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Around 50% of all patients with localized malignant tumors undergo treatments using
ionizing radiation, mostly in combination with tumor resection and/or chemotherapy [De-
laney et al., 2005]. High energy photons are by far the most used radiation type in this
field, but in the past decades the application of accelerated particles, especially protons
and carbon ions, has gained popularity in cancer therapy. By the end of 2020, more than
290000 patients were treated worldwide with particle therapy, of which around 250000
with protons, close to 40000 with carbon ions and about 3500 with helium, pions or other
ions [PTCOG, 2020].
The main reason for using charged particles in radiotherapy is their favorable depth-dose
profile, i.e. the ”Bragg curve”, named after Sir William Henri Bragg1 who investigated
the slowing down of α particles in air [Bragg and Kleeman, 1905].
After many years from Bragg’s studies, Robert R. Wilson2 spent most of 1946 at the
Berkeley Radiation Laboratory (LBL) (Berkeley, CA, USA) for his work on the design
of a new 150 MeV cyclotron for Harvard University, to replace the cyclotron that had
been relocated to Los Alamos during the war, under the supervision of Ernest Lawrence3.
Wilson found that high-energy protons produced by the 150 MeV cyclotron could be used
for cancer treatment [Endo, 2018]. In the same year of 1946, he published an article in the
medical journal Radiology entitled “Radiological Use of Fast Protons”, based on the ideas
that he had developed at Berkeley [Wilson, 1946]. This study was the first to propose the
use of particle beams for cancer treatment.
Radiotherapy with ions has come a long way since its beginning in the Berkeley Lab, and
it is now a well-established strategy against cancer. However, not all the ions feasible
for this application has gained the same popularity. Scientists focused on establishing,
tuning and optimizing the treatment procedure for protons and carbon beams only, while
the use of other particles was overshadowed. Once the community gained knowledge and
confidence in this methodology, it started to open up to new challenges and once again
begun exploring the possibility to perform radiotherapy with other ions.
Physical and biological experimental data pointed to 4He and 16O ions as the most promis-
ing species and several heavy ions centers have been designed to offer the capability to
deliver these particles in addition to protons and carbon ions [Rovituso and La Tessa,
2017]. In July 2021, the first patient has been treated with a helium beam at the Hei-
delberg Ion-Beam Therapy Center (HIT) since the pioneering studies carried out at the
Lawrence Berkeley Laboratory between 1975 and 1993.

Although ion therapy is improving both in precision and in efficiency, numerous treat-
ment uncertainties remain a major obstacle to the full exploitation of this type of treat-
ment. For each ion type in fact, a dedicated beam model has to be developed and imple-
mented in the Treatment Planning System software, which provides the dose calculation
and beam delivery for each treatment. To achieve this goal, the physical processes of
interest have to be characterized in terms of production of secondary fragments from nu-
clear reactions, as well as energy loss and lateral scattering of primary and secondary ions.
These interactions modify the radiation field composition, energy and direction, and thus
influence the depth-dose and lateral profile.
One of the major uncertainties of ion therapy is related to the knowledge of the energy
released from the radiation field, from which the dose deposition and radiobiological ef-

1William H. Bragg (1862 – 1942) was an English scientist.
2Robert R. Wilson (1914 – 2000) was an American physicist.
3Ernest O. Lawrence (1901 – 1958) was an American nuclear scientist.
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fects are estimated. The pioneering work of Zirkle4 and many other following studies have
pointed out that, together with the amount of energy absorbed, the biological effectiveness
of ionizing radiation depends on the spatial distribution of energy deposition [Rossi, 1959],
which is one of the ingredients of the so-called radiation quality information.

Radiation field quality

Thee radiation field characterization is well recognized to play a fundamental role in
ion therapy, however there is no quantitative and uniquely accepted definition of the con-
cept of ”radiation quality”.
The Publication 60 recommendations of ICRP (1991) reports that ”the probability of
stochastic effects is found to depend, not only on the absorbed dose, but also on the type
and energy of the radiation causing the dose. This is taken into account by weighting the
absorbed dose by a factor related to the quality of the radiation”. However, the definition
of quality of the radiation is itself non unique.
Dr. Dudley Goodhead5 in his speech at the DoReMi Radiation Quality workshop in Brus-
sels (9-10 July 2013) [Goodhead, 2013] tried to answer to the question ”What is radiation
quality?”. He started pointing out that the biological effects of ionizing radiation depend
on: i) the quantity of radiation (dose, fluence, ...), ii) the temporal pattern (dose rate,
fractionation), and finally on iii) the spatial pattern (tracks structures). Only the latter is
actually related to the quality of radiation, and the variety of radiation tracks at the loca-
tion of interest is determined (stochastically) by the types and energies of charged particles
at that location. Radiation quality is then defined by the fluence spectrum of radiation
particles at the locations of interest in the target material. This spectrum specifies the
relative numbers of particles according to type and energy, it includes charged and neutral
components and it depends on the radiation source features and the intervening material.
Finally, differences in radiation quality can lead to differences in biological effectiveness
for the same quantity of radiation, and to qualitative differences in biological effects. The
study of the radiation quality also provides an excellent tool for probing underlying mech-
anisms of radiobiological effects.
However, the spatial pattern of the energy deposition of radiation in matter depends on
many different electromagnetic and nuclear interactions, that is worth summarizing in or-
der to understand the topic complexity. In addition, to grasp how the quality of radiation
relates into biological damage, the basic information on the biological effects of radiation
will be illustrated.

Physical and biological background

When charged particles pass through a medium, two main types of physical interactions
have to be considered[Schardt, 2016]:

• Electromagnetic interactions which rule the energy deposition in matter. Coulomb
forces between the positively charged ion and the negatively charged orbital electrons
of the medium atoms are established. These interactions concur also in the lateral
spread of particles, also known as scattering

4Raymond E. Zirkle (1902 – 1988) was an American radiation biologist.
5Dudley T. Goodhead is an American radiation biophysicist
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• Nuclear interactions, which can cause wider lateral spread with respect to the elec-
tromagnetic contribution as well as a loss of the primary ions and production of
secondary radiation.

Energy deposition in matter

Ions interact inelastically with the shell electrons of the medium nuclei, resulting in an
energy loss dE/dx well described by the Bethe-Bloch formula [Bethe, 1953]

dE

dx
=

4πe4ZtZ
2
p

mcv2

[
ln

2mev
2

⟨I⟩
− ln

(
1− β2

)
− β2 − C

Zt
− δ

2

]
, (1)

where Zp and Zt denote the nuclear charge of the projectile and the target, respectively,
< I > is the mean ionization energy of the target atom or molecule, and me and e are
the mass and the charge of the electron, respectively. The formula includes the relativistic
corrections by Fano et al. [Fano, 1963] with a dependence from β2, and two additional
terms for the shell (C/Zt) and the density effect (δ/2) corrections. The shell correction
accounts for the effects which arise when the the incident particle velocity is comparable
or smaller than the orbital velocity of the bound electrons. This correction affects the
stopping power up to 6%. The density term corrects for polarization effects in the target.
The mean ionization < I >, instead, corrects for the quantum mechanical energy levels
available for the transfer of energy to the target electrons. For liquid water, accurate
Bragg curve measurements for protons and different heavier ions show a values of 78 eV
[Steidl et al., 2008].
A further correction to the Bethe-Bloch formula takes into account the dependence of
the projectile effective charge on its velocity. At high velocities, the atomic electrons
are completely stripped off and the ion effective charge is equal to its atomic charge
number Zp. As the ion slow down, the mean charge state decreases due to the interplay of
ionization and recombination processes, and Zp has to be replaced by the effective charge
Zeff described by the Barkas’ empirical formula [Barkas, 1973]:

Zeff = Zp

[
1− exp

(
125βZ

2
3
p

)]
.

The maximum energy transfer, corresponding to the Bragg peak, is reached at a pro-
jectile velocity of

vp ≈ Z
− 2

3
p v0 ,

where v0 = e2ℏ is the Bohr velocity and the value of e2ℏ = 1/137 represents the fine-
structure constant.
An example of the energy loss curve as a function of the penetration depth, named ”Bragg
curve” for ions, can be seen in Figure 1, where a comparison between the different be-
haviours of carbons and of both X-rays and megavolt photon beams is given. In X-rays
radiotherapy, the highest doses occur at small depths, so just below the skin, and deep
seated tumors can only be treated safely by focusing beams on the tumor from many
angles using a rotating linac [Schardt et al., 2010].
In contrast to photons, in those small depths regions also referred to as the entrance
channel or plateau region, the ions loose only a small fraction of their kinetic energy by
ionization. Instead, towards the end of their path, the energy transfer increases drasti-
cally and reach a maximum value indicated as Bragg peak, which is followed by a sharp
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fall-off. The position of this peak can be precisely adjusted to the desired depth in tissue
by changing the incident ion kinetic energy.

Figure 1: Depth-dose profiles of X-rays, megavolt photon beams, and 12C ions in water.
Figure taken from [Schardt et al., 2010]

Mean range and energy straggling

The mean range R is defined as the average thickness of material traversed by the
charged particle before it comes to rest:

R(E) =

∫ E

0

(
dE′

dx

)−1

dE′ .

It can be assumed to be the same as the total path length of the particle trajectory
in an absorber. At a given ion kinetic energy, the range in a medium scales as A/Z2, as
shown in Figure 2 for protons, 12C, 16O and 20Ne in water.

According to Equation 1, the energy loss of a single ion plotted as a function of the
penetration depth would result in a very sharp peak near its stopping point. However,
the energy loss is a stochastic process and thus the statistical fluctuations will cause a
broadening of the Bragg peak for a monoenergetic beam [Comfort et al., 1966].
These fluctuations result in the so called ”energy-loss straggling”, well described by the
Landau or the Vavilov distributions, for very thin and thin absorbers respectively. In
the limit of many collisions (or a thick absorber), the Vavilov distribution approaches a
Gaussian form [Ahlen, 1980] with a σ expressed as

σE = 4πZeffZte
4N∆x

[
1− β2/2

1− β2

]
.
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Figure 2: Mean range of several ion species in water (protons, 12C, 16O and 20Ne). Figure
taken from [Schardt et al., 2010].

The range straggling variance σ2R is related to the energy-loss straggling variance σ2E ,
and the ratio between σ2R and the mean range R is proportional to 1√

M
, with M being

the ion mass. Thus, the range straggling gets smaller for heavier ions, being maximum
for protons and, for example, a factor 3.5 larger compared to the 12C ions’ one [Schardt
et al., 2010].

Lateral beam spread

The lateral spreading of charged particles passing through matter is mainly caused by
their elastic Coulomb interactions with the target nuclei, and it is well described by the
Molière-Theory [Moliere, 1948].
For small angles, the higher-order terms in Molière’s solution can be neglected, and the
angular distribution can be described by a Gaussian function with standard deviation
given by the Highland approximation:

σθ[rad] =
14.1MeV

β p c
Zp

√
d

Lrad

[
1 +

1

9
log

(
d

Lrad

)]
. (2)

where Zp and p are the charge and the momentum of the projectile, respectively. The
absorber material is characterized by its thickness d and radiation length Lrad, which,
at a given thickness, results in a larger angular spread for materials containing heavier
elements. The lateral spread calculated with Equation (2) yields a smaller value for heavy
ions than for protons at a certain depth, coming from the factor βpc.

Nuclear interactions

Compared to the electromagnetic interactions with the medium atomic electrons, the
probability for an ion to undergo nuclear reactions is much smaller, but leads to significant
effects as the penetration depths increases. At energies of several hundred of MeV/u,
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violent nuclear spallation reactions may result in a partial or complete disintegration of
both the projectile and target nuclei (e.g., in central head-on collisions). For geometrical
reasons, peripheral collisions, where the beam particle loses one or few nucleons, are the
most frequent nuclear reactions occurring along the stopping path of the ions. They can be
well described as a two-step process (Figure 3) with the abrasion-ablation model [Serber,
1947].

Figure 3: Illustration of the abrasion-ablation model of peripheral collisions at high ener-
gies, according to [Serber, 1947]. Figure from [Gunzert-Marx et al., 2008]

In the first step (abrasion), nucleons contained in the overlapping reaction zone (the
”fireball”) are abraded, while the outer nucleons (”spectators”) are only slightly affected.
The remaining projectile and target fragments then de-excite by evaporation of nucleons
or clusters in the second step (ablation).
Fragmentation reactions have been extensively studied in nuclear physics [Goldhaber
and Heckman, 1978, Hüfner et al., 1975] and experimental data are available for many
projectile-target combinations and for a wide range of beam energies [Otten, 1989, Nor-
bury et al., 2012].
Nuclear fragmentation yield some important effects relevant for radiotherapy with high-
energy ion beams:

• nuclear reactions cause a loss of primary beam particles and a buildup of lower-Z
fragments. These effects become more and more important with increasing penetra-
tion depth.

• the secondary (or higher-order) projectile-like fragments are moving with approxi-
mately the same velocity as the primary ions. In general, they have a bigger range
than the primary beam and lead to a tail behind the Bragg peak.

The impact of nuclear fragmentation on the Bragg curve is shown in Figure 4. With
increasing penetration depth, the peak-to-entrance dose ratio becomes gradually smaller,
mainly caused by the exponentially diminishing flux of primary ions. The buildup of lower-
Z fragments is clearly visible in the dose tail behind the Bragg peak at larger depths.
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Figure 4: Measured Bragg curves of 12C ions stopping in water. The dose tail behind the
Bragg peak increases at larger depths due to nuclear fragmentation. Figure taken from
[Schardt et al., 2008].

Fragmentation processes have an impact not only on the physical dose distribution but
also on the biological effect of ions. Different ions will create different fragments species,
each characterized by a different biological effect. When dealing with protons one can, to
a good approximation, fully rely on the physical dose released in the Bragg peak, which
can quite easily be measured, as the dose is caused essentially by the same radiation
species. For heavier ions, this approximation is not valid anymore, as by just measuring
the physical dose one cannot separate the contribution of different ions species.

Biological effect of radiation

The goal of curative cancer radiotherapy treatments is to inactivate all malignant cells
while keeping the normal tissue complications, caused by unavoidable out-of-target dose,
at an acceptable level.
Tumor cells have to be sterilized so that they cannot transfer their genetic defects to
daughter cells. An effective way to achieve this result is to damage the DeoxyriboNucleic
Acid (DNA), that contains all the entire set of genetic information.
The DNA of all cells has multiple ways to repair itself. Under the assumption that only
unrepaired or misrepaired DNA damage leads to cell death, the cell repair capability can
be described by the probability S to survive after being exposed to a radiation dose D. S
is described by a linear-quadratic (LQ) model [McMahon, 2018a],

S(D) = exp(−αD − βD2) .

The parameters α and β and are cell type specific factors. The repair capacity (i.e. the
radiosensitivity) of individual tissues is reflected in the quadratic term β and is commonly
reported using the ratio α

β . Hence, cells with a large α/β ratio show small repair capability
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and viceversa [Fowler, 1989].
The most common radiation-induced DNA damages are single strand breaks, double strand
breaks and the loss of a base (Figure 5).

Figure 5: The backbone of a DNA molecule is composed of two phosphate-sugar strands
in opposite directions. Between compatible bases hydrogen bounds are created, that keep
two strands together, giving the typical double helix shape. Radiation induced damages
on the DNA are mainly single or double strand breaks [Richter, 2012].

Depending on how far the primary ionization events are separated in space, radiation is
characterized as sparsely ionizing (X-rays) or densely ionizing (charged particles); heavier
particles produce higher ionization density.
In Figure 6 the different spatial distributions of energy deposition between photons (X-
rays) and charged particles (carbon ions) is clearly visible, together with the effect of this
depositions on the DNA strands: sparsely ionizing radiation leads to a random spatial
distribution of energy deposition events in the cell volume. Conversely, ions deposit their
energy by the emission of secondary electrons leading a very localized energy deposition
along the track of primaries [Scholz, 2006].

It is well known that the features of the radiation track structure at the nanometer
level have important implications in terms of radiation effects in biological targets [Nikjoo,
2003]. This is especially true for energetic ions, which have complex track structures
characterized by energy depositions not only along the primary particle path, but also
projected out radially with respect to the track ”core”. This is due to the so-called ”delta
rays”, namely high-energy secondary electrons which can travel distances of the order of
tens of micrometers in biological targets.
Due to this track structure, densely ionizing radiation, like charged particles, induces more
complex DNA damage and this complexity makes the DNA repair process more difficult
[Schardt et al., 2010].
DNA can be damaged mainly in two ways: radiation can directly ionize its atoms (Direct
Action) or it can interact with other molecules, in particular water molecules forming
free radicals (Indirect Action). The latter are molecules with an unpaired electron highly
reactive and diffuse to short distances interacting with DNA [Hall and Giaccia, 2006].

For what concerns a quantitative description of the effectiveness of ions in causing a
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Figure 6: (Left) Carbon track structure in cell nucleus: the electrons density is highly
localized around the ion path producing a large number of ionization to the DNA.
(Right) Uniform energy depositions of X-rays in the cell nucleus [Scholz, 2006].

biological damage, the most widely used variable is the Relative Biological Effectiveness
(RBE). The RBE is defined as the ratio of the physical absorbed dose of a reference
radiation (250 keV photons) with respect to the dose administrated by ions yielding the
same biological effect:

RBE ≡
Dref

Dion

∣∣∣∣
isoeffect

RBE is the most relevant quantity in heavy ion therapy for describing cell killing and
normal tissue complications [Dieter Schardt, 2010].

A quantitative description of radiation quality: dosimetry vs microdosime-
try

The radiation field quality is described using either a macroscopic or a microscopic
approach. The widely used macroscopic description is based on the linear energy transfer
(LET = dE/dx energy released by radiation per unit length). Since the energy is im-
parted in or near the charged particles tracks, it is convenient to express the heterogeneity
of energy deposition in terms of the linear density of energy loss in these tracks. For this
purpose, the term linear energy transfer (LET) has been coined by Zirkle et al. (1952)
[Zirkle et al., 1951]. Using this concept, radiation quality can be described as a distri-
bution of LET, specifying the fraction of the dose deposited in each LET interval [Rossi,
1959].
As defined in [Kalholm et al., 2021], two different ways of averaging LET spectrum are
typically used: (i) averaging over the fluence Φi, or number of tracks, that each charged
particle produces, called fluence-averaged LET (also called track-averaged LET and de-
noted by LETF and (ii) averaging over the microscopic dose di given in an infinitesimally
small volume contributed to by the track of a single particle, called dose-averaged LET
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and denoted by LETD. The two quantities are thus defined as

LETF :=

∑
iΦi LETi∑

iΦi
,

LETD :=

∑
i di LETi∑

i di
=

∑
iΦi LET

2
i∑

iΦi LETi
.

In order to grasp how the radiation quality affects the biological damage, it is useful to
study the behaviour of the RBE as a function of the LET of the radiation. The link
between LET and RBE represents in fact the bridge between the physical characteris-
tics of radiation and the biological outcomes. In this view, LET variations represent the
main source of RBE variability, and thus an accurate RBE assessment calls for a detailed
knowledge of the LET spectrum. Treatments with ions are characterized by LET changes
between the entry channel and the tumor, especially if deep-seated. This feature is due to
the nuclear and electromagnetic interactions of the primary ions with the patient’s bod,y
that cause both a change in the energy of the primaries, and the production of secondary
fragments emitted at all angles and with large range of energies. The resulting mixed
radiation field causes a spatial variation of RBE, both inside and outside the tumor.
Figure7 illustrates the RBE dependence on the LET for different ion types. The RBE
increases for increasing LET up to a maximum value, which is ion-specific. For parti-
cles with high LET the ionization density is higher, and hence they induce more severe
damage, thus resulting in an increased RBE. However, empirical evidences indicate that
over certain LET values the RBE decreases. This phenomenon is often explained with the
so-called overkilling and saturation effects, and is treated in details from a modeling point
of view in 2.2. In few words, at high LET, the energy deposited into the cell nucleus is
extremely high and in particular is greater than the energy needed to inactivate the cell.
Therefore, any additional energy deposited results in the same biological effect leading
to the cell death. In addition, as the LET increases the probability that a particle hits
the nucleus decreases. The joint effect of an excessive energy deposition together with a
sparing effect results in a reduction of the biological effectiveness and an RBE decrease at
high LET. Figure7 also indicates that in the region upstream of the peak, protons have
a higher RBE than Helium ions of the same LET. This is because at this LET, helium
ions are faster than the protons with a broader track that reduces the ionization density
within the track core. Therefore, at the same LET the cell killing of helium is lower than
for protons. Despite being the most used approach to link radiation quality to its bio-
logical effectiveness, the LET is measured in macroscopic volumes, i.e. on a scale much
larger than the cellular level where the actual damage occurs. This approach neglects the
stochastic nature of energy deposition, which results in cell-to-cell variations, and LET is
considered constant throughout the material. Furthermore, it carries several approxima-
tions, for instance track structure is not taken into account, and the distribution of the
delta ray energy and its link to the spatial dose are not considered.

Microdosimetry has instead grown to overcome the limitations of describing radiation
quality with a single mean value of LET. With this approach, the effect of radiation on cells
is investigated in a region comparable to the structures of interest, where the stochastic
nature of energy deposition is not negligible. The microscopic description accounts for
this stochasticity exploiting the whole distributions of quantities related to the energy
depositions in a volume equivalent to a micrometer region of tissue.
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Figure 7: Dependence of the RBE on LET for protons, Carbon and Neon ions for experi-
ments with V79 hamster cells. Figure taken from [Scholz, 2003].

The contribution of the present work to the field

Besides the general introduction given above, the main features and quantities of the
common thread of the whole work, namely microdosimetry, are given in Part I.

Moreover, an overview of the most useful details of the experiments, Monte Carlo
simulations, data analysis and machine learning techniques used throughout the whole
work are presented in Part II.

Finally, the core of this thesis can be divided into three main parts, focusing on differ-
ent aspects of microdosimetry. A summary of the three parts is given below.

Microdosimetric radiation field characterization

Several data-taking campaigns using a commercial TEPC have been carried out, per-
forming experiments to characterize the radiation quality in different positions inside a
water phantom, both in- and off-beam.

In the experiments, we mainly aimed at studying the radiation fields coming from
secondary particles and scattered primary particles in the so called out-of-field region,
that would correspond to the normal tissues around the irradiated tumour in a clinical
scenario.
A set of measurements have been taken at the Trento Protontherapy Center with a mo-
noenergetic therapeutic proton beam and a Spread Out Bragg Peak (SOBP). In both cases,
we evaluated the radiation quality and assessed in addition the potential radiobiological
damage in the different regions.

Analogous measurements have been also performed with ions heavier than protons,
namely helium and oxygen.



22 Introduction

Finally, microdosimetry finds also an application in space radioprotection. In this per-
spective, two experimental data campaigns have been carried out at GSI Helmholtz Centre
for Heavy Ion Research in Darmstadt (Germany), with the goal of assessing microdosi-
metric energy depositions spectra of neutrons.

This part is based on the following original works:

• Missiaggia, M., et al ”Microdosimetric measurements as a tool to assess potential
in-and out-of-field toxicity regions in proton therapy.” Physics in Medicine & Biology
(2020) [Missiaggia et al., 2020]

• Missiaggia, M., et al ”In- and off-beam microdosimetric characterization of a 148-
MeV proton spread-out Bragg peak: TEPC measurements and TOPAS benchmark.”
Submitted to International Journal of Radiation Oncology, Biology, Physics (2022)
[Missiaggia et al., 2022b]

• Missiaggia, M., et al ”Helium and oxygen beams microdosimetric in- and out-of-
field characterization.” In preparation (2022) [Missiaggia et al., 2022a]

• Horst, F., Boscolo, D., Cartechini, G., Durante, M., Hartel, C., Kozlova, E., La
Tessa, C., Missiaggia, M., et al ”A multi-detector experimental setup for the
study of space radiation shielding materials: measurement of secondary radiation
behind thick shielding and assessment of its radiobiological effect” European Physical
Journal – Web of Conferences (2021) [Horst et al., 2022]

Hybrid Detector for Microdosimetry (HDM): a new tool for extending
the microdosimetric information

A feature shared by every microdosimeter is that the lineal energy y (microdosimetric
counterpart of the LET) of each particle is obtained by dividing the energy deposition ϵ
with the mean chord length l traversed in the detector. While ϵ is directly measured, the
value of l is calculated as the average path travelled by the particle inside the detector, and
thus depends both on the detector geometry and on specific assumptions on the radiation
field (typically considered isotropic and uniform).

To investigate the validity of this approximation, we performed Monte Carlo calcula-
tions using GEANT4 toolkit. We analyzed the track length distributions of all particles
traversing the TEPC and found that the mean chord was not always a good representative
of the whole population.

In order to experimentally achieve the real track length information without relying on
the mean chord length approximation, we designed a new hybrid 2-stage microdosimeter
(HDM: hybrid detector for microdosimetry) composed of a spherical TEPC followed by
four Low Gain Avalanche Detectors (LGADs).

HDM provides lineal energy spectra in tissue-equivalent with an event-by-event mea-
surement of the path length and a submillimetric spatial resolution. To assess the detector
performances, in the feasibility study we tested different configurations (distance between
detectors, number of strips in a single LGAD) and studied HDM response when irradiated
with protons and carbon ions at different water depths.

We found out that the detection efficiency is the most critical issue. To improve it, we
exploited modern Machine Learning (ML) techniques, and developed a model composed
by two modules: the first one aims at improving the detector efficiency, filling the missing



Introduction 23

spatial point values on the LGADs; the second one reconstructs the tracks of the particles
to calculate microdosimetric spectra using the real track length.

This part is based on the following original works:

• Missiaggia, M., et al. ”A novel hybrid microdosimeter for radiation field character-
ization based on TEPC detector and LGADs tracker: a feasibility study.” Frontiers
in Physics (2021) [Missiaggia et al., 2021]

• Missiaggia, M., et al ”Machine learning techniques applied to therapeutic ener-
gies particle tracking with a novel Hybrid Detector for Microdosimetry (HDM)”
Submitted to Physics in Medicine & Biology (2022) [Missiaggia et al., 2022d]

The Generalized Stochastic Microdosimetric Model (GSM2)

Currently, the only two radiobiological models used in clinical applications are the Mi-
crodosimetric Kinetic Model (MKM) and the Local Effect Model (LEM). The main limi-
tation shared by both models is the assumption that all physical and biological variables
follow a Poisson distribution. This hypothesis neglects stochastic fluctuations of energy
deposition both from cell to cell and within dose fractions. Although some generalizations
to overcome the Poissonian assumption have been developed, [Bellinzona et al., 2021],
a comprehensive stochastic description of the radiation-induced DNA damage formation
and dynamics accounting for both spatial and temporal features of the dose deposition
are still missing.
To overcome this limitation, we have developed the generalized stochastic microdosimetry
model (GSM2) [Cordoni et al., 2021]. By modeling the probability distribution of DNA
damages, GSM2 provides a general probabilistic framework to describe the damage for-
mation and evolution.
One of the most relevant strengths of GSM2 is the capability to efficiently treat the differ-
ent levels of spatio-temporal stochasticity for an irradiation. An extensive study of the cell
survival probability for acute irradiation conditions (as it is the case in particle therapy)
has been carried out in this part, showing GSM2 potentiality to provide a better ground
for the mechanistic interpretation of cell killing compared to the existing models. As a rel-
evant consequence, we showed how GSM2 provides a generalization to the multi-hit model,
that accounts for non-Poissonian effects and damage repair. In addition, a separate work
focusing on the different level of stochasticities and their effect on the cell survival curve
has been carried out.
Finally, GSM2 provided an ideal mathematical framework for the information provided by
HDM, being able to account for the whole microdosimetric distribution to predict survival
curves, instead of using just mean values like the majority of existing RBE models.

This part is based on the following original works:

• Cordoni, F., Missiaggia, M., et al ”Generalized Stochastic Microdosimetric Model:
the main formulation.” Physical Review E (2021) [Cordoni et al., 2021]

• Cordoni, F., Missiaggia, M., et al ”Cell survival computation via the General-
ized Stochastic Microdosimetric Model (GSM2) - Part I: the theoretical framework”
Radiation Research (2022) [Cordoni et al., 2022b]

• Missiaggia, M., et al ”Cell survival computation via the Generalized Stochastic
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Microdosimetric Model (GSM2) - Part II: numerical results via TOPAS microdosi-
metric extension” Submitted to Radiation Research (2022) [Missiaggia et al., 2022c]

• Cordoni, F., Missiaggia, M., et al ”Multiple Levels of Stochasticity accounted
in different Radiation Biophysical Models: from physics to biology” Submitted to
International Journal of Radiation Biology [Cordoni et al., 2022a] (2022)
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Microdosimetry, in its present sense, was founded entirely on an original approach
introduced by Harald H. Rossi6, when he recognized the fundamental difference between
macroscopic absorbed dose and the energy deposition in microscopic structures. He real-
ized that the important quantities that described the problem at microscopic scale were
inherently “stochastic variables”. He and his colleagues proceeded then to develop sophis-
ticated techniques for measuring the random fluctuations of energy deposition, to construct
a novel conceptional and mathematical framework, and to apply the new concepts and
methods to radiobiology [Santa Cruz, 2016].

Albrecht M. Kellerer7 told the story of the beginning of microdosimetry in his pa-
per ”Microdosimetry: reflections on Harald Rossi” (2002) [M. Kellerer, 2002], where he
reports:

When Harald began to work for Giachino Failla8 it was the attraction of
two similar minds. They both liked refined instrumentation and sophisticated
physics and they combined this with a passion for mathematics — real mathe-
matics, not mere computing. So it seemed natural that Failla handed a rather
intricate problem to his young co-worker, he asked him to measure LET dis-
tributions in various radiation fields. The LET distributions were, of course,
to serve as a suitable quantification of radiation quality, as they still do in the
quality factor for radiation protection.
Harald loved the problem. It gave him a perfect opportunity to engage in
the construction of fancy proportional counters, to use refined calibration pro-
cedures, and to subject the measured data to sophisticated mathematical un-
folding procedures. Such procedures were required because LET is a statistical
average of energy loss by a particle of specified type and energy. Energy loss
straggling would wash out the LET spectra, or — if the pressure in the counter
was sufficiently increased to reduce straggling — the ranges of some of the
charged particles would be too short, which again would distort the spectra.
A true challenge to measurement and analysis.
A lesser mind would have immersed himself cheerfully into the challenge and
might have got lost in it permanently. Harald did start to get immersed by
doing fine work on energy loss straggling and he could have continued. But
he had the wisdom to step back at the right moment and to reconsider the
problem. Then he realised that it was pointless to unfold the measured data.
The data were a poor representation of LET, but they were more meaningful
than the LET distributions. They represented the actual energy distributions
and these — not the somewhat academic LET distributions — determined the
effect of the radiation on the cell. This was the birth of the new concepts that
were preannounced in the paper by Rossi and Roesch, and it was the birth of
the new science of stochastic dosimetry. The expression stochastic dosimetry
is here used, because it took a few years before the new branch of dosimetry
received its current name. When initially — and somewhat before the first
Symposium in Stresa — a name was sought for the newly born branch of ra-
diation research Harald came up, tentatively, with the term micrology which
expressed his notion that the microgeometry of the physics of energy deposi-

6Harald H. Rossi (1917–2000) was an American physicist.
7Albrecht M. Kellerer is a German physicist.
8Gioacchino Failla (1891 – 1961) was an Italian-born American physicist.
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tion and of the critical cell structures were equally important in the analysis.
Fortunately an ancient dictionary was at hand at the occasion, and micrology
happened to be defined there as the pursuit of unimportant matters. That set-
tled the issue and the more orthodox name microdosimetry was then adopted.

The first formulation of microdosimetry was based on the concept of sites that are
regions of specified dimensions in which the energy absorbed from ionizing radiations is
considered without regard to its microscopic distribution within a site. This approach,
termed regional microdosimetry, received major attention because it involves quantities
that can more easily be related to radiation effects and that often are subject to accurate
measurement.
An alternative, and more advanced form, namely structural microdosimetry was originated
by Kellerer. Structural microdosimetry permits a detailed description of the microscopic
pattern of energy absorption and it is of basic importance because the immediate effect of
radiation is essentially determined by the intersection of this pattern with that of sensitive
components in irradiated matter [Zaider et al., 1996].
Microdosimetry has both experimental and theoretical aspects. The former deals with
the measurement of microdosimetric quantities and the latter is concerned with relations
between these, and other more general, physical quantities. The experimental approach is
especially suited to regional microdosimetry although the results obtained can be analyzed
to provide information on structural microdosimetry. The theoretical approach is on the
contrary of primary importance in structural microdosimetry but it can be extended to
regional microdosimetry.



Chapter 1

Microdosimetry: quantities and
detection

1.1 Quantities and distributions

The formalism on the measured and derived quantities in microdosimetry can be found
extensively in [Booz et al., 1983] and in [Zaider et al., 1996]. Here, we report the definitions
and the most interesting properties of the microdosimetric quantities relevant for the
present work.

1.1.1 Energy deposited and imparted

Energy deposited

The quantity ϵi is the energy deposited in a single interaction i:

ϵi = Tin + Tout +Q∆m

where:

• Tin represents the kinetic energy of the incident ionizing particle (exclusive of the
rest mass);

• Tout represents the sum of the kinetic energies of all ionizing particles leaving the
interaction (exclusive of the rest mass);

• Q∆m represents the changes of the rest mass energy of the atoms and all particles
involved in the interaction (Q∆m > 0 implies a rest mass decrease , Q∆m < 0 implies
a rest mass increase).

It is important to notice that:

• ϵi is a stochastic quantity;

• ϵi may be considered as the energy deposited at the point of interaction (which is
also called transfer point);

In addition, it is useful to consider a particular summation of the energy deposit in the
track j of a charged particle of a given type and energy:

29
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T̃j(x) =

∑
i

∑
k ϵiϵk∑
i ϵi

where i runs over all energy transfer points of the track and k runs over all transfer
points within a distance up to x from the transfer point.
T̃j(x) is a function of the distance x, which reflects the proximity between the transfer
points of the track j, where j runs over all n tracks in the selected volume.

Energy imparted

The energy imparted ϵ to matter in a specific volume is:

ϵ =
∑
i

ϵi

where the summation is performed over all energy depositions ϵi in that volume. It
can be noticed that:

• ϵ is a stochastic quantity;

• the energy depositions over which the summation is performed may be related to
one or more events, i.e. due to one or more statistically independent particle tracks.

1.1.2 Specific energy

The specific energy, z, is the quotient of ϵ by m, where ϵ is the energy imparted by
ionizing radiation to matter of mass m:

z =
ϵ

m

Further, it is worth noticing that:

• z is a stochastic quantity. The value of the distribution function F (z) is the prob-
ability that the specific energy is equal to or less than z. The probability density
f(z) is the derivative of F (z) with respect to z:

f(z) =
dF (z)

dz

The probability density f(z) includes a discrete component (a Dirac delta function)
at z = 0 for the probability of no energy deposition.
The expectation value:

z̄ =

∫ ∞

0
zf(z)dz

is called mean specific energy and is a non-stochastic quantity.
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• The specific energy may be caused by one or more energy deposition events. The
distribution function of the specific energy deposited in a single event, F1(z), is the
conditional probability that a specific energy less than or equal to z is deposited if
one event has occurred. The probability density, f1(z), is the derivative of F1(z)
with respect to z:

f1(z) =
dF1(z)

dz

and it is also called the single event distribution of z. The expectation value:

z̄F =

∫ ∞

0
zf1(z)dz

is called frequency-mean specific energy per event, and is a non-stochastic quantity.

• The number, n, of energy deposition events which have contributed to a particular
specific energy, z, is, in general, randomly distributed, and thus can be described by
a Poisson distribution. The mean events number, n̄, is the ratio between the mean
specific energy, z̄, and the frequency-mean specific energy per event, z̄F ,

n̄ =
z̄

z̃F

• The mean number of energy deposition events per unit absorbed dose is called the
event frequency, ϕ∗(0)

ϕ∗(0) =
n̄

D
=

z̄

z̄FD

ϕ∗(0) ≈ 1/z̄F , if z ≈ D, as it is usually the case.

• It is also useful to consider the dose distribution of z per energy deposition event.
Let D1(z) be the fraction of absorbed dose per event delivered by energy deposition
events of specific energy less than or equal to z. The dose probability density, d1(z),
is the derivative of D1(z) with respect to z:

d1(z) =
dD1(z)

dz
.

The expectation value is

z̄D =

∫ ∞

0
zd1(z)dz ,

it is called dose-mean specific energy per event, and is a non-stochastic quantity. The
relations between f1(z) and d1(z), and between z̄F and z̄D are

d1(z) =
z

z̄F
f1(z) ,

z̄D =
1

z̄F

∫ ∞

0
z2f1(z)dz .
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1.1.3 LET limitations and lineal energy definition

Over the past years, it has become more and more evident that there are many and
great limitations in the concept of LET as the key-parameter that takes into account the
quality of the radiation. In spite of its complexities, the LET concept can, at best, provide
a crude characterization of the charged particle tracks that occur in the exposed medium
[Kellerer et al., 1985]. Moreover, since the biological damage induced by radiation is di-
rectly related to the energy absorbed by the target (such as cells, tissue, etc.), the energy
loss measured as an average in a macroscopic volume becomes meaningless in the majority
of the cases.
The size of most biological targets is so small that the statistical fluctuations of the amount
of energy deposited can be very large. Therefore, in many cases of importance in radiation
biology, the hypothesis of exploiting averaging may be inaccurate.
Another important limitation of LET is that this concept is never adequate for electrons.
In fact, there are no volumes of interest sufficiently small to disregard the finite range of
electrons, and at the same time sufficiently large to discount the energy-loss straggling
and lateral escape of δ rays. For heavy ions, on the other hand, there are site sizes and
particle energies for which the LET concept predicts adequately the energy deposition.
However, even in this case the LET is of limited value since it cannot provide the energy
distribution within the sites, although the situation can differ substantially for particles
that have the same LET but different velocities.
Rossi suggested that the energy deposited by charged particles and their secondaries in
volumes of specified size should replace the use of linear energy transfer as a measure of
the radiation quality.
Microdosimetry itself originated when he recognized that the actual energy concentrations
determine the biological effect and not the values of LET; the former need then to be an-
alyzed.

The lineal energy, y, is then defined as the ratio between the energy imparted to the
matter in a volume by a single energy-deposition event (ϵ) and the mean chord length in
that volume (l)

y =
ϵ

l
.

With this definition, y, unlike LET, has no ambiguity.
It is important to notice that:

• the mean chord length in a volume is the mean length of randomly oriented chords
in that volume. For a convex body:

l̄ =
4V

S
,

where V is the volume and S is the surface area of this body. The mean chord length
of different convex volume is given in Table 1.1 using the following parameters:

– r is the radius of sphere or cylinder;

– h is the cylinder length;
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Sphere Cylinder

l̄ 4
3 r

2rh
r+h

Table 1.1: Mean chord lengths of the most used active volumes of gas based microdosime-
ters.

The lineal energy is a stochastic quantity and is useful to consider its distribution
function, F (y), which represents the probability that the lineal energy is equal to or
less than y.
The probability density, f(y), is the derivative of F (y) with respect to y:

f(y) =
dF (y)

dy
,

and it is also called lineal energy distribution. It is important to keep in mind that
y is defined for single energy-deposition events only.

• The lineal energy distribution, f(y), is independent of the absorbed dose or dose
rate.

• The expectation value:

ȳF =

∫ ∞

0
yf(y)dy ,

is called frequency-mean lineal energy, and it is a non stochastic quantity.

• It is also useful to consider the dose distribution of y. Let D(y) be the fraction
of absorbed dose delivered with lineal energy less than or equal to y. The dose
probability density, d(y), of y is the derivative of D(y) with respect to y:

d(y) =
dD(y)

dy
.

• The distribution d(y) is independent of the absorbed dose or dose rate.

• The expectation value:

ȳD =

∫ ∞

0
yd(y)dy ,

is called dose-mean lineal energy, and it is a non stochastic quantity.

• The relations between d(y) and f(y) and between ȳD and ȳF are:

d(y) =
y

ȳF
f(y) ,

and

ȳD =
1

ȳF

∫ ∞

0
y2f(y)dy .
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Quantity Unit of measurement

ϵi keV

ϵ keV

y keV/µm

z Gy

V µm3

S µm2

l̄ µm

d g/cm3

Table 1.2: Units of measurement of the principal microdosimetric parameters and of the
parameters used in calculations.

1.1.4 Relationships between microdosimetric quantities

There are several relationships between microdosimetric quantities and their macro-
scopic analogues. Some of these are of a general nature and follow directly from the
definition of the quantity, or can be derived mathematically. Others are restricted to a
particular geometry or make use of a specific approximation.

Relationships between ϵ, y and z

The relation between the quantities ϵ, y and z is:

ϵ = yl̄ = zm .

The same relationships hold for the frequency and dose means. Numerical constants
in the following formulas are chosen for the set of units reported in Table 1.2.

Then

• z = ky;

• z = k
l̄
ϵ;

• z = ϵ
m .

With some calculations:

z[Gy] = z[
J

kg
] = k

ϵ

l̄
[
keV

µm
] =

= k
ϵ

l̄
[
J

µm
]
1

ρ
[
cm3

g
] =

= k
1.6 10−16

l̄
[
J

µm
]1015[

µm3

kg
] ,

from which we obtain that k = 0.16 l̄
V .

For the important special case of a spherical volume:
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k = 0.16
l̄

V
= 0.16

4
3
d
2

4
2π
(
d
2

)3 =
0.204

d2
.

Then, since in this work it has been always used a spherical microdosimeter, the
absorbed dose in Gy is simply given by the following relationship

z[Gy] =
0.204

d2 [µm2]
y [KeV/µm] . (1.1)

1.2 Experimental microdosimetry

Detectors for microdosimetry are based on on gas counters or on solid-state counters
and they aim at providing the energy depositions of each event in their active volume.
The first microdosimeters were gas proportional counters made with tissue-equivalent plas-
tic and filled with tissue-equivalent gas mixtures. Because of that, they were called tissue-
equivalent proportional counters (TEPCs).
In the early 1950s, H.H. Rossi and W. Rosenzweig devised a spherical TEPC to evaluate
the LET in complex radiation fields. Since the LET is defined as an average quantity at
a point, they proposed to operate the proportional counter at low pressure so that the
product of the gas density and the detector diameter was of the order of 10−4 g/cm2,
which was equivalent to 1 micrometer of material of unit density [Rossi and Rosenzweig,
1955]. Measurements of the energy deposited in that small simulated site when exposed
to neutron irradiation showed a much greater variation in the distribution of the recoil
protons path lengths in the sphere, compared to the ones measured at standard pressures.
This was a strong demonstration of the stochastic nature of energy deposited by charged
particles, a phenomenon that was well known from theoretical considerations but that
had been observed primarily as the qualitative variation between traces made by identical
ionising particles in cloud chambers. Rossi recognised that the range of energy deposits
observed in the simulated micrometer volume was characteristic of the energy deposited
in biological cells; this was pointed out to be significant in initiating biological damage
[Braby, 2015].

TEPCs are characterized by an optimum tissue-equivalence, and their response to pri-
mary and secondary charged particles is accurate over a wide energy depositions range.
In addition, they have a high detection efficiency, thanks to the electrons multiplication
in the filling gas.
For these and other reasons, different types of TEPC have been built and used fro ra-
diation field characterizations in the last decades. Miniaturized TEPCs (mini-TEPCs)
with sensitive volumes smaller than 1 mm have been manufactured in order to operate at
therapeutic intensities [De Nardo et al., 2004], and they operate in the range from about
0.3 to 2 µm of equivalent tissue diameter.
Other prototypes of TEPCs have been studied and developed to be used in ion-beam
therapy, such as the low-pressure avalanche-confinement TEPC [Mazzucconi et al., 2019]
or the gas electron multiplier (GEM) TEPC [Farahmand et al., 2004].

The study of semiconductor detectors for microdosimetry begins instead in 1980 [Di-
cello et al., 1980]. Since then, several devices coupled to tissue-equivalent (TE) converters
have been employed for silicon microdosimetry [Orlic et al., 1989]. More recently, a silicon
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microdosimeter consisting of an array of microscopic p–n junctions based on the silicon-
on-insulator (SOI) technology was fabricated and tested with various radiation fields for
hadron therapy [Rosenfeld et al., 2000]. In addition, a silicon telescope has also been
proposed for microdosimetry [Agosteo et al., 2006].
The sensitive volumes of silicon detectors can be micrometric, and thus of great interest for
microdosimetry. They can be used for measuring the quality of radiation therapy beams,
coupling them to TE converters. The use of micrometric volumes avoids the contribution
of wall effects to the measured spectra. These effects represent one of the main issues
when using TEPCs: events can deposit their energy in the TEPC sensitive volume (such
as charged particles created in the TEPC walls), which would be partially acquired in a
micrometric site of tissue.
Further, in the TEPCs the electrodes are biased at several hundreds of volts, they need
an accurate gas pressure control and they have limited capabilities in high-intensity ra-
diation fields because the geometrical cross-sectional area of the sensitive volume cannot
be reduced below 1 mm3. Solid-state microdosimeters, instead, are biased at low voltage
and the thickness of the sensitive volume can be as small as 1 µm, making them suit-
able for measurements even in very intense radiation fields. Moreover, pixelated arrays
of detectors can be constructed, allowing a simultaneous two-dimensional mapping of the
radiation field quality [Colautti et al., 2020]. Further advantages of such detectors are its
compactness, cheapness, transportability, low power consumption and low sensitivity to
vibrations. However, the following problems need to be solved when using a silicon device
for microdosimetry: (i) the sensitive volume has to be confined in a region of well-known
dimensions; (ii) the electric noise limits the minimum detectable energy, due to the high-
capacitance of a very thin sensitive zone; (iii) corrections for tissue equivalency should be
made for the silicon-sensitive zone; (iv) correction for shape equivalency should be made
when referring to a spherical site, since the sensitive zone of a silicon device can be approx-
imated to a parallelepiped; (v) the angular response should be evaluated carefully; and
(vi) the efficiency of a single detector of micrometric dimensions is very poor and detector
arrays should be considered [Agosteo and Pola, 2011].

Based on the pros and cons of existing microdosimeters, we selected a commercial
TEPC model LET-1/2 from Far West Technology for all experimental and simulated
measurements related to this work.

1.2.1 TEPC LET-1/2

The TEPC model LET-1/2 from Far West Technology is a proportional counter that
employs a spherical chamber with tissue equivalent walls and a tissue equivalent filling gas.
The spherical shape guarantees that its response would be independent of the direction
from which the radiation comes.

The detector is a spherical cavity with a 12.7 mm internal diameter. An aluminum
shell of 1.8 mm thickness is used as a vacuum tight container for the sphere and is mounted
on an aluminum stem. This allows the sphere to be placed below the surface of a tissue-
equivalent fluid phantom. The inner diameter of the TEPC gas filled sphere is 12.7 mm
and the wall thickness is 1.27 mm.
Table 1.3 summarize the TEPC LET-1/2 specifications.
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Aluminium stem

Length 254 mm

Diameter 6 mm

Aluminium shell

Length 6.35 cm

Wall thickness 1.8 mm

Diameter 2 cm

Sphere

Wall thickness 1.27 mm

Internal diameter 12.7 mm

Table 1.3: TEPC LET-1/2 specifications.

