
Time-Inverted Kuramoto Dynamics for κ-Clustered Circle Coverage

Manuel Boldrer, Francesco Riz, Fabio Pasqualetti, Luigi Palopoli, Daniele Fontanelli

Abstract— In this paper we analyse the equilibrium
configurations for the time-inverted Kuramoto Model
with homogeneous agents and a fixed ring topology, where
time-inverted means that the coupling between the different
states is via a negative factor. This model exhibits a dual
behaviour with respect to the classic Kuramoto Model with
a positive copuling. In the paper, we show the existence of
two possibile stable equilibrium configurations: the splay state
formation (1-clustered coverage) and the deployment in clusters
(κ-clustered coverage). We provide sufficient conditions for the
splay state formation and a stability analysis for the networked
system. Moreover, we provide some initial results towards
the controllability of the final equilibrium configurations. In
particular, we lay the foundations to understand the conditions
to switch between stable equilibria.

I. INTRODUCTION

Distributed control of multi-agent systems is a very active
research area, both in the control and in the robotics
communities. In these fields, one of the topics that received
the most attention is the emergence of collective behaviours
from the combination of local interaction rules [1], [2]. The
Kuramoto Model [3] falls in this class of models.
A Kuramoto model is defined by

θ̇i = γ

N∑
j=0

aij sin(θj − θi).

where the varaibles θ1, θ2, . . . , θN represent the state of a
number of different agents. When γ = +1, we will say that
the states are positively coupled, while for γ = −1 we will
say that they are negatively coupled (i.e., the system is time-
inverted).
Over the years, much of the attention on the Kuramoto model
has been on the synchronisation of oscillators. If each state
θi represents the phase of an oscillator, it can be shown that
under some conditions the phases will eventually converge
to the same value and the oscillators be synchronised [4] if
the different states are positively coupled. Much less studied
is the case when the oscillators are negatively coupled.
One interesting behaviour that emerges in this case is one
in which the different states are equally spaced: the so
called splay state. The splay state is very much studied
in different communities from the neurosciences [5] and to
vehicle coordination [6].
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In the robotics community, a coordination scheme that
provably and robustly converges to the splay state has
profound and far reaching implications. In the wide range
of the possibile applications, we can select two paradigmatic
examples. As a first example, consider the problem of
deploying a number of robots along a closed circular curve
that encloses an area of interest. If each robot has a limited
sensing range, the splay state is the configuration of the
agents that minimises the probability for an intruder to
penetrate unnoticed into the area. As a second example,
consider a number of robots approaching a shared area (e.g.,
an intesection). If the states are related to the time each
agent is allowed to move, the splay state is the schedule that
maximises the time interval between two successive accesses
to the shared area.
For all these applications it is imperative to know under
which conditions the splay state can be reliably reached and
if this evolution can be “forced” through appropiate input
actions.

A. Related work

In 1967 Winfree [7] first proposed a coupled oscillator model
by considering a general interaction rule among the agents.
The Kuramoto Model properly said was first introduced
in 1975 [8], giving rise to a research area which has
remained active . The large majority of researchers focused
on the use of Kuramoto Model for synchronisation purposes.
Monzón et al. [9] studied the global stability properties
of the Kuramoto Model under the assumption of complete
visibility graph between the oscillators. The assumption of
complete visibility graph is released in the analysis proposed
by Jadbabaie et al. [10].
As clearly recognised in the survey of Dörfler et al. [4],
the use of positively coupled Kuramoto Model for the phase
synchronisation has been studied much more in depth that the
use fo negatively coupled Kuramoto Model, which is related
to the phase balancing problem. Sepulchre et al. provide
results on homogeneous agents local phase balancing, in both
cases of a mesh [11] or of a general [12] communication
framework. Xu et al. in [13] analysed a Kuramoto-like
dynamics with sine-terms replaced by cosines to achieve a
splay formation (i.e., the agents are deployed uniformly over
the circle), however they require a strict condition on the
incidence matrix associated to the graph topology. In [14]
the authors analyse the interaction between conformist and
contrarians oscillators, with positive and negative coupling
strength. More recently, hybrid coupling functions have been
used in [15] to prove uniform global asymptotic stability,
while conditions for cluster synchronisation are studied
in [16].



