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Measurements of the Doppler spectra of airborne ultrasound backscattered by the rough dynamic

surface of a shallow turbulent flow are presented in this paper. The interpretation of the observed

acoustic signal behavior is provided by means of a Monte Carlo simulation based on the Kirchhoff

approximation and on a linear random-phase model of the water surface elevation. Results suggest

that the main scattering mechanism is from capillary waves with small amplitude. Waves that travel

at the same velocity of the flow, as well as dispersive waves that travel at a range of velocities, are

detected, studied, and used in the acoustic Doppler analysis. The dispersive surface waves are not

observed when the flow velocity is slow compared to their characteristic velocity. Relatively wide

peaks in the experimental spectra also suggest the existence of nonlinear modulations of the short

capillary waves, or their propagation in a wide range of directions. The variability of the Doppler

spectra with the conditions of the flow can affect the accuracy of the flow velocity estimations

based on backscattering Doppler. A set of different methods to estimate this velocity accurately and

remotely at different ranges of flow conditions is suggested. VC 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/1.5015990

[DKW] Pages: 3387–3401

I. INTRODUCTION

The ability to measure the velocity of sea currents from

the Doppler spectra of airborne waves backscattered by the

water surface has been well established in the past. Although

these measurements can be obtained in principle using

acoustic waves,1 most applications have been based on radio

waves2 or microwave3,4 historically. These measurements

are typically performed within the so-called Fraunhofer

zone, where the size of the scattering region of the rough sur-

face is small compared to the distance from the source and

receiver. In this condition, the dominant Bragg scattering

mechanism produces peaks of the first-order Doppler spec-

trum5 at the frequencies of the surface waves with the wave-

length of approximately half the incident wavelength. The

flow velocity near the surface can be estimated based on the

frequency shift of the Bragg peaks caused by the advection

due to the current.2

The same technique has been applied in order to esti-

mate the surface velocity of rivers, in a few studies.6,7 Lower

costs, safer access, and less likelihood of damage from float-

ing debris make non-contact flow velocity sensors based on

airborne Doppler an attractive alternative to intrusive flow

velocity measurement, but the interpretation of the data is

not as straightforward as it is in the ocean,6 and the accuracy

of the measurements varies greatly at different flow condi-

tions.8 This is attributed to a relatively poor understanding of

the dynamic behavior of the water surface in rivers and open

channel flows compared to that in the ocean.

The scattering of airborne or underwater acoustic waves

by the water surface is described by similar physical princi-

ples to the scattering of electromagnetic waves, although it

is not sensitive to polarization. The Doppler spectra of

underwater sound scattered by wind-waves are related to

those of airborne microwave.9 When acoustic waves are

scattered on the air side, the water surface can be considered

as rigid, which simplifies the scattering problem consider-

ably. On the other hand, ultrasound dissipates relatively rap-

idly with distance from the source, and ultrasonic

transducers often have a wider directivity in air compared to

microwave or radar sources. Because of the wider directivity

of the transducer, the measurements are often performed out-

side of the Fraunhofer zone, where the typical interpretation

of the Doppler spectra based on Bragg scattering has no rig-

orous justification. The only known scientific study so far

that dealt with the Doppler spectra of airborne ultrasound in

rivers10 was a field work, with no examples of the measured

Doppler spectra. An analysis of the scattering phenomenon

in realistic conditions, accompanied by a simultaneous char-

acterization of the water surface statistics, is required in

order to establish the potential of rigorous non-contact flow

monitoring techniques based on ultrasound.

This work presents the Doppler spectra of airborne

ultrasound backscattered by the water surface of a wide

range of flows, measured in a laboratory flume. A recent

study11 has shown that the characteristic spatial and temporal

scales of the instantaneous water surface elevation in the

same range of flow conditions used for this study are related

to the main hydraulic quantities (namely, the mean flow

depth and the mean surface velocity). Based on thisa)Electronic mail: g.dolcetti@sheffield.ac.uk
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improved understanding of the surface dynamics, a linear

random phase model of the water surface was developed.

The Doppler spectra were predicted by a numerical Monte

Carlo simulation based on the Kirchhoff approximation. The

comparison aimed at providing a rigorous interpretation of

the measured spectra, in order to improve the accuracy and

reliability of the flow velocity estimations with airborne

acoustic sensors. A set of analysis techniques that enable this

estimation is presented, and the applicability of each tech-

nique at different flow conditions is discussed by means of a

comparison with the experimental data.

The paper is organized in the following manner. The

experimental acoustic setup and the hydraulic conditions of

the investigated flows are reported in Sec. II. The numerical

model is described in Sec. III. Experimental and numerical

results are presented in Sec. IV. The principal implications

for the remote measurement of the flow velocity based on

backscattering Doppler are presented in Sec. V. Section VI

summarizes the main results of the study.

II. EXPERIMENTAL SETUP

A. Acoustic setup

Ultrasound with the frequency of 43 kHz was generated

above the water surface with a 70 mm directional ultrasonic

transducer (Pro-Wave ceramic type 043SR750) and recorded

with a 1/4 in. Br€uel & Kjær (B&K) 4939-A-011 microphone

with type 2670 pre-amplifier. The transducer and the micro-

phone were installed in a 12.6 m long and 0.459 m wide rect-

angular laboratory flume, at the distance of 8 m from the

flume inlet and 0.2295 m from the flume side walls, along

the flume centerline. A schematic of the acoustic setup is

shown in Fig. 1. The transducer and the microphone were

facing in the direction of the inlet, with their axis inclined

downwards by the same angle w1 ¼ w2 equal to 30� with

respect to a plane parallel to the flume bed. Water was circu-

lated in the flume below them. The height of the microphone

and of the transducer with respect to the flume bed was

adjusted every time the flow condition was changed, thus

ensuring that the height of the source with respect to the

average height of the water surface, z1, was approximately

200 mm. Due to the dynamic fluctuation of the water surface,

the uncertainty of this measure was estimated to be of the

same magnitude as the standard deviation of the surface ele-

vation, r, which varied between 0.05 and 2.03 mm across the

different flow conditions (see Table I).

The maximum amplitude of the incident acoustic field

was found along the axis of the transducer, where the direc-

tivity had a maximum. A system of co-ordinates was defined

with the center located at the intersection between the axis

of the transducer and the ideal plane that cuts through the

mean elevation of the rough water surface. The x axis was

along the flume centerline, parallel to the mean flow direc-

tion, and the z-axis was perpendicular to the plane of the

mean surface, pointing upwards. In this system of co-

ordinates, the co-ordinate vectors of the transducer and of

the microphone in millimeters were S ¼ ð346:4; 0; 200:0Þ
and M ¼ ð376:1; 0; 152:6Þ, respectively.

The acoustic pressure field generated by the ultrasonic

transducer at the distance R from its center and at the angle

h1 from its axis can be approximated in the far-field (where

jR� 1, and j is the acoustic wavenumber) as15

PðR; h1Þ ¼ D1ðh1ÞG0ðRÞ; (1)

where G0 is the free-field Green’s function and D1 is the

complex-valued directivity pattern of the transducer.

The directivity pattern of the ceramic transducer used

for the experiments was measured in an anechoic chamber at

the frequency of 43 kHz. In order to measure the directivity,

the transducer was mounted horizontally on top of an auto-

mated rotating table, and the amplitude and phase of the

acoustic field were measured at different instants while the

table performed a 360� revolution, with the angular resolu-

tion of 0.04�. The directivity was measured at the distances

FIG. 1. A schematic of the measurement setup. The acoustic transducer

indicated by the letter S emitted ultrasound with the directivity pattern D1.

This was scattered by the rough surface R with normal n, and recorded by a

microphone M with the angular response function D2.

TABLE I. Test flow conditions. The Froude number, U0=
ffiffiffiffiffiffi
gH
p

, increases

from condition 1 to 13, where U0 is the flow mean surface velocity, H is the

flow mean depth, and g is the gravity constant. Re is the flow Reynolds num-

ber, U0H=�, where � is the kinematic viscosity of water. r and k0 corre-

spond to the characteristic amplitude and the characteristic wavenumber of

the surface elevation, respectively.

