↓ satisfies ANI

ρ#

ϕ# where ϕ# is defined as in

Theorem 5.1, and ρ# is such that:

∀s t. s• •∼ t• ⇒ ρ# (t•) = ρ# (τ̃ • (ρ (s•))). (1)

Technically, instead of giving us a definition of ρ#, the theorem gives a property of it. The property
states that, given a target output trace t•, the attacker cannot distinguish it from any other target
output traces produced by other possible compilations (τ̃ •) of the source trace s it relates to, up to
the observational power of the source-level attacker ρ. Therefore, given a source attacker ρ, the
theorem characterizes a family of attackers that cannot observe any interference for a correctly
compiled noninterfering program. Notice that the target attacker ρ� � λ_. � satisfies the premise
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of the theorem, but defines a trivial hyperproperty, so we cannot prove in general that ANI
ρ#

ϕ# ⊆
Cl⊆ ◦ τ̃ (ANI

ρ

ϕ
). Also, this degenerate attacker ρ� shows that the family of attackers described

in Theorem 5.2 is nonempty, which ensures the existence of a most powerful attacker among
them [27].

5.6 From Target NI to Source NI

Wenow explore the dual question: Underwhat hypothesis does trace-relating compiler correctness
alone allow target noninterference to be reduced to source noninterference? This is of practical
interest, as one would be able to protect from target attackers by ensuring noninterference in the
source. This task can be made easier if the source language has some static enforcement mecha-
nism [1, 44].
Let us consider the languages from Section 4.4 extended with the ability to accept inputs as

(pairs of) values. It is easy to show that the compiler described in Section 4.4 (extended to treat
the new input expressions homomorphically) is still CC∼: Given a target trace t with the same
inputs of the source one (i.e., s◦ = t ◦), the compiler of Section 4.4 ensures that t simulates the same
outputs of s (i.e., s• •∼ t •). Assume that we want to satisfy a given notion of target noninterference
after compilation, i.e., W↓|=ANI

ρ
ϕ
. Recall that the observational power of the target attacker, ρ, is

expressed as a property of sequences of values. To express the same property (or attacker) in the
source, we have to abstract the way pairs of values are nested. For instance, the source attacker
should not distinguish 〈v1, 〈v2, v3〉〉 and 〈〈v1, v2〉, v3〉. In general (i.e., when ◦∼ is not the identity), this
argument is valid only when ϕ can be represented in the source. More precisely, ϕ must consider
as equivalent all target inputs that are related to the same source input, because in the source it is
not possible to have a finer distinction of inputs. This intuitive correspondence can be formalized
as follows:

Theorem 5.3 (Target ANI by source ANI). Let ϕ ∈ uco(2Trace◦
T ), ρ ∈ uco(2Trace•

T ) and
•∼ a total

and surjective map from source outputs to target ones and assume that

∀s t. s◦ ◦∼ t◦ ⇒ ϕ (t◦) = ϕ (τ̃ ◦ (s◦)).

If ·↓ is a CC∼ compiler and W satisfies ANI
ρ#

ϕ# , then W↓ satisfies ANI
ρ
ϕ

for

ϕ# = σ̃ ◦ ◦ ϕ ◦ τ̃ ◦ ρ# = σ̃ • ◦ ρ ◦ τ̃ •.

5.7 Analyzing Noninterference Preserving Compilers

The results presented in this section formalize and generalize some intuitive facts about compiler
correctness and noninterference, clarifyingwhich noninterference property follows “for free” from
trace-relating compiler correctness. Of course, in the general case, compiler correctness alone is
not a strong enough criterion for dealing with many security properties [8, 23]. This section ex-
ploits our ANI-based framework and results to analyze two compilers from the recent literature
[7, 74] that are both proven to be correct and to preserve two interesting notions of noninterference:
cryptographic constant time (Section 5.7.1) and value-dependent noninterference (Section 5.7.2).
For each, we explain how to express compiler correctness as an instance of CC∼, describe the non-
interference property that is implied by the trace relation and the correctness result, and compare
it with the noninterference properties of interest as established by their authors.

5.7.1 A Correct Compiler Preserving Cryptographic Constant Time. Barthe et al. [7] provide a
correct compiler (as an extension of CompCert) that also preserves cryptographic constant time

(CT). CT is a security property stating that the runtime of a program does not depend on its secret,
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and thus an attacker cannot extrude secrets of a program by observing its execution time. A CT-
preserving compiler takes code that is CT and generates code that also is CT. Thus, a CT-preserving
compiler must translate runtime-equivalent source programs into runtime-equivalent target ones.
Notice that it is not necessary for the leakage of target programs to be the same of their source
counterparts, rather: Source programs with the same leakage must be compiled to target programs
with the same leakage.
Barthe et al. [7] prove CT preservation for 17 passes of CompCert. The authors partition the

17 steps in four categories, depending on the proof technique they use to show CT preservation.
Every category proves an instance of CC∼ by improving on the existing CompCert simulation.
In three out of the four cases this is sufficient to also prove CT preservation, while for the last
category a further proof is necessary. In what follows, we first encode CT as an instance of abstract
noninterference, i.e., show for which operators CT = ANI

ρCT

ϕCT

and then use our framework to

understand why modifying CompCert simulation is sufficient in the first three categories but not
in the last one. For each category, Theorem 5.2 applies, so no ρ that respects Equation (1) can
notice any interference on compiled programs that were source constant-time. In the first three
categories the attacker that defines CT—ρCT—respects the equation,13 i.e.,

∀s•t•. s• •∼ t• ⇒ ρCT (t•) = ρCT (τ̃ • (ρCT (s•))), (2)

and CT preservation is therefore a consequence of CC∼. In the last category, ρCT does not respect
Equation (2) and the authors have to prove an additional theorem, the CT-diagram.

Trace Model and CT as an instance of ANI. The formal definition of CT is given by extending
the semantics of the languages in CompCert and enriching the traces of input and output events
with leakages. Leakages are results of execution steps that involve conditional branching or mem-
ory access. A program is CT w.r.t. a certain relation over program states φ [7, Definition 3.2] iff
for every two initial states i, i ′ such that φ (i, i ′), the leakages that can be observed are the same.
Notice that in Reference [7, Definition 3.2] the secret is stored in the program states and defined
by φ, therefore to regard CT as an instance of abstract noninterference program states will be re-
garded as inputs and events together with their leakages as outputs. More precisely, a trace t is a
sequence of of triples (i, e, j ) where i and j are program states and e an event in the instrumented
semantics, i.e., input/output event and associated leakage.

We consider:

• ϕCT to be (the uco corresponding to) the relation defined by t ◦1 ϕCT t ◦2 iff t ◦1, t
◦
2 have the same

length with t ◦1 = (i0, i1), (i1, i2), . . ., t ◦2 = (j0, j1), (j1, j2), . . . and ∀n. φ (in , jn ).
• ρCT to be (the uco corresponding to) the relation defined by t •1 ρCT t •2 iff t •1, t

•
2 have the same

length with t •1 = e0, e1, . . ., t •2 = f0, f1, . . . and ∀n. leak(en ) = leak( fn ), where leak(e ) denotes
the leakage in the event e ( projection of e on the leak-only semantics [7]).

It is easy to check that CT = ANI
ρCT

ϕCT

for the ϕCT and ρCT given above.

We now present more details for each of the four proof techniques adopted by Barthe et al.
[7]. Since CT is defined only for safe programs [7, Definition 3.1], we can assume no undefined
behavior is ever encountered and have a simpler presentation. We also omit ϕ# coming from the
application of Theorem 5.2, as it always coincides with ϕCT .

Constant-time security preservation by leakage preservation (Barthe et al. [7, Sec-

tion 5.2]). For compilation passes that belong to this category, the authors prove that the source

13In each compilation step, source and target traces are drawn from the same set so ρCT can be applied to both source and
target traces.
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leakage is preserved exactly in the target. Thus, in this simple case, the theorem proved is CC∼

where •∼ is point-wise equality of events together with leakages, τ̃ • the identity and ρCT satisfies
Equation 2 by idempotency of ρCT ,

ρCT (τ̃ • (ρCT (s•)) = [s• •∼ t• ⇒ s• = t•]

ρCT (τ̃ • (ρCT (t•)) = [τ̃ • = λ x .x]

ρCT (ρCT (t•)) = [ρCT idempotent]

ρCT (t•).

CT preservation from leakage-erasing simulation (Barthe et al. [7, Section 5.3]). In this
case, CC∼ is proved for a relation that erases source leakage-only events, i.e., those events that
do not contain inputs or outputs, but only the amount of leakage revealed. More precisely (see
also Reference [7, Fig. 8]) for s• = e0, e1, . . . and t• = e0, e1, . . . of the same length, s• •∼ t• iff

∀k, ek = ek ∨ (ek = ϵ ∧ ek is leak only).

The property mapping associated to the above relation, τ̃ •, erases all leak-only events from the
traces of a source property. If an attacker cannot notice at any point any difference in the leakages
of two traces and we erase the leak-only events from them, then the attacker will still not notice
any difference on leakages, therefore it is easy to check that Equation 2 holds also in this case.