H C N O F Na Mg Si P S K Ca

ICRU tissue, muscle (ICRU, 1964)

10.2 12.3 3.5 72.9 - 0.08 0.02 - 0.2 0.5 0.3 0.007

Muscle-equivalent plastic A-150 (Smathers et. al., 1997)

10.1 77.6 3.5 5.2 1.7 - - - - - - 1.8

Muscle-equivalent gas, with propane (Srdoc, 1970)

10.3 56.9 3.5 29.3 - - - - - - - -

Table 1.4: Elemental composition of compounds and mixtures in percentage by weight
of the so-called A-150 muscle-equivalent plastic and the muscle-equivalent gas propane-
based, compared to the ICRU muscle definition.

The simulation of biological tissue

In order to achieve the simulation of biological tissue, both the filling gas and the
sphere wall are required to be tissue-equivalent.
The most commonly used gases are methane-based or propane-based. From the produc-
tion company, TEPC LET-1/2 was filled with a mixture of gas, propane-based, called
TE-propane gas. Besides using this compound as the gas filling the TEPC in a part of
the current work (7), a refill of the gas was needed after a long period of use. Being easily
available and being demonstrate its equivalence in [Chiriotti et al., 2015a], we chose the
pure propane gas to fill the TEPC. For this reason, in the majority of the experiments
and Monte Carlo simulations presented here, we used the detector with this mixture.

The most widely used material in microdosimetry, and the one composing the TEPC
LET-1/2 sphere wall is the muscle-equivalent plastic formulation, called A-150. Table
1.4 shows the elemental composition of muscle-equivalent compounds and mixtures in
percentage by weight, together with the muscle-equivalent propane-based gas, compared
to the ICRU 1964 muscle definition [ICRU, 1964].

A-150 is a mixture of polyethylene, nylon, carbon and calcium fluoride. The elemental
composition of A-150 is very close to standard muscle tissue with regard to hydrogen and
nitrogen. There is, however, a substitution of carbon for oxygen; in fact, no practically
usable solid has an oxygen content equal to that of tissue.
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Figure 1.1: The TEPC and its X-rays image (Model LET-1/2, Far West Technology, Inc.,
Goleta, CA, USA).

Simulating a microscopic volume

In order to relate the energy deposition to a microscopic volume of biological tissue,
the latter is replaced by a much larger cavity filled with a tissue-equivalent gas of much
lower density. To achieve the simulation of a microscopic volume, the physical size of the
detector and the density of the gas are used as variables, as they form a conjugate pair in
controlling the site size simulation.
In order to be equivalent, it is required that the energy loss of the charged particles
traversing the tissue sphere is the same as in the gas sphere, for equivalent trajectories. Let
∆Et and ∆Eg be the mean energy losses of charged particles in tissue and gas, respectively

∆Et =

(
S

ρ

)
t

ρtdt ,

∆Eg =

(
S

ρ

)
g

ρgdg ,

where
(
S
ρ

)
t
and

(
S
ρ

)
g
are the mass stopping powers, ρt and ρg are densities and dt

and dg = dtκgt are the diameters of the tissue and gas spheres, respectively.

So,

∆Et = ∆Eg .

By definition of tissue equivalence, the mass stopping power of the biological tissue
and the tissue-equivalent gas are the same. Then, the condition that has to be verified to
achieve simulation of a tissue microscopic volume is

ρg =
ρt
κgt

= ρt
dt
dg
. (1.2)

By minimizing the detector volume, a higher gas density is obtained for a given sim-
ulated site size. Substituting ρt and dg in (1.2), the gas density for different site sizes is
calculated. By using the gas density values in the ideal gas equation, the pressure required
to simulate different site sizes can be obtained as



1.2. EXPERIMENTAL MICRODOSIMETRY 39

PV = nRT ,

or
PV =

ρ

M
RT ,

where ρ is the gas density (in g/cm3), M is the gas molecular weight, R is the gas
constant, T is assumed to be the room temperature of 293.15 K.
In our case, the filled propane gas is at a pressure of 60 mbar in order to be equivalent to
2 µm of tissue, and the corresponding density is:

ρ =
P [atm] ·M [g/mol]

R[m
3·atm

K·mol ] · T [k]
= 1.08 · 10−4g/cm3 (1.3)

where R = 8.206 · 10−5m3·atm
K·mol , M = 44.1g/mol.



Chapter 2

Microdosimetry-based models for
cell survival prediction

An accurate prediction of the relative biological effectiveness (RBE) of the irradiating
field is a fundamental requirement to correctly estimate treatment responses [Durante
and Loeffler, 2010]. The RBE value depends on several factors of different nature, both
biological and patient specific, because of the complexity of the mechanisms of action
underlying tumour and normal tissue responses in radiation therapy.
A numbers of models have been developed to predict RBE, attempting to account for such
effects. They can be divided into four main categories:

1. purely phenomenological models: NIRS1 mixed beam approach [Kanai et al., 1997,
Kanai et al., 1999, Gueulette et al., 2007, Tsujii et al., 2004];

2. linear LETd-based models (developed mainly for protons) [Carabe et al., 2012, We-
denberg and Toma-Dasu, 2014, Jones, 2015, McNamara et al., 2015];

3. Local Effect Model (LEM)-based models [Scholz et al., 1997, Scholz and Kraft,
1992, Scholz and Kraft, 1996, Elsässer and Scholz, 2007, Elsässer et al., 2008, Elsässer
et al., 2010, Friedrich et al., 2012];

4. models based on microdosimetry concepts:

(a) models based on the Microdosimetric Kinetic Model (MKM), initially proposed
by Hawkins in 1994 [Hawkins, 1994] and then explored and extended [Hawkins,
2003, Kase et al., 2006, Kase et al., 2007, Sato and Furusawa, 2012, Manganaro
et al., 2017];

(b) other models, such as the repair-misrepair-fixation RMF model [Carlson et al.,
2008, Frese et al., 2012, Stewart et al., 2018], and phenomenological models
based on RBE-weighting functions [Pihet et al., 1990, Menzel et al., 1990,
Wambersie, 1994, Wambersie et al., 1990].

All the different models present different advantages and limitations. Even if RBE is not
physically measurable, models belonging to category 4 provide a strong link with micro-
dosimetric physics measures and they will be therefore the focus of the present work’s
theoretical part.

1National Institute of Radiological Sciences (NIRS, Chiba, Japan)
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2.1 Single- and multi-event microdosimetric distributions

When dealing with specific energy spectra, it is important to distinguish between the
single-event distribution and the multi-event distribution. Although the experimental mi-
crodosimetry achieves single event quantities such as the ε1 or the lineal energy y, the
starting point for the models are multi-event quantities such as the specific energy z and
its distribution.
The single–event distribution, denoted by f1(z), is the probability distribution of z condi-
tioned to the fact that exactly a single-event happened. The single–event distribution is
the building block to define the more-general n−event distribution fn(z) and the multi–
event distribution f(z).
The n−event distribution fn(z), that is the probability distribution conditioned to the
fact that precisely n events occurred, can be computed as the n−fold convolution of the
single-event distribution f1(d), as follows [Zaider et al., 1996]

f2(z) :=

∫ ∞

0
f1(z̄)f1(z − z̄)dz̄ ,

. . . ,

fn(z) :=

∫ ∞

0
f1(z̄)fn−1(z − z̄)dz̄ ,

(2.1)

Using the n−event distributions defined above, we can define the general multi–event
distribution as

f(z;λn) :=
∞∑
n=0

p(n;λn)fn(z) , (2.2)

with p(n;λn) an integer valued probability distribution with average λn, meaning that

λn :=
∞∑
n=0

np(n;λn) .

Themulti–event distribution f(z;λn) plays a crucial role in the development of microdosimetric-
based radiobiological models. The quantity f(z;λn) depends on the number of events n
only through p(n;λn), which is independent of the specific energy z. Furthermore, given
p(n;λn), the single–event distribution f1 completely determines the multi-event distribu-
tion f(z;λn).
Typically, since events are statistically independent, p(n;λn) is assumed to be a Poisson
distribution with mean value λn, so that Equation (2.2) becomes

f(z;λn) :=

∞∑
n=0

e−λn
λnn
n!
fn(z) . (2.3)

Denoting by ⟨z⟩ the first moment of the distribution f(z;λn), formally

⟨z⟩ :=
∫ ∞

0
zf(z;λn)dz , (2.4)

from which it follows that the subsequent relation holds true,

⟨z⟩ = λnzF , (2.5)
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In microdosimetry, z̄ is often identified with the absorbed dose D, and we will adopt this
identification in the chapter.
Above argument, with particular reference to Equation (2.5), leads to the average value
λn of the multi–event distribution to be [Zaider et al., 1996, Booz et al., 1983]

λn =
D

zF
, (2.6)

From now on, we will consider λn to be defined as in Equation (2.6), unless specified
otherwise.
Further computations [Zaider et al., 1996, Booz et al., 1983] show that, for what concerns
the second moment, it holds that∫ ∞

0
z2f(z;λn)dz = D2 + zDD , (2.7)

with zD the dose average of the single-event specific energy

zD :=
1

zF

∫ ∞

0
z2f1(z)dz =

∫∞
0 z2f1(z)dz∫∞
0 zf1(z)dz

. (2.8)

The notation and the computations presented in the current section will be extensively
used thorough the work to formally derive analytical solutions for some relevant biological
endpoints, typically the cell–survival probability, starting from a mathematical model for
the DNA damage.
In the following, we assume that a cell nucleus is divided into Nd domains, so that the
microdosimetric distributions will be used both on single domains and on the whole cell
nucleus. In particular, the superscript (c, d) will denote that the corresponding quantity,
such as as a microdosimetric distribution or the corresponding average value, is considered
on the domain d of the cell c. Further, the subscript n denotes that the microdosimetric
distributions are calculated on the cell-nucleus, whereas if no subindex is specified, it is
assumed that the corresponding distribution is derived on the domain.
In addition, whenever we say that we average a function g(z) over all domains of a cell

nucleus, denoted for short by ⟨g⟩(c)d , it formally means

⟨g⟩(c)d :=
1

Nd

Nd∑
d=1

∫ ∞

0
g(z)f (c,d)(z; zn) dz . (2.9)

where f (c,d)(z; zn) denotes the probability density of z in a domain for cell with nucleus
specific energy zn.
Similarly, by averaging a function gn(z) over all cell population denoted by ⟨gn⟩c, we mean

⟨gn⟩c :=
1

Nc

Nc∑
c=1

∫ ∞

0
gn(z)f

(c)
n (z;D)) dz . (2.10)

where Nc is the total number of the considered cells and f (c)(z;D) indicates the probability
density of z in a nucleus for a population of cells irradiated with a macroscopic dose D. A
classical assumption in the computations of the survival probability for cell population, the
microdosimetric spectra are typically reasonably considered equals among different cells
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and domains. In this case, we will drop the indexes c and d, and the sums in Equations
2.9 and 2.10 can be carried out implicitly:

⟨g⟩d =

∫ ∞

0
g(z)f(z; zn) dz (2.11)

⟨gn⟩c =
∫ ∞

0
gn(z)fn(z;D)) dz . (2.12)

2.2 Microdosimetric Kinetic Model

The Microdosimetric Kinetic (KM) model was developed by Roland B. Hawkins 2

[Hawkins, 1994] by taking inspiration from the theory of dual radiation action (TDRA)
[Kellerer and Rossi, 1972, Kellerer and Rossi, 1978], the repair-misrepair model [Tobias,
1980, Tobias, 1985] and the lethal-potentially lethal (LPL) model [Curtis, 1986, Curtis,
1988].
Figure 2.1 represents a conceptual scheme of the main MKM formulations and extensions.

Historical bases

The theory of dual radiation action (TDRA) [Kellerer and Rossi, 1972, Kellerer and
Rossi, 1978] assumes that, after the cell irradiation, the number of lethal lesions in a small
volume of the cell nucleus, defined site, is proportional to the square of the specific energy
z deposited in that site:

ε(z) = Kz2 (2.13)

where the K factor expresses average yield of lethal lesion for a imparted dose of z.
In the MKM development [Hawkins, 1994], this postulate is generalized by adding the
quadratic proportionality to the lethal damages, and therefore implying a linear-quadratic
dependence of the survival probability on z.
The MKM inherits the concept of damage time evolution for the repair or conversion into a
lethal non reparable lesion (chromosome aberration) [Van Houten et al., 2018, Schürmann
et al., 2018] of the primary potentially lethal radiation induced lesions in DNA from the
repair-misrepair (RMR) model, developed by Tobias et al. to interpret radiobiological
experiments with heavy ions [Tobias, 1980, Tobias, 1985]. The RMR model considers
that the amount of DSBs in the DNA, U(t), is linearly proportional to the radiation dose
rate. A number of DSBs evolve in lethal lesions, L(t), while most breaks are successfully
repaired with a first-order process. The model includes also the possibility of a misrepair
as a second-order process since it involves two broken DNA strands to form a chromosomal
aberration. The idea of misrepair was initially applied by Lea and Catcheside [Lea and
Catcheside, 1942] to describe the formation of chromosome aberrations in tradescantia.
These assumptions yield the following kinetic equations:

dU

dt
= δḊ︸︷︷︸

damage

− λU︸︷︷︸
repair

− κU2︸︷︷︸
misrepair

dL

dt
= (1− ϕ)λU︸ ︷︷ ︸

unsuccessful repair

+ σκU2︸ ︷︷ ︸
lethal misrepair

(2.14)

2Roland B. Hawkins is an American physicist.
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Figure 2.1: Conceptual map of the evolution of some of the microdosimetric kinetic mod-
els (blue) developed over the years. Some of these models are currently used for RBE
and RBE-weighted dose evaluations in TPS applications (dark cyan). The dotted lines
mark the theoretical bases of the considered formulation (light gray color). In the figure,
MD stands for MicroDosimetry, RMR stands for Repair-MissRepair model, LPL stands
for Lethal-Potentially Lethal model, SMK stands for Stochastic Microdosimetric Kinetic
model and MC stands for Monte Carlo.
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where δ is the number of DSBs induced per Gy of radiation, λ is the rate at which the
DSBs are repaired, κ is the rate constant for second-order DSB interaction, and ϕ is the
fraction of simple repairs that are successful. The fraction of misrepairs that result in a
lethal lesion is σ.

Like the RMR model, the lethal-potentially lethal (LPL) model [Curtis, 1986, Curtis,
1988] accounts that the damage caused by ionizing radiation at the molecular level to cell
death can be separated into two broad classes: damages that have the potential of being
lethal, P (t) (by fixing or binary misrepair) but also can be repaired correctly and that
which is lethal ab initio and cannot be repaired correctly, L(t). Both lesions are linearly
proportional to the radiation dose-rate [Kuang et al., 2016], and after a prescribed time, the
remaining potentially lethal lesions become lethal as described in the following equations:

dP

dt
= δηḊ︸︷︷︸

reparable damage

− λP︸︷︷︸
repair

− κP 2︸︷︷︸
misrepair

dL

dt
= δ(1− η)Ḋ︸ ︷︷ ︸

irreparable damage

+ κP 2︸︷︷︸
lethal misrepair

(2.15)

where η is the amount of radiation induced DSBs that are repairable, while all the other
parameters are the same as Equation (2.14).
The solution of the model equations are similar in form to those for the RMR model
and the LPL. However, unlike the RMR, the LPL predicts that the probability of the
interaction between potentially lethal lesions is strongly dependent to the dose rate and
becomes negligible for low dose-rates, where only direct creation of lethal events through
λ dominate.

Original formulation and general considerations

The MKmodel is based on the following funding assumptions [Hawkins, 1994, Hawkins,
1996, Hawkins, 1998]:

1. the cell nucleus is the sensitive target and it is divided into Nd sub-units, called
domains, similar to the sites of the TDRA. In general, the domains have a variety
of shapes that fit together to fill the nucleus. In the case of mammalian cells, the
domain diameter is usually considered to be in the range 0.5 ≤ dd ≤ 1.0µm and the
number of domains per nucleus is in the order of few hundred;

2. radiation can create two different types of DNA damages, called of type I and II;

3. type I lesions represents a damage that cannot be repaired, for this reason it will
be also called lethal lesion. On the contrary type II lesions, also called sublethal or
potentially-lethal lesions, can repair or convert into a lethal lesion either by sponta-
neous conversion or by binary combination with another sublethal lesion;

4. type I and II lesions are confined to the domain in which they are created. This
assumption defines a sub-nuclear correlation length among lesions, because the in-
teraction of two lesions can happen only if they are in close spatial proximity. Specif-
ically, a pair of type II lesions can combine to form a type I lesion only if they are
created in the same domain;

The idea behind the division of a cell into subvolumes arises because couples of type
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II lesions are all likely to happen in a short time period, even for lesions that are far
away in the cell-nucleus. In order to overcome such a problem, a possible approach
is to divide the nucleus into smaller subdomains so that interactions might happen
only inside a single volume, as it is assumed in the MKM. Choosing the domains
size plays a key role in the predicted cell-survival: if the domains are too big, then
lesions that are created far away can interact, while on the contrary, if the domains
are too small, then that the overall number of lesions inside a single domain is so
small that couple interactions is less likely to happen. Therefore, different choices of
domains can in principle lead to different model predictions. A possible solution to
reduce the model sensibility from the arbitrary choice of the domains, it is to assume
that interactions are possible also within different domains. This hypothesis allows
lesions to move from one domain to another, or pairs of lesions to interact if they
are formed in adjacent domains.

5. the initial number of type I and II lesions in a single domain d is proportional to the
specific energy z deposited in the domain.

If above assumptions hold then the following further assumptions are made:

6. if at least one domain suffers a lethal lesion, then it is considered “dead”;

7. if at least one domain is dead, then the whole cell is “dead”.

While the MK assumptions reported in this section are general, in many studies [Mat-
suya et al., 2014, Chen et al., 2017] the lethal lesions are intended to represent a specific
complex DNA damage (e.g. lethal chromosome aberrations) that cannot be repaired,
whereas the creation of sublethal lesions are explicitly associated to the induction of DSB
that can be repaired.

Following the MK notation, we denote by x
(c,d,z)
I (t) and x

(c,d,z)
I (t) the time-dependent av-

erage number of type I and type II lesions for a cell-domain (c, d) caused by an acute dose
z(c,d) deposited in the cell c and domain d at t = 0. Starting from the concept introduced
in the TDRA that a cell experiences a randomly varying dose in a microscopic volume
[Booz et al., 1983, Rossi and Zaider, 1991], the microscopic specific energy z(c,d) is consid-
ered as a random variable with ⟨⟨z(c,d)⟩d⟩c = D being the macroscopic dose experienced
by the cell population.
Type II lesions are assumed to be repaired with a constant repairing rate r , or converted
to irreparable lesions through a first order process with a constant rate a, or at the second
order, representing pairwise combinations, with a constant rate b. The average number of
type I and II lesions at t = 0 is proportional to the amount of specific energy z(c,d) with
factors λ and κ. These assumptions formally define the following set of coupled Ordinary
Differential Equations (ODE) similar in concept to Equations (2.14) ẋ

(c,d,z)
I = ax

(c,d,z)
II + b

(
x
(c,d,z)
II

)2
,

ẋ
(c,d,z)
II = −(a+ r)x

(c,d,z)
II − 2b

(
x
(c,d,z)
II

)2
,

(2.16)

subject to the initial average number of lesions

x
(c,d,z)
I (0) = λz(c,d) , x

(c,d,z)
II (0) = κz(c,d) . (2.17)
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For charged particles, typically the rate of pairwise combinations between type II lesions
is negligible with respect to the first order evaluation of xII for low does [Hawkins, 1996],
that is,

2b
(
x
(c,d,z)
II

)2
≪ (a+ r)x

(c,d,z)
II (2.18)

so that the time-evolution of the average number of type II lesion can be rewritten as

ẋ
(c,d,z)
II = −(a+ r)x

(c,d,z)
II . (2.19)

The solution to Equation (2.19) is

x
(c,d,z)
II (t) = κz(c,d)e−(a+r)t . (2.20)

Substituting Equation (2.20) into the kinetic Equations (2.16) and integrating x
(c,d,z)
II with

respect to time, it follows that

x
(c,d,z)
I (t) = λz(c,d) + aκz(c,d)

(
1− e−(a+r)t

a+ r

)
+ bκ2

(
z(c,d)

)2(1− e−2(a+r)t

a+ r

)
. (2.21)

An example of the temporal evolution of the lesions in a cell is depicted in Figure 2.2.

Figure 2.2: Time evolution of xI and xII damages for a single instantaneous irradiation
as described by Equations (2.21) and (2.20), respectively. Left panel: temporal evolution
for a single irradiation. The dotted vertical lines represent the energy deposition events
in the cell nucleus due to the passage of ionizing particles. Right panel: generalization
of the temporal evolution for any time-structured irradiation. The dotted vertical lines
represent the energy deposition events in the cell nucleus due to the passage of ionizing
particles; figure taken from [Manganaro, 2018].

The exponential decay in Equation (2.21) derives from the assumption; empirical
evidences show how it could likely represents an approximation of more complex re-
pair kinetics present in the real cell [Dikomey and Franzke, 1986, Fowler, 1999, Dale
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et al., 1999, Carabe-Fernandez et al., 2011]. Postulating that the total number of lesions
xI(t) + xII(t) ∼ NDSB(t) describes the number of DSBs in the DNA, the repair kinetics
represented in Equation (2.21) can be verified through H2AX phosphorylation mapping
experiments (γ-H2AX) [Schettino et al., 2011, Mariotti et al., 2013]. For high-LET par-
ticles such as carbon ions, the presence of a plateau (offset) in the observed NDSB(t)
[Asaithamby et al., 2008, Carabe-Fernandez et al., 2011, Asaithamby et al., 2011] suggests
the presence of an irreparable complex clustered damage that can be related directly to
the parameter λ of the kinetic equations, and hence to the linear parameter α0 of the
macroscopic cell survival LQ formulation.
In order to connect above explicit solution of Equation (2.21), i.e. the average number
of type I and II lesions generated by a certain energy deposition z(c,d), to the survival
probability, one more fundamental assumption must be made:

8. given a specific energy z, the lethal lesion distribution follows a Poisson distribution.

Under this assumptions, the probability that the domain d survives at time t→ ∞ when
exposed to the specific energy z(c,d), denoted by s(c,d)(z(c,d)), can be computed as the
probability that the random outcome of a Poisson random variable is null. Therefore,
s(c,d) is given by

s(c,d)(z(c,d)) = e− limt→∞ x
(c,d,z)
I (t) . (2.22)

Using Equation (2.21), the average number of lethal lesion given z(c,d) as t → ∞ can be
computed as

lim
t→∞

x
(c,d,z)
I (t) =

(
λ+

aκ

a+ r

)
z(c,d) +

bκ2

2(a+ r)

(
z(c,d)

)2
, (2.23)

so that the log-survival for the domain d is given by

log s(c,d)(z(c,d)) = −Az(c,d) −B
(
z(c,d)

)2
, (2.24)

with A and B defined as

A =

(
λ+

aκ

a+ r

)
, B =

bκ2

2(a+ r)
. (2.25)

These constants are independent of the domain d and specific energy z(c,d) deposited in
the domain d.

Indicating with S
(c)
n (z

(c)
n ) the survival probability of the cell c that has received exactly

a specific energy z
(c)
n in the nucleus, the log-survival of this quantity, − logS

(c)
n (zn) =

x
(c)
I,n(zn), represents the total number pf lesions in the entire cell nucleus, and thus can be

evaluated by summing the single–domain log–survival − log s(c,d)(z) = x
(c,d)
I (z) over all the

cell domains, or, equivalently, by formally using this quantity average over the domains.
Assuming that the probability density functions are the same over all the domains and
cells, we can drop the index c and d and use Equations (2.11) to write

logSn(zn) := −xI,n(zn)
= −Nd⟨xI(z)⟩d = −Nd⟨log s(z)⟩d
= −Nd

(
A⟨z⟩d +B⟨z2⟩d

)
= −NdA

∫ ∞

0
zf(z; zn) dz −NdB

∫ ∞

0
z2f(z; zn) dz ,

(2.26)
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where f(z; zn) is the probability density of z in a domain for a cell with a mean specific
energy zn deposited the nucleus. In particular, as shown in Section 2.1, the following holds

zn = ⟨z⟩d =

∫ ∞

0
zf(z; zn)dz . (2.27)

Using Equations (2.7) and (2.8) derived in Section 2.1, the log survival in Equation (2.26)
can be written as

logSn(zn) = −(α0 + zDβ0)zn − β0 (zn)
2 , (2.28)

with α0 := NdA and β0 := NdB. Also, zD is the dose average z per event in a domain,
obtained by applying Equation (2.8) to the domain.
In Equation (2.26), we have used the notation f(z; zn) to denote the multi–event distri-
bution, rather than f(z;λn) as done in Section 2.1. This is due to the fact that, since the
following relation holds true

λn =
zn
zF

, (2.29)

we have preferred to specify the dependence upon the multi–event distribution average.
In order to obtain the cell survival S(D) for a population of cells irradiated with a macro-
scopic dose D, the quantity Sn(zn) defined in Equation 2.26 should be averaged accounting
for the distribution of the specific energy zn over the cell population. In terms of logS
(the logarithm of the cell population survival), and under the assumption that all the cells
have the same probability distribution of specific energy zn, the average of the log-survival
probability over the entire cell population can be written as:

logS(D) := log⟨Sn(zn)⟩c

= log

(∫ ∞

0
Sn(zn)fn(zn;D) dzn

)
,

(2.30)

where fn(zn;D) is the probability density of zn for a macroscopic absorbed dose D deliv-
ered to the cell population, i.e.

D = ⟨zn⟩c =
∫ ∞

0
znfn(zn;D)dzn . (2.31)

Equation (2.30) is fundamentally different from Equation (2.26) since the it considers
the average of the logarithm argument, whereas in Equation (2.26) the logarithm of the
average has been taken. This indicates that, due to the stochastic nature of zn, the
distribution of lethal lesions logSn(zn) over the cell population is in general non-Poisson,
and hence the log of the survival fraction cannot be directly related to the average number
of lethal lesions per cell, logS(D) ̸= −⟨xI,n(zn)⟩c. However, provided that the variance
of zn is small, a Poission approximation can be assumed and the same procedure used
to obtain Equation (2.26) can be applied in this case. With the Poisson approximation,
Equation (2.30) can be written as follows,

logS(D) = log⟨Sn(zn)⟩c
≈ −⟨xI,n(zn)⟩c = ⟨logSn(zn)⟩c

=

∫ ∞

0
log (Sn(zn)) fn(zn;D) dzn

= −(α0 + (zD − zn,D)β0)D − β0D
2 ,

(2.32)
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with zn,D being the dose in the nucleus per event. All the quantities zn,D zD and zn ≈
⟨zn⟩c = D are assumed to be the same for each cell or domain. All other notations are
used as previously introduced. Since the domain size is usually much smaller than the
nucleus, it holds that zn,D ≪ zD [Hawkins, 1996]), so that we obtain

logS = −αPD − βD2 , (2.33)

with

αP := α0 + zDβ0 , β := β0 . (2.34)

where the subscript P indicates that the relationships hold when the assumption of Poisson
distribution of lethal lesions among the irradiated cell population is reasonable, i.e. for
low-LET radiation.

A further refinement of the MKM kinetic equations involves a fourth type of possible
interaction, that happens at time tr. The following is assumed:

9. after a time tr > 0, all sub–lethal lesions that are not either dead or repaired,
automatically transform into lethal lesions.

The mathematical formulation of the main kinetic equations remain the same as in Equa-
tions (2.16)–(2.20)–(2.21) in the time interval t ∈ [0, tr). As soon tr is reached, all type
II lesions that have not been either repaired or died, will be converted into type I lesions,
meaning

xII(t) = 0 , t > tr . (2.35)

The solution for the average number of type I lesion can be now explicitly found for t > tr,
adding all type II lesions that persisted for t > tr, that is

x
(c,d,z)
I (t) = x

(c,d,z)
I (t) + x

(c,d,z)
II (tr) , (2.36)

so that we obtain

lim
t→∞

x
(c,d,z)
I (t) = lim

t→∞
x
(c,d,z)
I (t) + x

(c,d,z)
II (tr) =

=

(
λ+

aκ

(a+ r)
+

κr

(a+ r)
e−(a+r)tt

)
z(c,d)+

+
bκ2

2(a+ r)

(
1− e−2(a+r)tr

)(
z(c,d)

)2
.

(2.37)

Taking the average of the number of lesions over all cell domains and cell population, we
obtain the generalization of Equation (2.33)

logS = −αD − βD2 , (2.38)

with 
α := ᾱ0 + z

(c,d)
D β̄0 , β := β̄0

ᾱ0 := Nd

(
λ+ aκ

(a+r) +
κr

(a+r)e
−(a+r)tt

)
,

β̄0 := Nd
bκ2

2(a+r)

(
1− e−2(a+r)tr

)
.

(2.39)
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The non-Poisson correction

In the approximation introduced in Equation (2.32), it is assumed that the variance of
the absorbed specific energy zn among cells is sufficiently small. In this case, the number
of lethal events follows the same Poisson distribution in each cells, with average xn,I .
However, in general, the specific energy received by the cell is a stochastic quantity that
varies from cell to cell, with a deviation from the Poisson distribution when considering
the whole population of irradiated cells. This deviation is present even if the radiation
is perfectly mono-energetic. In this case, the specific energy zn variance arises from the
fluctuation of the number of particles that hit the cells. These variations are particularly
relevant when the particle LET is relatively high, because, at a given macroscopic dose D,
the average number of high-LET particles interacting with the cell is lower than the number
of low-LET particles. To account for the non-Poisson distribution of the lethal events,
Hawkins introduced a correction to the MK model [Hawkins, 2003], with a deviation from
the linear behaviour of the RBE vs. LET in the high-LET region.

The effect of the lethal lesions non-Poisson behavior is considered by explicitly eval-
uating the fraction of hit and non-hit cell nuclei. Considering a very low dose high-LET
irradiation, D ≪ 1, the probability for a cell to interact with more than one particle is
negligible. In this case, the population of cells can be divided into a fraction Φ of cells that
suffer a single particle interaction and a fraction 1− Φ of cell with zero interactions. We
call xI,n(zn,D) the average number of type I lethal lesions in the fraction Φ of cells whose
sensitive nucleus has been hit by a single particle, imparting exactly a specific energy
zn,DThen, using Equations (2.32)– (2.34), we obtain

xI,n(zn,D) = − logS(zn,D) = (α0 + zDβ0)zn,D + β0z
2
n,D . (2.40)

It is possible to explicitly write the global cell surval fraction (including both hit and
non-hit nuclei) as:

S(D) = (1− Φ) + Φe−xI,n(zn,D) . (2.41)

This corresponds to consider a probability density function fn(zn;D) = (1 − Φ)δ(zn) +
Φδ(zn − zn,D) in Equation (2.30). The number of lethal lesions per cell averaged over the
whole cell population (including both hit and non-hit nuclei) exposed to the macroscopic
dose D can be directly evaluated as

⟨xI,n(zn)⟩c = ΦxI,n(zn,D) , (2.42)

and then Equation 2.41 can be rewritten as

S(D) = 1 +
⟨xI,n(zn)⟩c
xI,n(zn,D)

(e−xI,n(zn,D) − 1)

= 1 +

[
e−(α0+zDβ0)zn,D−β0z2n,D − 1

(α0 + zDβ0)zn,D + β0z2n,D

] (
(α0 + β0zD)D + β0D

2
) (2.43)

If we expand the log of S around D = 0, and drop the terms D2 or higher powers, then
the linear term of logS(D) can be written as

− logS(D)|D→0 ≈ (α0 + zDβ0)×

(
1− e−(α0+zDβ0)zn,D−β0zn,D

(α0 + zDβ0)zn,D + β0z2n,D

)
×D

≈ αP ×
(
1− e−αP zn,D

αP zn,D

)
×D

= αNP ×D

(2.44)
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where αP is the Poisson α coefficient defined in Equation (2.34), while the subscript NP
indicates the Non-Poisson corrected α coefficient. Following Hawkins’ original formulation
[Hawkins, 2003], the quadratic term z2n,D ≪ zn,D in Equation (2.44) was also neglected.

In Equation (2.44), a subtle approximation is assumed in order to have a Poisson
distribution in the lethal events, with only a single defined value of zn = zn,D when the
particle hits the cell. Generally, this is not the case and the specific energy can also vary as
a function of the particle impact parameter with respect to cell nucleus. Still, xI,n(zn,D)
is used as an estimation of the lethal lesions average number in those cells that have
registered a single event after exposure to a dose D.

The saturation correction

Kase et al. [Kase et al., 2006] introduced a correction factor in the MKmodel to account
for the RBE decrease due to the overkill effect observed in high-LET radiation (see for
example Figure 2.3). The correction factor was applied to the dose-averaged saturation-
corrected specific energy per event, z∗1 , for mixed radiation field with wide-ranging energy
spectra.

In terms of lineal energy, the new value of yD (and hence zD) was obtained by applying
a correction for each lineal energy component of the lineal energy spectrum. This correc-
tion was obtained by using an empirical saturation parameter y0 based on the method
introduced by [Powers et al., 1968] and then used in the TDRA [Kellerer and Rossi, 1978]

y∗D =
y20
∫ [

1− exp
(
−y2/y20

)]
f(y) dy∫

yf(y) dy
(2.45)

The saturation parameter indicates the lineal energy above which the correction due to
the overkill effects became important. The correction to cell survival is then obtained
by evaluating the corrected dose-averaged saturation specific energy per event z∗D in the
domain, which can derived from the corrected dose-averaged lineal energy (2.45) using the
relationships reported in Equation (2.8):

z∗D =
l̄d
md

y∗D =
y∗D
ρπr2d

(2.46)

where ρ, rd, l̄d and md are the density, radius, mean cord length, and mass of the domain,
respectively. The equation for the cell survival (Equation (2.33)) is then modified as
follows:

− ln(S) = (α0 + β0z
∗
D)D + β0D

2 (2.47)

Considering the linear term in the macroscopic dose D, the corrected α∗ coefficient is
hence:

α∗ = (α0 + β0z
∗
D) (2.48)

No correction is considered for the β coefficient and it is still assumed to be independent
of the energy spectrum.
A comparison between the MKM prediction including the saturation correction and the
experimental data is shown in Figure 2.3, where the α vs. yD for HSG cells irradiated with
carbon ions is plotted. Comparing Equations (2.44) and (2.48), the saturation correction
can be considered as an alternative way to describe the non-Poisson correction defined
in section 2.2, since both factors modulate the behaviour of RBEα in similar ways. In
particular, it was shown that for monoenergetic spectra, Equations (2.44) and (2.48) are
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functionally equivalent for y < 500 keV/µm [Kase et al., 2006]. Thus, by matching these
equations in the limit of low LET (yD → 0), and defining zn,D = yD/ρπRn, with Rn the
radius of the nucleus, it is possible to link the saturation correction parameter y0 with the
other parameters

y0 =
ρπrdR

2
n√

β0(r2d +R2
n)

(2.49)

A typical value selected for the saturation parameter is y0 = 150 keV/µm [Kase et al.,
2006, Inaniwa et al., 2010].

In the saturation-corrected MKM, other quantities necessary to estimate the RBE are
the lineal energy spectra, obtainable with a microdosimeter detector such as the TEPC
[Lindborg and Waker, 2017], and the values of α0, rd and RN from which the correction
to the y∗D is calculated. The α0 and rd coefficients can be experimentally extrapolated
from the the survival curve initial slope (Equation 2.48) for low-LET irradiation (i.e. in
the limit of yD → 0 and D → 0)

rd =

√
β (yD − (yD)X)

ρπ (α− αX)

lim
yD→0

α ≡ α0 = αx −
(

α− αx

yD − (yD)X

)
(yD)X

(2.50)

where ρ = 1.0 g/cm3, αX is the LQ parameter of the X-Ray, and (yD)X is the dose mean
lineal energy for X-ray irradiation.

The saturation-corrected formulation of the MK model is one of the most widely used
approaches to estimate the RBE from microdosimetric measurements. Many published
studies compare RBE predictions with values measured along the Bragg curves of mo-
noenergetic beams, as well more complex mixed field [Rosenfeld, 2016, Guardiola et al.,
2015, Kase et al., 2011, Bianchi et al., 2020].

2.3 Biological weighting functions

2.3.1 RBE weighting functions

The microdosimetric RBE-weighting function approach was initially proposed by Men-
zel, Pihet, Wambersie et al. [Pihet et al., 1990, Menzel et al., 1990, Wambersie, 1994,
Wambersie et al., 1990] to compare the beam quality of different neutron [Pihet et al.,
1990] and proton [Robertson et al., 1994, Coutrakon et al., 1997] therapeutic installa-
tions using measured microdosimetric distributions of lineal energy. Based on previous
studies on proton beams [Kliauga et al., 1978, Hall et al., 1978], this approach combines
microdosimetric spectra of y with an experimental derived biological weighting function,
for specific cell line and endpoints, r(y), to evaluate the RBE.

Let P (y) be the cellular response function for a population suffering the fraction of
dose d(y)dy corresponding to the lineal energy y. d(y) is the dose probability density of
y and can be evaluated as d(y) = y

ȳF
f(y) [Booz et al., 1983]. The linear α parameter,

interpreted as the biological effect E per unit dose, is expressed as:

α = E/D =

∫
P (y)

y
d(y) dy ≡

∫
r(y)d(y) dy (2.51)

where r(y) is defined as the response function.
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Figure 2.3: Experimental α values of HSG cells as a function of the dose mean lineal
energy yD. The yD were measured by a TEPC with a simulated diameter of 1.0 µm.
The solid line indicates the curve calculated with Equation (2.48) and the following model
parameters: rd = 0.42 µm, Rn = 4.1 µm, α0 = 0.13 Gy−1, and β0 = 0.05 Gy−2. Plot
taken from [Kase et al., 2006]. α parameters have been fitted by the linear-quadratic
model from the survival curves of HSG cells with a fixed β0 = 0.05 Gy−2, as a function of
the dose mean lineal energy, yD.

Usually either P (y) or r(y) are derived from experimental measurements. A formula-
tion for r(y) is [Paganetti et al., 1997, Morstin et al., 1989]

r(y) = σE(1− exp
(
−a1y − a2y

2 − a3y
3
)
/y , (2.52)

where σE , a1, a2 and a3 are parameters specific of the radiobiological end points and are
independent of the radiation quality. These parameters are determined experimentally by
fitting a set of different measurements of αi or RBEα,i = αi/αX , with αX to be defined as
related to irradiation with 250kVp X-ray, using several irradiation modalities with various
radiation qualities i = 1, 2, 3, . . . , N .

[Paganetti et al., 1997, Morstin et al., 1989]. The set of relations that have to be fitted
to data is hence

RBEα,i =

∫
r(y)di(y) dy; i = 1, . . . N (2.53)

The solution of Equation (2.53) can be obtained with different methods, such as the non-
parametric multi-objective optimization [Olko, 1989] or iterative procedures like the Loncol
[Loncol et al., 1994] through which an initial guess function r(y) is iteratively updated to
best fit Equation (2.53).

2.3.2 Quality factor from microdosimetric distributions

The microdosimetric spectra can also be used to estimate the quality factor Q and
equivalent dose H [Zaider and Brenner, 1985].
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Figure 2.4: Quality factor as a function of the lineal energy in the ICRU40 approach.

The quality factor Q can be calculated from the microdosimetric absorbed dose distribu-
tion d(y) according to the ICRP Report 40 [on Radiological Protection. Committee 4 and
on Radiological Protection, 1984]:

Q =

∫ ∞

0
Q(y)d(y)dy (2.54)

where Q(y) is the quality factor as a function of the lineal energy, and can be calculated
according to the definition of ICRU 40 or exploiting the Kellerer-Hahn approximation.
In particular, Q is a quantity defined in radiation protection to weigh the absorbed dose
with regard to its presumed biological effectiveness, from which the equivalent dose H and
the health risks related to radiation exposure can be assessed. Radiation with higher Q
factors will cause greater damage to tissue. The quantities Q and H were introduced to
determine the effect of unwanted low dose-bath on healthy tissues, and for this reasons
they are particularly useful for radioprotection applications.
The formal connection of microdosimetry with radiation quality was made in the ICRU
Report 40 (1986), which defined it as a continuous function of the lineal energy y. ICRU
Report 36 [International Commission on Radiation Units and Measurements, 1983] defines
the equivalent dose as:

H = Q ·D (2.55)

where D is the physical dose and Q is the average quality factor.

The ICRU40 approach In the ICRU Report40 (1986) the quality factor (Q) is
defined as:

Q(y) =
5510

y
(1− e−5·10−5y2−2·10−7y3) (2.56)

with y the lineal energy expressed in keV/um.

Figure 2.4 shows the quality factor dependence from the lineal energy in this approach,
which is the one used in all calculations with both simulated and experimental measure-
ments in this work.
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The Kellerer-Hahn approximation Kellerer and Hahn in 1988 proposed an al-
ternative expression for Q(y) with more convenient analytic properties than Equation
(2.56):

QKH(y) = 0.3y
[
1 + (y/137)5

]−0.4
(2.57)

with y expressed in keV/µm.

In an effort to retain LET in the definition of Q, Kellerer and Hahn suggested an
approximate relation Q(L) by replacing y with the expression y =

(
9
8

)
L+0.75 with both

y and L expressed in keV/µm. The resulting microdosimetry-based Q(L) expression can
be considered as an alternative to the one suggested by the ICRP Report 60 (1991).
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Chapter 3

Facilities of the experimental
campaigns

All the experimental characterizations of the TEPC and the characterization of the
different proton radiation fields presented in this work have been performed at the Proton-
therapy Center (PTC), in Trento, Italy. Helium and oxygen characterizations presented
have been instead carried out at the NASA Space Radiation Laboratory, Upton (NY), in
US. Finally, neutrons experiments for space radioprotection applications have been per-
formed at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany.
These laboratories main characteristics are reported below in order to better understand
the framework of the experimental data campaigns.

3.1 Trento Proton Therapy Center

The Trento Protontherapy facility [PTC, 2022], which is part of the Trentino Health-
care Agency (Azienda Provinciale per i Servizi Sanitari — APSS, Italy), started clinical
operations in October 2014. A cyclotron (IBA, Proteus 235) serves two medical treatment
rooms both equipped with rotating gantries [Tommasino and Durante, 2015].
The facility is also equipped with an experimental area where the beam line is split in two
branches, both dedicated to a large spectrum of scientific applications, including medical
physics, detector testing, radiation hardness measurements, space research and radiobiol-
ogy.
Following an institutional agreement with APSS, the beam is available in the experimental
room outside clinical hours and all activities are managed and supervised by the Trento
Institute for Fundamental Physics and Applications (TIFPA), which is part of the Italian
National Institute for Nuclear Physics (INFN).
Proton beam production and transport in the Trento facility are under the responsibility of
the IBA company (Ion Beam Applications, Louvain-La-Neuve, Belgium), which produced
and installed the related infrastructure. IBA is also responsible for beam operations and
has a resident staff in the facility. The cyclotron accelerates the beam up to a maximum
energy of 228 MeV. Shortly after the cyclotron exit, a coarse energy selection is carried-out
by a rotating degrader of different thicknesses and materials in order to reduce the beam
energy down to its minimum value of 70 MeV. This is part of an Energy Selection System
(ESS) that allows the fine selection of the desired energy to be transported downstream.
Two branches of the main line transport the beam to the gantries, while a third branch
connects it to the experimental room. The beam cannot be shared simultaneously among
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Figure 3.1: A picture (upper panel) and a schematic view (lower panel) of the experimental
room at the Trento Protontherapy centre. The Biology (0° branch) and Physics (30°
branch) beam lines are indicated. In the map the space available for experimental setup
at the Physics line is indicated (green area), together with an additional area for equipment
storage inside the cave during irradiation (blue area) [Tommasino and Durante, 2015]

the different rooms and can only be requested alternately in either the gantries or the
research area.
Different beam intensities can be requested at the exit of the cyclotron, in a range span-
ning between 1 and 320 nA.
The experimental area consists of two different spaces: a multifunctional preparation room
and the irradiation cave. The former is equipped with a control station for monitoring
the activities inside the cave via remote control cameras and alignment lasers. The main
beam line is split into two additional sub-branches at 0° and 30° with respect to its initial
direction by a dipole magnet 3.1.
This allows the simultaneous setup of two different experiments if necessary but the beam
cannot be transported along the two branches at the same time. 0° and 30° lines are
referred as the ”Biology” and ”Physics” beam lines, respectively (see Figure 3.1), since
they are intended for different purposes.
A fixed pencil beam is available at the Physics line and it has an energy range between
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70 and 228 MeV and a spot size in-air between 6.9 and 2.7 mm sigma at the lowest and
highest energies, respectively. Lower energies can be obtained by passive degraders added
after the exit window.
Lasers are available for target alignment at 1.25 m from the exit window, which is defined
as ”Isocenter” in analogy to the treatment rooms.
In addition, the flux dynamic range in air ranges between 101-1010 particles per second.
This guarantees the possibility to perform a great variety of experiments from nuclear and
particle physics, detector testing, test of shielding materials and radiation hardness.

3.2 NASA Space Radiation Laboratory

The increasing permanence of humans in Low Earth Orbit (LEO) and, in the future,
in extended deep space missions beyond Earth, requires studies for assessing the risk
from space radiation exposure and finding effective countermeasures. This has been the
motivation for developing ground-based programs where the space radiation environment
could be simulated.
The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary accelerator-based
center that provides charged particles for space radiation research. Commissioned in 2003,
the facility is funded by NASA and managed in collaboration with Brookhaven National
Laboratory (BNL), Upton NY, where it is located [La Tessa et al., 2016].
A schematic representation of the transport line from the ion source to NSRL target room
is shown in Figure 3.2.
Three sources can provide ions to the Booster and ultimately to NSRL. These are the
LINAC (protons only), the Tandem Van de Graaff (certain ions and protons), and the
Electron Beam Ion Source (EBIS) (any ion except protons). The particle beams produced
by any of the sources mentioned above are injected into the Booster synchrotron where
they are further accelerated to reach the final energy and delivered to NSRL via a single
line branching off from the Booster (R-Line).
Ion species from protons to gold are presently available, at energies ranging from 50 MeV/u
to 2500 MeV for protons and 1500 MeV/u for 56Fe. Lower energies can be achieved with
passive absorbers.
Intensities available at NSRL are ion and energy dependent. Typical dose rates for the
NASA work do not exceed 1 Gy/min independent of the beam type. However, higher
intensities can easily be achieved either by increasing the ion flux directly at the source or
by reducing the field size. Lower values, down to approximately 100 particles cm−2, can
be achieved for all ion species combining collimation and beam optics.

3.3 GSI Helmholtz Centre for Heavy Ion Research

The GSI Helmholtz Centre for Heavy Ion Research (German: GSI Helmholtzzentrum
für Schwerionenforschung) is a federally and state co-funded heavy ion research center in
the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as the Society for
Heavy Ion Research (German: Gesellschaft für Schwerionenforschung), abbreviated GSI,
to conduct research on and with heavy-ion accelerators. It is the only major user research
center in the State of Hesse. The laboratory performs basic and applied research in physics
and related natural science disciplines.
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Figure 3.2: Layout of the accelerators for NSRL: sources (EBIS, Tandem and LINAC),
synchrotron (Booster) and transport segment between the ring and the target room (R-
Line)

In particular, neutron measurements presented in this work have been performed in
the high-energy radiation facility ”Cave A”. Since 1991, this facility has been used by
international research groups for radiation experiments in the areas of radiation biology,
physical investigations for heavy ion therapy, space exploration and materials research.