Flow H U0 F Re r k0

cond. (mm) (m/s) (mm) (rad/m)

1 42.2 0.19 0.30 8.0� 103 0.05 —

2 72.9 0.35 0.41 2.5� 104 0.40 84.3

3 101.0 0.41 0.41 4.1� 104 0.50 59.9

4 42.2 0.30 0.47 1.3� 104 0.25 120.8

5 101.3 0.49 0.49 4.9� 104 1.79 41.4

6 43.0 0.34 0.52 1.5� 104 0.49 89.9

7 73.1 0.46 0.54 3.4� 104 1.21 47.0

8 40.5 0.36 0.57 1.5� 104 0.34 78.9

9 43.4 0.40 0.61 1.7� 104 0.46 62.5

10 99.0 0.60 0.61 5.9� 104 2.03 27.1

11 72.4 0.54 0.64 3.7� 104 1.17 33.4

12 43.1 0.43 0.66 1.8� 104 0.57 53.1

13 73.2 0.58 0.68 4.2� 104 1.10 28.4
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of 200 and 400 mm from the center of the source and these

measurements differed by 12% at most. The two measure-

ments were then averaged in order to define an equivalent

directivity. The average directivity displayed small random

fluctuations with the amplitude smaller than 2.5% of the

maximum of the absolute directivity, which were attributed

to the measurement uncertainty. These small fluctuations

caused larger uncertainties in the calculation of the deriva-

tive of the directivity with respect to the angle, which was

required for the calculation of the acoustic field scattered by

a rough rigid surface based on the Kirchhoff approximation.

A moving average with a window of 4� was therefore

applied to the averaged directivity in order to reduce the

effects of these fluctuations.

By analogy with the definition of the directivity pattern

of the transducer, the angular response of the microphone

was represented by a function D2ðh2Þ, where h2 was the

angle with respect to the axis of the microphone. The B&K

microphone used for the experiments had a broad angular

response function D2, which was determined at the fre-

quency of 43 kHz based on the factory documentation.

The characteristic size of the insonified area was esti-

mated as the region where the absolute value of the projected

source directivity was at least half of its maximum. This area

had the dimensions of 239 mm along the x-direction (parallel

to the flow direction) and 56 mm along the y-direction (per-

pendicular to the flow direction), when the transducer was

installed in the conditions shown in Fig. 1. The dimensions

of the insonified area were comparable with the height z1,

therefore the variations of the geometric parameters and of

the wavenumber vector of the incident acoustic wave across

the whole rough surface had to be considered. Nevertheless,

one can expect a relatively larger contribution coming from

the region near the center of the insonified area, where the

directivity had a maximum. Considering plane acoustic

waves with the wavenumber j incident upon the rough sur-

face at the centre of this region, the reflected acoustic field is

dominated by the interaction with the surface waves that sat-

isfy the Bragg resonance condition.5 These Bragg-resonant

waves have the wavenumber

kB ¼ j
x1

jSj þ
x2

jMj

� �
; (2)

where x1 and x2 are the x-co-ordinates of the source and of

the receiver, respectively. In this study, the acoustic wave-

length was 2p=j ¼ 7:9 mm, and the wavenumber of the

Bragg-resonant waves calculated by Eq. (2) was equal to

4.4 mm, which is representative of capillary waves which

dynamics are dominated by surface tension effects.

B. Water surface parameters

The experiments were performed at a range of subcriti-

cal flow conditions, each one characterized by different

dynamic and geometrical parameters of the water surface.

The flume bed in all measurements was covered with three

layers of plastic spheres arranged according to a hexagonal

compact lattice. Each sphere had the diameter of 25.4 mm.

The flume slope s and the flow discharge could be adjusted

in order to obtain the desired combination of the mean water

depth, H, and of the mean flow velocity at the surface, U0.

These parameters determine the characteristic spatial and

temporal scales of the water surface,11 which are represented

by a characteristic surface wavenumber, k0, and by a charac-

teristic frequency, k0U0. k0 corresponds to the wavenumber

of the stationary gravity waves that propagate against the

flow with the phase velocity equal to U0. Its value can be cal-

culated by taking into account the vertical variation of the

time-averaged streamwise velocity in the flow,12,13 or more

simply as the solution of [Ref. 12, Eq. (13)]

k0U0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gþ c
q

k2
0

� �
k0 tanh k0Hð Þ

s
; (3)

which can be obtained by approximating the time-averaged

streamwise velocity at any depth with its value near the sur-

face, U0. In Eq. (3), g is the gravity constant, and c and q are

the water surface tension coefficient and density, respectively.

In the range of flow conditions investigated here, the inclusion

of the vertical streamwise velocity profile noticeably improves

the accuracy of k0 and of the dispersion relation only at rela-

tively large Froude numbers,11 F ¼ U0=
ffiffiffiffiffiffi
gH
p

, and for long

waves that do not play a dominant role for the acoustic back-

scattering. Therefore, in this work, the wavenumber k0 was

calculated based on Eq. (3), neglecting the vertical variation

of the time-averaged flow velocity. With this assumption, the

dispersion relation of gravity-capillary waves is expressed by

Xwðk;bÞ¼ kU0jcosðbÞj

þ signðcosðbÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gþ c
q

k2

� �
k tanhðkHÞ

s
; (4)

where Xwðk; bÞ is the angular frequency of the surface fluc-

tuations associated with a gravity-capillary wave with the

wavenumber modulus k, and which propagates at the angle b
with respect to the streamwise x-direction. Terms of the sur-

face roughness which are not associated with gravity-

capillary waves are not dispersive, and are advected rigidly

at the velocity U0 parallel to the x-direction. Their angular

frequency XUðk; bÞ is described by

XUðk; bÞ ¼ kU0j cosðbÞj: (5)

A suitable measure of the variation of the surface eleva-

tion is represented by its standard deviation, r. This was

measured directly at multiple locations along the flume using

arrays of conductance wave probes. Details of these meas-

urements and of the hydraulic conditions have been reported

in Ref. 11.

The characteristic parameters of the surface are reported

for each flow condition in Table I, together with the Froude

and Reynolds, Re ¼ U0H=�, numbers based on the mean

flow depth and mean surface velocity, where � is the kine-

matic viscosity of water. The value of k0 is not reported for

flow condition 1, because this condition had the mean sur-

face velocity smaller than the minimum phase velocity of

gravity-capillary waves in still water, therefore stationary

waves could not form.

J. Acoust. Soc. Am. 142 (6), December 2017 Dolcetti et al. 3389



III. NUMERICAL MODEL

A. Acoustic model

The Kirchhoff approximation can be used in order to

describe scattering from a smooth surface, where the condition

jRc sin3w� 1 (6)

is satisfied. In Eq. (6), Rc is the curvature radius of the scat-

tering surface, j is the acoustic wavenumber, and w is the

angle of incidence of the acoustic waves, determined by the

inclination of the transducer and microphone (see Fig. 2).

jRc sin3w is called the Kirchhoff parameter. According to

the Kirchhoff approximation, the acoustic potential field

generated by a source with co-ordinates S, scattered by a

rough acoustically rigid surface represented by the vector

q ¼ ðx; y; fðx; y; tÞÞ and recorded by a receiver with co-

ordinates M is given by14

PðM; tÞ ¼ e�ixat

ð
R

D2ðh2ðqÞÞ

� nðqÞ � r D1ðh1ðqÞÞG0ðq; SÞG0ðM; qÞ½ �dq;

(7)

where xa is the frequency of the acoustic source transducer,

R is the scattering surface, n is the normal to the scattering

surface, and r is the three-dimensional spatial gradient oper-

ator. The normal to the surface is described by

n ¼ ez �rfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrfj2

q ; (8)

where ez is the unit vector in the z-direction, and rf is the

spatial gradient of the surface elevation f, with components

only along the x- and y-directions. Equation (7) can be inte-

grated over the plane (x, y) by changing to the co-ordinate

q0 ¼ ðx; yÞ, with

dq0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrfj2

q
dq: (9)

The derivation of Eq. (7) is based on the assumption

that both the receiver and the source are in the far field,

jjMj � 1 and jjSj � 1. G0 represents the free-field Green’s

function in three dimensions,15

G0ðr1; r2Þ ¼ �
1

4p
eijjr1�r2j

jr1 � r2j
; (10)

where r1 and r2 are two generic vectors of co-ordinates. In a

two-dimensional space, the Green’s function is usually rep-

resented by its far field approximation, i.e.,

G0ðr1; r2Þ ¼
i

4

ffiffiffiffiffiffi
2

jp

r
eijjr1�r2j�ip=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr1 � r2j

p : (11)

In this work, the average power Doppler spectrum of the

scattered acoustic field is defined as16

SðxÞ ¼ 1

T

�����
ðT

0

P M; tð Þei xþxað Þtdt

����
2�
; (12)

where the angular brackets represent averaging over a num-

ber of realizations, and x is the Doppler frequency shift rela-

tive to the carrier acoustic frequency xa. In practice, the

acoustic Doppler spectra were calculated with a discrete

Fourier transform at the standard discrete set of frequencies,

and the carrier frequency xa was then subtracted from these

frequencies, so that the Doppler spectrum at the frequency

x¼ 0 corresponded to the components of the signal with no

Doppler shift. The scattered field PðM; tÞ was calculated

based on the Kirchhoff approximation, according to Eq. (7).