CT preservation via memory injection (Barthe et al. [7, Section 5.4]). This case is analogous
to the one above, save that it rests on a more complex relation •∼ involving a memory injection
relation (see Barthe et al. [7, Definition 5.8]). Intuitively, •∼ relates source and target traces that
differ at most in leakages due to memory accesses. While in the previous case, leakages where
simply erased, here they are modified and crucially with some uniformity. Reasoning as in the
previous case, if an attacker cannot notice a difference in the leakages of two traces and we modify
equal leakages of the same factor, then the attacker will still not notice any difference on leakages,
thus Equation 2 holds.

CT preservation from CT-diagram (Barthe et al. [7, Section 5.5]). In this case, ρCT does not
satisfy Equation 2 because the counting simulation ([7, Definition 5.10]) does not necessarily relate
source and target leakages but only the inputs and outputs.14 CC∼ alone does not ensure that an
attacker cannot observe any interference in the target leakages, to show preservation of CT the
authors need to prove an extra condition, the so-called CT diagram [8].

5.7.2 Value-dependent noninterference. Sison and Murray [74] introduce a compiler that prov-
ably preserves value-dependent noninterference (VDNI) for a concurrent language with
shared variables. Value-dependent means that the secrecy level of a variable—low or high—may
depend on the value of some other variable, called the control variable of the first, and therefore
could change throughout its lifetime.
Preservation of VDNI for concurrent programs enjoys compositionality, meaning that it follows

from the preservation of VDNI for each single thread [52] under certain conditions. As the compo-
sitionality result is orthogonal to our framework, we can study either (1) the preservation of VDNI
for one local thread or for (2) the whole-program,
In the remainder of this section, we focus on the preservation of VDNI for a single thread, which

is proven by showing a secure refinement relation between source and compiled threads. Similarly
to the previous section, the secure refinement is expressed via a cube diagram (Reference [74],
Figure 1) and can be proven directly [52] or split into more obligations [74].

14The interested reader will notice the difference from the previous category by comparing condition (1) of Definition 5.10
and condition (1) of Definition 5.8 by Barthe et al. [7].
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As Sison and Murray [74] use a state transition-based semantics, we first show how to encode
this semantics into a trace model by defining the∼ relation based on the secure refinement relation.
We then show how to encode VDNI as an instance of abstract noninterference (i.e., both VDNIS =

ANI
ρ

ϕ
and VDNIT = ANI

ρ

ϕ
). Finally, we apply Theorem 5.2 and conclude that if W satisfies VDNIS,

then W↓ satisfies VDNIT given that the trace relation ∼ has properties defined in Reference [52,
Theorem 5.1].

Source (WHILE) and target (RISC-like assembly) languages are equipped with a determined eval-
uation step semantics (i.e., a semantics where the only source of nondeterminism are external
inputs; Reference [74], Section 2) between thread-local configurations, which are triples of the
form 〈tps,mds,mem〉. In such a configuration, mds is the access mode state for program variables
and mem is a map relating global program variables to their values. Both of these components are
common to the source and target language. The tps component denotes the thread-private state.
In the source language, it is the program to be executed. In the target language, tps consists of the
target program (labelled assembly-language instructions), of a program counter, and of the set of
thread-local registers. We denote WHILE configurations by tuples of the form: 〈tps,mds,mem〉 and
RISC configurations by tuples of the form: 〈tps,mds,mem〉.

Trace Model and Trace relation. We consider traces that are (possibly infinite) sequences of
configurations. The traces produced by a program are the sequences of local configurations that
the program may encounter during execution, according to the evaluation semantics. Let s =
〈tps1,mds1,mem1〉, 〈tps2,mds2,mem2〉 . . . be a source trace. The input projection is defined by
s◦ = 〈mds1,mem1〉 (the tuple consisting of the access modes and the memory in the first state) and
the output projection is defined by s• = s (the trace itself). Input/output projections are defined
similarly for target traces.
We take the trace relation ∼ ⊆ TraceS × TraceT to be the point-wise lifting of a se-

cure refinement relation R (Reference [74], Definition 6). Source and target configurations
〈tps,mds,mem〉 R 〈tps,mds’,mem’〉 that are related coincide on the access mode and memory
part (i.e., mds = mds’ and mem = mem’; Reference [74], Definition 4), so ◦∼ is simply the identity
and •∼ coincides with ∼.
VDNI as abstract noninterference. A program satisfies VDNI (Reference [74], Definition 2) if
any two of its executions starting in low equivalent memories are related via a strong low bisimu-
lation modulo modes (strong low bisimulation mm). Intuitively, a strong low bisimulation mm is a
bisimulation that preserves low-equivalence. Preservation of VDNI is proved by Murray et al. [52]
by showing that for every strong low-bisimulation mm B for source threads, there exists a target
strong low bisimulation mm B such that if two source threads are related by B, then the compiled
threads are related by B (Reference [52], Theorem 5.1).
The intuition for the encoding of VDNI as an instance of abstract noninterference is to model

low equivalence through the operator ϕ, and bisimilarity through ρ. More rigorously, VDNIS =
ANI

ρ

ϕ
, where ϕ and ρ are defined as following:

For s◦ = 〈mds1,mem1〉,

ϕ (s◦) =
{
〈mds1,mem′

1〉
��� mem1 =

Low
mds1

mem′
1

}
,

where =Low
mds

is the low-equivalence modulo mds (Reference [74], Definition 1).
For s• = 〈tps1,mds1,mem1〉, 〈tps2,mds2,mem2〉, . . . ,

ρ (s•) = {〈tps′1,mds′1,mem′
1〉, 〈tps′2,mds′2,mem′

2〉, . . . |
∀i .∃Bi. (〈tpsi,mdsi ,memi 〉, 〈tps′i ,mds′i ,mem′

i 〉) ∈ Bi},
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where Bi denotes a strong low bisimulation modulo modes. Similarly VDNIT = ANI
ρ

ϕ
where

ϕ (t◦) =
{
〈mds1,mem′

1〉
��� mem1 =

Low
mds1

mem′
1

}
,

ρ (t•) = {〈tps′1,mds′1,mem′
1〉, 〈tps′2,mds′2,mem′

2〉, . . . |
∀i .∃Bi. (〈tpsi,mdsi ,memi 〉, 〈tps′i ,mds′i ,mem′

i 〉) ∈ Bi}.

The relation R is a simulation, and therefore CC∼ holds. To apply Theorem 5.2 and conclude that
whenever a source program W satisfies VDNIS = ANI

ρ

ϕ
, then W↓ satisfies VDNIT = ANI

ρ

ϕ
, it is

sufficient for ρ to satisfy Equation 1, that is,

ρ (t•) = ρ (τ̃ • (ρ (s•)))

for s• •∼ t•. If one is willing to unfold all definitions, then this amounts to show the set of
traces “bismilar” to t• coincides with the set of traces that are bisimilar to some t′• and s′• •∼ t′•

for some s′• bisimilar to s•. Splitting the “coincides” (set equality) into the two directions of
inclusion, the “subseteq” direction is immediate, while for the “supseteq” direction one has to
prove some properties of R, the ones in the definition of secure − refinement (Murray et al.
[52, inlined above Theorem 5.1]) which entails preservation of low-equivalence as shown in
Murray et al. [52, Theorem 5.1].

In summary, our framework makes it possible to precisely characterize the target noninterfer-
ence properties that are implied by (trace-relating) correct compilation of source noninterfering
programs. As we have shown, such properties are not necessarily as strong as desired. Crucially,
the target noninterference property one gets for free for a given trace-relating correct compiler
is a function of the trace relation under consideration. By considering more sophisticated trace
relations, one could be able to get more interesting noninterference properties in the target for
free—but this would likely come at the expense of a more challenging trace-relating compiler cor-
rectness proof.

6 TRACE-RELATING SECURE COMPILATION

So far, we have studied compiler correctness criteria for whole, standalone programs. However,
in practice, programs do not exist in isolation, but in a context where they interact with other
programs, libraries, etc. In many cases, this context cannot be assumed to be benign and could
instead behave maliciously to try to disrupt a compiled program.
Hence, in this section, we consider the following secure compilation scenario: A source program

is compiled and linkedwith an arbitrary target-level context, i.e., one thatmay not be expressible as
the compilation of a source context. Compiler correctness does not address this case, as it does not
consider arbitrary target contexts, looking instead at whole programs (empty context [41]) or well-
behaved target contexts that behave like source ones (as in compositional compiler correctness [33,
37, 56, 76]).

Summary of the work of Abate et al. [3]. To account for this scenario, Abate et al. [3] describe
several secure compilation criteria based on the preservation of classes of (hyper)properties (e.g.,
trace properties, safety, hypersafety, hyperproperties) against arbitrary target contexts. For each
of these criteria, they give an equivalent “property-free” criterion, analogous to the equivalence
between TP and CC=. For instance, their robust trace property preservation criterion (RTP)

states that, for any trace property π , if a source partial program P plugged into any context CS

satisfies π , then the compiled program P↓ plugged into any target context CT satisfies π . Their
equivalent criterion to RTP is RTC, which states that for any trace produced by the compiled
program, when linked with any target context, there is a source context that produces the same
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trace. Formally (writingC [P] to mean the whole program that results from linking partial program
P with context C) they define:

RTP ≡ ∀P. ∀π . (∀CS. ∀t .CS [P]�t ⇒ t ∈ π ) ⇒ (∀CT. ∀t. CT [P↓]�t ⇒ t ∈ π ),

RTC ≡ ∀P. ∀CT.∀t .CT [P↓]�t ⇒ ∃CS. CS [P]�t .