B. Paper contributions

In this paper, we restrict our focus to a negatively coupled
Kuramoto Model. The main difference with respect to
previous works on phase balance problem [12] can be found
on the chosen communication topology between the agents.
We assume to have a time-invariant ring graph topology.
Thanks to this choice, we can expose important properties
on the dynamic behaviour of the system. Our contributions
are threefold: i. we state a sufficient condition for agents to
reach splay state configuration; ii. we analyse all the stable
configurations of the system that can occur, characterising
their degree of stability; iii. we offer a preliminary analysis
on how to set up a control scheme that enables us tor drive
the system state from one stable configuration to another.
The paper is organised as follows. In Sec. II we provide a
formal description of the problem. In Sec. III we characterise
the difference equilibrium configurations and analyse their
stability. In Sec. IV we offer a preliminary discussion on how
to drive the system into a specific equilibrium configuration.
Finally, in Sec. V we offer our conclusions and announce
future work directions.

II. PROBLEM DESCRIPTION

We consider a set of N agents moving on a circle and
following the Kuramoto Model with inverse coupling

θ̇i = −
N∑
j=0

aij sin(θj − θi) (1)

where θi denotes the position on the circle of the i–
th agent, and aij ≥ 0 the coupling between them. In
particular, we assume that agents are coupled according
to undirected circulant topology, where A = [aij ] is the
following symmetric matrix

A =


c0 c1 · · · c2 c1
c1 c0 c1 · · · c2
... c1 c0

. . .
...

c2
. . . . . . c1

c1 c2 · · · c1 c0

 , (2)

with c0 = 0 and all the other entries that can be either 0 or 1.
Notice that the matrix A corresponds to a generic circulant
matrix with the constraint of symmetry, since we are going to
consider only undirected graph topologies. In compact form
the dynamics of the interconnected agents read as

θ̇ = B sin(B>θ). (3)

where B ∈ RN×M is the incidence matrix associated to the
graph topology G(V, E) with number of nodes |V| = N and
number of edges |E| = M , while θ = [θ1, θ2, . . . , θN ]>. In
the literature (see [10]), a common measure of the level of
synchronisation for the system is given by the magnitude of
Reψ , called order parameter. More precisely,

Reψ =
1

N

N∑
i=1

ej θi , (4)

O = (0, 0)

R

(a) (b) (c)

Fig. 1. Example of Kuramoto equilibria for N = 7 agents (blue circles)
with a complete graph topology. The order parameter (4) is reported with
a red circle and its time evolution with a thin red line. (a) Random initial
configuration θ(0). (b) Equilibrium for the agents’ synchronisation (R =
1) obtained with the classic Kuramoto dynamics. (c) Equilibrium for the
balanced deployment (R = 0) obtained through (3) (dual behaviour).

it represents in the complex plane the mean of the agents’
positions. When R = 1 the system falls in the case of full
synchronisation (or consensus, i.e. all the agents converge to
a common state). On the other side, when R = 0, the agents
in the system are in a balanced configuration in which they
are equally spaced along the circle. The order parameter, i.e.
the modulus of (4), can be also written as a function of the
graph topology:

r2 = 1− 1

N2

(
[cos θ]>L[cos θ] + [sin θ]>L[sin θ]

)
, (5)

where L = BB> is the Laplacian matrix associated to the
graph topology, also equal to the difference between the
degree matrix D and the adjacency matrix A, i.e., L = D−A.
By selecting as Lyapunov candidate the function V (θ) = r2,
we have

V̇ (θ) = ∇θV · θ̇ =
2

N2
B sin(B>θ)θ̇ = − 2

N2
θ̇>θ̇ ≤ 0.

By the LaSalle invariance principle [17] the system will
converge to an equilibrium, i.e., θ̇(∞) = 0N .
It is worthwhile to note that, for the complete graph topology,
while for the classic Kuramoto dynamics the system goes
towards the synchronisation of all the agents (i.e. R →
1), by adopting (3), the system converges to a balanced
deployment (i.e. R → 0). To clarify this point, Figure 1-
a depicts a random starting configuration with N = 7 agents
(blue dots on the circle) and a complete graph topology
(the edges of the graph are represented with orange lines
connecting the agents). The red circle represents the order
parameter position (4), assuming the centre of the circle
as the origin O = (0, 0). In Figure 1-b,c we depict the
final configurations reached respectively by enforcing the
classic Kuramoto dynamics (with positive coupling) and
the time-inverted (i.e., with negative coupling) Kuramoto
dynamics (3).
Given the Kuramoto system thus described, the main
objective of the paper is to characterise the equilibrium
configurations of (1) and their stability properties for specific
graph topologies. We will also design controls to steer the
agents between stable configurations. Notice that in the paper
we use the terms “oscillator’s phase” or “agent’s position”
with the same meaning, in the sense that the phase of an



oscillator univocally identifies the position of an agent on
the closed curve considered (i.e., the circle).