All terms of Eq. (7) were evaluated on a discretized rectan-

gular spatial grid with grid separation Dr and with overall

size Lx and Ly in the x- and y-direction, respectively. The

integration was performed independently at a discrete set of

instants, according to a frozen-surface approach.16 The har-

monic dependence with frequency xa was removed from the

calculation of PðM; tÞ and of SðxÞ, as the two terms eventu-

ally cancel out. All geometric quantities and their gradients

were calculated analytically at each location (x, y), based on

known realizations of the random surface fðx; y; tÞ generated

with the procedure that will be described in Sec. III B. The

only exceptions were the directivity patterns D1 and D2

which were measured using the procedure described in Sec.

II A, and the derivative @D1=@h1 which was calculated with

a central finite difference scheme based on the measured

D1ðh1Þ. The average Doppler spectra were calculated

according to Eq. (12), where the average was taken over 50

surface realizations.

B. Surface model

In order to calculate the Doppler spectrum based on Eq.

(7), a set of realizations of the dynamic surface elevation

fðx; y; tÞ was needed. Measurements of the probability distri-

bution function of f in shallow turbulent flows suggest that

FIG. 2. Sketch of the geometry of the problem. The surface elevation f is

defined with respect to the polar co-ordinate, q. The angles h1 and h2 are

measured from the axes of the transducer and of the microphone, respec-

tively. The transducer and the microphone have the co-ordinates S and M,

and their axes are inclined by the angles w1 and w2 with respect to the hori-

zontal plane, respectively.
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the statistics of the elevation are Gaussian, at least as a first

approximation.17,18 Realizations of a random surface with

Gaussian statistics can be generated according to a linear

random-phase model,19 assuming that such a surface has a

Fourier series representation, and that the coefficients of the

series are mutually independent. According to such model,

the statistics of the surface are completely characterized by

its directional spectrum, Wðk; bÞ, and by the dispersion rela-

tion, Xðk; bÞ. A single realization of f is represented as

fðx; y; tÞ ¼
ffiffiffi
2
p X

p

X
q

npqAðkpqÞcos½kpq � q0

� XðkpqÞtþ Upq�; (13)

where AðkpqÞ is the surface amplitude spectrum defined as a

function of the wavenumber vector kpq with components

kp cosðbqÞ and kp sinðbqÞ, where p and q are indices,

XðkpqÞ ¼ Xðkp; bqÞ is the frequency of the waves with wave-

number kpq determined by the dispersion relation, q0 is a

polar co-ordinate with components x and y, npq is a random

normally distributed variable, and Upq is a random variable

with uniform distribution in the interval between �p and p.

The relation between the amplitude spectrum of the surface

elevation AðkpqÞ in Eq. (13) and its directional spectrum

Wðk; bÞ is expressed by

X
p

X
q

A2ðkpqÞ ¼
ð1

0

ð2p

0

Wðk; bÞkdkdb ¼ r2; (14)

where r is the standard deviation of the surface elevation.

While there are models that predict the directional spec-

trum of ocean waves accurately and in a variety of condi-

tions,20 a general form of the same spectrum that is valid in

shallow turbulent flows has not been determined yet, espe-

cially for the short capillary waves which are of larger impor-

tance for the acoustic Doppler spectra. The direct estimation

of the surface directional spectrum based on the measurement

of the frequency spectrum cannot be obtained when the flow

velocity is of a similar order of magnitude as the group and

phase velocity of the waves on the surface.21 For the stream-

wise wavenumber spectrum of waves generated by grid turbu-

lence in a flow, Savelsberg and Van De Water22 proposed a

power-function spectrum with a very steep decay, propor-

tional to k�8. In shallow turbulent flows over a rough bed,

Horoshenkov et al.17 suggested a Gaussian quasi-harmonic

shape of the correlation function, which indicates a rapidly

decaying Gaussian spectrum of the elevation.

For this study, it was decided to adopt the power-

function spectrum WðkÞ / k�a proposed by Savelsberg and

van de Water.22 Power-function spectra are commonly used

in models of the ocean waves, at least as a fundamental ker-

nel,20 and they have been linked to the wave turbulence phe-

nomenon.23 The measurement of the spectrum slope a is

difficult to achieve, especially for the larger wavenumbers

which have a dominant role on backscattering. The numeri-

cal simulations were performed with two different values of

the spectrum slope, a¼ 5 and a¼ 7, respectively. In this way

the effects of a on the acoustic Doppler spectra could be

quantified. The two values of a used for this work were cho-

sen arbitrarily, but they seemed to represent the range of val-

ues that approximated the measured Doppler spectra more

accurately.

The dependence of the angular spectrum on the angle b
is commonly expressed in terms of an angular distribution

D,24 which is in general a function of k, i.e.,

Wðk; bÞ ¼ WðkÞDðk; bÞ / k�aDðk; bÞ; (15)

where WðkÞ represents the factor of Wðk; bÞ which is inde-

pendent of the direction of propagation. Dolcetti et al.11

found that the only waves propagating at an angle b different

from zero at a range of shallow turbulent flow conditions

were gravity waves with the wavenumber k0 and with the

dispersion relation represented by Eq. (4). Therefore, in the

simulations of the dynamic surface the angular distribution

was represented by

Dðk;bÞ¼
~DðbÞ; wherek¼ k0;

~DðbÞ dðbÞþdðb�pÞ½ �; wherek 6¼ k0;

(
(16)

where d is a delta function. This representation ensured the

continuity of the angular spectrum at the wavenumber k0 and

at the angles b¼ 0 and b ¼ p.

The waves with wavenumber k0 also corresponded to

the longest waves observed in Ref. 11, at all conditions

where the mean surface velocity was larger than the mini-

mum phase velocity of gravity-capillary waves in still water,

equal to approximately 0.23 m/s. Because these relatively

long waves have little effect on the backscattered Doppler

spectra when nonlinear interactions among waves are

neglected, it is expected that the choice of the distribution

would affect the results of the model only marginally.

Hence, it was decided to implement two standard distribu-

tions which have had large applications for the simulation of

oceanic waves,24 namely, the so-called Poisson distribution,

~DpðbÞ ¼
1

2p
1� b2ð Þ

1� 2b cos b� pð Þ þ b2
� 	 ; (17)

and the sech2 distribution

~DsðbÞ ¼
1

tan bpð Þ
b

2cosh2 b b� pð Þ½ �
: (18)

These distributions do not necessarily apply to the waves

over shallow turbulent flows, but they have been chosen

because of their relatively easy experimental characteriza-

tion,24 so that their applicability may be verified in future

investigations. Performing the simulations with two different

distributions also allows the empirical evaluation of the

effects of the angular distribution on the acoustic Doppler

spectra.

The coefficient b in both angular distributions was cho-

sen in such a way that ~DðpÞ ¼ 101:5 ~Dð0Þ. This was in agree-

ment with the measurements of the frequency-wavenumber

spectra of the elevation reported in Ref. 11, which showed

that the spectrum of the waves with wavenumber k0
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propagating against the current was approximately 1.5 orders

of magnitude larger than that of the waves with the same

wavenumber propagating downstream. As a result, b was

equal to 0.698 for the Poisson distribution, and to 0.768 for

the sech2 distribution. The independence from the wavenum-

ber k of the function ~D as defined in Eq. (16) means that the

same relation between the amplitude of waves propagating

in opposite direction was extrapolated to arbitrary wavenum-

bers in this study.

Savelsberg and van de Water22 measured the dispersion

relation of the waves in a flow where turbulence was gener-

ated by either active or passive grids. These authors identi-

fied waves following both dispersion relations given in Eqs.