Available ion types and energies include many types of particles, from protons to
uranium, in the energy range from 50 to 2000 MeV/u. About the particle fluence, it can
span from 100 to 1012 ions/cm2, allowing a big variety of experiments to be performed.



Chapter 4

TEPC characterization and
preliminary tests

4.1 TEPC electronic readout

The ionizations due to the primary beam and its secondaries in the TEPC generate
signals. As the signals generated by the TEPC are relatively small, they are sent to a
preamplifier, model A422A (CAEN), to be increased. In this way, the detection range can
be extended to particles that generate a small signal.
The charge-sensitive preamplifier integrates the charge on a feedback capacitor, and deliv-
ers an output voltage with an amplitude proportional to the charge released by the counter
and inversely proportional to the feedback capacitance. The preamplifier is a source of
electronic noise which should be kept as low as possible so that the minimum measurable
energy deposition is low. Therefore, the length of the cable connecting the TEPC and the
preamplifier was chosen as small as possible.
After that, the signal is fed to three different shaping amplifiers, in order to achieve a big
dynamic range with a good resolution: two model N968 from CAEN with different gains
(∼ 100 and ∼ 1000, referred to as medium and high gain, respectively) and one model
7243E by Intertechnique with gain ∼ 10 (called low gain). Finally, each signal is analysed
by Analog to Digital Converters: the pulse coming from medium and high gain is fed
to an ADC model 927 (ORTEC), while the low gain signal is fed to an ADC model 926
(ORTEC).
This large dynamic range is essential in order both to collect very high-y events, that can
be the more biologically effective ones, and low-y events with a good resolution, being for
lighter ions as protons, the most populated region.
Finally, the output signals were digitized by self-triggering Analog to Digital Converter
(ADC) modules and the raw spectra were visualized and recorded with the data acquisi-
tion system MAESTRO (ORTEC) [ORTEC, 2019].
The voltage to the TEPC detector was provided by a high voltage power supply model
NHQ 206L (Iseg), and set to a value of +700 V.
The gains of the amplifiers were chosen to have overlap regions in the ADC between high-
medium and medium-low spectra, to achieve an ”intercalibration” of the three spectra,
which could then be merged into one single distribution.
A scheme of the electronic setup used for all the measurements presented in this work is
shown in Figure 4.1 and its details are given in Table 4.1.

In this chapter an analysis of the TEPC performances, including the lineal energy
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Figure 4.1: Scheme of the electronics setup used in this work. The voltage (HV) is provided
to the TEPC and the raw signal is passed to a preamplifier in order to be amplified. Then,
three amplifiers with different gains (low, medium and high) collect the amplified signal,
and their outputs are sent to the ADCs. Finally, through USB cables, the ADCs signals
are recorded via the software MAESTRO (ORTEC).

HV NHQ 206L

Preamp CAEN A4224

Counter ORTEC 871

AMP 1 INTERTECHNIQUE 7243E High Gain: 1000 input pos, output uni

AMP 2 CAEN N968 Medium Gain: 100 input pos, output uni

AMP 3 CAEN N968 Low Gain: 10 input pos, output uni

ADC 1 ORTEC 927 INPUT 1 4096 channels

ADC 2 ORTEC 927 INPUT 2 4096 channels

ADC 3 ORTEC 926 INPUT 3 1024 channels

Table 4.1: Details of the modules used in the TEPC acquisition chain for this work.

calibration procedure and a study on the pile-up effect, is illustrated. In addition, an
overview of the electronic readout system is presented.

4.2 TEPC lineal energy calibration

The detector has to be calibrated in order to assess the relation between the electronic
readout output, namely the histograms of the analog to digital converter channels, and
the energy deposited in the gas.
The lineal energy calibration of a spherical TEPC in particular can be performed with
either an internal built-in alpha-particle source, or an external radiation able to penetrate
the detector walls. The radiation field can be used for calibration if a particular marker
point of known lineal energy is found in the measured spectrum. This point is often identi-



4.3. SATURATION RATE AND PILE-UP EFFECT STUDY 65

fied with the proton edge, which corresponds to the maximum energy deposited by protons
in the given volume. A detailed description of this methodology applied to a spherical
TEPC can be found in [Moro et al., 2015].
In order to achieve the calibration, we decided to follow another procedure, due to the
absence of both internal and external particle sources. We exposed the TEPC to pro-
ton beams of different energies, and measured the microdosimetric distributions. The
maximum values of these peaks have been related to their corresponding microdosimetric
distributions peaks obtained exploiting Monte Carlo simulation of the same setup. In
the spectra analysis, we also evaluated he proton edge. In this way we obtained a more
comprehensive calibration curve, based on a fit of more than two points, as it instead
happens in the standard proton edge procedure, thus being more robust. Figure 4.2 shows
the linear quadratic fit performed on the data to obtain the calibration curve. Figure
4.3 illustrates the same calibration but with the signal fed to the TEPC instead of ADC
channels. The final equation form is:

Figure 4.2: Linear quadratic calibration from ADC channel to lineal energy values y for
the TEPC. The curve (Quadratic fit) is a fit of the experimental and Monte Carlo peak
values obtained from the microdosimetric f(y) distributions (Calibration).

y[keV/µm] =

= (9.875± 7) · 10−10 ADCchannel
2 + (7.1± 1.1) · 10−4 ·ADCchannel − (2.2± 0.9) · 10−1 .

4.3 Saturation rate and pile-up effect study

In order to study the detector response to the beam intensity, we acquired measure-
ments with monoenergetic proton beams with a variable rate of protons per second. We
then acquired different microdosimetric spectra at different energies of the incident proton
beam, changing the rate of the particles delivered. Above a certain particle rate, the read-
out is not able to collect separately every event, and thus two or more events are recorded
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Figure 4.3: Linear quadratic calibration of the signal amplitude [mV] to lineal energy
values y for the TEPC. The curve (Quadratic fit) is a fit of the experimental and Monte
Carlo peak values obtained from the microdosimetric f(y) distributions (Calibration).

as a single event of higher energy deposition, namely the sum of the energy depositions of
the single events: this phenomenon is referred to as pile-up. Together with Monte Carlo
simulations, we were able to estimate the probability of pile-up events contained in the
acquired spectrum. To achieve this goal, we implemented an ad-hoc code that recalcu-
lates the simulated Monte Carlo spectrum adding a given pile-up. In this way, we can
obtain the microdosimetric distributions and mean values with a given percentage of pile-
up probability from the energy depositions event scored by the Monte Carlo simulation.
Comparing the experimental data with the simulated spectra associated to different pile-
up probabilities, we can estimate if the data were affected by this issue and to quantify
it. Figure 4.4 shows an example of a comparison between experimental and simulated
microdosimetric yd(y) spectra with pile-up probability of 0 or 33 %, when changing the
delivered particle rate from 1286 ± 35 Hz to 48152 ± 219 Hz.

The pile-up study is critical to test the feasibility of performing measurements with a
TEPC in a standard treatment irradiation condition, where the beam intensity is ∼ 108.
This value is indeed much higher than the value that the detector can sustain (∼ 104)
without giving a distorted distribution due to pile-up.



4.3. SATURATION RATE AND PILE-UP 67

Figure 4.4: Pile-up effect for a 70 MeV proton beam traversing 3 cm of water. The
microdosimetric spectra have been acquired both experimentally (solid lines) using two
different proton rates affecting the overall distributions.The comparison with Monte Carlo
simulations (dashed lines) at different pile-up probabilities is also shown. At the lower
rate of particles (pink data), the experimental spectrum agrees with the simulation cal-
culated with ∼ 0% pile-up probability. At the higher rate (blue data), the experimental
distribution matches the spectrum simulated with the ∼ 33% pile-up.



Chapter 5

Computational tools

5.1 Data analysis of the microdosimetric spectra from TEPC

An ad-hoc code has been written in the R language [Team, 2000] to analyze the spectra
measured by the TEPC and acquired with MAESTRO. The code has been also developed
to manipulate the microdosimetric data obtained from Monte Carlo softwares, such as
Geant4 [Agostinelli et al., 2003] and TOPAS [Perl et al., 2012]. In particular, in these
cases, a file containing all the energy deposition events is taken as input.
In Figure 5.1, a scheme of the code features is illustrated for both the experimental and
Monte Carlo input types.

Figure 5.1: Scheme of the R language code for analyzing the microdosimetric data. The
input type, depending if it has been acquired experimentally or simulated via Monte Carlo,
is imported and the data are processed with different functions implemented in the ad-hoc
code.
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Figure 5.2: Microdosimetric protons raw spectra at different depths in-field with their
noise spectra (green) in two different depth in water position along the in–field direction
(33 mm and 126 mm, marked in blue and red respectively), yielding to different primary
beam energy depositions: in the 33 mm spectrum the primary protons peak below the
noise region, while in the 126 mm the peak appears above the lineal energies populated
by the noise.

5.1.1 Noise filtering

In addition to all these features, the background noise manipulation in the data anal-
ysis has to be taken into account for all the measurements and the first y region of the
microdosimetric spectrum, where the noise has its major impact, had to be recovered.
To quantify the background noise, mainly produced by environmental sources, spectra
were acquired with the beam switched off and subtracted from the raw microdosimetric
spectra. The subtraction method worked efficiently only for the spectra that peaked above
the noise region. When the distribution overlapped with the noise, as at the entry channel
in-field, the signal-to-noise ratio could not be estimated and the subtraction method po-
tentially produced artifacts in the resulting spectrum. In these cases, we did not perform
noise subtraction, and included this uncertainty in the overall error estimate.
The two cases are shown in Figure5.1.1 where the green line represent the noise spectrum,
while the blue and red lines are the raw spectra achieved at 33 and 126 mm depth in water,
respectively, along the beam direction. The latter demonstrate a clear peak outside the
region populated by the noise, while the 33 mm spectrum’s peak of primary protons fall
in the same region of the noise, making them indistinguishable. In addition to the noise
subtraction, the calibrated y spectra have been cut below 0.3 keV/µm, which represent
our typical electronic detection limit, where the noise is so high that we could not perform
any noise filtering. In order to extend the distributions to the standard initial value of 0.1
keV/µm, the missing y region was reconstructed using an interpolation procedure based
on the Stineman algorithm [Stineman, 1980].
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5.2 Monte Carlo simulations toolkits: Geant4 and TOPAS

Monte Carlo (MC) method provides numerical solutions to both deterministic and
non-deterministic problems. The physical process that models the behaviour of a com-
plex system is described in terms of probability distributions. (Pseudo) random numbers
are used to sample the probability distributions and to score the quantity of interest. In
particle physics, MC is used to simulate the interaction of radiation with matter. In fact,
although the physics of radiation interactions in matter is well understood, in general it is
impossible to develop an analytic expression to describe particle transport in a medium.
A properly benchmarked Monte Carlo system can thus be used to study the feasibility of
a setup or to reproduce an experiment and then be compared with experimental data.
In this work, Geant4 toolkit[Agostinelli et al., 2003] (version 10.7) has been used together
with its user-friendly interface TOPAS MC toolkit (versions 2.2.1 and 3.5.1).
Geant4 is a toolkit for the simulation of the passage of particles through matter. Its areas
of application include high energy, nuclear and accelerator physics, as well as studies in
medical and space science.
This toolkit has been used in particular to investigate the detector performances of the
Hybrid Detector for Microdosimetry. Several physics lists are available in Geant4 for dif-
ferent energy ranges of interest. For electromagnetic interactions, the high accuracy list
G4EmLivermorePhysics based on Livermore physics model has been used while hadronic
interactions were managed by QGSP BIC.
TOPAS (TOol for PArticle Simulation) was instead introduced in 2012 as an extension of
the Geant4 Monte Carlo toolkit that facilitates particle therapy simulations [Perl et al.,
2012]. Also this software is used for simulating the passage of particles through matter
and offers the possibility of custom geometry implementation and material definition. This
toolkit has instead been used to simulate both dosimetric (dose and LETD values) and
microdosimetric data of the different radiation field characterizations. In particular, the
microdosimetric extension recently presented in [Zhu et al., 2019] ha been exploited for all
the microdosimetric assessments, focusing on the spherical TEPC geometry implemented.
In addition, it has been used in the cell survival assessment of the Generalized Stochastic
Microdosimetric Model. Also in this case, being TOPAS a branch of Geant4, the physics
list implemented are the same as in Geant4; for what concerns this work, in the protons
characterizations we exploited the electromagnetic list (g4em − standard opt4) and the
Binary Cascade (BIC) (g4h − phy QGSP BIC HP ). For heavy ions, instead, we em-
ployed also a different hadronic interaction descriptions, namely the Quantum Molecular
Dynamics (QMD) (g4ion − QMD) together with the Binary Cascade (BIC); both have
been paired with the same electromagnetic list as before, the option4 standard list.

5.3 Machine Learning

Machine Learning (ML) has emerged in last decades as an extremely flexible tool
that allows to construct accurate and robust predictive models from data. Recently, the
research community developed ML algorithms in several directions, proposing on one
side more accurate models to explain the data and on the other side faster optimization
algorithms to train the models, [Bishop and Nasrabadi, 2006]. Nowadays ML models
are extensively used in many research as well as industrial scenarios. Due to the above
mentioned reasons, ML approaches have seen a constant increasing attention as a new
paradigm to tackle and solve data-driven and poorly structured problems.
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There is no unanimously accepted definition of ML, but broadly speaking ML can
be defined as an algorithm that can learn a task from a given dataset without being
explicitly taught to. A good definition of machine learning is the one given by Yoshua
Bengio1, one of the worldwide experts and main innovator in the world of ML: ”Machine
Learning research is part of research on artificial intelligence, seeking to provide knowledge
to computers through data, observations and interacting with the world. That acquired
knowledge allows computers to correctly generalize to new settings.”

Therefore, the development of a ML algorithm must begin with a precise identification
of the specific task the ML should learn to solve. Thus, through experience extracted on
the dataset the model is trained to solce the task in the most accurate way possible.

The most common ML tasks can be divided into three main categories: classification,
regression and clustering, [Bishop and Nasrabadi, 2006]. In this work, only regression
task has been exploited. The first two classes, namely classification and regression, are
typically method of supervised learning and differs from the fact that the variable that the
ML must learn to predict is discrete in the classification and continuous in the regression
case, whereas the last, namely clustering, is an unsupervised learning task.

Supervised learning consists of ML algorithms optimized using labeled data, meaning
that in the learning process the ML model is shown the true outcome that the algorith must
learn. More formally, to the ML is given a set of input/output pairs (xi, yi) ∈ X × Y and
the ML must learn the function f : X → Y that maps the input x into the corresponding
output y.

Unsupervised learning consists of tasks with the goal of identifying the underlying pat-
terns from unlabelled data. Classical approaches within unsupervised learning are cluster-
ing, density estimation, dimensionality reduction, and probability distribution modeling.

5.3.1 Decision trees: bagging and boosting

Several ML models have been developed over the years; decision trees (DT) are among
the most successful. Nonetheless, typically a single DT is not a robust model, so that
usually DT are trained either in parallel or in series to boost their performances. An
ensemble of DT trained in series is called boosted whereas when the ensemble is trained in
parallel is called bagged. Typical models within the former class are XGBoost, LightGBM
and CATBOOST whilst in the latter the most common algorithm is Random Forest. In
the current thesis Random Forest will be used. Bagging allows to create from an ensemble
of weak learners, single decision trees, a powerful and robust model, as illustrated in Figure
5.3 and it will be treated in mode details in Chapter 10.

1Yoshua Bengio is a Canadian computer scientist
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Training Data

· · ·

mean

prediction

Figure 5.3: Classical structure of a Random Forest algorithm: different decisional trees
are trained and the final prediction is derived as the average between the predictions of
the single decisions trees.
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Using a Tissue Equivalent Proportional Counter LET-1/2 1.2.1, we characterized the
radiation fields generated by the interaction of different ion-target combinations: i) 154
MeV monoenergetic and 148 MeV passive Spread Out Bragg Peak proton beam in water,
iii) 160 MeV/u monoenergetic helium beam in water, iii) 360 MeV/u monoenergetic oxygen
beam in water, and iv) 1 GeV/u iron beam in aluminum. We performed measurements
(i)-(iii) using a water phantom, and assessed the radiation quality both in- and out-of-
field. In the experiment (iv), we focused on the out-of-field region to evaluate the quality
of secondary neutrons.



Chapter 6

Monoenergetic and SOBP
therapeutic proton beams
microdosimetric characterization

The measurements presented in this chapter were carried out at the experimental room
of the Trento Protontherapy Center 3.1. All microdosimetry spectra have been measured
with the TEPC described in 1.2.1.
Two experimental campaigns are described here, one with a 152 MeV monoenergetic
proton beam and one with a 148 MeV proton Spread Out Bragg Peak.
The main goal of both experimental campaigns was to characterize the radiation quality
in- and out-of-field. These outcomes were used to study the variability of the RBE along
the beam direction, that in the clinical practice is currently considered fixed at 1.1. In
addition, for the out-of-field regions, the objective was to combine the radiation quality
and physical dose to assess the probability of inducing toxicities in the normal tissue
surrounding the target region.

6.1 152 MeV proton beam in- and out-of-field characteriza-
tion and RBE assessment

The setup included the TEPC placed inside a water phantom (model Blue phantom,
IBA) and exposed to a 152 MeV proton pencil beam. The elements between the exit
window and the water phantom (including the air gaps) degraded the protons initial energy
and enlarge the beam spot size. These parameters were measured at the phantom entrance
using the MLIC (MultiLayer Ionization Chamber) and Lynx detectors [Tommasino et al.,
2017], respectively. The results indicated that the protons residual energy was 152 MeV
(158 mm range in water) and that the FWHM of the beam spot was 13.3 mm on both
planes perpendicular to the propagation direction. The beam spot after traversing the
water phantom walls was large enough to irradiate the TEPC with a homogeneous field.
The number of primary ions impinging on the water phantom was monitored with a 3
mm plastic scintillator and an ion chamber (0.5 mm water equivalent thickness). To avoid
pile up effects, the proton rate was set to have an event rate at the TEPC around 5
kHz. A minimum of 106 events were acquired for each measurement to reduce statistical
fluctuations of rare events [Conte et al., 2019]. A scheme of the experimental setup is
shown in Figure 6.1 (top panel).
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Figure 6.1: Scheme of the experimental setup (top panel) and of the TEPC measurement
positions inside the water phantom (bottom panel). All distances and thicknesses are
in mm. The depth takes into account also the water phantom wall, whose thickness is
expressed in water equivalent. The expected Bragg peak position at 158 mm depth is
marked with an arrow.
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To select the measurements positions, the TEPC was centered on the beam axis using
a laser system. Taking into account the beam width at the entry channel and the detector
size, four different regions were identified as of interest for this study:

• in-beam region, where the detector was fully and homogeneously irradiated by the
primary beam;

• beam-edge region, where the detector was moved 20 mm laterally from the beam axis
(i.e. just outside the primary irradiation field);

• close out-of-field region, where the detector was moved 50 mm laterally from the
beam axis;

• far out-of-field region, where the detector was moved 100 mm laterally from the
beam axis.

For each region, the microdosimetric spectra were acquired at different water depths
both upstream and downstream of the Bragg peak. A scheme of the measurement positions
inside the water phantom is shown in Figure 6.1 (bottom panel). The depths includes also
the PMMA wall (17.4 mm expressed in water equivalent).

6.1.1 Analysis of the microdosimetry spectra

The raw experimental microdosimetric spectra have been converted into lineal energy
spectra by applying the linear quadratic calibration described in Section 4.2.

To characterize the radiation field quality, we considered the following quantities:

• frequency-mean lineal energy yF (Equation (1.1.3))

• dose-mean lineal energy yD (1.1.3)

• saturation-corrected dose-mean lineal energy y∗ (2.45)

The quantity y0 represents the saturation parameter to correct for the overkilling effect of
high-LET radiation, theoretically explained in 2.2. Here, a value of 150 keV/µm has been
assigned to y0 [Kase et al., 2013]. From the calibrated spectra, the total absorbed dose
D can be obtained using the microdosimetric version of the standard formula for a mixed
radiation field [International Commission on Radiation Units and Measurements, 1983]:

D =
k

d2
yF (6.1)

where k = 0.204 for spherical volumes, d is the TEPC simulated diameter and yF the
frequency-mean lineal energy calculated according to Equation((1.1.3)).

By coupling the microdosimetry spectra and dose profiles with biological data, the
RBE for cell survival can be assessed. This methodology relies on the Linear Quadratic
(LQ) model and on a modified version of the MKM model [Kase et al., 2013]. The first
step is to calculate the survival fraction S of cells at each measurement position:

S = exp

[
−
(
α0 +

β

ρπr2d
y∗
)
D + βD2

]
(6.2)

The dose D and the saturation-corrected dose-mean lineal energy y∗ can be estimated
from the lineal energy spectra while ρ is the density of tissue assumed to be 1 g cm−3.
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The cell radius rd as well as the α0 and β parameters of the LQ model depend on the cell
line. For this study, the Human Salivary Glands (HSG) tumor cells have been selected
(rd=0.42 µm, α0=0.13 Gy−1 , β=0.05 Gy−2 and α/β=2.6 Gy) [Kase et al., 2006]. From
the survival fraction, the RBE can be calculated as:

RBES =
DS,R

DS
=

√
α2
R − 4βln(S)− αR

2βDS
(6.3)

where DS and DS,R are the doses required by the radiation of interest and the reference
radiation, respectively, to yield the same cell survival fraction S. Following the work of
Kase et al. [Kase et al., 2006], X-rays at 200 keV were chosen as reference radiation with
an αR value of 0.19 Gy−1 and a βR value of 0.05 Gy−2.

It is important to remark that in this study the cell survival from which the RBE
is estimated is not a fixed value (e.g. 10%), but depends on the dose measured in that
position and is calculated using Equation ((6.2)).

6.1.2 Simulations with TOPAS

To obtain a 2D dose map with high spatial resolution as well as to investigate how ra-
diation quality changed if a macroscopic- or microscopic-based approach was adopted, we
performed Monte Carlo simulations with the GEANT4-based Simulation Toolkit TOPAS
version 3.2.2 [Perl et al., 2012]. The geometry used for all simulations reproduces the
experimental setup described above and illustrated in Figure 6.1. TOPAS default physics
settings were set to score the absorbed dose and dose-averaged LETD distribution in-
beam as a function of water depth in a mesh of 1×1×1 mm3 voxels. The dose includes
the contribution of both primaries and secondaries and was scored delivering 2*107 pri-
mary protons to the tumor. The LETD has been calculated with the ProtonLET scorer,
that consider the energy deposited by primary and secondary protons (including the as-
sociated secondary electrons) but not by heavy fragments [Cortés-Giraldo and Carabe,
2015, Granville and Sawakuchi, 2015]. Taking advantage of the microdosimetric exsten-
sion implemented in TOPAS (5.2), we also calculated the yD in a spherical TEPC, whose
geometry and physical properties matched those of the detector used for the experiment.

6.1.3 Data uncertainty

The overall error is the sum of the systematic component stemming from the lineal
energy calibration of the microdosimetry spectra, the reproducibility component coming
from the setup procedure (e.g. the detector alignment) and the statistical uncertainties.

To estimate the systematic error, we varied the calibration parameters within their
error bars and applied them to the raw spectra. We then assessed how different calibrations
effected the microdosimetry parameters. Using this method, we obtained an uncertainty
of 8% on yF , of 15% on yD and of 12% on y∗. Reproducibility was assessed by acquiring
the same data point in different moments. The results yielded an error of 3% on yF , of 16%
on yD and of 8% on y∗. The statistical uncertainties proved to be negligible compared
to the other two contributors because of the large number of events collected for each
measurement.

The dose errors were obtained propagating the uncertainties on yF according to the
standard theory. The uncertainties on the calculated RBE stem from two sources: phys-
ical (dose and y∗) and radiobiological (α and β) parameters. While the radiobiological
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quantities depends on the cell type, the physical quantities are related to the irradiation
characteristics (e.g. dose, beam quality) and change within the field. In this work, we
considered only the statistical fluctuations arising from the dose and y∗, and assumed α
and β to be errorless. In this way, we can disentangle the two contributions and investigate
RBE variations only caused by the beam quality and absorbed dose.

6.1.4 Results

To understand the features of the spectra it is useful to divide the radiation field into
its three main components: primary protons, secondary ions and secondary neutrons.
The latter two are generated by nuclear interactions of the proton beam with water, and
are also referred to as target fragments. A detailed description of the relevant nuclear
physics concepts can be found in [Tommasino and Durante, 2015, Durante and Paganetti,
2016, Rovituso and La Tessa, 2017]. The number of primary protons that undergo frag-
mentation, and thus produce at least a secondary particle, has been estimated to be
around 1% per cm of water traversed [Tommasino and Durante, 2015]. The primary beam
is fairly monoenergetic at the entrance channel, and thus has a specific lineal energy, but
its spectrum becomes wider when it approaches the Bragg peak region due to the energy
straggling. Instead, target fragments can be neutrons and charged particles of different
species and energies, producing a broad y spectrum at any depth. The majority of sec-
ondary ions are generated with lower energy than the primary protons, and because they
have the same or higher charge, their stopping point will be upstream or around the Bragg
peak depth. Because of their physical properties, neutrons are the only fragment type that
do not follow this behavior and can reach sites very far from the main beam. For this
reason, they become an important source of dose both downstream of the Bragg peak and
at increasing lateral distance from the beam axis. Results presented by [Dewey et al.,
2017] provide a summary of all these considerations, showing the contribution to the dose
of each fragments species produced by a primary proton beam in water, when a y-based
weight is applied.

All data presented here can be interpreted on this basis.

Lineal energy spectra

The microdosimetric lineal energy spectra, yd(y), in their standard semi-log represen-
tation, are presented in-beam and off-beam at several depths in water. All spectra range
from 0.3 to 700 keV/µm and are normalized so that the integral of the yd(y) distribution
is equal to 1.

At the entrance channel, the spectrum measured in-beam has a relatively defined max-
imum around 0.5 keV/µm, with a shoulder on the right-end side which extends up to 10
keV/µm. Very few events can be observed at higher lineal energies. At the beam-edge,
we observed that the peak and the shoulder merge together to form a broad flat region
ranging from 0.3 to 10 keV/µm. Moving out-of-field, the distributions become even flatter
and wider, eventually stretching across the whole lineal energy range. The low-y peak
corresponds to the primary beam, which can reach also the out-of-field region because of
lateral scattering in water while the remaining contribution is given by secondary electrons
and fragments.

At increasing water depth, the peak of primary protons moves to higher y and gets
wider, eventually incorporating the right shoulder of the fragments. As protons slow down,
their lineal energy increases and reaches the maximum in the Bragg peak region, where
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Figure 6.2: In- and off-beam microdosimetric lineal energy spectra yd(y) measured at
several depths. The off-beam regions are defined as beam-edge (20 mm from the beam
axis) and far out-of-field (100 mm from the beam axis). The asterisk indicates the spectra
measured at the Bragg peak depth. All spectra are normalized so that the integral of the
yd(y) distribution is equal to 1.
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the average y is around 5 keV/µm. The distribution at the beam-edge show a remarkable
change in shape as the depth approaches the Bragg peak. The number of primary ions
reaching this area grows with water depth and eventually the spectra resemble those
measured in-beam with the addition of a longer tail at high-y.

All far out-of-field spectra measured upstream of the Bragg peak appear very similar,
indicating that the radiation quality does not change with depth as at the field-edge. At
the Bragg peak (158 mm), the distribution resembles the spectrum in-beam, indicating
that a large portion of particles that reaches this region are stopping around this depth.

In the tail (or distal) region, all primary protons as well as most charged fragments
have ranged out. Both in- and off-beam spectra loose almost completely the low-y tail
(below 1 keV/µm) and extend to very high-y (above 100 keV/µm).

Independently of the lateral distance, the high-y channels of all spectra become more
populated at increasing depth. The reason for this trend is that the probability for the
primary protons to either undergo multiple scattering or produce a fragment increases
with increasing depth. Secondary particles can be produced at large angles with respect
to the primary beam direction and can also suffer lateral scattering being deflected even
further from the beam axis. In addition, they can yield further generations of fragments,
whose production point can be already out-of-field. All the above potentially leads to
high-y events, thus populating the high-y right tail of the distribution.

Radiation quality and dose

The frequency-mean lineal energy yF (Equation (1.1.3)), dose-mean lineal energy yD
(Equation (1.1.3)) and saturation-corrected dose-mean lineal energy y∗ (Equation (2.45))
obtained from the yf(y) and yd(y) spectra are plotted in Figure 6.3.

Independently of the lateral position, the yF , yD and y∗ values appear relatively flat in
the entrance channel and plateau. Measurements in-beam and at the beam-edge show the
same trend, with a rapid growth as the depth approaches the Bragg peak, while off-beam
the radiation quality does not show large variations with depth, as already observed in
the yd(y) spectra. At the beam-edge, the highest values are reached for all quantities at
the Bragg peak depth and then stay constant in the tail. In-beam, the yF has a maximum
at the Bragg peak and then decreases in the distal region, while yD and y∗ keep growing
up to 2 cm downstream of the peak where they plateau. With the exception of the Bragg
peak region in-beam, the values of yD are always larger than the y∗, ranging from a factor
1.5 at the entrance channel and growing up to a factor 3 in the tail region. This result
indicates a non negligible contribution to the spectra from particles with y > 150 keV/µm.

The microdosimetric quantities yF , yD and y∗ describe the quality of the radiation
field and thus they are affected if its composition changes both in terms of particle type
and energy. In-beam and at the beam-edge, the field is a mix of primary and secondary
radiation, whose composition changes significantly with depth as more particle undergo
fragmentation, slow down or scatter. At increasing lateral depth, most charged particles
range out and eventually only neutrons remain.

To investigate the influence of the scoring methodology on the radiation quality, we
simulated the yD values measured in-beam with TOPAS and compared them with the
macroscopic LETD. The results are illustrated in Figure 6.4, where the macroscopic
physical dose calculated in-beam is also plotted.

TOPAS predictions of yD agree with the experimental data within the error bars while
the LETD is approximately a factor 4 lower up to the Bragg peak, after which becomes
consistent with the microdosimetric data. It should be remarked here that the LETD
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In-beam

Beam-edge

Far out-of-field

Bragg peak depth

Figure 6.3: Frequency-mean lineal energy yF (Equation ((1.1.3))), dose-mean lineal en-
ergy yD (Equation ((1.1.3))) and saturation-corrected dose-mean lineal energy y∗ (Equa-
tion ((2.45))) plotted as a function of the depth in water. The off-beam regions are defined
as beam-edge (20 mm from the beam axis) and far out-of-field (100 mm from the beam
axis). The dotted line marks the Bragg peak position (158 mm).
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Figure 6.4: Comparison of experimental (black dots) and simulated (blue dots) yD in-beam
with the macroscopic LETD (red curve). The depth-dose curve scored in a 1×1×1 mm3

voxels is also plotted. All simulations were performed with TOPAS (Perl et al. 2012).

calculated with TOPAS includes only primary and secondary protons as well as secondary
electrons but not the contribution from heavy ions.

Using Equation ((6.1)), the dose can be estimated from the microdosimetry spectra.
To allow for a direct comparison, all measurements have been scaled to deliver a dose of 2
Gy at the Bragg peak position and thus they will be reported in Gy/2Gy-BP. The results
are plotted in Figure 6.5 and summarized in Table 6.1.

To investigate the dose gradient inside the water phantom as well as to disentangle the
contribution of primary protons from secondary particles, we generated 2D color maps with
TOPAS. The outcomes are presented in Figure 6.6. In this case, the dose was scored with
a macroscopic approach using 1×1×1 mm 3 volume due to to calculation time constrains.
The values are scaled to deliver 2 Gy to the Bragg peak position.

The dose measured in-beam slowly rises from the entrance channel up to the Bragg peak
at 158 mm depth, in agreement with the range of 152 MeV protons in water measured
independently with the MLIC detector. After the peak, the dose drops to around 5
10−4 Gy/2Gy-BP within less than 20 mm. TOPAS indicates that the overall dose in-
beam is dominated by primary protons (Figure 6.6, panel a and c), as expected. The
contribution from secondary particles is relatively flat along the whole curve and around
5 10−2 Gy/2Gy-BP. Then, it drops sharply several orders of magnitudes within few mm
from the Bragg peak position, indicating that the range of most fragments do not exceed
that of the primary protons.

We observed a relatively large build-up at the beam-edge, proving that a non negligible
amount of dose is deposited in this area. The maximum value of (1.01±0.12) 10−1 Gy/2Gy-
BP is observed at the Bragg peak depth. The 2D maps show a steep gradient in this region,
with a dose drop of almost 2 orders of magnitudes within less than 30 mm from the field
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Figure 6.5: Dose profiles in- and off-beam when 2 Gy are delivered to the Bragg peak
position. The off-beam regions are defined as beam-edge (20 mm from the beam axis),
close out-of-field (50 mm from the beam axis) and far out-of-field (100 mm from the beam
axis).

center. In agreement with the measurements, TOPAS predicts that the highest dose at
the beam-edge is delivered around the Bragg peak depth. Secondary particles deposit most
of the dose, while the contribution from primary protons scattered in this region increases
with increasing depth and reaches the maximum around the Bragg peak.

At larger lateral distances, the experimental curves are rather flat and present a drop
just downstream of the Bragg peak (more pronounced in the close-out-of-field). The
maximum dose in the close-out-of-field region is one order of magnitude higher than in the
far-out-of-field area (10−4 versus 10−5 Gy/2Gy-BP). TOPAS predictions indicate that the
dose is around 10−4 Gy/2Gy-BP at 50 mm off-beam and decreases to 10−5 Gy/2Gy-BP
at 100 mm off-beam, with secondary particles being the only contributors to the dose in
these areas.

It is interesting to notice that the dose measured at 250 mm depth drops to around 5
10−5 Gy/2Gy-BP independently of the region. At the same depth, the simulated dose is
of the same order of magnitude and is entirely delivered by the fragments and neutrons.

In summary, the measured and simulated dose profiles suggest that there is a non
negligible number of primary ions that deviate enough from their initial path to deposits
some dose out-of-field, especially at the beam-edge. However, as the distance from the field
increases, the secondary particles become the major and eventually the only source of dose.
Exploiting the results of Figure 6.6, we can give an estimate of the dose deposited off-beam
when a dose comparable to a full treatment is delivered at the Bragg peak. Assuming that
a dose of 60 Gy is delivered at the peak, the beam-edge receives up to 6 Gy, while the close
and far out-of-field regions receive on the order of 10−3 Gy and 10−4 Gy, respectively.
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(a) Primary protons 
+ fragments

(c) Fragments

(b) Primary protons 
+ fragments

(d) Fragments

In-beam and beam-edge In-beam, beam-edge and out-of-field

Figure 6.6: 2D color plots of the dose deposition inside the water phantom simulated with
TOPAS (Perl et al. 2012). The values have been rescaled to deliver 2 Gy at the Bragg
peak position. The contribution from primary protons and secondary fragments is shown
in panel (a) inside the entire water phantom and panel (b) as a zoom around the beam
axis. The contribution only from secondaries is displayed in panel (c) inside the entire
water phantom and panel (d) as a zoom around the beam axis. In all plots, the off-beam
regions defined as beam-edge (20 mm from the beam axis), close out-of-field (50 mm from
the beam axis) and far out-of-field (100 mm from the beam axis) are marked with dashed
lines. The TEPC size is marked with black ellipses or circles, depending on the axes scale.



6.1. 152 MEV MONOENERGETIC PROTON BEAM CHARACTERIZATION 87

Table 6.1: Dose (Equation ((6.1))), RBE (Equation ((6.3))) and RBE*Dose measured in-
beam and out-of-field. For each position, the lateral distance from the beam axis and the
water depth are reported in parentheses. All doses are measured when 2 Gy are delivered
to the Bragg peak and thus are reported as Gy/2Gy-BP.

Position Dose RBE RBE*Dose
(mm) (Gy/2Gy-BP) (Gy/2Gy-BP)

In-beam (0)

Entrance (34) (3.5±0.4)10−1 1.0±0.2 (3.2±0.8)10−1

Plateau (86) (7.3±0.9)10−1 0.94±0.19 (6.8±1.6)10−1

Rise (126) (8.6±0.10)10−1 0.92±0.19 (7.9±1.9)10−1

Bragg peak (158) 2.0±0.2 1.05±0.15 2.1±0.4
Tail (176) (3.5±0.4)10−5 2.58±0.15 (9.0±1.2)10−5

Tail (206) (2.5±0.3)10−5 2.51±0.15 (6.4±0.9)10−5

Beam-edge (20)

Entrance (34) (6.3±0.8)10−3 1.1±0.2 (6.7±1.6)10−3

Rise(126) (2.0±0.2)10−2 1.0±0.2 (1.2±0.3)10−2

Bragg peak (158) (1.01±0.12)10−1 2.3±0.16 (2.3±0.3)10−1

Tail (206) (2.2±0.3)10−5 2.56±0.15 (5.7±0.8)10−5

Close-out (50)

Entrance (36) (9.3±1.1)10−5 1.3±0.2 (1.2±0.2)10−4

Rise(126) (2.9±0.4)10−4 1.2±0.2 (3.5±0.8)10−4

Bragg peak (158) (2.5±0.3)10−4 1.3±0.2 (3.4±0.7)10−4

Tail (206) (1.7±0.2)10−5 2.47±0.16 (4.2±0.6)10−5

Far-out (100)

Entrance (36) (5.6±0.7)10−6 1.90±0.18 (1.06±0.16)10−5

Rise(126) (8.5±1.0)10−6 2.0±0.18 (1.7±0.3)10−5

Bragg peak (158) (1.50±0.18)10−5 1.79±0.19 (2.7±0.4)10−5

Tail (206) (5.5±0.6)10−6 2.54±0.15 (1.4±1.9)10−5

RBE and RBE-weighted dose

The microdosimetry spectra and dose profiles have been combined to obtain an esti-
mate of the RBE for cell death. It is important to underline that the RBE presented in
this work was not calculated for a fixed survival fraction (e.g. 10%) because such a value
would never be observed out-of-field. Instead, we considered the dose received at each
position and calculate the RBE according to Equations (6.2) and (6.3). The results are
reported in Table 6.1 and plotted in Figure 6.7 (top panel). A full line at 1.1 marks the
reference value for protons while a dotted line indicates the Bragg peak depth (158 mm).

The datasets in-beam, at the beam-edge and close out-of-field show the same trend,
with an extended plateau followed by a rise near the Bragg peak depth while in the far-
out-field region the calculated RBE increases in the tail. In-field, the values measured
upstream of the peak are either consistent with or lower than the reference value of 1.1.
The RBE found at the Bragg peak is 1.05±0.15 and increases up to 2.58±0.15 at a depth
of 176 mm. The values estimated at the field-edge are constant and consistent with 1.1 in
the entry channel, begin to grow at a depth of 126 mm and then plateau again around 2.5
in the distal region. The RBE at the Bragg peak depth is 2.27±0.17, i.e. 2 times higher
than the in-beam.

Out-of-field, the calculated RBE is always significantly higher than 1.1 and increases
with increasing lateral distance. Downstream of the Bragg peak, all regions are character-
ized by a rather constant and similar RBE around 2.5. Among all data points, the highest
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RBE=1.1

Bragg peak depth

Figure 6.7: Top panel : In- and off-beam RBE values as a function of water depth. The
off-beam regions are defined as beam-edge (20 mm from the beam axis), close out-of-field
(50 mm from the beam axis) and far out-of-field (100 mm from the beam axis). All RBE
values have been calculated according to Equation ((6.3)) when 2 Gy are delivered to the
Bragg peak. The reference protons value of 1.1 is marked with a full line, while the Bragg
peak depth (158 mm) is marked with a dotted line. Bottom panel : RBE-weighted dose
in- and off-beam as a function of water depth. The off-beam regions are defined as beam-
edge (20 mm from the beam axis), close out-of-field (50 mm from the beam axis) and far
out-of-field (100 mm from the beam axis). The results have been obtained multiplying
the dose (Figure 6.5) with the corresponding RBE value for each position.
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value of 3.4±0.3 was found far out-of-field at a depth of 206 mm.
The rather large RBE variations are due to the fragments, whose lineal energy can

be substantially higher than the primary protons as demonstrated by the yd(y) spectra
(Figure 6.2). In the entrance channel, the estimated RBE is always rather constant,
reflecting that the y∗, and thus the radiation quality do not change much. In-beam and at
the field-edge, most particles are either primary protons or fast fragments with low y, and
thus the RBE is close to the nominal value. The out-of-field regions, instead, are mostly
populated by slower secondary particles, whose y is higher, and thus the calculated RBE
is well above 1.1. At increasing depth, both primary ions and fragments slow down, the
lineal energy increases and so does the RBE.

Although the RBE represents an indicator of the radiation effectiveness, it has to be
combined with the dose to assess the biological outcomes. Thus, the data from Figure 6.6
(top panel) have been multiplied with the corresponding dose measurements (Figure 6.6)
to obtain the RBE-weighted dose curves plotted in Figure 6.6 (bottom panel).

The high RBE observed outside the target area is in most cases heavily moderated by
the dose, which drops below 10−3 Gy out-of-field. However, fairly high values are found at
the beam-edge and at the end-of-range in-beam, pointing at these areas as at the highest
risk of potential toxicities.
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6.2 In- and out-of-field microdosimetric characterization of
a 148 MeV proton spread-out Bragg peak: measure-
ments and TOPAS benchmark

6.2.1 Experimental setup

All microdosimetric spectra were acquired with the LET-1/2 tissue-equivalent propor-
tional counter TEPC as described in Section 1.2.1. The TEPC was positioned inside a
water phantom (Blue Phantom, IBA Dosimetry) and exposed to a 3 cm radius SOBP
produced with a passive modulator [Tommasino et al., 2019]. The in-field SOBP, corre-
sponding to a 2 Gy uniform dose region, spreads between 105 mm and 132 mm water
depth and its uniformity was measured to be at least 98%; the distal R90 was found
instead equal to 134 mm.

We identified three different regions of interest for this study (Figure 6.8), and defined
them with respect to the dose measured at the SOBP center (i.e. the maximum dose):

• in-beam region where the maximum dose is released. This area extended up to 30
mm laterally from the beam axis center;

• beam-edge region where the dose gradually decreases at increasing distance from the
beam center, with an average of about 50% of the maximum dose. This region ranges
from 40 mm to 60 mm from the beam axis center;

• far out-of-field region where the dose drops below 1%, extending from 60 mm to 150
mm laterally from beam axis center.

The exact positions where the TEPC was placed to measure the spectra are also
marked in the Figure. During the acquisitions, the primary beam impinging on the passive
modulator was monitored with an ionization chamber. In order to avoid pile-up effects
described in Section 4.4, the particle rate at the TEPC was kept below 104 p/s for all
measurements.

Microdosimetric spectra, RBE, H and Q factor

For each data point, we collected a statistics of about one million events. The raw
spectra were then converted into lineal energy y distributions with a standard calibration
procedure, whose details can be found elsewhere [Missiaggia et al., 2020].

From the y distributions, we obtained the yf(y) and yd(y) microdosimetric spectra.
In addition, we calculated the frequency-mean lineal energy yF and the dose-mean lineal
energy yD.
By combining the microdosimetric spectra with the biological α and β parameters of the
human large cell lung carcinoma (H460 ), we calculated the RBE for cell survival both
in- and out-of-field. We used the Microdosimetric Kinetic Model (MKM), as extensively
depicted in Section 2.2 and as already done in Section 6.1, but with the physical and cell
model parameters described in [Bertolet et al., 2021]. The RBE formula is

RBE =
1

2d

√(α0

β0

)2

+ 4d

(
α0

β0

)
RBEmax + 4d2RBE2

min − α0

β0

 .
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Figure 6.8: Panel (a): Positions measured in the water phantom with the TEPC. Three
main regions have been considered depending on the dose measured at the entrance
channel: in-beam region (D=100%), beam-edge region (D=50%), far out-of-field region
(D<1%). Panel (b): 1D depth-dose profile measured in water with a CC01 ionization
chamber and compared with TOPAS prediction. Panel (c): 2D dose distribution calcu-
lated with TOPAS in water.
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where d is the dose per fraction, while RBEmax = αP
α0

(with αP = α0+β0
yD

ρπ(rd)2
) and

RBEmin =
√

βP
β0

are the RBE asymptotic values for d = 0 and d → ∞, respectively. In

the MKM, RBEmin = 1 since βP = β0 is assumed.
For H460 cells, α0=0.29 ± 0.06 Gy−1, β0=0.032 ± 0.009 Gy−2 and rd=370 ± 50 nm.
The choice of using this formulation of the MKM that uses yD values instead of the one
used in Section 6.1 that exploits y∗ values for the RBE assessment is due to the fact that
we wanted to confront them, in the in-field direction, with the calculated RBE using the
McNamara phenomenological model [McNamara et al., 2015], which exploits the LETd:

RBE

[
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)
x
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− α

β

 .
Here DP is the proton dose, while LETd is the dose average calculated with TOPAS

considering both primary and secondary protons.

The radiation quality was either estimated from the experimental microdosimetric
spectra (for MKM) or calculated with TOPAS (for McNamara). We then evaluated the
RBE for the corresponding survival fraction.

In addition, following the approach presented in [Conte et al., 2020], we also calculated
the RBEmicro in-field:

RBEmicro =

∫
r(y)d(y)dy .

d(y) is the microdosimetric dose distribution measured at a given water depth. The
quantity r(y) is the Loncol’s biological weighting function [Loncol et al., 1994] as discussed
in 2.3.1 and relates to early intestinal intolerance assessed by crypt regeneration in mice.
Thus, the RBEmicro is calculated for a different biological endpoint, cannot be directly
compared to the MKM and McNamara RBE values. Loncol’s method, however, is the
only one that uses the whole microscopic d(y) distribution instead of the average values
yD, as for the MKM, and thus is more sensitive to differences in the radiation field quality.
For this reason, we decided to include it in this work.

The microdosimetric spectra were also used to estimate the quality factor Q and equiv-
alent dose H [Zaider and Brenner, 1985] in the beam-edge and out-of-field regions, as
discussed in 2.3.2, using the ICRU 40 approach.

Monte Carlo simulations

All simulations were performed with TOPAS Monte Carlo toolkit (version 3.2.2 [Perl
et al., 2012]). We used the default TOPAS physics list recommended for protontherapy
applications [Jarlskog and Paganetti, 2008], and the range cut values (i.e. the particle
production and tracking thresholds) proposed in [Zhu et al., 2019]. To simulate the micro-
dosimeter, we employed the spherical TEPC geometry available in the code, and selected
the Trento beam line geometry already implemented in Geant4 [Tommasino et al., 2019].

First, we reproduced the 1- and 2D depth-dose profiles delivered in the water phantom
with the passive modulation system (Figure 6.8 panels (b) and (c)). The 1D curve was
verified against measurements acquired with a CC01 ionization chamber (IBA Dosimetry).
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With the same geometry, we selected a 1 × 1 × 1 mm3 mesh grid to obtain the dose and
LETD values at the positions where the TEPC was placed and the microdosimetric spectra
were measured (Figure 6.8 panel (a)).
To simulate these spectra, we employed the TOPAS lineal energy scorer associated to
the spherical TEPC. With this method, the total energy deposition inside the detector
sensitive volume of both primary and secondary particles is recorded event-by-event, and
then divided by the detector mean chord length to obtain the lineal energy y. All events
are then stored into an histogram of the lineal energy frequency distribution f(y). The
number of primaries was set to match the experimental statistics (∼ 106 events scored by
the detector) in-beam and at the beam-edge, but it was decreased to ∼ 105 for the farthest
out-of-field positions, due to computational time constraints.