In the following, we adopt the notation P |=R π to mean “P robustly satisfies π ,” i.e., P satisfies π

irrespective of the contexts (C) it is linked with. Formally, P |=R π
def
= ∀C,C [P] |= π , where |= is

the same as before. Thus, we write more compactly:

RTP ≡ ∀π . ∀P. P |=Rπ ⇒ P↓ |=Rπ .

All the criteria of Abate et al. [3] share this flavor of stating the existence of some source con-
text that simulates the behavior of any given target context, with some variations depending on
the class of (hyper)properties under consideration. For trace properties, they also have criteria
that preserve safety properties plus their version of liveness properties. For hyperproperties, they
have criteria that preserve hypersafety properties, subset-closed hyperproperties, and arbitrary
hyperproperties. Finally, they define relational hyperproperties, which are relations between the
behaviors of multiple programs for expressing, e.g., that a program always runs faster than another.
For relational hyperproperties, they have criteria that preserve arbitrary relational properties, rela-
tional safety properties, relational hyperproperties, and relational subset-closed hyperproperties.
Each category of criteria provides different kinds of security guarantees (confidentiality or in-

tegrity) for the code and data segments of programs. Roughly speaking, the security guarantees due
to robust preservation of trace properties regard only protecting the integrity of the program from
the context, the guarantees of hyperproperties also regard data confidentiality, and the guaran-
tees of relational hyperproperties may even regard code confidentiality. Naturally, these stronger
guarantees are increasingly harder to enforce and prove.
All the criteria of Abate et al. [3] are stated in a setting where source and target traces are

the same. In this section, we extend their results to the trace-relating setting, obtaining trintarian
views for secure compilation. There are many similarities with Section 2 that show up in the secure
compilation setting, too, but also some crucial differences. As in Section 2, the application of σ̃ or
τ̃ , may lose the information that a property belongs to the class Safety, or that a hyperproperty
is subset-closed, which are both crucial for the equivalence with the property-free criterion of
Abate et al. [3]. As in Section 2, we solve this problem by interpreting classes of properties as an
abstraction of another class of properties induced by a closure operator. Differently from Section 2,
the presence of adversarial contexts makes the criteria for subset-closed hyperproperties and trace
properties distinct. Abate et al. [3] show that the criterion for robust preservation of hypersafety
is distinct from robust safety preservation, and all criteria about classes of trace properties are
distinct from their relational counterparts, e.g., robust preservation of relational safety and robust
preservation of safety properties are different. We therefore further generalize the argument from
Section 3.2 to safety hyperproperties as well as to relational hyperproperties.
Specifically, we provide a trinity for the preservation of trace properties and subset-closed hy-

perproperties (Section 6.1), of safety properties and hypersafety hyperproperties (Section 6.2), of
hyperproperties (Section 6.3), and for 2-relational (hyper)properties (Section 6.4). We conclude the
section by studying the relative expressiveness of these criteria (Section 6.5).

Robustness and Compositional Compilation. Before diving into the criteria for robust compilation,
it is worth noting the relationship between these and compositional compiler correctness. Com-

positional compiler correctness (CCC) is a statement of compiler correctness for programs that
are linked against some contexts. Unlike robustness, which imposes no constraints on the contexts,
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CCC imposes conditions on the target contexts that compiled programs can be linked against: They
need to be related (in ways that vary from work-to-work [38, 56]) to the source contexts [65]. As
Patrignani and Garg [64] also point out, the notions of CCC and of robust compilation are in-
comparable: Neither can be proven stronger than the other. This is not surprising, since robust
compilation criteria are used to prove compiler security while CCC is used to prove correctness.15

The criteria we adopt could be generalized further by adding an extra parameter that qualifies
the relation between source and target contexts. Such a general statement would let us express
both CCC and robust compilation by picking the correct extra parameter. However, we refrain
from presenting such general statements, as the implications in terms of preservation of classes of
(hyper)properties has not been studied for them.

6.1 Trace-relating Secure Compilation: Trace Properties and Subset-closed

Hyperproperties

This section shows the simple generalization of RTC to the trace-relating setting (RTC∼ ) and its
corresponding trinitarian view (Theorem 6.1). Then, it presents the trinitarian view for criteria
that preserve subset-closed hyperproperties (Theorem 6.2).

Theorem 6.1 (Trinity for Robust Trace Properties ). For any trace relation ∼ and induced
property mappings τ̃ and σ̃ , we have: RTPτ̃ ⇐⇒ RTC∼ ⇐⇒ RTPσ̃ , where

RTC∼ ≡ ∀P ∀CT ∀t. CT [P↓]�t ⇒ ∃CS ∃s ∼ t. CS [P]�s,

RTPτ̃ ≡ ∀P ∀πS ∈ 2TraceS . P |=R πS ⇒ P↓ |=R τ̃ (πS),

RTPσ̃ ≡ ∀P ∀πT ∈ 2TraceT . P |=R σ̃ (πT) ⇒ P↓ |=R πT.

The trinity for robust trace property preservation is the straightforward adaptation of the concepts
of Section 2 to the definitions of Abate et al. [3]. Intuitively, these criteria simply deal with partial
programs P instead of whole programs W. Necessarily, these criteria then consider arbitrary pro-
gram contexts linked with P; the universal quantification overCS andCT are tacit in the expression
|=R .

We can also generalize Section 2 to robust subset-closed hyperproperties (Theorem 6.2). How-
ever, unlike the correct compilation case of Section 2, the equivalent property-free criterion
(RSCHC∼ ) does not coincide with RSC∼ , but states the existence of a single source context for all
the target traces produced by a program in a given context.

Theorem 6.2 (Trinity for Robust Subset-closed Hyperproperties ). Let SCHS and SCHT

denote the sets of all subset-closed hyperproperties in the source and target languages, respectively. For
any trace relation∼ and its existential and universal images lifted to hyperproperties (that is, the lifting
of the respective functions from Definition 2.5), τ̃ and σ̃ , and for Cl⊆ (H ) = {π | ∃π ′ ∈ H . π ⊆ π ′},
we have: RSCHPCl⊆◦τ̃ ⇐⇒ RSCHC∼ ⇐⇒ RSCHPCl⊆◦σ̃ , where

RSCHC∼ ≡ ∀P ∀CT ∃CS ∀t CT [P↓]�t ⇒ ∃s ∼ t′. CS [P]�s,

RSCHPCl⊆◦τ̃ ≡ ∀P ∀HS ∈ SCHS. P |=R HS ⇒ P↓ |=R Cl⊆ (τ̃ (HS)),

RSCHPCl⊆◦σ̃ ≡ ∀P ∀HT ∈ SCHT. P |=R Cl⊆ (σ̃ (HT)) ⇒ P↓ |=R HT.

15 We remark CCC has been used to conclude security of compilation in the previously discussed work of Sison andMurray
[74] (and in its predecessor [52]). However, there is a key difference in the “role” of contexts: In robust compilation criteria,
contexts model attackers, while in Sison andMurray [74] contexts are other bits of compiled code. This treatment lets Sison
and Murray [74] reason compositionally about the concurrently executing compiled code.
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6.2 Trace-relating Secure Compilation: Safety and Hypersafety

In this section, we elaborate the robust preservation of safety (Theorem 6.3) and hypersafety prop-
erties (Theorem 6.4). Similar to Section 3.2, we consider the trace model adopted by Abate et al.
[3] to ease the presentation. Our starting point is the two equivalent criteria for preservation of
robust satisfaction of all and only the safety properties [3],

RSP ≡ ∀P. ∀π ∈ Safety. P|=Rπ ⇒ P↓|=Rπ ,

RSC ≡ ∀P. ∀CT.∀m.CT [P↓]�∗m ⇒ ∃CS. CS [P]�∗m,

where CT [P↓]�∗m is a shorthand for ∃t ≥ m.CT [P↓]�t .

RSP differs from RTP, as it only quantifies over safety properties, and RSC differs from RTC, as it
quantifies over finite prefixesm, rather than complete traces t . This comes from the fact that safety
properties can be characterized in terms of sets of bad prefixes (as in Definition 3.4). Unfolding�∗,
we can interpret RSC as follows: If CT [P↓] produces a trace t ≥ m that violates a specific safety
property, namely, the one defined by M = {m}, then there exists CS in which P violates the same
safety property, producing a trace t ′ ≥ m but possibly distinct from t .
Our generalization of RSC to the trace-relating setting states that whenever CT [P↓] produces

a trace t that violates a target safety property, there exists a source context CS in which P violates
the source interpretation of the property, i.e., its image through σ̃ . The following theorem defines
RSC∼ and its two equivalent formulations:

Theorem 6.3 (Trinity for Robust Safety Properties ). For any trace relation ∼ and for the

corresponding property mappings τ̃ and σ̃ , we have: RTPSafe◦τ̃ ⇐⇒ RSC∼ ⇐⇒ RSPσ̃ , where

RSC∼ ≡ ∀P ∀CT ∀t ∀m ≤ t.CT [P↓]�t ⇒ ∃CS ∃t′ ≥ m ∃s ∼ t′. CS [P]�s,

RTPSafe◦τ̃ ≡ ∀P∀πS ∈ 2TraceS .P |=R πS ⇒ P↓ |=R (Safe ◦ τ̃ ) (πS),

RSPσ̃ ≡ ∀P∀πT ∈ SafetyT.P |=R σ̃ (πT) ⇒ P↓ |=R πT,

where the closure operator Safe is the one introduced in Section 3.2.