(4) and (5). The first of these equations is representative of

gravity-capillary waves, while the non-dispersive relation of

Eq. (5) represents waves that are rigidly advected by the

mean surface velocity. These results were confirmed by the

experiments of Dolcetti et al.11 in shallow turbulent flows

with a rough bed, although Dolcetti et al. observed the non-

dispersive types of waves only at the flow conditions where

the mean surface velocity was smaller than the minimum

phase velocity of gravity-capillary waves in still water. In

this work it was assumed that both dispersive and non-

dispersive waves coexist at all flow conditions. This was

motivated by the experimental results presented in Sec. IV,

which show that a Doppler peak at the frequency of approxi-

mately x ¼ XUðkBÞ exists in all the measured Doppler

spectra.

The non-dispersive waves were assumed to be repre-

sented by the same form of the angular spectrum of Eq. (15),

but to propagate only downstream at the angle b¼ 0. At the

only flow condition where these waves were observed,

Dolcetti et al.11 found that their spectrum was two to three

times larger than that of the waves propagating downstream.

In the model described here, the spectrum of the non-

dispersive waves was set 2.5 larger, therefore intermediate

between that of the downstream- and upstream-propagating

gravity-capillary waves at all wavenumbers.

Based on the above discussion, the realizations of the

random surface fðx; y; tÞ were generated according to Eq.

(13). Introducing the new variable kj ¼ kp cosðbqÞ, approxi-

mating the two sums in Eq. (13) with integrals of a continu-

ous spectrum, and taking advantage of the properties of the

delta functions in Eq. (16), it is possible to remove one of

the two summations of Eq. (13) by integrating over the trans-

verse component of the wavenumber. Then, fðx; y; tÞ can be

defined by two distinct sums, one for the waves with the con-

stant wavenumber modulus kp ¼ k0 and with the angle of

propagation defined by

bj ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kj

k0

� �2
s24

3
5; (19)

and another one for the waves with the wavenumber modulus

kp > k0 which propagate only parallel to the x-direction, with

bq ¼ 0 or bq ¼ p. As a result, fðx; y; tÞ can be calculated as

fðx; y; tÞ ¼
ffiffiffi
2
p XN

jkjj<k0;j¼1

Ab;j nj

ffiffiffiffiffiffiffiffiffiffiffiffi
~DðbjÞ

q
cos k0 cosðbjÞxþ k0 sinðbjÞy� Xwðk0; bjÞtþ Uj

� 	


þnj

ffiffiffiffiffiffiffiffiffiffiffiffi
~DðbjÞ

q
cos k0 cosðbjÞx� k0 sinðbjÞy� Xwðk0; bjÞtþ Uj

� 	
þ nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Dðp� bjÞ

q
cos �k0 cosðbjÞxþ k0 sinðbjÞy� Xwðk0; p� bjÞtþ Uj

� 	
þnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Dðp� bjÞ

q
cos �k0 cosðbjÞx� k0 sinðbjÞy� Xwðk0; p� bjÞtþ Uj

� 	�

þ
ffiffiffi
2
p XN

jkjj�k0;j¼1

Aa;j nj

ffiffiffiffiffiffiffiffiffiffiffi
~Dð0Þ

q
cos kjx� Xwðkj; 0Þtþ Uj

� 	


þnj

ffiffiffiffiffiffiffiffiffiffiffi
~DðpÞ

q
cos �kjx� Xwðkj; pÞtþ Uj

� 	
þ nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5 ~Dð0Þ

q
cos kjx� XUðkj; 0Þtþ Uj

� 	�
: (20)

The first two terms dependent on bj in Eq. (20) repre-

sent waves that propagate downstream, with opposite

signs of the transverse wavenumber k0 sinðbjÞ, while the

third and last terms indicate waves that propagate

upstream. The amplitude spectrum of these waves is

given by

Ab;j ¼ A0

ffiffiffi
2
p

sinðbjÞ
h i�1

; (21)

where A0 is a normalization factor that ensures that Eq. (14)

is satisfied. The three additional terms of Eq. (20) with the

amplitude spectrum defined by

Aa;j ¼ A0

kj

k0

� ��a=2

; (22)

represent gravity-capillary waves that propagate downstream

with the angle bq ¼ 0, gravity-capillary waves that
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propagate upstream with the angle bq ¼ p, and non-

dispersive waves that propagate at the same velocity of the

flow, respectively. The normalization factor A0 is defined as

A0¼r

ffiffiffiffiffiffi
Dk

k0

s

� 1

2
þ

2:5 ~D 0ð Þþ ~D pð Þ
h i

1�a
kN

k0

� � 1�að Þ
�1

" #8<
:

9=
;
�1=2

;

(23)

where kN is the wavenumber of the shortest modeled waves,

and Dk is related to the size of the modeled surface by

Dk ¼ 2p=Lx; kj ¼ jDk; j ¼ 1;…;N. It is understood that nj

and Uj, which have the same meaning of npq and Upq but are

defined based on a single index, represent an independent

realization of random variables every time they appear in

Eq. (20), so that the amplitude and phase of each term are

random and independent. The effect of the maximum wave-

number kN on the simulations is discussed in Sec. III C.

C. Numerical computation

The surface realizations were generated with the expan-

sions represented by Eqs. (20)–(23) at the same discrete set

of locations and the same set of discrete time intervals used

for the calculation of the scattered field PðM; tÞ. Two-

dimensional surface realizations were obtained with the

same method, imposing y¼ 0. The spatial grid used for all

simulations had the size Dr ¼ ka=25 ¼ 0:32 mm, where

ka ¼ 2p=j was the acoustic wavelength. For the two-

dimensional simulations, the computational domain had the

size Lx¼ 2 m, and the evolution of the surface was simulated

during a period of one second, with the time step Dt ¼ 1 ms.

Because of computational memory constraints, in the three-

dimensional simulations Lx ¼ 1:5 m, Ly ¼ 0:5 m, Dt ¼ 2

ms, and the duration of the simulations was 0.25 s.

The convergence of the simulation with respect to Lx

and Dr was tested on a single realization of the Doppler

spectrum obtained for a two-dimensional surface with the

standard deviation r ¼ 1:21 mm, the characteristic wave-

number k0 ¼ 47:0 rad/m, and the characteristic frequency

k0U0 ¼ 21:6 rad/s. The parameters of this surface corre-

sponded to those of flow condition 7, which had an interme-

diate value of the Froude number, F¼ 0.54, and therefore it

was expected to be representative of the average behavior of

the surface. The convergence parameter was defined as the

integral over frequency of the absolute difference between

the Doppler spectra obtained with different grid parameters.

This value changed by 2.3% when the grid size was reduced

from ka=25 to ka=50, and by 1.1% when the size of the

rough surface was increased from 2 to 4 m. In both cases, no

qualitative change to the shape of the simulated Doppler

spectra was observed.

All simulations in this work relied upon the validity of

the Kirchhoff approximation, for the specific surface charac-

teristics and geometry of the measurement setup. The valid-

ity of this approximation, represented by Eq. (6), was

checked in all two-dimensional simulations. The radius of

curvature Rc was calculated numerically as

Rc ¼ 1þ df
dx

� �2
" #3=2���� d2f

dx2

����
�1

: (24)

The characteristic angle w¼ 30� was used for the calculation

of Eq. (6). In the range of conditions investigated here, the

minimum of the Kirchhoff parameter was found to be

approximately 2.2 for a surface with the same parameters as

those measured at flow condition 5, which had a relatively

rougher surface with a larger characteristic slope k0r ¼ 0:08

The root mean squared amplitude of the Kirchhoff parameter

at the same condition was 3:4� 103. These values are

believed to be sufficient for the applicability of the

Kirchhoff approximation at this condition,25 and therefore at

all remaining flow conditions where the Kirchhoff parameter

was larger.

A further validation of the model was performed by

comparison with a standard boundary elements method

(BEM),26 for a single realization of a surface with the same

characteristic parameters as the roughest condition 5. The

BEM model was developed based on the same boundary

conditions used for the Kirchhoff model.14 The simulated

Doppler spectra obtained with BEM and with the Kirchhoff

approximation are shown in Fig. 3. The relative difference

between these spectra was calculated as the integral over fre-

quency of their absolute difference, divided by the integral

of the Kirchhoff Doppler spectrum, and was equal to 5.3%.