III. SYSTEM ANALYSIS

A. κ-clustered coverage

By considering (1) with the undirected circulant topology (2),
by using basic trigonometry properties, it can be shown that
θ is an equilibrium configuration if and only if

diag(cos θ)A sin θ = diag(sin θ)A cos θ. (6)

Let us define θ?(p) = [θ
?(p)
1 , θ

?(p)
2 , . . . , θ

?(p)
N ]> the

equilibrium point, whose configuration is circular symmetric.
Therefore, it is possible to assume θ

?(p)
1 = 0 and thus,

exploiting the properties of circulant matrices [18], [19] ,
it results

θ?(p) =

[
0,

2πp

N
, . . . ,

2πp(N − 1)

N

]>
, (7)

see [18] for the detailed derivation. To check the stability
for the different values of p ∈ N, we first linearise the
dynamic (1). The eigenvalues of the associated Jacobian
matrix J(p) can be computed analytically, since the matrix
is also circulant (as reported in [18]).
Notice that, if we are considering generic undirected µ-
circulant graphs, that indicates circulant topologies where the
cardinality of the neighbour set |Ni| = µ , ∀i , there exists
additional exotic stable equilibrium configurations [20] (as
is shown in Figure 1-c, where we considered an (N − 1)-
circulant graph). Let us denote with fi the phasor associated
to agent i, and its neighbour set as Ni. In [9], it is proved that
an equilibrium satisfies the parallelism constraint between∑
j∈Ni

fj and fi, ∀i. For the case of 2-circulant topologies,
i.e. with adjacency matrix (2) with c1 = 1 and ck = 0,∀ k 6=
1, the eigenvalues associated with the linearised system are
given by

λr(J(p)) = −2 cos

(
2πp

N

)[
−1 + cos

(
2πr

N

)]
. (8)

Hence, the equilibrium (7) is stable if and only if
p ∈ (N/4, 3N/4). When we restrict to 2-circulant graph
topology, all the stable equilibria are subsumed by the
form (7). Indeed, due to the Jacobian matrix J(p) structure,
the stability condition is given by

∑
j∈Ni

cos(θi − θj) < 0,
∀i, that, once combined with the phasors parallelism, returns
the equilibrium configurations (7) with p ∈ (N/4, 3N/4).
However, we can be more flexible; let us define the ring
topology, where each agent has |Ni| = 2 and |V| = |E| >
2. By considering a ring topology these results hold true;
since an equilibrium point for a 2-circulant topology is an
equilibrium point also for a ring topology and the associated
eigenvalues are necessarily the same. As a consequence, the
rest of the paper will focus on the ring topologies equilibrium
configurations (7). At this point, denoting the set of prime
numbers as NP , we are in the position to prove one of the
main results of the paper:

p = 4, 9 p = 5, 8 p = 6, 7

Fig. 2. Stable equilibrium configurations for N = 13, i.e. p =
[4, 5, 6, 7, 8, 9].

Lemma 1. Given N ∈ NP and p ∈ N in the interval 0 <
p < N , the equilibrium positions θ?(p) in (7) splits the circle
in N equal parts.

Proof. The fact that N is a prime number and p ∈ (0, N) ⊂
N imply that θ?(p) positions on the circle (i.e., modulo 2π)
and defined in (7) are all different. The fact that the circle
is equally divided in N parts, follows from the difference
between two consecutive positions, which remains constant
and equals to ∆θ

?(p)
i = θ

?(p)
i+1 − θ

?(p)
i = 2πp

N for p ∈ N and
∀i = 1, . . . , N − 1. Moreover, ∆θ

?(p)
N = θ

?(p)
1 − θ

?(p)
N =

0 − 2πp(N−1)
N = 2πp

N − 2πp, which is equal to the others
modulo 2π.