Exactly like Section 3.2, Theorem 6.3 exploits the fact that

Safe ◦ τ̃ : 2TraceS � SafetyT : σ̃

is a Galois connection between source properties and target safety properties and the argument
generalizes to arbitrary closure operators on target properties ( ). More interestingly, we can
further generalize this idea to hypersafety. Hypersafety lifts the idea of safety with another level
of sets (just like hyperproperties do w.r.t. trace properties) to talk about multiple runs of the same
program. Just like for safety, hypersafety is concerned with a set of bad prefixes (called M) that
no program upholding the hypersafety property should extend. Formally, a hyperproperty H is
hypersafety if: ∀π . π � H ⇒ (∃M .M ≺ π ∧ (∀π ′M ≺ π ′ ⇒ π ′ � H )). In Theorem 6.4, we indeed
exploit the following Galois connection between source subset-closed hyperproperties and target:

HSafe ◦ τ̃ : SCHS � HSafetyT : Cl⊆ ◦ σ̃ ,

where HSafetyT =
{
HSafe(HT) ��� HT ∈ 22

TraceT
}
and HSafe is the closure operator that maps an

arbitrary target hyperproperty HT to the target hypersafety that best over-approximates HT.16

16HSafe(HT) = ∩
{
H′

T
��� HT ⊆ H′

T
∧ H′

T
∈ HSafetyT

}
. See, e.g., Clarkson and Schneider [18] and Pasqua and Mastroeni

[58].
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Theorem 6.4 (Trinity for RobustHypersafety ). For any trace relation∼ and for the induced

property mappings τ̃ and σ̃ , we have: RSCHPHSafe◦τ̃ ⇐⇒ RHSC∼ ⇐⇒ RHSPCl⊆◦σ̃ , where

RHSC∼ ≡ ∀P ∀CT ∀M ∈ Mfin. M ≤ beh(CT[P↓]) ⇒
∃CS ∀m ∈ M ∃t ≥ m. ∃s ∼ t. CS [P]�s,

RSCHPHSafe◦τ̃ ≡ ∀P ∀HS ∈ SCHS. P |=R HS ⇒ P↓ |=R HSafe(τ̃ (HS)),

RHSPCl⊆◦σ̃ ≡ ∀P ∀HT ∈ HSafetyT.P |=R Cl⊆ (σ̃ (HT)) ⇒ P↓ |=R HT,

and Mfin is the set of finite sets of prefixes.

We conclude this section with the following remark: The reader might wonder about extracting a
“new” trace relation from the Galois connection Safe ◦ τ̃ : 2TraceS � SafetyT : σ̃ and get another
formulation of RSC∼. We note that this is not possible in general, as the class of safety proper-
ties, i.e., closed sets, is not necessarily a powerset and hence Lemma 2.7 cannot be applied.

6.3 Trace-relating Secure Compilation: Arbitrary Hyperproperties

We already mentioned that some properties of interest for security, e.g., possibilistic information-
flow are not subset closed [18]. In this section, we lift the results from Section 3.3 to the secure
compilation setting. Once again, the trinity is weak, as the equivalence to RHPσ̃ requires an extra
assumption.

Theorem 6.5 (Weak Trinity for Robust Hyperproperties ). For a trace relation ∼ ⊆
TraceS × TraceT and induced property mappings σ̃ and τ̃ , we have:

RHC∼ ⇐⇒ RHPτ̃ ;
if τ̃ � σ̃ is a Galois insertion (i.e., τ̃ ◦ σ̃ = id), then RHC∼ ⇒ RHPσ̃ ,
if σ̃ � τ̃ is a Galois reflection (i.e., σ̃ ◦ τ̃ = id), then RHPσ̃ ⇒ RHPτ̃ ,

where RHC∼ ≡ ∀P ∀CT ∃CS ∀t. CT [P↓]�t ⇐⇒ (∃s ∼ t. CS [P]�s),

RHPτ̃ ≡ ∀P ∀HS. P |=R HS ⇒ P↓ |=R τ̃ (HS),

RHPσ̃ ≡ ∀P ∀HT. P |=R σ̃ (HT) ⇒ P↓ |=R HT.

It is therefore possible and correct to deduce a source obligation for a given target hyperproperty
HT (RHC∼ ⇒ RHPσ̃ ) when no information is lost in the composition τ̃ ◦ σ̃ . However, RHPτ̃ is a
consequence of RHPσ̃ when no information is lost in composing in the other direction, σ̃ ◦ τ̃ .

6.4 Trace-relating Secure Compilation: 2-Relational Hyperproperties

Finally, we turn to relational properties and hyperproperties. Relational hyperproperties, as defined
by Abate et al. [3], are predicates on a sequence of behaviors; a sequence of programs has the
relational hyperproperty if their behaviors collectively satisfy the predicate. Depending on the
arity of the sequence, there exist different subclasses of relational hyperproperties, though, for
simplicity, here, we only study relational hyperproperties of arity 2. A key example of a relational
hyperproperty is trace equivalence, which holds if two programs have identical behaviors.
All the trinities in this section follow the pattern of their non-relational counterparts. We first

explain how one can get a Galois connection between source and target relational properties from
a trace relation.
Given a trace relation ∼⊆ TraceS × TraceT, we can relate pairs of source traces with pairs of

target traces point-wise,

(s1, s2) ∼ (t1, t2) ⇐⇒ s1 ∼ t1 ∧ s2 ∼ t2.
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Formally this is ∼2⊆ TraceS
2 × TraceT

2, the product of the relation ∼ with itself. Therefore, by
Lemma 2.7 it corresponds to a Galois connection between source and target relational properties
( ), that with a little abuse of notation17 we still denote by

τ̃ : 2TraceS×TraceS � 2TraceT×TraceT : σ̃ .

Explicitly, for rS ∈ 2TraceS×TraceS and rT ∈ 2TraceT×TraceT ,

τ̃ (rS) = {(t1, t2) | ∃(s1, s2). s1 ∼ t1 ∧ s2 ∼ t2 ∧ (s1, s2) ∈ rS} ,
σ̃ (rT) = {(s1, s2) | ∀(t1, t2). s1 ∼ t1 ∧ s2 ∼ t2 ⇒ (t1, t2) ∈ rT} .

τ̃ and σ̃ are then lifted to relational hyperproperties similarly to Definition 3.2. Explicitly, for

RS ∈ 22
TraceS×TraceS and RT ∈ 22

TraceT×TraceT ,

τ̃ (RS) = {τ̃ (rS) | rS ∈ RS} ,
σ̃ (RT) = {σ̃ (rT) | rT ∈ RT} .

Given a relational property r ∈ 2Trace×Trace and two programs P1, P2, we write P1, P2 |=R r for

∀C . ∀t1t2. C [P1]� t1 ∧ C [P2]� t2 ⇒ (t1, t2) ∈ r .

Given a relational hyperproperty R ∈ 22Trace×Trace
, by P1, P2 |=R R, we mean

∀C .(beh(C [P1]), beh(C [P2])) ∈ R.

Theorem 6.6 (Trinity for Robust 2-Relational Trace Properties ). For any trace relation
∼ and for the corresponding property mappings τ̃ and σ̃ , we have: R2rTPτ̃ ⇐⇒ R2rTC∼ ⇐⇒
R2rTPσ̃ , where

R2rTC∼ ≡ ∀CT ∀P1 ∀P2 ∀t1 ∀t2. (CT [P1↓]�t1 ∧ CT [P2↓]�t2) ⇒
∃CS ∃s1 ∼ t1 ∃s2 ∼ t2. CS [P1]�s1 ∧ CS [P2]�s2,

R2rTPτ̃ ≡ ∀P1P2 ∀rS ∈ 2TraceS×TraceS . P1,P2 |=R rS ⇒ P1↓, P2↓ |=R τ̃ (rS),

R2rTPσ̃ ≡ ∀P1P2. ∀rT ∈ 2TraceT×TraceT . P1,P2 |=R σ̃ (rT) ⇒ P1↓, P2↓ |=R rT.

Next, we propose the trinity for 2-relational subset-closed hyperproperties, i.e., elements of

22
Trace×Trace

that are closed under subsets. Exactly as in the case of subset-closed hyperproperties,
the application of τ̃ and σ̃ may lose the information of being subset-closed. To guarantee the
equivalence of the three criteria, we compose the two mappings with a closure operator that we
still denote by Cl⊆ .