The spectrum obtained with the BEM is qualitatively identi-

cal to that obtained with the Kirchhoff approximation. At the

other flow conditions, where the Kirchhoff parameter was

larger, the difference between the two models is expected to

be smaller. The considerably shorter computational time

(approximately 100 times less) required by the model based

on the Kirchhoff approximation motivated the use of this

model for all calculations reported here.

The validity of the surface model used for this study

was checked by comparing the average frequency spectrum

FIG. 3. (Color online) Examples of one realisation of the simulated Doppler

spectrum, obtained (black line) with the model based on the Kirchhoff

approximation, and (red dots) with the Boundary Elements Method. The

predictions by the two models are practically indistinguishable.

J. Acoust. Soc. Am. 142 (6), December 2017 Dolcetti et al. 3393



and zero time-lag correlation function of f with the measure-

ments of the same quantities presented in Ref. 11, for similar

parameters of the water surface. This comparison is illus-

trated in Figs. 4(a), and 4(b), respectively, for the intermedi-

ate Froude number flow condition 7. In spite of the

apparently arbitrary choice of the shape of the directional

spectrum, the model was able to represent the main charac-

teristics of the frequency spectra and of the correlation func-

tion as they were identified in Ref. 11, namely, the increase

of slope of the frequency spectrum above the frequency

k0U0, and the fluctuation of the zero time-lag spatial correla-

tion function with the period 2p=k0. The measured frequency

spectrum at condition 7 with an intermediate Froude number

[Fig. 4(a)] appears to be better approximated by a¼ 5, par-

ticularly for higher frequencies. This behavior was not repre-

sentative of the spectra at all conditions, and the slope of the

frequency spectrum was found to depend on the Froude

number, as observed in Ref. 11.

As stated in Sec. II A, the Bragg scattering mechanism

provides a direct link between the acoustic Doppler spectra

and the behavior of the Bragg-resonant surface waves with

the wavenumber kB. The velocity of the flow near the surface

can be estimated from the frequency of the Bragg peaks, and

the amplitude and width of these peaks can be linked to the

statistics of the surface waves with wavenumber kB.3 If the

measurements are performed outside of the Fraunhofer zone,

the scattering occurs from a range of different directions,

and a single Bragg frequency does not exist. According to

the simulations obtained with the Kirchhoff model, the

acoustic Doppler spectra can still be interpreted in terms of

Bragg scattering, if one refers to the direction of the maxi-

mum directivity of the transducer in order to calculate the

wavenumber that satisfies the Bragg resonance condition

[like in Eq. (2)]. This is demonstrated in Fig. 5, which com-

pares the average Doppler spectra simulated with different

values of the maximum wavenumber kN for the rough sur-

face. The results shown in Fig. 5 were obtained with the

two-dimensional version of the model, based on the surface

parameters measured at the intermediate Froude number

condition 7, with a¼ 5. The shortest waves existing on the

surface had the wavelength 2p=kN , where the wavenumber

kN was varied between 2p=0:006 rad/m and 2p=0:003 rad/m.

When kN ¼ 2p=0:006 rad/m, the Doppler spectrum in Fig. 5

decays rather smoothly away from a central peak at the fre-

quency x¼ 0. This peak is related to the almost specular

reflections of the acoustic waves which occur right below

the transducer, where the amplitude of the incident acoustic

field is determined by the value of the directivity D1 at the

angle h1 ¼ 2p=3 ¼ p� w1 [Eq. (1)]. This value was found

to be equal to 0.05% of the maximum directivity. Although

very small, the specular reflection of the incident field can

cause a finite value of the average scattered field at the fre-

quency xa,27 which is independent of the surface velocity,

and has no Doppler shift, x¼ 0. At small non-zero Doppler

frequencies and for a moving rough surface, the amplitude

of the Doppler spectrum varies smoothly with the frequency,

and the width of the central peak is governed by the rough-

ness of the surface relative to the acoustic wavelength.1

These phenomena are discussed with more detail in Ref. 36.

Bragg scattering is expected to cause peaks of the

Doppler spectrum at the frequencies XðkB; 0Þ and XðkB; pÞ,
where X is representative of any of the dispersion relations

of Eqs. (4) or (5). The increase of kN near and above kB

FIG. 4. Examples of (a) the frequency spectrum and (b) the zero time-lag

correlation function of the surface elevation. Thick line and circles, meas-

urements; thin lines, calculated for the modeled free surface, with different

slopes of the surface spatial spectrum, a. The frequency spectrum and the

correlation function scale with the characteristic frequency 2k0U0 and with

the wavelength 2p=k0 of the stationary waves, indicated by the arrows.

FIG. 5. Examples of the simulated Doppler spectrum, with increasing maxi-

mum wavenumber kN of the modeled rough surface. Dots, kN ¼ 2p=0:006

rad/m; dashed, kN ¼ 2p=0:005 rad/m; solid, kN ¼ 2p=0:004 rad/m; crosses,

kN ¼ 2p=0:003 rad/m. The symbols on top indicate the frequencies of the

Bragg-resonant waves with wavenumber kB: (3) upstream- and (�)

downstream-propagating capillary waves, and (�) non-dispersive waves.

Peaks of the simulated Doppler spectra appear when kN is larger than the wave-

number that satisfies the Bragg resonance condition, kB ¼ 2p=0:0044 rad/m.
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caused the gradual growth of three peaks of the Doppler

spectrum, occurring at the three frequencies XwðkB; pÞ
¼ 181 rad/s, XUðkB; 0Þ ¼ 657 rad/s, and XwðkB; 0Þ ¼ 1133

rad/s, which represent gravity-capillary waves propagating

upstream, non-dispersive waves, and gravity-capillary waves

propagating upstream, respectively. These frequencies are

indicated by the symbols on the top of Fig. 5. In turn, the

amplitude of the peak near x¼ 0 remained constant. The

peaks stopped growing when kN was larger than 2p=0:004

rad/m, which demonstrates that they were governed by the

presence of the Bragg-resonant waves with kB ¼ 2p=0:0044

rad/m. The predominance of Bragg scattering at the condi-

tions used for this work allows for the estimation of the

mean surface velocity based on the peaks of the Doppler

spectra, as demonstrated, for example in Ref. 6. The behav-

ior of the short Bragg-resonant capillary waves can also be

inferred from the behavior of these peaks. Based on the

results shown in Fig. 5, all the following simulations were

performed with kN ¼ 2p=0:003 rad/m, since a further

increase of kN reduced the applicability of the Kirchhoff

approximation.

The effects of the three-dimensionality of the surface cor-

rugation are investigated in Fig. 6. This figure shows the com-

parison of the Doppler spectra obtained for four types of

simulations, namely, (i) a two-dimensional simulation with

the Poisson angular distribution [Eq. (17)], (ii) a two-

dimensional simulation with the sech2 distribution [Eq. (18)],

(iii) a three-dimensional simulation with the Poisson angular

distribution, and (iv) a three-dimensional simulation with the

Poisson angular distribution based on a broad spectrum repre-

sentation. This was obtained by removing the delta functions

from the definition of the angular distribution in Eq. (16), so

that the same angular distribution ~DðbÞ was applied to all

waves, regardless of their wavenumber. In this way, also the

waves with the wavenumber close to kB were allowed to prop-

agate at an angle with respect to the x-direction.

All simulations shown in Fig. 6 were performed with

the same surface parameters obtained for the intermediate

Froude number flow condition 7, and with a¼ 5. The four

spectra are very similar to each other, with the exception of

the one obtained with a three-dimensional simulation using a

broad surface spectrum, in which case the scattering from

different angles increased the amplitude of the Doppler spec-

trum, mainly at the frequencies in between the three Bragg

peaks. The similarity between the various spectra suggests

that the main contribution to the Doppler spectra comes

from the waves with the wavefront perpendicular to the x-

direction, although the widening of the spectral distribution

effectively increases the width of the spectral peaks due to

the relatively wide directivity pattern. It should be noted that

the angular distribution employed for the broad-spectrum

three-dimensional simulation shown in Fig. 6 is in contrast

with the measurements of the surface spectra at low wave-

numbers reported in Ref. 11, and that the angular distribution

of the capillary waves with the wavenumber close to kB has

not yet been determined. A broadening of the peaks of the

Doppler spectra is known to occur also due to nonlinear

interactions among surface waves,28 or to the modulation of

the velocity of the surface waves caused by the turbulent

flow.6 Unfortunately it is not possible to quantify the relative

importance of each of these phenomena due to the lack of

surface models of practical use which include all these

effects and which apply to turbulent flows. Therefore, and in

light of the considerably larger computational time required

for the three-dimensional simulations, all the following

numerical results were based on two-dimensional simula-

tions with the Poisson angular distribution. These were

believed to be sufficient to illustrate the behavior of the

acoustic Doppler spectra, at least qualitatively.