Figure 2 graphically represents the different stable
equilibrium configurations for N = 13 when the p ∈
(N/4, 3N/4). According to what is stated in Lemma 1, all
the possible final configurations make the agents reach the
splay state formation over the circle. One interesting fact
is that the set N/4 < p < 3N/4 can be split into two
symmetric sets P ′ = (N/4, N/2) and P ′′ = (N/2, 3N/4).
From Lemma 1, it follows immediately that the reached
coverage configuration on the circle for p′ ∈ P ′ is the same
by permutation for a p′′ ∈ P ′′, i.e., being P a permutation
matrix and selecting one value p′ ∈ P ′, ∃! p′′ ∈ P ′′ such
that θ

?(p′)
= Pθ?(p

′) and ∆θ
?(p′′)
i = ∆θ

?(p′)

i . In particular,
organising P ′ in ascending order, i.e. p′j < p′j+1, ∀j, and
P ′′ in descending order, i.e. p′′j > p′′j+1, ∀j, we have the
same equilibrium for the pair {p′j , p′′j }, ∀j. With reference
to Figure 2, we have then that the same final coverage is
reached for p = {4, 9}, p = {5, 8} and for p = {6, 7}.
Notice that these considerations about the solution symmetry
are true in case of generic N and can be extended also for
p ∈ [0, N ].
The characterisation of the equilibrium configurations for
static coverage is reported next.
Theorem 1. [The Solitude of prime numbers] Given N ∈
NP and the initial positions θ(0) are not in an unstable
equilibrium point, by imposing (3) and considering a
constant ring topology, the overall system achieve a splay
state pattern over the circle i.e., it achieves static coverage.

Proof. Since the system do not start from an unstable
equilibrium configuration, it will converge to a stable
equilibrium configuration by the LaSalle invariance principle.
Since we assumed a time-invariant ring topology, the stable



N = 3 N = 5 N = 7

N = 11 N = 13 N = 17

N = 29 N = 73 N = 199

Fig. 3. Final equilibrium configurations obtained by imposing (3) with
different number of agents N ∈ NP and starting from random initial
positions θ(0). We depict in green the position of the global order
parameter (4) to highlight the coverage reached configuration.

equilibrium configurations are characterised by (7) with
p ∈ (N/4, 3N/4). Since N ∈ NP , the proof follows from
Lemma 1.

Figure 3 exemplifies the equilibrium configurations obtained
from the evolution of the dynamics in (3) with fixed ring
topology R and randomly generated starting positions θ(0).
We picked different N ∈ NP , which reach a splay state
pattern on the circle, according to the Theorem 1.
We now extend the results of Theorem 1 for generic N ∈
N \ {0, 1}. To this end, we first have to distinguish between
two different kind of stable equilibria, namely static coverage
or static coverage in clusters, as reported in what follows.
Definition 1. We define a cluster in the equilibrium
configuration two positions θ?(p)i and θ?(p)j such that θ?(p)i −
θ
?(p)
j = 2aπ, with a ∈ N.

Lemma 2. Given N ∈ N \ {0, 1}, the number of agents
that clusters together at the equilibrium is given by the
maximum common divider between N and p, denoted by
κ = mcd(N, p). The agents’ clusters subdivide the circle in
N/κ equal parts.

Proof. By considering the stable equilibrium in (7), dividing
both numerator and denominator by κ, we can rewrite

θ?(p) =

[
0,

2πp/κ

N/κ
, . . . ,

2πp/κ(N − 1)

N/κ

]>
. (9)

It can be noticed that when p = κ, the equilibrium (9)

p=0 p = 1 p = 2 p = 3 p = 4

UNSTABLE EQUILIBRIUM

N = 7

N = 8

N = 9

Fig. 4. Stable and unstable equilibrium configurations (7) for the
dynamics (3) with fixed 2-circulant topologies. We show the different
equilibrium configuration by varying the values of p and the number of
agents, which are 7, 8, 9 respectively.

imposes a circle subdivision in N/κ equal parts, hence κ
is the number of agents clustered together. When p 6= κ and
κ ≥ 1, since p/κ ∈ N \ {0, 1} the circle is still divided in
N/κ parts with κ clustered agents.