The f(y) histograms were scored for each measurement positions, recording the y
distribution as well as the contributions coming from different particles (i.e. protons,
heavy fragments and secondary electrons). Applying the same analysis described in Sec.
6.2.1, we obtained the yf(y) and yd(y) spectra, from which the microdosimetric quantities
yF and yD were calculated.

6.2.2 Results

Microdosimetric spectra

A selection of the measured and simulated microdosimetric yd(y) spectra at several
depths in- and off-beam are plotted in Figure 6.9 in their standard semi-log representation
(the area under the curve indicates the relative contribution to the total number of events).

Panel (a) shows the experimental distributions for six different positions between 96
and 136 mm depth, all acquired in-field. At increasing depth, we observe a gradual shift
of the spectra towards higher y values. They are centered around 0.9 keV/µm in the
entry channel, between 1 and 4 keV/µm in the SOBP, and around 7 keV/µm in the distal
penumbra. We observe the same behavior in the spectra at the field edge, as well as at
different lateral distances from the beam center and a fixed depth in the middle of the
SOBP (Figure 6.9, panels (b) and (e)). Together with the mean value, also the distribution
width is not constant, but increases at increasing depth and lateral distance from the field.
The most significant difference is visible in the right tail, which is populated by high y
events. The spectra change very rapidly in-beam and at beam-edge, while they appear to
be more constant at increasing lateral distance from the field, where the mean value range
from 1.3 keV/µm in-beam to about 2.5 keV/µm far-out-of-field (150 mm lateral). The
sharp edge at around 120 keV/µm, especially visible in the distal position, namely the
purple line at 136 mm of water depth, is known as ”the proton edge”, and represents the
maximum energy that primary protons can deposit in the TEPC [Chiriotti et al., 2015b].
The microdosimetric spectra behavior stems from the combination of three effects: i) the
energy straggling, which increases at decreasing particle energy, ii) the heterogeneity of the
radiation field composition both in terms of particle type and energy, which increases with
depth and lateral distance from the primary beam path, and iii) the coulomb scattering,
which increases with decreasing particle charge and energy. In the entrance channel,
the radiation field is mainly composed by monoenergetic primary protons, and thus the
microdosimetry spectrum is relatively narrow. As the beam penetrates water, it both
slows down and create secondary particle via nuclear interactions, whose y is equal or
higher than the primary protons. The increasing field heterogeneity, combined with the
energy straggling, generate broader spectra centered at higher y. Secondary particles
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have a low abundance compared to primary protons in-field, but become dominant at the
end-of-range, and eventually the only contributor to the field in the penumbra.

The comparison between measured and simulated yd(y) spectra (Figure 6.9, panels
(c), (d), (e), (f)) indicate an overall good agreement, as both the peak positions and
distribution shapes are reproduced. The only exceptions are observed at the entrance
channel and in the plateau region up to about 90 mm depth, e.g. the spectra in-beam at
33 mm depth (panel c) and at the beam-edge at 46 mm depth (panel e). This discrepancy is
caused by the noise contamination discussed in Section 5.1.1. Also the out-of-field spectra
(150 mm lateral distance from the beam center) shown in panel (f) indicate a deviation
between measurements and simulations. This region is entirely populated by secondary
particles, and the result can point to a limited accuracy of the nuclear models implemented
in TOPAS.

Microdosimetric quantities

Using Equations (1.1.3) and (1.1.3), we calculated the frequency-mean lineal energy
yF and the dose-mean lineal energy yD. The experimental values and TOPAS predictions
at several depths in-field and at the beam-edge are shown in Figure 6.10. The yF profiles
appear very similar, indicating that the radiation field in those regions has the same
quality. The only difference is seen at the SOBP, where the curve in-beam has a steeper
gradient than at the field edge. Also for the yD, we see the largest difference along the
SOBP and in particular in the distal position: the in-beam value at the latter position
reach 14.16 ± 1.31 keV/µm, while the beam-edge yD at the same depth is 23.24 ± 2.10
keV/µm.
The comparison between the measurements and TOPAS predictions indicate an overall
good agreement for the yF , but a larger discrepancy for the yD. The latter values are very
sensitive to rare secondary events belonging to the high y region, and thus are expected
to demonstrate larger fluctuations.

Biological and equivalent dose

The experimental data presented in this work, as well as the microdosimetric spectra
and LETd values calculated with TOPAS have been combined with the simulated physi-
cal dose profiles (Figure 6.8, panel (c)) to estimate the RBE with the MKM, Loncol and
McNamara models as described in Section 6.2.1.
The results in-beam are shown as a function of the water depth in Figure 6.11 (panel
(a)). For the Loncol and MKM, we reported two datasets, because we used both the
experimental and simulated microdosimetric distributions for calculating the RBE. The
McNamara describes the radiation field quality with the LETd, which could not be ob-
tained from our measurements, but only estimated with TOPAS. The RBE profiles refer
to two different biological endpoints: the survival of H460 cells for the MKM and Mc-
Namara, and the early intestinal intolerance for the Loncol. To assess the RBE with the
MKM and McNamara, we did not fix a cell survival percentage, but calculated it on the
basis of the dose delivered in each position. This approach allowed us to assess the RBE
also out-of-field using realistic doses and to calculate the biological dose in each position.
The data show that independently of the model, the RBE values have similar trend: they
are flat in the plateau region, they increase slightly in the SOBP, and they have a steep
growth between the SOBP far end and the penumbra. At the entry channel, both the
Loncol and the McNamara predict an RBE below 1.1, while the MKM is slightly higher
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Figure 6.9: Experimental (solid lines) and simulated (dashed lines) microdosimetric yd(y)
spectra at different positions. The positions in the SOBP region are marked with an
asterisk. The distributions measured in-beam at several depths are shown in panel (a),
while those acquired at a fixed depth of 126 mm and increasing lateral distance from the
beam center are plotted in panel (b). Panels (a), (b), (c), (d) report the comparisons
between experimental data (Exp) and simulated data (TOPAS) with the TOPAS Monte
Carlo toolkit (only some depths are shown for visualization purposes). In particular,
panels (c) and (d) refers to the in-beam region at different depths in water reported in
the figure’s labels; in particular, panel (c) refers to the entrance and plateau region while
panel (d) shows comparisons at the SOBP and distal penumbra zone. Panel (e) contains
instead the comparisons at different depths (reported in figure’s legend) at the beam-edge
while panel (f) illustrates two selected positions at a fixed depth of 126 mm, namely in
the SOBP region (0 mm) and in the out-of-field region (150 mm).
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Figure 6.10: Simulated (TOPAS) and experimental (Exp) yF (panels (a) and (b)) and yD
(panels (c) and (d)) values in-field and at the beam-edge (50 mm from field center). The
grey area marks the SOBP region, while the grey dotted lines indicate the depths corre-
sponding to the SOBP region. The experimental error bars include the contribution from
both the energy calibration procedure and reproducibility, while TOPAS bars represent
the statistical error.
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Figure 6.11: Panel (a) shows the RBE profiles in the in-field region calculated with the
MKM, Loncol and McNamara models described in Section 6.2.1 for two different biolog-
ical endpoints. The MKM and McNamara refer to the survival fraction of H460 cells
calculated from the dose value at each position, while the Loncol predicts RBE for early
intestinal intolerance. For the McNamara, the LETd was calculated with TOPAS, while
for the MKM and Loncol the radiation quality was either obtained from the experimental
microdosimetric spectra, or from TOPAS. The grey area marks the SOBP area. Panel (b)
illustrates the physical dose calculated with TOPAS and the biological dose (Dose*RBE)
estimated with all models. For the MKM and Loncol, we used the microdosimetric mea-
surements presented here to describe the radiation field quality.

(1.15 ± 0.01). From the beginning of the SOBP to the penumbra, the McNamara ranges
from 1.09 ± 0.01 to 1.21 ± 0.02, while the Loncol increases more rapidly (from 1.01 ±
0.02 at the beginning of the SOBP to 1.27 ± 0.03 at the penumbra), getting closer to the
MKM (from 1.12 ± 0.01 to 1.47 ± 0.04, at the same positions). The RBE assessed with
the measurements agree with the values entirely obtained from TOPAS for the Loncol,
but show a larger discrepancy for the MKM. This behavior is caused by the fact that the
MKM employs yD values, whose simulated and measured results presented in Figure 6.10
show relatively large variations. The Loncol instead relies on the entire microdosimetric
spectra, for which the overall agreements between experiments and calculations is more
robust.

The RBE values from McNamara, as well as those from the Loncol and the MKM based
on the microdosimetric measurements, have been used to calculate the biological dose, i.e.
the physical dose multiplied by the RBE (Figure 6.11, panel (b)). As we employed the
same physical dose curve for all calculations (Figure 6.8, panel (b)), the biological dose
reflects the RBE trend. The highest values are obtained with the MKM, ranging from
1.41 ± 0.02 at the entry channel to 2.26 ± 0.03 in the SOBP. In the entry region, the
McNamara and the Loncol are close to the physical dose, as both models predict an RBE
around 1.05. At increasing depth, the RBE from McNamara grows more rapidly, and the
biological dose reaches a value of 2.24 ± 0.02 at the SOBP, approaching the MKM, while
the Loncol remains very close to the physical dose profile.

Using both our experimental data and TOPAS outputs, we computed the quality
factor Q according to Eqs (2.54) and (2.56), as well as the equivalent dose H according to
Equation (2.55). The results as a function of water depth are shown in Figure 6.12 (panels
(a), (b) (c) and (d)) for the beam-edge region and for the lateral profile at a fixed depth of
116 mm (middle of the SOBP). The RBE calculated with the MKM and the corresponding
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Figure 6.12: Panel (a) and (b) shows both the RBE (calculated exploiting the MKM
model for H460 cells) and the Q values depth profiles for the beam-edge region and for
the lateral profile at a fixed depth of 116 mm, respectively, comparing experimental mi-
crodosimetric data (Exp) to TOPAS simulated spectra (TOPAS).
In panels (c) and (d), instead, the physical, RBE-weighted and equivalent dose for the
beam-edge region and for the lateral profile are illustrated, in both cases calculated from
experimental data.
In addition, particles contribution to the yd(y) spectra are plotted for the higher RBE
and Q values of the beam-edge and of the lateral profile (respectively in (e) for the 136
mm in depth at 50 mm in the lateral direction and in (f) for the 116 mm in depth at 150
mm in the lateral direction).



6.2. MICRODOSIMETRIC CHARACTERIZATION OF A PROTON SOBP 99

biological dose are reported for comparison. We chose the MKM as reference as it describes
radiation quality with microdosimetry and allows to calculated RBE values for different
biological endpoints. In both regions, the Q and RBE curves follow a similar trend, but
with different values. At the beam-edge, Q is lower than the RBE in the plateau (Q=0.07
± 0.01, RBE=1.18 ± 0.02). Then, it steadily increases in the SOBP region, reaching a
value of 2.95 ± 0.13 and overcoming the RBE (1.36 ± 0.03). Also in the penumbra, the
growth is steeper for Q than for the RBE, with maximum values of 5.12 ± 0.23 and 1.87
± 0.08, respectively. In the lateral profile, Q increases rapidly, ranging from 1.02 ± 0.05
at the beam center to 1.66 ± 0.07 out-of-field, while the RBE is relatively flat (1.13 ±
0.01 to 1.46 ± 0.04). The equivalent dose H reflects the Q behavior, remaining constant
around 0.5 Sv at the entrance, and then rapidly increasing up to 2.93 ± 0.13 Sv at the
SOBP far edge. In the lateral profile, H is constant in-beam (2.10 ± 0.10) and then drops
at increasing distance from the SOBP down to 0.0038 ± 0.0002. H appear to be higher
than the RBE at the SOBP far-end and beam-edge, but then the two quantities converge
on similar values out-of-field.

Off-beam, we selected two positions with the highest Q and RBE values (beam-edge
at 136 mm depth, lateral profile at 150 mm distance from the beam center and 116 mm
depth), and investigated the contributions of different particles to the yd(y) spectrum as
well as to the total Q value. In both cases, for each bin of the histograms we evaluated
the contribution of every single particle type. To obtain the Q value of each component,
in addition, the integrations 2.54 have been evaluated. The results were obtained using
TOPAS and are plotted in panels (e) and (f) of Figure 6.12. Due to CPU constrains,
the simulations have a lower statistics (105 events) with respect to the standard value
(106 events). This issue might especially affects rare events, e.g. heavy fragments such
as helium, that mostly contribute to the high y region (right tail). We scored as primary
protons all source protons which did not undergo inelastic collisions. Secondary protons
are defined as particles produced from nuclear interactions of the primary beam with the
target.
At the beam-edge, the major contribution comes from the primary protons, whose profile
peaks around 8 keV/mum and matches the total distribution. Electrons have the same
trend of the primary beam, while secondary protons are relatively flat, extending mainly
from 2 keV/mum to 100 keV/mum, with an additional contribution to the very high y
tail (around 500 keV/mum). Helium ions are only observed in the high y region starting
around 100 keV/mum until 400 keV/mum, where they dominate this portion of spectrum.
The corresponding contributions to the total quality factor are: 47% primary protons, 24%
helium, 18% secondary protons and 11% electrons.
In the lateral position out-of-field, primary protons become ever more dominant and their
distribution is centered around 1.2 keV/mum. Also electrons peak at a smaller value (4
keV/mum), which is higher than primary protons and result in broadening of the total
spectrum on the right side. The contributions to the total Q are: 46% electron, 31%
primary protons, 7% secondary protons and 16% helium.

To conclude, overall the microdosimetric spectra indicate that radiation quality changes
more rapidly with depth than with lateral distance from the SOBP. in-field, the yD rises
from ∼ 4 keV/µm at the entry channel to ∼ 8 keV/µm at the far-end SOBP, and reaches
the highest value of ∼ 15 keV/µm at the penumbra. At the beam-edge, the yD are very
similar to the values in-field, mostly because many primary protons reach this region due
to Coulomb scattering and become the dominant component of the field. Moving lat-
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erally from the SOBP center, the yD changes from 5.62 ± 0.26 to 11.14 ± 0.35 at 150
mm depth. In addition, the comparison between yD and LETd values suggests that the
estimate of radiation quality is largely influenced by the methodology used for describing
it, especially outside the SOBP. Our hypothesis is that this difference is mostly caused
by short-range heavy fragments, which have an extremely lower abundance as compared
to protons, but deposit significantly more energy. As microdosimetry is more sensitive in
detecting fluctuations of energy deposition, it appears to be more accurate in characteriz-
ing radiation quality at the cellular level. The combination of yD values and physical dose
identifies two regions of potential elevated risk of toxicity: the beam-edge (dose 0.7 to 1.3
Gy/2Gy-treatment) and the distal penumbra in-field (∼ 0.5 Gy/2Gy-treatment).

For what concerns the comparison between RBE and Q profiles out-of-field, the two
quantities do not always agree with each other, not showing a clear trend. It has to be
considered also that, by definition, Q predicts the radiation biological effectiveness at very
low doses, but the accuracy and the precise extent of the dose range validity has not been
extensively verified at the out-of-field doses due to therapeutic irradiation. On the other
hand, the precision of RBE for cell survival at low doses might be limited. Our findings
highlight the limitations of both the RBE and Q in describing the biological effectiveness
at the field-edge and out-of-field.

6.3 Discussion on the monoenergetic and SOBP proton beam
characterizations

Finding a solid bridge between the physical quantities describing a radiation field
and the corresponding biological effects, and translating them into medically relevant
results represents one of the most difficult challenges in radiotherapy. To address this
issue, the National Cancer Institute created a dedicated panel whose task was to identify
the most suitable set of physical parameters for characterizing a particle beam [Durante
et al., 2019]. When applied to clinical research, the recommendations would improve
the intercomparison of different biological experiments and ultimately help understanding
the relationship between the physics parameters and the clinical outcomes. The report
produced by the panel included also a list of standard measurements recommended for
obtaining a detailed beam characterization.
Microdosimetry was listed among the techniques for investigating beam purity as well as
for assessing the radiation field quality. The absorbed dose alone does not carry enough
information to assess the biological and, ultimately, the clinical effects of particle beams.
A full characterization of the radiation field in terms of particle species and kinetic energy
(or LET), as well the information on the radiation track structure are necessary tools
for predicting the biological damage [Conte et al., 2017]. Aside from providing a better
understanding of the particle effectiveness in tumor killing, these data can help predict
the risk of undesired effects following the treatment.

In literature, there are very few microdosimetric studies of therapeutic proton and
heavy ion beams including out-of-field data [Wroe et al., 2007, Wroe et al., 2009, Martino
et al., 2010, Tran et al., 2017, Chartier et al., 2018, James et al., 2021]. These data are
crucial to characterize the radiation quality received by the normal tissue, which is a key
parameter for assessing the risk of toxicity. In addition, to the best of our knowledge, only
[Martino et al., 2010] employ a Tissue Equivalent Proportional Counter (TEPC), which
is the reference detector in microdosimetry.
In this chapters, we have presented a microdosimetry-based methodology for characteriz-



6.3. DISCUSSION 101

ing the beam quality, which can be combined with biological parameters to estimate the
RBE for cell survival, both for a 152 MeV monoenergetic proton beam and a 148 MeV
Spread Out Bragg Peak proton radiation field. All microdosimetry spectra indicate that
the number of high lineal energy particles increases with increasing depth both in-field
and out-of-field. In particular, the radiation quality changes more rapidly with depth
than with lateral distance from the field in-beam. The change in the high-y population
is caused by the production of secondary particles, mostly with higher charge and lower
energy than the primaries, and translates into a RBE growth along both the distal and
lateral directions.
To understand the biological significance of the calculated RBE values, they have to be
combined with the absorbed dose. In the monoenergetic beam study, we evaluated the
dose directly from the microdosimetric spectra, while for the SOBP we assessed the dose
from TOPAS simulations. Both methodologies can be used, but they represent different
information: the microdosimetric-based assessment of the dose is evaluated in the volume
of the TEPC active region (micrometric dimension), while the simulated dose is evalu-
ated in a standard volume (voxel) of millimetric dimension. Only for the voxel approach,
stochasticities of energy deposition can be neglected. In addition, the microdosimetric
method can be used only if the number of primaries delivered is known while, for the
TOPAS-based approach the number of delivered primaries is easily known (corresponding
to the statistics of the simulation performed by the user). On the other hand, the Monte
Carlo method requires a validation in order to assess its accuracy, and this can not be the
case for certain radiation fields, e.g. the one produced by ions heavier than protons where
experimental cross section are still not completely reliable, especially in the out-of-field
regions [Muraro et al., 2020]. On the contrary, the microdosimetry approach relies only
on the experimental measurements, thus being truthful for every radiation field.
The results on the biological doses point to the beam-edges (lateral as well as distal) as
the off-beam regions exposed to the highest combination of dose and RBE (or Q), and
thus having the highest risk of potentially developing toxicities. Although the dose re-
ceived out-of-field is relatively low, recent studies have demonstrated that protons in the
therapeutic energy range can induce neurocognitive defects in mice with doses in the cGy
range [Cekanaviciute et al., 2018, Kiffer et al., 2019].
In addition, assessing the biological dose in the out-of-field region is relevant since an in-
correct estimate can have two potential outcomes: it can cause toxicity if underestimated,
and it can limit dose escalation if overestimated. Thus, increasing the correctness of the
RBE estimate both inside and outside the tumor region will result in a direct improvement
of treatment.
Another important finding of the microdosimetric study on the SOBP, is that the micro-
dosimetric spectra are in good agreement with the TOPAS Monte Carlo simulated dis-
tribution, both in- and out-of-field. This study represents, to the best of our knowledge,
the first extensive benchmark for protons (especially out-of-field) of the microdosimetric
extension recently introduced in TOPAS [Zhu et al., 2019].

Conclusions

In conclusion, we showed that variations in the radiation quality both in depth and
in lateral distances from the beam axis result in RBE values diverging from the reference
value of 1.1. The extent of these variations depend on the approach used for describing
the radiation quality and on the radiobiological model used to assess the RBE. We need
to evaluate if these differences have a quantitative impact on the treatment planning and
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to assess the potential clinical consequences both in terms of tumor control and normal
tissue toxicity. The achievement of this goal calls for accurate radiobiological data to
validate the RBE models, and to investigate the validity of assuming a fixed value, as it is
currently done in the clinical practice. Implementing a variable-RBE based optimization in
the treatment planning system represents an opportunity to decrease the patient-specific
biological dose for organs-at-risk despite the RBE uncertainties. Furthermore, we proved
that TOPAS microdosimetric extension is a robust tool for predicting distributions both
in- and out-of-field in a clinical proton irradiation scenario.



Chapter 7

Microdosimetric characterization
of 4He and 16O therapeutic beams

In the present chapter, we will present a comprehensive microdosimetric characteriza-
tion of the radiation generated in- and out-of field by 160 MeV/u 4He and 365 MeV/u
16O beams penetrating water. This study lays the groundwork for the future clinical ap-
plication of oxygen in radiotherapy, as well as a more accurate knowledge of the helium
behavior.

7.1 Material and Methods

Experimental setup

All measurements were performed at the NASA Space Radiation Laboratory [La Tessa
et al., 2016], using 160 MeV/u 4He and 365 MeV/u 16O pencil-like beams. The energies
have been chosen to have the same range in water for both ions and to be therapeutically
relevant (175 mm). The oxygen beam had circular profile with approximately 10 mm
diameter, while the helium beam was much broader (30 mm diameter), and had to be
collimated to produce a pencil beam. The collimator, placed just downstream of the exit
window, was made of 2 pieces: a 102 mm squared brass piece of 14 mm radius aperture
and 51 mm thick, and a copper piece of 8 mm radius aperture.

All microdosimetry spectra have been measured with the LET-1/2 I. Unlike the other
studies presented in this work, where the filling gas was pure propane, for this experiment
the detector sensitive volume was filled with a propane-based gas (55% C3H8, 39.6% CO2

and 5.4% N2 in volume) whose pressure was adjusted to simulates a tissue-equivalent
sphere of 2.7 µm diameter. The reason of this difference is explained in Section 1.2.1.

The TEPC was placed inside a 30×30×30 cm3 water phantom, whose PMMA walls
were 20 mm thick (23.6 mm water equivalent). The number of primary ions impinging
on the water phantom was monitored with an ion chamber (0.7 mm water equivalent
thickness) and a 2 mm plastic scintillator. A scheme of the experimental setup is shown
in Figure 7.1 (top panel).

To select the measurements positions, the TEPC was centered on the beam axis using
a laser system. Following the previous work described in 6, four different regions were
identified as of interest for this study:

• in-beam region, where the detector was fully and homogeneously irradiated by the
primary beam;

103
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Figure 7.1: Scheme of the experimental setup for both helium and oxygen experimental
campaigns (top panel) and of the TEPC measurement positions inside the water phan-
tom (bottom panel). The number of primary ions impinging on the water phantom was
monitored with an ion chamber (IC) (0.7 mm water equivalent thickness) and a 2 mm
plastic scintillator (SCI). All distances and thicknesses are in mm. The depth also takes
into account the water phantom wall, whose thickness is expressed in water equivalent.
The Bragg peak of both ions is at 175 mm depth.
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• beam-edge region, where the detector was moved 20 mm laterally from the beam axis
(i.e. just outside the primary irradiation field);

• close out-of-field region, where the detector was moved 50 mm laterally from the
beam axis;

• far out-of-field region, where the detector was moved 100 mm laterally from the
beam axis.

For each region, the microdosimetric spectra were acquired at different water depths
both upstream and downstream of the Bragg peak. A scheme of the measurement positions
inside the water phantom is shown in Figure 7.1 (bottom panel).

Monte Carlo simulations with TOPAS

Monte Carlo simulations of the measurements have been performed exploiting the
microdosimetric extension of TOPAS [Zhu et al., 2019], as previously stated in Section 5.2.
The geometries implemented for helium and for oxygen are truthful to the experimental
ones described in 7.1.
Following the state-of-the-art available in literature [Muraro et al., 2020, Arce et al., 2021,
Bolst et al., 2020] we employed two of the different hadronic interaction descriptions both
suitable for heavy ions, namely the Quantum Molecular Dynamics (QMD) and the Binary
Cascade (BIC), and paired with the same electromagnetic list (g4em− standard opt4).

Pile-up study

In the entrance channel region, both helium and oxygen ions microdosimetric spec-
tra have been found to be influenced by the pile-up effect. Following the methodology
described in Chapter 4.4, we compared the experimental spectra to TOPAS simulations
calculated with and without a given pile-up probability, and were able to quantify this
effect. This can be therefore considered in the mean lineal energy quantities error bars.

7.2 Results

The behavior of the microdosimetry spectra is ruled by electromagnetic and nuclear
interactions of the ions with water, and can be interpreted with the help of the measures
discussed in this work in Chapter 6, as well as of experimental [Martino et al., 2010, Zeitlin
and La Tessa, 2016, Rovituso and La Tessa, 2017] and of Monte Carlo [Zhu et al.,
2019, Burigo et al., 2015] studies available in literature. The main aspects that have to be
considered are summarized below.

• At the entrance channel, the field is mostly composed by monoenergetic primary
ions and hence has a rather uniform lineal energy y. At increasing water depth, the
electromagnetic interactions cause the beam to loose energy and thus to increase the
y;

• helium suffers a higher energy straggling than oxygen;

• the probability to undergo nuclear interactions increases with increasing depth.
Thus, when moving both along the beam path and in the lateral direction, the
number of fragments increases and eventually they becomes the only contributors
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to the spectra. Published studies report a fragmentation cross sections measured in
water of approximately 700 mb for helium and 1600 mb for oxygen [Rovituso and
La Tessa, 2017] in the energy range of interest. These results indicate that, at a
given depth, the probability for oxygen to change charge is over two times higher
than for helium;

• nuclear fragmentation yields charged and neutral fragments emitted at different an-
gles with a wide range of energies (and y) that can exceed that of the primary beam;

• although both electromagnetic and nuclear interactions can lead to a deviation of the
incoming radiation from the initial path, Multiple Coulomb Scattering dominates.
At a given energy, the scattering angle increases with the decreasing of particle
charge and the decreasing of kinetic energy; for both reasons, helium suffers more
lateral scattering that oxygen.

On the basis of these points we can interpret the measured data.

Microdosimetric spectra

Figure 7.2 presents yd(y) microdosimetric spectra for helium and for oxygen ions at
different depths, both along the in-field direction, and off-beam at the beam-edge and in
the far-out-of-field region. Details on the depths considered can be found in the figure’s
legend.
In-beam, oxygen peaks are narrower than the helium ones. The general trend is however
for both ions similar, along the in-field direction: the spectra peak at higher y values
with increasing water depth until they reach the Bragg peak position, after which the
distributions becomes larger and the peaks move back to lower y values. In detail, helium
distributions are centered around ∼ 4 keV/µm at the entrance channel, grow up to 15
keV/µm at the Bragg peak, and then decrease to ∼ 5 keV/µm in the distal region. For
oxygen, the spectra peak ∼ 20 keV/µm at the entrance, increase to ∼ 150 keV/µm at the
Bragg peak and then move back to ∼ 60 keV/mum in the distal region.
This is due to the fact that after the Bragg peak, the radiation field is mainly populated
by fragments lighter than the primaries. For both ions, these are mostly particles with a
Fermi momentum transferred, which imparts an additional energy component that leads
these particles to deposit dose after the Bragg peak.
Another feature displayed only by oxygen is that the spectrum at the Bragg peak consists
of both a main peak centered around 150 keV/µm mainly populated by primaries and a
second much smaller peak at around 80 keV/µm of secondaries. For what concerns helium
instead, a similar characteristic behaviour arise at 180 mm depth in water: here two peaks
of nearly the same height are visible. The first peak at ∼ 2 keV/µm is populated mainly
of secondary protons, while the second peak at ∼ 50 keV/µm is due to helium ions.

At the beam-edge region, helium show two different behaviour, with the fist positions
in water peaked at ∼ 10 keV/µm and the last two positions at ∼ 5 keV/µm. Helium
ions can be scattered at large angles, so that at 50, 100 and 150 mm in the beam-edge
distributions at higher values of y are shown due to slower α particles.
The distributions given at 200 and 250 mm depth instead, are similar to the far out-of-
field ones, since they are due to the secondary fragments produced by the helium nuclear
interactions. At large angles the spectra are mainly populated protons, deuterons and
neutrons, and the radiation field is very similar in all the depths.
Also the oxygen distributions in all the off-beam positions are populated by light secondary
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HELIUM OXYGEN

Figure 7.2: In- and off-beam microdosimetric lineal energy spectra yd(y) measured at
several depths for helium (left panels) and for oxygen (right panels). The off-beam regions
reported in the central and in bottom panels are defined as beam-edge (20 mm from the
beam axis) and far out-of-field (100 mm from the beam axis). The Bragg peak position is
at 175 mm depth for both ions.
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fragments (protons, deuterons, neutrons and α particles) with lower lineal energy values
and resemble the distributions of helium in the same regions.
In the far out-of-field region however, oxygen shows a clear peak at ∼ 20 keV/mum at
the entrance channel, that rapidly decreases at deeper positions in water, where just the
lower y peak is present (bottom right panel of the Figure 7.2).

Furthermore, the in-and out-of-field spectra have been simulated with TOPAS. The
comparison between experimental and simulated data is shown in Figures 7.3 (helium)
and 7.4 (oxygen). Independently of the primary ion, the agreement in-beam is extremely
good in the entrance and plateau channel (top panels), while it worsen in the Bragg peak
and in distal positions (bottom panels, right and left panels respectively).

Using TOPAS, we also estimated the the pile-up probability, whose values are reported
in Figures 7.3 and 7.4. For helium, a pile-up probability of 8% was found at the entrance
and plateau regions in-beam, which decreased to 0 around the Bragg peak. For the spectra
affected by pile-up, we also reported the simulations calculated with pile-up zero. For
oxygen, instead, the entrance and plateau distributions have a 2% pile-up probability,
which decreases to 0 around the Bragg peak position.

For both helium and oxygen ions, we calculated the microdosimetric spectra using the
two hadronic models QMD and BIC. The results along the in-beam direction until 180 mm
in water showed no appreciable differences. For this reason, in all these cases we chose the
BIC hadronic model in order to be consistent with what was previously done for protons
in Chapter 6.

On the contrary, out-of-field spectra have not been shown due to the overall disagree-
ment between the simulated spectra for both hadronic model implemented (BIC and
QMD). An example of this is given in Figure 7.5, where helium in the beam-edge region
at 100 mm depth is not correctly described by neither QMD nor BIC hadronic list.

Radiation quality

Radiation quality is assessed by the frequency-mean lineal energy yF , dose-mean lineal
energy yD and the saturation-corrected dose-mean lineal energy y∗, which can all be
estimated from the microdosimetric spectra as described in the Section I. In Figure 7.6,
the three mean quantities have been reported both for helium (left panels) and oxygen
(right panels) along the beam direction at increasing depth in water. We also reported the
values obtained from TOPAS simulated spectra, but only for the positions in-beam where
the agreement with the measurements was found good. When the match was obtained
with a certain pile-up probability, we plotted the microdosimetric quantities calculated
both with and without pile-up.

For both ions, the values of yF , yD and y∗ in-beam appear rather flat in the entrance
channel and plateau. For oxygen, all quantities reach the maximum at the Bragg peak
position, while for helium the yD peaks in the tail region at 175 mm depth. This behavior
is a direct consequence of nuclear fragmentation. Up to the Bragg peak, the primary ions
represent the main component of the radiation field and thus heavily influence the quality.
The tail, instead, is populated by fragments of very different y (as seen in Figure 7.6),
and thus yF , yD and y∗ represent an average of the quality of each component of the
spectrum. Oxygen can only produce lower-Z fragments and thus the highest y is reached
at the Bragg peak position where the primaries stops.

The difference between yD and y∗ is almost negligible in the plateau but becomes very
significant at the Bragg peak and in the tail region. The saturation correction has two
very different effects when applied to helium and oxygen. In the former case, it shifts
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Depth=50 mm Depth=100 mm

Depth=175 mm Depth=180 mm

Figure 7.3: Comparison between experimental (Exp) and simulated (TOPAS) yd(y) micro-
dosimetric spectra measured at several depths for helium. For the simulated distributions,
we used different pile-up probabilities (pu) and selected the value that provided the best
agreement with the measured spectrum (reported in the legends).
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Depth=50 mm Depth=100 mm

Depth=175 mm Depth=180 mm

Figure 7.4: Comparison between experimental (Exp) and simulated (TOPAS) yd(y) micro-
dosimetric spectra measured at several depths for oxygen. For the simulated distributions,
we used different pile-up probabilities (pu) and selected the value that provided the best
agreement with the measured spectrum (reported in the legends).

Figure 7.5: An example of inaccurate description of the experimental microdosimetric
distribution in the beam-edge region, both using Quantum Molecular Dynamics (QMD)
and Binary Cascade (BIC) hadronic interaction descriptions. The experimental and the
simulated spectra have been measured at 100 mm depth in water.
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helium oxygen

Figure 7.6: Experimental (Exp) and simulated (TOPAS) frequency-mean lineal energy
yF (Equations. (1.1.3)), dose-mean lineal energy yD (Equations (1.1.3)) and saturation-
corrected dose-mean lineal energy y∗ (Equations (2.45)) plotted as a function of the depth
in water for helium (reported in the legend), measured along the beam direction. Simulated
values have been plotted only for good agreement between experiments and simulations
(from 50 to 180 mm for helium and fom 50 to 175 mm for oxygen ions.)
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the yD maximum from the tail to the Bragg peak because only the fragments can reach
a y greater than y0. For oxygen, instead, the correction has the main consequence of
drastically reducing the yD at the Bragg peak, where the highest y can be achieved.

In Figure 7.7, the same microdosimetric quantities profiles have been plotted at the
beam-edge (top panels), near out-of-field (central panels) and far out-of-field (bottom pan-
els) for helium (left panels) and for oxygen (right panels).

At the beam-edge region, helium shows a decrease of all microdosimetric quantities as
a function of depth, whereas oxygen is rather flat, with only a small increase of the yD
values compared to the Bragg peak depth.
As shown by the y spectra of Figure 7.2, helium ions suffer significant lateral scattering
even close to the entrance channel and contribute heavily to the beam-edge spectrum. The
fragments build-up increases at increasing depth, their y is on average lower than the
primaries and thus yF , yD and y∗ tend to decrease. On the other hand, the beam-edge
for oxygen is mostly populated by fragments, as the primary ions remain focused. The
fragments energy decreases with increasing water depth, and thus their y gets higher,
increasing the overall mean microdosimetric values. The radiation quality near and far
out-of-field is then rather constant for both ions. These regions are mostly populated by
light ions, whose lineal energy appear to be overall uniform.

Absorbed dose

The absorbed dose can be estimated using Equation (6.1). The values for both ions as
a function of water depth are plotted in Figure 7.8. In order to compare the results, all
measurements have been normalized to deliver a dose of 2 Gy at the Bragg peak position,
which are located at a depth of 175 mm, in agreement with the theoretical calculations.
In addition, to better visualize the dose profiles at different lateral positions, the y axis
has been plotted in a logarithmic scale.

At the selected energies, the dose delivered at the entrance channel is around 0.5
Gy/2Gy-BP for both ions.

In the tail region, the helium curve drops from ∼ 10−2 Gy/2Gy-BP 15 mm after the
peak to 10−4 Gy/2Gy-BP at the deepest measured position (250 mm). Oxygen, instead
has a much more pronounced tail due to the secondary fragments. The dose stays around
10−1 Gy/2Gy-BP up to 20 mm from the peak and decrease only to 10−2 Gy/2Gy-BP at
the furthest depth (250 mm).

The dose at the beam-edge is in the order of 10−4 Gy/2Gy-BP for helium and 10−3

Gy/2Gy-BP for oxygen, and for both ions it drops to 10−5 Gy/2Gy-BP far out-of-field.
At increasing lateral distances, the contribution from heavier fragments decrease, either
because they range out or because they are not produced at such a large angle, and the
only contributors to the dose are light particles, which are common for both primary ions,
thus leading to a similar radiation quality, even if the doses differ.

7.3 Discussion and Conclusions

In-beam, both ions show a pretty well defined peak, whose center shifts towards higher
y at increasing water depth. The maximum value is reached at the Bragg peak, after
which the spectra move back to lower y and get broader. The main peaks of the yd(y)
distributions are mostly populated by the primary beam while fragments fill up the rest of
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helium oxygen

Figure 7.7: Frequency-mean lineal energy yF (Equation (1.1.3)), dose-mean lineal en-
ergy yD (Equation (1.1.3)) and saturation-corrected dose-mean lineal energy y∗ (Equation
(2.45)) plotted as a function of the depth in water for helium at different lateral positions:
beam-edge (top panel), out-of-field (middle panel) and far out-of-field (bottom panel).
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Figure 7.8: Dose profiles as a function of water depth calculated according to Equa-
tion (6.1) for helium (top panel) and oxygen (bottom panel). All values have been nor-
malized to deliver 2 Gy to the Bragg peak position (2Gy - BP). The off-beam regions are
defined as beam-edge (20 mm from the beam axis) and far out-of-field (100 mm from the
beam axis). The dotted line marks the Bragg peak depth.
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the spectrum. The peaks measured with oxygen in-beam are always narrower than those
measured with helium, due to the fact that the latter suffers more energy straggling.

The trend of the beam-edge spectra measured with helium is different than oxygen
in the entrance channel. The former undergoes more lateral scattering, and hence more
primary ions reach this region. This hypothesis is supported by the fact that the spectra
are very similar to those measured in-beam. Oxygen, instead, remains very focused and
the beam-edge is mostly populated by secondary particles at all depths.

In the far-out-of-field region, both helium and oxygen distributions are rather flat
(helium is still a bit more peaked than oxygen) and cover the whole y range. Here only
light secondary ions and neutrons contribute to the spectrum. The absorbed doses reflects
this behaviour, but the values observed for oxygen are on average a factor 5 higher then
helium, due to the fact that oxygen produce more fragments. Even if using oxygen for
clinical application is of more concern for potential toxicity both in the distal and in
the lateral out-of-field regions, showing higher doses compared to lighter ions (protons,
helium and carbon ions), the rational for using ions heavier than carbon in radiotherapy is
motivated by hypoxic tumours. In fact, at increasing size of the central hypoxic region of
the tumour, the benefits deriving from the usage of oxygen ion start to be clear and may
become the best compromise between treatment efficacy and possible side effects in healthy
tissue [Sokol et al., 2017]. Although the physical characterization of the radiation field is
a key ingredient for assessing the radiobiological damage, it is not the end of the story.
Future work will include an RBE estimation and a more comprehensive study for both
helium and oxygen beams, to find a more direct link between the physical characteristics
of the radiation field and the biological effect both inside and outside the target region.
In addition, a more detailed study of the different phenomena concurring to the radiation
field in each measured position will be done, exploiting also the Monte Carlo simulation
when the agreement with data is good, being an invaluable tool to assess the different
particles contributions to the final distribution.



Chapter 8

Neutron microdosimetric
characterization for space
radioprotection application

Within the ESA AO-2019-IBER funded project entitled A novel approach to physical
and biological countermeasures against radiation for deep space exploration (2020-present),
we performed neutron microdosimetric measurements for space radioprotection applica-
tions [Horst et al., 2022].
Space agencies have in fact recognized the risks of astronauts’ exposure to space radiation
and are developing complex model-based risk mitigation strategies. All current models
have a limited accuracy in predicting the yield of neutrons and light ion produced by nu-
clear fragmentation of heavy ions, which are an important component of galactic cosmic
radiation (GCR). A research collaboration has been set up to characterize the secondary
radiation field produced by GCR-like radiation produced by a particle accelerator in thick
shielding. The aim is to develop a novel method for producing high-quality experimen-
tal data of neutrons and light ions production in shielding materials relevant for space
radiation protection. These kind of experiments are performed using a ground-based par-
ticle accelerator; in this case in particular, they have been performed at the heavy ion
synchrotron SIS18 at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt,
Germany, in Cave A.

Microdosimetry in particular, and especially TEPC detectors, are invaluable tools to
characterize also the radiation field of the complex radiation environments in space. For
example, TEPCs have been placed both on space shuttles and on the International Space
Station (ISS), to serve as the primary active dosimeters in space for nearly two decades
[Braby, 2015].

In this work, we employed the TEPC LET 1/2 1.2.1 to characterize the radiation field
of neutrons produced when 56Fe ions is stopped in an aluminum target and we assessed
the quality factor in two different out-of-field positions.

8.1 Experimental setup

The full setup used during the experimental campaign can be found in Figure 8.1.
The primary 1 GeV/u 56Fe ion beam exits the vacuum beam line through a thin exit
window, and traverses a beam monitor ionization chamber. Optionally, for low intensity
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Figure 8.1: Scheme of the characterization of the secondary neutron and light ion radiation
field produced by a high-energy heavy ion beam in a thick aluminum target.

measurements, also a plastic scintillator can be inserted. The beam intensity is adjusted
to match the optimal measurement conditions of each detector system. After passing the
beam monitors, the primary ions are stopped in a thick cylindrical aluminum target (20
cm width), producing different secondary particle species which the most abundant are
neutrons and protons.
Focusing on microdosimetry experiments, they were conducted using two different setups:
the first one (experimental setup 1) is characterized by a 15° angle from the beam axes and
a distance of 2.14 m from the aluminium target; the second experimental setup (experi-
mental setup 2) is instead characterized by a 40° angle from the beam axes and a distance
of 2.38 m from the aluminium target.

8.1.1 Results

During the data taking, few channel counts of the high-gain ADC suddenly jumped to
unrealistically high values as shown in Figure 8.2. This phenomenon can occur when the
ADCs electronics is directly exposed to radiation, that causes single event upsets [O’Bryan
et al., 2000]. To correct for this effect, we performed a linear fit to predict the counts of
the affected channels. By defining an interval around the peak, and removing the peak
itself, it was possible to recover the real energy deposition distributions. This method was
applied in both setup 1 and 2 and the first setup is shown in Figure as an example 8.2

Figures 8.3 and 8.4 show the microdosimetric yf(y) and yd(y) spectra acquired with
the TEPC placed at 15° with respect to the beam axis (setup 1). A total of 2023495 events
were acquired.
Figures 8.5 and 8.6 reports instead the results acquired with the setup 2 configuration,
where the TEPC was placed at 40◦ lateral to the beam axis. A total of 1005389 events
were acquired in this case.
The microdosimetric distributions yd(y) measured with the two setups show some similar-
ities, both peaking around 3 keV/µm and demonstrating a large tail on the higher lineal
energies (from ∼ 10 keV/mum to ∼ 1000 keV/mum ).

A peak can be observed in the yd(y) plot around 6 keV/µm. This peak was also present
in the background noise spectrum acquired with the iron beam off, i.e. the spectrum ac-
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Figure 8.2: (a) Example of the unrealistic peak in the raw spectrum of the high-gain ADC
channels for the experimental setup 1, probably due to single event upsets.

Figure 8.3: yf(y) spectrum measured in the experimental setup at 40◦ lateral to the beam
axes.

quired with the beam off. For this reason, we hypothesized that this peak is generated by
the activation of material in the experimental room. The lower statistics of total events
collected in the second setup geometry has therefore highlights this activation peak in this
configuration, since the proportion between counts of the activation peak and the total
counts due to neutrons from the iron beam is higher.

The yF , yD, y
∗ and Q are reported for both setup in Table 8.1

Experimental setup yF [keV/µm] yD [keV/µm] y∗ [keV/µm] Q

1 1.37 ± 0.06 25.01 ± 1.01 10.63 ± 0.42 3.02 ± 0.15

2 1.51 ± 0.06 26.56 ± 1.18 11.66 ± 0.46 3.53 ± 0.17

Table 8.1: Microdosimetric yF , yD and y∗ measured with the two experimental setups of
Figure 8.1.

The microdosimetric mean values yF , yD and y∗ measured at the two positions are
very close, with values slightly higher for the larger angle. This result indicates that the
radiation field quality at the two positions is similar. Instead, the quality factors exhibit
a greater discrepancy, with a relative difference of about 15%. Unlike the microdosimetric
mean values, the quality factors are calculated using the whole microdosimetric spectra
(2.3.2).
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Figure 8.4: yd(y) spectrum measured in the experimental setup at 40◦ lateral to the beam
axes.

Figure 8.5: yf(y) spectrum measured with the experimental setup 2 at 40◦ lateral to the
beam axes.

Figure 8.6: yd(y) spectrum measured with the experimental setup 2 at 40◦ lateral to the
beam axes.
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At higher angles, neutrons are produced with a lower kinetic energy, thus depositing more
in the TEPC; this reflects into higher values of microdosimetric lineal energies and a
slightly more higher quality factor Q in the setup 2.



Part IV

Hybrid Detector for
Microdosimetry (HDM): a new

tool for extending the
microdosimetric information
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Chapter 9

Hybrid Detector for
Microdosimetry (HDM)

A limitation shared by all microdosimeters is that while ϵ is directly measured, the
value of l̄ has to be theoretically estimated as the mean path travelled by a particle
inside the detector, and thus it depends on the detector geometry. In addition, l̄ values
calculated for standard geometries can be used only if the microdosimeter is exposed to a
homogeneous and isotropic field (also called uniform isotropic randomness) [Kellerer et al.,
1985] and a different l̄ value will be obtained under different irradiation conditions, i.e.
for other types of randomness. Some attempts have been made to overcome the limited
accuracy of the the mean chord length concept, e.g. in unidirectional particle field when
the isotropicity assumption drops. An example is SOI microdosimeters [Bolst et al., 2017],
which are composed of 3D sensitive volumes (SVs) arrays with a well defined thickness,
and thus path length. Furthermore, few theoretical studies focused on finding a formula
of the mean path length for both uniform [Cruz et al., 2001] and non uniform [Santa Cruz
et al., 2001] radiation fields. So far, only the calculation for a uniform isotropic randomness
could be successfully applied to experimental methodologies. Estimating the path length l
is a critical parameter in microdosimetry that will influence the accuracy of the radiation
field quality characterization [Abolfath et al., 2020]. In fact, for a given energy ϵ deposited
in the detector, the resulting y value can assume a wide range of values depending on the
l. For example, if ϵ=10 keV in a 2 µm diameter sphere made of tissue, y can varies from
5 keV/µm to 1000 keV/µm just considering l values ranging from the sphere diameter to
0.01 µm.

For this reason, since the quantity y is traditionally intended as the ϵ over the mean
chord length value l̄, we introduce a new quantity yT , defined as ϵ divided by the particle
real track length l.

Hybrid Detector for Microdosimetry (HDM) is indeed designed to measure the yT .
This detector have been specifically intended for particle therapy application, where a
knowledge of the yT yields a more direct link to the biological damage.
Together with providing a direct measurement of the track length l, this design also im-
prove the lateral spatial resolution of existing TEPCs. HDM is composed of a spherical
TEPC followed by four layers of Low Gain Avalanche Detectors (LGADs) [Pellegrini et al.,
2014]. LGAD is a recent technology in silicon systems featuring detection of particles in
a wide energy range with improved accuracy for timing and tracking measurements [Pel-
legrini et al., 2014]. The LGAD application in particle therapy has been also recently
investigated [Vignati et al., 2017]. In the proposed setup, the TEPC will provide the
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energy deposition ϵ directly in a tissue-equivalent medium while the LGADs will offer
information about particle spatial distribution with a precision of about 200 or 300 µm,
depending on the chosen configuration.