IV. EXPERIMENTAL RESULTS

Three representative examples of the measured Doppler

spectra are shown in Fig. 7, together with the corresponding

results of the two-dimensional simulations based on the

Kirchhoff approximation, obtained with a¼ 5 and a¼ 7,

respectively. These examples were obtained for three differ-

ent flow conditions with a low Froude number [F¼ 0.41,

condition 2, Fig. 7(a)], with an intermediate Froude number

[F¼ 0.54, condition 7, Fig. 7(b)], and with a higher Froude

number [F¼ 0.61, condition 10, Fig. 7(c)], respectively. In

all cases, the simulations approximate the behavior of the

spectra well at the frequency near x¼ 0. This region of the

spectra shows a main peak which is governed by the near-

specular reflections occurring below the source and the

microphone, and which is mainly affected by the slow

dynamics of relatively long waves on the surface.1,29 The

ability of the simulations to represent this region of the

Doppler spectra demonstrates the validity of the dynamic

model of the surface at the larger scales, where more accu-

rate information about the surface dynamics was available.

At high Doppler frequencies, the simulated spectra

show the three peaks that have been related to the Bragg-

resonant waves, at the three frequencies XwðkB; pÞ;
XUðkB; 0Þ, and XwðkB; 0Þ. These three frequencies are indi-

cated by the symbols at the top of Fig. 7, for each flow condi-

tion. At the low Froude number condition, represented in Fig.

FIG. 6. Examples of the simulated Doppler spectrum calculated with differ-

ent dependence of the spectrum of the surface waves on their direction of

propagation. Solid, two-dimensional surface, Poisson distribution [Eq. (17)];

dots, two-dimensional surface, sech2 distribution [Eq. (18)]; dashed, three-

dimensional surface, narrow spectrum (dashed-dotted), three-dimensional

surface, broad spectrum.
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7(a), the frequency of the upstream-propagating Bragg-reso-

nant waves is XwðkB; pÞ ¼ 24:1 rad/s, and the corresponding

peak is shaded by the main peak centered in x¼ 0. The

amplitude of the three peaks decreases with the increase of

the spectrum slope a. The intermediate peak represents the

non-dispersive waves that propagate at the speed of the mean

surface velocity, according to Eq. (5). This peak is clearly vis-

ible in the measured spectra at the low [Fig. 7(a)] and interme-

diate [Fig. 7(b)] Froude number conditions, at the frequencies

of 500 and 657 rad/s, respectively. At the higher Froude num-

ber condition [Fig. 7(c)] this peak is expected at the frequency

of 857 rad/s, where it appears to be partly shaded by another

peak at lower frequency. Non-dispersive waves had only been

observed in Ref. 11 at the flow conditions where the mean

surface velocity was smaller than the minimum phase velocity

of gravity-capillary waves, which is approximately 0.23 m/s.

The results shown in Fig. 7 suggest that non-dispersive waves

are always present at the surface of shallow turbulent flows

over a wide range of wavenumbers, although the limited reso-

lution of the measurements reported in Ref. 11 and the close-

ness of the three dispersion relations at the smaller

wavenumbers may have made them difficult to detect at most

conditions described in that study.

In contrast, the two peaks that correspond to capillary

waves propagating upstream and downstream with frequen-

cies XwðkB; 0Þ and XwðkB; pÞ, respectively, cannot be seen in

the measured Doppler spectra for the low Froude number

condition [Fig. 7(a)], although they were predicted by the

model. These two peaks are more clearly visible at the inter-

mediate Froude number condition [Fig. 7(b)] and they are

larger at the higher Froude number condition [Fig. 7(c)],

where they effectively shade the intermediate non-dispersive

peak. Gravity waves propagating downstream were observed

at all flow conditions by Dolcetti et al.,11 including the low

Froude number condition 2, while the upstream propagating

waves were found only at higher Froude numbers. It should

be noted that these observations were done at wavenumbers

much smaller than kB. The progressive growth of the peaks

at the Bragg frequencies XwðkB; 0Þ and XwðkB; pÞ can be

interpreted based on the results shown in Figs. 5 and 6,

where the amplitude of the peaks was found increasing with

the shift of the cut-off wavenumber of the surface spectrum,

and with the broadening of the angular distribution of the

surface waves. It is suggested that a similar increase of the

cut-off wavenumber, or the broadening of the angular distri-

bution, also occurred between the three conditions repre-

sented in Fig. 7.

At all the measured conditions where the peak of the

upstream propagating waves at the frequency XwðkB; pÞ was

observed, this peak had the amplitude larger than that of

other waves propagating downstream. The asymmetry of the

Doppler spectrum had already been observed by Plant et al.6

At the low and intermediate Froude number conditions

[Figs. 7(a) and 7(b)], the amplitude of the measured Doppler

peaks is intermediate between the model predictions

obtained with a¼ 5 and a¼ 7. At the higher Froude number

condition [Fig. 7(c)], the simulation with a¼ 5 approximates

the measurements better than that with a¼ 7. These observa-

tions must be interpreted carefully. Even assuming the valid-

ity of the power-function decay of the surface spectrum, it

seems unlikely that the spectrum slope remains unchanged

in both the gravity- and the capillary-dominated ranges of

scales, because of the different physical phenomena

involved. Because of the predominance of Bragg scattering,

very little can be said about the surface spectrum at the inter-

mediate scales based on the observations of Fig. 7 alone. It

is suggested, instead, that a can be representative of the

amplitude of the short capillary waves with the wavenumber

kB, relative to that of the longer waves with the wavenumber

k0. In this sense, the results of Fig. 7 suggest that the ampli-

tude of these short waves became increasingly larger with

respect to the characteristic amplitude of the surface fluctua-

tions when the Froude number increased. Across the whole

set of tested flow conditions, the ratio kB=k0 varied between

11.8 and 52.6. Assuming a to be between 5 and 7, it is sug-

gested that the waves with wavenumber kB had the amplitude

between 500 times and 105 times smaller than the character-

istic wave amplitude r, which was on the order of 1 mm.

Even smaller waves are capable of producing larger Doppler

peaks if their angular spectrum is broad, as shown in Fig. 6.

Such very small waves are extremely difficult to measure

directly with means alternative to acoustic.

At all conditions represented in Fig. 7, the peaks of the

measured spectra are considerably wider than those

FIG. 7. Examples of Doppler spectra, for three flow conditions with (a) lower Froude number (flow condition 2), (b) intermediate Froude number (flow condi-

tion 7), and (c) higher Froude number (flow condition 10). Simulated, with different slope of the surface spatial spectrum, (dashed) a¼ 5, (dotted) a¼ 7, com-

pared to experimental measurements (solid). The symbols on top indicate the frequencies of the Bragg-resonant waves with wavenumber kB: (3) upstream-

and (�) downstream-propagating capillary waves, and (�) non-dispersive waves propagating with the velocity of the flow.
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predicted by the model, to the point that the intermediate

non-dispersive peak is not distinguishable from the measured

spectrum of Fig. 7(c) alone, without the aid of the simulated

spectrum. As demonstrated in Fig. 6, wider spectral peaks

can be caused by a broad angular spectrum of the capillary

waves on the surface. Alternatively, the widening of the

Doppler peaks is usually interpreted as a manifestation of

higher-order nonlinear interactions among surface waves

with different scales,28,30 or as the result of turbulent fluctua-

tions of the surface velocity.6 To be able to determine the

cause of the wide peaks of the Doppler spectra uniquely, one

would need to measure the angular spectrum of the short and

small capillary waves on the surface, or to model the nonlin-

ear interactions among waves, and between the waves and

the flow. These interactions cannot be modeled with a linear

random phase model of the surface. For so-called two-scale

scattering models,31,32 they can be taken into account with a

set of modulation transfer functions,28,33 or by modeling the

statistics of the velocity field induced by the wave system,6

although only when the Fraunhofer zone approximation

applies. More sophisticated weakly nonlinear hydrodynamic

models that resolve the temporal evolution of the sea surface

have been employed in Monte Carlo simulations of back-

scattered Doppler.30,34 None of the known nonlinear surface

models of practical use apply to capillary waves over a tur-

bulent shallow flow with a roughened bed, when the surface

velocity is larger than the minimum phase velocity of the

gravity-capillary waves and it is subject to turbulent fluctua-

tions. More appropriate models of the surface dynamics

need to be developed in order to improve the accuracy of the

predictions at the flow conditions typical of shallow turbu-

lent flows.