We call the equilibrium configuration described by Lemma 2
as κ-clustered coverage. With this terminology, we can then
denote the synchronisation case as an N -clustered coverage,
while the splay state pattern is equivalent to 1-clustered
coverage. All the possible κ-clustered coverage equilibria,
either stable and unstable, for N = {7, 8, 9} agents are
depicted in Figure 4. First, notice that regardless of the
number of agents and by means of (9), we have N -clustered
coverage (i.e., agents synchronisation) for p = 0, which is
for the dynamics (3) an unstable equilibrium configuration
in light of (8) (which will be adopted in the following
to characterise the unstable configurations). Similarly, for
p = 1 we have unstable equilibria, all related to a 1-clustered
coverage (maximum coverage) for Lemma 2. On the top row
of Figure 4, we have the case of N = 7 always reaching 1-
clustered coverage (under the assumption that 0 < p < N )
since N is prime and in light of Lemma 2, for p = {0, 7}
the system is in a 7-clustered coverage. The middle raw
reports the case of N = 8, always exhibiting a κ-clustered
coverage: using Lemma 2, it follows that for p = {1, 3, 5, 7}
we have a 1-clustered coverage; for p = 2 or p = 6 a 2-
clustered coverage; for p = 4 we have instead a 4-clustered
coverage, while for p = {0, 8} the system is in an 8-
cluster coverage (i.e. synchronisation case). Notice that the
equilibrium for p = {0, 1, 2, 6, 7, 8} are unstable. Finally,
the bottom row considers N = 9, it reaches 9-clustered
coverage for p = {0, 9}, unstable 1-clustered coverage for
p = {1, 2, 7, 8}, a stable 3-clustered coverage when p = 3
and p = 6, a stable 1-clustered coverage for p = {4, 5}.
Definition 2. We define the stability degree of an equilibrium
the value attained by the Lyapunov function V (θ) = r2.
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Fig. 5. The potential values V = r2 as a function of p and the number of
agents N . The yellow circles indicate the minimum values of the potential,
which always correspond to p = bN/2c.

To identify the equilibrium with lowest Lyapunov function
value (with a slight language abuse named most stable
equilibrium), the following Lemma turns useful.
Lemma 3. Given the dynamics in (3), the most stable
equilibrium corresponds to the one maximising the difference
∆θ?(p) between linked agents, it matches with p = bN/2c
in (7).

Proof. As is reported in [10], the order parameter, in (5) for
the case of ring topologies, can be rewritten as

r2 =
N2 − 2N + 1>N cos(B>θ)

N2
, (10)

hence the Lyapunov function V = r2 is minimised when
the positions’ differences φ = B>θ are equal to π. As
a consequence, the most stable configuration is the one
that maximises the distance between linked agents. By
considering the equilibrium in (7), it is reached when p =
N/2 if N is even (i.e., ∆θ?(N/2) = π), and for p = (N±1)/2
if N is an odd number (∆θ?((N±1)/2) = π − π/N ), which
is a splay state pattern. Hence, the proof.

In Figure 5, we depict the value that assumes V = r2 as
a function of p ∈ (N/4, 3N/4) for different N . For each
curve, according to Lemma 3, the global minimum of the
potential function is reached at p = bN/2c.

IV. TOWARDS THE CONTROL OF THE FINAL
EQUILIBRIUM CONFIGURATION

Computing a-priori the final equilibrium configuration, given
the initial conditions, is a challenging problem, however
some insights can still be derived. Using the concept of
stability degree given in Definition 2 and assuming that C is
the set of controllable agents, i.e., the agents whose position
can be controlled, we found that it is always possible to
change the equilibrium configuration of the overall system

by acting on the position θC , as stated in the following
conjecture.
Conjecture 2. Given N ∈ N \ {0, 1} with a fixed ring
topology, if the agents’ position are in a stable configuration
with a certain value of p 6= bN/2c and the position of
a single agent i ∈ C is changed from θi to θi + ∆θi,
the time evolution of the system (3) surely reaches a final
equilibrium configuration corresponding to p+ = p± 1 such
that |p+−bN/2c| < |p−bN/2c| if ∆θi = π. If p = bN/2c,
the change of the position does not change the equilibrium
configuration.
Notice that, if the aim of an agent i ∈ C is to steer the
system in a splay configuration, this is always possible when
the number of agents N is odd. In fact, the most stable
equilibrium configuration in the sense of Lemma 3 is always
in a splay configuration (i.e., 1-clustered coverage). In the
case of an even N , it results that the most stable equilibrium
configuration is an N/2-cluster coverage, i.e. all the agents
are clustered at two opposite positions. Conjecture 2 ensures
that the unique controlled agent i ∈ C can always steer the
system to reach that configuration. However, one single agent
cannot switch the system to a less stable configuration: to this
end, we need the following additional conjecture.
Conjecture 3. Given an even number of agents N with a
fixed ring topology, if the agents’ positions are in a stable
configuration with a certain value of p = N/2 and the
positions of the agents i, j ∈ C, with j ∈ Ni, are changed
from θi to θi + ∆θi and θj to θj + ∆θj , the time evolution
of the system (3) reaches a final equilibrium configuration
corresponding to p+ = p± 1 such that V (θ?p