Details of the detector components, geometrical configurations as well as read-out
solutions are illustrated here. Using GEANT4 toolkit, we investigated HDM performances
when exposed to protons and carbon ions in the therapeutic energy range. The influence
on all microdosimetric quantities when the real l is used instead of the mean track length
approximation is discussed. Detection efficiency and tracking precision are also reported.

9.1 HDM feasibility study

Together with the TEPC that provides energy depositions, LGADs constitute the
tracker stage of HDM. An introduction on these silicon detectors is provided here.

LGAD

LGAD is a recent technology in silicon detection system. It was first fabricated at
CNM-IMB clean room facilities by diffusing a p-type layer just below the n+ electrode [Pel-
legrini et al., 2014]. From then it has been used for particle timing and tracking and, more
recently, its application in radiotherapy has been explored [Vignati et al., 2017]. LGADs,
using n-in-p silicon diodes, differ from standard Avalanche Photodiodes (APDs) due to
their low and controlled internal multiplication mechanism for detecting charged parti-
cles. This technique allows also to produce thinner sensors with the same output signal
of standard thick substrates.

The main features of the LGADs used for the HDM prototype can be found in [Sola
et al., 2019]. In particular, the active region is 50 µm thick while the substrate is 300 µm
and can be thinned down to 100 µm postproduction.

An additional LGAD production for HDM is under development at FBK and will
include sensors with alternative geometries and active layer doping in order to obtain
different spatial resolutions and gains.

A constraint on the detector geometry is that the optimal active area of one strip
is ∼ 2 mm2, which correspond to 5pF of capacitance; in fact, the read-out chip have
been designed for this value. For what concerns the 71-strips configuration, the area is
already optimized, while the 34-strips configuration has a larger area. However, previous
experiments with similar area have shown the feasibility of this capacitance also.

Furthermore, the dead area between two strips must be 66 µm wide independently of
the strip width. Thus, narrower strips result into a higher spatial resolution but also a
decreased detection efficiency due to a larger dead area and a resulting lower fill factor.
In addition, to cover the same area more strips are needed, which translates into a larger
number of channels to be read-out.

To find the optimal detector geometry for our application, we simulated three con-
figurations: i) 34 strips, each 294 µm wide and 12.5 mm high (sensor height 13.8 mm
and width 13.4 mm); ii) 71 strips, each 114 µm wide and 12.5 mm high (sensor width
14 mm and height 13.8 mm) and iii) 288 strips, each 114 µm wide and 50.22 mm high
(sensor height 51.52 mm and width 51.84 mm). An image of the design project of this
configuration of the complete sensor is given in Figure 9.1 (left panel). While the first
two configurations are now being produced, configuration (iii) is not currently feasible and
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was tested to investigate the tracking efficiency for a larger detector with the same spatial
resolution of the 71 strips detector (ii).

9.1.1 HMD geometry

The LGAD position with respect to the TEPC determine the detector performances
and the optimal configuration depends on the goal of the specific measurement. In this
work, we investigated the configuration with the TEPC upstream of the 4 LGAD layers.
This setup has been chosen because we wanted to characterize the radiation field with
standard microdosimetric measurements, without possible artifacts due to the LGADs in
front. The distances between the detectors can be found in Figure9.1 (right panel). In
particular, the first LGAD have been placed as close as possible to the TEPC to minimize
lateral scattering and energy loss of particles exiting the microdosimeter.

Figure 9.1: Left panel: design of one LGAD sensor with 34 active strips. Right panel:
Scheme of the HDM setup, showing the TEPC followed by four LGAD layers. Distances
between detectors are reported in millimeters.

9.1.2 Geant4 simulations of the HDM detector

To investigate the detector performances, we run Monte Carlo calculations using
Geant4 toolkit (5.2). As the HDM design is optimized for applications in particle therapy,
we focused the study on the response to protons and carbon ions at therapeutic energies.
All calculations were run to acquired a minimum of 106 events on the TEPC, which is
considered an adequate statistics for experimental measurements [Missiaggia et al., 2020].

In addition, since microdosimetry deals with patterns of single energy deposition in
tissue at the micrometer scale, we computed the energy deposition ϵ of a particle traversing
the TEPC as the sum of the energy deposited by the primary event and all the related
secondary particles that entered the detector.
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Figure 9.2: 3D scheme of the geometry used for all Geant4 simulations. Both the TEPC
and the four 24-strips LGADs are contained in PMMA box filled with air. The box is
placed inside a water phantom, whose walls are made of PMMA. A broader view is show
in left panel, while a zoom on HDM is illustrated in right panel.

The simulation geometry consisted of a water phantom with PMMA walls (1.74 cm
water equivalent thickness) where the hybrid system was placed. To reproduce a realistic
setup, HDM was contained in an additional air box 2.8×20×2.8 cm thick. A 3D view of
the setup is shown in Figure 9.2.

The water phantom was irradiated with 290 MeV/u carbon ions and 150 MeV protons,
which have the same range in water (∼ 160 mm). The beam spots were circular with a 3
cm radius to ensure that the detectors were fully immersed in a homogeneous and isotropic
radiation field. The detector box was placed at 10.74 cm in water along the beam direction.
This depth represented a good compromise to assess HDM performances in a relatively
mixed field in terms of particle species and energies, but upstream of the Bragg peak,
where most particles have a low energy and thus might stop inside the TEPC.

9.1.3 Tracking

Tracking algorithm

To measure a particle track, the LGADs were positioned to have the strips in different
directions, two horizontals (x plane) and two verticals (y plane). By coupling two sensors
with different orientations, a spatial position for a particle can be measured. Thus, two
pairs of sensors are the minimum requirement for reconstructing a particle track. To
reproduce a realistic experimental scenario, in the simulation we scored only the position
of the strip hit by the particle. Then, we used a lineal interpolation to reconstruct the
particle path inside the TEPC, from which we could estimate the real track length.

Tracking efficiency

Using Geant4 simulations, we studied the HDM tracking efficiency. As a first step, we
focused on identifying the lost events and divided them into three categories:
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1. particles that reach all the detectors, but traverse an inter-strip dead zone in at least
one of the LGADs;

2. particles that range out before reaching the fourth LGAD;

3. particles that undergo lateral scattering and are deflected outside the solid angle
covered by all detectors.

Category 1 is related to the probability to hit a dead region and thus depends on
the LGAD geometry. Assuming a uniform radiation field, the probability to reach an
active strip is given by Aact/Atot, where Aact is the total area covered by active strips and
Atot the total area of the sensor, including both active strips and dead inter-strips. As
the probabilities of hitting the active region of two sensors are independent, the overall
probability of the joint event is the product of the single probabilities. To test the validity
of these assumptions, in the simulation we also scored the particles traversing the inter-
strip regions.

For category 2, we investigated the minimum detectable kinetic energy for each ion
type, i.e. the minimum energy that a particle must have to pass through all detectors.
The values for all particle species of interest have been estimated with LISE++ toolkit
version 10.0.6a [Tarasov and Bazin, 2008]. These kinetic energy cutoffs depends only
electromagnetic interactions in the detector layers and do not take into account additional
losses due to multiple Coulomb scattering (MCS). To estimate a realistic kinetic energy
detection threshold, we performed simulations of HDM exposed to a given particle species
and decreases the initial energy until we found the minimum value required to traverse all
detectors. We then repeated the test for the ion types of most interest.

The percentage of particles deflected outside the solid angle covered by all detectors
(category 3) dependent on the LGADs size. To assess this value and its dependence on
the LAGDs geometry, we performed simulations for every configuration described in 9.1.

For the events seen by the TEPC and by an active zone of each of the 4 silicon layers
(i.e. the trackable particles), we investigated the tracking accuracy using the algorithm
described in 9.1.3. From the simulations, we could extract the real particle track and
compare it to that reconstructed with the tracking algorithm, estimating a mean discrep-
ancy between the predicted and actual values. The tests were repeated for all LGADs
configurations taken into consideration.

9.1.4 Results

Radiation field characterization in the TEPC

The composition of the radiation field entering the TEPC was investigated at a depth
of 10.74 cm in beam. The results include kinetic energy spectra of all particle species,
track length distributions and microdosimetric spectra yd(y) obtained with both the real
track length and the mean chord length. The results are shown in Figs. 9.3 and 9.5 for
protons and carbon ions, respectively. In detail: panels A, B of Figure 9.3 and panels A,
B, C, D of Figure 9.5 illustrate the kinetic energy distributions of all particles entering the
TEPC, with and without the contribution from the primary ions (in both cases the energy
distributions of the single components are normalized to one); the track distributions of
all the particles are plotted in panel C for protons and in panel E for carbons, with the
mean chord length of 8.47 mm marked with a dashed red line; panels D for protons and F
for carbons contain a comparison between the microdosimetric spectra calculated with the
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Protons

A B

C D

Figure 9.3: Characterization of the radiation field generated by 150 MeV protons after
traversing 10.74 cm of water and seen by the TEPC. Panels A and B: kinetic energy
spectra of the most abundant components of the radiation field including and excluding
the primary ions. Panel C: track length distribution of all the particles detected by the
TEPC. The mean chord length at 8.47 mm is marked with a red dotted line. Panel D:
microdosimetric yd(y) spectra obtained with the mean chord length approximation (red
line) and microdosimetric yTd(yT ) spectra obtained using the real chord length values
(blue line) .

mean chord length approximation (yd(y)) or the real track length (yTd(yT )). Furthermore,
the mean values and standard deviations of the track length distributions are also reported
in Table 9.1 for both ions of interest.

Secondaries produced by protons, are mostly low-energy (below 10 MeV) and the
distribution does not have a peak. For carbon ions, the energy of all fragments species
peaks around 170 MeV/u, which is the residual primary beam energy (9.3, panel A).
Protons can only generate fragments from the target nuclei, and thus their energy will be
relatively low [Tommasino and Durante, 2015]. Carbon ions, instead, can produce both
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Figure 9.4: Characterization of the particles lost by HDM when irradiated with 150 MeV
protons at a depth or 10.74 cm in water. Panels A and B: kinetic energy spectra of the
most abundant components of the radiation field including and excluding the primary ions.
Panel C: track length distribution of all the particles detected by the TEPC. The mean
chord length at 8.47 mm is marked with a red dotted line. Panel D: microdosimetric yd(y)
spectra obtained with the mean chord length approximation (red line) and microdosimetric
yTd(yT ) spectra obtained using the real chord length values (blue line).

projectile and target fragments, whose kinetic energies have a much wider range, peaking
at the same value as the primary ions [Mohamad et al., 2018, Tommasino et al., 2015].

The track length distributions of both protons and carbon ions are very broad and
do not present a peak. Furthermore, the mean track length calculated for both protons
and carbon ions is higher than the mean chord length, indicating that the latter does not
provide an accurate description of the system. The limitation of the mean chord length ap-
proximation can be further investigated by comparing the standard microdosimetric yd(y)
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Carbon ions
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Figure 9.5: Characterization of the radiation field generated by 290 MeV/u carbon ions
after traversing 10.74 cm of water and seen by the TEPC. Panels A to D: kinetic energy
spectra of the most abundant components of the radiation field including and excluding
the primary ions. Panel E: track length distribution of all the particles detected by the
TEPC. The mean chord length at 8.47 mm is marked with a red dotted line. Panel F:
microdosimetric yd(y) spectra obtained with the mean chord length approximation (red
line) and microdosimetric yTd(yT ) spectra obtained using the real chord length values
(blue line).

spectra with those obtained with the real track length (yTd(yT )). The latter distributions
show a non negligible contribution in the high yT region. Those contributions are due to
events that deposit energy along a small chord length and they are underestimated in the
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Ion
Mean track

length [mm]

Standard

deviation [mm]

Carbon 9.17 3.03

Proton 9.53 2.8

Table 9.1: Mean track length values and standard deviations of protons and carbon ions
traversing a spherical TEPC of 12.6 mm diameter. The mean chord length of this detector
exposed to a uniform and isotropic radiation field is 8.47 mm.

Ion Configuration
Tracked

particles [%]

Mean track length

of tracked

particles [mm]

Standard

deviation [mm]
Mean absolute

tracking

error [mm]Real Reconstructed Real Reconstructed

Carbon

34 strips 31.4 10.10 10.09 2.42 2.43 0.38

71 strips 12.1 9.99 10.00 2.53 2.52 0.20

288 strips 14.6 9.53 9.55 2.81 2.79 0.25

Proton

34 strips 45.8 10.06 9.89 2.37 2.50 0.91

71 strips 15.3 9.91 9.91 2.46 2.47 0.24

288 strips 16.6 9.63 9.64 2.68 2.67 0.28

Table 9.2: Percentage of particles tracked by HDM, including their mean track length,
standard deviations and the absolute values of the mean tracking error of the algorithm
with respect to the actual value. The results are reported for both protons and carbon
ions and for three LGAD configurations (34, 71 and 288 strips).

yd(y) spectra where the mean chord length value is used. These events have a very high
yT and thus can be relevant for radiobiological effects, especially for y up to 150 keV/µm
(overkill effect).

Particles tracked by HDM

We investigated HDM tracking efficiency as well as the characteristics of the tracked
events. Tab. 9.2 illustrates for carbon ions and protons the percentage of particles tracked
by HDM, their mean track length values, their standard deviations and the average discrep-
ancy between the reconstructed and the real track length. The latter values are reported
for the three sensor geometries (34, 71 and 288 strips) described in 9.1.

The results show that, as expected, the 71 strips configuration collects the least amount
of events because of the reduced fill factor. Increasing the sensor dimension while keeping
the same fill factor increases the number of collected events (288 strips configuration).
The mean track length and standard deviation obtained with the tracking algorithm are
in good agreement with the real values obtained directly from the simulation. This is
confirmed also by the small values of the mean absolute error, defined as the average
absolute value of the difference between the real track length and the reconstructed one.

The accuracy of the reconstructed tracks in the three sensor configurations (34, 71
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and 288 strips) was further studied in Figs. 9.6 and 9.7 for protons and carbon ions,
respectively. We compared the track length distribution obtained directly from Geant4
with that reconstructed with the algorithm. The data are presented as density color plots
in panels A, C and E; the green dotted line marks a perfect prediction of the algorithm,
the red and blue colors represent regions of high and low events density, respectively. The
distributions have a cone-like shape, implying a better accuracy of the reconstructed tracks
of large lengths. This result is further supported by the presence of high density regions
around the green line in the large track lengths zones.

To further assess the accuracy of the tracking algorithm, in panels B, D and F we
compared the track distributions of all particles traversing the TEPC with those detected
by HDM and either obtained directly from the simulation or estimated with the tracking
algorithm. Independently of the primary ion type, the 34 and 71 strips configurations
systematically underestimate the distributions for small tracks. On the contrary, the 288
strips configurations provide a more accurate estimation of the whole track distributions,
especially for protons.

The track distributions obtained with the three configurations were used to calculate
microdosimetric yd(y) and yTd(yT ) spectra for all particles tracked by HDM. The results
are shown in Figs. 9.8 and 9.9 for protons and carbon ions respectively. Results show that
the yd(y) spectra differ from the yTd(yT ) ones, with a peak value shifted to the right in
all cases. On the contrary, the yTd(yT ) distributions obtained with the real track length
and with the reconstructed track length are similar mostly in the bell shape regions. It
can be nonetheless seen that they differ in the tails due to the higher discrepancy between
the real track length and the reconstructed ones for small track lengths. The accuracy
between the two increases from the first sensor configuration (panels A) to the last one
(panels C) under both radiation fields.

Particles lost by HDM

As discussed in Section 9.1.3, we can group lost particles into three categories: i)
particles with a kinetic energy under the minimum required to traverse all the detectors,
ii) particles lost due to MCS and iii) particles that reach all detectors, but cross an inter-
strip in at least one LGAD.

The minimum kinetic energies necessary to pass all detectors have been studied and
are reported in Tab. 9.3 for all particles of interest. The values calculated with LISE++
are indicated for all particles while those obtained with Geant4 only for selected ions
representative of the radiation field. The results obtained with the two methodologies
agree very well for protons but have a a higher discrepancy for carbon ions.

Using Geant4 outputs, we characterized the particles lost in terms of kinetic energy
when entering the TEPC and track length traversed inside the detector. The results are
reported in Figures 9.4 and 9.10 for protons and carbon ions, respectively. In panels A and
B of Figures 9.4 and A, B, C and D of Figure 9.10 the kinetic energy spectra of all particle
types are plotted with and without the contribution from the primaries. Independently of
the fragment type, the energy spectra have the same shape of those reported in Figures
9.3 and 9.5, where all events are considered. These result indicate that the probability
for a particle to be lost is independent of the charge and energy (for energies above the
minimum threshold reported in Table 9.3). Panels C of Figure 9.4 and E of Figure 9.10
illustrate the track distributions of lost particles, together with the mean chord length (red
dotted line). The left side of the distribution appears to be more populated compared to
the distribution of all events (Figures 9.3 and9.5), suggesting that there is a higher chance
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Proton

[MeV/A]

Deuterium

[MeV/A]

Tritium

[MeV/A]

Helium-3

[MeV/A]

Helium-4

[MeV/A]

Lithium-7

[MeV/A]

Beryllium-9

[MeV/A]

Boron-11

[MeV/A]

Carbon-12

[MeV/A]

LISE++ 17 11 8 20 17 20 24 28 34

GEANT4 17 12 9 - 17 - - - 37

Table 9.3: Minimum kinetic energies for several isotope types necessary to traverse all
the detectors. The values have been calculated with LISE++ toolkit and, for the most
representative of the radiation field, also with Geant4.

yD yDT , TEPC yDT , TRACKED

Carbon 16.53 40.49 40.79

Proton 3.75 23.73 21.08

Table 9.4: yD and yDT
values evaluated for both carbon and proton ions. yDT

values have
been calculated for all the particles that traverse the TEPC (yDT , TEPC) and for particles
that HDM is able to track yDT , TRACKED with the 288 strips configuration.

of loosing a particle if it has a small track length. Such events, in fact, traverse the TEPC
edges and geometrically have a larger probability of missing the sensors, considering also
MCS effects. In panels D for protons and F for carbons, the microdosimetric yd(y) and
yTd(yT ) spectra of particles that are not tracked by HDM are shown. Similarly to panels
D of Figure 9.3 and F of Figure 9.5, where all particles are taken into account, the yTd(yT )
distribution peaks are shifted to the left for both protons and carbon ions radiation fields.
Further, the high-y regions are significantly lower than the high-yT regions; again, this is
due to the real track lengths overestimation caused by using the mean chord length value.

Furthermore, the number of particles that reach at least one of the inter-strip passive
regions with respect to the total number of events reaching the detectors (i.e. traversing
either an active strip or an inter-strip region) has been estimated to be 63% for the 34
strips configuration and 81.5% for the 71 strips configuration. Increasing the number of
strips in each sensor results in a significant improvement of the detection efficiency.

Finally, to asses the HDM capability to provide an accurate microdosimetric charac-
terization of the radiation field, the following quantities have been calculated: standard yD
values considering all events traversing the TEPC; yDT , TEPC values calculated from the
yTd(yT ) spectra for all particles traversing the TEPC; yDT , TRACKED values calculated
from the yTd(yT ) spectra for all particles tracked by HDM. The results for both ions of
interested are reported in Table 9.4.

The large discrepancy between yD and yDT , TEPC confirm the results shown in Figs. 9.3,
9.5, 9.8 and 9.9) and proves that the mean chord length approximation applied to the
TEPC spectra does not provide an accurate description of the radiation field quality. The
yDT , TRACKED, instead, is very close to yDT , TEPC , suggesting that the population of
events tracked by HDM is representative of the actual field.
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9.1.5 Discussion

An innovative design for a hybrid microdosimeter (HDM: hybrid detector for micro-
dosimetry) is presented in this section. HDM is a two-stage detector composed by a
TEPC and four layers of LGAD sensors. The combination of two different types of sen-
sors (gas- and silicon-based) results in detection performances not offered by any existing
microdosimeter. In fact, the TEPC gives a direct measurement of energy deposition in
tissue while the LGADs provides particle tracking. The latter information has two main
advantages: it improves the TEPC lateral spatial resolution to submillimetric precision
and offer the real track length traverse by each particle in the TEPC. An improved lateral
spatial resolution is helpful especially in a non homogeneous field, as the beam edges (both
lateral and near the end-of-range). In these regions, the TEPC is only partially traversed
by primary particles, whose path length might substantially deviate from the mean chord,
depending on the detector position.

To assess the detector capability, we performed Monte Carlo simulations using Geant4
toolkit. As the primary application of HDM is particle therapy, we investigated its per-
formances exposed to protons and carbon ions at a certain water depth.

The limitations of the mean chord length for our geometry are evident by looking at
the track length distributions of all particles traversing the TEPC (Figs. 9.3,9.5 and Tab.
9.1). This approximation is based on the specific assumption that the TEPC is exposed
to a uniform isotropic radiation field. In the cases considered here, although the beam
generates such type of randomness, the water surrounding the TEPC causes the isotropy
assumption to drop, with a direct consequence on the resulting mean track length. To
further validate this, simulations without the water phantom has been performed and a
mean track length value of 8.56 mm has been obtained for protons and 8.45 for carbon
ions, both in accordance to the nominal mean chord length value.

However, even if a mean value of chord length based on more appropriate kind of
randomness is used, the data reveal that a mean value is non representative of the whole
track length distribution, since the standard deviations are rather large. This behavior is
noticeable by the broadness of the track distributions in panels C of the Figure 9.3 and
E of Figure 9.5.

Discrepancies between the mean chord and the real track length translate into dif-
ference between the standard yd(y) and the alternative yTd(yT ) microdosimetry spectra
(Figs. 9.3,9.5), the more evident being in the high yT regions. The majority of particles
populating these areas have a track length substantially smaller than the mean chord, and
thus their actual lineal energy is is systematically underestimated if using the mean chord
approximation.

The detector efficiency is defined by the number of particles that traverse the LGADs
active regions, i.e. those that are tracked. This number depends on the LAGD configu-
ration, i.e. the number of detection strips contained in a sensor. As the dead interstrip
area is the same independently of the configuration, for a given total area of the sensor, by
lowering the number of strips the detection efficiency increases. However, a larger number
of strips results in a superior spatial resolution. To optimize the detector design for our ap-
plication, we investigated HDM performances using three different LGAD configurations:
34, 71 and 288 strips per sensor.

Detection and tracking efficiencies were assessed by studying the composition of the
radiation field detected by HDM versus the radiation field incoming on the TEPC. We
identified three categories of events: i) particles detected by the entire system (i.e tracked
events); ii) particles lost (i.e. only traversing the active volume of some detectors); iii)
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particles non-trackable (i.e. those with not enough energy to reach the fourth LGAD).

For each category, we studied the kinetic energy spectra, track length distribution, real
track versus track reconstructed with the tracking algorithm and microdosimetric spectra.

Independently of the primary ion and LGAD configuration, the mean track length of
the tracked events is always higher that the value of all incoming particles. Events travers-
ing the TEPC with a small track have a higher probability to miss the LGAD detectors.
In fact, LGADs with 34 and 71 strips configurations have a total height and width com-
parable to the TEPC diameter, so if a particle reaches the TEPC with a given angle with
respect to the primary beam direction, it is probable that its path will not cross all the
LGADs. This hypothesis is confirmed by the fact that the 288 strips configuration collects
a significantly higher portion of small-track particles (Figs. 9.6 and 9.7 ). Furthermore,
for this configuration the mean track length of the tracked events is closer to the value of
all particles (see Tab. 9.2). The mean tracks obtained when HDM is exposed to protons
and carbon ions are similar for the 34 and 71 strips configurations. For the 288 strips
configuration, HDM provides a more accurate track distribution for protons than for car-
bon ions. In fact, secondary fragments produced by protons reach, on average, smaller
scattering angles compared to those generated by carbon ions [Rovituso and La Tessa,
2017].

However, those are the chords that suffer most from a high error on the tracking, as
panels A, C and E of Figs 9.6 and 9.7 show for all the configurations. Furthermore, panels
A, D and G, besides confirming the above mentioned fact that the bigger sensor takes
better into account lower track lengths, they demonstrate also that the spatial resolution
of the sensors, namely the widths of their strips, has a clear effect on the homogeneity of
the track distribution. In fact, it can be noticed that the lower the spatial resolution is,
the more the reconstructed tracks will have some preferential track lengths.

Finally, a comparison between panels F of Figure9.6 and 9.7 supports the hypothe-
sis that, for protons, the 288 strips configuration is able to collect a track distribution
which is very similar to the real one, while for carbon ions the distribution is still slightly
underestimated for the small tracks.

Differences in the track length distributions for the LGAD configurations translate into
different microdosimetric yTd(yT ) spectra (Figs. 9.8 and 9.9). A bigger sensor, like the
288 strips configuration, is able to collect more events with smaller TEPC tracks, which
are the main contributors of the high yT region.

The characterization of lost events indicates that the majority is caused to the LGADs
fill-factor (interstrip regions). Thus, this issue can be resolved by increasing the measure-
ment time to collect enough statistics.

For events that suffer MCS in the detectors, if the deviation angle is large enough
they will be lost. In fact, even trying to enlarge LGADs or place them at a given angle
with respect to the beam direction, the reconstructed track would be affected by errors
too large to make the data of any value. The probability of loosing a particle because of
MCS strongly depends on the HDM position in the radiation field. Depths in the Bragg
peak regions as well as distal positions represent the worst cases because of the low kinetic
energy of the particles populating these regions. This reflects on the fact that the proposed
HDM configuration has limitations in those regions since it cannot operate close to and
at distal part of the SOBP.

Finally, particles that do not have enough kinetic energy to reach all detectors are
also a limit of HDM detection efficiency. Nonetheless, this issue can be partly solved by
exploring the possibility of producing LGADs with thinner active layers or decreasing the
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substrate width. For instance, reducing the total LGAD thickness down to 100 µm is
considered achievable in the near future.

9.2 HDM read-out

Electronic read-out system

The LGAD sensors are read out through the ABACUS chip [Mazza et al., 2019],
designed and produced at the University and INFN of Turin (Italy). The raw signals
are fed to a board hosting a Field Programmable Gate Array (FPGA) and an Advanced
RISC Machines (ARM) processor running Linux. A suitable FPGA program identifies the
events according to the time of occurrence with a 1 µs resolution, along with the channel
number corresponding to the detector strip hit by a particle. The data are then saved in
the on-board Random Access Memory (RAM). The board processor allows to program
the FPGA and to read out the data from the RAM. The board can be remotely accessed
via Ethernet, and the data transferred as simple text files.

ABACUS read-out

The first step necessary to design the data acquisition (DAQ) has been the characteri-
zation of the detector output signal. In particular, the LGADs back-hand read-out system
is managed by ABACUS board [Fausti et al., 2018], currently available in two versions:

1. an older version, used for testing purposes, that is capable of managing a maximum
of 24 LGADs strips , and whose picture is shown in Figure 9.11. Additional features
are:

• the threshold level for the input channels is adjustable, but it is common to all
the inputs;

• the output signal is provided via a Current Mode Logic (CML) differential
standard.

2. A newer version of the ABACUS board is currently under its final development state
at University and INFN of Turin, featuring important improvements with respect to
the older one, such as a channel-specific trigger level setting and the possibility to
manage up to 96 LGAD strips. In addition, the output standard has been changed
from CML to Low Voltage Differential Signaling (LVDS), which is a more common
signal standard.

The signal read from the two CML output pins of the first version ABACUS board
is reported in Figure 9.12. To characterize this output signal, we used the following
instrumentation :

• Triple Output Power Supply.

• Function / Arbitrary Waveform Generator.

• Digital Oscilloscope.

The ABACUS board voltage of 3.3 V was provided by the power supply. As input sig-
nal, we selected a ramp waveform generated by the arbitrary waveform generator, ranging
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from 0 V to 1 V to guarantee the comparator triggering. In order to record the CML
output signal, we connected two oscilloscope probes to two output pins, and calculated
the difference of the obtained signals using the oscilloscope integrated math functions.
As it can be seen in Figure 9.12, the ABACUS output signal is a pulse with VPP = 1.5
V and a duration of ≃ 3 ns, in accordance with the CML signal characteristics. On the
basis of this characterization, the later stage of the acquisition chain can be designed.
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Figure 9.6: HDM performances when exposed to 150 MeV protons at 10.74 cm depth in
water. The results are shown for 34, 71 and 288 strips LGAD configurations. Panels A,
C, E shows 2D color plots of track length obtained with HDM versus real track length
calculated directly with Geant4. The green dashed line at 45 degrees indicates the perfect
agreement between the two datasets. The colors represent regions with a high (red) or
low (blue) density of events. Panels B, D, F illustrate the comparison between the
track length distributions of particles tracked by HDM considering the real track lengths
calculated with Geant4 (blue line) or that reconstructed with the tracking algorithm (green
line). The distributions of the real track lengths obtained directly from the simulation is
also shown (red line).
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Figure 9.7: HDM performances when exposed to 290 MeV/u carbon ions at 10.74 cm
depth in water. The results are shown for 34, 71 and 288 strips LGAD configurations.
Panels A, C, E shows 2D color plots of track length obtained with HDM versus real track
length calculated directly with Geant4. The green dashed line at 45 degrees indicates the
perfect agreement between the two datasets. The colors represent regions with a high (red)
or low (blue) density of events. Panels B, D, F illustrate the comparison between the
track length distributions of particles tracked by HDM considering the real track lengths
calculated with Geant4 (blue line) or that reconstructed with the tracking algorithm (green
line). The distributions of the real track lengths obtained directly from the simulation is
also shown (red line).
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Figure 9.8: Microdosimetric spectra of all particles tracked by HDM when irradiated with
150 MeV protons at a depth or 10.74 cm in water. The distributions include the standard
yd(y) spectra calculated with the mean chord length (red line) and the yTd(yT ) spectra
obtained either with the real track length (green line) or with the value estimated with
the tracking algorithm (blue line). The distributions are shown for LGAD configurations
with 34 (panel A), 71 (panel B) and 288 (panel C) strips..
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Figure 9.9: Microdosimetric spectra of all particles tracked by HDM when irradiated
with 290 MeV/u carbon ions at a depth or 10.74 cm in water. The distributions include
the standard yd(y) spectra calculated with the mean chord length (red line) and the
yTd(yT ) spectra obtained either with the real track length (green line) or with the value
estimated with the tracking algorithm (blue line). The distributions are shown for LGAD
configurations with 34 (panel A), 71 (panel B) and 288 (panel C) strips.
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Figure 9.10: Characterization of the particles lost by HDM when irradiated with 290
MeV/u carbon ions at a depth or 10.74 cm in water. Panels A to D: kinetic energy
spectra of the most abundant components of the radiation field including and excluding
the primary ions. Panel E: track length distribution of all the particles detected by the
TEPC. The mean chord length at 8.47 mm is marked with a red dotted line. Panel F:
microdosimetric yd(y) spectra obtained with the mean chord length approximation (red
line) and microdosimetric yTd(yT ) spectra obtained using the real chord length values
(blue line).
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Figure 9.11: A photo of the ABACUS board first version tested.

Figure 9.12: Output signal from the ABACUS board (first version). The cyan and yellow
signals are measured on the CML output pins. The purple signal represents the difference
between the two CML outputs, obtained with the integrated oscilloscope math functions.



Chapter 10

Machine learning approach to
predict the real track length using
HDM

The previous Chapter 9 has made clear that the detection efficiency is the most critical
issue of HDM. To tackle such issue as well as to improve tracking accuracy, in this Chapter
we exploit modernMachine Learning techniques, introduced in Chapter 5.3. In the present
Chapter we propose a stacked MLmodel composed by different connected modules suitably
structured to solve a specific task.
The first ML module aims at improving the detector efficiency, filling the missing spatial
positions on the LGADs. The second one instead, using the augment information provided
by previous module, reconstructs the tracks of the particles to calculate the real track
length microdosimetric spectra. Both modules are Random Forest based, so that several
decision trees are trained in parallel and the final output of each module is an ensemble
of the trees, called forest. Such methodology allows for a new tracking paradigm, so
that missing values as well as multivariate physical information can be exploited. Finally,
thanks to this novel tracking approach, we were able to achieve a 100% efficiency of HDM
and a higher accuracy in the tracking reconstruction algorithm compared to the linear
algorithm proposed in the first feasibility study 9.

As regard tracking algorithm, recently ML methods have gained attention due to
their accuracy compared with standard methods. In this direction, one of the major
strengths of ML consists in the possibility to pass several types of information to the
model. This allows a more efficient and accurate track reconstruction compared to more
classical methods, [Schulte et al., 2008]. It is further worth stressing that much of the
attention of ML algorithms for tracking particle come from high energy physics, [Britton
et al., 2020, Duarte and Vlimant, 2020, Amrouche et al., 2020]. Such application has a
profound difference in the physical scenario we consider in the current work, where particles
at therapeutic energies has a significantly lower energy. This implies that scattering of
particles is highly non-negligible and should be carefully taken into account. As it will be
seen in details in later discussion, scattering is among the major source of uncertainty in
the proposed application with a consequent high number of undetected particles.

144
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10.1 Simulation setup of HDM

In order to develop the advanced Machine Learning (ML) tracking model, the 288-
strip configuration depicted in 9 has been chosen. This is the LGADs configuration with
the sensors largest area, and we chose it to apply the machine learning techniques at the
case with the largest amount of tracking information.

In the simulation setup, HDM has been placed in a water phantom with PMMA walls
(1.74 cm water equivalent thickness) and irradiated with 150 MeV protons and 290 MeV/u
carbon ions, which have the same range in water (∼160 mm). For both beams, we used
a circular beam spot of 3 cm radius, and positioned HDM at a depth of 10.74 cm along
the beam direction. This setup was designed to reproduce realistic irradiation conditions,
and to expose the detector to a mixed radiation field, that can lead to major difficulties
in tracking with respect to a pure monoenergetic beam.

The model: Random Forest

A Random Forest algorithm ,[Ho, 1995, Friedman et al., 2001], has been used both to
predict the real track length of particles traversing the TEPC as well as to fill the missing
positions of the LGADs; regarding this latter topic, it is worth stressing that due to dead
zone of the detector and scattering, some particles are not seen by some of the LGAD
layers. This would imply that in such situations it is not possible to track the particle
inside the TEPC. Instead, we developed a Random Forest based module that reconstructs
and fills the missing information so that the real track length of particles inside the TEPC
can be predicted. Random Forest is an ensemble ML algorithm that combines weaker
models, such as decision trees, to create a more robust final model. Being a bagging
algorithm, the ensemble model is created in parallel, and thus the output is the average of
all trees outcomes. Compared to decision-trees, the Random Forest reduced the overfitting
on the train data, and for this reason it improves the predictions accuracy.

More formally, given the dataset D := {Xi, yi}Ni=1 composed by N samples, where

Xi :=
(
xi1, . . . , x

i
n

)
, n ∈ N , i = 1, . . . , N <∞ ,

are the n features to predict the target variable yi ∈ R.
As most ML algorithms, given a function ϕ that describes the link between the fea-

tures Xi and the target yi, the final goal is to look for an approximation ϕ̂ of ϕ. Such
approximation is chosen as the function that minimizes the expected values of a certain
suitable loss L. Typically, a regularization term λ is added to the loss function to avoid
overfitting.

The Random Forest algorithm assumes that ϕ̂ is the average of weaker learners decision–
trees ψk, that is

ϕ̂
(
xi1, . . . , x

i
n

)
=

1

K

K∑
k=1

ψk

(
xi1, . . . , x

i
n

)
,

where ψk is the outcome of the k−th decision tree.
In this study, we will consider two different models, that are both random forest based

but the training is done on different sets. The first model, denoted in the following as
RF, is a model trained on a subsample of the whole dataset; the second model, denoted
by RF0, on the contrary is a model trained solely on particles that have been seen by all
the LGADs. The choice of considering two different training sets is due to the fact that
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the tracking algorithm is strongly affected by the ML module dedicated to missing value
filling, so that a careful choice on the most proper training dataset must be done in order
not to induce some bias into the tracking model.

Bayesian optimization

Hyper–parameters optimization is a key aspects in the development of a robust and
efficient ML algorithm that has to improve the final accuracy of the chosen model. An
extensive hyper–parameters search is nonetheless extremely expensive. A typical approach
consists in a grid search or, in the last years, in random searches [Snoek et al., 2012,
Bergstra et al., 2011, Hutter et al., 2011]. In a nutshell, the hyper–parameters optimization
aims at finding the model hyper–parameters θ = (θ1, . . . , θd) that yields the lowest error
on the validation set [Frazier, 2018]. More formally, writing explicitly the dependence of
the cost L upon the hyperparameters θ̄ ∈ Θ, any hyper–parameter search goal is to solves

θ∗ := argmin
θ∈Θ

L(y, x|θ) .

The Bayesian hyper–parameter search, in contrast to the random or grid searches, first
creates a surrogate model typically denoted as p(y|x). Such surrogate model is usually
easier to optimize than the original objective function, and is created along with a so–called
prior density distribution; thus, the hyper–parameters are optimized on this surrogate
model rather than on the original cost function. Thus, the posterior density distribution
is obtained updating the prior via Bayes theorem. Given an acquisition function α, that
depends on the posterior, the next hyper–parameter point is decided according to

θn := argmin
θ∈Θ

α(θ|θ1:n−1) ,

where θ1:n−1 are sample previously drawns and are defined as {θ1, . . . , θn−1} . The most
popular acquisition functions are the maximum probability of improvement (MPI), the
expected improvement (EI) and the upper confidence bound (UCB), [Brochu et al., 2010].
For instance, the EI is defined as

EI(θ) = E
[
max(L(θ)− L(θ+), 0)

]
,

being θ+ the best values reached.

Therefore, the new point θn is added and the surrogate model posterior is updated, so
that previous steps are repeated until a certain fixed threshold on either the iteration or
the time is reached.

A Bayesian hyper–parameter optimization algorithm keeps track of the past evalua-
tions, and use the past information to choose future steps.

Recently, the Bayesian optimization has proven to be able to provide more accurate
results than the grid or random searches with a lower computational time. In fact, unlike
the classical approaches, the Bayesian optimization keeps track of the past results when
choosing the future hyper–parameters values.

Error metric assessment

We considered two different metrics: the weighted Mean Absolute Percentage Error
(MAPEω) and the weighted Mean Absolute Error (MAEω).
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MAPEω is defined as

MAPEω =
1

ω̄

N∑
n=1

ω(n)
|(l(n) + 1)− (l̂(n) + 1)|

l(n) + 1
, (10.1)

where N is the number of samples in the test set, ω is a weighting factor to be suitably in-
troduced in a while, ω̄ :=

∑N
n=1 ω(n), l(n) and l̂(n) are the n−th event real and predicted

track–length, respectively. It is worth stressing that, since l(n) and l̂(n) can assume values
close to 0, in order to avoid singularities and consequent explosion of the error function
both the real and the predicted track–length have been shifted by one, namely l(n) + 1
and l̂(n) + 1 have been considered in Equation (10.1).

Using the same noation, MAEω is defined as

MAEω =
1

ω̄

N∑
n=1

ω(n)|l(n)− l̂(n)| , (10.2)

We tested this metric for different weights ωi, namely for

ω1 = 1 ,

ωl =
1

l
,

ωy = y :=
ϵ(n)

l
,

ωy2 = y2 :=
(ϵ
l

)2
.

Besides the trivial choice of no weight used as a benchmark, the rationale behind the
choice of ωl is that a greater weight can be attributed to low track lengths values, and a
lower weight to high track length values. In addition, ωy and ωy2 have been considered
among the possible weights since, the ultimate goal of the ML reconstruction algorithm
is to reconstruct the yd(y) real-track length simulated microdosimetric spectra, which we
recall to be proportional to the y2 values.

10.2 The data

A different set of data is passed to each module of the model. As regard the missing
values module, the Random Forest model is trained with 5 variables denoting the energy
deposition inside the TECP and the spatial positions detected by the LGADs. A set
of 5 different models is trained, and each time the position of a particle that traverses
the LGAD but has a missing value is filled with a prediction. At last, the average and
standard deviations of the 5 different outcomes is taken. This is done to obtain a more
robust missing value prediction, as well to estimate the error for filling a missing value.
Intuitively, a higher standard deviation should corresponds to a higher uncertainty in the
predicted missing value.

To predict the real track-length, we trained a new model based on 14 variables. The
first 5 variables, as in the previous module, are the energy deposition inside the TEPC and
the positions of the particles traversing the LGADs, either the real value or the prediction
obtained from the missing values module. We further consider the standard deviation in
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Figure 10.1: Machine learning algorithm workflow: i) the energy deposition together with
the 4 LGADs positions (also with missing values) compose the input that is passed to ii)
the missing value module, made of 5 Random Forest modules that predict the missing
values of the input dataset. The mean value of the predictions computed by 5 Random
Forest models is finally calculated together with the standard deviation, so that iii) the
energy depositions and the positions of particle traversing the 4 LGAD’s compose the
input of the tracking module in order to achieve iv) the real track length prediction.

the predictions of filling undetected particles of the 5 Random Forest algorithms developed
in the missing value filling module; we then considered 4 binary variables, named LGADi

with values either 0 or 1 whenever the i−th LGADs has seen or not the particle. At last
we included a variable, denoted in the following by Miss assuming values in {0, 1, 2, 3, 4}
denoting the number of LGADs that have not seen the particle.

As mentioned above, we consider two different training sets for the module that predicts
the real track length: a model (RF) trained on the whole dataset, with no distinction on
the number of missed LGADs, and another model (RF0), that has been trained only on
particle seen by all the LGADs, and therefore with variable Miss equals to 0.

A schematic representation of the model is depicted in Figure 10.1.

10.3 Results

The results of this study first include an exploratory analysis of the missing values,
aiming to identify specific patterns among the non detected particles. Then, thanks to the
two model modules, the yTd(yT ) spectra are derived and analyzed. Finally, the results on
the metric assessment are presented.
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Figure 10.2: Pie charts of missing information on the 4 layers of LGADs for protons (left
panel) and carbon ions (right panel). The missing values are identified as Miss followed
by the number of LGAD layers that did not detect a particle, namely Miss=0 refers to
the complete information, Miss=1 refers to one missing value in one layer, Miss=2 to two
missing values in two different layers and so on.

Missing values analysis

The missing value analysis focuses on studying the behavior of particles not detected
by one or more LGADs layers. The causes of non detection include the passage in the
LGADs dead zones, like the interstrip regions, as well as lateral deviations from the inital
linear path due to electromagnetic or nuclear interactions occurring within the TEPC,
with the LGADs themselves and with water. In Fig 10.2, the pie charts of missing values
are shown for protons (left panel) and for carbon ions (right panel). The results clearly
indicate that HDM is heavily affected by a low efficiency especially for protons, with 97%
of the particles not detected by at least one of the layers, and 85% of the particles missing
all the layers. For carbon ions, instead, the efficiency is higher, with 85% of particles that
are not detected by at least one layer, and just 25% of them not tracked by any layers.
Machine learning is a powerful tool to overcome this big limitation of non detected events
affecting HDM, being able to reconstruct the missing values by training on the complete
dataset of detected events.

In Figure 10.3 a more detailed analysis on the missing values is plotted for protons (up
panel) and carbon ions (bottom panel). This plot confirms that for protons the majority
of the events are not detected by any of the LGAD layers, which represents the dominant
behavior of the incoming particles. For carbon ions, instead, the data indicate that the
majority of non detected particles missed either all four layers, or just one. Furthermore,
a relevant proportion of particles has not been detected by the couple of layers with strips
oriented in the same direction.
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Figure 10.3: Histograms of missing values on the 4 LGAD layers for protons (left panel)
and carbon ions (right panel), ordered in descending counting values. The black points
represent the position where the value is missing, and are labelled as the LGAD identi-
fication number written on the left (LGAD1, LGAD2, LGAD3, LGAD4), with LGAD1
being the nearest to the TEPC.
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MCL RTL Linear RF RF0

yF − yFT
0.78 1.02 0.60 0.99 0.61

yD − yDT
5.71 36.22 5.08 14.56 5.25

y∗ − y∗T 2.79 13.04 2.62 6.57 2.79

MCL RTL Linear RF RF0

yF − yFT
5.18 6.57 5.16 6.01 5.63

yD − yDT
15.16 58.77 24.15 22.14 31.62

y∗ − y∗T 13.84 23.96 16.69 17.36 20.55

Table 10.1: yF , yFT
, yD, yDT

, y∗, y∗T and values for protons in left panel and for carbon
ions in right panel.

Microdosimetric analysis

The main goal of this investigation is to accurately reconstruct the yTd(yT ) microdosi-
metric spectra, predicting the real track lengths of particles traversing the TEPC.
In Figure10.4, the standard yd(y) microdosimetric spectra obtained with the mean chord
length approximation are plotted against the yTd(yT ) spectra calculated using the real
track lengths, and with the three yTd(yT ) spectra obtained exploiting the predicted track
lengths from the three model used (linear, RF, RF0). The results are reported in Fig-
ure10.4 for protons (top panel) and carbon ions (bottom panel). For protons, the RF
appears to be the most accurate model compared to both the linear and the RF0. In fact,
it reproduces better the distribution left rise as well as the main peak. In the right tail
region, despite a clear difference with the RTL spectrum, the RF still better forecast the
correct curve than the other models. In this sense, the major issue is an overestimation of
the yT around 10 keV/µm, that results both in a second peak with no physical meaning
and in a small tail in the extremely high yT region above 10 keV/µm.

For carbon ion (bottom panel), the RF0 is the most accurate method for reconstructing
the RTL spectrum. The yd(y) distribution behaviour is similar to protons, with a good
prediction of the main peak and a second peak appearing at high yT . Furthermore, the
RF0 is the only method that can reproduce the fat tail of the RTL spectrum.

To further investigate the cause of the second peak predicted by the best performing
methods, that we recall to be RF for protons and RF0 for carbon ions, in Figure 10.5
we reported the contribution of the track-length to the yTd(yT ) microdosimetric spectra.
Both panels clearly suggest that the reconstructed spectra for particles with a real track
length above 6 mm is in a good agreement with the RTL spectrum, while particles with
a track length smaller than 2 mm are rarely predicted by any models. This result point
to the fact that the main error in the spectrum reconstruction is due to extremely short
tracks, that are very few but at the same time very relevant in the yTd(yT ) spectrum. The
second peak in the reconstructed spectrum for both ions is almost completely composed
by tracks predicted to be between 2 and 6 mm whose real track length is instead below 2
mm.

In addition, Table 10.1 shows the comparison between the yF , yD and y∗ values ob-
tained from the microdosimetric yd(y) and yTd(yT ) spectra.