Theorem 6.7 (Trinity for 2-Relational Robust Subset-Closed Hyperproperties ).
For any trace relation ∼ and for the corresponding property mappings τ̃ and σ̃ , we have

R2rSCHPCl⊆◦τ̃ ⇐⇒ R2rSCHC∼ ⇐⇒ R2rSCHPCl⊆◦σ̃ , where

R2rSCHC∼ ≡ ∀CT ∀P1 ∀P2 ∃CS ∀t1 ∀t2. (CT [P1↓]�t1 ∧ CT [P2↓]�t2) ⇒
∃s1 ∼ t1 ∃s2 ∼ t2. CS [P1]�s1 ∧ CS [P2]�s2,

R2rSCHPCl⊆◦τ̃ ≡ ∀P1 ∀P2 ∀RS ∈ 2RelSCHS. P1,P2 |=R RS ⇒ P1↓, P2↓ |=R τ̃ (RS),

R2rSCHPCl⊆◦σ̃ ≡ ∀P1 ∀P2 ∀RT ∈ 2RelSCHT.P1,P2 |=R σ̃ (RT) ⇒ P1↓, P2↓ |=R RT.

17Technically, we should write: τ̃ 2 � σ̃ 2.
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We move now to the class of relational safety properties, a notion that generalizes safety prop-
erties to relations on programs. Similarly to Theorem 6.3, R2rSPσ̃ quantifies over target relational
safety properties, while R2rTP2rSafe◦τ̃ quantifies over all source relational property and compose τ̃
with 2rSafe a closure operator that best approximates a relational property with a relational safety
property.

Theorem 6.8 (Trinity for Robust 2-Relational Safety Properties ). For any trace relation

∼ and for the corresponding property mappings τ̃ and σ̃ , we have: R2rTP2rSafe◦τ̃ ⇐⇒ R2rSC∼ ⇐⇒
R2rSPσ̃ , where

R2rSC∼ ≡ ∀CT ∀P1P2 ∀t1t2 ∀m1 ≤ t1 ∀m2 ≤ t2. CT [P1↓]�t1 ⇒ CT [P2↓]�t2 ⇒
∃CS ∃t′1 ≥ m1 ∃s1 ∼ t′1 ∃t′2 ≥ m2 ∃s2 ∼ t′2. CS [P1]�s1 ∧ CS [P2]�s2,

R2rTP2rSafe◦τ̃ ≡ ∀P1P2 ∀rS ∈ 2TraceS×TraceS . P1,P2 |=R rS ⇒ P1↓, P2↓ |=R (2rSafe ◦ τ̃ ) (rS))),

R2rSPσ̃ ≡ ∀P1P2 ∀rT ∈ 2rel-SafetyT. P1,P2 |=R σ̃ (rT) ⇒ P1↓, P2↓ |=R rT.

Finally, we present the most general criterion: preservation of arbitrary 2-relational hyperprop-
erties. As for the preservation of arbitrary hyperproperties, this (weak) trinity requires additional
assumptions to hold, namely, that the Galois connection is an insertion or a reflection.

Theorem 6.9 (Weak trinity for Robust 2-Relational Hyperproperties ). For a trace re-
lation ∼ ⊆ TraceS × TraceT and the corresponding property mappings σ̃ and τ̃ , we have:

R2rHC∼ ⇐⇒ R2rHPτ̃ ;
if τ̃ � σ̃ is a Galois insertion (i.e., τ̃ ◦ σ̃ = id), then R2rHC∼ ⇒ R2rHPσ̃ ,
if σ̃ � τ̃ is a Galois reflection (i.e., σ̃ ◦ τ̃ = id), then R2rHPσ̃ ⇒ R2rHPτ̃ ,

where R2rHC∼ ≡ ∀P1P2 ∀CT ∃CS.

(∀t. CT [P1↓]�t ⇐⇒ (∃s ∼ t. CS [P1]�s)) ∧
(∀t. CT [P2↓]�t ⇐⇒ (∃s ∼ t. CS [P2]�s)),

R2rHPτ̃ ≡ ∀P1 ∀P2 ∀RS. P1,P2 |=R RS ⇒ P1↓, P2↓ |=R τ̃ (RS),

R2rHPσ̃ ≡ ∀P1 ∀P2 ∀RT.P1,P2 |=R σ̃ (RT) ⇒ P1↓, P2↓ |=R RT.

6.5 Relating the Secure Compilation Trinities

Figure 4 orders criteria referring to the same trace relation∼ according to their relative strength. If a
trinity entails another (denoted by⇒), then the former provides stronger security for a compilation
chain than the latter.
The hypotheses of insertion and reflection mentioned in Theorem 6.9 and Theorem 6.5 are high-

lighted with the labels “Ins” and “Refl.” Recall that when composing τ̃ with Safe, we quantify over
the whole class of source trace properties rather than only safety properties. This is represented by
the blue background in RTPSafe◦τ̃ . The trinity for the robust preservation of arbitrary trace prop-
erties is on the same blue background. Red and green backgrounds are reserved for subset-closed
hyperproperties and arbitrary relational properties and serve the same purpose.
We now describe how to interpret the acronyms in Figure 4. All criteria start with R,

meaning they refer to robust preservation (secure compilation criteria). Criteria for relational
hyperproperties—here only arity 2 is shown for simplicity—contain 2r. Next, criteria names spell
the class of hyperproperties they preserve: H for hyperproperties, SCH for subset-closed hyper-
properties, HS for hypersafety, T for trace properties, and S for safety properties. Finally, property-
free criteria end with a C, while property-full ones involving σ̃ and τ̃ end with P. Thus, robust (R)
subset-closed hyperproperty-preserving (SCH) compilation (C) is RSCHC∼ , robust (R) two-relational
(2r) safety-preserving (S) compilation (C) is R2rSC∼ , and so on.
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Fig. 4. Hierarchy of trinitarian views of secure compilation criteria preserving classes of hyperproperties and
the key to read each acronym. Shorthands “Ins.” and “Refl.” stand for Galois Insertion and Reflection. The

symbol denotes trinities proven in Coq.

7 INSTANCES OF TRACE-RELATING SECURE COMPILATION

This section presents instances of compilers that adopt our framework for secure compilation pur-
poses. We provide three illustrative cases for compilers that, respectively, robustly preserve trace
properties (Section 7.1), safety properties (Section 7.2), and hypersafety properties (Section 7.3).
The last two examples are not novel instances we devise but rather existing work whose results
we recount as instantiations of our framework.

7.1 An Instance of Trace-relating Robust Preservation of Trace Properties

This subsection illustrates trace-relating secure compilation when the target events are strictly
more events than the source ones.
The source and target languages used here extend the syntax of the source language of Sec-

tion 4.3.1. Both languages have outputs of naturals, and the expressions that generate them: outS n
and outS e. Additionally, the target has a different output action and its related expression outT n;
this is the only difference between the languages. The extra events in the target model the ability
of target language to perform potentially dangerous operations (e.g., writing to the hard drive),
which cannot be performed by the source language, and against which source-level reasoning can
therefore offer no protection.
Both languages and compilation chains now deal with partial programs P , contexts C, and link-

ing of those two to produce whole programs C [P]. In this setting, a whole program W is the
combination of a main expression to be evaluated and a set of function definitions fs (with dis-
tinct names) that can refer to their argument (arg) symbolically and can be called by the main
expression and by other functions (f (e). The set of functions of a whole program is the union of
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the functions of a partial program and a context; the latter also contains the main expression.

e ::= · · · | f (e) | outS n | arg e ::= · · · | f (e) | outS n | arg | outT n

i ::= · · · | outS n i ::= · · · | outS n | outT n

fs ::=
〈
f1, e1

〉
, . . . ,

〈
fn, en

〉
P ::=

〈
fs, e

〉
C ::= fs W ::= C[P]

The extensions of the typing rules and the operational semantics for whole programs are unsur-
prising and therefore elided. The trace model also follows closely that of Section 4.3: It consists of
a list of regular events (including the new outputs) terminated by a result event.18 A partial program
and a context can be linked into a whole program when their functions satisfy the requirements
mentioned above.
We define the homomorphic compiler ( ·↓) that translates each source construct into its target

correspondent. Thus, the compiler never introduces the additional target instruction outT n. Since
it is straightforward, the formalization of the compiler is elided.

Relating Traces. In the present model, source and target traces differ only in the fact that the
target draws (regular) events from a strictly larger set than the source, i.e., ΣT ⊃ ΣS. A natural
relation between source and target traces essentially maps a given target trace t the source trace
that erases from t those events that exist only at the target level. This is reasonable, because only
target contextsC (not compiled programs P↓) can perform the extra target actions, as the compiler
does not introduce them. Let t|ΣS indicate trace t filtered to retain only those elements included in
alphabet ΣS. We define the trace relation as:

s ∼ t ≡ s = t|ΣS .

In the opposite direction, a source trace s is related to many target ones, as any target-only
events can be inserted at any point in s. The induced mappings for this relation are:

τ̃ (πS) =
{
t �� ∃s. s = t|ΣS ∧ s ∈ πS

}
,

σ̃ (πT) =
{
s �� ∀t. s = t|ΣS ⇒ t ∈ πT

}
.