+

) > V (θ?p).
The configuration p+ = N/2 ± 1 is a splay configuration
only if N/2 /∈ NP .
We can then state that if the cardinality |C| = 1, it is
possible only to move along more stable configurations,
while if |C| = 2 both switches are feasible. These results are
not formally proved in this version of the paper, however
we validated them through extensive simulations. Figure 6
reports an example for N = 24 in which the value of the
Lyapunov function is plotted as a function of the controlled
position shift ∆θi. By perturbing the agent i ∈ C of an
amount equal to ∆θi, the value V (θ) can only decrease,
hence reaching more stable configurations according to
Definition 2. Moreover, the value of p is always decreased of
at most 1, unless the minimum configuration is considered,
i.e. the one with p = bN/2c, where no switch can be
observed, according to Conjecture 2. Another important
information is related to the value of ∆θi that is necessary to
fire the switch: as the configuration is more stable (i.e. with
increasing p), the smaller is the set of controlled actions ∆θi
to apply on the i–th agent. Nonetheless, ∆θi = π is alway
able to apply a configuration switch (see Conjecture 2).
To show empirical validity of Conjecture 3, we show in
Figure 7 the controlled positions feasible pairs ∆θi and
∆θj to enforce the equilibrium configuration switch from
p = N/2 to p = N/2 − 1. The map in Figure 7 is generic
i.e. it is valid for any choice of N .
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Fig. 6. Starting from the equilibrium configuration p, by selecting C = {i},
we depict the potential values V = r2 as a function of ∆θi.
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Fig. 7. Set of position differences ∆θi and ∆θj for the i–th and j–th agents
which enables an equilibrium switch from p = N/2 towards p = N/2−1.

Finally, Figure 8 shows the time evolution of the Lyapunov
function V (θ) and the reached stable configurations for a
network of N = 20 agents. We started from a random
configuration and the system evolves towards the stable
configuration with p = 6. From the stable configuration
with p = 6, we control the first agent position, which is
θ
?(p)
1 = 0, towards θ?(p)1 = π, thus switching to another

stable configuration with p = 7, reached after 2 seconds.
The position change is performed three more times every
2 seconds, thus leading first to p = 8, p = 9 and then to
p = 10, which is the most stable configuration according
to Lemma 3. At this time, by perturbing the positions of
two agents, picking the position differences from the map
in Figure 7, the system returns to the configuration p =
N/2−1 = 9, which is a splay state pattern since N/2 /∈ NP .
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Fig. 8. Time evolution of V (θ) = r2 for a network with N = 20 agents.
For t = 0 s and every 2 seconds, we select one single agent and we apply a
controlled position shift ∆θ = π. As a result, the system switches towards
more stable configurations, until the minimum value for p = 10 is reached
at t = 8 s. At this time, the set of controllable agents is enlarged, i.e.
|C| = 2 and, by applying the differences of positions reported in Figure 7,
the final system configuration is brought back to p = 9.

V. CONCLUSIONS

We analysed the time inverted Kuramoto model with a
fixed ring graph topology. We discussed the equilibrium
configurations of the dynamical system, and we provide
sufficient condition to achieve 1-clustered coverage. The
cases where κ-clustered coverage occurs is discussed and
we propose two conjectures to study the controllability of the
equilibria. In the near future, we plan to study more deeply
the controllability of the equilibria, considering time-varying
communication topologies and generic graph topologies. We
are interested also in studying how to increase the system
resiliency against generic cyber-attacks using the results
from the controllability analysis. Another interesting research
direction is related to persistent monitoring algorithms,
considering time-varying velocities for each agent and
accounting for generic closed curves on which agents can
move.
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