In order to look for patterns as a function of the track length specifically for particles
with extremely high reconstruction errors, we separated the particles into two groups:

particles whose reconstructed track length has an error above the 99th percentile and

particles whose reconstructed track length has an error below the 99th percentile. To
understand the main features of the two groups, we plotted the positions of particles
traversing the first LGAD pair in the X versus Y spatial planes. Events have been divided
into three group based on the real-track length as estimated from Geant4 simulations.
Higher panels denote events with an error above the 99 percentile, while lower panels report
the complementary group. The linear tracking algorithm might give a null result (NA
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Figure 10.4: Standard yd(y) (MCL) distribution compared to the yTd(yT ) spectra obtained
with the real track length (RTL) and the predicted track length for protons from the three
models: linear, RF, RF0. The upper figure presents the results for protons, while the
bottom figure for carbon ions.
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Figure 10.5: Upper figure shows in yellow dotted line yTd(yT ) (RTL) spectra compared to
the reconstructed yTd(yT ) (RF), in yellow continuous line. The contributions of different
track length values to the total yTd(yT ) spectra are given by different colors according to
the legend. Continuous lines reports the reconstructed spectra whereas dotted line plots
show the RTL spectra. Bottom figure shows the same comparison for carbon ions, where
RF0 model is considered instead of RF model.
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Protons

Linear RF RF0

MAPEω1 0.52 0.30 0.40

MAPEωl
0.48 0.29 0.37

MAPEωy 2.40 1.08 2.13

MAPEωy2
10.81 3.14 9.07

MAEω1 3.07 2.49 2.47

MAEωl
2.96 2.50 2.40

MAEωy 5.48 3.23 4.87

MAEωy2
11.42 3.37 9.57

Carbon ions

Linear RF RF0

MAPEω1 0.38 0.29 0.35

MAPEωl
0.34 0.27 0.32

MAPEωy 1.27 0.86 0.87

MAPEωy2
8.73 2.66 0.95

MAEω1 2.10 2.20 2.11

MAEωl
2.01 2.20 2.05

MAEωy 2.95 2.22 2.29

MAEωy2
9.30 2.68 0.97

Table 10.2: MAPE and MAE values calculated with different weights for protons (left
panel) and carbon ions (right panel).

panel), being unable to track the particle path inside the TEPC if the linear interpolation
starting from the LGAD positions does not intersect the microdosimeter. The results
(Figure 10.6) show that the low tracking errors are associated with high track lengths,
especially in the plane center. This region is where we find the particles with the mostly
linear path from the TEPC to the LGADs, i.e. that traverse the TEPC active sphere
around the diameter, and therefore have a long track. The plot also shows a circle of
approximately 6 mm radius of short and medium tracks, populated by particles that are
traversing the TEPC at the border regions with a linear path, easily predictable by the
model with a low error.

The population of track lengths predicted with a high error is mostly composed by short
tracks, clustered in two groups. The first group is a circular pattern corresponding to the
TEPC external region but populated with short tracks; this result was expected since
lower tracks often yield to high yT values, and therefore the yT -weighted MAE might be
significantly higher. The other cluster is located in the LGAD central part. Those tracks
predicted positions must be incorrect, since it is impossible that a particle walked a short
path through the center part of the TEPC.

Metric considerations

The MAPE and MAE errors with different weights have been evaluated for the linear,
RF and RF0 models. The values can be found in Tabs.10.2 for protons and for carbon
ions.

From these values, ωy2 has been chosen as the best weight because it is the most
robust choice, reflecting the discrepancies that emerge in the microdosiemtric spectra
reconstruction. Focusing on the weight choice, for both the MAE and the MAPE metric,
it is clear that for protons the RF is the best predicting model, while for carbon ions it is
the RF0 model. For consistency with the previous study on HDM, we chose to focus on
the MAE metric.

To validate the choice on the best prediction model for the two different ion beams,
we calculated the density plots of the discrepancies between the model and the linear
tracking algorithm, which is used as a benchmark (Figure10.8). In both cases, the area
under the positive values of the density functions is bigger than the negative ones. This
confirm the fact that the chosen prediction models (RF for protons and RF0 for carbon
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Figure 10.6: Spatial positions of particles passing through the first LGAD couple (either
real or predicted by the first ML module). Panels separates high and low MAEωy2

of the
linear tracking algorithm. The NA panel refers to events with a null linear intersection
between the LGAD positions and the TEPC. The colors refer to the real track length
values estimated from Geant4 : pink shows the short tracks (< 2 mm), blue refers to the
medium track lengths (from 2 to 6 mm) and green is used for the long tracks (>6 mm).
The upper panels show the results for protons, while the bottom panels for carbon ions.
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Figure 10.7: Spatial positions of particles passing through the first LGAD couple (either
real or predicted by the first ML module). Panels separates high and low MAEωy2

for
the RF tracking algorithm. Colors according to the legend refers to the real track length
values estimated from Geant4 : pink shows the short tracks (< 2 mm), blue refers to the
medium track lengths (from 2 to 6 mm) and green is used for the long tracks (>6 mm).
Upper panels refer to protons, bottom panels to carbon ions.
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Figure 10.8: Upper panel: density plot of the discrepancies between the MAE error using
the linear model and the RF model for the proton beam. Bottom panel: density plot of
the discrepancies between the MAE error using the linear model and the RF0 model for
the carbon beam. A zoom of the central part, with errors between −6 10−5 and 6 105 is
plotted.
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ions) have smaller errors than the linear tracking algorithm in predicting the track lengths.
Furthermore, the density plots highlights how the selected model is a better predicting
algorithm than the linear model not only on average but also particle by particle.

10.4 Discussion

Missing values analysis

The results on the missing values analysis highlight that two major undetected parti-
cles may be due to two main reasons: dead zones and particles scattering in the detector.
The former can be improved with the detector optimization, such as reducing the inter-
strip widths or changing the LGADs angle with respect to the TECP to increase the active
area of the trackers. Instead, decreasing the probability of scattering is less easy, but it
would be the most relevant improvement. Together with thinning the silicon layers, a
possible solution is to modify the LGADs positions during the irradiation period, in order
to collect particles from different angles. Another possible approach is to develop a suit-
able ML-based module that identifies scattered particles. In doing so, the problem would
be split and solved with two different models, the first ML model is trained specifically
on scattered events whilst the second one is trained on non scattered ones. Furthermore,
it is difficult to distinguish the number of particles lost because of scattering from those
hitting the LGAD dead zones. Nonetheless, we can get a hint from Figure10.3: particles
that have missed all the layers are unlikely to be traversing only dead zones, while, on
the other hand, particles that misses just one layer are most likely not scattered events.
In addition, it is worth noticing that whenever an undetected particle traverses just two
layers with parallel strips, it is likely that such missing information is due to the dead in-
terstrip regions of the perpendicular LGADs layers rather than a scattering of the particle.

Microdosimetry-based analysis of the tracking ML model

The microdosimetric spectra comparison plotted in Figure 10.4, the mean quantites
reported in Tab. 10.1 and the error assessment of Tab. 10.2 all indicate that the RF is
the best predictive tracking model for protons, while the RF0 is the most accurate one for
carbon ions. The fact that for protons RF is the best performing model is related to the
fact that just 2% of the events are seen by all the LGADs layers. In this case, the training
dataset for RF0 is extremely small and biased by the fact that it is mostly composed by
non-scattered events; therefore, a model trained on such a dataset would only seen event
that are non representative of the whole population, implying the poor performances
exhibited by RF0 in the case of protons. Further, there is a clear difference between the
mean chord length and the real track length spectra, especially for yT ≥ 10 keV/µm.
The predictions for all the methods are in good agreement with the RTL spectrum in the
main peak region, meaning that the primary protons are well reconstructed. This result
is expected since these protons are mostly non-scattered particles that follows a straight
line direction. This hypothesis is confirmed by the fact that the yF values are similar
for all the models. In the right tail, the method that better reproduce the RTL yTd(yT )
spectrum is the RF, despite the fact that the reconstructed spectrum exhibits a second
peak that can be identified as an artefact. Nonetheless, the RF is clearly the method that
predict high yT particles with the best accuracy, as it is pointed out by the fact that the
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yD value is the closest to the RTL one. In addition, the RF is the model that reproduces
better the distribution left rise upstream of the main peak.

For carbon ion, instead, the number of particles seen by all the LGAD is higher. In
addition, there is a significant proportion of events that are undetected because they tra-
verse an LGAD dead zone. Both Figs. 10.4 and 10.5 show the same pattern for both
ions: the best predicting model overestimates events with tracks of 2-6 mm length, and
underestimates those with tracks of 0-2 mm length. Furthermore, 60% of the particles
with MAE above the 99 percentile leads to yT ≥ 10 keV/µm. In addition, 86% of the

samples with yT ≥ 10 keV/µm has a reconstruction error above the 99th percentile for
protons. These considerations tell us that there is a correspondence between high MAE
errors and the extreme right tail of the yTd(yT ) distribution. On one hand, this result
confirms that the chosen metric is a good representative of the error on the reconstructed
spectra, and on the other side, it highlights the main issue in reconstructing the micro-
dosimetric distribution. It is clear that it is important to reconstruct the right tail, which
is the region where a higher error has been made. In particular, high yT values cannot
be obtained by simply increasing the statistics, and therefore a reconstruction model is
necessary to predict such events.

It is worth further stressing that the second peak at high yT , despite seeming at first to
be a huge issue of the model, can be on the contrary exploited to improve the understanding
of the ML model. In particular, the second peak in the reconstructed yTd(yT ) spectrum
clearly highlights that the main issue of the currently developed model is the inability to
predict 0-2 mm chord lengths. A similar conclusion can be drawn from Figs. 10.6 and
10.7, where the highest tracking errors are associated to extremely small track lengths.
These events of short track length are positioned in the central part of the LGADs, which
is unrealistic because in the central part of the LGAD track lengths should be comparable
to the diameter of the TEPC. Therefore, these events are probably scattered particles that
have been wrongly positioned in the LGAD by the first ML module.

In conclusion, we illustrated that advanced ML algorithms can improve both the ac-
curacy and efficiency of particle tracking detectors.

The next step will be to quantitative analyze the effect that the new microdosimetric
spectra provided by HDM can have on predicting the radiation biological effects and on
the RBE estimate. Today, few radiobiological models can predict a biological endpoint
using the entire microdosimetric spectrum, e.g. the Loncol model, but they are valid just
for specific ion types and biological endpoints. On the contrary, the MKM, which is the
most commonly used model in the clinics for predicting RBE, is based on the dose-average
value yD or on its saturation corrected value y∗ as described in 2.2. This feature implies
that the MKM and its variants are unsuited to consider the RTL spectrum measured by
HDM. Recently, we proposed a new model called Generalized Stochastic Microdosimetric
Model (GSM2) [Cordoni et al., 2021, Cordoni et al., 2022b, Missiaggia et al., 2022c], that
can predict cell survival, and consequently RBE, considering the whole microdosimetric
spectrum. For this reason, GSM2 is particularly suitable to use the microdosimetrc data
provided by HDM. GSM2 mathematical framework and the main characteristics will be
presented in the next part.
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Chapter 11

The main setting

11.1 The rationate for a new model

The main goal of the present part is to develop a fully probabilistic model of DNA
damage formation and its kinetic evolution based on microdosimetry. The new model,
called (Generalized Stochastic Microdosimetric Model (GSM2), will provide a rigorous
and general mathematical description of DNA damage time–evolution without using any
a priori assumption on the lesion distribution (e.g. a Poisson). GSM2 will be shown to
agree with the MKM predictions in the irradiation conditions where the latter is accurate,
but will also provide a more precise and robust description of the cell survival probability
where the MKM fails.

To provide a rigorous mathematical formulation of the DNA damage kinetics, we will
consider lethal and sublethal lesions inside a single cell nucleus. Potentially lethal lesions
can either be repaired or die, in which case they become lethal lesions. A cell in which
at least one lethal lesion has been formed is considered inactivated. A potentially lethal
damage induced by radiation can undergo three main processes: (i) it can spontaneously
repair at a rate r; (ii) it can spontaneously become a lethal damage at a rate a; or (iii) it
can combine with another potentially lethal lesion to form a lethal lesion at rate b.

We will introduced an equation, referred to asMicrodosimetric Master Equation (MME),
that governs the time evolution of the joint probability density function for lethal and sub–
lethal damages inside the cell nucleus and is based on the parameters a, b and r. It is
important to underline in the MME there two aspects in which stochasticity is considered:
i) the random lesion formation due to the stochastic nature of energy deposition of ioniz-
ing radiation; and ii) the evolution of lethal and lethal damages as well as for the random
lesion formation due to the stochastic nature of energy deposition of ionizing radiation.
The latter aspect can be precisely characterized by microdosimetric spectra.

The classical approach for mathematically describe a complex physical system, such
as the one resulting from the interaction between cells and ionizing radiation that leads
to the formation of DNA lesions, is achieved with deterministic models, so that, given
an initial condition the system time–evolution can be completely characterized at each
given state. Recent studies, [Smith and Grima, 2019], have indicated that this approach
fails due to mainly three reasons: i) a precise and accurate estimation of the parameters
if often non feasible; ii) it is unrealistic to account for all possible interactions as the
system complexity increases; and iii) certain systems can be over-sensitive to some input
parameters, typically the initial values. All above reasons have led to include stochasticity
in the models via suitable random variables.

162
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For modeling lesions formation following a radiation exposure, the standard method
is to consider the macroscopic system, which can be fully described by mean values only.
On the contrary in a microscopic approach, instead, each element of the system is usu-
ally modelled using the Brownian dynamics [Van Kampen, 1992, Solov’yov et al., 2009].
Nonetheless, the complexity of the system we want to reproduce makes this strategy not
feasible.

To obtain a more general and accurate description of a system than the one provided by
amacroscopic approach, and yet maintain some reasonable assumptions on the model main
aspects, a hybrid methodology, know as mesoscopic approach, is typically considered. The
latter has proved to be able to take into account the stochastic nature of a system and still
being manageable from both the analytical and numerical points of view. The mesoscopic
method is based on the assumption that the process driving the system evolution is a
Markov jump process [Gardiner et al., 1985]. In detail, the equations of motion are
described via the so–called master equation that contains the probability density function
of the whole system [Gardiner et al., 1985, Van Kampen, 1992, Weber and Frey, 2017].

Starting from some probabilistic assumptions on the lesions formation, we will derive a
master equation that describes the time evolution for the joint probability density function
of DNA lesions, lethal and potentially lethal. The density function solution will be shown
to have first moment in agreement with the standard MKM driving equations. The main
goal of this study is to overcome the Poissonian assumption on lethal lesions.

In the present work we will further generalize the MME in two main directions. In
particular, besides mechanism (i)-(ii)-(iii) in the damage kinetic introduced above, we
additionally consider that (iv) either a lethal or sublethal damage can be formed randomly
due to the effect of the ionizing radiation at a rate ḋ and (v) lethal lesion can move
inside the cell nucleus. In fact, (iv) represents DNA damage formation resulting from a
continuous irradiation field. In fact, together with standard lesion interactions, we will
also take into account random jumps in the number of lethal and sub–lethal lesions caused
by the stochastic nature of energy deposition.

Reaction (v) accounts for the the fact that we allow lesions to move inside the domain.
Since the model consider pair–wise interaction of potentially lethal lesions. In fact, a
domain too big implies that lesions who are created far away from each other can interact
to form a lethal lesion. On the contrary, a domain too small results in a very small
number of lesions per domain so that the probability of double events is underestimated.
The domains size plays a crucial role and to minimize the model dependence on this
choice, we will consider interactions between different domains [Smith and Grima, 2019].
An example of this effect is the limit case where the domain size approaches zero and no
interaction can occur [Isaacson, 2009, Hellander et al., 2012]. This result follows from the
fact that most domains contain a single lesion as their size decrease. Thus, the reaction
rates and domain size must be chosen carefully.

Summarizing above discussion, We will introduce a general master equation that mod-
els the joint probability distribution of DNA lethal and potentially lethal lesion inside a
cell nucleus. The derived master equation will consider, besides potentially lethal lesion
repair and death due to either spontaneous dead or pair–wise interaction, also the stochas-
tic effect of energy deposition due to ionizing radiation and lesions movements between
adjacent domains, providing a global description of the cell nucleus as a whole.

For above reasons we will name the proposed model Generalized Stochastic Microdosi-
metric Model (GSM2).

The innovations presented in this work are several. We will develop a fully probabilistic
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description of the DNA damage kinetic. In particular, the joint probability distribution
of the number of sub-lethal and lethal lesions will be modelled. We will further generalize
the model including inter–domain movements and continuous damage formation due to
protracted dose. The resulting master equation solution will provide the real probability
distribution without any a priori assumption on the density function, allowing to compute
several biological endpoints. The proposed approach will be able to fully describe the
stochastic nature of energy deposition both in time and space, improving the existing
models were the energy deposition is averaged over both the whole cell nucleus and cell
population. In doing so, we will be able to reproduce several behaviours referred to in
literature as non–Poissonian effects, that cannot be predicted by the MKM and its variants
and are typically included in the models with ad hoc corrections [Kase et al., 2006, Sato
and Furusawa, 2012, Hawkins, 2003, Hawkins and Inaniwa, 2014a].

To validate GSM2, we will consider microdosimetric energy spectra obtained from
Geant4 simulations [Agostinelli et al., 2003]. We will show how different assumptions
related to the probability distribution of damages number, as well as model parameters,
show significant deviation from the Poisson distribution assumed by all existing models,
including the MKM. We will further compute the survival probability and compare it to
the classical linear–quadratic (LQ) model [Bodgi et al., 2016, McMahon, 2018b].

Because of GSM2 flexibility and generality, analytical solutions both on the probability
density function and on the resulting survival curve are not of easy derivation. Therefore,
the present study has to be intended as a first step of a systematic investigation of the
stochastic nature of energy deposition and how it influences lesions formation. In partic-
ular, a further investigation will focus on long–time behaviour of the master equation and
the resulting survival curve. Furthermore, the principles used in the current approach will
be used to develop a fully stochastic model of inter-cellular damage formation optimized to
improved radiation field characterization via a novel hybrid detector for microdosimetry,
[Missiaggia et al., 2021].

With GSM2 and its future developments, we try to shade a new light on non–Poissonian
effects, to obtain a deeper understanding which will allow us to model them more accu-
rately.

11.2 The Generalized Stochastic Microdosimetric Model

As a part of this study, we investigated how the models described in Section 2.2 could
be developed to rely on the whole probability distribution rather than simmply on its mean
value. In fact, all proposed generalizations of the MKM always consider deterministic driv-
ing equations for predicting the number of lethal and sub-lethal lesions. Non-Poissonian
effects are often proposed as corrections terms added to the survival fraction predicted
by the MKM with no formal mathematical derivation and mainly based on empirical
evaluations.

The MKM formulation is based on the probability distribution of inducing a damage
when a specific energy z is deposited. Once the survival for a given z is computed,
the specific energy is averaged over the whole cell population to yield the overall expected
survival probability. To the best of our knowledge, there is no systematic investigation that
aims at capturing the true stochasticity of both energy deposition and lesion formation.

The main goal of the present work is thus to generalize microdosimetric based models
in order to describe the full probability distribution of lethal and sub-lethal lesions. We
will take advantage of assumptions 1−5 described in Section 2.2. Regarding assumption 4,
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the MKM assumes that the lethal lesions initial distribution, given an energy deposition
z, follows a Poisson law. We will generalize this assumption assuming a general initial
distribution, allowing to fully describe the stochastcic nature of energy deposition. This
point will be treated in detail in Section 11.2.

An additional remark on the importance of the initial distribution is necessary to fully
understand the implication of the generalization we will carry out in this study. The
stochasticity of energy deposition in a microscopic volume is the basic foundation of mi-
crodosimetry, and assuming every probability distribution to be Poissonian is a restrictive
assumption that limits the model application.

In order to capture the real stochastic nature of energy deposition and related DNA
damage formation we will provide a probabilistic reformulation of Equation (2.16). We
denote by (Y (t), X(t)) the system state at time t, where X and Y are two N0−valued
random variables representing the number of lethal and sub–lethal lesions, respectively.

We will consider a standard complete filtered probability space
(
Ω,F , (Ft)t≥0 ,P

)
that

satisfies the usual assumptions of right–continuity and saturation by P−null sets.
Let us consider two different sets X and Y denoting the number of type I and type

II lesions, respectively. The heuristic interpretation of the coefficients in Equation (2.16)
is that a is the rate at which a lesion of type II becomes a lesion of type I, r is the rate
at which a lesion of type II recovers and goes to the set ∅ (i.e. that of the healthy cells),
whereas b is the rate at which two lesions interact to become a single type I lesion. These
considerations can be mathematically expressed as

X
a−→ Y ,

X
r−→ ∅ ,

X +X
b−→ Y .

(11.1)

Thus, at a given time t, the probability to observe x lesions of type II and y of type
I is

p(t, y, x) = P ((Y (t), X(t)) = (y, x)) .

Also,

pt0,y0,x0(t, y, x) := p(t, y, x|t0, y0, x0) = P ((Y (t), X(t)) = (y, x)| (Y (t0), X(t0)) = (y0, x0))

is the probability conditioned to the fact that at t = t0 there were x0 and y0 sub–lethal
and lethal lesions, respectively.

To determine the governing master equation for the above probability density p(t, y, x),
we need to account for all possible system changes in the infinitesimal time interval dt

Thus, the following scenarios may happen:

(i) at time t we have exactly (y, x) lesions and they remain equal with a rate (1 − (a +
r)x− bx(x− 1))dt, namely

P ((Y (t+ dt), X(t+ dt)) = (y, x)| (Y (t), X(t)) = (y, x)) =

= 1− ((a+ r)x− bx(x− 1))dt+O(dt2) ;

(ii) at time t we have exactly (y, x+1) lesions, and one lesion recovers with rate (x+1)rdt,
namely
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P ((Y (t+ dt), X(t+ dt)) = (y, x)| (Y (t), X(t)) = (y, x+ 1)) = (x+ 1)rdt+O(dt2) ;

(iii) at time t we have exactly (y − 1, x + 1) lesions, and one type II lesion becomes of
type I with a rate (x+ 1)adt, namely

P ((Y (t+ dt), X(t+ dt)) = (y, x)| (Y (t), X(t)) = (y − 1, x+ 1)) = (x+ 1)adt+O(dt2) ;

(iv) at time t we have exactly (y − 1, x+ 2) lesions, and two type II lesions become one
type I with a rate (x+ 2)(x+ 1)bdt, namely

P ((Y (t+ dt), X(t+ dt)) = (y, x)| (Y (t), X(t)) = (y − 1, x+ 2)) = (x+ 2)(x+ 1)bdt+O(dt2) ;

Grouping the equations derived in 11.2 we obtain

p(t+ dt, y, x) = p(t, y, x)
(
1− ((a+ r)x− bx(x− 1))dt+O(dt2)

)
+

+ p(t, y, x+ 1)
(
(x+ 1)rdt+O(dt2)

)
+

+ p(t, y − 1, x+ 1)
(
(x+ 1)adt+O(dt2)

)
+

+ p(t, y − 1, x+ 2)
(
(x+ 2)(x+ 1)bdt+O(dt2)

)
,

Writing down above relation and taking the limit as dt → 0 we eventually obtain the
microdosimetric master equation (MME)

∂tp(t, y, x) = − ((a+ r)x− bx(x− 1)) p(t, y, x) + (x+ 1)rp(t, y, x+ 1)+

+ (x+ 1)ap(t, y − 1, x+ 1) + (x+ 2)(x+ 1)bp(t, y − 1, x+ 2) ,
(11.2)

where above ∂t denotes the partial derivative with respect to the first argument of p(t, y, x),
that is the time variable. Equation (11.2) must be equipped with suitable initial condition
p(0, y, x) = p0(y, x).

We remark that the above derived MME arises solely from the probabilistic assump-
tions regarding lesion formation.

The MME (11.2) can be written for short as

∂tp(t, y, x) =
(
E−1,2 − 1

)
[x(x− 1)bp(t, y, x)] +

(
E−1,1 − 1

)
[xap(t, y, x)] +

(
E0,1 − 1

)
[xrp(t, y, x)] =

= E−1,2 [x(x− 1)bp(t, y, x)] + E−1,1 [xap(t, y, x)] + E0,1 [xrp(t, y, x)] ,

(11.3)

where above we have denoted the creation operators defined as

E i,j [f(t, y, x)] :=
(
Ei,j − 1

)
[f(t, y, x)] := f(t, y + i, x+ j)− f(t, y, x) .
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Connection with the MKM

The present section aims at showing that the mean value of the master equation does
satisfy, under certain assumptions, the kinetic Equations (2.16). In what follows, E denotes
the mean value of a random variable defined as

x̄(t) := E[X(t)] =
∑
x,y≥0

xp(t, y, x) ,

ȳ(t) := E[Y (t)] =
∑
x,y≥0

yp(t, y, x) .

Note that, for a general function f , the following holds true∑
x,y≥0

xE i,j [f(y, x)p(t, y, x)] = −Ejf(Y,X) ,

∑
x,y≥0

yE i,j [f(y, x)p(t, y, x)] = −Eif(Y,X) .
(11.4)

Therefore, multiplying the MME (11.3) by x and y, we obtain using (13.2){
d
dtE[Y (t)] = bE[X(t)(X(t)− 1)] + aE[X(t)] ,
d
dtE[X(t)] = −2E[X(t)(X(t)− 1)]− (a+ r)E[X(t)] .

(11.5)

Equations (13.3) are still not of the form of Equations (2.16); in particular they depend
on a second order moment E[X(t)(X(t)− 1)]. Nonetheless explicit computation will show
that, if we try to compute a kinetic equation for the second order moment E[X(t)(X(t)−
1)], we would obtain a dependence on higher moments, and so to obtain an infinite set on
coupled ODE. To solve the impasse we shall make what is called a mean–field assumption,
that is we assume that

E[X(t)(X(t)− 1)] ∼ E[X(t)]2 .

Under the above mean–field assumption, Equations (13.3) become{
d
dt ȳ(t) = bx̄2(t) + ax̄(t) ,
d
dt x̄(t) = −2x̄2(t)− (a+ r)x̄(t) ,

(11.6)

and the original kinetic equations are in turn recovered.

A quick remark on the mean–field assumption is needed. In the case of x being large
enough, we have that the following approximation holds true E[X(t)(X(t)−1)] ∼ E[X2(t)];
therefore the mean field assumption means that E[X2(t)] − E[X(t)]2 ∼ 0. Noticing that
the last term is nothing but the variance, and recalling that the variance for a random
variable is null if and only if the random variable is in fact deterministic, if the mean field
assumption is realistic than the realized number of lesion does not differ much from the
mean value so that everything we need to know is the mean value. On the contrary if there
are evidence that the mean value is not a realistic approximation for the realized number
of lesion, the mean–field assumption must be considered unrealistic so that the knowledge
of the full probability distribution is essential to have a complete understanding of the
system.
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On the initial distribution for the number of lethal and sub-lethal lesions

One of the main advantages of the proposed model is that the distribution of DNA
damages induced by an ionizing radiation z does not need to be chosen as Poissonian.
In the present section we will show how the number of induced lesions can be evaluated
starting from microdosimetric spectra.

Let f1;d(z) be the single–event distribution of energy deposition on a domain d, see
[Rossi and Zaider, 1991]. The single–event distribution f1;d can be either computed nu-
merical via Monte Carlo toolkit or by experimental microdosimetric measurements.

The full probability distribution of an energy deposition thus depends on the number
of events that deposit energy on the cell nucleus. Given a cell nucleus, composed by
Nd domains, the probability that ν events deposit an energy z obeys to a Poissonian
distribution of mean λn := zn

zF
, being zn the mean energy deposition on the nucleus, i.e.

zn =

∫ ∞

0
zf(z|zn)dz ,

and zF the first moment of the single event distribution f1;d defined as

zF :=

∫ ∞

0
zf1;d(z)dz . (11.7)

Then, assuming a Poissonian probability that a domain registers ν events, the energy
deposition distribution is given by

f(z|zn) :=
∞∑
ν=0

e
− zn

zF

ν!

(
zn
zF

)n

fν;d(z) ,

where fν;d(z) is the energy deposition distribution resulting from ν depositions.
In particular, given a domain d suffers ν energy deposition events, the distribution

resulting from ν events can be computed convolving ν times the single event distribution,
see, [Rossi and Zaider, 1991, Sato and Furusawa, 2012]. Therefore, the imparted energy z
has distribution fν;d, computed iteratively as

f2;d(z) :=

∫ ∞

0
f1;d(z̄)f1;d(z − z̄)dz̄ ,

. . . ,

fν;d(z) :=

∫ ∞

0
f1;d(z̄)fν−1;d(z − z̄)dz̄ .

For a certain energy deposition z, the induced number of lesions is a random variable.
The standard assumption is that the distribution of X given z is a Poisson random variable
of mean value κz. Analogous reasoning holds for Y , being the number of induced lesion
given z a Poisson random variable of mean λz. Given the high–flexibility of the proposed
approach, the number of induced lesions given an energy deposition z can be any random
variables. It is worth stressing that the chosen distribution may vary with LET.

In the following general treatment we will denote by pXz (x|κz), resp. pYz (y|λz), the
initial random distribution for the number of sub–lethal, resp. lethal, lesions given an
energy deposition z. We remark again that both pXz (x|κz) and pYz (y|λz) can be any
probability distribution. Specific relevant examples will be considered in the numerical
implementation.
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Putting all the above reasoning together, the MME (11.3) reads

{
∂tp(t, y, x) = E−1,2 [x(x− 1)bp(t, y, x)] + E−1,1 [xap(t, y, x)] + E0,1 [xrp(t, y, x)] ,

p(0, y, x) = pX0 (x)pY0 (y) ,

(11.8)
where the initial distribution is obtained as

pX0 (x) =

∫ ∞

0
pXz (x|κz)f(z|zn)dz ,

pY0 (y) =

∫ ∞

0
pYz (y|κz)f(z|zn)dz .

(11.9)

Assuming pXz (x|κz) to be a Poisson random variable of mean κz, the first moment of
the distribution pX0 (x) can be computed as

∑
x≥0

xpX0 (x) =

=
∑
x≥0

x

∫ ∞

0
pXz (x|κz)f(z|zn)dz =

=

∫ ∞

0
f(z|zn)

∑
x≥0

xe−κz (κz)
x

x!
dz =

=

∫ ∞

0
κzf(z|zn)dz = κzn .

It further follows that

∑
x≥0

x(x− 1)pX0 (x) =

=
∑
x≥0

x(x− 1)

∫ ∞

0
pXz (x|κz)f(z|zn)dz =

=

∫ ∞

0
f(z|zn)

∑
x≥0

x(x− 1)e−κz (κz)
x

x!
dz =

=

∫ ∞

0
κz2κ2f(z|zn)dz = κ2M2 ,

being M2 the second moment of the distribution f(z|zn). Using [Rossi and Zaider, 1991,
Section II.2], we have

M2 = zn(zn + zD) , zD =
m2

m1
,

with mn the n−th moment of the single event distribution f1;d. Here we have used that
m1 = zF .
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Thus, the variance of pX0 (x) is given by

∑
x≥0

x2pX0 (x)−

∑
x≥0

xpX0 (x)

2

=

=
∑
x≥0

x(x− 1)pX0 (x)+

+
∑
x≥0

xpX0 (x)−

∑
x≥0

xpX0 (x)

2

=

= κ2M2 + κzn − κ2z2n =

= κ2znzD + κzn = ϑ(κ, zn, zD) + κzn .

(11.10)

The variable pX0 (x) is Poissonian distributed if the first two moments are equal, i.e.
κzn = κ2znzD + κzn. If κ2znzD << 1, which is true for low–LET radiation, then pX0 (x)
follows a Poisson distribution, but in general for high–LET radiation the distribution
significantly deviates from a Poisson law. Even if pX0 (x) is Poisson, the long–time lethal
lesion distribution might be different from a Poissonian distribution due to non–linear
effects, such as the double lesions combination.

The protracted dose case for the Generalized Stochastic Microdosimetric
Model

The MME can be further generalized to consider protracted dose irradiation. We refer
to protracted dose as a continuous dose delivery in time. On the contrary a fixed in time,
asymptotically short impulse-like dose irradiation is called acute dose irradiation, whereas
a series of acute irradiations at prescribed timesteps is referred to as split dose irradiation.
Existing models fail at properly describing protracted dose, being unable to fully capture
the stochasticity inherent to energy deposition. Usually, strong assumptions are used to
treat protracted dose, [Hawkins, 1996], or a split dose is used to approximate a continuous
dose delivery, [Inaniwa et al., 2013]. Nonetheless, models cannot fully predict experimental
data, [Inaniwa et al., 2013].

The generalization of the GSM2 master Equation (11.3) to consider a continuous dose
irradiation is not trivial. In fact, at random time t the number of lesions, either lethal
or sublethal, exhibits a jump upward of a random quantity that depends on the energy
deposition z, that we recall is a random variable.

More formally, the possible interactions now become

X
a−→ Y ,

X
r−→ ∅ ,

X +X
b−→ Y .

X
ḋ−→ X + Zκ .

Y
ḋ−→ Y + Zλ ,

being Zλ and Zκ two random variables with integer–valued distributions pX0 and pY0 re-
spectively, defined as in Equation (11.8). The parameter ḋ represents the dose rate, see,
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[Hawkins and Inaniwa, 2014a, Hawkins and Inaniwa, 2014b], and it is given by ḋ := zn
TirrzF

,
being zF given in Equation (11.7) and Tirr is the total irradiation time.

(i)

P ((Y (t+ dt), X(t+ dt)) = (y, x)| (Y (t), X(t)) = (y, x)) =

= 1− ((a+ r)x+ bx(x− 1) + ḋ(1− pX0 (0))(1− pY0 (0)))dt+O(dt2) ;

(ii)

P ((Y (t+ dt), X(t+ dt)) = (y, x)| (Y (t), X(t)) = (y − iy, x− ix)) =

= ḋpX0 (ix)p
Y
0 (iy)dt+O(dt2) , ix = 1, . . . , x , iy = 1, . . . , y ,

Further, reactions (ii), (iii) and (iv) in Section 11.2 remain valid.
Therefore, a similar analysis to the one carried out in Section 11.2 leads to the following

MME

∂tp(t, y, x) =
(
E−1,2 − 1

)
[x(x− 1)bp(t, y, x)] +

(
E−1,1 − 1

)
[xap(t, y, x)] +

+
(
E0,1 − 1

)
[xrp(t, y, x)] +

 x∑
ix=1

y∑
iy=1

E
−iy ,−ix

ḋ
− (1− pX0 (0))(1− pY0 (0))

[ḋp(t, y, x)] =
= E−1,2 [x(x− 1)bp(t, y, x)] + E−1,1 [xap(t, y, x)] +

+ E0,1 [xrp(t, y, x)] + E−y,−x

ḋ

[
ḋp(t, y, x)

]
.

(11.11)

The operator in the last line of Equation (11.11) right end side has been defined as

E−y,−x

ḋ
f(t, y, x) :=

 x∑
ix=1

y∑
iy=1

E
−iy ,ix

ḋ
− (1− pX0 (0))(1− pY0 (0))

 f(t, y, x) =

=
x∑

ix=1

y∑
iy=1

pX0 (ix)p
Y
0 (iy) f(t, y − iy, x− ix)− (1− pX0 (0))(1− pY0 (0)) f(t, y, x) .

The protracted dose is assumed to be delivered up to a finite time Tirr < ∞, beyond
which no irradiation is considered and the systems evolves according to (11.3).

The diffusive cell nucleus model for GSM2

In Section 11.2, we investigated the time evolution for lethal and sub–lethal lesions in
the cell nucleus.

As we discussed above, one of the major weaknesses of the standard MKM and its
extensions is the choice of the cell domains [Smith and Grima, 2019]. In fact, too small
domains translate in a null probability of double events, whereas too big domains imply
that distant lesions may combine to produce a lethal lesion. To overcome this problem,
the cell nucleus is split into several domains so that the time evolution in each domain can
be considered independently. Further, following treatment’s aim is to encompass above
limitations, allowing domains interaction and variability in shape and dimension.
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In the current Section, we will show how the MME (11.11) can be extended to include
interactions between the domains. In order to keep the treatment as clear as possible, no
protracted dose will be consider. The general case of a continuous irradiation can easily
included in the following treatment via arguments analogous to the ones used in Section
11.2.

Let us consider Nd domains (referred to also as voxels) that can undergo one of the
following possible reactions

Xi
a−→ Yi , i = 1, . . . , Nd ,

Xi
r−→ ∅ , i = 1, . . . , Nd ,

Xi +Xi
b−→ Yi , i = 1, . . . , Nd .

(11.12)

A reasoning analogous to the one carried out in Section 11.2 leads to the following
MME

∂tp(t, y, x) =

Nd∑
i=1

E−1,2
i [xi(xi − 1)bp(t, y, x)] +

Nd∑
i=1

(
E−1,1
i [xiap(t, y, x)] + E0,1

i [xirp(t, y, x)]
)
.

(11.13)

In Equation (11.13), the variables x and y are N− dimensional vectors with i−th compo-
nent given by xi and yi, representing the number of sub–lethal or lethal lesions, respec-
tively, within the i−th domain (i = 1, . . . , N).

Remark 11.2.1. In order to keep the notation as simple as possible, in Equation (11.12) we
chose the rates a, b and r independent of the domain. Similar results would be obtained
with voxel-dependent rates ai, bi and ri, i = 1, . . . , Nd.

Empirical evidence shows that the lesions, together with interacting within the same
voxel, may also move to a different voxel. In fact, lesion spatial movements inside a cell
has been demonstrated to be significantly higher than the typical voxel size [Schettino
et al., 2011] . To account for this behaviour, we will add an additional term to the MME
(11.13).

Besides reactions considered in Equation (11.12), we now assume further the following

Xi

κX
i;j−−→ Xj , i, j = 1, . . . , Nd ,

Yi
κY
i;j−−→ Yj , i, j = 1, . . . , Nd .

(11.14)

Remark 11.2.2. We assumed possible interactions also between non adjacent domains. If
the reactions described by Equation (11.14) are to be intended as lesions movements inside
the cell nucleus, the most reasonable choice for the interaction rates is to set

κXi;j = κYi;j = 0 ,

for j ̸∈ Γi, being Γi the set of adjacent domains to i.

Following the same process described in in Section 11.2, we obtain the MME

∂tp(t, y, x) =

N∑
i=1

E−1,2
i [xi(xi − 1)bp(t, y, x)] +

N∑
i=1

(
E−1,1
i [xiap(t, y, x)] + E0,1

i [xirp(t, y, x)]
)
+

+
N∑

i,j=1

XE−1,1
i,j

[
xiκ

X
i;jp(t, y, x)

]
+

N∑
i,j=1

Y EY ;−1,1
i,j

[
yiκ

Y
i;jp(t, y, x)

]
,

(11.15)
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where the operators are defined as

XE−1,1
i,j f(t, y, x) =

(
E0,1

i E0,−1
j − 1

)
f(t, y, x) ,

Y E−1,1
i,j f(t, y, x) =

(
E1,0

i E−1,0
j − 1

)
f(t, y, x) .

The first two lines of Equation (11.15) accounts for reactions within the same voxel,
whereas the last line described movements between adjacent domains.

Using the same approach for modeling the initial damage distribution (Section 11.2)
the resulting MME reads

∂tp(t, y, x) =
∑Nd

i=1 E
−1,2
i [xi(xi − 1)bp(t, y, x)] +

+
∑Nd

i=1

(
E−1,1
i [xiap(t, y, x)] + E0,1

i [xirp(t, y, x)]
)
+

+
∑Nd

i,j=1
XE−1,1

i,j

[
xiκ

X
i;jp(t, y, x)

]
+
∑Nd

i,j=1
Y EY ;−1,1

i,j

[
yiκ

Y
i;jp(t, y, x)

]
,

p(0, y, x) =
∏N

i=1 p
X
0;i(xi)p

Y
0;i(yi) ,

(11.16)
where pX0;i(xi)p

Y
0;i(yi) denotes the initial distribution for the voxel i as computed in Equa-

tions (11.8)–(11.9).

11.3 Numerical implementation

To calculate a numerical solution to the MME (11.3), the following steps are performed:

1. We choose the number Nd of domains in which the cell nucleus is divided. As
GSM2 does not rely on any specific assumption for the probability distribution, the
domains do not need to be assumed of equal size. For each domain, the single event
energy deposition distribution f1;d(z) is obtained with Geant4 [Agostinelli et al.,
2003] simulations.

2. The number of lethal and sub-lethal lesions are sampled from the distributions pX0 (x)
and pY0 (x) as derived in Equation (11.9). The standard assumption is that pXz , resp.
pYz , is a Poisson distribution of mean κzd, resp. λzd. Given the general setting, we
will compare the results with an initial Gaussian distribution of different possible
variances.

3. Given the initial number of lesions, the evolution paths are simulated via the stochas-
tic simulation algorithms (SSA) [Weinan et al., 2019, Chapter 13].

4. Steps 1-3 are repeated to obtain the Monte Carlo empirical distribution of lethal
and sublethal lesions over the cell nucleus;

5. The survival probability in the single domain as well as the cell nucleus are calculated
from the empirical distribution obtained in step 4;

Previous steps can be computed independently for each domain if no interaction be-
tween domains is assumed or the paths for the whole nucleus can be estimated simul-
taneously, in case of a dependent-voxel model. The computational effort for the latter
is substantially higher. It should be noted here that developing an efficient simulation
algorithm is beyond the aim of the present work and we refer to [Simoni et al., 2019] for
a review of possible simulation algorithms.
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The numerical solution

Figure 11.1: Sub-lethal lesions (left panel) and lethal lesions (right panel) evolution. GSM2

parameters were set to r = 1, a = 0.1 and b = 0.01. The red line represents the average
value.

The present Section is devoted to finding and discussing the numerical solution of
MME derived in Section 11.2. In particular, the full master Equation (11.3) is solved
via the stochastic simulation algorithms (SSA) [Weinan et al., 2019, Chapter 13], so that
the density is estimated with a Monte Carlo simulation. We simulate 106 events and the
density function is thus reconstructed empirically.

The goal of this Section is also to highlight how a different setting affects the lesions
density distribution. In particular, it will emerge how the density distribution resulting
from the corresponding master equation changes for different lesion evolution parameters,
initial probabilistic conditions or also irradiation conditions.

To assess the energy deposited on the domain, we used the microdosimetry approach
as discussed in Section 11.2. With Geant4, we simulated microdosimetric spectra of a 20
MeV/u carbon ion beam traversing a 1.26 cm diameter sphere filled with pure propane
gas with a low density (1.08 ∗ 10−4g/cm3), such that the energy depositions are equiva-
lent to those in 2 µm of tissue. This geometry reproduces a standard Tissue Equivalent
Proportional Counter (TEPC) as used for example in [Missiaggia et al., 2020]. Specific
energies acquired with the TEPC are then converted to the domain size of interest as
reported in [Bellinzona et al., 2021, Section 2]. The choice to simulate a microdosimeter
has been made with the aim of remaining as consistent as possible with real experiments.
In addition, carbon ions have been chosen since existing model fails at predicting relevant
radiobiological endpoints under high-LET regimes.

In the calculations, we consider high doses, so that multi-event distributions as de-
scribed in Section 11.2 are computed for zn >> 1. This choice is due to the fact that the
plotted distributions refer to a single cell nucleus domain and thus, to highlights differ-
ences at such a small scale, high dose needs to be considered. At lower doses, differences
between the MME solution for a single nucleus domain for different parameters are more
difficult to appreciate. Nonetheless, small differences at the domain level can translates
into relevant dissimilarities at the macroscopic level.

Figure 11.1 reports different path realizations for the lethal and sub–lethal evolution;
the stochastic paths are also compared to the mean value, that evolves according to the
MKM kinetic Equations (2.16). The plots indicate that the mean value can not be repre-
sentative of the whole path realizations distribution.

Figure 11.2 shows the master equation solution at different times. The left panels show
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t1
t2

t3

Figure 11.2: Master equation solution at time t = 1m (top panel), t = 100 arb. unit
(middle panel) and t = 150 arb. unit. GSM2 parameters were set to r = 1, a = 0.2 and
b = 0.1.

the contour plots of the joint probability distributions of lethal and sub–lethal damages,
together with their marginal distributions. The rights panels are 3D representations of the
density function solutions. At a starting time t1, there is a high variability in the number
of reparable lesions while small fluctuations are present in the number of lethal lesions.
At a later time t3, instead, the situation is the exact opposite, with a greater variability in
the number of lethal lesions against small fluctuations in the number of sub–lethal lesions.

Figure 11.3 compares lethal and sub-lethal lesion distributions for different types of
irradiation conditions, namely acute dose delivery at initial time, split dose at uniform time
steps and protracted dose according to Equation (11.11). A split dose at uniform times
yields a rather similar lesion distribution as a fully stochastic protracted dose irradiation,
while the solution differ significantly for the acute dose case. This result is caused by the
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Figure 11.3: Master equation solution for acute, split and protracted doses of 100Gy.
GSM2 parameters were set to r = 1, a = 0.2 and b = 0.1.

non-linear effect that double events have on the lesions probability distribution.

The long time distribution of lethal lesions is compared with a Poisson distribution
for different parameters and doses in Figure 11.4. At lower doses and for b negligible
with respect to r, the MME solution is in fact Poissonian (top panel). As the dose
increases, the MME solution can be non poissonian even if r dominates b (middle panel).
Finally, for higher doses and higher b, the MME solution differs significantly from a Poisson
distribution (bottom panel).

Effect of the initial law on the lethal lesions distribution and cell survival

The goal of the present Section is to emphasize the dependence on the initial law of the
long–time lethal lesions distribution, showing that the lethal lesions marginal distribution
might differ from the Poisson distribution that is typically assumed.

We considered different initial conditions for Equation (11.9). In particular, the fol-
lowing initial distributions were selected for pXz (x|κz) and pYz (y|λz): i) a Poisson random
variable with mean value µ; and ii) a Gaussian with mean value µ and variance between
0.5µ and 1.5µ. The mean value µ has been set to λz for sub–lethal lesions and κz for
lethal lesions. The results are plotted in Figure 11.5 and indicate that a more peaked
initial distribution correspond to a more peaked long–time distribution, meaning that the
initial value can sharpen or broaden lethal and sub–lethal lesion distributions. This effect
has a straightforward consequence on the resulting survival probability shown in Figure
11.6.

we test both the typically used Poisson initial distribution and a Gaussian random
variable with different variance.

Figure 11.5 shows the comparison of lethal and sub–lethal lesion distributions for
different initial conditions. In particular, initial datum has been taken to be a Poisson
random variable with mean value µ. Additionally, the case of an initial distribution to be
Gaussian and with mean value µ and variance 0.5µ and 1.5µ has been considered. The
mean value µ has been set to λz for sub–lethal lesions and κz for lethal lesions. It can be
seen how the initial value can sharpen or broaden lethal and sub–lethal lesion distributions,
with a straightforward consequence on the resulting survival probability, see Figure 11.6.

Survival probability is one of the most used and relevant radiobiological observables.
Figure 11.6 highlights how a different initial condition affects the resulting survival curve.
In particular, it is important to notice that the probability of survival rises or falls in the
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high dose region. One of the major flaws in classical models, with particular reference to
the linear–quadratic model, is the fact that it significantly underestimates the probability
of survival for high doses.
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Figure 11.4: Comparison of long–time lethal lesion distributions and Poisson distributions.
Top panel: dose=5 Gy, r = 1, a = 0.1 and b = 0.01. Middle panel: dose=100 Gy, r = 5,
a = 0.1 and b = 0.01. Bottom panel: dose=150 Gy, r = 5, a = 0.2 and b = 0.1.
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Figure 11.5: Lethal and sub-lethal lesions distribution depending on the chosen initial
distribution at time t1 = 1 arb. unit and t3 = 150 arb. unit. The initial distributions pXz
and pYz have been chosen as a Poisson distribution of mean µ = λ, κz or as a Gaussian
distribution with mean µ = λ, κz and variance σ2 ∈ {0.5µ, , 1.5µ}. The MME parameters
were set to r = 1, a = 0.2 and b = 0.1.

