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Photocatalysis emerged in the last decades as a versatile technology, whose applica-
tions range from environmental remediation to hydrogen production, energy harvesting,
and organic synthesis, with exciting examples also in medicine, electronics, and advanced
functional materials. While homogeneous photocatalysis has a glorious and consolidated
tradition, especially in the field of chemical synthesis, heterogeneous photocatalysis came
into the limelight more recently, due to the appealing advantages provided by processes oc-
curring at solid–fluid interfaces. Even if fundamental research should be never abandoned,
because it is essential nourishment for applied research, photocatalysis is mature enough to
demonstrate its industrial feasibility. This change in direction is especially required as far
as environmental remediation is concerned, where up to now the technology transfer from
lab to industry is probably the bottle neck of several processes. In this sense, we believe
that novel photocatalytic materials could be defined as promising for environmental reme-
diation only if high photocatalytic activity (possibly in the visible region) is accompanied
by the required robustness, reusability, and reliability that justify industrial investments.
At the same time, engineering and reactor design issues are of the utmost importance to
enable scale-up of the processes and require further research. This scenario is reflected
in the topics approached in the photocatalysis papers recently published in the journal
Molecules. In fact, as detailed below, the majority of them deal with bare or diversely
modified TiO2, which, more than any other semiconductor, combines high photoactivity
for both degradation and disinfection, robustness, abundance, and low cost.

Non-metal doping has been investigated with the aim of extending the absorption abil-
ity of TiO2 toward the visible range. Carbon and nitrogen co-doping have been presented
by Janus et al. [1] as an efficient approach to extend the photocatalytic activity toward the
visible range. The materials have been embedded in concrete plates and provided total
inactivation of Escherichia coli under simulated solar light irradiation. Pablos et al. [2]
studied the Escherichia coli inactivation under UV-vis light by means of electrochemically
assisted photocatalysis, by using nitrogen and fluorine co-doped TiO2 materials. Gurkan
et al. [3] investigated the structural and opto-electronic features of selenium and nitro-
gen co-doped TiO2 and tested the materials in the photocatalytic degradation of a target
pollutant (4-nitrophenol) in water. Coupling TiO2 with other semiconductors active in
the visible range is another expedient to enhance the light responsive features of TiO2.
For instance, Nevarez-Martinez at al. [4] synthetized nanotube arrays of TiO2-MnO2 by
electrochemical anodization, and used them for the photocatalytic degradation of toluene
in gas phase under visible light irradiation. Hong et al. [5] produced recyclable TiO2/Fe2O3
nanocomposites from ilmenite and applied these materials for the degradation of Rho-
damine B under visible and solar light irradiation. A review has been published on the
role of TiO2 coupled with carbon materials, such as carbon nanotubes, graphene, and
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carbon quantum dots, in the photocatalytic degradation of three target pharmaceutical
compounds [6]. Aside from TiO2, some investigations on other photoactive materials
and their environmental applications have been published, even if fewer in number with
respect to those on TiO2.

As abovementioned, research on scale up issues and reactor design aimed at promot-
ing industrial exploitation of photocatalytic reactions is still required. Applications for the
purification of air already found benign market acceptance and are a step forward with re-
spect to those in liquid phase. Accordingly, Molecules published the contribution by Alfano
et al. [7], reporting a methodology for the integrated design of photocatalytic reactors for air
cleaning purposes from the development of intrinsic kinetic models, ultimately targeting
reactor scale-up and optimization. Dumont et al. [8] described theoretical and experimental
approaches for the determination of the Clean Air Delivery Rate (CADR) of photocatalytic
air purifiers. Different reactor designs have been proposed in other contributions. For
instance, Montalvo et al. [9] proposed a semi-pilot rotating photocatalytic reactor, and Pelle-
grino et al. [10] described the photocatalytic activity of a cordierite-honeycomb-supported
TiO2 film in a liquid–solid photoreactor for water treatments applications.

It is worth mentioning that the combination of heterogeneous photocatalysis with
other advanced oxidation processes or physical methods [11,12] is a viable and competitive
tool to boost industrial appeal. In fact, synergetic effects could reduce the drawbacks of
the contributing single technologies, simultaneously increasing the efficiency of the whole
process. To this aim, Beltran and Rey [13] published a review in Molecules on solar or
visible light photocatalytic ozonation by discussing on the effects of the main intervening
parameters.

A completely different situation holds when photocatalysis is used for the synthesis
of high-value-added compounds as an alternative to traditional synthetic paths. Homoge-
neous photocatalysis is a well-established strategy for organic synthesis, as confirmed by
the fact that the majority of the papers published in Molecules on photocatalytic synthetic
processes occur in the presence of organometallic complexes in a homogeneous phase.
Protti et al. [14] exploited the acidity of photo-excited molecules to drive C–C and C–S bond
formation processes by providing a viable alternative to the use of aggressive acids and
harsh conditions. Iron-based organometallic complexes have been used under visible light
irradiation to reduce CO2 into CO [15], ruthenium complexes bearing pyridine–quinoline
or terpyridine ligands were utilized in the atom transfer radical addition of haloalkanes
to olefins [16], while the effects of some reaction parameters were investigated for the
photodimerization of 2-anthracenecarboxylate catalyzed by platinum (II) complexes [17].
A comprehensive review on photocatalytic difluoromethylation reactions of aromatic com-
pounds and aliphatic multiple C–C bonds in the presence of organometallic compounds
have been also published [18].

On the other hand, heterogeneous photocatalysis for synthetic purposes is less rep-
resented. In fact, only one paper has been published on the selective partial oxidation of
cyclohexane [19]. This fact reflects a general mistrust with respect to the potentiality of het-
erogeneous photocatalysis for the synthesis of relevant industrial compounds. Production
of raw materials [20], naturally occurring compounds [21], or valuable intermediates [22]
in good to excellent yields have been accomplished, but correspondent advancements in
the engineering of the processes are still required. Moreover, some of the contributions
only report chromatographic or spectroscopic evidence of the formed products, without
any concern on purification and separation, at least on a gram scale. In our opinion, ad-
vancements in membrane reactors [23] could support the development of this intriguing
field, which offers competitive alternatives to classical synthetic protocols under milder
conditions and in fulfilment of the green chemistry principles.
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