That is, the target guarantee of a source property is that the target has the same source-level
behavior, sprinkled with arbitrary target-level behavior. Conversely, the source-level obligation of
a target property is the aggregate of those source traces, all of whose target-level enrichments are
in the target property.
Since the languages are very similar, it is simple to prove that our compiler is secure according

to the trace relation ∼ defined above.

Theorem 7.1 ( ·↓ is Secure ). ·↓ is RTC∼ .

7.2 An Instance of Trace-relating Robust Preservation of Safety Properties

I/O events are not the only instance of events that compilers consider. Especially in the setting
of secure compilation, where a compartmentalized partial program interacts with a context, inter-
action traces are often used [3, 35, 59, 64]. Consider a language analogous to that of the previous
section, where the context C defines a set of functions Fc and the program defines a different set
Fp. Interaction traces (generally) record the control flow of calls between these two sets via actions
that are call f v and ret v [34]. These actions indicate a call to function f with parameter v and a
return with return value v. In case the context calls a function in Fp (or returns to a function in Fp),
the action is decorated with a ? (i.e., those actions are call f v? and ret v?). Dually, the program

18Notice that the languages are strictly terminating.
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calling a function in Fc (or returning to it) generates an action decorated with a ! (i.e., those actions
are call f v! and ret v!).
Patrignani and Garg [64] consider precisely such a setting. Their languages are simple like those

presented here but impure; their source has an ML-like heap and the target has a memory that is
indexed by natural numbers and capabilities to protect addresses. Moreover, they define a compiler
that preserves safety properties of source programs (i.e., it is RSC∼ in the sense of Theorem 6.3)
by relying on the target capabilities. The interesting point, however, is that they also consider
source and target traces to be distinct, since the two languages have different values. Concretely,
the source has bools and nats and the target only has nats, plus in the source, heap addresses
are abstract locations � while in the target they are nats. Thus, to prove RSC∼ , they rely on a
cross-language relation on values, which is lifted to trace actions, and then lifted point-wise to
traces (analogously to what we have done in Section 4.3, 4.4, and 7.1). To relate addresses, their
cross-language relation is equipped with a partial bijection between source and target addresses,
this bijection grows monotonically with every reduction step.
Besides defining a relation on traces (which is an instance of ∼), they also define a relation

between source and target safety properties that supports concurrent programs.19 Thus, they really
provide an instantiation of τ that maps all safe source traces to the related target ones. This ensures
that no additional target trace is introduced in the target property, and source safety properties are
mapped to target safety ones by τ . Thus, their compiler is proven to generate code that respects
τ , so they really achieve a variation of RTPSafe◦τ̃ from Theorem 6.3. Their proofs are based on
standard techniques either for secure compilation (i.e., trace-based backtranslation [61]) and for
correct compilation (i.e., forward/backward simulation [42]).

7.3 An Instance of Trace-relating Robust Preservation of Hypersafety Properties

Patrignani and Garg [63] study the preservation of hypersafety from the perspective of secure
compilation. Again, their result can be interpreted in our setting. They consider reactive systems,
where trace alphabets are partitioned in input actions α? and output actions α !, whose concatena-
tion generate traces α?α !. We use the same notation as before and indicate such sequences as s and
t, respectively. The set of target output actions α ! includes an action

√
that has no source coun-

terpart (i.e., �α? ∼
√
) and whose output does not depend on internal state (thus, it cannot leak

secrets).20 By emitting
√
whenever undesired inputs are fed to a compiled program (e.g., passing

a nat when a bool is expected), hypersafety is preserved (as
√
does not leak secrets) [63].

More formally, they assume a relation on actions ∼ that is total on the source actions and injec-
tive. From there, they define TPC—which here corresponds to an instance of τ—that maps the set
of valid source traces to the set of valid target traces (that now mention

√
) as follows:

TPC (πS) =
⎧⎪⎨⎪⎩t

������ t ∈
⋃
n∈N

intn (πS)
⎫⎪⎬⎪⎭ where int0 (πS) = {t | ∃s ∈ πS ∧ s ∼ t} ,

intn+1 (πS) =
{
t �� t ≡ t1α?

√
t2 ∧ t1t2 ∈ intn (πS) ∧ undesired (α?)

}
,

where undesired (α?) indicates that α? is an undesired input (intuitively, this is an information
that can be derived from the set of source traces [63]).
Informally, given a set of source traces πS, TPC generates all target traces that are related (point-

wise) to a source trace (case int0). Then (case intn+1), it adds all traces (t) with interleavings of

19They call those safety properties monitors, since they focus on safety [72] and indicate s with M and t with M.
20Technically, they assume a set of

√
actions, but for this analogy a single action suffices.
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undesired inputα? (third conjunct) followed by
√
(first conjunct) as long as the interleavings split

a trace t1t2 that has already been mapped (second conjunct).
TPC is an instance of τ that maps source hypersafety to target hypersafety (and therefore, safety

to safety), thus our theory can be instantiated for the preservation of these classes of hyperprop-
erties as well.

8 RELATED WORK

We already discussed how our results relate to some existing work in correct compilation [41,
77] and secure compilation [3, 63, 64]. We also already mentioned that most of our definitions
and results make no assumptions about the structure of traces. One result that partially relies on
the structure of traces is Theorem 6.3, which refers to finite prefix m, suggesting traces should
be some sort of sequences of events (or states), as customary when one wants to refer to safety
properties [18]. Without a notion of finite prefix, only RSC∼ may look different, but both RTPSafe◦τ̃

and RSPσ̃ are trace-agnostic, as in general safety properties can be defined as the closed sets of
any topology on traces [58].
Even for reasoning about safety, hypersafety, or arbitrary hyperproperties, traces can therefore

be values, sequences of program states, or of input output events, or even the recently proposed
interaction trees [81]. In the latter case, we believe that the compilation from IMP to ASM proposed
by Xia et al. [81] can be seen as an instance of HC∼ , for the relation they call “trace equivalence.”

Compilers Where Our Work Could Be Useful. Our work should be broadly applicable to un-
derstanding the guarantees provided by many verified compilers. For instance, Wang et al. [80]
recently proposed a CompCert variant that compiles all the way down to machine code, and it
would be interesting to see if the model at the end of Section 4.1 applies there, too. This and many
other verified compilers [15, 36, 51, 73] beyond CakeML [77] deal with resource exhaustion, and
it would be interesting to also apply the ideas of Section 4.2 to them.
Hur and Dreyer [33] devised a correct compiler from an ML language to assembly using a cross-

language logical relation to state their CC theorem. They do not have traces, though were one to
add them, the logical relation on values would serve as the basis for the trace relation and therefore
their result would attain CC∼.
Switching to more informative traces capturing the interaction between the program and the

context is often used as a proof technique for secure compilation [3, 34, 62]. Most of these results
consider a cross-language relation, so they probably could be proved to attain one of the criteria
from Figure 4.

Generalizations of Compiler Correctness. The compiler correctness definition of Morris [50]
was already general enough to account for trace relations, since it considered a translation between
the semantics of the source program and that of the compiled program, which he called “decode” in
his diagram, reproduced in Figure 5 (left). And even some of the more recent compiler correctness
definitions preserve this kind of flexibility [65].While CC∼ can be seen as an instance of a definition
byMorris [50], we are not aware of any prior work that investigated the preservation of properties
when the “decode translation” is neither the identity nor a bijection, and source properties need
to be re-interpreted as target ones and vice versa.

Correct Compilation and Galois Connections. Melton et al. [47] and Sabry and Wadler [70]
expressed a strong variant of compiler correctness using the diagram of Figure 5 (right). They
require that compiled programs parallel the computation steps (�) of the original source programs,
which can be proven showing the existence of a decompilation map # that makes the diagram
commute, or equivalently, the existence of an adjoint for ↓ (W ≤ W ′ ⇐⇒ W � W ′ for both
source and target). The “parallel” intuition can be formalized as an instance of CC∼. Take source
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Fig. 5. Morris’s [50] (left) and Melton et al.’s [47] and Sabry and Wadler’s [70] (right) compiler correctness
diagrams.

and target traces to be finite or infinite sequences of program states (maximal trace semantics [19]),
and relate them exactly like Melton et al. [47] and Sabry and Wadler [70].

Translation Validation.Translation validation is an important alternative to proving that all runs
of a compiler are correct, as it can bemore easily applied to realistic compilers. An interesting work
about translation validation of security properties has been recently proposed by Namjoshi and
Tabajara [53]. They can handle many security properties expressible in terms of automata as long
as source and target attackers and the observable traces are the same.
Instantiating the definition of any of the presented criteria with a particular program, one has trans-
lation validation criteria with the map τ̃ describing the target property that is (robustly) satisfied
once the translation is validated. For example, one can consider

(tsv∼) CC∼ ( W↓) = ∀t. W↓� t ⇒ ∃s ∼ t.W� s,

(rtsv∼) RTC∼ (CT [P↓]) = ∀t. CT [P↓]� t ⇒ ∃CS. ∃s ∼ t. CS [P]� s.

While the proof technique proposed by Namjoshi and Tabajara [53] might be generalized for
CC∼ ( W↓)—as long as beh( W↓) and beh(W) can be expressed as one of the automata they can
handle—they do not work for RTC∼ (CT [P↓]) because of the existential in the conclusion.
Busi et al. [13] are instead considering translation validation criteria in the spirit of (rtsv∼), their

preliminary work only allows equality as trace relation, but should be subject to a generalization
to the trace-relating setting similar to the one we presented in this work.