Figure 11.6: Cell survival function calculated for different initial conditions. The initial
distributions pXz and pYz have been chosen as a Poisson distribution of mean µ = λ, κz,
or as a Gaussian distribution with mean µ = λ, κz and variance σ2 ∈ {0.5µ, , 1.5µ}. The
MME parameters were set to r = 1, a = 0.2 and b = 0.1.



Chapter 12

Cell survival curve predictions
with GSM2

Exploiting the findings reported in chapter 11, the current section further explores the
stochastic effects related to energy deposition and derive an explicit expression for the
survival curve.
Simulating energy deposition by different particle beams using TOPAS, [Zhu et al., 2019],
it is investigated how the survival curve changes for different ions and different energies.
Particular attention is dedicated to higher LET particle for which the existing models fail
to accurately predict the cell survival curve. Mixed radiation fields are also considered
showing that GSM2 flexibility allows to model a wide variety of irradiation situations.

12.1 Theory and calculations

Survival curve computation

An estimate of the survival probability following a radiation exposure can be obtained
with GSM2. We will describe the calculation process for a single domain, and then extend
it to the entire cell population. The survival probability can be calculated by solving the
MME (11.3):

Sd(zn) := P
(
lim
t→∞

Y (t) = 0
)
, (12.1)

where the dependence of Sd on the energy deposition zn is explicitly reported.

Assuming that the domains are independent of each other, the survival of a single cell
can be obtained as

Sn(zn) := (Sd(zn))
Nd =

(
P
(
lim
t→∞

Y (t) = 0
))Nd

. (12.2)

In the present Chapter, the domains are considered independent, as it is typically
assumed in similar studies. Nonetheless, as we demonstrated in Chapter 11, this assump-
tion can be dropped to allow for diffusive movements of the lesions within the entire cell
nucleus.

Thus, a multi-event distribution on the whole cell population can be defined as

fn(zn|D) :=

∞∑
ν=0

pn(ν|D)fν;c(zn) ,

180
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where fν;c(zn) is the energy deposition distribution resulting from ν depositions in a single
nucleus and pn(ν|D) is the probability that ν energy depositions occur in a nucleus. The
fν;c(zn) distribution can be obtained convolving the single event distribution f1;c(zn), as
described in Section 11.2.

As

D =

∫ ∞

0
znfn(zn|D)dzn ,

the cell survival probability for the whole cell population can be computed as

S(D) =

∫ ∞

0
Sn(zn)fn(zn|D)dzn . (12.3)

Equation (12.3) provides the cell survival probability for a macroscopic dose D.
Therefore, the survival probability for the domain d, in agreement with Equation

(12.1), is defined as the quantity

Sd(zn) := P
(
lim
t→∞

Y (t) = 0
)
. (12.4)

Figure 12.1 reports a schematic representation of GSM2 cell-survival assesment work-
flow.

Figure 12.1: Schematic representation of the procedure for cell survival fraction assessment
implemented by means of GSM2

From an heuristic point of view, since the number of sub–lethal lesion can only decrease,
the points {(y, 0) : y ∈ N0} are absorbing states. Furthermore, the system reaches an
absorbing state in finite time with probability 1, most likely converging towards a limiting
stationary distribution. In particular, for any initial condition x, it holds that

P
(
lim
t→∞

Xx(t) = 0
)
= 1 ,

and we can infer that
p∞(y, x) = δ(x) ∗ p∞(y) =: p̄∞(y) . (12.5)
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By absorbing state, we mean that once the system reaches the point (y, 0) it cannot
leave anymore that state and future evolutions are of no longer of interest. A rigorous
proof of this result can be found in [Gardiner et al., 1985, Van Kampen, 1992].

It is worth highlighting that, in explicitly deriving above limiting distribution, the
quadratic term in the MME (11.3) implies that the considered process does not fall into the
broad category of birth-death process, and thus we could not take advantage of the extensive
literature available on such type of processes. In this direction, usually approximation of
the general model enables to obtain explicit form for the stationary distribution, [Gardiner
et al., 1985].

Despite these issues, in the present work we will illustrate a derivation of an explicit
form for the survival curve.

For any x, x0 and t0 < t, we denote

Pt0,x0 (Y (t) = y) =

= P (Y (t) = y|Y (t0) = y , X(t0) = x0) ,

as the probability to have exactly x lesion of type II and y of type I at the time t.
Knowing that at time t0 < t the system was in the state (0, x0), we define S(t|x0, t0)

as the survival probability at time t. Thus,

S(t|x0, t0) :=
:= P (Y (t) = 0|Y (t0) = 0 , X(t0) = x0) =

=

x0∑
x=0

Pt0,x0 ((Y (t), X(t)) = (0, x)) .

(12.6)

Differentiating with respect to time both side of Equation (12.6), we obtain

∂tS(t|x0, t0) =

=

x0∑
x=0

∂tPt0,x0 ((Y (t), X(t)) = (0, x)) =

=

x0∑
x=0

∂tpt0,x0(t, 0, x) .

(12.7)

Note that pt0,x0(t, 0, x) is the solution to Equation (11.3), considering the initial value

pt0,x0(t0, x, y) = δ(y)δ(x− x0) .

As discussed in Section 11.2, the solution for a general probabilistic initial datum
p(t0, x, y) = pX0 (x)pY0 (y) can be obtained using the total law of probability

p(t, y, x) =
∑
x0,y0

pt0,y0,x0(t, y, x)p(t0, y0, x0) . (12.8)

Therefore, merging Equations (12.7) and (12.8), we obtain that the survival probability
must satisfy the following differential Equation

∂tS(t) =

x0∑
x=0

∑
x0≥0

∂tpt0,x0(t, 0, x)p
X
0 (x0)p

Y
0 (0) . (12.9)
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To simplify the notation, we will drop the subscript (t0, x0), and instead use p(t, x) =
pt0,x0(t, 0, x). Furthermore, we will describe the calculations for the specific case t0 = 0,
being the general case completely analogous.

The solution of Equation (12.7) can be derived from Equation (11.3), and then calcu-
lated iteratively. Using Equation (11.3) we have that

∂tp(t, x) = (x+ 1)rp(t, x+ 1)+

− ((a+ r)x+ bx(x− 1)) p(t, x) .
(12.10)

As the number of sub–lethal lesion (i.e. the x−variable) can only decrease, we have
that p(t, x0 + 1) = 0 for x = x0. Therefore, p(t, x0) satisfies

∂tp(t, x0) = − ((a+ r)x0 + bx0(x0 − 1)) p(t, x0) ,

whose explicit solution is given by

p(t, x0) = e−γ(x0)t ,

γ(x0) := ((a+ r)x0 + bx0(x0 − 1)) .
(12.11)

For x = x0 − 1, we obtain

∂tp(t, x0 − 1) =

= −γ(x0 − 1)p(t, x0 − 1) + ρ(x0)p(t, x0) ,

with ρ(x0 + 1) := (x0 + 1)r. Using p(t, x0) from Equation (12.11), it follows

p(t, x0 − 1) =

=

∫ t

0
ρ(x0)e

−γ(x0−1)(t−s)p(s, x0)ds =

=
ρ(x0)

γ(x0)− γ(x0 − 1)

(
e−γ(x0−1)t − e−γ(x0)t

)
.

(12.12)

Iterating above reasoning for any x0 we infer that the general solution p(t, x) must be
a sum of exponential functions

p(t, x) =

x0∑
k=x

C(k, x, x0)e
−γ(k)t , (12.13)

for a given function C(k, x, x0).
Inserting Equation (12.13) into Equation (12.12), and comparing exponential functions

of the same order, we conclude that the general solution is given by

p(t, x) =

x0∑
k=x+1

C(k, x, x0)
(
e−γ(k)t − e−γ(x)t

)
, (12.14)

with

C(k, x, x0) :=
ρ(x+ 1)ρ(x+ 2)ρ(x+ 3) . . . ρ(x0)

C1(k, x)C2(k, x0)
,

being

C1(k, x) := (γ(x)− γ(k))(γ(x+ 1)− γ(k)) · · · ×
× . . . (γ(k − 1)− γ(k)) ,

C2(k, x0) := (γ(k + 1)− γ(k)) . . . (γ(x0)− γ(k)) .
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The calculation described above demonstrates that the repair probability follows a
multi-exponential form, and thus deviates from the predictions of the existing theory,
which assumes an exponential repair kinetics [Fowler, 1999].

For x = 0, we obtain

p(t, 0) =

∫ t

0
rp(s, 1)ds =

r

x0∑
k=2

C(k, 1, x0)

∫ t

0

(
e−γ(k)s − e−(a+r)s

)
ds =

=

x0∑
k=2

C(k, 1, x0)

(
1− e−γ(k)t

γ(k)
− 1− e−(a+r)t

a+ r

)
=

=

x0∑
k=0

C(k, 0, x0)e
−γ(k)t ,

(12.15)

which agrees with Equation (12.13).
Integrating Equation (12.7) with respect to time, we obtain from Equation (12.14)–

(12.15),

S(t|x0)− 1 =

=

x0∑
x=0

(p(t, x)− p(0, x)) =

x0∑
x=0

p(t, x)− 1 =

=

x0−1∑
x=1

x0∑
k=x+1

C(k, x, x0)
(
e−γ(k)t − e−γ(x)t

)
+

+ e−γ(x0)t +

x0∑
k=0

C(k, 0, x0)e
−γ(k)t − 1 .

For t→ ∞, we obtain
e−γ(k)t → 0 ,

so that only the term with k = 0 does not converge to 0 and yields

S∞;x0 := lim
t→∞

S(t|x0) = C(0, 0, x0) . (12.16)

Equation (12.16) has a natural and intuitive meaning. Since the number of sub–lethal
lesions can only decrease, it can reach 0 in a finite time with probability 1. Therefore, as
t → ∞, the only term that remains in Equation (12.16) is the one coming from p(t, 0),
that does not converge to 0.

Using the rule of total probability, we can obtain the solution for a probabilistic initial
data from Equation (12.8) as

p(t, 0, x) =
∞∑

x0=x

px0(t, 0, x)p(0, 0, x0) =

=

∞∑
x0=x

px0(t, 0, x)p
X
0 (x0)p

Y
0 (0) ,
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where px0(t, 0, x) can be computed as in Equation (12.14). In this case, the survival
probability becomes

S(t) = P (Y (t) = 0) =

=

∞∑
x=0

P (Y (t) = 0, X(t) = x) =

=
∞∑
x=0

p(t, 0, x) =

=
∞∑
x=0

∞∑
x0=x

px0(t, 0, x)p
X
0 (x0)p

Y
0 (0) .

(12.17)

The probability px0(t, 0, x) can be calculated according to Equation (12.14)) only for
x0 ≥ 2. We can also compute the values for x0 ≥ 1, considering that in such scenario no
double interactions can occur. Thus, we obtain

p1(t, 0, 1) = e−(a+r)t ,

p1(t, 0, 0) = r 1−e−(a+r)t

a+r ,

p1(t, 0, x) = 0, x ≥ 2 ,

p0(t, 0, 0) = 1 ,

p0(t, 0, x) = 0 , x ≥ 1 .

(12.18)

Combining a similar methodology as the one described above with Equations (12.14)-
(12.15)-(12.17)–(12.18), yields the following

S(t) =
∞∑
x=0

∞∑
x0=x

px0(t, 0, x)p
X
0 (x0)p

Y
0 (0) =

=

∞∑
x0=0

px0(t, 0, 0)p
X
0 (x0)p

Y
0 (0)+

+
∞∑
x=1

∞∑
x0=x

px0(t, 0, x)p
X
0 (x0)p

Y
0 (0) =

= pX0 (0)pY0 (0)+

+
r

a+ r
pX0 (1)pY0 (0)

(
1− e−(a+r)t

)
+

+

∞∑
x0=2

x0∑
k=0

pX0 (x0)p
Y
0 (0)C(k, 0, x0)e

−γ(k)t+

+
∞∑
x=1

e−γ(x)tpX0 (x)pY0 (0)

+

∞∑
x=1

∞∑
x0=x+1

x0∑
k=x+1

pX0 (x0)p
Y
0 (0)C(k, x, x0)×

×
(
e−γ(k)t − e−γ(x)t

)
.

(12.19)

Considering Equation (12.19) in the limit t→ ∞, and using that e−γ(x)t → 0 as t→ ∞,
we obtain that only the terms with k = 0 do not converge to 0. Thus
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Sd(zn) := lim
t→∞

S(t) =

= pX0 (0|zn)pY0 (0|zn)+

+
r

a+ r
pX0 (1|zn)pY0 (0|zn)+

+

∞∑
x0=2

pX0 (x0|zn)pY0 (0|zn)C(x0) ,

(12.20)

with C(x0) := C(0, 0, x0). Here we have employed the notation pX0 (x0|zn), pY0 (0|zn) and
S∞(zn) to emphasize the dependence of the initial distributions on the average deposited
energy on the cell nucleus zn.

We can give a probabilistic interpretation of the terms appearing in Equation (12.20):
i) pX0 (x0|zn) and pY0 (0|zn) represent the probability that the domain suffers x0 sub–lesions
and 0 lethal lesion, respectively; (ii) C(x0) are weighting terms that represent the proba-
bility that x0 sub–lethal lesions are repaired so that the domain survives.

The survival probability of the whole cell, when receiving an average energy deposition
of zn, is therefore evaluated as

S(zn) =

= P
(
lim
t→∞

({
Y 1(t) = 0

}
∩ · · · ∩

{
Y Nd(t) = 0

}))
=

=

Nd∏
i=1

P
(
lim
t→∞

Y i(t) = 0
)
=

Nd∏
i=1

S∞(zn) =

=

Nd∏
i=1

pX0 (0|zn)pY0 (0|zn)+

+

Nd∏
i=1

∞∑
x0=1

C(x0)p
X
0 (x0|zn)pY0 (0|zn) .

(12.21)

If we assume that all domains have the same probability distribution, we obtain

S(zn) =
(
pX0 (0|zn)pY0 (0|zn) +

+

∞∑
x0=1

C(x0)p
X
0 (x0|zn)pY0 (0|zn)

)Nd

.
(12.22)

The survival Equation (12.22) calculated with GSM2 has a substantial difference from
the standard Poisson–based models. As shown in Section 2.2, the survival probability for
a cell is generally computed by averaging the survival on a single domain, after it received
an energy deposition z. On the contrary, we account for stochasticity deriving from
energy deposition at the very beginning. In fact, the single domain survival probability is
calculated taking into account all possible stochastic energy depositions z. Therefore, the
cell survival probability is not the average over all possible energy depositions, but it is
estimated as the probability that none of the domains suffers a lethal lesion.
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Explicit formulation of the initial conditions for the survival fraction compu-
tation

The survival probability of Equation (12.22) is expressed in terms of the initial damage
distribution pX0 (x0|zn). We will derive a more explicit form for the survival Equation by
using the microdosimetric distribution f1;d, so that the relation of the survival curve on
the variable zn appears explicitly.

For x > 0, using Equation (11.9), the following holds

pX0 (x) =

=

∫ ∞

0
e−κz (κz)

x

x!
f(z|zn)dz =

=
∑
ν≥0

∫ ∞

0
e−κz (κz)

x

x!

zνn
zνF ν!

e
− zn

zF fν;d(z)dz =

=
∑
ν≥0

h(zn, ν, κ, x)

∫ ∞

0
e−κzzxfν;d(z)dz .

(12.23)

with

h(zn, ν, κ, x) :=
κx

x!

zνn
zνF ν!

e
− zn

zF .

We will denote by L [g(z)] the Laplace transform of the function g, defined as

L [g(z)] (κ) :=

∫ ∞

0
e−κzg(z)dz .

Taking advantage of the Laplace transform property, we have

L [zxg(z)] (κ) = (−1)x
dx

dκx
L [g(z)] (κ) , x > 0 ,

L [g(z) ∗ g(z)] (κ) = (L [g(z)] (κ))2 .
(12.24)

Substituting Equation (12.24) into Equation (12.23), we find

pX0 (x) =

=
∑
ν≥0

h(zn, ν, κ, x)

∫ ∞

0
e−κzzxfν;d(z)dz =

=
∑
ν≥0

h(zn, ν, κ, x)(−1)x
dx

dκx
(L [f1;d(z)]

ν (κ)) =

= (−1)x
κx

x!
e
− zn

zF ×

× dx

dκx

∑
ν≥0

zνn
zνF ν!

(∫ ∞

0
e−κzf1;d(z)dz

)ν

=

= (−1)x
κx

x!
e
− zn

zF ×

× dx

dκx
exp

[
zn
zF

∫ ∞

0
e−κzf1;d(z)dz

]
.

(12.25)
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M(κ) and Mx(κ) represent the moment generating function and the x−translated
moment generating function, respectively, of the single–event distribution f1 defined as

M(κ) :=

∫ ∞

0
e−κzf1(z)dz =

∑
n≥0

(−1)n

n!
κnmn ,

Mx(κ) :=

∫ ∞

0
zxe−κzf1(z)dz =

∑
n≥0

(−1)n

n!
κnmn+x ,

where mn is the n−th moment of single–event distribution f1;d(z).

Defining for short

g(κ) =
zn
zF

∫ ∞

0
e−κzf1;d(z)dz =

zn
zF
M(κ) ,

the following equalities hold true, [Craik, 2005],

dx

dκx
eg(κ) =

= eg(κ)
x∑

i=1

(−1)i

i!

i∑
j=1

(−1)j
(
i

j

)
dx

dκx
gj(κ)g(κ)i−j ,

dx

dκx
gj(κ) =

=

j∑
l=1

(
zn
zF

)l j!

(j − l)!
gj−l(κ)Bx,l (M1, . . . ,Mx−l+1) ,

(12.26)

where Bx,l (M1, . . . ,Mx−l+1) is the Bell’s polynomial defined as

Bx,l (M1, . . . ,Mx−l+1) :=

=
∑ x!

j1! . . . jx−l+1!
(M1)

j1 . . . (Mx−l+1)
jx−l+1 ,

and the summation ranges over multi-indexes such that

j1 + j2 + · · ·+ jx−l+1 = l ,

j1 + 2j2 + · · ·+ (x− l + 1)jx−l+1 = x .

Using Equation (12.26), we thus get

dx

dκx
eg(κ) =

= eg(κ)
x∑

i=1

i∑
j=1

j∑
l=1

(−1)i(−1)j

(i− j)!(j − l)!

(
zn
zF

)j

×

×M i−lBx,l (M1, . . . ,Mx−l+1) .

(12.27)
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Inserting Equation (12.27) into Equation (12.25) we finally obtain

pX0 (x) =

=
(−κ)x

x!
exp

[
− zn
zF

∫ ∞

0

(
1− e−κz

)
f1;d(z)dz

]
×

×
x∑

i=1

i∑
j=1

j∑
l=1

(−1)i(−1)j

(i− j)!(l − 2)!))

(
zn
zF

)j

×

×M i−lBx,l (M1, . . . ,Mx−l+1) =

= exp

[
− zn
zF

∫ ∞

0

(
1− e−κz

)
f1;d(z)dz

]
×

× (−κ)x

x!
H(zn, x,M) ,

(12.28)

with

H(zn, x,M) :=

=
x∑

i=1

i∑
j=1

j∑
l=1

(−1)i(−1)j

(i− j)!(j − l)!

(
zn
zF

)j

×

×M i−lBx,l (M1, . . . ,Mx−l+1) .

(12.29)

For x = 0, we find the particular case

pX0 (0) = exp

[
− zn
zF

∫ ∞

0

(
1− e−κz

)
f1;d(z)dz

]
, (12.30)

and analogously for pY0 (0)

pY0 (0) = exp

[
− zn
zF

∫ ∞

0

(
1− e−λz

)
f1;d(z)dz

]
. (12.31)

From Equations (12.28)–(12.30)–(12.31), and exploiting the fact that

pX0 (x0|zn)pY0 (0|zn) =

= exp

[
− zn
zF

∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz

]
×

× (−κ)x

x!
H(zn, x,M) ,

the survival Equation (12.20) becomes

Sd(zn) =

= exp

[
− zn
zF

∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz

]
×

×

[
1 +

∞∑
x0=1

(−κ)x0

x0!
H(zn, x0,M)C(x0)

]
.

(12.32)
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Thus, the survival for the whole cell nucleus is calculated as

S(zn) =

= exp

[
−Nd

zn
zF

∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz

]
×

×

[
1 +

∞∑
x0=1

(−κ)x0

x0!
H(zn, x0,M)C(x0)

]Nd

.

(12.33)

To emphasize the dependence of Equation (12.33) on zn, the terms of H(zn, x,M)
contained in Equation (12.33) can be rearranged to obtain (12.33)

S(zn) =

= exp

[
−Nd

zn
zF

∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz

]
×

×

(
1 +

∞∑
k=1

(
zn
zF

)k

Gk(M)

)Nd

,

(12.34)

with

Gk(M) =

:=
∞∑

x0=k

x0∑
i=1

i∑
j=1

(−1)i(−1)j

(i− j)!(j − k)!

(−κ)x0

x0!
C(x0)×

×M i−kBx0,k (M1, . . . ,Mx0−k+1) .

(12.35)

Remark 12.1.1. In the very particular case of low–LET radiation, as showed in Section
11.2, since κ2znzD << 1, we infer that pX0 follows a Poisson distribution.

Therefore, using the fact that the initial damage distribution is Poisson distributed,
Equation (12.34) simplifies to

S(zn) =

= e−Ndzn(κ+λ)

(
1 +

∞∑
x0=1

zx0
n

κx0

x0!
C(x0)

)Nd

.
(12.36)

Comparison with existing radiobiological models for predicting survival
fraction

Equation (12.34) depends on both the biological parameters a, b, r, κ and λ, as well
as physical parameters related to energy deposition, mainly described by the single-event
specific energy spectra f1;d(z). In particular, the survival Equation (12.34) is the product
of a linear exponential function

exp

[
−Nd

zn
zF

∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz

]
,

and a polynomial function of general order on zn(
1 +

∞∑
k=1

(
zn
zF

)k

Gk(M)

)Nd

.
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The linear exponential function describes the initial damage formation inside the cell.
This term depends on the biological parameters κ and λ, describing the number of initial
lethal and sublethal lesions for a given energy event z, and on the radiation quality via the
single–event spectra f1;d(z). It is worth stressing that, differently from the vast majority
of existing models, the whole microdosimetric distribution is considered rather than solely
mean values.

The polynomial function, instead, accounts for the time evolution of the DNA damages.
Each term G depends on the full energy spectrum f1;d(z) through the moment generating
function M ; this is a relevant difference with the majority of existing models, which
are mainly based on the first two moments of the microdosimetric distribution. The
probabilistic description of the G terms is that the i−th term accounts for the damage
caused by i events. Each term is weighted by the probability that such event occurs and
that the induced DNA damage is repaired.

The survival curve in Equation (12.20), written in compact form as,

Sd(zn) :=
∑
x0≥0

pX0 (x0|zn)pY0 (0|zn)C(x0) , (12.37)

can be seen as a generalization of a multi–hit (MH) model. If we further approximate the
multi–event microdosimetric distribution as

fν;d(z) = δ(z − νzF ) , (12.38)

with δ(z − νzF ) the Dirac delta centered in νzF , we obtain from Equation (12.23),

pX0 (x) =

=

∫ ∞

0
e−κz (κz)

x

x!
f(z|zn)dz =

=
∑
ν≥0

∫ ∞

0
e−κz (κz)

x

x!

zνn
zνF ν!

e
− zn

zF δ(z − νzF )dz =

=
∑
ν≥0

e−κνzF
(κνzF )

x

x!

zνn
zνF ν!

e
− zn

zF =

= e
− zn

zF
(1−e−κzF )

Bx(e
− zn

zF
e−κzF

) ,

(12.39)

with Bx the Bell polynomial. Equation (12.39) is equal to [Vassiliev, 2012, Equation 5].
Therefore, inserting Equation (12.39) into Equation (12.22) provides a generalization of
the multi–hit model proposed in [Vassiliev, 2012].

Although a distribution fν;d(z) of the type described by Equation (12.38) is reasonable,
it is nonetheless an approximationm because it completely neglects the variance in the
microdosimetric energy deposition event. To overcome this limitation, in this work we
have exploited the full microdosimetric information coming from the entire spectrum.

Unlike the standard MH model, we do not assume a priori any a priori upper limit for
the number of hits. In fact, GSM2 suitably weighs the number of observed damages by
the probability that a certain number of damages results from a specific microdosimetric
and further consider the probability that damages are repaired.

Another difference between the HM and the proposed model, is that the number of
lesions generated by an event is derived exploiting microdosimetry. In particular, the
probability that a certain number of damages results from energy deposition is not assumed
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to Poissonian but it is derived from a mechanistic dynamical Equation (11.3) allowing for
repair and damage interaction. As shown in Chapter 11, the resulting probability can be
Poissonian under specific irradiation conditions, but can also differ significantly from a
Poisson distribution, e.g. in high dose regimes.

After taking the logarithm, Equation (12.34) becomes

logS(zn) =

=

[
−Nd

zn
zF

∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz

]
+

+Nd log

(
1 +

∞∑
k=1

(
zn
zF

)k

Gk(M)

)
.

(12.40)

For low doses, we have that zn << 1, and expanding up to the second term in zn in
Equation (12.40), we obtain

logS(zn) ∼0

∼0 −
zn
zF
Nd

∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz+

+
zn
zF
NdG1(M)+

−Nd

(
zn
zF

)2(G1(M)2

2
−G2(M)

)
=

= −α0(M)zn − β0(M)z2n ,

(12.41)

with 
α0(M) = Nd

zF

∫∞
0

(
2− e−κz − e−λz

)
f1;d(z)dz+

−Nd
zF
G1(M) ,

β0(M) = Nd

z2F

(
G1(M)2

2 −G2(M)
)
.

(12.42)

Therefore, from the fact that

d

dD
logS(D) =

1

S(D)

d

dD
S(D) ,

using asymptotic arguments it can be shown that

d

dD
log(S(D)

∣∣∣∣
D=0

= −Nd

zF

∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz+

+
Nd

zF

∑
x0≥1

C(x0)

∫ ∞

0

e−κz

x0!
(κz)x0 f1;d(z)dz .

(12.43)

In Equation (12.41), we are neglecting higher order polynomials in zn coming from
Equation (12.34). Additionally, the linear and quadratic terms depend on all the moments
of the single–event microdosimetric distribution f1;d, rather than just on the first two
moments zF and zD as in all classical models. By dropping all moments greater than the
second, GSM2 provides the similar results as the existing models [Bellinzona et al., 2021].
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For high doses, i.e. zn >> 1, the linear term in Equation (12.40) dominates the
logarithm, so that

logS(zn) ∼∞

∼∞ − zn
zF
Nd

(∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz

)
+

+
zn
zF
Nd

∫ ∞

0
e−κzκzf1;d(z)dz ,

(12.44)

so that

d

dD
log(S(D)

∣∣∣∣
D=∞

= −Nd
1

zF

∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz+

+Nd
1

2zF

∫ ∞

0
e−κzκzf1;d(z)dz .

(12.45)

Above low and high dose approximation emphasize how the proposed model naturally
incorporates the linear–quadratic–linear (LQL) behaviour of the survival curves experi-
mentally observed.

Furthermore, GSM2 satisfies the Hugh–Kellerer theorem, [Rossi and Zaider, 1988, Rossi
and Zaider, 1991]. In fact, assuming that no bystandard effects can occur, cells that expe-
rience no event must survive. As shown above, the event frequency for a given absorbed
dose D is D/zF . As the events are statistically independents, the Poisson statistics implies
that there is a natural lower bound to the survival, that is

Sd(D) ≥ e
− D

zF . (12.46)

It can be seen that the standard linear–quadratic model violates the lower bound in the
high dose region.

Assuming that each cell has received the same dose, i.e. zn = D, Equation (12.44)
shows that in the high dose regime, the derived survival follows a linear exponential
function

Sd(D) = e
− D

zF
(
∫∞
0 (2−e−κz−e−λz)f1;d(z)dz) ≥

≥ e
− D

zF ,

where the inequality follows from the fact that∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz ≤ 1 .

The bound is clearly satisfied under the low dose regimes, proving that GSM2 does
not violate the Hugh–Kellerer theorem.

Non–Poissonian inter-cellular corrections

Given a dose D, the energy deposition distribution can be computed as described in
Section 11.2 for f(z|zn). We therefore have that

fn(zn|D) :=

∞∑
ν=0

pn(ν|D)fν;c(zn) , (12.47)
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where fν;n(zn) is the distribution resulting from ν energy depositions in a single cell
nucleus and pn(ν|D) is the probability that a ν energy deposition occurs in a cell nucleus.
The distribution fν;n(zn) can be obtained convolving the single event distribution f1;n(zn).

Therefore, the total cell survival probability can be obtained as described in [Rossi and
Zaider, 1991, Ch. VI]

S(D) =

∫ ∞

0
Sd(zn)fn(zn|D)dzn . (12.48)

Equation (12.48) contains all the over-killing corrections typically added to the survival
curves to account for the stochastic nature of energy deposition.

Given the survival curve Sn(zn) explicitly computed in Equation (12.34), the survival
curve S(D) can efficiently calculated using standard numerical integration techniques.
Nonetheless, using some physical considerations concerning the stochasticity of energy
deposition some useful simplifications can be derived.

It is worth stressing that, as highlighted in Section 2.2, in the original MKM formu-
lation [Hawkins, 1994], it has been assumed that no stochasticity in energy deposition
among cell domains happens, so that S(D) can be obtained via the approximation

fn(zn|D) ≈ δ(zn −D) ,

yielding using Equation (12.48) the survival curve

S(D) = Sd(D) =

= exp

[
−Nd

D

zF

∫ ∞

0

(
2− e−κz − e−λz

)
f1;d(z)dz

]
×

×

(
1 +

∞∑
k=1

(
D

zF

)k

Gk(M)

)Nd

,

with Gk(M) as in Equation (12.35).

In the following, suitable approximation of the microdosimetric spectrum fn(zn|D) will
be introduced and considered under different LET and doses regimes. Thus, the resulting
survival curve will be computed highlighting its main aspects.

The low dose regime

For low doses, and in particular in the case

α0(M)zn + β0(M)z2n << 1 ,

with α0 and β0 given as in Equation (12.42), Equation (12.53) yields

S(D) ≈ 1+

−
∫ ∞

0

(
α0(M)zn +

(
β0(M)− α2

0(M)

2

)
z2n

)
fn(zn|D)dzn =

= 1− α0(M)mc
1 −

(
β0(M)− α2

0(M)

2

)
mc

2 ,

(12.49)

with mc
1 and m

c
2 the first and second moment, respectively, of the multi–event distribution

fn(zn|D). Using the explicit forms for the moments mc
1 and mc

2, [Rossi and Zaider, 1991,
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Section II.2], we can conclude using Equation (12.49) that

S(D) ≈ 1−
(
α0(M) +

(
β0(M)− α2

0(M)

2

)
zD

)
D+

−
(
β0(M)− α2

0(M)

2

)
D2 ≈ e−α(M)D−β(M)D2

,

(12.50)

with α(M) = α0(M) +
(
β0(M)− α2

0(M)
2

)
zD;n ,

β(M) =
(
β0(M)− α2

0(M)
2

)
,

(12.51)

where zD;n is the dose average of the specific energy in multi events. Equations (12.50)–
(12.51) emphasize the connection of the current models with the classical MKM. In fact,
as shown in 11, in the low dose regimes the GSM2 predicts a Poissonian behaviour of lethal
damages so that the standing assumption of the MKM is recovered.

The medium/low–dose and high–LET regime

For high–LET regimes and medium/low doses, more precisely in regimes for which
D
zF

<< 1, the probability of more than one event is negligible. In such a situation, either 0
or 1 event is registered, so that the multi–event energy distribution can be approximated
as

fn(zn|D) :=

∞∑
ν=0

e
− D

zF

ν!

(
D

zF

)n

fν;c(z) ≈

≈ e
− D

zF

(
δ(zn) +

D

zF
f1;c(zn)

)
.

(12.52)

Calculating Equation (12.48) with the approximated multi–event distribution (12.52),
we obtain

S(D) =

∫ ∞

0
Sd(zn)fn(zn|D)dzn ≈

≈ e
− D

zF + e
− D

zF
D

zF

∫ ∞

0
Sd(zn)f1;c(zn)dzn .

(12.53)

A further approximation can be included into Equation (12.53); in fact, Equation
(12.41) demonstrated that the survival at low doses is linear–quadratic, and thus, com-
bining Equation (12.41) with Equation (12.53) we obtain

S(D) ≈ e
− D

zF +

+ e
− D

zF
D

zF

∫ ∞

0
e−α0zn−β0z2nf1;c(zn)dzn ,

(12.54)

with α0 and β0 as in Equation (12.42).
From Equation (12.54), we find further

S(D) ≈

≈ exp

[
−D

zF

∫ ∞

0

(
1− e−α0zn−β0z2n

)
f1;c(zn)dzn

]
.

(12.55)
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It is worth stressing that Equation (12.55) highlights and insightful connection to the
DNA-lesion theory of radiation action, [Rossi and Zaider, 1991]. In fact Equation (12.55)
recover the main Equation of DNA-lesion theory of radiation action, [Rossi and Zaider,
1991, equation VI.80].

The high–dose regime

For a high–dose regime, more rigorously in regimes for which it holds that D
zF

>> 1,
the multi–event distribution becomes Gaussian distributed, [Rossi and Zaider, 1988]. We
therefore have that

f(z|zn) :=
∞∑
ν=0

e
− zn

zF

ν!

(
zn
zF

)n

fν;d(z) ≈

≈ 1√
2πzDD

e
− 1

2
(zn−D)2

zDD ,

(12.56)

where zD is the dose average of the specific energy in single events.
Assessing Equation (12.48) with the approximated multi–event distribution (12.52), we

obtain using the purely linear behaviour for the survival curve Sd(zn) showed in Equation
(12.44),

S(D) =

∫ ∞

0
Sd(zn)fn(zn|D)dzn ≈

≈ 1√
2πzDD

∫ ∞

0
e−αHLzne

− 1
2

(zn−D)2

zDD dzn ,

(12.57)

where zD is the dose average of the specific energy in single events on the cell-nucleuous
and

αHL := Nd

(∫ ∞

0

(
2− e−κz − e−λz

)
f1;c(z)dz

)
.

Solving Equation (12.57), we find

S(D) = e−αHL(1−
αHLzD

2 )D . (12.58)

As mentioned above, Equation (12.58) accounts for overkilling effects. In fact, a cell
irradiated with a higher LET will have a lower probability of surviving, resulting in a
greater value for αHL. According to Equation (12.58), the corresponding survival curve

will be corrected and shifted upward by a greater term
α2
HLzD
2 , yielding in fact the typical

effect of overkilling corrections.

12.2 Numerical results

All numerical Monte Carlo simulations for producing input microdosimetric spectra
have been carried out with the microdosimetric extension of TOPAS toolkit [Perl et al.,
2012]. In all calculations, we used the geometry of spherical TEPC with the active area
equivalent to a 2 µm diameter sphere of tissue, as in experiments of Part III and as
explained in II. In Table 12.1, we list all beam types selected for the simulations, including
the initial kinetic energy, the residual range in water after traversing the microdosimeter,
the yF and yD microdosimetric values measured by the detector. The yd(y) spectra
obtained from the TEPC for all beams are plotted in Figure 12.2,
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Figure 12.2: yd(y) microdosimetric spectra for the simulated radiation fields in the TECP.
Labels in the legends refer to particle type and initial kinetic energy of the particle.

On the initial DNA damage distribution: GSM2 predicted distribution
vs classical Poissonian distribution

For all radiation types listed in Table 12.1, we calculated the initial damage distri-
butions using Equation and compared it to the classical Poissonian approach. Here we
only show the distributions for sublethal damages X, because the probability for a direct
damage Y is typically low, leading to a distribution closer to a Poissonian one. Current
analysis further focuses on the combination of high dose and LET regimes to a possibly
non Poissonian DNA damage distribution.

First, we considered protons at different residual ranges (i.e. different LET) and at
different doses. The results are shown in Figure 12.3.

Figure 12.3 proves that for protons at low LET and low dose, the Poissonian assumption
is valid. When the LET or the dose increase, the deviation from the classical assumption
grows also, reaching the maximum in panel (d). We also evaluated the initial damage
distribution induced by helium, carbon and oxygen ions, to investigate higher LET. Results
for helium and oxygen are shown in Figure 12.5. The distribution obtained with carbon
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Figure 12.3: Initial sublethal DNA damage distribution for protons at (a) 10 mm residual
range, zn=0.5 Gy, (b) 10 mm residual range, zn=5 Gy, (c) 2 mm residual range, zn=0.5
Gy, (d) 2 mm residual range, zn=5 Gy. In all calculations, we used rd=0.5 µm and k=0.4.

ions are not plotted, since they are very similar to the oxygen one.
All heavy ions show a pattern similar to protons. At low doses and 10 mm residual

range, the distributions are close to a Poisson one, even though in the case of oxygen the
difference from the Poisson distribution is still evident also at low doses, indicating a failure
of Poisson approximation at all dose ranges for high LET. At high doses, both ions show a
bimodal distribution, indicating a significant difference from a Poisson. Also in this case,
the damage distribution for oxygen shows a more pronounced bimodal behavior, typical
of high LET ions. A summary of the most relevant parameters calculated for the DNA
damage distributions of Figures 12.2 and 12.3 are reported in Table 12.2. Together with
the physical properties of the considered radiation fields, such as kinetic energy, zD and zn,
the mean values of the sublethal damage distributions and the non-Poissonian correction
ϑ(κ, zn, zD) as defined in Equation (11.10) are also reported. We recall that ϑ(κ, zn, zD)
quantifies the difference between the first and second moment of the damage distribution.
Therefore, ϑ(κ, zn, zD) << 1 implies that the damage distribution is almost Poissonian
whereas ϑ(κ, zn, zD) >> 1 implies significant deviation from the initial distribution to a
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Figure 12.4: Initial sublethal DNA damage distribution for helium at (a) 10 mm residual
range, zn=0.5 Gy, and (b) 10 mm residual range, zn=5 Gy. Initial sublethal DNA damage
distribution for oxygen at (c) 2 mm residual range, zn=0.5 Gy, and (d) 2 mm residual
range, zn=5 Gy. Panel (d) also contains a zoom for probabilities up to 0.05, to better
appreciate the distribution bimodality trend. For all calculations, we used rd=0.5 µm,
k=0.5.

Poisson.

We investigated the fn(zn) multi-event microdosimetric distributions calculated with
Equation (12.47) under different irradiation regimes, and compared them to the proposed
approximations given in Equations (12.52)–(12.56).

The analysis is divided in two parts. First, we consider the low LET and high doses
regimes approximation, as given in Equation (12.56). In this case, the multi-event distri-
bution can be approximated by a Gaussian density function. Then, we consider the high
LET and low doses regimes, where Equation (12.52) holds. The main intuition behind
such approximation is that either 0 or 1 event occur, so that the multi-event distribution
can be described as a mixture of probability of no hits and the single event microdosimet-
ric distribution f1;c(zn). Figure 12.5 illustrates the comparison between the multievent
distribution fn(zn) and the Gaussian approximation (12.56), for low LET ions (protons
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Particle type Proton Helium Oxygen

Kinetic energy [MeV] 80 18.6 80 18.6 177 39.8

zD 1.17 0.75 1.17 2.87 4 20

zn 0.5 5 0.5 5 0.5 5 0.5 5

Mean value 0.2 2 0.2 2 0.25 2.5 0.25 2.5

ϑ(κ, zn, ZD) 0.03 0.3 0.06 0.6 0.14 3.6 0.5 25

Table 12.2: Summary of main parameters for the DNA damage distributions plotted in
Figures 12.2 and 12.3. For each particle type, the microdosimetric quantity zD, the average
value of the sub-lethal lesion distribution and the deviation from a Poisson distribution,
as described in Equation (11.10) are reported. 3.2 Inter-cellular corrections

and helium) of 2 mm residual range. Ions were considered at same residual range in order
to make a more direct comparison of different particles features in a close-to-maximum
LET condition for the respective cases.

The results indicate that for protons, the Gaussian approximation is already valid at
low doses. For helium, since the LET is higher than protons, the Gaussian approximation
holds at higher doses.

Figure 12.6 shows the comparison between the multievent distribution fn(zn) and
the high LET bimodal approximation (12.52) for higher LET ions (carbon and oxygen)
with 2 mm residual range. At 1 Gy, the agreement between the two distributions is
relatively good. At the higher dose, however, the contribution coming from the probability
of registering more than 1 event is appreciable, given by the second peak.

Survival computation

We computed the cell survival rate using Equation (12.48). In Figure 12.7, the sur-
vival curves for all irradiation conditions listed in Table 12.1 are shown. The biological
parameters of the MME have been set to a = 0.05, b = 0.001 and r = 2.5, corresponding
to a generic tissue type while the cell nucleus radius was R = 5 µm The choice of param-
eters has been done in accord to typical values used in MKM and its variants [Bellinzona
et al., 2021]. It is further worth stressing that, despite later in the work we will extract
GSM2 from experimental data, in the current section we decided to use generic parameters
not belonging to a specific cell line.

From Figure 12.7 it is clear how the survival behavior is sensitive to the physical
characteristics of the radiation field, changing both the linear and the quadratic shapes.

Non Poissonian behavior of the cell survival

A comparison between the survival curves predicted with the Poissonian assumption
and with GSM2 is shown in Figure 12.9. In particular, the Poisson cell survival is computed
assuming that the initial DNA damage distribution follows a Poisson distribution, so
that the resulting survival curve is given by Equation (12.36). The comparison has been
reported only for protons at 2 mm residual range, being the most interesting case since
higher LET ions are clearly non Poissonian. Furthermore, cell survival curves have been
calculated only for the cell domain, without considering the inter-cellular correction. This
choice has been made to investigate whether a non Poissonian behavior already emerges
locally at the domain level.
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Figure 12.5: Gaussian approximation for protons and helium ions with 2 mm residual
ranges at D = 1 Gy and D = 10 Gy. The plots show the full multi-event microdosimetric
distribution fn(zn) (continuous line) against the Gaussian approximation (dashed line) as
defined in Equation (12.56).

The comparison shows that even at the domain level, there is a significant discrepancy
between the Poisson approach and GSM2 even for low LET protons at sufficiently high
dose. The analysis on the initial datum, showing that for low dose regimes the initial
distribution is almost Poissonian while it deviates at higher doses, is confirmed by the
results of Figure 12.9. In fact, the two survival curves coincide at low doses while, at
higher doses, a significant difference is appreciable. The Poissonian assumption implies
a behavior which typically lead to underestimation of the cell survival fraction, whereas
GSM2 prediction naturally includes overkilling effects in the initial damage distribution.

Linear-quadratic-linear behavior of the cell survival curve

A study on the linear-quadratic-linear (LQL) behavior of the cell survival curve pre-
diction via GSM2 , as theoretically described above, is reported in the present section. In
particular, in Figure 12.9, a LQL cell survival is fitted on the GSM2 cell survival predic-
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Figure 12.6: Bimodal approximation for carbons and oxygens with 2 mm residual ranges
at D = 1 GyD = 5 Gy. The plots show the full multi-event microdosimetric distribution
fn(zn) (continuous line) against the bimodal approximation (dashed line) as defined in
Equation (12.52). The bottom right figure reports a detail of the distribution at high z
values.

tion. We remark that LQL fits three parameters, namely α and β for the LQ part and
the threshold Dt above which the cell survival is assumed to be purely linear. This is the
typical approach used in LEM [Friedrich et al., 2013a]. In particular, the fitted parameters
are α=0.18, β=0.09, with a consequent α/β=1.94. The LQL cell survival is also compared
to the purely LQ model, in which the α and β parameters previously fitted with a LQ
trend are used. As in the previous section, we considered just protons with a residual
range of 2 mm since they are expected to exhibit a LQL behavior, in contrast to higher
LET ions in which a purely linear trend emerges.

Model fit to experimental data

To validate GSM2 , the predicted cell survival curve has been fit to experimental data
given in the PIDE dataset, [Friedrich et al., 2013b]. Resulting parameters, cell line and
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Figure 12.7: Survival curves calculated for the same cell population under different irra-
diation conditions listed in Table 12.1. Each panel include results for a specific ion type
(protons in panel (a), helium in panel (b), carbon in panel (c) and oxygen in panel (d))
at several residual ranges of 2mm, 5mm and 10mm. All curves were calculated using the
same biological parameters of the MME, namely a = 0.05, b = 0.001 and r = 2.5.

radiation quality have been gathered in Table 12.3. Further, Figure 12.10 shows the real
experimental data plotted against GSM2 prediction. It is worth stressing further that,
differently from what done in other radiobiological models, we did not fit neither domain
radius nor cell nucleus radius. On the contrary, we only optimized a, b and r parameters,
whereas other parameters have been set equal to rd = 1 µm, R = 5 µm, κ = 1.2 Gy−1,
λ = κ 10−2. The choice of a domain of 1 mum is motivated by the TECP size so that
energy deposition is first consider in a domain of equal size of the considered detector.
In particular, it is believed that the domain radius is not a physical parameter, but it
is instead a user hyperparameter used to limit long-range interaction between damages.
Therefore, to avoid overfitting of the model we decided not to fit the domain radius.
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Figure 12.8: Survival curves calculated with the Poissonian assumption and GSM2 for
protons at 2 mm residual range. The values have been assessed on the cell domain without
taking into account inter-cellular correction.

Figure 12.9: Cell survival curves comparison between a LQ and a LQL fits for protons
with 2 mm residual range. Survival curves have been calculated on the domain without
inter-cellular correction.

12.3 Discussion

In this chapters, we calculated cell survival probability with GSM2 accounting for dif-
ferent levels of stochasticity. We obtained microdosimetric spectra for different radiation
fields (protons, helium, carbon and oxygen) at three different residual ranges (2,5, 10 mm)
exploiting the TOPAS microdosimetric extension. Using the energy depositions scored
with TOPAS an input, we calculated multi-event microdosimetric distributions with an
in-house built-in R code. We then assessed the initial DNA damage distributions, from
which we predicted cell survival.
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Cell line Ion LET [keV/µm] Energy [MeV/u] a [h−1] b [h−1] r [h−1]

V79 12C 50.3 41.7 0.011 0.009 2.2

V79 1H 2.06 27 0.011 0.01 2.9

HFIB2 1H 2.25 24 0.018 0.027 2.7

T1 4He 4.6 79 0.01 0.007 2.3

Table 12.3: GSM2 estimated parameter using the PIDE dataset. In particular, cell line, ion
type with its LET and initial kinetic energy are reported together with model dynamical
parameters value.

Figure 12.10: Cell survival predicted by GSM2 (continuous line) fitted against experimental
data as contained in the PIDE dataset (dotted). Top left panel shows V79 cell line with
41.7 MeV/u carbon ion, top right shows V79 cell line with 27 MeV protons, bottom left
shows HFIB2 cell line with 24 MeV protons and bottom right shows T1 with 79 MeV/u
helium

DNA initial damage distribution and microdosimetric inter-cellular cor-
rection

Several key aspects emerge from the calculated DNA damage distributions. First, we
observe that, together with LET, also the dose can have a significant impact on Poisso-
nianity of the DNA damage distribution. This implies that also low LET radiation can
be characterized by a non negligible non Poissonian effects. For example, the discrep-
ancy between the first two moments of the initial damage distributions caused by 5 Gy
of protons ranges from 15% for the 10 mm residual range to 33% for the 2 mm residual
range. We recall that the Poisson distribution is characterized by equal moments, so that
the higher is the discrepancy between the first two moments, the more the distribution
differs from a Poisson. Assumption on the Poissonianity of the initial damage distribution
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implies an underestimation of the probability for a null DNA damage yield, resulting in a
lower survival fraction prediction.