The behavior of the measured Doppler spectra appears

to be consistent within separate ranges of flow conditions.

Figure 8 represents the measured Doppler spectra across the

whole range of flow conditions. The abscissa in this figure is

the non-dimensional frequency x=XUðkB; 0Þ, which is equal

to one at the frequency of the non-dispersive waves with

wavenumber kB. To facilitate the visualization of the data,

the various flow conditions have been grouped into four

groups, each representative of a specific range of Froude

numbers. Conditions 1 to 4 have the lower Froude numbers

smaller than 0.49. Conditions 5 to 8 had the intermediate

Froude numbers between 0.49 and 0.57. Conditions 9 to 13

had the larger Froude numbers, larger than 0.57.

All conditions in the three groups represented in Fig.

8(a), 8(b), and 8(c) behave similarly to the already discussed

conditions 2 [Fig. 7(a)], 7 [Fig. 7(b)], and 10 [Fig. 7(c)],

respectively, which had similar values of the Froude number.

Specifically, the Doppler spectra measured at the low Froude

number conditions shown in Fig. 8(a) have a clear peak at

the frequency of the non-dispersive Bragg-resonant waves,

XUðkB; 0Þ. At these conditions, there is no evidence of dis-

persive capillary waves propagating either upstream, or

downstream. With the increase of the Froude number, at the

conditions shown in Fig. 8(b), there is an increase of the

Doppler spectrum at the frequency XwðkB; 0Þ, which indi-

cates the presence of downstream-propagating Bragg-reso-

nant capillary waves. A large peak at the frequency

XwðkB; pÞ of upstream-propagating Bragg-resonant capillary

waves is also observed in Fig. 8(b), but only at the flow con-

ditions 5 and 7. The frequency XwðkB; pÞ was very close to

zero in the other flow conditions 6 and 8, therefore the peak

of the upstream-propagating waves may have been shaded

by the main peak at zero frequency at these flow conditions.

The effects of dispersive capillary waves appears to increase

further at higher Froude numbers, as shown in Fig. 8(c). In

this figure, the amplitude of the Doppler spectra at the fre-

quency XwðkB; 0Þ of downstream-propagating Bragg-reso-

nant waves is close to the amplitude of the same spectra at

the frequency XUðkB; 0Þ of the non-dispersive waves, so that

FIG. 8. (Color online) Measured Doppler spectra, at (a) low Froude number

conditions, (b) intermediate Froude number conditions, and (c) higher

Froude number conditions. The Doppler frequency x is non-

dimensionalized with respect to the frequency of the non-dispersive Bragg-

resonant waves with wavenumber kB propagating at the same velocity of the

flow, XUðkB; 0Þ. The symbols on top indicate the non-dimensional frequency

of the Bragg-resonant waves: (3) upstream-propagating and (�)

downstream-propagating capillary waves, and (�) non-dispersive waves.

The colors and numbers indicate the corresponding flow conditions. The

non-dimensional frequency of the non-dispersive waves is the same for all

flow conditions.
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the peak at the latter frequency is almost impossible to rec-

ognize. The peak at the frequency XwðkB; pÞ of the

upstream-propagating Bragg-resonant waves is again only

visible at the flow conditions 10, 11, and 13. At the remain-

ing flow conditions 9 and 12, XwðkB; pÞ=XUðkB; 0Þ was

smaller than 0.25, and the peak may have been shaded by

the large spectral peak near x¼ 0.

To provide a quantitative metric of the shape of the

measured Doppler spectra shown in Fig. 8, Fig. 9 shows the

amplitude of these spectra measured at the three frequencies

of the Bragg-resonant waves, XwðkB; pÞ; XUðkB; 0Þ, and

XwðkB; 0Þ, respectively, and plotted against the flow Froude

number, for each flow condition. The amplitude at the fre-

quency of the upstream-propagating waves, XwðkB; pÞ has

been measured only at flow conditions 5, 7, 10, 11, and 13,

where XwðkB; pÞ was larger than 0.25 XUðkB; 0Þ, and the

effects of the upstream-propagating capillary waves were

clearly distinguishable from the main spectral peak centred

at zero frequency, in Figs. 8(b) and 8(c). The amplitude at

the frequency of the downstream-propagating waves,

XwðkB; 0Þ, instead, was measured at all conditions where

these waves could be observed, i.e., at all conditions shown

in Figs. 8(b) and 8(c). For each type of wave, corresponding

to a specific frequency, the amplitude of the Doppler spectra

shown in Fig. 9 appears to increase exponentially with the

Froude number. The lines shown in this figure were obtained

by a least-squares fitting of the logarithm of the amplitudes

of the Doppler spectra. The results suggest that the ampli-

tude at the frequency of the non-dispersive Bragg-resonant

waves, XUðkB; 0Þ increased proportionally to expð10:7FÞ
when the Froude number F varied between 0.30 and 0.68.

The amplitude of the Doppler spectra at the frequency of the

Bragg-resonant upstream-propagating capillary waves,

XwðkB; pÞ, was up to 100 times larger at the conditions where

these waves could be identified clearly, and it increased like

expð7:3FÞ when the Froude number varied between 0.49 and

0.68. In the same range of Froude numbers, the amplitude of

the Doppler spectra at the frequency of the downstream-

propagating Bragg-resonant waves increased faster and

proportionally to expð20:1FÞ. At these frequencies, the

amplitude also varied more largely from the proposed expo-

nential laws, which was explained by the rapid gradient of

the measured spectra at the higher frequencies. This fact

explains why at flow condition 10, which had the Froude

number of 0.61, the Doppler spectrum at the frequencies of

the non-dispersive waves and of downstream-propagating

waves have a similar amplitude. In the remaining flow con-

ditions, the ratio between these amplitudes varied between

approximately 1000 (flow condition 8, F¼ 0.57) and 20

(flow condition 13, F¼ 0.68).

V. REMOTE MEASUREMENT OF THE SURFACE FLOW
VELOCITY

The results presented in this study have important con-

sequences for the ability to measure the mean surface veloc-

ity of turbulent flows remotely, based on the measurements

of the Doppler spectra of airborne ultrasound. The experi-

mental results suggest a large variability of the shape of

these spectra at different Froude numbers. This can limit the

reliability of airborne Doppler measurements of the surface

velocity. The comparison with the numerical simulations

based on a linear model of the surface suggests the impor-

tance of nonlinear modulations of the waves on the surface,

or the presence of a broad spectrum of the small capillary

waves which govern the backscattering of ultrasound. The

inclusion of these phenomena in the simulations would allow

a better parametrization of the measured spectra, and would

improve the accuracy of the velocity measurements.

Unfortunately, there are no known nonlinear models of prac-

tical use that apply to capillary waves propagating over tur-

bulent flows, and the measurement of the angular spectrum

of small capillary waves is difficult.

Having observed the dependence of the measured

Doppler spectra on the flow Froude number, a set of simple

methods that enable the estimate of the mean surface veloc-

ity within different limited ranges of Froude numbers is sug-

gested. The first method corresponds to the one described in

Ref. 6, and is based on the measurement of the two frequen-

cies of the upstream- and downstream Bragg-resonant capil-

lary waves, XwðkB; pÞ and XwðkB; 0Þ, respectively. The mean

surface velocity can then be determined as

U0 ¼ ðXwðkB; pÞ þ XwðkB; 0ÞÞ=2kB. In order to apply this

method, the two peaks at the frequencies XwðkB; pÞ and

XwðkB; 0Þ need to be identified from corresponding peaks of

the Doppler spectra. In Fig. 8, it was shown that these peaks

may not be visible at low Froude numbers (lower than 0.49

in this study). At larger Froude numbers, only the peak of

the upstream-propagating waves could be identified clearly

from the measurements, and only at the conditions where

XwðkB; pÞ was larger than 0:25XUðkB; 0Þ, in this study. This

corresponds to the requirement that the mean surface veloc-

ity U0 is larger than 133% of the phase velocity of the

FIG. 9. Amplitude of the measured Doppler spectra, evaluated at the fre-

quency of the Bragg-resonant (3) upstream-propagating capillary waves,

XwðkB; pÞ, (�) downstream-propagating capillary waves, XwðkB; 0Þ, and (�)

non-dispersive waves propagating at the same velocity of the flow,

XUðkB; 0Þ. The lines have been found by a least-squares fitting of the loga-

rithms of the amplitudes. (solid) / expð10:7FÞ, (dashed-dotted)

/ expð7:3FÞ, and (dashed) / expð20:1FÞ.
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Bragg-resonant capillary waves in still water. The peak at

the higher frequency of XwðkB; 0Þ was difficult to identify in

Figs. 8(b) and 8(c), because of the presence of the other peak

at the frequency of non-dispersive waves, XUðkB; 0Þ, and

because of the large width of the spectral peaks.