Proof Techniques. We believe existing proof techniques (beyond the simulations discussed in
Section 4.3.2) that have been devised to prove compiler correctness can also be employed to
prove that a compiler attains any of the presented criteria. For example, cross-language binary
logical relations can be used to relate two terms of two different languages when they “behave
the same” [12, 33, 71]. Additionally, they can also be used when multiple programs “behave the
same” [66] in a multilanguage semantics setting [45]. Secure compilation results (which rely
on the criteria of Section 6) can be proven using variations of the backtranslation proof tech-
nique [22, 57, 64]. Presenting this proof techniques is beyond the scope of this article, so we refer
the interested reader to the work of Patrignani et al. [61].

9 CONCLUSION AND FUTURE WORK

We have extended the property preservation view on compiler correctness to arbitrary trace rela-
tions, and we believe that this will be useful for understanding the guarantees various compilers
provide. An open question is whether, given a compiler, there exists a most precise ∼ relation
for which this compiler is correct. As mentioned in Section 1, every compiler is CC∼ for some ∼,
but under which conditions is there a most precise relation? In practice, more precision may not
always be better, though, as it may be at odds with compiler efficiency and may not align with
more subjective notions of usefulness, leading to tradeoffs in the selection of suitable relations. Fi-
nally, another interesting direction for future work is studying whether using the relation to Galois
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connections allows to more easily compose trace relations for different purposes, say, for a com-
piler whose target language has undefined behavior, resource exhaustion, and side-channels. In
particular, are there ways to obtain complex relations by combining simpler ones in a way that
eases the compiler verification burden?

Composition for Multipass Compilers. For now, we can already informally argue about the cor-
rectness of a multipass compiler, where each step is proved correct for a possibly different trace
relation. Concretely, assume ↓S

I is a compilation chain from a source language S to an intermediate
language I and ↓I

T
from the intermediate language I to a target language T.21 Assume given two re-

lations between traces of these languages: ∼S,I⊆ TraceS×TraceI and ∼I,T⊆ TraceI×TraceT, such
that each compiler is proven to be CC w.r.t. the expected trace relation: ↓S

I∈ CC∼S,I and ↓I
T
∈ CC∼I,T .

Let us consider the source-to-target compiler ↓S
T
that is derived of the composition of the two

aforementioned compilers, so ↓S
T
=↓I

T
◦ ↓S

I. In this case, we obtain the expected result: The correct-
ness of the whole compiler ↓S

T
is derived from the individual compiler correctness proofs for each

step.
CC(∼I,T◦∼S,I ) ≡ ∀W∀t.W ↓S

T � t ⇒ ∃s ∼I,T ◦ ∼S,I t.W�s,

where s ∼i,t ◦ ∼s,i t ⇐⇒ ∃i ∈ TraceI. s ∼S,I i ∧ i ∼I,T t.
Generalizing this kind of composition to compilers that attain different criteria is unclear. For

example, if ↓S
I preserves arbitrary hyperproperties, but ↓IT preserves 2-relational safety properties,

then what can we conclude for ↓S
T
? We leave investigating these interesting matters for future

work.

APPENDIX

A PROOFS

Proof of Theorem 2.6 ( ). See Theorems rel_TC_τTP and rel_TC_σTP in TraceCriterion.v,
where the TPτ̃ ⇐⇒ TPσ̃ part follows directly from Theorem 2.4. �

Proof of Lemma 2.7 (Trace Relations � Galois Connections on Trace Properties).

Gardiner et al. [26] show that the existential image is a functor from the category of sets and
relations to the category of predicate transformers, mapping a set X �→ 2X and a relation ∼ ⊆
X × Y �→ τ̃ : 2X → 2Y . They also show that such a functor is an isomorphism—hence bijective—
when one considers only monotonic predicate transformers that have a—unique—upper adjoint.
The universal image of ∼, σ̃ , is the unique adjoint of τ̃ ( ), hence ∼ �→ τ̃ � σ̃ is itself bijective. �

Proof of Theorem 2.8 (Correspondence of Criteria). For a trace relation ∼ and the Galois
connection τ̃ � σ̃ , the result follows from Theorem 2.6. For a Galois connection τ � σ and ∼̂,
use Lemma 2.7 to conclude that the existential and universal images of ∼̂ coincide with τ and σ ,
respectively; the goal then follows from Theorem 2.6. �

Lemma A.1 (Special Relations and Conseqences on the Adjoints). Let X ,Y be two arbi-
trary sets and ∼⊆ X × Y . Assume ∼ is a total and surjective map from Y to X . Let α � γ be its
existential and universal image, i.e.,

α̃ = λ πX .
{
y �� ∃x ∈ πX . x ∼ y

}
,

γ̃ = λ πY .
{
x �� ∀y. x ∼ y ⇒ y ∈ πY

}
.

Then γ̃ = λ πY .
{
x �� ∃y ∈ πY . x ∼ y

}
, and γ̃ is injective.

21For the intermediate language, we use a verbatim, emerald font.
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Proof of Lemma A.1. See Lemma rel_total_surjective and rel_total_surjective_up_inj in
Galois.v. �

Proof of Theorem 4.3 ( ). See Theorem correctness in TypeRelationExampleInput.v. �

Proof for Lemma 4.4 (gensend (·, ·) Works). We proceed by induction on τ and then by induc-
tion on τ ′:

τ = N and τ ′ = N By canonicity, we have that r = 〈n, n′〉.
gensend (·, ·) translates that into send n; send n′.
By Rule Sem-seq, that produces t = n;n′.
We need to prove that 〈n, n′〉 ∼ n;n′, which holds by Rule Trace-Rel-N-N.

τ = N and τ ′ = τ1 × τ2 Analogous to the other cases, by IH and Rule Trace-Rel-N-M.
τ = τ1 × τ2 and τ ′ = N Analogous to the other cases, by IH and Rule Trace-Rel-M-N.
τ = τ1 × τ ′1 and τ ′ = τ2 × τ ′2 So by canonicity r =

〈〈
r1, r′1

〉
,
〈
r2, r′2

〉〉
.

By definition of gensend (·, ·):
gensend (x,τ × τ ′),

= gensend (x,τ ).1; gensend (x,τ ′).2.

By the target reductions, we know (gensend (x,τ ).1; gensend (x,τ ′).2)[r/x]� is1; is2, so
by IH, we have

〈
r1, r′1

〉
∼ is1 and

〈
r2, r′2

〉
∼ is2.

We need to prove that
〈〈

r1, r′1
〉
,
〈
r2, r′2

〉〉
∼ is1; is2, which holds by Rule Trace-Rel-M-M, for

i =
〈
r1, r′1

〉
and i′ =

〈
r2, r′2

〉
. �

Proof of Theorem 4.5. Trivial induction on the typing derivation of e, the only interesting case
is the compilation of send e in the inductive cases.

Inductive. e = send e By IH, we have that if (� e : τ × τ ′)↓� t, then ∃s ∼ t and e� t.
By definition of (·)↓ and of�, we need to prove that if

let x= (� e : τ × τ ′)⏐� in gensend (x,τ × τ ′)� t

Then send e� s and s ∼ t.
The reductions proceed as follows in the target:

(� e : τ × τ ′)⏐� � 〈
is, (� r : τ × τ ′)⏐�〉

gensend (x,τ × τ ′)[ (� r : τ × τ ′)⏐�/x]� 〈
is′, r′

〉
let x= (� e : τ × τ ′)⏐� in gensend (x,τ × τ ′)�

〈
is · is′, r′〉

In the source, we have
e� 〈is, r〉

send e� 〈is · r, r〉
By IH, we have that is ∼ is.
By Rule Trace-Rel-Single, to prove that is; r ∼ is; is′, we need to prove that is ∼ is′.
By Lemma 4.4 (gensend (·, ·) Works), we have that r ∼ is′, so this case holds. �

Proof of Theorem 5.1. First, we show that ϕ# is an uco, the proof for ρ# is the same.

Monotonicity. ϕ# is composition of monotonic functions, hence it is itself monotonic.

Idempotence. We have to show that for πT, ϕ# (ϕ# (πT)) = ϕ# (πT), that unfolding the definition
means

д◦ ◦ ϕ ◦ f ◦ ◦ д◦ ◦ ϕ ◦ f ◦ (πT) = д◦ ◦ ϕ ◦ f ◦ (πT).

For the inclusion “⊆,”
д◦ ◦ ϕ ◦ f ◦ ◦ д◦ ◦ ϕ ◦ f ◦ (πT) ⊆ д◦ ◦ ϕ ◦ ϕ ◦ f ◦ (πT) = д◦ ◦ ϕ ◦ f ◦ (πT)

the inclusion holds, because f ◦ ◦ д◦ (x ) ⊆ x and the equality comes from idempotency of ϕ.
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For the inclusion “⊇,”

д◦ ◦ ϕ ◦ f ◦ ◦ д◦ ◦ ϕ ◦ f ◦ (πT) ⊇ д◦ ◦ ϕ ◦ f ◦ ◦ д◦ ◦ f ◦ (πT) = д◦ ◦ ϕ ◦ f ◦ (πT)

the inclusion comes from ϕ ( f ◦ (πT)) ⊇ f ◦ (πT) by extensiveness of ϕ, and the equality from f ◦ ◦
д◦ ◦ f ◦ = f ◦.