We also observed that a bimodal distribution emerges for higher LET radiation. Such
behavior can be guessed already for the 2 mm residual range helium beam at 5 Gy. As the
ion LET increases, such as for oxygen, bimodality becomes predominant. This trend is
typically added with ad-hoc a posteriori corrections to the model [Bellinzona et al., 2021],
while for GSM2 is naturally taken into account, leading to a straightforward prediction of
the overkilling effect.

We also investigated, as another level of stochasticity the inter-cellular correction to
take into account the whole cell populations. Two approximations have been numerically
studied to establish a range of validity. For low LET irradiations, a Gaussian approxima-
tion for the multi-event microdosimetric distribution has been proposed based on Equation
(12.56). It is clear that such approximation is valid for protons even at a dose of 1 Gy.
As the ion LET increases (e.g. for helium), we noted that a higher dose is need in order
for the approximation to be valid. Nonetheless, at 1 Gy the discrepancy between the
multi-event distribution for 2 mm residual range helium and the corresponding Gaussian
approximation is relatively small. Carbon and oxygen ions have not been investigated
since they are not expected to follow the Gaussian approximation at doses of therapeutic
interest. Having the possibility to use a Gaussian approximation for the considered mi-
crodosimetric distribution could be extremely useful and important. In fact, the Gaussian
density function is at the core of many mathematical analytical theories, leading often to
straightforward and less numerically demanding computations.

The second proposed approximation is valid for high LET ions at low doses regimes.
It reflects the fact that, since the number of hits is inversely proportional to zF at suffi-
ciently low doses, only 0 or 1 hit may occur. Both oxygen and carbon ions satisfy this
approximation at 1 Gy. Nonetheless, as the dose increases, the contribution due to more
than 1 single hit becomes non negligible, dropping the approximation validity. It must
be said that a further approximation could be introduced by adding the contribution of
a non null probability of registering two events. This approach can be useful in deriving
an asymptotic behavior at low doses, because it is more easily treatable to fit the model
parameters.

Cell survival curve

We computed the cell survival curves for 4 different ions (protons, helium, carbon and
oxygen) at 3 different residual ranges each (2, 5, 10 mm), and investigated the difference
between GSM2 , the LQL behavior and Poissonian predictions. The survival curve behavior
depends heavily on the ion type: low LET ions (protons and helium) show a more dominant
contribution from the quadratic term, whereas high LET radiation (carbon and oxygen)
exhibit a more linear trend.

The non Poissonian correction has also been explored. For 2 mm residual range pro-
tons, the cell survival is equivalent to a Poissonian one at low doses, while at high doses the
discrepancy is non negligible. This is a direct consequence of the initial damage distribu-
tion behavior discussed in Chapter 12 GSM2 naturally incorporates many non Poissonian
behaviors: i) the non Poissonianity of the initial DNA damage distribution, and ii) non
clustered lethal lesions represented by the term b in the MME. The LQL behavior typically
found inthe cell survival curve predicted by GSM2 is studied and reported in Figure 12.9.
The data indicate that a purely linear quadratic curve cannot fit GSM2 predictions, with
a significant underestimation due to a non linear trend. To the best of our knoweledge,
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GSM2 is the first mechanistic model that predicts a LQL surival curve.

Model fit to experimental data

Exploiting the PIDE dataset, [Friedrich et al., 2013b], we validate GSM2 estimating
the relevant biological parameters of the model using real experimental survival data. It is
worth stressing that parameters estimation performed is among the main strength of the
current work; in fact, using the main formulation of GSM2 , 11, DNA repair dynamic is
needed to estimate the model parameters. Such radiobiological data are nonetheless rare
and difficult to collect, making the model difficult to be implemented. Instead parameters
can be estimated using cell survival data, of which an extensive database is publicly
available, [Friedrich et al., 2013b] therefore making GSM2 easily usable.

Results plotted in Figure 12.3 show a good agreement between the predicted cell sur-
vival and real experimental data. Further, parameters reported in Table 12.3 are coherent
with typical parameters estimated using the MKM, [Inaniwa et al., 2013]. It is worth
nonetheless stressing that, given the many approximations included into all the different
MKM formulations, the parameters are not required to be identical. More important, this
consideration is valid in particular for the parameter b. In fact, in the MKM dynamical
equation the parameter b is typically dropped assuming it to be small. In addition, dif-
ferently from MKM, we did not include domain and nucleus radius as fitted parameters.
This choice has been made in order to reduce possible overfitting. At last, it is important
to notice that, in the V79 cell line case, two different radiation fields lead to similar bio-
logical parameters estimation. This implies that GSM2 potentially proves to be a robust
predictor of the cell survival curve.



Chapter 13

Multiple levels of stochasticity
included in GSM2

In Section 11.2, we demonstrated that GSM2main equation of the, namely the Micro-
dosimetric Master Equation (MME), can be linked to the main equations of the Repair-
misrepair (RMR) model [Tobias, 1980, Tobias, 1985] under a specific Poissonian assump-
tion. The RMR is a purely Poissonian model that has been developed to interpret radio-
biological experiments with heavy ions. The present chapter investigates the connection
between GSM2 and RMR, with a focus on the cell survival curves predictions and on their
dependence on the radiation quality and biological parameters.

Together with GSM2 and the RMR, two other models will be newly introduced and
studied. Such models place themselves in between RMR and the GSM2 in terms of gen-
erality from a purely probabilistic point of view. The first model, called in the current
work Poisson GSM2 , is based on the MME introduced in 11 with initial datum being a
Poisson law. In this sense, we have already observed in 12 that the GSM2 initial DNA
damage assessment reproduces a Poissonian behaviour for low LET radiation. The other
new model considered is the named Dirac GSM2 , which is a probabilistic model based on
GSM2with a specific assumption on the energy deposition described by microdosimetry.
Such assumption replace the microdosimetric energy spectra by its average value zF , and
in doing so, the Dirac GSM2 neglects energy deposition fluctuations. This model is compu-
tationally less complex than GSM2 , and therefore it can be regarded as a computationally
fast version of the GSM2 . The microdosimetric approximation for the Dirac GSM2 , to
the best of our knowledge, has been already discussed in a previous study [Albright, 1989].
The DNA damage initial distribution considered in the Dirac GSM2 is a known probabil-
ity distribution studied from a mathematical point of view in [Neyman, 1939], and more
recently it has been used as main distribution in the Multi-hit model [Vassiliev, 2012].

The aim of the current chapter is to study the validity range of different probabilistic
foundations of different models, and their effects on the survival curve predicted by the
models themselves. This study will also highlight how different stochastic effects are nat-
urally embedded in the GSM2 original formulation. In particular, such terms are usually
referred to in literature as non-Poissonian effects, since they are non-linear terms that
contribute to deviates the true underlying probability distribution from a Poisson random
variable. We will show how such non-Poissonian behavior of the number of DNA damages
may arise either at the DNA damage formation level or also due to cluster effects in the
kinetic evolution of lesions.

We analytically studied the survival curve predicted by the four models, i.e. the

209
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RMR, the Poisson GSM2 , the Dirac GSM2 and GSM2 , characterizing the asymptote of
the log-survival at both low and high dose limits. We will analyze and compare the high
and low dose limits, studying similarities and differences as well as their dependence on
either biological or radiation quality parameters. Then, we will further validate the results
using Monte Carlo simulations of microdosimetric spectra for different ions of therapeutic
interest, such as protons and carbon ions at different energies.

13.1 Theory and calculations

The Repair-misrepair model

The RMR model considers that the amount of DSBs in the DNA, U(t), is linearly
proportional to the radiation dose rate. A number of DSBs evolve in lethal lesions, L(t),
while most breaks are successfully repaired with a first-order process. The model includes
also the possibility of a misrepair as a second-order process, since it involves two broken
DNA strands to form a chromosomal aberration.

These assumptions yield the following kinetic Equations:{
d
dtU(t) = −ρU − ψU2 ,
d
dtL(t) = (1− ϕ)ρU + σψU2 .

(13.1)

where ρ is the rate at which the DSBs are repaired, ψ is the rate constant for second-order
DSB interactions, and ϕ is the fraction of simple repairs that are successful. The fraction
of misrepairs that result in a lethal lesion is called σ.

Using also the MME given in Equation (11.3), in what follows, we will denote by E
the mean value of a random variable defined as

x̄(t) := E[X(t)] =
∑
x,y≥0

xp(t, y, x) ,

ȳ(t) := E[Y (t)] =
∑
x,y≥0

yp(t, y, x) .

Note that the following holds true∑
x,y≥0

xE i,j [f(y, x)p(t, y, x)] = −Ejf(Y,X) ,

∑
x,y≥0

yE i,j [f(y, x)p(t, y, x)] = −Eif(Y,X) .
(13.2)

Therefore, by multiplying the MME (11.3) by x and y, we obtain using (13.2){
d
dtE[Y (t)] = bE[X(t)(X(t)− 1)] + aE[X(t)] ,
d
dtE[X(t)] = −2bE[X(t)(X(t)− 1)]− (a+ r)E[X(t)] .

(13.3)

Setting the parameters in the RMR driving Equations (13.1) as

ψ = 2b , σ =
1

2
, ρ = a+ r , ϕ =

r

a+ r
,

Equations (13.1) become {
d
dtU(t) = −(a+ r)U − 2bU2 ,
d
dtL(t) = aU + bU2 .

(13.4)
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Equations (13.4) and (13.3) have a similar form, but they are not identical. In particular,
in Equation (13.4) it appears a second order moment E[X(t)(X(t) − 1)]. Assuming a
Poissonian distribution for the random variable X, we obtain that

E[X(t)(X(t)− 1)] = E[X(t)]2

so that Equation (13.4) becomes{
d
dt ȳ(t) = bx̄2(t) + ax̄(t) ,
d
dt x̄(t) = −2bx̄2(t)− (a+ r)x̄(t) .

(13.5)

which are exactly the RMR model main kinetic Equations (13.1).

Remark 13.1.1. Typically to solve an infinite system of interconnected moments equations,
the so–called mean–field assumption is required, that is

E[X(t)(X(t)− 1)] ∼ E[X(t)]2 .

A comment on the mean–field assumption is needed. When x is large enough, we
have that E[X(t)(X(t) − 1)] ∼ E[X(t)]2. Therefore, the mean field assumption means
that E[X(t)(X(t) − 1)] − E[X(t)]2 ∼ 0, whose last term is nothing but the variance.
Recalling that the variance for a random variable is null if and only if the random variable
is deterministic, if the mean field assumption is realistic then the number of lesion does not
differ much from the mean value, so that everything we need to know is the mean value.
On the contrary, if there are evidence that the mean value is not a realistic approximation
for the number of lesion, then the mean–field assumption must be considered unrealistic,
and the knowledge of the entire probability distribution becomes essential to fully describe
the system.

Using the connection between the MME and the RMR, we can explicitly solve Equa-
tions (13.1). In particular, we have that

d

dt
U(t) = −(a+ r)U − 2bU2 , U(0) = κD . (13.6)

Equation (13.6) is known in literature as the Bernoulli equation. In order to solve
it, we can apply the transformation u = 1

U̇
, so that an explicit calculation leads to the

following differential Equation

u̇(t) = (a+ r)u(t) + 2b .

This is a linear equation in u, and the explicit solution is given by

u(t) = ce(a+r)t − 2b

(a+ r)
.

Coming back to the original Equation (13.6) we obtain

U(t) =
(a+ r)

ce(a+r)t − 2b
, (13.7)

with

c :=
(a+ r)

κD
+ 2b .
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We can therefore substitute U in Equation (13.7) into the Equation for L in (13.1) to
obtain

d

dt
L(t) = aU + bU2 =

= −1

2

(
−(a+ r)U(t)− 2bU2(t)

)
+
a− r

2
U(t) =

= −1

2
U̇(t) +

a− r

2
U(t) ,

and after integration we obtain

L(t) =
1

2
(κD − U(t)) +

a− r

4b
log

(
−2bκD − e(a+r)t(a+ r + 2bκD)

e(a+r)t((a+ r)

)
. (13.8)

We can eventually calculate the long-time convergence toward the stationary solution
of Equations (13.7)–(13.8) to be

lim
t→∞

U(t) =: U∞ = 0 ,

lim
t→∞

L(t) =:
1

2
κD +

a− r

4b
log

(
1 +

2bκD

a+ r

)
.

(13.9)

The survival probability at time t is thus obtained by computing the probability of
having 0 lethal or sublethal lesions, under the assumption that they follow a Poissonian
law. This implies, using Equations (13.9), that

SRMR(D) = exp [−L∞] = e−
1
2
κD

(
1 + κD

2b

a+ r

) r−a
4b

. (13.10)

Proceeding as above we can calculate the tangent of the cell–survival logarithm at low
doses, i.e.

d

dD
log(SRMR(D)

∣∣∣∣
D=0

= −κ( a

a+ r
) . (13.11)

In the same way, at as the doses increases, the tangent of the log-survival becomes

d

dD
log(SRMR(D)

∣∣∣∣
D=∞

= −1

2
κ . (13.12)

The GSM2 in the Poisson initial damage case

As studied in details in Section 11.3, the initial damage–distribution according to the
GSM2 does not necessarily follow a Poisson distribution. Nonetheless, in certain regimes
such as low-dose and low-LET, the initial distribution is significantly closer to a Poisson law
of average value κD. In this case, the initial–damage distribution described by Equation
(11.9) simplifies to

pX0 (x) = e−κD (κD)x

x!
. (13.13)

We consider the MME (11.3) coupled with a Poisson initial condition (13.13). The
resulting Poisson GSM2will only exhibits non-Poissonian effects due to the kinetic recom-
bination of sub-lethal lesions.
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Therefore, plugging-in the initial damage distribution (13.13) into the survival Equa-
tion (12.20), we obtain

SP (D) = e−κD

(
1 +

∞∑
x0=1

(κD)x

x!
C(x0)

)
, (13.14)

Although the initial-damage distribution is Possonian, the predicted cell-survival Equa-
tion (13.14) includes some non-Poissonian terms coming from clustered terms linked to
the coefficient b in the factor C(x0).

Again, we can study the log-survival tangent at high and low doses and obtain

d

dD
log(SP (D)

∣∣∣∣
D=0

= −κ( a

a+ r
) ,

d

dD
log(SP (D)

∣∣∣∣
D=∞

= −1

2
κ .

(13.15)

The Dirac GSM2 in the fν(z) ≈ δ(z − νzF ) case

According to the GSM2 , the initial damage distribution at a given dose D is given by

pX0 (x) :=
∑
ν≥0

∫ ∞

0
pXz (x|κz)e

− D
zF

ν!

(
D

zF

)ν

fν(z)dz . (13.16)

In order to simplify the GSM2 initial damage distribution, we can notice that the
multi-event distribution fν(z) is sharply peaked around its average zF . Neglecting all the
fluctuations around the mean value, we can assume that

fν(z) ≈ δ(z − νzF ) . (13.17)

Equation (13.17) implies that the energy deposition by ν events equals νzf , so that
every event always deposits zF . This assumption is clearly strong and not always valid.
In fact, in the case of a low-LET radiation it is true that fν is peaked at νzF for a number
of events close to the mean number of events D

zF
. On the contrary, if the number of events

is significantly smaller than D
zF

, then the multi-event distribution is not well represented

by the approximation (13.17). In this case, that is whenever ν << D
zF

, we have that the
term

e
− D

zF

ν!

(
D

zF

)ν

,

in the initial damage distribution (13.16) is small, so that the approximated damage
distribution according to Equation (13.17) can still be sufficiently close to the original
damage distribution.

Under the assumption (13.17), the initial damage distribution (13.16) becomes

pX0 (x) =
∑
ν≥0

e−κνzF
(κνzF )

x

x!

e
− D

zF

ν!

(
D

zF

)ν

. (13.18)

The distribution appearing in Equation (13.21) is known in literature as Neyman dis-
tribution, and it has been deeply studied and characterized in [Neyman, 1939].
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The approximated initial damage distribution (13.21) can be inserted into the survival
Equation (12.20), to obtain

SD(D) = pX0 (0|D) +
r

a+ r
pX0 (1|D) +

∞∑
x0=2

pX0 (x0|D)C(x0) , (13.19)

where pX0 (x0|D) is given by Equation (13.21).
The the log-survival tangent at low doses is thus given by

d

dD
log(S(D)

∣∣∣∣
D=0

= − 1

zF

(
1− e−κzF

)
+

+
1

zF

∑
x≥1

C(x0)
e−κzF

x!
(κzF )

x ,

whereas the tangent to the cell-survival curve at high dose is given by

d

dD
log(S(D)

∣∣∣∣
D=∞

= − 1

zF

(
1− e−κzF − 1

2
e−κzF κzF

)
.

Connection to the Multi–hit model

As briefly mentioned in 12, Equation (12.20) can be seen as a microdosimetric gener-
alization of the multi–hit model to account for the damage dynamics and repair.

In particular, a non–Poissonian multi–hit model has been derived in [Vassiliev, 2012].
The survival curve is given by

S =

n−1∑
k=0

p(k) , p(k) = e−a−ae−b bk

k!
Bk(ae

−b) , (13.20)

with Bk the Bell’s polynomial.
Under assumption (13.17), the initial damage distribution, expressed by (13.16), is

given by

pX0 (x) =
∑
ν≥0

e−κνzF
(κνzF )

x

x!

e
− D

zF

ν!

(
D

zF

)ν

. (13.21)

Choosing

a =
D

zF
, b = κzF ,

we can rewrite pX0 (x) of Equation (13.20), using the relation

∞∑
i=0

ikxi

i!
= exBk(x) ,

and obtain

pX0 (x) = e
− D

zF
(1−e−κzF )κz

x
F

x!
Bk

(
D

zF
e−κzF

)
. (13.22)

The distribution given in Equation (13.22) provides a microdosimetric version of the
distribution given in Equation (13.20) and used in [Vassiliev, 2012].

GSM2 survival curve given in Equation (12.20) provides a generalization to the survival
predicted by the Multi-hit model in [Vassiliev, 2012] with the following improvements:
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Low-dose tangent High dose tangent

RMR −κ( a
a+r ) −1

2κ

Poisson GSM2 −κ( a
a+r ) −1

2κ

Dirac GSM2 − 1
zF

(1− e−κzF )+ − 1
zF

(
1− e−κzF − 1

2e
−κzF κzF

)
+ 1

zF

∑
x0≥1C(x0)

e−κzF

x0!
(κzF )

x

GSM2 − 1
zF

∫∞
0 (1− e−κz) f1(z)dz+ − 1

zF

∫∞
0 (1− e−κz) f1(z)dz+

+ 1
zF

∑
x0≥1C(x0)

∫∞
0

e−κz

x0!
(κz)x f1(z)dz + 1

2zF

∫∞
0 e−κzκzf1(z)dz

Table 13.1: Low and high dose log-survival tangent limits for the RMR, Poisson GSM2 ,
Dirac GSM2 and GSM2 .

• the parameters a and b given in [Vassiliev, 2012] have a natural physical and mech-
anistic interpretation derived from microdosimetric considerations;

• the maximum number of hits is not a model parameter, but it is derived again by
physical arguments;

• each term pX0 (x) is weighted by a suitable probability that accounts for a possible
repair;

• a term accounting for direct killing is added.

Summary

Putting together the results presented previously, we have the following tangents of
the log-survival predicted including different levels of stochasticity.

In particular, considering the high and low–dose asymptotes in the GSM2with assump-
tion (13.17), we recover the high and low–dose asymptotes of the Dirac GSM2 . Further,
if we consider a low–LET radiation, namely κzF << 1 in the Dirac GSM2 , we obtain

− 1

zF

(
1− e−κzF

)
+

1

zF

∑
x0≥1

C(x0)
e−κzF

x0!
(κzF )

x0 ∼κzF<<1 −κ(
a

a+ r
)

− 1

zF

(
1− e−κzF − 1

2
e−κzF κzF

)
∼κzF<<1 −

1

2
κ

so that for a low–LET radiation quality we recover a Poissonian behaviour.

13.2 Numerical results

The numerical results of the theoretical predictions described in Section 13.1 are pre-
sented here. The microdosimetric spectra have been simulated using TOPAS Monte Carlo
toolkit, 5.2, exploiting its microdosimetric extension. We employed the spherical TEPC
geometry available in the code, and simulated four radiation fields: (i) 80 MeV and (ii)
18.6 MeV proton pencil beam, (iii) 34 MeV/u carbon ion pencil beam and (iv) 70 MeV/u
carbon ion with 2 cm of water upstream of the TEPC. The first three beams have been
already used in Chapter 12, whereas the latter have been chosen to study a realistic mixed
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radiation field. Typically assumed approximations used in many existing radiobiological
models fail in a heterogeneous field, where GSM2might give an accurate prediction. The
biological parameters used for the calculations are: a = 0.01, b = 0.01 and r = 2.9. Such
parameters have been fitted in Chapter 12 to predict the survival curve for the V79 cell
line. We also set κ = 1, and considered an enhancement of κ depending on the LET
according to [Chen et al., 2017]. We will analyze how the selected radiation fields may
affect the cell survival prediction.

Figure 13.1 reports the multi-event microdosimetric distribution (2.2) compared to the
Dirac approximation as described in Equation (13.17) for a given dose D = 1 Gy delivered
by the four radiation fields.
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Figure 13.1: Comparison between the multi–event microdosimetric distribution fn (blue
line) of Equation (2.2), and to the Dirac approximation multi-event distribution (red line)
at D = 1 Gy. The vertical black dotted line marks the average of the distribution, which
corresponds to D = 1 Gy. Panels refer to (i) protons at 18.6 MeV (top left), (ii) protons
at 80 MeV (top right), carbon ions at 24 MeV (bottom left) and (iv) carbon ions after 2
cm of water (bottom right).

The data for 18.6 MeV (panel (a)) and 80 MeV proton beams (panel (b)) suggest that
the Dirac approximation, despite having a clear Dirac comb-like behaviour, reproduces
well the first two moments of the multi-event distribution. Panel (c) show how a slight
underestimation in the Dirac approximation of the variance appears in the 34 MeV/u
carbon beam. Finally, the data for the mixed-field radiation beam illustrated in panel (d),
we observe a significant deviation from the Dirac approximated distribution.

In Figure 13.2, we report the same study of Figure 13.1 at a higher dose of D = 10
Gy. For both proton beams (panel (a) and (b)), the goodness of the Dirac approximation
is confirmed. For 34 MeV/u carbon ions (panel (c)), the approximated Dirac distribution
is in a better agreement than at D = 1 Gy. The mixed field scenario still show clear
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discrepancies, especially in the second moment of the multi-event distribution.
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Figure 13.2: Comparison between the multi–event microdosimetric distribution fn (blue
line) of Equation (2.2), and to the Dirac approximation multi-event distribution (red line)
at D = 10 Gy. The vertical black dotted line marks the distribution average corresponding
to D = 10 Gy. Panels refer to (i) protons at 18.6 MeV (top left), (ii) protons at 80 MeV
(top right), carbon ions at 24 MeV (bottom left) and (iv) carbon ions after 2 cm of water
(bottom right).

Figure 13.3 shows the comparison of the sub-lethal damage distribution as described by
GSM2 , by the Dirac GSM2 and the Poisson distribution at low doses, i.e. D = 1 Gy. Panel
(a) and (b) illustrate the data for high- and low-LET protons, respectively, showing how
the three distributions are similar, with a slight discrepancy in the Poisson GSM2 case.
For carbon ions (panel (c)), the Dirac GSM2 and the GSM2 damage distributions are
identical, whereas the Poisson GSM2 is significantly different. As in Figures 13.1–13.2,
both the Dirac damage distribution and the Poisson density differ from GSM2 predictions
for the mixed field.

We repeated the calculations plotted in Figure 13.4 forD = 10 Gy. The same comments
of previous figure hold also in the higher dose scenario, with no significant differences to
be reported.

Figure 14.3 illustrates the cell-survival curve predicted by the four different models for
four radiation fields. For 18.6 MeV protons (panel (a)), all models agree at low dose. As the
dose increases, the models start to differ, with the RMR giving a lower survival probability,
followed by the Poisson GSM2 and then the Dirac GSM2 and the GSM2 predicting the
higheest survival fraction (panel (b)).
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Figure 13.3: Comparison between the sub–lethal damage distribution (blue line), as given
in Equation (11.9), the Dirac approximation sub–lethal distribution of Equation (13.21)
(red line), and a Poisson distribution (green line) at D = 1 Gy. The vertical black dotted
line marks the distributions average . Panels refer to (i) protons at 18.6 MeV (top left),
(ii) protons at 80 MeV (top right), carbon ions at 24 MeV (bottom left) and (iv) carbon
ions after 2 cm of water (bottom right).

13.3 Discussion and Conclusions

In Section 13.1 we have studied four different models, namely the RMR, the Poisson
GSM2 , the Dirac GSM2 and the GSM2 , that include different levels of stochasticity. In
particular, the RMR assumes a Poissonian initial damage distribution as well as a Poisso-
nian dynamics, and the kinematic equations are purely deterministic, describing the time
evolution of the damages average values. Also the Poisson GSM2 neglects non–Poissonian
stochastic fluctuations in the initial damage distribution, but includes Poissonian effects
of repair and cluster death using the MME (11.3). The Dirac GSM2 is instead a non-
Poissonian model, in the sense that both the initial damage distribution and the dynami-
cal equation include the non-Poissonian effects of overkilling and clustered death. For this
reason, the Dirac GSM2 can be regarded as a faster implementation of the GSM2 , since the
initial damage distribution calculation is numerically less demanding than GSM2 original
formulation. Nonetheless, the second moment of the microdosimetric distribution zD is
not included into the Dirac GSM2 , so that energy deposition fluctuations are not fully
described. This approximation is valid for monoenergetic pencil beams, where the mi-
crodosimetric distribution is in fact sharply peaked at the average value zF . GSM2 is the
more general model of the four taken into account in terms of stochasticity. This model
accounts for non-Poissonian effects both at the initial and dynamical levels. Furthermore,
the energy deposition variations at micron scale are included into the model using a mi-
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Figure 13.4: Comparison between the sub–lethal damage distribution (blue line), as given
in Equation (11.9), the Dirac approximation sub–lethal distribution of Equation (13.21)
(red line), and a Poisson distribution (green line) at D = 10 Gy. The vertical black dotted
line marks the distributions average . Panels refer to (i) protons at 18.6 MeV (top left),
(ii) protons at 80 MeV (top right), carbon ions at 24 MeV (bottom left) and (iv) carbon
ions after 2 cm of water (bottom right)..

crodosimetry approach. Such generality is believed to be significantly different especially
for mixed radiation fields. An overview of stochasticity levels that are included in the four
models is given in Table 13.2.

In Section 13.1, we showed how the low and high dose log-survival tangent predicted
by the four models may be significantly different and, most important, how different
information on the radiation quality is reflected into the predicted cell survival curve. We
summarize the results in Table 13.1. The RMR and the Poisson GSM2 predict cell survivals
with the same tangent at both low and high dose. Nonetheless, the two cell survival curves
may have different curvatures due to non-Poissonian effects included in the GSM2 via the
MME (11.3). In addition, both asymptotes of the low and high dose do not depend on
the radiation quality. Regarding the biological parameters, the low dose limits depend on
the linear rates a and r, and the rate of log-survival decrease is proportional to the rate
at which a sub-lethal lesion dies normalized to the overall linear rates a and r, namely
a

a+r . Also the quadratic rate given by b does not appear in the low-dose asymptote, since
it gives a term of order 2, which is negligible compared to the linear terms. The high-dose
asymptotics depends only on the direct damage parameter κ, since at infinite dose only
the direct damage matters and no dynamics is involved.

The Dirac GSM2 has both high and low–dose log-survival tangent that depend on the
radiation quality only via the first microdosimetric moment zF . This is a direct conse-
quence of Equation (13.17), where all the fluctuations in the energy deposition are assumed
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Figure 13.5: Survival curves for the GSM2 (blue line), the Dirac GSM2 (red line), Poisson
GSM2 (green line) and the RMR (purple line), at different doses. Panels refer to (i) protons
at 18.6 MeV (top left panel), (ii) protons at 80 MeV (top right panel), carbon ions at 24
MeV (bottom left panel) and (iv) carbon ions after 2 cm of water (bottom right panel).

to be negligible. In this case, the low-dose limit is more complex than in the Poisson case,
with an explicit dependence on the damage complexity given by the summation over x0
weighted for the repair weighting function C(x0). The high–dose limit depends as before
on the direct damage parameter κ with no repairs involved. Unlike the Poisson case, the
asymptote is more complex and the radiation quality affects the limit via the first moment
zF .

GSM2 shows low and high–dose limits that depends on the entire microdosimetric
spectrum of the radiation field, together with a general description of the DNA–damage
complexity. At high-doses only the direct damage is relevant.

As shown in Section 13.1, the models asymptotes are strictly related to each other,
in the sense that starting from GSM2 , we can recover the other models asymptotes by
making specific assumptions. In particular, if we assume a Dirac-like microdosimetric
initial distribution in the GSM2 , we obtain the tangents predicted by the Dirac GSM2 .
Furthermore, for a low–LET radiation, meaning for κzF << 1, the Dirac GSM2 gives the
same asymptotes as the Poisson GSM2 and the RMR.

Figures 13.1–13.2 show that the multi–event distribution computed with the Dirac as-
sumption (13.17) is a Dirac comb-like version of the full multi–event distribution fn. For
the two proton beam energies, the Dirac multi–event distribution reproduces well both
the mean and variance of the multi–event distribution fn, and the distributions of the two
ions converge to similar values especially as the dose increases. For the carbon beam, a
larger discrepancy than for protons can be seen, with the Dirac distribution still being the
best in reproducing the main features of the distribution fn. In particular, both distribu-
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Non Poissonian
effects

Radiation quality
dependence

Initial
damage

Dynamical
First

moment
Microdosimetric
distribution

RMR × × × ×
Poisson GSM2 ×

√
× ×

Dirac GSM2 √ √ √
×

GSM2 √ √ √ √

Table 13.2: Levels of non–Poissonian effects included into the models, both for the initial
damage distribution and for the kinetics equations. The radiation quality depends on
the high and low-dose log-survival asymptotics, either including the first moment of the
microdosimetric distribution or the whole microdosimetric spectra.

tions shares a similar description of the no-hit probability, which is extremely relevant for
including the overkilling effects of high–LET radiation. At high dose, however, the two
distributions appear to have a slightly different variance, which result in a discrepancy
of the predicted survival fraction. The results for mixed field radiation, on the contrary,
show clear discrepancies between the distributions for GSM2 and Dirac GSM2 , suggesting
that a radiation quality description only based on the microdosimetric first moment is
inadequate. Figures 13.1–13.2 suggests that although the Dirac assumption 13.17 com-
pletely neglects the energy deposition fluctuations, it is still able to provide an accurate
description of the energy deposition at the micron-scale. This is reasonable since for a
monoenergetic pencil beam the microdosimetric distribution is sharply peaked around its
average. As the Dirac–like multi–event distribution neglects the fluctuations in the energy
deposition but still include the fluctuations in the number of registered events, a good
agreement between the Dirac multi–event and the full microdosimetric multi–event dis-
tribution emerges. On the other hand, more complex radiation fields are not very well
described by the Dirac multi–event distribution. In this cases, the microdosimetric distri-
butions are not peaked around the mean values since the contributions from different ions
at different energies are extremely relevant. The quality of such a mixed radiation field
required a more complex description, as the one included into GSM2 .

The multi–event distribution directly affects the DNA damage distribution. Since the
Dirac multi–event distribution provides an accurate description of the multi–event mi-
crodosimetric distribution for monoenergetic beams, it follows that the initial damage
distributions described by GSM2 and the Dirac GSM2 are in a good agreement. Further-
more, the initial damage distributions for protons are also well described by a Poisson law,
with the damage distribution in the case of lower LET predicted both by GSM2 and the
Dirac GSM2 being slightly different from a Poisson distribution. We reported a similar
analysis in 12. The Dirac GSM2 and the GSM2 also give a similar initial damage distri-
bution for carbon ions, and they are both extremely different from a Poisson distribution.
GSM2 predicts a clear bi-modal distribution, with a significant probability of inducing no
damages, as typical for high–LET radiation. At last for the mixed field, differences are
clear in the DNA damage distribution.

Above discrepancy and analogies in the damage distributions emerges in the cell–
survival curve prediction. Lower–LET protons shows an overall agreement in the survival
fraction prediction by all four models. In this case, GSM2 recovers a Poissonian descrip-
tion of the DNA damage formation and evolution. For higher LET protons, GSM2 , the
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Dirac GSM2 and the Poisson GSM2 predict the same cell survival curve, whereas the RMR
gives a significantly lower values. Since the three GSM2 versions share the same dynamical
description, the similarity observed in the initial damage distribution is reflected in the
cell survival computation. Since the RMR and the Poisson GSM2 predict different survival
curves, it can be deduced that the recombination of lesions leading to the cell death are
already relevant for higher LET protons. Even if the RMR and the Poisson GSM2 have
the same high and low–dose asymptotes, the predicted cell–survival curves can differ. The
results for carbon pencil beam show instead how a Poissonian initial damage distribution
leads to different values compared to the GSM2 and the Dirac GSM2 . Both the RME
and the Poisson GSM2 give the same cell–survival curve which is clearly different from
the one predicted by the Dirac GSM2 and GSM2 . The cell–survival curve given by the
Dirac GSM2 and the GSM2 has a clear linear trend, which can be also observed in radio-
biological experiments with high LET ions. On the contrary, the RMR and the Poisson
GSM2 predict a cell survival curve where a quadratic non-linear term lower the cell sur-
vival curve at higher doses. Furthermore, slight differences between the GSM2 and the
Dirac GSM2 emerge in the cell survival curve prediction at high doses. In accordance with
considerations done so far, the four models predict different values for the mixed radiation
field, suggesting that in this case various effects may lead to the cell death. The RMR
predicts the lower cell survival, followed by the Poisson GSM2 , then the Dirac GSM2 and
at last the GSM2 .



Chapter 14

Predicting the survival curves
with GSM2 and the real track
length microdosimetric spectra
from HDM

This chapter brings together all the pieces developed in this thesis. We used the mi-
crodosimetric spectra obtained from HDM, i.e. with the particle real track legth, as input
for GSM2 to describe the radiation field quality. We calculated the initial damage distri-
butions and compared them with the predictions obtained with standard microdosimetric
spectra, i.e. using the mean chord length approximation.

Material and Methods

The single event microdosimetric spectrum f1(z) has been assessed for three different
Monte Carlo simulated f1(z) microdosimetric spectra as input: i) f1(z) is obtained using
the mean chord length, ii) f1(z) is calculated using the real track length and iii) f1(z)
is obtained considering a realistic detection efficiency and exploiting Machine Learning
techniques. We applied the three approaches to two irradiation conditions, namely 150
MeV proton and 290 MeV/u carbon ions after traversing 9 cm of water, as done in Sections
9 and in 10.
Then, based on the single event distributions, we calculated the multi-event fn(z) spectrum
using Equation (2.2). This spectra have been used as input to the GSM2 to assess the
sub–lethal damage distribution and then the cell survival curves using Equations (12.22)–
(12.48). The parameters used for the cell survival computation has been set to a = 0.02,
b = 0.14 and r = 2.9, and have been fitted in 12.2 and derived for the Human Salivary
Glands (HSG) cell-line.

Results and Discussion

In Figure 14.1, the comparison of the single event microdosimetric distributions f1(z)
for the three situations (mean chord length (MCL), real track length (RTL) and recon-
structed track length via ML (ML)) are reported for protons and carbon ions.
The proton distributions peak at lower specific energies z (around 0.1 Gy), whereas carbon

223
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ions exhibit a main peak around 5 Gy, with an additional second peak at lower z (between
0.1 Gy and 1 Gy), due to the secondary particles produced in water. There is a good
agreement between the RTL and the ML predicted spectra, while the MCL distributions
show a shift towards higher z values of the main peak both for protons and carbon ions.

Figure 14.1: Single–event distributions f1(z) computed using the microdosimetric spectra
with the mean chord length (black line), the real track length (red line) and the real
track length predicted with the ML module (blue line) as illustrated in Section 10. The
microdosimetric spectra were simulated using 150 MeV protons (dotted line) and 290
MeV/u carbon ions (full line)after traversing 9 cm of water.

Figure 14.2 reports the multi-event distributions fn(z) calculated for the three different
approaches (MCL, RTL and ML) when applied to both protons and carbon ions, at two
different macroscopic absorbed dose values of 1 Gy and 10 Gy. The general behaviour of
the multi-event distributions is the same as for the single-event ones, showing similarities
between RTL and ML spectra, while the MCL spectra are peaked at higher z values. It is
interesting to notice the presence of the high peak at z=0 Gy of carbon ions at 1 and 10
Gy: since the radiation field has a high LET, just few events are needed in the detector
to reach the low dose of 1 Gy, and even at 10 Gy there is still a non negligible probability
of registering no energy depositions. This behavior is in agreement with the results shown
in Section 12.2.

Figure 14.3 reports the survival probability as computed by GSM2 for protons and
carbon ions. The survival curve for protons exhibits a linear-quadratic trend, whereas for
the carbon ions it shows a straight trend in agreement with the available radiobiological
experimental data [Furusawa et al., 2000]. The agreement between the RTL and ML
microdosimetric spectra is reflected in the cell survival predictions. For both ions, the
discrepancy between the cell survival curves emerges only at high doses (above 5 Gy).
Instead, the cell survival prediction using the MCL spectra differs at lower doses (around
2 Gy), with a larger discrepancy for protons.
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Figure 14.2: Sub–lethal damage distributions (Equation (11.9)) estimated using the mi-
crodosimetric spectra computed with the mean chord length (black line), the real track
length (red line) and the real track length predicted with the ML module (blue line) as
discussed in Section 10. The vertical purple dotted line indicates the distributions average
that coincide with the macroscopic imparted dose. The left panels refer to protons at 150
MeV after 9 cm of water with macroscopic imparted dose equal to 1 Gy (top panel) and
10 Gy (bottom panel). The right panels refer to carbon ions at 290 MeV/u after 9 cm
of water with macroscopic imparted dose equal to 1 Gy (top panel) and 10 Gy (bottom
panel).

However, focusing on the differences between MCL and RTL cell survival curves, it is
interesting to notice that there is a lower discrepancy in carbon ions cell survival curve with
respect to the proton case. On the contrary, from Figure 14.1 the difference in carbon ions
between the MCL f1(z) and RTL f1(z) is even higher than this difference in the protons
case. This is due to the fact that, as deeply shown both from a theoretical and numerical
point of View in Chapter 12, GSM2 predicts the cell survival curve taking into account
the whole microdosimetric spectra. In the particular case of protons and carbon ions the
protons primary peaks are in the low z region; instead, carbon ions main peaks are in
a high z region, where the overkilling effect reduces their overall radiobiological damage
potential. This means that differences in the main peak of the microdosimetric spectra
are not seen in the biological response of the tissue. In the low z region of the spectra,
that is not affected by the overkilling effect, the MCL and RTL of carbon ions are similar,
thus explaining the similarity in the final cell survival curve predicted.
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Figure 14.3: Survival curves predicted by GSM2 using the initial damage distribution
estimated with microdosimetry. The microdosimetric spectra were computed with the
mean chord length (black line), the real track length (red line) and the real track length
predicted with the ML module (blue line) as developed in Section 10. Top panels show
the results for 150 MeV protons, while bottom panels for 290 MeV/u carbon ions.
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The driving force of the present work has been microdosimetry, with the ultimate
purpose of fully exploiting the vast potential of the microdosimetric quantities in describing
the radiation field and in providing one of the finest and most meaningful ingredient to
model the radiobiological damage.

A detailed knowledge of the field composition and quality is required to estimate the
biological effect of radiation. The most widely used approach to assess the radiation qual-
ity is the Linear Energy Transfer (LET). By definition, LET is measured in macroscopic
volumes, i.e. on a scale much larger than the cellular level where the actual biological
damage occurs. This approach, however, neglects the stochastic nature of energy depo-
sition. The limited capability in describing local radiation-induced effects at the cellular
level, especially for non-uniform dose deposition patterns delivered by mixed fields, has
posed the question whether LET is the most accurate radiation quality predictor for RBE
assessment [Grün et al., 2019]. The limitations discussed in 1.1.3 led the radiobiological
and medical communities to consider substituting the LET concept with with a more
meaningful and experimentally measurable physical quantity.

Microdosimetry allows the investigation of the effects of radiation on cells in a region
comparable to the structures of interest, being the energy deposition of a particle scored
in a micrometer-sized volume, e.g. the cell nucleus. For this reason, it has been proposed
as an alternative methodology to overcome LET limitations [Cortés-Giraldo and Carabe,
2015, Bertolet et al., 2019]. One of the advantages of microdosimetry compared to the
dosimetric LET approach is that it is more suited to detect short-range heavy fragments,
which can generate hot spots of energy deposition and have been recognized as a potential
cause of toxicity in the normal tissue [Haas-Kogan et al., 2018].

Exploiting microdosimetry, we characterized both homogeneous and complex radiation
fields, either along the in-beam direction and in different off-beam positions. This study
has been performed for monoenergetic and Spread Out Bragg peak protons, for helium
and oxygen ion beams and for neutrons produced from a iron beam impinging on a alu-
minum target, and the outcomes are reported in Part III. Aside from providing a better
understanding of the particle effectiveness in tumor killing, data from protons, helium
and oxygen characterizations can help predict the risk of undesired effects following the
treatment. In addition, the microdosimetric study of neutrons from iron stopping in an
aluminum target is of great interest for space radioprotection. Microdosimetry has proven
to be an invaluable tool in characterizing radiation fields for both applications, particle
therapy and space radioprotection.

The results demonstrate in addition that the microdosimetric characterization is as
key ingredient for a final biological damage assessment, that can be derived exploiting
different radiobiological models. This investigation uncovered a strong dependence of the
biological damage and RBE assessment on the model and indicated that a more robust
mathematical model to predict RBE is advisable.

The new tool should be based on microdosimetry, providing a superior description
of the energy deposited in the cell nuclei, from which the initial damage distribution is
assessed. The accuracy in characterizing the radiation field quality directly reflects on
the precision in predicting the cell damage and RBE values. Therefore, expanding the
microdosimetric information could benefit the reliability of the radiobiological damage
estimation.

A general approximation underlying experimental microdosimetry is the mean chord
length concept. The main physical quantity considered in experimental microdosimetry is
the lineal energy y, [Zaider et al., 1996], which is obtained dividing the energy deposition
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ϵ by the mean chord length l traversed by the particle in the detector. While ϵ is directly
measured, the value of l is calculated as the average path travelled by a particle inside the
detector, and thus depends both on the detector geometry and on specific assumptions on
the radiation field (typically considered isotropic and uniform). Nonetheless, as early noted
by [Vassiliev, 2017], to achieve a more meaningful connection between the radiation field
and the consequent biological outcome, the knowledge of the real track length traversed
by the particles that ionize the biological tissue is desirable.

Taking into consideration the strengths and limitations of the the existing detectors, we
designed a new hybrid 2-stage microdosimeter (HDM: Hybrid Detector for Microdosime-
try), 9, composed of a spherical TEPC, [Missiaggia et al., 2020], followed by four Low Gain
Avalanche Detectors (LGADs), [Pellegrini et al., 2014]. The proposed design benefits from
the fact that the TEPC provides the energy deposition ϵ directly in a tissue-equivalent
medium and has a good detection limit for low-LET particles (around 0.1 keV/µm). Fur-
thermore, the 4 LGAD planes offer the particle tracking. Using the track information,
we can obtain the actual path length travelled by each particle inside the TEPC (and
thus avoid the mean chord length approximation). In addition, HDM improves the TEPC
spatial resolution.

To assess the detector performances, we performed a feasibility study described in
Chapter 9 via Monte Carlo simulations, where different configurations have been tested
(changing the distance between detectors, the number of strips in a single LGAD) and
the HDM response has been investigated when irradiated with protons and carbon ions at
different water depths. The results showed all HDM advantages, but also indicated that
the detection efficiency is the detector main weakness. To tackle such issue as well as to
improve the tracking accuracy, we exploited modern Machine Learning (ML) techniques
in Chapter 10.

The next natural step was to quantify the effect that the augmented microdosimetric
spectra provided by HDM could have on predicting biological outcomes and estimating
the RBE. The vast majority of existing models fail to consider the whole microdosimetric
spectrum and are rather based on averages values, such as the MKM and its variants. Bio-
logical weighting functions such as the Loncol one [Loncol et al., 1994], consider the whole
microdosimetric distribution, but have a limited validity since they have been calculated
only for specific ion types and biological endpoints. Therefore, up to date, no radiobio-
logical model is general enough to both i) fully exploit the potential of microdosimetry
and of the extended information provided by HDM, and ii) to be valid in many different
physical (ion type, energy and dose range) and biological (cell type) scenarios.

For this reason, we have developed the Generalized Stochastic Microdosimetric Model
(GSM2) described in Part V. GSM2 predicts cell survival, and consequently RBE, consider-
ing the whole microdosimetric spectrum. The original motivation behind GSM2 development
was to introduce a model that provide a rigorous and general mathematical description of
DNA damage time–evolution without using any a priori assumption on the lesion distribu-
tion (e.g. a Poisson). This model would include several non-linear and stochastic effects
that are typically implemented into existing models by suitable semi-phenomenological
corrections. Since GSM2 aims at providing a true stochastic description of DNA dam-
age formation and kinetic evolution, microdosimetry represents the most suitable physical
input to describe the radiation field quality, including HDM augmented microdosimetric
information.

Finally, Chapter 14 brings together many of the new concepts presented in the thesis:
microdosimetric spectra obtained with HDM and the ML approach provide the radiation
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quality description that is used as an input for GSM2 . The outcomes obtained from this
novel approach represent an encouraging first step to achieve a superior characterization of
the radiation field and the biological damage estimation. Nonetheless, the results showed in
this thesis are not the end of the story. HDM can greatly benefits from further technological
improvements, such as new LGADs technologies to thin the layers in order to lower the
particle scattering within the tracker stage and an optimization of the fill factor to reduce
the dead region. In addition, the use of a miniTEPC instead of the TEPC model LET
1/2 will be consider to apply HDM at higher particle rates, in view of a therapeutic range
application. Furthermore, the next step in the direction of an augmented microdosimetry
includes the particle charge prediction via an additional ML module.

Experimental radiobiological campaigns are already planned to validate the GSM2 .
Because the model is based on a full description of the damage initial distribution and
evolution, the accuracy and quality of the necessary radiobiological data is not a trivial
request, and new studies not available in literature are needed to fully validate the model.
The potential of using the real track length additional information in microdosimetry
provided by HDM will be better exploited in an improved version of GSM2 , where the
concept of the nucleus domains will be substituted with a description of the true spatial
resolution of DNA damage.

In conclusion, in this dissertation microdosimetry was explored from different angles,
including both the experimental and theoretical sides, and we demonstrated that it can
yield impactful advances with wide-reaching implications.

It is my hope that, also thanks to the small steps forward from this work, the potential
of microdosimetry can be fully realized.
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