Extrapolating the exponential fitting of the spectrum ampli-

tudes at the frequencies of XUðkB; 0Þ and XwðkB; 0Þ to higher

Froude numbers, it is expected that the effects of the

downstream-propagating waves would become more easily

recognizable at higher Froude numbers. The difficult identi-

fication of the high-frequency peak at intermediate Froude

numbers can cause an ambiguity of the velocity estimations,6

while the absence of both peaks at low Froude numbers

makes the estimation of the flow velocity with the method

employed in Ref. 6 infeasible.

The experimental results shown in Fig. 8 suggest differ-

ent alternative approaches for the measurement of the flow

velocity. At relatively low Froude numbers, the spectra

shown in Fig. 8 have a relative maximum near the frequency

of XUðkB; 0Þ, which can be easily identified. At these condi-

tions, the mean surface velocity can be estimated simply

based on the dispersion relation of non-dispersive waves,

Eq. (5), as

U0 ¼ XUðkB; 0Þ=kB; (25)

where kB is determined by the measurement setup, according

to Eq. (1). The relative error of the flow mean surface veloci-

ties estimated with this method at the low Froude number

conditions 1 to 4 based on the measured Doppler spectra pre-

sented in Fig. 8(a) was found to be smaller than 14%, and is

shown in Fig. 10. Applying a similar approach to the disper-

sion relation of gravity-capillary waves, Eq. (5), one could

obtain an alternative estimate of the velocity U0 based on the

measurement of the frequency of the upstream-propagating

Bragg-resonant waves, XwðkB; pÞ, as

U0 ¼ XwðkB; pÞ=kB þ c0ðkBÞ; (26)

where c0ðkBÞ is the phase velocity of gravity-capillary waves

with wavenumber kB in still water. For short Bragg-resonant

waves and relatively large flow depths, kBH � 1; c0ðkBÞ can

be approximated as

c0ðkBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

kB
þ c

q
kB

� �s
: (27)

The frequency XwðkB; pÞ can be measured from a maximum

of the measured Doppler spectra of Figs. 8(b) and 8(c), in

those conditions where U0 > c0ðkBÞ=0:75. The relative error

of the flow mean surface velocity estimations based on Eq.

(26) applied to these conditions was found to be smaller than

15%, and is also shown in Fig. 10 as a function of the

Froude numbers.

The two proposed alternative methods to estimate the

flow mean surface velocity apply, respectively, to flows with

low Froude numbers, or to flows with an intermediate or

higher Froude numbers, where the flow mean surface veloc-

ity is relatively large. In the remaining flow conditions, the

two frequencies XwðkB; pÞ and XUðkB; 0Þ are difficult to

identify. The frequency XwðkB; 0Þ is equally difficult to mea-

sure due to the wide spectral peaks and to the presence of the

peak at the frequency of non-dispersive waves. It is seen in

Figs. 8(b) and 8(c), that the measured Doppler spectra decay

rapidly at frequencies slightly higher than XwðkB; 0Þ. It is

suggested to identify the cut-off frequency at which the spec-

tra decay below an arbitrary threshold, and to use this fre-

quency to approximate XwðkB; 0Þ. The mean surface velocity

can then be estimated as

U0 ¼ XwðkB; 0Þ=kB � c0ðkBÞ: (28)

This method is expected to overestimate the actual mean sur-

face velocity by an amount that depends on the widening of

the Doppler spectra, and on the choice of the amplitude

threshold. For this study, a threshold of 5 times the noise

level was chosen, as it was smaller than the amplitude of the

spectra at the frequency of XwðkB; 0Þ, across all conditions.

The relative uncertainty of the flow mean surface velocity

estimates obtained with this procedure was found to vary

between 4% at flow conditions 6 and 8 and 35% and 46% at

flow conditions 5 and 10, respectively, which had a higher

mean flow depth. Being able to quantify the width of the

Doppler peaks through inclusion of the nonlinear interac-

tions may enable reducing these uncertainties. In all cases

presented here, the value of the flow Froude number should

be known in advance in order to be able to apply the correct

measurement approach among the ones proposed. It is sug-

gested that this could be achieved through iterative methods.

VI. CONCLUSIONS

The measurements of the Doppler spectra of airborne

ultrasound backscattered by the rough dynamic surface of a

range of shallow turbulent flows, and their numerical simula-

tion based on the Kirchhoff approximation and on a linear

random-phase model of the water surface, have been pre-

sented. Although the wide directivity of the acoustic

FIG. 10. Relative error of the estimations of the flow mean surface velocity

based on the measurements of the Doppler spectra. (�) Estimation based on

the spectral peak at the frequency of non-dispersive waves, Eq. (25). (3)

Estimation based on the spectral peak at the frequency of the upstream-

propagating capillary waves, Eq. (26). (�) Estimation based on the fre-

quency of the downstream-propagating capillary waves (28), approximated

by the frequency where the Doppler spectra become smaller than 5� 10�6.
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transducer in air did not allow for the measurements to be

performed purely in the Fraunhofer zone, the results suggest

that Bragg scattering associated with the direction of the

maximum directivity was still the fundamental scattering

mechanism for the experiments reported here. This mecha-

nism produces peaks of the Doppler spectrum which are

identifiable across different flow conditions. This finding

supports previous observations based on microwave or radar

sensors.6 As a result, airborne ultrasound are proven to be a

valid alternative for the remote measurement of the flow

mean surface velocity in turbulent shallow flows.

The experimental and numerical results have provided a

better insight about the behavior of the free surface of shal-

low turbulent flows, for the capillary waves with the wave-

length of a few millimeters. Although the amplitude of these

waves is believed to be only of a few micrometers, these

short waves can have a considerable impact on the transfer

of heat and gas across the water surface35 and they are diffi-

cult to measure with alternative experimental techniques. A

strong dependence of the Doppler spectra on the hydraulic

flow conditions requires a good understanding of the behav-

ior of the surface waves to make accurate interpretation of

the surface velocity measurements obtained with Doppler

remote measurement methods. The discrepancy between the

predictions of the Doppler spectra obtained based on a sim-

ple linear surface model and their measurements in con-

trolled laboratory conditions has evidenced the need for

more accurate models of the free surface of turbulent flows,

that include nonlinear interactions among waves on the sur-

face, or a better characterization of their angular spectrum.

These models would allow a better interpretation of the

measurements, including the correct prediction of the width

of the Bragg peaks of the acoustic Doppler spectra, and

could improve the accuracy of the flow velocity estimations

based on backscattering Doppler.

The analysis presented here enabled the quantification

of the parameters that govern the shape of the Doppler spec-

tra, and its relation with the flow conditions. The amplitude

of the acoustic Doppler spectra at the frequencies that corre-

spond to the frequencies of the Bragg-resonant surface

waves was found to increase almost exponentially with the

Froude number of the flow. Different rates of increase were

observed for different types of surface waves, so that the

shape of the measured spectra changed noticeably with the

conditions of the flow. Empirical relations which link the

shape of the Doppler spectra with the flow Froude number

have been suggested. In previous studies, the apparently

inconsistent behavior of the Doppler spectra was believed to

be the main obstacle for the accurate remote estimation of

the flow velocity of turbulent flows.6 In this work, it was

suggested to apply different approaches to the measurement

of the mean surface velocity, depending on the range of flow

conditions, to overcome this issue. If confirmed outside of

the laboratory conditions, the results in this study would

allow the different behaviors of the acoustic Doppler spectra

to be accounted for, and could help the design of more accu-

rate flow velocity remote measurement techniques based on

Doppler.
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