Extensiveness. We have to show that π # (πT) ⊇ πT.

π # (πT) = д◦ ◦ ϕ ◦ f ◦ (πT) ⊇ д◦ ◦ f ◦ (πT) ⊇ πT

The first inclusion is due to extensiveness of ϕ, the second by д◦ being the upper adjoint of f ◦.

For the statement of the theorem to hold, assumeW|=ANI
ρ

ϕ
and W↓�t1, t2 withϕ# (t◦1) = ϕ# (t◦2),

we have to show that ρ# (t•1) = ρ# (t•1).
By CC∼ there exists s1 ∼ t1 and s2 ∼ t2 such that W�s1, s2. As a preliminary, apply Lemma A.1

to the relations ◦∼ ◦ swap and deduce д◦ is injective. Notice also that by functionality and totality,
of ◦∼ and of •∼, f ◦ (t◦1) = {s◦1} and f • (t•1) = {s•1} and a similar fact holds for s2 and t2.

ϕ# (t◦1) = ϕ# (t◦2) ⇒ [ definition of ϕ#]

д◦ ◦ ϕ ◦ f ◦ (t◦1) = д◦ ◦ ϕ ◦ f ◦ (t◦2) ⇒ [д◦ injective]

ϕ ◦ f ◦ (t◦1) = ϕ ◦ f ◦ (t◦2) ⇒ [f ◦ (t◦i ) = s◦i i = 1, 2]

ϕ (s◦1) = ϕ (s◦2) ⇒ [W|=ANI
ρ

ϕ
]

ρ (s•1) = ρ (s•2) ⇒ [s•i = f • (t•i ) i = 1, 2]

ρ ◦ f • (t•1) = ρ ◦ f • (t•2) ⇒ [ functionality of д•]

д• ◦ ρ ◦ f • (t•1) = д•ρ ◦ f • (t•2) ⇒ [ definition of ρ#]

ρ# (t•1) = ρ# (t•2),

so W↓|=ANI
ρ#

ϕ# .

We now show that if •∼ is surjective, i.e., д• injective, then ANI
ρ#

ϕ# ⊆ Cl⊆ ◦ τ̃ (ANI
ρ

ϕ
).

Let πT ∈ ANI
ρ#

ϕ# , we show that πT ⊆ τ̃ (πS) for some πS ∈ ANI
ρ

ϕ
.

The source property πS = {s | ∃t ∈ πT. s ∼ t} = f (πT) is such that πT ⊆ τ̃ (πS). We only need to
show πS ∈ ANI

ρ

ϕ
. Let s1, s2 ∈ πS,

ϕ (s1
◦) = ϕ (s2

◦) ⇒ [by f ◦ (t◦) = s◦ for some t ∈ πT]

ϕ ( f ◦ (t◦1)) = ϕ ( f ◦ (t◦2)) ⇒ [д◦ is a function]

д◦ (ϕ ( f ◦ (t◦1))) = д◦ (ϕ ( f ◦ (t◦2))) ⇒ [by definition of ϕ#]

ϕ# (t◦1) = ϕ# (t◦2) ⇒ [πT ∈ ANI
ρ#

ϕ#]

ρ# (t•1) = ρ# (t•2) ⇒ [definition of ρ#]

д• (ρ ( f • (t•1))) = д• (ρ ( f • (t•2))) ⇒ [by injectivity of д•]

ρ ( f • (t•1)) = ρ ( f • (t•2)) ⇒ [f • (ti) = s•i , i = 1, 2]

ρ (s•1) = ρ (s•2),

that shows πS ∈ ANI
ρ

ϕ
and concludes the proof. �
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Proof of Theorem 5.2. Assume W|=ANI
ρ

ϕ
and W↓�t1, t2 with ϕ# (t◦1) = ϕ# (t◦2). We have to

show that ρ# (t•1) = ρ# (t•1), for an arbitrary ρ# that satisfies the condition

H ≡ ∀s t. s• •∼ t• ⇒ ρ# (τ̃ • (ρ (s•))) = ρ# (t•).

By CC∼ there exists s1 ∼ t1 and s2 ∼ t2 such that W�s1, s2. As a preliminary, recall that
Lemma A.1 ensures д◦ is injective. Moreover, notice that by functionality and totality, of ◦∼,
f ◦ (t◦1) = {s◦1} and f ◦ (t◦2) = {s◦2}.

ϕ# (t◦1) = ϕ# (t◦2) ⇒ [ definition of ϕ#]

д◦ ◦ ϕ ◦ f ◦ (t◦1) = д◦ ◦ ϕ ◦ f ◦ (t◦2) ⇒ [д◦ injective]

ϕ ◦ f ◦ (t◦1) = ϕ ◦ f ◦ (t◦2) ⇒ [f ◦ (t◦i ) = s◦i i = 1, 2]

ϕ (s◦1) = ϕ (s◦2) ⇒ [W|=ANI
ρ

ϕ
]

ρ (s•1) = ρ (s•2) ⇒ [ functionality of τ̃ •]

τ̃ • (ρ (s•1)) = τ̃ • (ρ (s•2)) ⇒ [ by functionality of ρ#]

ρ# (τ̃ • (ρ (s•1))) = ρ# (τ̃ • (ρ (s•2))) ⇒ [ by condition H ]

ρ# (t•1) = ρ# (t•2)

so W↓|=ANI
ρ#

ϕ# . �

Proof of Theorem 5.3. Assume W|=ANI
ρ#

ϕ# and W↓�t1, t2 with ϕ (t◦1) = ϕ (t◦2) and ϕ satisfying

the condition H ≡ ∀s t. s◦ ◦∼ t◦ ⇒ ϕ (t◦) = ϕ (τ̃ ◦ (s◦)). We have to show that ρ (t•1) = ρ (t•2). By
CC∼ there exists s1 ∼ t1 and s2 ∼ t2 such that W�s1, s2. As a preliminary, recall that Lemma A.1
ensures σ̃ • is injective. Moreover, notice that by functionality and totality, of •∼, τ̃ • (s•1) = {t•1} and
τ̃ • (s•2) = {t•2}.

ϕ (t◦1) = ϕ (t◦2) ⇒ [ by H ]

ϕ (τ̃ ◦ (s◦1)) = ϕ (τ̃ ◦ (s◦2)) ⇒ [ functionality of σ̃ ◦]

σ̃ ◦ (ϕ (τ̃ ◦ (s◦1))) = σ̃ ◦ (ϕ (τ̃ ◦ (s◦1))) ⇒ [ definition of ϕ#]

ϕ# (s◦1) = ϕ# (s◦2) ⇒ [W |=ANI
ϕ#

ϕ# ]

ρ# (s•1) = ρ# (s•2) ⇒ [ by definition of ρ#]

σ̃ • (ρ (τ̃ • (s•1))) = σ̃ • (ρ (τ̃ • (s•2))) ⇒ [ injectivity of σ̃ •]

ρ (τ̃ • (s•1)) = ρ (τ̃ • (s•2)) ⇒ [τ̃ • (s•i ) = {t
•
i } i = 1, 2]

ρ (t•1) = ρ (t•2)

so W↓|=ANI
ρ
ϕ
. �

Proof of Theorem 6.1 ( ). Theorems rel_RTC_τRTP and rel_RTC_σRTP in
RobustTraceCriterion.v. �

Proof of Theorem 6.3 ( ). Theorems tilde_RSC_σRSP and tilde_RSC_Cl_τRTP in
RobustSafetyCriterion.v. �
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Proof of Theorem 6.5 ( ). Lemmas σRHP_rel_RHC and rel_RHC_σRHP and Theorem
rel_RHC_τRHP in RobustHyperCriterion.v. �

Proof of Theorem 7.1 ( ). (See theorem extra_target_RTCt in MoreTargetEventsExample.v,
mechanizing a slightly simplified model.) By definition of RTC∼ , we need to find a source context
and source trace given a source program, target context, and target trace related by compilation and
program semantics: This instantiation is simple, since the trace relation is a function from target
traces to source traces, and it is easy to clean target contexts to produce equivalent source context
without target-only events. The proof is a trivial instance of precise, context-based backtranslation
[3, 57, 61, 75], aided by a few straightforward lemmas and where the case of function calls is
guaranteed to terminate by the language. �

Proof of Theorem 3.6 ( ). Theorems tilde_SC_σSP and tilde_SC_Cl_τTP in
SafetyCriterion.v. �

Proof of Theorem 3.7. For the implication from left to right, assume W |= H . By CC= have
beh( W↓) = beh(W), so W↓ |= H as well.
For the implication from right to left, instantiate HP with the hyperproperty {beh(W)}, for a given
W, and deduce that W↓ |= {beh(W)} i.e., beh( W↓) = beh(W). �

Proof of Theorem 3.8 ( ). Theorems rel_HC_τHP, rel_HC_σHP and σHP_rel_HC in
HyperCriterion.v. �
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